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This thesis is a study of numerical Partial Differential Equation (PDE) methods in financial

derivatives pricing. The first part of the thesis is concerned with the behaviour of a numerical

PDE solution when the initial condition is not smooth. The second part of the thesis develops

computational PDE methods for option pricing problems with stochastic correlation.

In the first part of this thesis, we provide an analysis of the error arising from a non-smooth

initial condition when solving a pricing problem modelled by a parabolic PDE with a finite

difference method. We build our framework on the sharp error estimate in [25], and study three

types of non-smoothness that are of financial interest. Wheareas the framework in [25] focuses

on the effect of Rannacher timestepping, we utilize their techniques to study the numerical error

with focus on the error due to spatial non-smoothness of the initial condition. We show that

the error of the numerical solution under Crank-Nicolson-Rannacher timestepping with central

spatial differences can be decomposed into two components. The first component is a second

order discretization error primarily resulting from the approximation to the heat kernel by a

discrete operator. The second component is a quantization error that depends on the relative

position of the point of non-smoothness on the grid. We obtain explicit expressions of the two

kinds of errors. From this viewpoint, we discuss how mesh positioning relative to the point of

non-smoothness of the initial condition affects the quality of the numerical solution, and the

possibility of an optimal positioning of the point of non-smoothness. We also study explicitly

the effect of smoothing on the error of the numerical solution.

The second part of the thesis focuses on the pricing of European options using a stochastic

correlation model. We derive a time-dependent PDE for the pricing problem under stochastic
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correlation, with the correlation variable giving rise to an extra dimension, and develop compu-

tational approaches for its solution. The first approach we develop is a finite difference scheme.

We study the effect of localization of the domain, formulate appropriate boundary conditions,

and study discretization schemes and stability in the l∞-norm. Of particular interest is the

formulation of boundary conditions in the correlation dimension. The second approach we de-

velop is an asymptotic solution of the PDE, appropriate for cases when the correlation process

exhibits fast mean reversion and when a numerical PDE solution is considered costly. Numer-

ical experiments demonstrate the effectiveness of our methods, and the agreement among the

two solutions and Monte Carlo simulations results. We also experimentally study the effect of

smoothing on the quality of the numerical solution, as an application of the work presented in

the first part of the thesis. We verify second order convergence for the price and derivatives

of various types of options. Furthermore, we present numerical results that illustrate the effect

of certain problem parameters on the approximate solution. For these results, we also give a

mathematical explanation based on the asymptotic solution.
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Chapter 1

Introduction

1.1 The pricing problem

This thesis focuses on the computational aspects of pricing problems. Classically, pricing seeks
to determine the present value of a contingent claim in such a way that it is impossible to create
arbitrage by trading the claim at this price and other available instruments in the market. In
other words, it is impossible to start with zero capital and end up with almost surely non-
negative investment gain and a profit with positive probability.

For some financial contracts, there is a simple way to determine their arbitrage-free values.
One example is the agreement to purchase a stock at a predetermined price K at a maturity
time T . It is not hard to show that (under constant interest and dividend rates) this value at time
t is equal to

S(t)e−q(T−t) −Ke−r(T−t),

where S(t) is the current price of the stock, q is the dividend rate over the time period and r
is the risk-free rate. Similarly, under simplifying assumptions, there are model-free prices for
interest rate swaps, government bonds, or currency forwards among others.

For some other derivatives, modelling is necessary to determine its “arbitrage-free” price.
These include European options with a more complex payoff function or financial arrange-
ments that are path-dependent. Some of these problems do not have a known closed-form
expression of solution using elementary functions, and numerical methods become necessary.
The approximate values as determined by this approach are model-dependent, but the models
are calibrated in a way that best match the prices of available instruments publicly traded in the
market.

Financial modelling is a rich and complex subject that involves advanced mathematics and
probability theory. A branch of pricing theory uses machinery from the theory of partial dif-

1



CHAPTER 1. INTRODUCTION 2

ferential equations (PDEs) with great success. This thesis is an investigation into the computa-
tional and numerical aspects of this PDE approach.

1.2 Price as an expectation

In the discrete time case, it is the content of the fundamental theorem of asset pricing that
arbitrage does not exist if and only if there is a “risk-neutral” measure, equivalent to the real-
world (or “physical”) measure, such that every tradeable asset has the risk-free rate r as the
expected return. This risk-neutral measure is not necessarily unique. The generalization of this
statement to continuous time processes is non-trivial and requires more advanced definition of
the concept of “no-arbitrage” (see for example [16]).
In this framework, once a risk-neutral measure Q is fixed, and assuming prices are Markovian
in the risk factors, the time-t price of a claim V , payable at time T in the amount of g(X(T ))

is given by

V (t,X(t)) = EQ
t

[
e−r(T−t)g(X(T ))

]
,

where:

• EQ
t denotes the conditional expectation with respect to the filtration at time t, and

• X(s) (where 0 ≤ s ≤ T ) is the relevant risk factors, possibly multi-dimensional.

A corollary is that if g(X(T )) is non-negative and is positive on a set with non-zero proba-
bility, then V (t,X(t)) has to be positive by properties of the expectation operator. This holds
true for any constant linear combination of tradeable instruments as well. This can be seen to
prevent arbitrage by “static” trades.
If a density function p(T,X(T ) | t,X(t)) exists, we can write the price as follows:

V (t,X(t)) = e−r(T−t)
∫

Ω̂

g(X(T ))p(T,X(T ) | t,X(t))dX(T ),

where Ω̂ is the range space of X(T ).

1.3 Popular models

Brownian motions are popular building blocks for risk processes in financial models. In this
section we outline a few such basic models that are built from them. These models are exten-
sively studied and will be useful in the later parts of this thesis.
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A first model for the stock price process is Bachelier’s model, which assumes that the T -
forward price F (t) at time t of an asset is governed by the stochastic differential equation
(SDE) in the T -forward measure (risk-neutral measure with the zero coupon bond maturing at
time T as the numéraire, see [51])

dF (t) = σFdB(t), (1.1)

where
(
B(t)

)
{0≤t≤T} denotes the standard Brownian motion. In this model, assuming tem-

porarily that the interest rate is constant, and dividend rate is zero, we have that S(t) =

e−r(T−t)F (t) is the price of the underlying asset, and therefore this SDE is same as modelling
the asset price at any future time by a normal distribution.

Consequently, in this model, asset prices have positive probability of being negative, which
is an undesirable feature for some applications. On the other hand, the SDE (1.1) from Bache-
lier’s model is extensively used as a quotation model in the swaption market, due to the (in-
creasingly common) possibility that interest rates, or in this case the forward swap rate, can in
fact be negative.
European option prices in this model are given by

V Bachelier(t, F (t)) =
P (t, T )√

2πσ2
F (T − t)

∫ ∞
−∞

g(F (T ))e
− (F (T )−F (t))2

2σ2
F

(T−t) dF (T ), (1.2)

where P (t, T ) is the time-t price of a risk-free zero-coupon bond maturing at time T , and is
equal to e−r(T−t) for constant interest rate r.

The celebrated Black-Scholes-Merton (BSM) model is given by the following SDE for the
asset price, in the physical measure:

dS(t)

S(t)
= µSdt+ σSdB(t). (1.3)

This is also called the geometric Brownian motion (GBM). In this model, asset prices re-
main positive and their logarithms follow a normal distribution (at a fixed future time). From
Itô’s lemma, we have

d log(S(t)) = (µS −
σ2
S

2
)dt+ σSdB(t). (1.4)

Similarly in the PDE framework, this logarithmic transformation converts the Black-Scholes
PDE (1.13) into a constant coefficient convection-diffusion equation.

The Black-Scholes-Merton model assumes a dynamics of asset prices in the physical mea-
sure as opposed to a risk-neutral measure. The expected return in [0, T ] under this measure
is equal to eµST instead of erT . Therefore, one has to find an equivalent measure such that
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the expected return is erT . In the BSM model one can always accomplish this by a “hedging”
argument.
European option prices in this model for a non-dividend-paying asset can be written as

V BS(t, S(t)) =
e−r(T−t)√

2πσ2
S(T − t)

∫ ∞
−∞

g(ex)e
− (x−log(S(0))−(r−

σ2
S
2 )(T−t))2

2σ2
S

(T−t) dx. (1.5)

When there are two or more assets relevant to a particular problem, it is straightforward to
use the GBM to model each asset price process separately, then combine with a correla-
tion/covariance matrix. Mathematically, the price process of the j-th asset can be written as

dSj(t)

Sj(t)
= µSjdt+ σSjdBj(t), (1.6)

where {Bj(t)} are correlated Brownian motions. One of the problems we study in this thesis
is the computational challenges when correlation is also assumed to be stochastic.

The limitations of using (1.3) to describe asset price processes are well-documented in the
literature. In particular, it does not account for the fact that European options traded in the
market exhibit a non-flat implied volatility surface. Various models are designed to address
this limitation.

Stochastic volatility models make an additional assumption that the instantaneous volatility
is itself a stochastic process. The Heston model ([29]) is one of the most popular models
favoured by researchers and practitioners. In this model, the asset price and its instantaneous
variance are jointly specified:

dS(t)

S(t)
= µSdt+

√
v(t)dB1(t)

dv(t) = λv(ηv − v(t)) + σv
√
v(t)dB2(t) (1.7)

dB1(t)dB2(t) = ρdt.

Without parameter restrictions, there is no guarantee that v(t) will stay positive. The Feller
condition requires

2λvηv > σ2
v (1.8)

in order that the variance is strictly positive.

Stochastic volatility models alone are known to insufficiently describe the steepness of the
volatility surface at short expiries. Jump diffusion models (see e.g. [43] or [35]), on the other
hand, are able to capture this short-term skew given that the mean jump size is large enough.
In this thesis, we will focus on diffusion-based models.
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In the interest rate world, short rate models find their use in many pricing problems. In
these models, the interest rate r = r(t) is no longer constant and deterministic. Below we
introduce two such models:

dr(t) = λr(ηr − r(t)) + σrdB(t) (Vasicek model) (1.9)

dr(t) = λr(ηr − r(t)) + σr
√
r(t)dB(t) (Cox-Ingersoll-Ross model) (1.10)

In these models, the short rate is directly modelled by SDEs. The discount process is no longer
deterministic, and is instead given by e−

∫ t
0 r(s)ds. In the Vasicek model, the short rate has a

positive probability of going negative. In the CIR model, the short rate can stay positive under
a parameter restriction similar to (1.8), and in this case the short rate process has a natural
lower boundary at 0.

1.4 The PDE approach

Let X(t) satisfy
dX(t) = µ(t,X(t))dt+ σ(t,X(t))dB(t),

where B(t) is a Brownian motion, and the functions µ(·), σ(·) are globally Lipschitz in x and

are of linear growth in x. Let f(t, x) = Et,x

[
e
∫ T
t c(s,Xs)dsg(X(T )))

]
. Then the Feynman-Kac

formula states that, if f ∈ C1,2([0, T )× R) and g is of polynomial growth, we have

∂f

∂t
+
σ(t, x)2

2

∂2f

∂x2
+ µ(t, x)

∂f

∂x
+ c(t, x)f = 0, (1.11)

satisfying the terminal condition f(T, x) = g(x). Moreover, the conditional expectation f(t, x)

is the only solution to the Cauchy problem with polynomial growth. The proof can be found in
[34].

The significance of this formula is that, “prices” can also be interpreted as solutions to
partial differential equations. This connection between a conditional expectation and a PDE
opens the door to PDE approaches in pricing. Each of the stochastic models in Section 1.3
has a corresponding PDE interpretation. The integral representation of prices (1.2) or (1.5) can
be regarded as the convolution of the terminal condition with the fundamental solution to the
corresponding partial differential equation. Both the PDE and the probabilistic interpretation
are popular and classical approaches to pricing financial instruments.

In our presentation of the Bachelier model (1.1), the state variable is the T -forward price
F (t), and the corresponding pricing PDE for the value function V (t, F ) (with c(t, x) = −r in
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(1.11)) is
∂V

∂t
+
σ2
F

2

∂2V

∂F 2
− rV = 0. (1.12)

In the Black-Scholes-Merton model (1.3), the asset price process is specified in the physical

measure, in which its drift is µS . In a risk-neutral measure with constant risk-free rate r, its
drift should be r. As prices are given by risk-neutral expectations, the corresponding PDE
according to (1.11) is the familiar Black-Scholes PDE

∂V

∂t
+
σ2
SS

2

2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1.13)

As another example, the Heston model (1.7) has the following pricing PDE, according to a
multi-dimensional version of (1.11):

∂V

∂t
+
vS2

2

∂2V

∂S2
+ ρσvvS

∂2V

∂S∂v
+
σ2
vv

2

∂2V

∂v2

+(λv(ηv − v(t))− Λv(S, v, t))
∂V

∂v
+ rS

∂V

∂S
− rV = 0. (1.14)

The variable Λv(S, v, t) is the so-called market price of variance risk. It arises from the fact
that there is more than one risk-neutral measure, intuitively because all we require is that S(t)

grows at the risk-free rate r, and no such requirement is imposed on v(t) as it is not a tradeable
asset. This gives us freedom in choosing its drift, and as a result each choice of Λ(S, v, t)

corresponds to one risk-neutral measure.

While the PDEs (1.12), (1.13) and (1.14) can be interpreted as an instance of (1.11), it is
also possible to obtain them through a hedging argument.

In practice, the PDE approach is effective in handling options in low dimensions, even for
options with path-dependency features. The pricing of American options can be posed as a
linear complementarity problem, while that of Asian options can be formulated as a PDE with
an auxiliary dimension. In addition, the calculation of sensitivities to risk factors is straight-
forward in the PDE method as solutions are obtained for the entire grid as opposed to a single
point.

While for simple models such as the multi-dimensional geometric Brownian motion (1.6)
the fundamental solution to the corresponding PDE has a known explicit expression using
elementary functions, this is not necessarily the case for models with more complex structures.
In addition, the approach of fundamental solution is not generally applicable to path-dependent
options. In those cases, numerical methods become necessary. The investigation of numerical
methods to such PDEs is the primary subject of this thesis.



CHAPTER 1. INTRODUCTION 7

1.5 Solution space, incompleteness and viscosity solutions

To develop a convergent numerical scheme, it is necessary to first identify the target solution

space. Classical option pricing as described in Section 1.4 identifies the price of a European
option as a conditional expectation, and if the process is generated by a diffusion, then the
Feynman-Kac formula implies that it is also the solution to a linear PDE similar to (1.11). By
the parabolic smoothing property, as long as the diffusion coefficient is positive, one can expect
that the solution is C2 in space and C1 in time for positive time.

This has been summarized in [21], which proves that, under certain growth assumptions,
as long as this “stochastic solution” is continuous, it is also C2 in space and C1 in time. We
will revisit this theorem when we work with a model with stochastic correlation. For such
solutions, a large class of classical numerical schemes are available.

It is not always the case that the solution to a pricing problem enjoys such smoothness.
While in this thesis we are primarily concerned with solutions that are C2 in space and C1

in time, we briefly mention another space, naturally arising from other pricing considerations,
that is also numerically interesting.

As mentioned in Section 1.2, the risk-neutral measure is a mathematical construction that
seeks to price all contingent claims by an expectation operator, and is not necessarily unique.
When this probability measure is not unique, the market is said to be incomplete. Each of these
possible measures corresponds to a PDE, and there can be more than one possible price for the
particular instrument that prevents arbitrage.

There are various approaches to pricing in an incomplete market. One possibility is to
select certain special risk-neutral probability measures for pricing - for example, the minimum

entropy martingale measure, and consider the conditional expectation of the payoff under this
measure as the price. This will lead to a unique pricing PDE, and the solution can be expected
to be smooth when the underlying process is a diffusion.

It is also possible to consider the set of all equivalent martingale measures and define the
price as the supremum (or infimum) of these conditional expectations, depending on the po-
sition taken. One example is the uncertain volatility model, where the asset price is specified
like (1.3), but the volatility is uncertain and can be anywhere in an interval [σ, σ]. The worst
case path at each point in time depends on the Gamma (second derivative with respect to the
spot price) of the option. The resulting price from considering the worst case path of volatility
is also called the superreplication cost.

Another possibility is to take into account the investor’s utility function. Roughly speaking,
the utility indifference (buy) price identifies the amount of cash price such that the investor is
indifferent between paying the price and obtaining a certain amount of the claim, and not
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paying and not receiving the claim at maturity, in the sense that his or her expected utility
under optimal trading is unchanged. This is also a popular approach to pricing in an incomplete
market.

Both the worst-case price approach and the utility indifference pricing can be cast in control
form, and the associated PDE is of Hamilton-Jacobi-Bellman type. They are also nonlinear
pricing methods, meaning that the price of the sum of two claims does not necessarily equal the
sum of the individual prices. The suitable solution space to such problems is that of the viscosity

solutions. Numerical schemes, aside from consistency and stability, have to be monotone in
order that convergence to such solutions is guaranteed [2].

In this thesis, we are primarily concerned with linear PDEs and solutions that are C2 in
space, and C1in time. The Lax equivalence theorem applies, that is, a consistent finite differ-
ence method is convergent if and only if it is stable.

1.6 Thesis contributions

In this thesis, we will explore the option pricing problem from a PDE standpoint. The first part
of the thesis is an analysis of a model problem, and our focus is on understanding the effect of
non-smoothness on the numerical solution. The second part of the thesis focuses on developing
computational methods for option pricing problems with stochastic correlation.

As mentioned, a risk-neutral expectation has a PDE representation (1.11). The initial con-
dition for the PDE is simply the payoff function, which is often non-smooth. For example, the
call option payoff g(S(T )) = max(S(T )−K, 0) is not C1 at the strike K. The first part of the
thesis is an analysis of the numerical solution under Crank-Nicolson-Rannacher timestepping
with central spatial differences when the initial condition is not smooth. Our contributions are
summarized below.

• We develop a general framework to analyze the error arising from non-smoothness of
the initial condition for a finite difference scheme, in relation to the relative position of
the non-smoothness in the grid.

• We show that for the types of non-smoothness we consider, the error of the numer-
ical solution can be decomposed into a timestepping error typical of Crank-Nicolson
timestepping, and another component called quantization error which depends (linearly
or quadratically) on the relative position of the point of non-smoothness on the grid,
which allows us to study possible minimization of error by varying the position of place-
ment.
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• We demonstrate explicitly that for the unsmoothed Heaviside initial condition, the lead-
ing error is first order, except when the point of discontinuity is placed at a midpoint.
While placing the discontinuity at a mid-point is a known technique, we will review this
from a different viewpoint. It is an immediate corollary of our analysis that, for our
choice of finite difference with an unsmoothed Heaviside initial condition, a first order
quantization error proportional to (α − 1

2
) arises, where α is the relative position of the

non-smoothness in the grid, explaining the inverse relationship between the error and the
distance of the discontinuity from a mid-point in the grid.

• Our analysis shows that an unstable convergence estimate can result when the relative
position of the non-smoothness, α, is not maintained during grid refinement. We also
studied the possibility of choosing an optimal α.

• We demonstrate explicitly the effect of smoothing operators on numerical solutions and
how the optimal order is restored. In addition, we show how the dependence of the
leading error on α can be removed by smoothing.

The next part of the thesis studies option pricing in the presence of stochastic correlation,
from a computational viewpoint. We derive the pricing PDE, where the correlation variable
gives rise to an extra dimension. We then develop two approaches to computing option values
in this setting. Our contributions are listed below.

• We develop a numerical PDE solution to the problem. We discuss such issues as local-
ization, boundary conditions, discretization and stability of the numerical solution in the
l∞-norm. Of particular interest is the formulation of boundary conditions in the correla-
tion dimension.

• When the correlation process exhibits fast mean-reversion, we propose a second ap-
proach, based on singular perturbation ([46]). The asymptotic solution involves a cor-
rection to the (multi-asset) Black-Scholes price under a constant correlation.

• For options where the values or derivatives for a constant correlation under the Black-
Scholes multi-dimensional framework do not have known closed-form expressions using
elementary functions, we have studied a quadrature method based on the asymptotic
density to approximate the price. Explicit expressions of the required density corrections
are provided.

• We demonstrate the effectiveness and agreement of our proposed solutions to the prob-
lem. We also experimentally study the effect of smoothing on the quality of the numerical
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solution, as an application of the work presented in the first part of the thesis. Moreover,
we numerically study the effects of certain problem parameters on the solution.

1.7 Thesis outline

The thesis is organized as follows.
Chapter 2 is devoted to a detailed analysis of the Crank-Nicolson-Rannacher method, in the

presence of a point of non-smoothness in the initial conditions. This study is motivated by the
fact that, when applying the PDE approach to pricing, initial conditions are often not smooth.
We derive the leading error term of such problems, and from this point of view, study some
useful strategies in mitigating the non-smoothness.

Chapter 3 presents the stochastic correlation problem studied in this thesis. The correlation
parameter used for pricing and valuation is often treated as a constant. We study a model
that introduces stochasticity in correlation. We also prove that the option price defined as a
risk-neutral expectation is C2 in space and C1 in time, and satisfies a Black-Scholes type PDE.

Chapter 4 is devoted to developing a finite difference scheme for the problem. By Lax
equivalence theorem, a consistent finite difference scheme is convergent if and only if it is
stable. Our numerical scheme is developed in such a way that we are able to prove that,
under some conditions on the mesh, fully implicit timestepping together with a certain spatial
discretization scheme that we develop is unconditionally stable in the l∞-norm.

Chapter 5 develops an alternative approximation to the solution. The motivation is that an
implementation of the scheme developed in Chapter 4 could be costly in some computational
scenarios, given today’s computing power. For computational scenarios where efficiency is
preferred to a high degree of accuracy, we develop an asymptotic solution under large mean
reversion speed of the correlation process. We also provide justification for payoffs that satisfy
certain smoothness and growth assumptions. Based on this asymptotic solution, we also pro-
pose a heuristic computational approach, which is demonstrably effective for options that do
not have a known closed-form expression of values or derivatives using elementary functions
in the Black-Scholes world.

Chapter 6 presents numerical experiments that demonstrate effectiveness of our solutions
developed in both Chapters 4 and 5. We also demonstrate the effect of smoothing the initial
condition, which is an effective method for non-smooth payoffs used by many researchers and
which was studied from a different angle in Chapter 2.



Chapter 2

Mesh Error Analysis of the
Crank-Nicolson-Rannacher Method

For many financial pricing problems, exact solutions based on elementary functions are often
unknown, and numerical solutions to the Black-Scholes equation and its variants is required.
As mentioned in Section 1.5, for diffusion-based linear problems one can expect the solution
to be at least C2 in the interior of the spatial domain and at least C1 in time. In fact, for
the problems we consider in this chapter, the solutions are C∞ in both space and time away
from the initial time. Local analysis of leading error terms, common in numerical analysis
textbooks, shows that, under certain smoothness assumptions that include the initial time, the
Crank-Nicolson timestepping method combined with central differencing in space should yield
second order convergence.

However, special difficulties arise in applying classical PDE timestepping methods to pric-
ing European contracts whose payoffs are not smooth in space. The European call option with
payoff given by max(S(T )−K, 0), considered as a function of the terminal asset price S(T ),
does not have a continuous first derivative at the strike K. The non-smoothness is known to
cause high frequency errors under a classical Crank-Nicolson time discretization ([25]).

The Rannacher timestepping method has been proposed ([48]) to address the difficulty
with non-smooth initial data. In this method, the first few timesteps of the Crank-Nicolson
timestepping are replaced by fully implicit timesteppings to restore optimal convergence order.
It has been shown for various non-smooth initial conditions that the Rannacher start-up is able
to suppress the high frequency error associated with the non-smoothness.

While this simple modification in time discretization effectively restores theoretical second
order convergence, without special tricks in the spatial direction such as smoothing the ini-
tial conditions, “erratic” and suboptimal convergence estimates are still observed in numerical
experiments ([47]).

11
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Another novel timestepping technique has also been proposed recently in [49], where it
was shown that for Dirac-delta initial condition, a square root change of variable of the time
dimension restores the optimal second order convergence (for small enough time-space step-
size ratio) without the need of Rannacher timestepping. Numerical experiments there also
suggest that the technique is also useful for more complicated problems including the pricing
of an American option.

This chapter is dedicated to a detailed study of the error due to grid resolution of the point
of non-smoothness. We will focus on non-smoothness that is of most financial interest. In the
course of the analysis, we will additionally develop and justify a few numerical schemes that
could help achieve a stable convergence order.

Convergence of difference schemes for non-smoothness in initial data has been studied
theoretically in [54]. Smoothing schemes for such initial data, as a remedy to restore optimal
convergence of difference schemes, is suggested in [36]. Application of these approaches in
the financial context can be found in [47], [28], [52] or [19]. In the course of our analysis,
these approaches will also be discussed. Other regularization and smoothing techniques for the
Dirac-delta and Heaviside functions can be found in [55], [56] or [57], among others.

2.1 Non-smooth initial data and convergence

The Black-Scholes equation is one of the most important equations in financial pricing. In its
basic form, the Black-Scholes equation is

∂V

∂t
+
σ2S2

2

∂2V

∂S2
+ (r − q)S∂V

∂S
− rV = 0, (2.1)

where V (t, S) is the value of the option at time t and asset price S, which is assumed to
have dividend rate q. The risk-free rate is assumed to be a constant r. The volatility σ is
unobservable, and in the original formulation of the Black-Scholes model, this quantity is
assumed to be constant. When this quantity is deterministically dependent on time and space,
the resulting model is the local volatility model due to Dupire ([20]).

Upon substitution x = log(S) and τ = T −t, equation (2.1) is transformed to a convection-
diffusion equation with constant coefficients

∂v

∂τ
=
σ2

2

∂2v

∂x2
+ (r − q − σ2

2
)
∂v

∂x
− rv, (2.2)

where v(τ, x) = V (T − τ, ex).
The payoff of the option g(ST ) dependent on the terminal asset price at maturity T translates
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into a terminal condition for (2.1) or an initial condition for (2.2). Numerical solutions to (2.1),
(2.2) and their generalizations are important in many occasions. When more complex struc-
tures are specified, for example a parametric form of the local volatility or higher dimensional
volatility models, exact solution based on elementary functions is often unknown even for basic
payoff functions g(·). In addition, the numerical PDE approach is effective in handling options
with path-dependency features, for example an Asian option or a cliquet option. Numerical
solutions to these equations therefore remain important for many applications.

Many financial derivatives, however, have non-smooth payoff functions. The most repre-
sentative of all are the calls and puts, which respectively have the form max(S − K, 0) and
max(K − S, 0), where K is known as the strike. The first derivative with respect to S is not
continuous precisely at the strike. Another common payoff that has similar difficulties is the

digital option, which has payoff H(S −K), where H(x) =

1 if x ≥ 0

0 else
is the Heaviside

function. This option pays off a fixed amount if and only if the asset price is above (or alterna-
tively, below) a certain strike. The payoff itself is not continuous.

It has been widely reported and known that applying a finite difference method with Crank-
Nicolson directly to (2.1) or (2.2) with non-smooth initial data will result in erratic convergence
rates and in some cases large errors in derivative approximations. The Rannacher timestepping
successfully eliminates higher frequency errors and restores second order leading errors for
calls and puts ([25]). However, suboptimal convergence is still observed experimentally for
digital options ([47]).

As an example, we consider solving (2.2) with an initial condition equal to H(x) so that
discontinuity occurs at x = 0. Equivalently, this is the price of a digital option with strike 1
under the assumption of geometric Brownian motion. We use a finite difference method with
central differences and Rannacher timestepping so that the two Crank-Nicolson timesteps are
replaced by four fully implicit timesteps of half the step-size. We begin with a uniform grid on
[−8, 8] with step-size h = 1

12
. For each successive run, we insert mid-points into the grid so

that the grid remains uniform, and the step-size is halved. This is a common method of refining
grids (but by no means the only one). We shall revisit this point later in the chapter. Finally,
Dirichlet conditions with the exact solution are imposed on the two far end-points.

From the (l−1)-th mesh (coarser) to the l-th mesh (finer), we also define the quantity for l > 1:

Υl ≡ log

(∣∣∣∣errorl−1

errorl

∣∣∣∣) / log(2).

The error is defined to be the numerical approximation minus the exact value of the solution
to the PDE. If the numerical scheme has first order convergence, then error is approximately
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Spatial
step-size h

Time step-
size k

Error Convergence rate
estimate Υ

1/12 1/6 7.9320× 10−2 –
1/24 1/12 3.9038× 10−2 1.0228
1/48 1/24 1.9495× 10−2 1.0018
1/96 1/48 9.7551× 10−3 0.9989

Table 2.1: Results of solving equation (2.2) with initial condition the Heaviside functionH(x),
evaluated at 0. Volatility σ is 20%, risk-free rate r is 5%, and dividend q is 0%. Numerical
method is Rannacher timestepping with central spatial difference. Each grid is refined by
inserting mid-points. Strike aligned with a grid-point.

halved as the grid is refined by one level. In this case, the Υl’s would be close to 1. On the
other hand, one can expect the Υl’s to be close to 2 for a quadratically convergent scheme.

The results from solving (2.2) with an initial condition equal to H(x) using central dif-

ference with Rannacher timestepping are shown in Table 2.1. It is evident that, even though
theoretically second order convergence is to be expected, in this setting, one only observes a
first order convergence experimentally. An existing technique in mitigating this sub-optimal
convergence is by placing the discontinuity at a mid-point (e.g. [47]). We will revisit this
technique from a different viewpoint as we develop the analysis later in the chapter.

If the strike is not a grid-point, which is a common scenario, and no additional effort is
taken to align the strike to a grid-point in the numerical software, then an erratic experimental
convergence using the aforementioned way of refining grids can result. This can be observed
in Table 2.2. In this experiment, the first grid has grid-points ( 1

30
+ j

12
), where−100 ≤ j ≤ 92,

so that the endpoints are (−8.3, 7.7), on which we impose Dirichlet boundary conditions based
on the known exact solution. We refine the grid by inserting mid-points. As evident in Table
2.2, the error does not necessarily improve even as the step-sizes are halved. The experimental
convergence is far from stable.

An erratic convergence could be problematic. Extrapolation, for example, is a common
technique to eliminate the leading error term in order to obtain a more accurate solution using
numerical solutions from a coarse grid and a finer grid. This is a useful technique when compu-
tational costs are high, for instance in a higher dimension PDE solver. However, extrapolation
is only possible when the convergence is stable. With a convergence table like the one in Table
2.2, it is difficult to obtain a reliable extrapolated value.

Finally, the errors in Table 2.2 in fact are smaller than those in Table 2.1. This is an expected
phenomenon and we will explain why placing the strike on a grid-point will lead to larger errors
later in the chapter.



CHAPTER 2. MESH ERROR ANALYSIS OF THE CRANK-NICOLSON-RANNACHER METHOD15

Spatial
step-size h

Time step-
size k

Error Convergence rate
estimate Υ

1/12 1/6 1.6067× 10−2 –
1/24 1/12 2.3803× 10−2 -0.5670
1/48 1/24 3.9294× 10−3 2.5988
1/96 1/48 5.8572× 10−3 -0.5759

Table 2.2: Results of solving equation (2.2) with initial condition the Heaviside functionH(x),
evaluated at 0 with cubic spline interpolation. Volatility σ is 20%, risk-free rate r is 5%, and
dividend q is 0%. Numerical method is Rannacher timestepping with central spatial difference.
Each grid is refined by inserting mid-points. Strike not aligned with a grid-point.

The error resulting from the alignment of the non-smoothness is known as the quantization

error in [52]. In other words, this is an error that arises from the resolution of the discontinuity
(or point of non-smoothness) on the grid, on top of the classical finite difference discretization
errors. In this chapter, we will analyze in detail how this quantization error affects the quality
of a numerical solution.

2.2 Model problem

As the logarithmic transformation converts the Black-Scholes equation to a convection-diffusion
equation with constant coefficients, we work with the following model problem as in [25]:

∂v

∂t
+ a

∂v

∂x
=
∂2v

∂x2
, (x, t) ∈ (−∞,∞)× [0, 1]. (2.3)

This equation has an explicit fundamental solution given by

G(t, x) =
1√
4πt

e−
(x−at)2

4t .

Given any initial condition g(x), the solution to (2.3) for t > 0 is

v(t, x) =

∫ ∞
−∞

g(y)G(t, x− y)dy.

In particular, for Dirac-delta initial condition at 0, the solution is

vδ(t, x) =
1√
4πt

e−
(x−at)2

4t . (2.4)

We consider a finite difference method using second order central difference with Rannacher
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timestepping. Let h be the stepsize of a spatial discretization, and k be the time stepsize.
Denote tl = lk (with l = 1, 2, . . . ,m and tm = 1) and xj = (j + (1 − α))h, where j ∈
{. . . ,−1, 0, 1, . . .} = Z, and α ∈ (0, 1]. Let v(l) be a discretized version of v, i.e. v

(l)
j =

v(tl, xj). The fully implicit discretization of (2.3) with a time step-size of k
2

is

v
(l+1)
j − v(l)

j

k
2

=
v

(l+1)
j+1 − 2v

(l+1)
j + v

(l+1)
j−1

h2
− a

v
(l+1)
j+1 − v

(l+1)
j−1

2h
, (2.5)

whereas the Crank-Nicolson discretization of (2.3) with a time step-size k is as follows:

v
(l+1)
j − v(l)

j

k
=

1

2

(
v

(l)
j+1 − 2v

(l)
j + v

(l)
j−1

h2
− a

v
(l)
j+1 − v

(l)
j−1

2h

+
v

(l+1)
j+1 − 2v

(l+1)
j + v

(l+1)
j−1

h2
− a

v
(l+1)
j+1 − v

(l+1)
j−1

2h

)
. (2.6)

Our goal is to compare v(m) and v(1, ·) and investigate the effect of non-smoothness on their
discrepancy. We will also investigate how the error changes as we refine the grid by inserting
mid-points into the previous mesh. As in Section 2.1, the quantity λ = k

h
is held constant as

the grid is refined.

For Rannacher timestepping, the first R timesteps (of step-size k) are each replaced by 2
timesteps of step-size k

2
. A detailed investigation in [25] concluded that R = 2 is the optimal

choice to reduce high-frequency errors associated with non-smoothness of the initial condition
while not increasing the more prominent low-frequency errors. This is known as the Crank-

Nicolson-Rannacher (CN-Rannacher) method.

Other implementations of the Rannacher timestepping, including replacing two initial Crank-
Nicolson timesteps by two fully implicit timesteps, have been studied in [25]. We refer the
reader to their work for these other possible choices.

2.3 Difference equation and the discrete-continuous Fourier
transform

For the rest of this chapter, the variable i denotes the canonical choice of the complex number
such that i2 = −1. Following [25], for a function U defined on the discretized grid such that
its value at xj is given by Uj , we define the transforms

Û(θ) = h
∞∑

j=−∞

Uje
−
ixjθ

h . (2.7)



CHAPTER 2. MESH ERROR ANALYSIS OF THE CRANK-NICOLSON-RANNACHER METHOD17

The inverse transform is given by

Uj =
1

2πh

∫ π

−π
Û(θ)e

ixjθ

h dθ =
1

2π

∫ π
h

−π
h

Û(hκ)eixjκdκ (θ = hκ). (2.8)

These are also known as discrete-time Fourier Transform pair. Discrete samples of a function
are transformed into a continuous spectrum of frequencies, and vice versa. It is not hard to
verify that the inverse transform recovers the sampled values of the function.
Multiplying both sides of (2.5) by he−

ixjθ

h and summing across j, we obtain

∑
j

v
(l)
j e
−
ixjθ

h =
∑
j

v
(l+1)
j e−

ixjθ

h − k

2
(

∑
j v

(l+1)
j+1 e−

ixjθ

h −
∑

j 2v
(l+1)
j e−

ixjθ

h +
∑

j v
(l+1)
j−1 e−

ixjθ

h

h2
)

+
k

2
(a

∑
j v

(l+1)
j+1 e−

ixjθ

h −
∑

j v
(l+1)
j−1 e−

ixjθ

h

2h
).

Then using the transform definition in (2.7), we have

v̂(l)(θ) = (1 +
k

h2
− k

2h2
(eiθ + e−iθ) +

ka

4h
(eiθ − e−iθ))v̂(l+1)(θ)

= (1 +
k

h2
(1− cos θ) + i

ka

2h
sin θ)v̂(l+1)(θ)

= (1 +
2k

h2
sin2 θ

2
+ i

ka

2h
sin θ)v̂(l+1)(θ),

from which we get

v̂(l+1)(θ) =
1

1 + iaλ
2

sin θ + 2d sin2 θ
2

v̂(l)(θ),

where λ = k
h

and d = k
h2 .

Working similarly with (2.6), we get

v̂(l+1)(θ) =
1− iaλ

2
sin θ − 2d sin2 θ

1 + iaλ
2

sin θ + 2d sin2 θ
2

v̂(l)(θ).
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After 2R applications of (2.5) with time step-size k
2

followed by m − R applications of (2.6)
with time step-size k, we have at terminal time l = m (where tm = 1),

v̂(m)(θ) =

(
1

1 + iaλ
2

sin θ + 2d sin2 θ
2

)2R(1− iaλ
2

sin θ − 2d sin2 θ

1 + iaλ
2

sin θ + 2d sin2 θ
2

)m−R
v̂(0)(θ)

=

(
1

1 + iaλ
2

sin θ + 2d sin2 θ
2

)2R(1 + iaλ
2

sin θ + 2d sin2 θ
2

1− iaλ
2

sin θ − 2d sin2 θ

)R
×
(

1− iaλ
2

sin θ − 2d sin2 θ

1 + iaλ
2

sin θ + 2d sin2 θ
2

)m
v̂(0)(θ)

Therefore, with

z1(θ) = (1− iaλ
2

sin θ − 2d sin2 θ

2
)(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)−1 (2.9)

z2(θ) = (1− iaλ
2

sin θ − 2d sin2 θ

2
)−1(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)−1, (2.10)

we have
v̂(m)(θ) = zm1 (θ)zR2 (θ)v̂(0)(θ) (2.11)

for m > R.

2.4 Error Analysis of CN-Rannacher method

2.4.1 Review of Giles-Carter analysis [25]

Our analysis relies heavily on utilizing the sharp error estimates developed in [25] for linear
PDEs with Dirac-delta initial data. In this section, we summarize the relevant results in [25].
For completeness we shall also include the key parts of the proofs. We denote

Û (m)(θ) = zm1 (θ)zR2 (θ).

The variable Û (m) is easily seen as the numerical timestepping operator up to time t = 1 in
Fourier space given any initial v̂(0). Algebraically, we write (here and in the rest of the chapter)
θ = hκ.

The domain of κ is [−π
h
, π
h
]. Choose b such that 0 < b < 1

3
and c such that 1

2
< c < 1. For

each h, we divide this domain of κ into three parts:

• Low frequency domain: |κ| < h−b

• High frequency domain: |κ| > h−c, and
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• Mid frequency domain: h−b ≤ |κ| ≤ h−c.

The following propositions essentially show that the value of Û (m)(θ) is more prominent in the
low frequency domain than in the other two. In the low frequency domain, the value of Û (m) is
of order O(1). In the high frequency domain, the value of Û (m) is of order O(h2R) where R is
the number of fully implicit timesteps initially applied. Finally, the value in the mid frequency
domain goes to zero faster than any polynomial in h, as h→ 0.

PROPOSITION 1. For |κ| < h−b (low frequency domain), we have as h→ 0,

Û (m)(θ) = Û (m)(hκ) = e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
+O(h3(κ3 + κ9)),

where

p(κ, a, λ,R) =
1

6
iaκ3 +

1

12
κ4 − 1

12
λ2κ3(ia+ κ)3 +

1

4
Rλ2κ2(ia+ κ)2.

Proof. From the definition of Û (m), and that m = 1
λh

,

log(Û (m)(θ)) = m log z1 +R log z2 =
1

λh
log z1 +R log z2.

From the definition of z1, and the expansion log(1 + x) = x− x2

2
+ x3

3
+ . . . for small x,

log z1 = log(1− iaλ
2

sin θ − 2d sin2 θ

2
)− log(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)

= 2×
(
− (i

aλ

2
sin θ + 2d sin2 θ

2
)− 1

3
(i
aλ

2
sin θ + 2d sin2 θ

2
)3

)
+ higher order terms,

while

log z2 = − log(1− iaλ
2

sin θ − 2d sin2 θ

2
)− log(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)

= (i
aλ

2
sin θ + 2d sin2 θ

2
)2 + higher order terms.

Recall d = λ
h

. We use the expansion sin(x) = x− x3

3!
+ x5

5!
for small x (and similarly for cos(x))
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to obtain

i
aλ

2
sin θ + 2d sin2 θ

2
= sin(

κh

2
)(iaλ cos(

κh

2
) + 2

λ

h
sin(

κh

2
))

= λ(
κh

2
− κ3h3

48
)(ia− iah2κ2

8
+ κ− κ3h2

24
) + higher order terms

=
1

2
λh(κ− κ3h2

24
)(ia+ κ− iah2κ2

8
− κ3h2

24
) + higher order terms

=
1

2
λh(iaκ+ κ2 − iaκ3h2

6
− κ4h2

12
) + higher order terms

It follows that, by regrouping terms up to h2,

log Û (m)(hκ) = iaκ− κ2 + h2p(κ, a, λ,R) + higher order terms,

and so
Û (m)(hκ) = e−iaκ−κ

2

(
1 + h2p(κ, a, λ,R)

)
+ higher order terms,

as desired. The relation 0 < b < 1
3

is obtained by requiring that h2κ6, the highest order term in
κ of p, tends to zero as h→ 0.

REMARK 1. In the original paper [25], it was stated that the higher order terms are dominated

byO(h3(κ3+κ9)). However, the Taylor series expansion seems to suggest that the higher order

terms are of the form O(h4(Rκ4 +κ5 +κ6 +Rκ8 +κ10)). This discrepancy, however, does not

affect our subsequent analysis.

PROPOSITION 2. For |κ| > h−c (high frequency domain), we have

Û (m)(θ) = Û (m)(hκ) =
(−1)m−Rh2R

(2λ sin2 θ
2
)2R

e
− 1

λ2 sin2( θ2 ) (1 +O(hθ−2))

as h→ 0.

Proof. We rewrite

z1 = (1− iaλ
2

sin θ − 2d sin2 θ

2
)(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)−1

= (1− iaλ
2

sin θ − 2
λ

h
sin2 θ

2
)(1 + i

aλ

2
sin θ + 2

λ

h
sin2 θ

2
)−1

= −(1 +
iah

2
cot

θ

2
− h

2λsin2 θ
2

)(1 +
iah

2
cot

θ

2
+

h

2λsin2 θ
2

)−1.
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Therefore, as h→ 0,

(−z1)m = (−z1)
1
λh

=
(1 + iah

2
cot θ

2
− h

2λsin2 θ
2

)
1
λh

(1 + iah
2

cot θ
2

+ h
2λsin2 θ

2

)
1
λh

→ exp(
1

λ
(
ia

2
cot(

θ

2
)− 1

2λ sin2 θ
2

)− 1

λ
(
ia

2
cot(

θ

2
) +

1

2λ sin2 θ
2

))

= exp(− 1

λ2 sin2 θ
2

).

On the other hand, similar rearrangement of z2 reveals that

(−z2)R =
( h

2λ sin2 θ
2

)2R

(1 + iah
2

cot θ
2

+ h
2λsin2 θ

2

)R(1 + iah
2

cot θ
2
− h

2λsin2 θ
2

)R
.

As a result, the leading error term in (−1)m−RÛ (m) is given by

(−1)m−RÛ (m) = (−z1)m(−z2)R → (−1)m−Rh2R

(2λ sin2 θ
2
)2R

e
− 1

λ2 sin2( θ2 )

as h → 0. For the term h
2λ sin2 θ

2

to vanish as h → 0, it is necessary that |κ| > h−c, where
1
2
< c < 1 (recall θ = hκ).

PROPOSITION 3. For h−b < |κ| < h−c (mid frequency domain) and for any positive q, we

have

Û (m)(θ) = Û (m)(hκ) = o(hq)

as h→ 0.

Proof. Let s = sin2 θ
2
. From the definition of z1 (2.9), we have

|z1|2 =
(1− ds)2 + a2λ2s(1− s)
(1 + ds)2 + a2λ2s(1− s)

.

By differentiation, one deduces that |z1| attains its minimum at s =
√

1
d2−r2 . Rewriting this in

terms of h, for h small, the minimum point is attained at

s = ±

√
h2

λ2(1− h2a2)
∼ O(h).
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For h small, again, s = | sin θ
2
|2 ≈ | θ2

4
| ∼ O(h2κ2). So, in terms of κ, the minimum point is

at κ = O(h−
1
2 ). This lies in the mid frequency region. It is easy to see that |z1|m = o(hq) for

any q > 0 at h−b and h−c. As a result, we have Û (m) = o(hq) for any q > 0 in this region, as
|zm1 zR2 | < |z1|m−R.

From this analysis, one sees that our finite difference solution for (2.3) with Dirac-delta
initial data has three components. The low-frequency component is of order O(1) and differs
from the true frequency representation by h2. To see this, consider the continuous Fourier
transform (in x) of an L1 function f(t, x) 1:

f̃(t,Ψ) =

∫ ∞
−∞

f(t, x)e−iΨxdx. (2.12)

Its inverse transform is given by

f(t, x) =
1

2π

∫ ∞
−∞

f̃(t,Ψ)eiΨxdΨ. (2.13)

Taking the continuous Fourier transform on both sides of (2.3), we have

∂ṽ

∂t
+ iaΨṽ = −Ψ2ṽ

ṽ(1,Ψ) = e−iaΨ−Ψ2

ṽ(0,Ψ).

For Dirac-delta initial data (at 0), we have ṽ(0,Ψ) = 1 and so ṽ(1,Ψ) = e−iaΨ−Ψ2 . This is to
be compared with the low frequency region approximate in Proposition 1

Û (m)(θ) = Û (m)(hκ) = e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
+ higher order terms.

Substituting formally Ψ with κ, we see that the true frequency representation of the Dirac-
delta function ṽ therefore is of O(h2) difference with the representation Û (m) in Proposition
1.

Finally, when R = 2, the high frequency component in Proposition 2 is of order h4, which
can be shown to contribute to an O(h3) value in the spatial domain after performing an inverse
transform.

1Notationally, we denote f̃ to be the continuous Fourier transform of f , and f̂ to be the discrete Fourier
transform from samples of f .
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2.4.2 Kernel estimates

The analysis in Section 2.4.1 provides the following insights for (2.3) in the case of Dirac-delta
initial data:

• The low frequency component approximates the timestepping “kernel” of the exact so-
lution with an error of order O(h2)

• The mid frequency component decays rapidly - that is, of order O(hq) for any q > 0

• The high frequency component is of order h2R, where R is the number of Rannacher
timesteps. When R = 2, i.e. two initial Crank-Nicolson timesteps of size k are replaced
by four fully implicit timesteps of size k

2
, the high-frequency error will be of orderO(h4).

Intuitively, therefore, when CN-Rannacher timestepping (with R = 2) is used, one could
expect that the discretization error is dominated by the low frequency error. Below we present
analysis based on this conclusion of [25], which leads to interesting insights about numerical
solutions to functions with non-smoothness commonly found in financial applications. In the
following section, we will always assume R = 2.

The framework in [25] is concerned primarily with the effect of CN-Rannacher timestep-
ping on the quality of the numerical solution. In other words, the main focus of [25] is on the
time discretization. We utilize their techniques in the spatial dimension, and seek to understand
the explicit effect of the non-smoothness on the quality of the numerical solution.

In the following sections, we will study three types of non-smoothness of financial inter-
est. We first illustrate our analysis for the solution of (2.3) with Dirac-delta initial condition,
which is the continuous analogue of the price of an Arrow-Debreu security, also known as the
state-price security, in finance. Next, we will consider the case when the initial condition is
the Heaviside function, which is discontinuous at zero. We will demonstrate how the discon-
tinuity gives rise to a first order error that will dominate the second order error expected of a
Crank-Nicolson-Rannacher central difference method. Finally, we demonstrate the effect of
the relative position of the point of non-smoothness on the leading error when the ramp func-
tion is the initial condition, even though it is continuous. In option pricing terminology, this
initial condition is the payoff of a call option.

2.4.3 Dirac-delta function

We start with the analysis of the numerical solution of (2.3) with Dirac-delta initial condition.
The Dirac-delta function δ(x) is a generalized function, defined formally as:

• δ(x) = 0 for x 6= 0
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•
∫
R δ(x)dx = 1.

Despite the singularity, the solution to (2.3) is smooth and is given by the Gaussian (2.4).
Numerically, such an initial condition requires an approximation. Recall that our discretized
grid is xj = (j + (1 − α))h, where j ∈ {. . . ,−1, 0, 1, . . .} = Z. We shall use the following
grid-dependent approximation of the Dirac-delta function:

v
(0)
δ,α,h(xj) =


(1−α)
h

for j = −1

α
h

for j = 0

0 else.

(2.14)

The subscript δ in v(0)
δ,α,h indicates that it is an adaptation of the Dirac-delta function, while

α and h indicate dependence on the discretized grid. The point of non-smoothness is at x = 0.
To see how this formula is obtained, recall that the Heaviside function is the weak derivative
of the ramp function:

gc(x) =

x for x ≥ 0

0 else,

and that the Dirac-delta function is the distributional derivative of the Heaviside function. For-
mally applying the second order central difference operator on gc yields (2.14).

Equation (2.14) is by no means the only way to approximate the Dirac-delta function. A
more detailed study on this point can be found in [56].

Applying the discrete Fourier transform (2.7) to (2.14), we obtain

v̂
(0)
δ,α,h(θ) = (1− α)eiαθ + αe−i(1−α)θ. (2.15)

From (2.11) and Proposition 2, the value of v̂(m)
δ,α,h(θ) = v̂

(m)
δ,α,h(hκ) in the high frequency compo-

nent remains fourth order in h as h→ 0. This portion of the frequency domain then translates
into an O(h3) value at any test point x∗ in the spatial domain, since this high frequency domain
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contributes to the inverse Fourier transform by

1

2πh
|
∫
|κ|>h−c

Û (m)(θ)v̂δ,α,h(θ)e
iκx∗dκ|

≤ 1

2πh
|
∫ π

h

−π
h

(−1)m−2h4

(2λ sin2 θ
2
)4
e
− 1

λ2 sin2( θ2 ) (1 +O(hθ−2))dκ| (2.16)

≤ h3

(2λ)4π

∫ π

0

1

sin8 θ
2

e
− 1

λ2 sin2( θ2 )dθ + higher order terms (θ = κh)

= O(h3)

where the second last integral is finite by Appendix A in [25]. As a result, the dominating error
term is O(h2) and is given by the low-frequency component. We rewrite (2.15) as

v̂
(0)
δ,α,h(θ) = (1− α)eiαθ + αe−i(1−α)θ

= 1− α(1− α)

2
κ2h2 +O(h3)

= ṽ
(0)
δ (κ)− α(1− α)

2
κ2h2 +O(h3), (2.17)

where ṽ(0)
δ (κ) ≡ 1 is the continuous Fourier transform of the Dirac-delta function. As dis-

cussed, up to O(h2), we are only concerned with the low frequency component of Û (m), for
R = 2. Therefore, using (2.8), an approximation of our finite difference solution v(m)

δ,α,h(x
∗) at

x∗ is given by (modulo O(h3)) 2

v
(m)
δ,α,h(x

∗) ≈ 1

2π

∫ π
h

−π
h

e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
(ṽ

(0)
δ (κ)− α(1− α)

2
κ2h2)eiκx

∗
dκ

≈ 1

2π

∫ π
h

−π
h

e−iaκ−κ
2

eiκx
∗
(
ṽ

(0)
δ (κ) + h2p(κ, a, λ,R)ṽ

(0)
δ (κ)− α(1− α)

2
κ2h2

)
dκ

≈ 1

2π

∫ ∞
−∞

e−iaκ−κ
2

eiκx
∗
(
ṽ

(0)
δ (κ) + h2p(κ, a, λ,R)ṽ

(0)
δ (κ)− α(1− α)

2
κ2h2

)
dκ

for h small (2.18)

=
1

2π

∫ ∞
−∞

e−iaκ−κ
2

eiκx
∗
ṽ

(0)
δ (κ)dκ+ E

(D)
δ + E

(Q)
δ

= vδ(1, x
∗) + E

(D)
δ + E

(Q)
δ , (2.19)

where vδ is the exact solution to (2.3) with Dirac-delta initial data, and is given by (2.4). There-

2As h→ 0, the integral outside [−πh ,
π
h ] is arbitrarily small and can be controlled by considering an asymptotic

expansion of the error function erfc(x). Intuitively speaking, this approximation from a finite integral to infinite
integral holds as the Gaussian in the integrand e−iaκ−κ

2

goes to zero faster than any polynomial as h→ 0.
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Spatial
step-size h

Time step-
size k

FD Error Error from (2.18) Convergence rate
estimate Υ (FD)

1/12 1/36 1.8962× 10−4 1.8932× 10−4 –
1/24 1/72 4.7349× 10−5 4.7329× 10−5 2.0017
1/48 1/144 1.1833× 10−5 1.1832× 10−5 2.0005
1/96 1/288 2.9581× 10−6 2.9581× 10−6 2.0001
1/192 1/576 7.3952× 10−7 7.3951× 10−7 2.0000

Table 2.3: Results of solving equation (2.3) with initial condition the Dirac-delta function
v

(0)
δ,α,h(xj) (2.14), evaluated at x∗ = 0.3 with cubic spline interpolation. The speed of convection
a is 0.5. Numerical method is CN-Rannacher timestepping with central spatial difference. Each
grid is refined by inserting mid-points. Initially, the singularity is at a grid-point (α = 1).

fore, the error of our finite difference solution at x∗ is given by E(D)
δ + E

(Q)
δ , where

E
(D)
δ ≈ h2

2π

∫ ∞
−∞

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
δ dκ

E
(Q)
δ ≈ −h

2

2π

α(1− α)

2

∫ ∞
−∞

e−iaκ−κ
2

eiκx
∗
κ2dκ,

and the subscript δ indicates that this error is pertinent to Dirac-delta initial condition, approx-
imated as in (2.14). It is helpful to think of E(D)

δ as the inherent error from a Crank-Nicolson-
Rannacher discretization of the continuous problem. This error is present in the low frequency
component and is invariant with respect to the positioning of the point of singularity.

The error E(Q)
δ is in a similar spirit of the “quantization error” loosely defined in [52] as the

error resulting from the resolution of the point of non-smoothness. This error, considered as a
function of α, is a quadratic function that varies as the positioning of the singularity changes.
For Dirac-delta initial condition, both of these errors can be explicitly solved by elementary
integration.

To illustrate this result, we take α = 1 and compare our finite difference (FD) results with
(2.18). Results are shown in Table 2.3. Here and in subsequent tables, “FD Error” will mean
the error of our finite difference approximation compared to the known exact solution of the
PDE.

As α is always 1 in Table 2.3, it turns out that E(Q) is always zero in all runs. What remains
is the error term E(D), which is of second order. This is the optimal convergence order of
CN-Rannacher with central differencing, and is experimentally observed in Table 2.3.

More interestingly, we start with α > 0, and refine the grid by inserting mid-points so that
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Spatial
step-size h

Time step-
size k

FD Error Error from (2.18) Convergence rate
estimate Υ (FD)

1/12 1/36 8.9209× 10−5 8.9528× 10−5 –
1/24 1/72 1.8841× 10−5 1.8818× 10−5 2.2433
1/48 1/144 7.0749× 10−6 7.0804× 10−6 1.4131
1/96 1/288 1.1758× 10−6 1.1761× 10−6 2.5891
1/192 1/576 4.4262× 10−7 4.4253× 10−7 1.4094

Table 2.4: Results of solving equation (2.3) with initial condition the Dirac-delta function
v

(0)
δ,α,h(xj) (2.14), evaluated at x∗ = 0.3 with cubic spline interpolation. The speed of convection
a is 0.5. Numerical method is CN-Rannacher timestepping with central spatial difference. Each
grid is refined by inserting mid-points. Initially, the singularity is placed at a non grid-point
(α = 0.7).

the step-sizes are halved. Results in Table 2.4 show an unstable experimental convergence.
Clearly, the error does not depend only on the spatial step-size, but also on the relative position
of the singularity in the grid. While the error itself is always O(h2), the coefficient of the
leading error term changes from one run to the next. With this particular way of refining the
grid, the second order error is not experimentally observed.

This oscillatory behavior of convergence can be understood by looking at E(Q), which
depends quadratically on α. The usual scheme of refining the grid by inserting mid-point will
result in a different α from one run to the next. More precisely, from the (l − 1)-th run to the
(l)-th, we have

αl =

2αl−1 − 1 if αl−1 > 0.5

2αl−1 if αl−1 ≤ 0.5.

Thus, for Dirac-delta initial condition, the discretization error depends not only on the
step-sizes but also on the relative position of the singularity in the grid. We shall see that this
dependence occurs for other examples we shall consider in this chapter.

2.4.4 Heaviside function

The Heaviside function3 is defined as

v
(0)
H (x) =

1 if x ≥ 0

0 else.
(2.20)

3In Section 2.1, the Heaviside function is denoted byH(·), but, in this subsection and in what follows, we use
v
(0)
H (·) for consistency with other subsections.
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One would run into trouble when applying (2.7) directly to (2.20). This is because the series

v̂H,α,h(θ) = h
∞∑
j=0

e−i(j+(1−α))θ (2.21)

does not converge for any θ ∈ R. Therefore, without a Fourier transform as in (2.7), it would
be difficult to apply the theory in Section 2.4.1.

Fortunately, the fix is easy. Consider instead a complex θ. If the imaginary part of θ, is
negative (i.e. Im(θ) < 0), then the geometric series (2.21) will converge as |e−iθ| < 1.

The transforms in (2.7), (2.8), (2.12) and (2.13) extend to complex-valued θ and corre-
spondingly κ = θ

h
by considering contour integrals on horizontal lines in the complex plane.

For real numbers ζ1, ζ2 define

Cζ1 = {x+ iζ1, x ∈ [−π, π]},

Dζ2 = {x+ iζ2, x ∈ R}.

The only difference between Cζ and Dζ is that the former is a finite domain while the latter is
infinite. Explicitly, for Ψ ∈ Cζ , the discrete-time Fourier transform that takes a discrete sample
of a function into a continuous spectrum of frequencies is

Û(Ψ) = h
∞∑

j=−∞

Uje
−
ixjΨ

h . (2.22)

Its inverse transform is given by

Uj =
1

2πh

∫
Cζ

Û(Ψ)e
ixjΨ

h dΨ. (2.23)

Similarly, the continuous Fourier transform for Ψ ∈ Dζ2 is

f̃(t,Ψ) =

∫ ∞
−∞

f(t, x)e−iΨxdx. (2.24)

The inverse transform is given by

f(t, x) =
1

2π

∫
Dζ

f̃(t,Ψ)eiΨxdΨ. (2.25)
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While the algebraic operations in Section 2.3 and Section 2.4.1 mostly apply to the case of
complex θ and κ, there are a few key differences.

Firstly, we know that for θ ∈ R, the Crank-Nicolson timestepper z1 satisfies

|z1(θ)| = |(1− iaλ
2

sin θ − 2d sin2 θ

2
)(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)−1| ≤ 1.

This is no longer true for complex θ. We have, however, the following bound. Recall κ = θ
h

.

PROPOSITION 4. Let θ ∈ Chζ (in other words, ζ = Im(κ) is fixed and independent of h). If

the scaling k
h

= λ is maintained, then |z1(θ)|n is bounded independently of n and h.

Proof. Write
θ = Re(θ) + i Im(θ)

κ = Re(κ) + i Im(κ),

where the two variables are again related by θ = hκ.
From (tedious) differentiation, the function z1(θ), considered as a function of Re(θ), attains its
maximum at θ∗ characterized by sin(Re(θ∗)) = 0. As a result, the complex number sin(θ∗) is
purely imaginary. As ζ = Im(κ) is assumed to be fixed, we have that sin(θ∗) = ± e−hζ−ehζ

2i
.

For simplicity, take sin(θ∗) = e−hζ−ehζ
2i

. Therefore,

|z1(θ)|n ≤ |z1(θ∗)|n

= |(1− 1

2
iaλ sin θ∗ − 2d sin2 1

2
θ∗)|n|(1 +

1

2
iaλ sin θ∗ + 2d sin2 1

2
θ∗)|−n

= |1− 1

2
aλ
e−hζ − ehζ

2
+ 2d

e−hζ + ehζ − 2

4
|n

|1 +
1

2
aλ
e−hζ − ehζ

2
− 2d

e−hζ + ehζ − 2

4
|−n

= |1 +
1

2
aλhζ +

λ

h

h2ζ2 +O(h4)

2
|

1
λh |1− 1

2
aλhζ − λ

h

h2ζ2 +O(h4)

2
|

1
λh

→ exp(aζ + ζ2),

as h→ 0.

The analysis in Section 2.4.1 goes through for complex θ and correspondingly κ = θ
h

, with
the following modifications:

• The Taylor series for the logarithm could have an additional term which would be an
integral multiple of 2πi, due to the complex logarithm being a multi-valued function.
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This does not affect the argument as the subsequent exponentiation will yield the same
result regardless (e2πi = 1).

• Following the proof of Proposition 4, the maximum and the minimum points of z1(θ) as
a function of Re(θ) can be similarly identified. The rest of the argument goes through.

We fix ζ = Im(κ) < 0 and consider θ = hκ. As Im(θ) < 0,

v̂
(0)
H,α,h(θ) = h

∞∑
j=0

e−i(j+(1−α))θ(θ) =
he−i(1−α)θ

1− e−iθ
(2.26)

The continuous Fourier transform (2.12) of the Heaviside function is given by

ṽ
(0)
H (κ) =

∫ ∞
0

e−iκxdx =
1

ik
. (2.27)

Substituting θ = hκ in (2.26), Taylor series expansion yields

v̂
(0)
H,α,h(hκ) = ṽ

(0)
H (κ) + (α− 1

2
)h+

iκh2

2
(α2 − α +

1

6
) +O(h3).

It is not hard to prove that the high-frequency error is again O(h3) when two Rannacher
timesteps are used (R = 2). As a result, up to O(h2), for h small, our finite difference solution
is

v
(m)
H,α,h(x

∗) ≈ 1

2π

∫
Dζ

e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
×
(
ṽ

(0)
H (κ) + (α− 1

2
)h+

iκh2

2
(α2 − α +

1

6
)

)
eiκx

∗
dκ

≈ 1

2π

∫
Dζ

e−iaκ−κ
2

eiκx
∗
(
ṽ

(0)
H (κ) + h2p(κ, a, λ,R)ṽ

(0)
H (κ)

+(α− 1

2
)h+

iκh2

2
(α2 − α +

1

6
)

)
dκ

=
1

2π

∫
Dζ

e−iaκ−κ
2

eiκx
∗
ṽ

(0)
H (κ)dκ+ E

(D)
H + E

(Q)
H

= vH(1, x∗) + E
(D)
H + E

(Q)
H , (2.28)
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Figure 2.1: The error of our finite difference approximation in frequency space, at t = 1.
Parameters: a = 1, λ = 1

3
, h = 1

12
. The imaginary part of κ is fixed to −0.1.

where E(D)
H and E(Q)

H are analogously given by

E
(D)
H =

h2

2π

∫
Dζ

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
H dκ

E
(Q)
H =

h

2π
(α− 1

2
)

∫
Dζ

e−iaκ−κ
2

eiκx
∗
dκ

+
ih2

4π
(α2 − α +

1

6
)

∫
Dζ

e−iaκ−κ
2

eiκx
∗
κdκ.

In other words, the quantization error4 is first order in h. The relative position of the dis-
continuity on the grid has a more prominent effect than the “usual” timestepping error from
Crank-Nicolson-CN-Rannacher timestepping, and cannot be damped by the initial backward
Euler integrations. In the lower end of the frequency space, it corresponds to a shift by a Gaus-
sian. Figure 2.1 shows this phenomenon.

Again, it is straightforward to obtain the integrals exactly or numerically in E(Q)
H or E(D)

H .
In Table 2.5, we show the agreement between the numerical solution error and the error as

4To be precise, E(Q) also contains the inherent difference between a discrete Fourier transform and a contin-
uous one.
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Spatial
step-size h

Time step-
size k

FD Error Error from (2.18) Convergence rate
estimate Υ (FD)

1/12 1/24 1.0504× 10−2 1.0492× 10−2 –
1/24 1/48 5.2241× 10−3 5.2227× 10−3 1.0076
1/48 1/96 2.6057× 10−3 2.6055× 10−3 1.0035
1/96 1/192 1.3013× 10−3 1.3013× 10−3 1.0017
1/192 1/384 6.5029× 10−4 6.5029× 10−4 1.0008

Table 2.5: Results of solving equation (2.3) with initial condition the Heaviside function v(0)
H (x)

(2.20), evaluated at x∗ = 0. The speed of convection a is 0.7. Numerical method is CN-
Rannacher timestepping with central spatial difference. Each grid is refined by inserting mid-
points. Initially, the discontinuity is at a grid-point (α = 1).

approximated in (2.28). As expected, the convergence is only linear when the point of discon-
tinuity is placed at a grid-point.

Considered as a function in α, the O(h)-term in the quantization error E(Q)
H is directly pro-

portional to (α − 1
2
), and vanishes when α = 1

2
. A corollary is that, placing the discontinuity

at grid-point is the worst possible choice in terms of minimizing error. The farther the discon-
tinuity is away from the mid-point, the larger the first order error will be. This is illustrated
in Table 2.6. In each refinement, we use a mesh that has the required α and spatial step-size
h, and compute our finite difference solution based on such a grid. Table 2.6 shows that, with
essentially the same computational effort, the grid placement has a direct and prominent effect
on the efficiency of the numerical method.

This particular form of E(Q)
H also explains why the errors in Table 2.1 are larger than the

errors in Table 2.2, despite the more stable convergence of the former. As |α− 1
2
| is maximized

when α = 0 or α = 1, the error of our finite difference approximation is also maximized when
the discontinuity is placed at a grid-point, other things equal.

2.4.5 Call and put type initial conditions

We consider the following functions:

v
(0)
C (x) = max(x, 0) (Call) (2.29)

v
(0)
P (x) = max(−x, 0) (Put) (2.30)

v
(0)
EC(x) = max(ex − 1, 0) (Exponential Call) (2.31)

v
(0)
EP (x) = max(1− ex, 0) (Exponential Put) (2.32)

These functions are continuous but not continuously differentiable. The exponential call
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Spatial
step-size h

Time step-
size k

α = 0.3 α = 0.5 α = 0.9 α = 1

1/12 1/24 −4.1349× 10−3 1.7457× 10−5 8.3946× 10−3 1.0504× 10−2

1/24 1/48 −2.0730× 10−3 4.3549× 10−6 4.1772× 10−3 5.2241× 10−3

1/48 1/96 −1.0381× 10−3 1.0882× 10−6 2.0840× 10−3 2.6057× 10−3

1/96 1/192 −5.1949× 10−4 2.7201× 10−7 1.0409× 10−3 1.3013× 10−3

1/192 1/384 −2.5986× 10−4 6.7999× 10−8 5.2020× 10−4 6.5029× 10−4

Approximated Convergence Linear Quadratic Linear Linear

Table 2.6: Results of solving equation (2.3) with initial condition the Heaviside function v(0)
H (x)

(2.20), evaluated at x∗ = 0. The speed of convection a is 0.7. Numerical method is CN-
Rannacher timestepping with central spatial difference. The relative position α is maintained
at each run.

and put functions are related to solving for the value of a call/put option under geometric
Brownian motion, after a log transform.

Similarly to Section 2.4.4, we can consider the complex extension of the Fourier transform,
i.e. (2.22) to (2.25). In order for the series to converge, we require that

Im(θ) < 0 ⇔ Im(κ) < 0 for call (2.33)

Im(θ) < −h ⇔ Im(κ) < −1 for exponential call (2.34)

Im(θ) > 0 ⇔ Im(κ) > 0 for put/exponential put. (2.35)

2.4.5.1 Call and put

For θ such that Im(θ) < 0, the discrete Fourier transform of the ramp function (2.29) is

v̂
(0)
C,α,h(θ) = h2

∞∑
j=0

(j+(1−α))e−i(j+(1−α))θ) = h2e−i(1−α)θ

(
1− α

1− e−iθ
+

e−iθ

(1− e−iθ)2

)
. (2.36)

This is to be compared with the continuous Fourier transform of (2.29), which for Imκ < 0 is
given by

ṽ
(0)
C (κ) =

∫ ∞
0

xe−iκxdx = − 1

κ2
. (2.37)

Substituting θ = hκ in (2.36), Taylor series expansion yields

v̂
(0)
C,α,h(hκ) = ṽ

(0)
C (κ) + h2(−α

2

2
+
α

2
− 1

12
) +O(h3). (2.38)

Let ζ1 < 0. By repeating the argument in Section 2.4.4, we have the expression of our finite
difference solution
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v
(m)
C,α,h(x

∗) ≈ 1

2π

∫
Dζ1

e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
×
(
ṽ

(0)
C (κ) + h2(−α

2

2
+
α

2
− 1

12
)

)
eiκx

∗
dκ

=
1

2π

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
ṽ

(0)
C (κ)dκ+ E

(D)
C + E

(Q)
C

= vC(1, x∗) + E
(D)
C + E

(Q)
C , (2.39)

where E(D)
C and E(Q)

C are given by

E
(D)
C =

h2

2π

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
C dκ

E
(Q)
C =

h2

2π
(−α

2

2
+
α

2
− 1

12
)

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
dκ.

As a result, even though a second order error is to be expected from a Crank-Nicolson-
Rannacher discretization, the coefficient of the error depends (quadratically) on the placement
of the point of non-smoothness in the grid. In both the frequency space and the original mesh,
this error corresponds to a shift by a Gaussian.
Incidentally, for R = 2, the spatial error due to high frequency component for the call is not
O(h3), but in fact O(h5). This is because

ṽ
(0)
C (κ) = − 1

κ2
= −h

2

θ2
,

which adds two orders in h to the high frequency component, in a calculation similar to (2.16):

1

2πh
|
∫
|κ|>h−c

Û (m)(θ)v̂δ,α,h(θ)e
iκx∗dκ|

≤ 1

2πh
|
∫ π

h

−π
h

(−1)m−2h6

(2λ sin2 θ
2
)4θ2

e
− 1

λ2 sin2( θ2 ) (1 +O(hθ−2))dκ| (2.40)

≤ 1

(2λ)4π

∫ π

0

h5

θ2 sin8 θ
2

e
− 1

λ2 sin2( θ2 )dθ + higher order terms (θ = κh)

= O(h5).

We compute the discrete and continuous Fourier transforms of (2.30) for Im(θ) > 0 and
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Im(κ) > 0. It turns out that

v̂
(0)
P,α,h(θ) = h2

−1∑
j=−∞

(j + (1− α))e−i(j+(1−α))θ) = h2e−i(1−α)θ

(
−(1− α)eiθ

1− eiθ
+

eiθ

(1− eiθ)2

)
,

(2.41)
and that for Imκ > 0,

ṽ
(0)
P (κ) = −

∫ 0

−∞
xe−iκxdx = − 1

κ2
. (2.42)

Substituting θ = hκ in (2.41), Taylor series expansion yields

v̂
(0)
P,α,h(hκ) = ṽ

(0)
P (κ) + h2(−α

2

2
+
α

2
− 1

12
) +O(h3). (2.43)

Interestingly, the initial conditions (2.38) and (2.43) have the same transform, even though
they are defined on different regions on the complex plane.
Let ζ2 > 0.Our finite difference solution under Crank-Nicolson-Rannacher timestepping is

v
(m)
P,α,h(x

∗) ≈ 1

2π

∫
Dζ2

e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
×
(
ṽ

(0)
P (κ) + h2(−α

2

2
+
α

2
− 1

12
)

)
eiκx

∗
dκ

=
1

2π

∫
Dζ2

e−iaκ−κ
2

eiκx
∗
ṽ

(0)
P (κ)dκ+ E

(D)
P + E

(Q)
P

= vP (1, x∗) + E
(D)
P + E

(Q)
P , (2.44)

where E(D)
P and E(Q)

P are given by

E
(D)
P =

h2

2π

∫
Dζ2

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
P dκ

E
(Q)
P =

h2

2π
(−α

2

2
+
α

2
− 1

12
)

∫
Dζ2

e−iaκ−κ
2

eiκx
∗
dκ.

We also have that

p(κ, a, λ,R)× (− 1

κ2
) = −1

6
iaκ− 1

12
κ2 +

1

12
λ2κ(ia+ κ)3 − 1

4
Rλ2(ia+ κ)2

is analytic as a function of κ. As a result,

E
(D)
C = E

(D)
P , and

E
(Q)
C = E

(Q)
P .
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In other words, at least up to second order, the error of Crank-Nicolson-Rannacher is the same
for the call and the put. This is to be expected, as it is easy to prove that

vC(t, x)− vP (t, x) = x− at,

and that our numerical scheme is exact on linear functions. This numerical phenomenon does
not occur for the exponential call and put, as we shall see in the next section.

REMARK 2. In [48], it is established that for a finite element discretization with linear ba-

sis functions, second order L2 convergence is obtained if Rannacher timestepping is used (in

the presence of discontinuities in the initial condition). In that setting, the payoff function is

projected on the space of basis functions, which is a type of smoothing. As the basis func-

tions are piecewise linear, projection does not alter the call/put payoff if there is a node at the

strike. A corollary is that to obtain second order convergence with this finite element method,

no smoothing is necessary for call and put payoffs if Rannacher timestepping is used, and if

there is a node at the strike.

Similarly, for our finite difference method, smoothing is not necessary for call/put type initial

conditions to obtain O(h2) errors. However, for Heaviside initial conditions, if the strike is not

aligned at mid-point, an O(h) error will result even if Rannacher timestepping is used.

It would be interesting to obtain similar analysis for finite element methods with the results we

obtain in this chapter as a starting point.

2.4.5.2 Exponential call and put

Consider now the exponential call as the initial condition to (2.3), given by (2.31). Its discrete
Fourier transform for Im(θ) < −h is

v̂
(0)
EC,α,h(θ) = h

∞∑
j=0

(e(j+(1−α))h − 1)e−i(j+(1−α))θ) = he−i(1−α)θ

(
e(1−α)h

1− e−iθ+h
− 1

1− e−iθ

)
.

(2.45)

Its continuous Fourier transform is, for Imκ < −1,

ṽ
(0)
EC(κ) =

∫ ∞
0

(ex − 1)e−iκxdx =
1

iκ(iκ− 1)
. (2.46)

Substituting θ = hκ in (2.45), Taylor series expansion yields

v̂
(0)
EC,α,h(hκ) = ṽ

(0)
EC(κ) + h2(−α

2

2
+
α

2
− 1

12
) +O(h3). (2.47)
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This is the same relation as (2.38). As a result, the EQ-component will be the same as a
(non-exponential) call. Let ζ1 < −1. By repeating the argument in Section 2.4.5.1, we have
the following expression of our finite difference solution

v
(m)
EC,α,h(x

∗) ≈ 1

2π

∫
Dζ1

e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
×
(
ṽ

(0)
EC(κ) + h2(−α

2

2
+
α

2
− 1

12
)

)
eiκx

∗
dκ

=
1

2π

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
ṽ

(0)
EC(κ)dκ+ E

(D)
EC + E

(Q)
EC

= vEC(1, x∗) + E
(D)
EC + E

(Q)
EC , (2.48)

where E(D)
EC and E(Q)

EC are given by

E
(D)
EC =

h2

2π

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
ECdκ

E
(Q)
EC =

h2

2π
(−α

2

2
+
α

2
− 1

12
)

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
dκ.

Similarly, for Im(θ) > 0 and Im(κ) > 0, the discrete and continuous transforms for the
exponential put are

v̂
(0)
EP,α,h(θ) = h

0∑
j=−∞

(1− e(j+(1−α))h)e−i(j+(1−α))θ) = he−i(1−α)θ

(
eiθ

1− e−iθ
− e(1−α)h+iθ−h

1− eiθ−h

)
,

(2.49)
and

ṽ
(0)
EP (κ) =

∫ 0

−∞
(1− ex)e−iκxdx =

1

iκ(iκ− 1)
. (2.50)

Substituting θ = hκ into (2.49), once again Taylor series expansion yields

v̂
(0)
EP,α,h(hκ) = ṽ

(0)
EP (κ) + h2(−α

2

2
+
α

2
− 1

12
) +O(h3). (2.51)

For ζ2 > 0, we have the following expression of our finite difference solution for the exponen-
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tial put

v
(m)
EP,α,h(x

∗) ≈ 1

2π

∫
Dζ2

e−iaκ−κ
2

(
1 + h2p(κ, a, λ,R)

)
×
(
ṽ

(0)
EP (κ) + h2(−α

2

2
+
α

2
− 1

12
)

)
eiκx

∗
dκ

=
1

2π

∫
Dζ2

e−iaκ−κ
2

eiκx
∗
ṽ

(0)
EP (κ)dκ+ E

(D)
EP + E

(Q)
EP

= vEP (1, x∗) + E
(D)
EP + E

(Q)
EP , (2.52)

where E(D)
EP and E(Q)

EP are given by

E
(D)
EP =

h2

2π

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
EPdκ

E
(Q)
EP =

h2

2π
(−α

2

2
+
α

2
− 1

12
)

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
κ.

Obviously, as their corresponding integrands are analytic, we have

E
(Q)
EC = E

(Q)
EP .

However, because of a pole at κ = −i, it holds that E(D)
EC 6= E

(D)
EP . To see this, consider a

positively oriented contour Γ consisting of the following segments:

Γ1 = {x+ iζ1| −M ≤ x ≤M}

Γ2 = {M + iy|ζ1 ≤ y ≤ ζ2}

Γ3 = {x+ iζ2| −M ≤ x ≤M}

Γ4 = {−M + iy|ζ1 ≤ y ≤ ζ2}.

By Cauchy’s residue theorem, we have∫
Γ

e−iaz−z
2

eizx
∗ p(z, a, λ,R)

iz(iz − 1)
dz = −2πi

[
e−iaz−z

2

eizx
∗ p(z, a, λ,R)

z

]
z=−i

.

The last quantity is readily computable as p(z,a,λ,R)
z

itself is a polynomial in z. Finally, as
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Spatial
step-size h

Time step-
size k

FD Error Error from (2.53) Convergence rate
estimate Υ (FD)

1/12 1/24 −2.0221× 10−4 −2.0174× 10−4 –
1/24 1/48 −5.0466× 10−5 −5.0434× 10−5 2.0025
1/48 1/96 −1.2610× 10−5 −1.2609× 10−5 2.0007
1/96 1/192 −3.1523× 10−6 −3.1521× 10−6 2.0001
1/192 1/384 −7.8804× 10−7 −7.8803× 10−7 2.0001

Table 2.7: Results of solving equation (2.3) with initial condition the exponential forward
v

(0)
F (x) (2.54), evaluated at x∗ = 0. The speed of convection a is 0.7. Numerical method is

CN-Rannacher timestepping with central spatial difference. Each grid is refined by inserting
mid-points. Initially, we set α = 0.7.

M →∞, we note that the contribution from Γ2 and Γ4 vanish and∫
Γ1

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
ECdκ→

∫
Dζ1

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
ECdκ

and similarly

−
∫

Γ3

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
EPdκ→ −

∫
Dζ2

e−iaκ−κ
2

eiκx
∗
p(κ, a, λ,R)ṽ

(0)
EPdκ

Therefore, we have

E
(D)
EC − E

(D)
EP = −h2i

[
e−iaz−z

2

eizx
∗ p(z, a, λ,R)

z

]
z=−i

= −h2ex−a+1

(
a

6
− 1

12
+

1

12
λ2(a− 1)3 − 1

4
Rλ2(a− 1)2

)
. (2.53)

As E(Q)
EC = E

(Q)
EP , the quantity E(D)

EC − E
(D)
EP is in fact the second order error of solving (2.3)

with the initial condition
v

(0)
F (x) = ex − 1 (2.54)

under Crank-Nicolson-Rannacher timestepping5 . In financial context, this initial condition is
the payoff of a forward contract under the geometric Brownian motion model. As the quanti-
zation error is cancelled out, the relative position of the strike on the grid is no longer relevant
in the second order error, and the leading error depends (computationally) only on the time and
spatial step size. This is illustrated in Table 2.7.

5This connection between the values of put, call and forward via integration across complex poles is a form of
put-call parity [37].
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Spatial
step-size h

Time step-
size k

FD Error Convergence rate
estimate Υ (FD)

1/12 1/24 9.3332× 10−7 –
1/24 1/48 1.1988× 10−7 2.9608
1/48 1/96 1.5140× 10−8 2.9851
1/96 1/192 1.8924× 10−9 3.0001
1/192 1/384 2.3323× 10−10 3.0205

Table 2.8: Results of solving equation (2.3) with initial condition the exponential put v(0)
EP (x)

(2.32), evaluated at x∗ = 0 with cubic spline interpolation. The speed of convection a is −0.3.
Numerical method is CN-Rannacher timestepping with central spatial difference. The relative
position of the strike is maintained at α = 0.37853.

2.5 Maintaining the relative position of non-smoothness on
the grid

It is evident from the discussion in Section 2.4.3 through 2.4.5 that, when solving (2.3) with
those initial conditions, the parameter α is required to be maintained in order to obtain a stable
convergence. In [52] and [47], mesh shifting techniques, mostly aligning the strike on a mid-
point, are suggested to restore convergence order.

The analysis from Sections 2.4.3 to 2.4.5 suggests that as long as the relative position of
the point of non-smoothness on the grid is maintained, the convergence order is stable. The
next question is to determine an optimal α such that the error is minimized.

This is complicated by the fact that, while α directly influences E(Q), the other term in
the error E(D) is independent of α. It is possible to use the quantization error E(Q) to our
advantage. For the initial conditions considered in this chapter, one could consider the error
E(D) + E(Q) as a quadratic function in α. In some cases, the leading error term could be
completely eliminated by a good choice of α, leading to super-convergence by a second order
finite difference scheme (see Table 2.8).

This technique of choosing α to obtain a superconvergence does not seem to be possible in
practical situations, as a detailed study of ED and EQ seems necessary to determine the α for
which superconvergence occurs. In addition, such an α that cancels the leading second order
term may not exist. Instead, we proceed to minimize merely E(Q). Consider E(Q) as a function
in α in itself, one can minimize its absolute value and obtain the estimates as listed in Table
2.9. For the case of call and put, often the combined error E(Q) +E(D) has no root, considered
as a function of α. In those cases, the mid-point minimizes the overall error. We remark
that these numbers seem to confirm the empirical findings of [42], in which the authors found
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Initial condition Optimal α to eliminate the
leading term of E(Q)

Point of the extremum of the
quadratic E(D) + E(Q)

Dirac-delta 0 or 1 0.5
Heaviside 0.5 not applicable (linear)
Call/Put/Exponential
Call/ Exponential Put

0.2113 or 0.7887 0.5

Table 2.9: Special choices of α.

experimentally that the optimal value of α lies in (0.2, 0.3) or (0.7, 0.8) for the call option, and
0.5 for the bet option (Heaviside initial condition).

2.6 Smoothing

Smoothing has long been a popular approach to obtain stable convergence and in some cases
restore optimal order of convergence in the presence of non-smoothness in the initial data. In
the financial context, a very popular approach is averaging ([47], [52], [28], [19]). This tech-
nique has been used successfully in the case of digital options (the initial condition being the
Heaviside function).
In this section, we will take a closer look at the smoothing technique in the context we devel-
oped in the earlier parts of the chapter.
We start with the family of smoothing operators suggested in [36]. Their idea is to consider
operators of the convolution type, which in frequency space corresponds to pointwise multipli-
cation. In frequency space, define

Φ̂µ(hκ) =
pµ(sin h

2
κ)

(h
2
κ)µ

, (2.55)

where pµ(sinω) is a polynomial in sinω that satisfies

pµ(sinω) = ωµ +O(ω2µ), as ω → 0.

The idea is that high frequency (large κ) components, which are often the cause for non-
smoothness, in the initial condition can be damped simply by multiplication with Φ̂µ. The
integer µ is considered the order of the smoothing operator, as from the definition of pµ we
have

Φ̂µ(ω) = 1 +O(ωµ), as ω → 0, and
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Φ̂µ(ω) = O(|ω − 2lπ|µ), as ω → 2lπ, l ∈ Z.

The first two polynomials are particularly simple:

p1(sinω) = sinω

p2(sinω) = sin2 ω.

The first smoothing operator Φ̂1 is the familiar averaging technique. To see this, it suffices
to compute its inverse Fourier transform at a spatial point x:

∫ ∞
−∞

sin h
2
κ

h
2
κ

eiκxdκ =

∫ ∞
−∞

ei
h
2
κ − e−ih2 κ

ihκ
eiκxdκ

=

∫ ∞
−∞

eiκ(h
2

+x) − eiω(−h
2

+x)

iκ
dκ

=

0 if |x| > h
2

1
h

else

As a result, the convolution operator that Φ̂1 induces in the spatial domain is of the form

(Φ1 ∗ v)(x) =
1

h

∫ h
2

−h
2

v(x− y)dy, (2.56)

Similarly, the inverse transform of Φ̂2 is

Φ2(x) =


0 if |x| > h

1
h

(
1− |x|

h

)
else.

In convolution form, the second order smoothing takes the form

(Φ2 ∗ v)(x) =
1

h

∫ h

−h
(1− |y|

h
)v(x− y)dy, (2.57)

We shall apply these operators to the initial conditions we have studied in Section 2.4.3 to
Section 2.4.5 and analyze how errors are affected by these techniques.
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2.6.1 Dirac-delta function

As the Dirac-delta function is a generalized function, it can only be approximated on our nu-
merical grid xj = (j + (1 − α))h. If we replace formally the Dirac-delta function by the
first order smoothed version of it (2.56), then we obtain the following approximation of the
Dirac-delta initial condition (we leave out the case α = 0.5 to avoid ambiguity):

v
(0)
Φ1,δ

(xj) =

 1
h

if (α < 0.5 or α = 1) and j = 0

1
h

if α > 0.5 and j = 1

Its discrete Fourier transform is

v̂
(0)
Φ1,δ,α,h

(hκ) =

eiαhκ if α < 0.5 or α = 1

e−i(1−α)hκ if α > 0.5
.

Clearly then

v̂
(0)
Φ1,δ

(hκ) =

1 + ihακ+O(h2) if α < 0.5 or α = 1

1− i(1− α)hκ+O(h2) if α > 0.5.

In other words, had we started our analysis with this approximation of the Dirac-delta func-
tion, then we will end up with a first order error of our finite difference solution.

In fact, one can show that (2.14) is in fact the second order smoothing operator (2.57)
applied formally to the Dirac-delta function. The results in Section 2.4.3 show that only the
second order error term will remain, although the second order error depends quadratically on
the relative position of the singularity on the grid.

2.6.2 Heaviside function

Applying (2.56) to the Heaviside function, we obtain the following modified initial condition:

v
(0)
Φ1,H

(xj) =


1−2α

2
if α < 0.5 and j = 0

3−2α
2

if α ≥ 0.5 and j = 1

v
(0)
H (xj) else.

In other words, first order smoothing involves modifying only one point of the sampled
function given any α. When α = 0.5, the function is identical to the original sample of the
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unsmoothed Heaviside function v
(0)
H (xj). It is not surprising that the smoothing technique

restores an error of second order in h. In fact, its discrete Fourier transform (for κ suitably
defined on the complex plane) is

v̂
(0)
Φ1,H

(hκ) =

ṽ
(0)
H (κ) + ih2κ(−α2

2
+ 1

12
) +O(h3) if α < 0.5

ṽ
(0)
H (κ) + ih2κ(−α2

2
+ α− 5

12
) +O(h3) if α ≥ 0.5.

The first order term, proportional to (α − 1
2
) in (2.28) is removed by the first order smoothing

technique. This observation has been noted in [47] and [52].
Although the first order error is successfully removed by smoothing, it is interesting to see what
effect the second order smoothing operator Φ2 would have on the Heaviside function. After
applying (2.57) to the Heaviside function v(0)

H (x), one obtains

v
(0)
Φ2,H

(xj) =


(1−α)2

2
if j = 0

2−α2

2
if j = 1

v
(0)
H (xj) else.

Namely, the second order smoothing modifies two points on the sampled function. Its discrete
Fourier transform is given by

v̂
(0)
Φ1,H

(hκ) = ṽ
(0)
H (κ) +

iκh2

12
.

Therefore, the second order smoothing not only removes the first order error that would be
present with a non-smooth Heaviside initial condition, it also removes the dependence of the
second order error on α. The relative position of the grid no longer affects the dominant error
term.

2.6.3 Call and put

The first order smoothing of the call and put gives the following modifications:

v
(0)
Φ1,C

(xj) =


(1−2α)2h

8
if α < 0.5 and j = 0

(3−2α)2h
8

if α ≥ 0.5 and j = 1

v
(0)
C (xj) else.
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Type of initial condi-
tion

Unsmoothed Φ1 smoothing Φ2 smoothing

Dirac-delta Not applicable O(h) error O(h2) error, de-
pendent on α

Heaviside O(h) error O(h2) error, de-
pendent on α

O(h2) error, inde-
pendent of α

Usual Call, Put and
Exponential Call, Put

O(h2) error, de-
pendent on α

O(h2) error, inde-
pendent of α

–

Table 2.10: Summary of the effect of smoothing techniques on CN-Rannacher error under
different types of non-smooth initial conditions.

v
(0)
Φ1,P

(xj) =


(1+2α)2h

8
if α < 0.5 and j = 0

(1−2α)2h
8

if α ≥ 0.5 and j = 1

v
(0)
P (xj) else.

For κ suitably defined, the discrete Fourier transforms give

v̂
(0)
Φ1,C

(hκ) = ṽ
(0)
C (κ) +

h2

24
, and

v̂
(0)
Φ1,P

(hκ) = ṽ
(0)
P (κ) +

h2

24
.

As a result, the first order smoothing successfully removes the dependence on α in the
second order error. Removing the dependence on α is favorable, as the only computational
parameters that affect the error will be step-sizes. This can be found convenient in some im-
plementations. We summarize these discussions in Table 2.10.

2.7 General recommendation

Before we conclude the chapter, it would be appropriate to include a summary of analysis that
gives advice for the general user who solves a similar problem. For the sake of analysis, the
problems we consider in this chapter have known closed-form solutions based on elementary
functions, and therefore do not generally require numerical solutions. However, certain results
from our analysis are expected to hold for a similarly defined problem.

The analysis in [48], [25] and this chapter suggest that Rannacher timestepping, which re-
places the first two Crank-Nicolson timesteps with four fully implicit timesteps with half the
time step-size, is important in preventing spurious oscillations in the solution and its deriva-
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Initial condition Second order error “Stable” convergence
Dirac-delta type Second order smoothing Second order smooth-

ing, and maintain α
Heaviside type Placement at midpoint, or

first order smoothing
Second order smooth-
ing, or maintain α

Usual Call, Put and
Exponential Call, Put type

– First order smoothing,
or maintain α

Table 2.11: Summary of recommendations on how to obtain second order error and stable
convergence with non-smooth initial conditions.

tives, and in some cases restoring the optimal order of convergence. Alternatively, variable
change in the time dimension may also be useful [49].

In addition to Rannacher timestepping, some simple strategies are useful in restoring sec-
ond order convergence or maintaining a stable order of convergence for extrapolation purposes.
Based on the analysis in this chapter, our recommendations are summarized in Table 2.11.

2.8 Summary

In this chapter, we have studied extensively the effect of mesh positioning on the error of the
Crank-Nicolson-Rannacher method in the presence of non-smoothness. We have specifically
studied three types of non-smoothness of financial interest. Our contributions are listed below.

• We develop a general framework to analyze the quantization error for a finite difference
scheme in relation to the relative position of the non-smoothness in the grid.

• We demonstrate that in the presence of discontinuity/non-smoothness, the leading error
of our numerical solution depends not only on the spatial and time stepsizes, but also on
the relative positioning of the point of non-smoothness in the grid. For CN-Rannacher
method with central differencing, the error can be decomposed into a “normal” timestep-
ping error component and a quantization error component, and it is the latter that is
relevant to the positioning of the non-smoothness on the grid.

• We demonstrate that while the Crank-Nicolson-Rannacher method is formally second
order, suboptimal convergence can result from the placement of a discontinuity. While
this is a known result, we reviewed this from a different viewpoint. It is an immediate
corollary of our analysis that, for our choice of finite difference with an unsmoothed
Heaviside initial condition, a first order quantization error proportional to (α− 1

2
) arises,
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explaining the inverse relationship between the error and the distance of the discontinuity
from a mid-point in the grid.

• Our analysis shows that an unstable convergence estimate can result when the relative
position of the non-smoothness, α, is not maintained during grid refinement. We also
studied the possibility of choosing an optimal α. For our choice of finite difference
with an unsmoothed ramp (call or put) initial condition, the quantization error is second
order with a (α2 + α − 1

6
) coefficient, which gives two α values that result in minimum

quantization error.

• We demonstrate explicitly that smoothing operators can recover optimal convergence,
which was proved in [36]. In addition, we show how the dependence of the leading error
on α can be removed by smoothing.



Chapter 3

Stochastic Correlation Model

3.1 Background

In many areas of financial modeling such as pricing and risk reporting, correlation between
random variables is a critical input. A sound modeling of correlation is therefore necessary for
capturing the relationship between asset returns, particularly when the quantity of concern is
sensitive to correlations. It has been well-documented in the literature that correlation is not a
constant variable, but a time-varying one (see, for example, [3, 45, 18], among many others).
In particular, during periods of financial crisis, it is observed that correlations between asset
returns increase (e.g. [38, 6, 44])

In the options market, there is considerable empirical evidence of a large correlation risk
premium (e.g. [18, 17, 5]). In particular, in [18], it is established that correlation risk constitutes
the missing link between (empirically) un-priced individual variance premium risk and priced
market variance risk. Therefore, proper modelling of correlation is important in estimating
correlation risk exposure.

There are several methods in the literature that seek to model the stochasticity of correla-
tions. The dynamic conditional correlation approach (see [23, 58]) proposes a class of multi-
variate GARCH models that have time varying correlations. This class of discrete-time model
enjoys popularity, especially in econometric analysis. In the continuous-time literature, the
Wishart process [4], sometimes considered a generalization of the Heston model [29], is often
used to capture stochastic variances-covariances. This is studied in the context of derivative
pricing in such works as [12, 13, 26]. Being an affine specification, the Wishart model has
the advantage of a known expression of call and put prices in terms of elementary functions, a
feature desired in many situations. However, in this model, variances and covariances must be
specified, calibrated and evolved jointly, unlike the dynamic conditional correlation approach.
This could be an inconvenient feature when a specific model of the volatility is required.

48
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A third approach to modeling stochastic correlation is to directly specify the dynamics of
the correlation variable by a stochastic process (see, for example, [53, 17, 59]). This is also the
modeling approach of stochastic correlation that we adopt in this thesis. Compared to Wishart
processes, this approach has an advantage of possible separate calibration of parameters. How-
ever, under this class of models, expressions of option prices in terms of elementary functions
are often unknown, and numerical approximations become necessary.

In the domain of numerical methods, the Monte Carlo (MC) simulation is a popular choice.
However, depending on the use case, this approach can have disadvantages, such as slow con-
vergence for problems in low-dimensions, and the limitation that the price is obtained only
at a single point in the domain, as opposed to the global character of the PDE approach. In
addition, unlike PDE methods, MC simulations usually suffer from difficulty in computing
accurate hedging parameters. To our best knowledge, a PDE approach for pricing contingent
claims under stochastic correlation has not been investigated in the literature. This forms the
motivation for this part of the thesis.

In the remaining parts of the thesis, we will explore the computational aspects of pric-
ing contingent claims when the correlation variable is directly modeled by a mean-reverting
stochastic process, with focus on the case of two correlated underlying risk factors. The con-
tributions of this part of the thesis are:

• We derive a time-dependent PDE in three space dimensions of the pricing problem, with
the correlation variable being the third dimension. We show that the solution is C1 in
time and C2 in space.

• We propose a numerical solution to the PDE. We analyze the truncation of the unbounded
domain, prove a stability result, and study the boundary conditions and their associated
numerical issues, especially those arising from the correlation variable.

• Using singular perturbation theory, we develop and analyze an asymptotic solution of the
PDE as the mean reversion rate of the correlation process becomes large. In cases where
the price of the contingent claim and its derivatives do not have a known closed-form
solution under a constant correlation model, we propose a novel asymptotic solution
based on the transition density.

• Through numerical results, we illustrate the accuracy of the numerical PDE and asymp-
totic solution. We study the effect of certain problem parameters on the solution.

The outline of the remainder of the thesis is as follows. In Section 3.2, we present a pricing
model with stochastic correlation and its corresponding PDE formulation. The numerical so-
lution to the PDE is discussed in detail in Chapter 4. In Chapter 5, we discuss an asymptotic
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solution using singular perturbation theory. Numerical experiments and results are discussed
in Chapter 6.

3.2 Formulation

3.2.1 Model problem: contingent claims on two assets

As a model problem, we consider the pricing of a contingent claim on two (non-dividend-
paying) risky assets, whose price processes, denoted by S1(t) and S2(t), under the physical
measure evolve as follows:

dS1(t)/S1(t) = µS1dt+ σS1dB1(t),

dS2(t)/S2(t) = µS2dt+ σS2dB2(t),

dB1(t)dB2(t) = ρ(t)dt.

(3.1)

Here, B1(t) andB1(t) are two correlated Brownian motions, and µS1 , µS2 , σS1 , σS2 are positive
constants. The correlation variable ρ(t) is unobservable, and is assumed to evolve stochasti-
cally as

dρ(t) = α(t, ρ(t))dt+ β(t, ρ(t))dB3(t), (3.2)

where α(t, ρ(t)) and β(t, ρ(t)) are functions that ensure a strong solution to the stochastic dif-
ferential equation (SDE), and are such that ρ(t) is bounded in [−1, 1] with probability 1. In
this specification, the Brownian motion B3(t) driving the correlation process is assumed to
be independent of B1(t) and B2(t). While it is possible to include a second layer of correla-
tion structure between the correlation process and the random shocks in asset prices, we shall
restrict ourselves to the independence assumption 1.

We are interested in pricing a contingent claim with terminal payoff g(S1(T ), S2(T )),
where T is the maturity of the contract. We denote by V = V (t, S1(t), S2(t), ρ(t)) the time-t
value of the contingent claim, 0 ≤ t ≤ T . We assume that the value of the contingent claim is
Markovian in (S1(t), S2(t), ρ(t)). We now derive the PDE that governs the price V .

Following a usual “no-arbitrage” argument, we consider a self-financing portfolio consist-
ing of one long unit position in V , (algebraically) short a1(t) shares of S1, a2(t) shares of S2,
and ∆(t) units of another derivative W on S1, S2. We assume also the existence of a money-

1A second layer of correlation is considered in [17]. From a computational viewpoint, the effect of this will be
extra cross terms in the pricing PDE. While this is seldom a difficulty in practice with a numerical PDE solver, it is
not straightforward to interpret and specify second layer correlations. If one would like to specify an instantaneous
correlation between dB3(t) and dBi(t) (say (ψi, i = 1, 2)), then clearly ρ(t) has to be bounded within an interval
depending on ψi in order that the instantaneous correlation matrix is positive semi-definite.
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market account, whose value at time t is denoted by M(t), that pays instantaneous interest
with rate r. For convenience, we assume r > 0, however, our arguments are valid with mi-
nor modifications even if r is negative. Denote by b(t) the (algebraically short) position in
money-market account.

We denote by Π(t) the value of the portfolio. The portfolio value process can be written as

Π(t) = V (t, S1(t), S2(t), ρ(t))−∆(t)W (t, S1(t), S2(t), ρ(t))

−a1(t)S1(t)− a2(t)S2(t)− b(t)M(t).

As the portfolio is self-financing, its infinitesimal change is

dΠ(t) = dV (t, S1(t), S2(t), ρ(t))−∆(t)dW (t, S1(t), S2(t), ρ(t))

−a1(t)dS1(t)− a2(t)dS2(t)− b(t)dM(t).

By Itô’s lemma, dΠ(t) can be expanded as

dΠ(t) =

((
∂

∂t
+ L̃

)
V −∆(t)

(
∂

∂t
+ L̃

)
W − a1µS1S1 − a2µS2S2 − b(t)rM(t)

)
dt

+ σS1S1

(
∂V

∂S1

−∆(t)
∂W

∂S1

− a1(t)

)
dB1(t)

+ σS2S2

(
∂V

∂S2

−∆(t)
∂W

∂S2

− a2(t)

)
dB2(t)

+ β(t, ρ(t))

(
∂V

∂ρ
−∆(t)

∂W

∂ρ

)
dB3(t), (3.3)

where

L̃V ≡
σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2

+
β(t, ρ)2

2

∂2V

∂ρ2

+ µS1S1
∂V

∂S1

+ µS2S2
∂V

∂S2

+ α(t, ρ)
∂V

∂ρ
,

and similarly for L̃W . In the above and for the rest of the thesis, where applicable, the depen-
dence on t of S1(t), S2(t) and ρ(t) are suppressed for notational convenience.
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We choose a1(t), a2(t) and ∆(t) such that the following holds:

∂V

∂S1

−∆(t)
∂W

∂S1

− a1(t) = 0,

∂V

∂S2

−∆(t)
∂W

∂S2

− a2(t) = 0,

∂V

∂ρ
−∆(t)

∂W

∂ρ
= 0. (3.4)

These three equations can be solved for a1(t), a2(t),∆(t). Using these choices, the terms in-
volving real-world drifts µS1 and µS2 are cancelled. Also, from the construction of a1(t), a2(t)

and ∆(t), the terms involving dBi, i = 1, 2, 3, also disappear from dΠ in (3.3). As a result,
the portfolio is instantaneously riskless. In the presence of the risk-free money-market account
paying instantaneous interest r, the following equation has to hold:

dΠ(t) = rΠ(t)dt = r(V −∆(t)W − a1(t)S1(t)− a2(t)S2(t)− b(t)M(t))dt. (3.5)

Therefore, from (3.3)-(3.5), we have

∂V

∂t
+ LV = ∆(t)

(
∂W

∂t
+ LW

)
, (3.6)

where

LV ≡
σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2

+
β(t, ρ)2

2

∂2V

∂ρ2

+rS1
∂V

∂S1

+ rS2
∂V

∂S2

+ α(t, ρ)
∂V

∂ρ
− rV,

and similarly for LW . Assuming ∂W
∂ρ
6= 0, we have ∆(t) =

∂V
∂ρ
∂W
∂ρ

. As a result, the quantity

∂V
∂t

+ LV
∂V
∂ρ

is invariant for every derivative of V that has non-zero sensitivity to ρ. Therefore, there exists
Λ(t, S1, S2, ρ) such that

∂V
∂t

+ LV
∂V
∂ρ

= Λ(t, S1, S2, ρ).
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Consequently, we obtain the pricing PDE

∂V

∂t
+
σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2

+
β(t, ρ)2

2

∂2V

∂ρ2

+ rS1
∂V

∂S1

+ rS2
∂V

∂S2

+ (α(t, ρ)− Λ(t, S1, S2, ρ))
∂V

∂ρ
= rV.

(3.7)

The quantity Λ(t, S1, S2, ρ) is related to a drift adjustment from the physical measure to a risk-
neutral measure. This is seen heuristically as follows. For illustration purposes only, assume
for now that Λ(t, S1, S2, ρ) is of the special form Λ(t, S1, S2, ρ) = φβ(t, ρ). We have from Itô’s
lemma that

d
(
e−rtV (t, S1(t), S2(t), ρ(t))

)
= e−rt

(((
∂

∂t
+L̃
)
V − rV

)
dt+σS1S1

∂V

∂S1

dB1(t)+σS2S2
∂V

∂S2

dB2(t)+β(t, ρ(t))
∂V

∂ρ
dB3(t)

)
=

(
(µS1 − r)S1e

−rt ∂V

∂S1

+ (µS2 − r)S2e
−rt ∂V

∂S2

+ φβ(t, ρ)e−rt
∂V

∂ρ

)
dt

+ σS1S1e
−rt ∂V

∂S1

dB1(t) + σS2S2e
−rt ∂V

∂S2

dB2(t) + β(t, ρ(t))e−rt
∂V

∂ρ
dB3(t)

= σS1S1e
−rt ∂V

∂S1

(
dB1(t) +

µS1 − r
σS1

dt

)
+ σS2S2e

−rt ∂V

∂S2

(
dB2(t) +

µS2 − r
σS2

dt

)
+ β(t, ρ(t))e−rt

∂V

∂ρ
(dB3(t) + φdt).

We can decompose dB2 = ρ(t)dB1(t) +
√

1− ρ(t)2dB′2(t) for some dB′2(t) such that dB1(t),
dB′2(t) and dB3(t) are independent Brownian motions. The market price of risk process γ̄ =

[γi], i = 1, 2, 3, which we will explain shortly, is given component-wise by the following:

γ1(t) =
µS1 − r
σS1

, γ2(t) =
1√

1− ρ(t)2

(
µS2 − r
σS2

− ρ(t)γ1

)
, γ3(t) = φ.

In turn, the function Λ is related to an equivalent local martingale measure, where the third
market price of risk process is given by φ (subject to technical conditions that guarantee that
the stochastic exponential of the market price of risk processes is a true martingale).

This is to say that γ1, γ2 and γ3 connect the physical measure to a pricing measure. As
exlpained in Section 1.2, in a pricing measure we require that e−rtV is a martingale (driftless).
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In our case, a necessary condition is that the coefficient of dt in d(e−rtV ) is zero. Define now

dB̃1(t) = dB1(t) + γ1(t)

dB̃2(t) = dB′2(t) + γ2(t)

dB̃3(t) = dB3(t) + γ3(t).

It is easy to check algebraically that

d
(
e−rtV (t, S1(t), S2(t), ρ(t))

)
= σS1S1e

−rt ∂V

∂S1

dB̃1(t)

+σS2S2e
−rt ∂V

∂S2

(
ρ(t)dB̃1(t) +

√
1− ρ(t)2dB̃2(t)

)
+β(t, ρ(t))e−rt

∂V

∂ρ
dB̃3(t).

While B̃1, B̃2, B̃3 are not necessarily driftless in the original physical measure, if the new
probability measure is such that B̃j(t), j = 1, 2, 3 are independent Brownian motions, then in
this probability measure e−rtV is driftless. As a result, we could price using the expectation
operator in this measure (subject to other technical conditions). Thus, each triplet {γj(t)}
corresponds to a pricing measure, which is not necessarily unique (see Section 1.5). This
triplet is sometimes termed the market price of risk.

3.2.2 Quanto options

Correlation is also important in other settings. As an illustration, we also present a popular
type of contingent claims that decouples equity and FX risk in the terminal payoff, referred
to as quanto options. The pricing of such instruments in the presence of stochastic correlation
is also studied in [53, 39]. In this context, we denote by S(t) the underlying asset priced in
the foreign currency, and by R(t) the spot FX rate which is defined as the number of units of
domestic currency per one unit of foreign currency. In a quanto option, the payoff depends on
S(T ) and a fixed strike, and is paid in the domestic currency. For this kind of options, it is also
important to realistically capture the correlation between S(t) and R(t). This is because the
currency mismatch in a quanto option gives rise to a “quanto adjustment” that depends heavily
on the correlation parameter between S(t) and R(t). Let S(t) and R(t) evolve as

dS(t)/S(t) = µSdt+ σSdB1(t),

dR(t)/R(t) = µR(t, R(t))dt+ σRdB2(t),

dB1(t)dB2(t) = ρ(t)dt, (3.8)
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where ρ(t) is as specified before, and µS , σS , µR, and σR are positive constants. Under the
model (3.8), it can be shown that the price V (t, S(t), ρ(t)) of a quanto option satisfies the PDE

∂V

∂t
+
σ2
SS

2

2

∂2V

∂S2
+
β(t, ρ)2

2

∂2V

∂ρ2
+ (rf − σSσRρ)S

∂V

∂S
+ (α(t, ρ)−Λ(t, S, R, ρ))

∂V

∂ρ
= rdV,

(3.9)
where rd and rf are positive constant domestic and foreign risk-free interest rates, respectively.

3.2.3 Correlation process

We now discuss the choice for the correlation process ρ(t). The Jacobi process is a popular
choice for modeling stochastic correlation ([17], [59], [39] and [40]). If the correlation is
assumed to attain values anywhere in (−1, 1), then the following is a candidate choice of α and
β:

α(ρ) = λ(η − ρ), β(ρ) = σρ
√

1− ρ2. (3.10)

Here, λ, η, and σρ are positive constants.

The parameter restriction λ ≥ σ2
ρ

1±η is needed for the process to remain in (−1, 1) with prob-
ability 1 (see [59]). This parameter restriction also has a PDE interpretation. Given a PDE
problem

∂P

∂t
= a(x)

∂2P

∂x2
+ b(x)

∂P

∂x
+ c(x)P

x ∈ [xmin, xmax]

where a(x) ≥ 0 and a(xmin) = a(xmax) = 0, define the Fichera function

F(x) = b− ∂a

∂x
.

At the boundary x = xmin, if F(xmin) ≥ 0, then no boundary condition is needed (or allowed)
there. Similarly, at the boundary x = xmax, ifF(xmax) ≤ 0, then no boundary condition should
be supplied at that point for the formulation of the problem.

Substituting b(ρ) = λ(η − ρ) and a(ρ) =
σ2
ρ(1−ρ2)

2
, we have F(ρ) = λ(η − ρ) + σ2

ρρ and
the boundary points relevant to our problem are ρmax = 1 and ρmin = −1. The condition
F(ρmax) = F(+1) ≤ 0 can be written as

λ(η − 1) + σ2
ρ ≤ 0,
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and the condition F(ρmin) = F(−1) ≥ 0 can be written as

λ(η + 1)− σ2
ρ ≥ 0.

These are identical to the Feller condition λ ≥ σ2
ρ

1±η .
Unlike the Wishart process (see for example [11]), this class of models is not affine. In

general, a closed-form solution based on elementary functions to (3.7) or (3.9) for a general
payoff function is not known, and numerical methods are needed to approximate the solution.

If the correlation process is specified to be bounded in (ρ, ρ) ⊂ (−1, 1), then one can
consider a process of the form

dρ(t) = λ̂(η̂ − ρ(t)) + σ̂ρ

√
(ρ(t)− ρ)(ρ− ρ(t))dB3(t). (3.11)

With appropriate parameter restrictions, the process will remain in (ρ, ρ) with probability
1. It is easy to show that (3.11) is equivalent to (3.10) by an affine transformation, and as a
result it is sufficiently general to consider (3.10) as our base model.

In the analysis, we will focus on the model PDE (3.7). For pricing purposes and simplicity,
for the rest of the thesis, we assume that the specification in (3.10) is risk-neutral, i.e. Λ ≡ 0.

While this thesis is not concerned with calibration or filtering, we mention that calibration
of the specification (3.10) to historical data has been studied in [59].

The following theorem shows that the concept of classical solutions suffices for our pur-
pose.

THEOREM 1. With α(ρ) and β(ρ) chosen as in (3.10), the price of a European contingent

claim (with bounded payoff g(S1(T ), S2(T ))), given by the discounted risk-neutral expectation

e−r(T−t)Et,x,y,ρ [g(S1(T ), S2(T ))] ,

satisfies (3.7) and is C1,2,2,2 on (0, T ]× (0,∞)2 × (−1, 1).

Proof. This theorem establishes that the solution we shall seek with our numerical method is
C2 in space and C1 in time. Consider the European option price given by

v(t, x, y, ρ) = e−r(T−t)Et,x,y,ρ [g(S1(T ), S2(T ))] ,

where we take expectation in the risk-neutral measure induced by ((3.10)). We follow [21] and
start by first proving that the option price is continuous on (0, T )× (0,∞)2 × (−1, 1).

Let (tn, xn, yn, ρn) be a sequence of points converging to (t, x, y, ρ). Let Sn1 , Sn2 , and ρn be
solutions to their corresponding SDEs (3.1) and (3.2) (having parameter choices (3.10)) with
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initial conditions Sn1 (tn) = xn, Sn2 (tn) = yn, and ρn(tn) = ρn, respectively. The explicit
expressions for Sn1 (T ), Sn2 (T ) are

Sn1 (T ) = xn exp

((
r − σ2

S1

)
(T − tn)

2
+ σS1

∫ T

tn

dW1(s)

)

Sn2 (T ) = yn exp

((
r − σ2

S2

)
(T − tn)

2
+ σS2

∫ T

tn

ρn(s)dW1(s)+ σS2

∫ T

tn

√
1−(ρn(s))2dW2(s)

)
,

(3.12)
where dW1(s) and dW2(s) are independent Brownian motions adapted to the same filtrations
generated by dB1(s) and dB2(s). Similarly, define S1, S2, and ρ accordingly with the initial
conditions S1(t) = x, S2(t) = y, and ρ(t) = ρ, respectively. Note that S1(T ), S2(T ) can also
be expressed in the same form as (3.12).

By the Yamada-Watanabe theorem, pathwise uniqueness holds for our choice of the corre-
lation model (3.10). It follows from [1] that

E

[
sup
s≤T

∣∣ρn(s)− ρ(s)
∣∣2] −→ 0 as n→∞. (3.13)

Therefore, using Itô isometry,

E

[(∫ T

tn

ρn(s)dW1(s)−
∫ T

t

ρ(s)dW1(s)

)2]
≤ 2E

[(∫ T

tn

(ρn(s)− ρ(s))dW1(s)

)2]
+ 2E

[(∫ tn

t

ρ(s)dW1(s)

)2]
= 2E

[ ∫ T

tn

(ρn(s)− ρ(s))2ds

]
+ 2E

[ ∫ tn

t

ρ(s)2ds

]
−→ 0

as n→∞. We also have

E

[(∫ T

tn

√
1− (ρn(s))2dW2(s)−

∫ T

t

√
1− (ρ(s))2dW2(s)

)2]
≤ E

[(∫ T

tn

√
|(ρn(s))2 − (ρ(s))2|dW2(s)

)2]
+ E

[(∫ tn

t

√
1− (ρ(s))2dW2(s)

)2]
≤ 2E

[(∫ T

tn

|ρn(s)− ρ(s)| ds
)]

+ E

[(∫ t

tn

(
1− (ρ(s))2

)
ds

)]
−→ 0,

as n → ∞. This is due to Itô isometry, Lipschitz continuity of the function f(y) = y2 on the
domain [−1, 1], and Jensen’s inequality. In view of (3.12) above, it follows that Sn1 (T ) and
Sn2 (T ) respectively converge to S1(T ) and S2(T ) in probability, as n → ∞. Since g(·, ·) is
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bounded, it follows that

Etn,xn,yn,ρn [g(Sn1 (T ), Sn2 (T ))]→ Et,x,y,ρ [g(S1(T ), S2(T ))] , as n→∞.

Hence, the option price v is continuous.
Next, following Theorem 2.7 in [32], and since v is a continuous (stochastic) solution, it

can be shown that v is also a classical solution (in C1,2,2,2) that satisfies (3.7).



Chapter 4

Finite Difference Approximation

In this chapter, we describe our finite difference approximation to the pricing problem arising
from the stochastic correlation model. We discuss some technicalities and develop a stable
numerical scheme.

Recall that we assume that the parameters are risk-neutral, i.e. Λ ≡ 0. Since we solve the
PDE (3.7) backward in time, the change of variable τ = T − t is used. Under this change of
variable and with our specification α(ρ) = λ(η − ρ) and β(ρ) = σρ

√
1− ρ2, the PDE (3.7)

becomes
∂V

∂τ
= LV, (4.1)

where L now takes the form

LV =
σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2

+
σ2
ρ(1− ρ2)

2

∂2V

∂ρ2

+rS1
∂V

∂S1

+ rS2
∂V

∂S2

+ λ(η − ρ)
∂V

∂ρ
− rV,

and (4.1) is solved forward in τ . The pricing problem is defined in an unbounded domain

{(τ, S1, S2, ρ) ∈ (0, T ]× (0,∞)2 × (−1, 1)}, (4.2)

subject to the initial condition g(·, ·).

While an implementation of our finite difference scheme may seem straightforward, caution
must be taken to ensure proper discretization due to the structure of this problem. Most of the
techniques of this section can be modified to apply to other choices of α(t, ρ) and β(t, ρ).
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4.1 Localization

Localization refers to the truncation of the unbounded domain (in our case, that of the asset
prices) to a bounded one for computational purposes. If we knew the exact expression of the
solution based on elementary functions along the boundaries of the truncated domain , then it
would be reasonable to impose a Dirichlet boundary condition. However, this is rarely the case
and approximations are to be made at these boundaries. Localization then involves studying
additionally the error in the final solution associated with the approximations made on these
boundaries.

On the other hand, for financial problems one is usually interested in the solution around a
certain region, so it is pointwise error instead of the L∞ error (in the entire domain) that is of
interest. One can take advantage of the fact that our processes are generated by diffusion, and
it takes a certain time for the boundary error to propagate to the region of interest1. This is the
strategy we shall take in this section.

Localization estimates are well-studied in the literature. See, for example, [33] (multi-
dimensional Black-Scholes equation), [9] (exponential Lévy models and jump diffusion pro-
cesses), and [8] (two-asset jump diffusion models), among many others. In [9] and also in
[31], for various models (with constant correlations) and different assumption on payoffs, it
has been proved that the price of a European option is approximated exponentially well by
that of a corresponding barrier option. We now extend this result to the context of stochastic
correlation.

For the statement of the result, we will switch to log scaling. We denote Xt = log(S1(t))

and Yt = log(S2(t)), and generic variables x = log(S1), y = log(S2). Let also−Rlog and Rlog,
where Rlog > 0, respectively denote generic lower and upper barriers for the processes Xt and
Yt.

PROPOSITION 5. Let ulog(τ, x, y, ρ) = e−rτEx,y,ρ

(
g
(
eXτ , eYτ

))
be the option price with the

bounded payoff function g in log scaling (||g||∞ < ∞). Define Mx
τ = supτ̂∈[0,τ ] |Xτ̂ |, My

τ =

supτ̂∈[0,τ ] |Yτ̂ | and Mx,y
τ = max(Mx

τ ,M
y
τ ).

Furthermore, denote by θ̂ is the first exit time of (Xτ̂ , Yτ̂ ), τ̂ ∈ [0, τ ] from the region

[−Rlog, Rlog]× [−Rlog, Rlog].

Let

u1
Rlog(τ, x, y, ρ) = e−rτEx,y,ρ

[
g
(
eXτ , eYτ

)
1{Mx,y

τ <Rlog}
]
,

u2
Rlog(τ, x, y, ρ) = e−rτEx,y,ρ

[
g
(
eXτ , eYτ

)
1{Mx,y

τ <Rlog} + g
(
eXθ̂ , eYθ̂

)
1{Mx,y

τ ≥Rlog}

]
.

1This statement is not true for processes with jumps. However, similar techniques do in fact apply to localiza-
tion estimates for models with jumps.
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Then, for γ > 0, there exists constant C(γ, σS1 , σS2 , r, τ) independent of Rlog such that, for

i = 1, 2,

|ulog(τ, x, y, ρ)− uiRlog(τ, x, y, ρ)| ≤ C(γ, σS1 , σS2 , r, τ)||g||∞(e−γ(Rlog−|x|) + e−γ(Rlog−|y|)),

pointwise in (0, T ]× [−Rlog, Rlog]× [−Rlog, Rlog]× (−1, 1).

Proof. By construction

|ulog(τ, x, y, ρ)− u1
Rlog(τ, x, y, ρ)| ≤ ||g||∞Q

(
{Mx,y

τ ≥ Rlog}
)
,

where Q is the pricing measure. Similarly, we have

|ulog(τ, x, y, ρ)− u2
Rlog(τ, x, y, ρ)| ≤ 2||g||∞Q

(
{Mx,y

τ ≥ Rlog}
)
.

We can write Xτ̂ = x + Uτ̂ and Yτ̂ = y + Ũτ̂ , τ̂ ∈ [0, τ ], where Uτ̂ , and Ũτ̂ start from 0
and have drifts r−

σ2
S1

2
and r−

σ2
S2

2
, respectively. We have Mx

τ = supτ̂∈[0,τ ] |x+Uτ̂ |. Theorem

25.18 of [50] implies that for any γ > 0, C1(γ, σS1 , r, τ) = E

[
eγ supτ̂∈[0,τ ] |Uτ̂ |

]
<∞.

Therefore, by the exponential Chebyshev’s inequality, for every Rlog
1 > 0,

Q

({
sup
τ̂∈[0,τ ]

|Uτ̂ | ≥ Rlog
1

})
≤ C1e

−γRlog
1 .

As a result,
Q
({
Mx

τ ≥ Rlog
})
≤ C1(γ, σS1 , r, τ)e−γ(R

log−|x|).

A similar bound can be obtained for Q
(
{My

τ ≥ Rlog}
)
, i.e.

Q
({
My

τ ≥ Rlog
})
≤ C2(γ, σS2 , r, τ)e−γ(R

log−|y|).

The result follows by noting that

Q
(
{Mx,y

τ ≥ Rlog}
)
≤ Q

(
{Mx

τ ≥ Rlog}
)

+ Q
(
{My

τ ≥ Rlog}
)
.

Essentially, Proposition 5 shows that one can set the value at the truncated boundary to
zero (which is the value of a barrier option), or, even better, to the discounted payoff function
evaluated at that point. If this boundary is far enough from our region of interest, then the error
is “small”.
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More precisely, Proposition 5 shows that the price of a continuously monitored barrier
option approximates that of a European option exponentially well by extending the log barrier
Rlog. As only a bounded domain is required to compute the price of a barrier option, in the
present case of European options, truncation of the domain is effective when the truncation
boundary is far enough from the points of interest.

REMARK 3. Proposition 5 is formulated in log price scaling. Technically, the equation in log

space corresponding to (4.1) is
∂ulog

∂τ
= Llogulog, (4.3)

defined on (0, T ]×R2 × (−1, 1) with initial condition ulog(τ = 0, x, y, ρ) = g(ex, ey), where

Llog ≡
σ2
S1

2

∂2

∂x2
+
σ2
S2

2

∂2

∂y2
+ ρσS1σS2

∂2

∂x∂y
+
β(ρ)2

2

∂2

∂ρ2

+

(
r −

σ2
S1

2

)
∂

∂x
+

(
r −

σ2
S2

2

)
∂

∂y
+ α(ρ)

∂

∂ρ
− r.

However, if the exact solution based on elementary functions is known explicitly along the

Si = 0 boundaries, i = 1, 2, such as in the case of spread/basket/exchange options, then the

price of the option can be similarly approximated by the price of the corresponding barrier

option. Specifically, this can be achieved by solving the original Black-Scholes equation (4.1)

in a truncated domain, with approximation error of the order O
(

1

(Rlog)
γ

)
pointwise in the

domain. In the case of non-negative risk-neutral drift of the asset prices, this can also be seen

from Doob’s martingale inequality.

REMARK 4. The boundedness condition imposed on the payoff function g may seem restric-

tive. In particular, the analysis in Proposition 5 is applicable to only put payoffs, and not to

call ones. However, it is possible to extend the results of Proposition 5 to more general, un-

bounded payoffs, such as those given in [31]. For example, by invoking put-call parity, the

analysis in Proposition 5 can be extended to certain European options with call-type payoffs.

In our numerical experiments, in cases with unbounded payoffs, such as a European call op-

tion, we do not observe a difficulty, and notice good agreement of the numerical PDE price

with that obtained from Monte Carlo simulations. We conjecture that Proposition 5 also holds

for contracts with linear growth.
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4.2 Boundary conditions in ρ

To solve the PDE (4.1) numerically by FD methods, we need to truncate the unbounded domain
(4.2) into a finite-sized computational one

{(τ, S1, S2, ρ) ∈ (0, T ]× [0, Smax
1 ]× [0, Smax

2 ]× (−1, 1)} ≡ (0, T ]× Ω, (4.4)

where Smax
1 and Smax

2 are sufficiently large (see Proposition 5). Denote ∂S1Ω = {(S1, S2, ρ) ∈
{0, Smax

1 } × [0, Smax
2 ] × [−1, 1]} and similarly for ∂S2Ω, and ∂ρΩ. In the same fashion, we

can define a localized spatial domain in the log scaling Ωlog = {(x, y, ρ) ∈ [−Rlog
1 , Rlog

1 ] ×
[−Rlog

2 , Rlog
2 ]× [−1, 1]} and its boundaries.

From Proposition 5, we know the localization errors on the boundaries ∂S1Ω, and ∂S2Ω

can be made negligible if Smax
1 and Smax

2 are chosen sufficiently large. In our experiments, we
choose a Dirichlet condition for these boundaries. However, there is a difficulty with choosing
the boundary conditions on ∂ρΩ, as for an arbitrary option payoff, they are not known as ρ →
±1, and unlike the S1- and S2- directions we cannot extend the truncation boundary in ρ. This
is the focus of the rest of this subsection.

We note that under the choice (3.10) for α(·) and β(·, ·), the correlation process ρ is of the
Jacobi type, which is similar to a CIR process [10]. This type of process is commonly used
in modelling interest rate and volatility. In particular, it is reported in [30] that there can be
multiple solutions to the CIR bond pricing PDE under certain parameter choices that violate
the Fichera condition. As mentioned in Section 3.2.3, boundary conditions should be supplied
where the Fichera condition fails. In their case, the reason for having “multiple solutions” to the
PDE is that the Fichera condition fails, and no boundary conditions are imposed. However, the
result in [30] points out the need to correctly specify a boundary condition when the parameter
restrictions are not satisfied.

In [21] (resp. [22]), the authors have studied the problems of boundary behaviors of the
discounted risk neutral expectation under stochastic volatility (resp. one factor term structure)
models, where at the zero boundary of the variance variable (resp. the short rate variable), a
boundary condition is unclear for the specification of the PDE. In their works, they proved that
under regularity assumptions such as bounded smooth payoff, linear growth of coefficients,
square of volatility of the variance (resp. the short rate) being continuously differentiable with
a Hölder continuous derivative, and the vanishing of the volatility of variance (resp. the short
rate) as variance (resp. the short rate) goes to zero, the discounted risk neutral expectation is
C1 everywhere in the solution domain up to including the boundary of 0 in volatility (resp. the
short rate). Moreover using interior Schauder estimates, it was shown that the solution satisfies
a reduced PDE at the boundary, corresponding to the pricing equation with vanishing second
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derivative term with respect to the variance (resp. the short rate).

From Theorem 1, the solution we seek is C2 in the interior of space and C1 in time. We
do not intend to carry out a similar analysis to [21] or [22] here, but instead, we assume that
the C1-ness extends to the ρ-boundaries, noting that the coefficients of the correlation process
in our case satisfy the assumptions in [21, 22] . Hence, a similar boundary condition holds for
our European option pricing problem:

lim
ρ→±1

(
− ∂V

∂τ
+
σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2

(4.5)

+rS1
∂V

∂S1

+ rS2
∂V

∂S1

+ λ(η − ρ)
∂V

∂ρ
− rV

)
= 0.

Note that, in log-price variables, this becomes

lim
ρ→±1

(
− ∂ulog

∂τ
+
σ2
S1

2

∂2ulog

∂x2
+
σ2
S2

2

∂2ulog

∂y2
+ ρσS1σS2

∂2ulog

∂x∂y
(4.6)

+

(
r −

σ2
S1

2

)
∂ulog

∂x
+

(
r −

σ2
S2

2

)
∂ulog

∂y
+ λ(η − ρ)

∂ulog

∂ρ
− rulog

)
= 0.

The choice of finite difference discretization of (4.5) (or (4.6)) is to be further elaborated in Sec-
tion 4.3, with consideration given to numerical stability. It should be noted that the authors of
[27], where they consider the Heston-Hull-White three-dimensional PDE, use a similar PDE-
based boundary condition for the variance variable at zero.

For the mathematical formulation of the problem, a boundary condition is not needed where
the Fichera condition is satisfied (despite being necessary from a numerical perspective). When
the Fichera condition is not satisfied, a boundary condition is necessary for specifying the
problem. However, as noted in [21, 22], for numerical purposes, we always need to specify a
condition on the boundary, even if the Fichera condition is satisfied. We hypothesize that the
classical solution would satisfy the limit of the PDE from the interior. In this case, regardless
of whether the Fichera condition is satisfied, this is the “correct” boundary condition to use for
the numerical approximation.

In summary, the localized problem in the original price scaling is

∂V

∂τ
= LV (4.7)
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on (0, T ]× (0, Smax
1 )× (0, Smax

2 )× (−1, 1) subject to the terminal and boundary conditions

V (τ = 0, S1, S2, ρ) = g(S1, S2)

V (τ, S1, S2, ρ) = VDir(τ, S1, S2) on ∂S1Ω ∪ ∂S2Ω,

where VDir(τ, S1, S2) is a Dirichlet condition of choice. And finally, V satisfies (4.5) along the
spatial ρ-boundary ∂Ω \ (∂S1Ω ∪ ∂S2Ω). Similar boundary conditions hold for the formulation
in log-price space (equation (4.3)).

Implementation-wise, this boundary condition corresponds, to each point along the ρ =

±1, one additional equation of a discrete version of (4.5) (resp. (4.6)), discretized using one-
sided difference in ρ. This is essentially the same equation as (4.1) (resp. (4.3)) applied at
ρ = ±1. Details of discretization are given in the next section.

4.3 Discretization and stability

To obtain a provably monotone discretization, we switch to log scaling (4.3). Let h1, h2 and h3

be step-sizes of a uniform spatial discretization of Ωlog, and i ∈ I1 = {0, 1, . . . , n1}, j ∈ I2 =

{0, 1, . . . , n2}, k ∈ I3 = {0, 1, . . . , n3}. Let

Ω∆,log = {(xi, yj, ρk) = (−Rlog
1 + ih1,−Rlog

2 + jh2,−1 + kh3), i ∈ I1, j ∈ I2, k ∈ I3}.

Recall that we solve the equation (4.3) which is in the log space. We use a finite difference
method to obtain a discrete representation L∆

log of Llog on the discretized grid Ω∆,log. The
time dimension is discretized using the θ-timestepping. Let u(l)

log be the vectorized numerical
solution at the l-th timestep. At the (l + 1)-th timestep, the timestepping reads as follows:

u
(l+1)
log − u(l)

log

∆τ
= θL∆

logu
(l+1)
log + (1− θ)L∆

logu
(l)
log. (4.8)

When θ = 0.5, the scheme is known as Crank-Nicolson (CN), and the choice θ = 1 is known
as fully implicit timestepping.

Let A be the discretization matrix arising from L∆
log including the boundary conditions. For

every i′ ∈ I1, every j′ ∈ I2, and every k′ ∈ I3, we denote Ai
′,j′,k′

i,j,k to be the matrix element
where the index (i, j, k) corresponds to the column index, while (i′, j′, k′) corresponds to the
row index in a vectorized ordering of (i, j, k). We require that the discretization matrix satisfies
the following:
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Ai,j,ki,j,k ≤ 0 for all (i, j, k), (4.9)

Ai
′,j′,k′

i,j,k ≥ 0 for (i′, j′, k′) 6= (i, j, k) where equality is component-wise, and (4.10)∑
i′,j′,k′

Ai
′,j′,k′

i,j,k ≤ 0 for all (i, j, k). (4.11)

To ensure these properties are satisfied, first and cross derivatives have to be carefully dis-
cretized. For first derivatives, one could choose between forward, backward and central differ-
ences in such a way that the signs of the matrices are correctly obtained. For cross derivatives,
a 7-point stencil can be used according to the sign of the correlation variable, which we will
describe shortly.

While in this work we are primarily concerned with classical solutions, maintaining these
conditions has the advantage that the discretization matrix arising from the fully implicit timestep-
ping is monotone, a key requirement for convergence towards viscosity solutions. This is par-
ticularly relevant for options with early exercise features. We plan to investigate this in a future
work. Furthermore, for such a discretization, fully implicit timestepping methods give rise to
matrices that have bounded inverse in l∞ norm.

We define a (n3 + 1) × (n3 + 1) matrix ω in the ρ-direction by first defining the three (n3 +

1)× (n3 + 1) matrices

ω
(c)
kl =



σ2
ρ(1−ρ2

k)

2h2
3
− λ(η−ρk)

2h3
for l = k − 1, 0 < k < n3

−σ2
ρ(1−ρ2

k)

h2
3

for l = k, 0 < k < n3

σ2
ρ(1−ρ2

k)

2h2
3

+ λ(η−ρk)
2h3

for l = k + 1, 0 < k < n3

0 else

(4.12)

ω
(b)
kl =



σ2
ρ(1−ρ2

k)

2h2
3
− λ(η−ρk)

h3
for l = k − 1, 0 < k ≤ n3

−σ2
ρ(1−ρ2

k)

h2
3

+ λ(η−ρk)
h3

for l = k, 0 < k ≤ n3

σ2
ρ(1−ρ2

k)

2h2
3

for l = k + 1, 0 < k < n3

0 else

(4.13)
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ω
(f)
kl =



σ2
ρ(1−ρ2

k)

2h2
3

for l = k − 1, 0 ≤ k < n3

−σ2
ρ(1−ρ2

k)

h2
3
− λ(η−ρk)

h3
for l = k, 0 ≤ k < n3

σ2
ρ(1−ρ2

k)

2h2
3

+ λ(η−ρk)
h3

for l = k + 1, 0 ≤ k < n3

0 else

(4.14)

Then, starting with ω = ω(c), rows of ω are modified one-by-one (chosen from any of the
three ω(·)) so that off-diagonals are non-negative. The first row of ω (corresponding to k = 0)
should be based on forward differencing while the last row (corresponding to k = n3) should
be based on backward differencing.

Denote ui,j,k = u(xi, yj, ρk). Now following [8], the cross derivatives are discretized as fol-
lows:

∂2u

∂x∂y
(xi, yj, ρk) ≈

1

2h1h2

(2ui,j,k+ui+1,j+1,k+ui−1,j−1,k (4.15)

−ui+1,j,k−ui−1,j,k−ui,j+1,k−ui,j−1,k) for ρk ≥ 0,

∂2u

∂x∂y
(xi, yj, ρk) ≈

1

2h1h2

(−2ui,j,k−ui+1,j−1,k−ui−1,j+1,k (4.16)

+ui+1,j,k+ui−1,j,k+ui,j+1,k+ui,j−1,k) for ρk < 0.

Intuitively, the case for ρ ≥ 0 corresponds to the discretization of the cross derivative operator
by

1

2
(∂x−∂y− + ∂x+∂y+),

where ± indicates the direction of the one-sided difference. Similarly, the case for ρ < 0

corresponds to the discretization scheme

1

2
(∂x+∂y− + ∂x−∂y+).

Denote by χ(p) and χ(m) the induced cross derivative discretization matrices from the ρ ≥ 0 and
ρ < 0 cases respectively. The cross derivative discretization can be written as ∂2u

∂x∂y
(xi, yj, ρk) ≈∑

i′,j′ χ
(∗)
ij,i′j′ui′,j′,k. We now describe the discretization in x and y directions.

Denote µi = r −
σ2
Si

2
, i = 1, 2. With the discretized domain Ω∆,log define the following

(n1 + 1)× (n1 + 1) matrices:
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φ
(c)
il =



σ2
S1

2h2
1
− µ1

2h1
for l = i− 1, 1 ≤ i < n1

−
σ2
S1

h2
1

for l = i, 1 ≤ i < n1

σ2
S1

2h2
1

+ µ1

2h1
for l = i+ 1, 1 ≤ i < n1

0 else

(4.17)

φ
(b)
il =



σ2
S1

2h2
1
− µ1

h1
for l = i− 1, 1 ≤ i < n1

−
σ2
S1

h2
1

+ µ1

h1
for l = i, 1 ≤ i < n1

σ2
S1

2h2
1

for l = i+ 1, 1 ≤ i < n1

0 else

(4.18)

φ
(f)
il =



σ2
S1

2h2
1

for l = i− 1, 1 ≤ i < n1

−
σ2
S1

h2
1
− µ1

h1
for l = i, 1 ≤ i < n1

σ2
S1

2h2
1

+ µ1

h1
for l = i+ 1, 1 ≤ i < n1

0 else

(4.19)

The matrix φ(c) corresponds to the spatial discretization of terms involving ∂2

∂x2 and ∂
∂x

using
central differences. The matrices φ(f) and φ(b) correspond to the discretization of the same
terms using forward and backward differences of the first derivatives, respectively.

For each ρ, we define a (n1+1)×(n1+1) matrix φ(ρ) in the x-direction (x = log(S1)) which
is equal to either φ(c), φ(b) or φ(f) such that non-negativity of the off-diagonals of L∆ will be
preserved. We can define correspondingly a matrix, say ψ(ρ), for the y-direction (y = log(S2)).

The discretization matrix A is specified by the action

(Au)i,j,k =

n1∑
i′=0

φii′(ρk)ui′,j,k +

n2∑
j′=0

ψjj′(ρk)ui,j′,k + σS1σS2ρk(1ρk≥0

∑
i′,j′

χ
(p)
ij,i′j′ui′,j′,k

+ 1ρk<0

∑
i′,j′

χ
(m)
i′,j′ui′,j′,k) +

n3∑
k′=0

ωkk′ui,j,k′ − rui,j,k, (4.20)

for i 6= 0, n1 and j 6= 0, n2. For i = 0, n1 or j = 0, n2, one can specify (Au)i,j,k = 0 and
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modify the right-side of the time-stepping equation to the imposed Dirichlet condition. From
this discretization one obtains a sufficient condition for (4.10) to hold. Consider the coefficients
of ui+1,j,k and ui−1,j,k in (4.20). Clearly, if

σ2
S1

2

1

h2
1

− σS1σS2 |ρk|
2h1h2

≥ 0,

then one can choose between central, backward and forward differences in the x-direction such
that the coefficients of ui+1,j,k and ui−1,j,k are non-negative. This is the case if we space the
grid in such a way that

h1

h2

≤ σS1

σS2

.

By considering the non-negativity of the coefficients of ui,j+1,k and ui,j−1,k, we get, as a suffi-
cient condition,

σ2
S2

2

1

h2
2

− σS1σS2 |ρk|
2h1h2

≥ 0,

which is ensured by
h1

h2

≥ σS1

σS2

.

In a similar way, we can study the sign of the other coefficients in (4.20). In summary, if
h1

h2
=

σS1

σS2
, and central, backward or forward differences are chosen appropriately in each direc-

tion, and cross-derivatives are discretized by (4.16) or (4.17) appropriately, conditions (4.9)-
(4.10) are satisfied. It is also easy to see that (4.11) is trivially satisfied for r > 0, irrespectively
of the central, backward or forward differences in each direction, and the cross-derivative dis-
cretization.

THEOREM 2. Assume fully implicit timestepping (θ = 1) is used for (4.3), L∆ is discretized

as above, and that the (x, y) grid satisfies h1

h2
=

σS1

σS2
. Then at each timestep l, we have

||u(l+1)
log ||∞ ≤ max(||u(l)

log||∞, ||u
(l+1)
Dir ||∞),

where u(l+1)
Dir is the Dirichlet condition imposed on ∂xΩlog ∪ ∂yΩlog during this timestep. The

same conclusion holds for Crank-Nicolson timestepping (θ = 1
2
) with a timestep restriction

that scales with O(min(h2
1, h

2
2)).

Proof. The result follows from the discussion above and more details can be found in [8].

Solving a time-dependent PDE in three space dimensions could be expensive on traditional
computing architecture. The computational time can be improved by using computing tech-
niques such as implementing an ADI scheme on graphic processing units (see e.g. [14, 15]).
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While we have presented Theorem 2 in log-price scaling and for fully implicit timestepping,
in practice we have not observed a numerical stability problem when a finite difference scheme
is implemented with Crank-Nicolson timestepping, even on the original PDEs (3.7) or (3.9).
Note that convection is strong in the ρ direction away from the mean η, and upwind differencing
should be utilized where necessary.



Chapter 5

Asymptotic Solution

In practical cases, the implementation of the finite difference approximation could be com-
putationally intensive. It is sometimes possible to develop approximation formulas that are
computationally very efficient, even if they make certain simplifying assumptions to reduce
the problem. Approximation formulas enjoy the advantage of rapid computation, which is
suitable for calibration or in certain pricing situations.

Asymptotic solutions are to be interpreted differently than numerical approximations (such
as the finite difference approximation in Chapter 4). While numerical solutions converge to
the correct solution as computational efforts increase, asymptotic solutions do not enjoy such
convergence. Instead, asymptotic solutions converge to the correct solution when one or more
model parameters are sufficiently close to a limit. When these parameters are not sufficiently
close, the asymptotic solution will have an error that cannot be diminished by increasing com-
puting power.

5.1 Derivation and proof

Following [46], we assume that the mean reversion speed λ in (3.10) is fast, i.e. λ = 1/ε, where
ε → 0. We scale σρ such that the variance of the correlation process’ invariant distribution is
finite and fixed. Therefore, the volatility of correlation has the corresponding scale σρ = σ̃ρ√

ε
.

Our goal is to obtain an asymptotic solution when λ is large.

71
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Define the differential operators

A0 = (η − ρ)
∂

∂ρ
+
σ̃ρ

2(1− ρ2)

2

∂2

∂ρ2
, and

A1 =
∂

∂t
+
σ2
S1
S1

2

2

∂2

∂S2
1

+
σ2
S2
S2

2

2

∂2

∂S2
2

+ ρσS1σS2S1S2
∂2

∂S1∂S2

+rS1
∂

∂S1

+ rS2
∂

∂S2

− rI,

where I is the identity operator. Note that ∂
∂t

+ L = A1 + 1
ε
A0.

Intuitively, A1 is a classical Black-Scholes-type operator (although ρ should be interpreted
as a state variable rather than a constant), whileA0 is an operator that is the extra part from the
stochastic correlation model.

The pricing equation (4.1) can be written as

A1V +
1

ε
A0V = 0. (5.1)

Let V ε be a power series expansion of V in ε

V ε = V (0) + εV (1) + ε2V (2) + . . . .

We will determine V (0) and V (1). We impose the terminal condition V (0)(T, S1, S2, ρ) =

g(S1, S2). Upon substitution of V ε into (5.1), the following equations are obtained from setting
the lower order terms to zero:

O

(
1

ε

)
: A0V

(0) = 0 (5.2)

O(1) : A1V
(0) +A0V

(1) = 0 (5.3)

O(ε) : A1V
(1) +A0V

(2) = 0 (5.4)

Equation (5.2) implies that we could choose V (0) = V (0)(t, S1, S2), i.e. independent of ρ. This
is not the only solution that satisfies the condition, but we shall shortly show that this type of
solutions works for our purpose. For λ ≥ 2σ2

ρ

1±η (equivalently σ̃2 ≤ 1±η
2

), Equation (5.3) implies
a centering condition

〈A1V
(0)〉 = 0,

where 〈·〉 denotes expectation with respect to the invariant distribution Φ of ρ. This is because
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(5.3) leads to

〈A1V
(0)〉 = −

∫
A0V

(1)Φ(ρ)dρ =

∫
V (1)A∗0Φ(ρ)dρ = 0,

where A∗0 is the adjoint of A0, taking also into account that Φ satisfies the stationary form
of the Fokker-Planck equation A∗0Φ = 0. The vanishing of the boundary terms requires that
Φ(±1) = Φ′(±1) = 0. This can be satisfied by imposing λ ≥ 2σ2

ρ

1±η . The explicit form of Φ is
given in Appendix A.

As V (0) is independent of ρ, the centering condition implies that

ABS(ρ̄)V (0) = 0,

where ρ̄ = η is the mean of ρ with respect to the invariant distribution (see Appendix A),
and that ABS(ρ̄) is the same as A1, except that ρ is changed to the constant ρ̄. Therefore, the
zeroth order approximation V (0) is given by the solution to the two-dimensional Black-Scholes
equation with constant correlation equal to ρ̄ = η.

We proceed to find V (1). From (5.3) we have

A0V
(1) = −A1V

(0) = −σS1σS2S1S2(ρ− ρ̄)
∂2V (0)

∂S1∂S2

,

where the equality 〈ABS(ρ̄)V (0)〉 = 0 is used to eliminate the non-cross derivative terms.
Consequently,

V (1) = −(φ(ρ))σS1σS2S1S2
∂2V (0)

∂S1∂S2

+ C(t, S1, S2),

where φ(y) is a solution to the equation A0φ = ρ − ρ̄ and C(t, S1, S2), arising from the
integration of this ODE, is independent of ρ. We take, as a particular solution,

φ(ρ) = ρ̄− ρ = η − ρ.

Again, we shall shortly show that this particular choice works for our purposes.

Next, we determine C(t, S1, S2). Define the differential operator D1,1 ≡ S1S2
∂2

∂S1∂S2
. One

sees immediately that D1,1 commutes with A1. Again, when λ ≥ 2σ2
ρ

1±η , the solvability of the
Poisson equation (5.4) implies

〈A1V
(1)〉 = 0. (5.5)



CHAPTER 5. ASYMPTOTIC SOLUTION 74

As C(t, S1, S2) is independent of ρ, we have by algebraic rearrangements

〈A1V
(1)〉 = 0

〈A1C(t, S1, S2)〉 = 〈A1((η − ρ)σS1σS2D1,1V
(0))〉

〈A1〉C(t, S1, S2) = 〈(A1−〈A1〉)((η−ρ)σS1σS2D1,1V
(0))〉+〈〈A1〉((η−ρ)σS1σS2D1,1V

(0))〉

= 〈(ρ− η)(η − ρ)〉σ2
S1
σ2
S2
D2

1,1V
(0)

= −Eσ2
S1
σ2
S2
D2

1,1V
(0),

where E =
(1−η2)σ̃2

ρ

2+σ̃2
ρ

(see Appendix A). The operator D2
1,1 is D1,1 applied twice. We specify

C(T, S1, S2) = 0.

By commutativity (or by brute force computation), one can verify that

C(t, S1, S2) = (T − t)Eσ2
S1
σ2
S2
D2

1,1V
(0)

is a solution, because 〈A1〉 = ABS(η), andABS(η)V (0) = 0. Therefore, we obtain the approx-
imation V ε,1 to V given by

V ε,1 = V (0) + ε(ρ− η)σS1σS2D1,1V
(0) + ε(T − t)

(1− η2)σ̃2
ρσ

2
S1
σ2
S2

2 + σ̃2
ρ

D2
1,1V

(0), (5.6)

where, as defined earlier, V (0) is the solution to the two-dimensional Black-Scholes equation
with constant correlation η. The error of the approximation (5.6) is given in the following
theorem.

THEOREM 3. Assume the payoff function g is smooth and that g and its derivatives have at

most polynomial growth as their arguments approach ±∞.

Assume also λ ≥ 2σ2
ρ

1±η (equivalently σ̃2 ≤ 1±η
2

). Then for t < T ,

∣∣V (t, S1, S2, ρ)− V ε,1(t, S1, S2, ρ)
∣∣ = O(ε2).

Proof. Define

AεV ε ≡ A1V
ε +

1

ε
A0V

ε = 0,

and V ε = V (0) + εV (1) + ε2V (2) + . . . . We write Zε = V ε− V (0)− εV (1)− ε2V (2), where V ε,1

is as defined in (5.6). At terminal time, we have

Zε(T, S1, S2, ρ) = −ε(ρ− η)σS1σS2D1,1V
(0)(T, S1, S2)− ε2V (2)(T, S1, S2, ρ),
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as we specified that C(T, S1, S2) = 0. In addition, we have

AεZε = (A1 +
1

ε
A0)(V ε − V (0) − εV (1) − ε2V (2))

= −1

ε
A0V

(0) − (A1V
(0) +A0V

(1))− ε(A1V
(1) +A0V

(2))− ε2A1V
(2)

= −ε2A1V
(2),

where we have used AεV ε = 0 and equations (5.2) to (5.4). Therefore, the probabilistic
representation of the solution is

Zε(t, S1, S2, ρ) = −εE
[
e−r(T−t)(ρεT−η)σS1σS2D1,1V

(0)(T, Sε1,T , S
ε
2,T )

+εV (2)(T, Sε1,T , S
ε
2,T , ρ

ε
T )

−ε
∫ T

t

e−r(s−t)A1V
(2)(s, Sε1,s, S

ε
2,s, ρ

ε
s)ds | Sε1,t = S1, S

ε
2,t = S2, ρ

ε
t = ρ

]
,

where subscripts t, s, T indicate time dependence. The dependence of the processes on ε is
emphasized by superscripts. We bound each of the terms in the following lemmas. These
bounds conclude the proof of Theorem 3.

LEMMA 1. We have∣∣∣∣E[e−r(T−t)(ρεT − η)σS1σS2D1,1V
(0)(T, Sε1,T , S

ε
2,T )

∣∣∣∣Sε1,t = S1, S
ε
2,t = S2, ρ

ε
t = ρ

]∣∣∣∣ ≤ C1e
−C2

1
ε ,

where C1, C2 > 0 are independent of ε.

Proof. By an argument similar to Lemmas A.1 and A.3 in [24], we can prove that

sup
ε≤1,t≤s≤T

E

[
|D1,1V

(0)(s, Sε1,s, S
ε
2,s)|
∣∣∣∣Sε1,t = S1, S

ε
2,t = S2, ρ

ε
t = ρ

]
≤ C ′,

where C ′ is independent of ε. The proof consists of proving that the derivative D1,1V
(0) of

the Black-Scholes price V (0) is of polynomial growth in S1 and S2, which is a consequence
of the assumption on the payoff. The bound is obtained from boundedness of the marginal
moments of S1 and S2, independent of correlation. More details can be found in [24]. The
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lemma follows directly from this bound because∣∣∣∣E[e−r(T−t)(ρεT − η)σS1σS2D1,1V
(0)(T, Sε1,T , S

ε
2,T )

∣∣∣∣Sε1,t = S1, S
ε
2,t = S2, ρ

ε
t = ρ

]∣∣∣∣
≤ E

[
e−r(T−t)|ρ− η|e−

T−t
ε σS1σS2|D1,1V

(0)(T, Sε1,T , S
ε
2,T )|

∣∣∣∣Sε1,t = S1, S
ε
2,t = S2

]
≤ 2σS1σS2e

−r(T−t)e−
T−t
ε E

[
|D1,1V

(0)(T, Sε1,T , S
ε
2,T )|

∣∣∣∣Sε1,t = S1, S
ε
2,t = S2

]
.

Note that in the second inequality we have used (A.3).

LEMMA 2. We have

E

[
|V (2)(T, Sε1,T , S

ε
2,T , ρ

ε
T )| + |

∫ T

t

e−r(s−t)A1V
(2)(s, Sε1,s, S

ε
2,s, ρ

ε
s)ds|∣∣∣∣Sε1,t = S1, S

ε
2,t = S2, ρ

ε
t = ρ

]
≤ C3,

where C3 is independent of ε.

Proof. By (5.4), and (5.5), we have

A0V
(2) = −A1V

(1) = −(A1V
(1) − 〈A1V

(1)〉).

Recall that V (1) = (ρ − η)σS1σS2D1,1V
(0) + (T − t)

(1−η2)σ̃2
ρσ

2
S1
σ2
S2

2+σ̃2
ρ

D2
1,1V

(0). As V (0) is inde-
pendent of ρ, we have

A1V
(1) − 〈A1V

(1)〉 = (ρ(ρ− η)− 〈ρ(ρ− η)〉)K(V (0)),

where K(V (0)) is a linear combination of derivatives of V (0), which similarly has polynomial
growth and thereby bounded conditional expectation as in the lemma above. We now write
V (2) = −ψ(ρ)K(V (0)), where ψ solves the equation A0ψ = ρ(ρ − η) − 〈ρ(ρ − η)〉. Denote
g(ρ) = ρ(ρ − η) − 〈ρ(ρ − η)〉. Observe that

∫ 1

−1
g(ρ)Φ(ρ) = 〈g〉 = 0. Making use of (A.1),

we derive
ψ′ =

2

σ̃2
ρ(1− ρ2)Φ

∫ ρ

−1

g(u)Φ(u)du.

We prove ψ′ is bounded as ρ → −1. This is seen from the L’Hôspital’s rule, where we apply
(A.1) once again:

lim
ρ→−1

2

σ̃2
ρ(1− ρ2)Φ

∫ ρ

−1

g(u)Φ(u)du = lim
ρ→−1

g(ρ)

(η − ρ)
.
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Similarly ψ′ = 2
σ̃2
ρ(1−ρ2)Φ

∫ ρ
−1
g(u)Φ(u)du = 2

σ̃2
ρ(1−ρ2)Φ

∫ 1

ρ
g(u)Φ(u)du is bounded as ρ → 1.

As a result, ψ is bounded on (−1, 1), where the bound is independent of ε, i.e.

ψ(ρ) ≤ C4, ρ ∈ (−1, 1). (5.7)

Finally A1V
(2) and V (2) can be written as a polynomial combination of derivatives of V (0)

times the bounded functions ψ(ρ) and ρψ(ρ). Hence its conditional expectation is bounded
independently of ε as desired.

5.2 Density approximation

The approximation (5.6) requires knowing the price of the derivative and its derivatives under
a constant correlation model. This is known, however, only for a few derivatives, such as ex-
change options (via the Margrabe’s formula [41]). For many other popular derivatives, such as
spread options, a closed form solution in terms of elementary functions is currently unknown,
hence the approximation (5.6) is limited in these cases. To deal with this difficulty, we propose
a heuristic solution based on (5.6). The idea is simple. Since the set of European option prices
fully determines the transition density, we apply heuristically (5.6) to compute the transition

density instead, to be further explained below.

Specifically, we denote by f(T, S1(T ), S2(T ), ρ(T )|t, S1, S2, ρ), the joint transition density
function of the terminal prices S1(T ) and S2(T ) and the correlation value ρ(T ), given the
asset prices S1, S2 and correlation value ρ at an earlier time t. The time-0 option price can be
computed by∫ ∞

0

∫ ∞
0

∫ 1

−1

e−rTg (S1(T ), S2(T )) f (T, S1(T ), S2(T ), ρ(T )|0, S1, S2, ρ) dρ(T )dS1(T )dS2(T )

=

∫ ∞
0

∫ ∞
0

e−rTg (S1(T ), S2(T )) pm (T, S1(T ), S2(T )|0, S1, S2, ρ) dS1(T )dS2(T ),

where pm(·|·) is the associated marginal transition density. The idea is to approximate pm(·|·)
by pε,1m (·|·), a perturbed version of pm(·|·), obtained from formally applying (5.6) to pm(·|·).
Explicitly, this means

pε,1m = p(0)
m + ε(ρ− η)σS1σS2D1,1p

(0)
m + ε(T − t)

(1− η2)σ̃2
ρσ

2
S1
σ2
S2

2 + σ̃2
ρ

D2
1,1p

(0)
m . (5.8)

We denote by
p(T, S1(T ), S2(T )|t, S1, S2)
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the joint transition density in the case of the constant correlation ρ̄ = η. Its explicit form
is known and is given in Appendix B. It is easy to see that the zeroth order approximation
p

(0)
m of pm(·|·) is given by p(·|·). The rest of the right-side on (5.8) depends on derivatives of
p(·|·). These involve some algebraic work, given also in Appendix B. Finally, we propose
approximating the time-0 price of a European option by the double integral∫ ∞

0

∫ ∞
0

e−rTg (S1(T ), S2(T )) pε,1m (T, S1(T ), S2(T )|0, S1, S2, ρ) dS1(T )dS2(T ), (5.9)

which can be computed using quadrature methods. We present the details of this approximation
in Appendix B. We demonstrate the effectiveness of this approach in Section 6.
An example algorithm that uses (5.9) for pricing is shown in Algorithm 1.

Algorithm 1 A sample pricing algorithm with the perturbed density at time t = 0

1: Retrieve market data: prices S1, S2, current correlation ρ, risk-free rate r, mean-reversion
level of correlation η applicable forward-looking volatilities σS1 , σS2 , σρ.

2: Retrieve European option data: payoff g(·, ·), maturity T .
3: Obtain the constant correlation (set to mean reversion level η) marginal density
p(T, S1(T ), S2(T )|0, S1, S2), and their derivatives D1,1(p) and D2

1,1(p). These formulae
are explicitly given in Appendix B.

4: Calculate pε,1m (T, S1(T ), S2(T )|0, S1, S2, ρ) from (5.8).
5: Choose a grid (0, Smax

1 )× (0, Smax
2 ) and discretize.

6: For the particular discretization chosen, calculate the price from (5.9) with truncated Si-
boundaries using quadrature.

We conclude this section by noting that, although we restrict the analysis to non-dividend-
paying assets, it is relatively straightforward to generalize the asymptotic solution in the case
of non-zero continuous dividend rate by adjusting the risk-neutral drifts of S1 and S2.



Chapter 6

Numerical Experiments

In this section, we present numerical results from the implementation of our approach on the
following options:

(a) spread and basket options on two assets with stochastic correlation using the three-
dimensional PDEs (4.1) and (4.3);

(b) quanto options with stochastic correlation using the two-dimensional PDE (3.9); and

(c) max options on two assets with stochastic correlation using a two-dimensional PDE ob-
tained after a similarity reduction.

For all experiments, the S-boundary conditions are of Dirichlet type where the value on
the boundary is simply the discounted payoff for the current values of the state variables. The
ρ-boundary conditions are as those described in Section 4.2. See Equations (4.5) and (4.6) for
the boundary conditions used in the price space and log-price space formulations, respectively.
Similar conditions are used for the two-dimensional PDEs.

Unless otherwise stated, we use standard second order differences for all spatial derivatives,
including the cross-derivatives. The only exception is when the convection term α(t, ρ)∂V

∂ρ
is

large, in which case we use forward or backward first order differences, depending on the
sign of α(·, ·). Whenever solving the log-price space formulation PDE (4.3), the discretiza-
tion is carried out as described in Section 4.3, so that a monotone discretization scheme is
obtained. In all cases, the timestepping is Crank-Nicolson-Rannacher, i.e. we use the fully im-
plicit timestepping for the first few timesteps, then switch to Crank-Nicolson for the remaining
timesteps.

While it is easier to carry out stability analysis in log price space, in practice there could
be computational disadvantages in solving the log transformed equation. A uniform grid in
log price space becomes a non-uniform grid in price space. A fine discretization around the

79
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Volatility of first asset σS1 30 %
Volatility of second asset σS2 30 %
Mean reversion level of correlation η 0.0
Mean reversion speed of correlation λ 3.0
Volatility of correlation σρ 50 %
Risk-free rate r 5 %

Table 6.1: Market parameters for Section 6.1

region of interest in the price space could require a much finer discretization of the log price
grids, and hence higher computational cost. Moreover, for non-smooth payoffs, it could be
hard to align the points of discontinuity (of derivatives) with nodes on the log-price grid. For
this reason, in our numerical experiments with the log-price space PDE formulation (4.3), an
averaging procedure has been applied to smooth out the payoff function (see [47]) and Chapter
2. For these log formulations, we present also results without smoothing as a comparison.

In the numerical experiments, we also report a quantity

Ξq ≡ log

(∣∣∣∣changeq−1

changeq

∣∣∣∣) / log(2),

for q > 2, where changeq is the absolute difference of solution value from the (q − 1)-th grid
refinement to the q-th grid refinement. For the pricing problems we shall consider, no exact
solution in terms of elementary functions is known to our knowledge. Therefore, instead of
estimating the order of convergence using errors as in Chapter 2, we estimate the convergence
order using changes across grid refinements. From one refinement to the next, the spatial and
time stepsizes are halved. For a linearly convergent numerical scheme, we can expect Ξq’s to
be close to 1. For a quadratically convergent numerical scheme, the convergence estimate Ξq’s
would be close to 2.

6.1 Options on two assets

We report numerical results of the proposed method on two types of options on two assets,
namely spread and basket options. The market parameters are listed in Table 6.1.
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6.1.1 Spread options

As an illustration, we will price a spread option, more specifically a call option on spread.
Mathematically, the terminal payoff of such an option is given by

g(S1, S2) = max(S1 − S2 −K, 0).

In log space, the initial condition is

glog(x, y, ρ) = max(ex − ey −K, 0).

We will discuss numerical results for the pricing of a 1-year spread option with K = 10 for
different values of spot prices and current levels of correlation (S1(0), S2(0), ρ(0)), solved in
log space formulation (4.3). We will present results from two experiments, which are identical
except for the smoothing of the initial condition. For the smoothing, we will use the first
order smoothing operator Φ1 (instead of the second order operator) defined in Section 2.6. Our
choice is motivated by the fact that for exponential call/put type payoffs (in one dimension),
first order smoothing is sufficient for removing the dependence of the leading error term on the
relative position of the non-smoothness in the grid.

In the numerical experiments, instead of [−Rlog, Rlog]× [−Rlog, Rlog]× [−1, 1] for a suffi-
ciently large Rlog > 0 as in Proposition 5, we have localized the grid to [1, 5]× [1, 5]× [−1, 1]

in the log grid for more efficient use of computing power. As indicated, the numerical method
exhibits second-order convergence.

While an analytic approach is possible by evaluating the smoothing integral similarly to the
operator Φ1 in Section 2.6, we carry out a discrete approximation to the integral by averaging
the values of the payoff function at the corners of 5-point stencils, on each point of the domain
of evaluation, described as follows. Given a point (xi, yj, ρk) in the grid, we divide the region
[xi− h1, xi + h1]× [yj − h2, yj + h2]×{ρk} into sub-rectangles. Let x∗m1,i

= xi− h1 + 2m1h1

J
,

and y∗m2,j
= yj − h2 + 2m2h2

J
, where m1,m2 = 0, . . . , J , be quadrature data points of the

sub-rectangles. In our experiments, J is taken to be 30. Mathematically, the initial condition is
approximated by

glog
smoothed(xi, yj, ρk) =

1

4h1h2

∫ h1

−h1

∫ h2

−h2

glog(xi − u, yj − v, ρk)dvdu,
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while glog
smoothed is approximated by quadrature with

glog
smoothed, discrete(xi, yj, ρk) =

1

4J2

J−1∑
m1=0

J−1∑
m2=0

(glog(x∗m1,i
, y∗m2,j

, ρk) + glog(x∗m1+1,i, y
∗
m2,j

, ρk)

+glog(x∗m1,i
, y∗m2+1,j, ρk) + glog(x∗m1+1,i, y

∗
m2+1,j, ρk)).

In Chapter 2, our analysis for the one-dimensional Black-Scholes equation suggests that in
the presence of such non-smoothness, smoothing by averaging helps remove the dependence
of the leading error term on the relative position of the non-smoothness on the grid. This is
more important in the two-dimensional problem, as there is no trivial way to maintain the line
of non-smoothness on a fixed relative position on the grid, except possibly for a coordinate
rotation.

Table 6.2 shows the solution values and the approximate rates of convergence, where we
find again that due to the non-smoothness, it is not necessarily true that a smaller step-size leads
to a smaller (approximate) error. The rate of convergence by this measure is sometimes far from
the theoretical 2.0 for the unsmoothed initial condition. In Table 6.3, results are shown for the
smoothed initial condition. It is observed that the error, approximated as the change from one
grid resolution to the next, seems smaller for the unsmoothed run. However, the convergence
rate is much closer to the theoretical 2.0 in Table 6.3. While smoothing does not necessarily
lead to a better error, the resulting convergence table is more suitable for extrapolation.

n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

20 10 0.1 4.5747 1.6392 7.8346 4.1289 1.3861 7.3850

40 20 0.05 4.7026 1.6392 7.9954 4.2397 1.3765 7.5325

80 40 0.025 4.7321 1.6352 8.0356 4.2644 1.3679 7.5700

Ξ3 2.12 -10.23 2.00 2.16 0.17 1.98

Table 6.2: Value of the 1-year spread option with K = 10 at different values of
(S1(0), S2(0), ρ(0)), in three successive grid refinements, using the log-price space formula-
tion PDE (4.3). The domain is Ω∆,log = [1, 5] × [1, 5] × [−1, 1]. Nodes are placed uniformly,
with n1 (resp. n2, n3) being the number of subintervals in the log(S1) (resp. log(S2), ρ) direc-
tion. Initial condition is not smoothed.
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n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

20 10 0.1 5.2364 1.9929 8.5386 4.8107 1.7329 8.1214

40 20 0.05 4.8547 1.7250 8.1565 4.3976 1.4608 7.7022

80 40 0.025 4.7697 1.6566 8.0751 4.3036 1.3891 7.6117

Ξ3 2.17 1.97 2.23 2.13 1.93 2.21

Table 6.3: Value of the 1-year spread option with K = 10 at different values of
(S1(0), S2(0), ρ(0)), in three successive grid refinements, using the log-price space formula-
tion PDE (4.3). The domain is Ω∆,log = [1, 5] × [1, 5] × [−1, 1]. Nodes are placed uniformly,
with n1 (resp. n2, n3) being the number of subintervals in the log(S1) (resp. log(S2), ρ) direc-
tion. Initial condition is smoothed.

In Table 6.4, we present similar results as in Table 6.3, but from solving the price space
formulation PDE (4.1), with an unsmoothed initial condition. The numerical results indicate
that solving directly (4.1) does not seem to pose a problem in terms of stability, although a
positive discretization is no longer guaranteed.

n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

20 10 0.1 4.5456 1.5370 7.7828 4.0878 1.2727 7.3315

40 20 0.05 4.7035 1.6080 7.9973 4.2367 1.3385 7.5352

80 40 0.025 4.7418 1.6274 8.0478 4.2728 1.3566 7.5829

Ξ3 2.04 1.87 2.09 2.05 1.86 2.10

Table 6.4: Value of the 1-year spread option with K = 10 at different values of
(S1(0), S2(0), ρ(0)), in three successive grid refinements, using the PDE in price space for-
mulation (4.1). The domain is Ω∆ = [0, 200]× [0, 200]× [−1, 1]. Nodes are placed uniformly,
with n1 (resp. n2, n3) being the number of subintervals in the S1 (resp. S2, ρ) direction. Initial
condition is not smoothed.

To validate our approaches, we compare the numerical PDE prices with those obtained by
the asymptotic solution (Chapter 5) and Monte Carlo (MC) simulations. To obtain more accu-
rate PDE prices, the PDE solutions from Tables 6.3 and 6.4 are extrapolated using Richardson
extrapolation, with convergence exponent 2, as the method is supposed and has demonstrated
to achieve. The numerical results are given in Table 6.5. They show good agreement among
solutions under the various approaches. In particular, the PDE and asymptotic solutions all lie
in the MC’s 95% confidence intervals (CIs). Here, for MC simulation, 50000 scenarios and
200 timesteps are used.
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(50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2) Runtimes (s)

log-price space
PDE (4.3)

4.7413 1.6338 8.0480 4.2722 1.3652 7.5815 4823

price space
PDE (4.1)

4.7545 1.6338 8.0646 4.2848 1.3627 7.5988 3197

Asymptotic so-
lution

4.7592 1.6412 8.0672 4.2666 1.3546 7.5797 0.40

MC 95% CI [4.6772,
4.8543]

[1.5965,
1.6919]

[7.9666,
8.1867]

[4.2106,
4.3744]

[1.3266,
1.4111]

[7.5011,
7.7095]

0.96

Table 6.5: Value comparison and runtimes for the 1-year spread option withK = 10 at different
values of (S1(0), S2(0), ρ(0)). Both sets of PDE prices are extrapolated from respective data
in Tables 6.3-6.4, using Richardson extrapolation, assuming quadratic convergence.

In Table 6.5, we also report runtimes in seconds for a typical run on an architecture of two
12-core Intel E5-2697v2 CPUs, with a total of 128GB memory. Sparse matrices are solved with
Matlab backslash. For the numerical PDE solutions, the runtimes for the finest grid in Tables
6.3 and 6.4 are reported, and it is worth noting that the values on the entire grid are computed.
For Monte Carlo and asymptotic methods, the runtime is based on a single run at a given
(S1(0), S2(0), ρ(0)). It is also worth nothing that solving the linear system arising from the
PDE discretization with the backslash operation in Matlab is not the most optimized solution
technique for this system. While this is not the topic of the thesis, in the future, we will be
investigating more efficient techniques for solving the linear system, including preconditioned
iterative solvers and Alternating Direction Implicit (ADI) techniques, as well as their parallel
versions.

6.1.2 Effect of truncated boundary

In this section, we verify numerically, that the truncated boundary in the S1- and S2-directions
is far enough, so that the quality of the approximation is not affected. We price again the spread
option of Section 6.1.1 by solving the price space formulation PDE (4.1), this time with the
truncated boundary in the S1- and S2-directions double as far, and with double the number
of grid points in these two directions. Table 6.6 presents the results. As it can be seen, the
differences between the results of Tables 6.6 and 6.4 are approximately at the level of 10−4.
Furthermore, the accuracy of the results of Table 6.4 seems to be at most at the level of 10−2.
These results indicate that the truncated boundary chosen for the experiment of Table 6.4 does
not compromise the quality of the numerical PDE approximation.
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n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

40 10 0.05 4.5504 1.5372 7.7888 4.0927 1.2723 7.3378
4.8e-03 1.3e-04 6.0e-03 4.9e-03 -3.6e-04 6.3e-03

80 20 0.025 4.7046 1.6081 7.9987 4.2379 1.3385 7.5367
1.2e-03 1.4e-04 1.4e-03 1.2e-03 1.5e-05 1.5e-03

160 40 0.0125 4.7420 1.6274 8.0481 4.2731 1.3566 7.5833
2.9e-04 4.1e-05 3.4e-04 3.0e-04 8.0e-06 3.6e-04

Table 6.6: Value of the 1-year spread option with K = 10 at different values of
(S1(0), S2(0), ρ(0)), in three successive grid refinements, using the PDE in price space for-
mulation (4.1). The domain is Ω∆ = [0, 400] × [0, 400] × [−1, 1]. Below each line of values,
the differences from the respective values of Table 6.4 are also presented. Initial condition is
not smoothed.

We also note that, although the experiment corresponding to the results in Table 6.6 is
costly, since the number of grid points has quadrupled compared to Table 6.4, it is a “fair”
comparison as far as the effect of truncated boundary, since the grid points in Table 6.6 are a
proper superset of those in Table 6.4.

6.1.3 Non-uniform mesh

In this section, we report the results for solving the price space PDE (4.1) using a non-uniform
grid as opposed to a uniform grid as in the previous experiments. One of the conditions that
guarantees monotonicity of the discretization of the log price PDE is a mesh ratio condition that
is fairly restrictive. In this experiment, we numerically demonstrate that, while the resulting
discretization may not be monotone, a non-uniform mesh in price space works well in practice.

For the experiment, we concentrate the (S1, S2) grid on the region around the points of
evaluation (S1 = 50 and S2 = 50). The non-uniform grid is obtained by mapping the uniform
grid with the indicated number of points into a non-uniform grid via the mapping defined in
[7].

The results are reported in Table 6.7. We observe that, due to a finer grid around the region
of evaluation, the numerical approximation seems to exhibit a smaller error that those in Table
6.4, measured by the change of solution value from one run to the next. This suggests that
a non-uniform mesh in the (S1, S2)-dimensions may be more efficient in practice, despite the
fact that monotonicity of discretization is not satisfied. Essentially, this experiment suggests
that monotonicity is a sufficient, but not necessary condition for convergence and stability.
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n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

20 10 0.1 4.7092 1.6169 8.0253 4.2390 1.3453 7.5611

40 20 0.05 4.7440 1.6300 8.0553 4.2743 1.3587 7.5900

80 40 0.025 4.7518 1.6329 8.0620 4.2821 1.3617 7.5963

Ξ3 2.15 2.17 2.15 2.17 2.15 2.19

Table 6.7: Value of the 1-year spread option with K = 10 at different values of
(S1(0), S2(0), ρ(0)), in three successive grid refinements, using the PDE in price space for-
mulation (4.1). The domain is Ω∆ = [0, 200] × [0, 200] × [−1, 1]. The mesh is non-uniform
in the (S1, S2)-dimensions, and concentrated around (50, 50), and uniform in the ρ-dimension,
with n1 (resp. n2, n3) being the number of subintervals in the S1 (resp. S2, ρ) direction. Initial
condition is not smoothed.

6.1.4 Basket options

We also consider an equal-weighted basket call option whose payoff is

g(S1, S2) = max(S1 + S2 −K, 0).

In Tables 6.8, 6.9 and 6.10, we present convergence results for the two versions of PDE for
different values of (S1(0), S2(0), ρ(0)) with the strike K = 100. Again, while a monotone
discretization scheme is no longer guaranteed in price space, numerically we do not observe a
problem with this approach. Comparison of values using the PDE, Monte Carlo and asymptotic
methods is presented in Table 6.11. Given the symmetry of the problem, the solution should be
symmetric in (S1(0), S2(0)). The discrepancy in Monte Carlo solutions is due to randomness
from the simulations.

Table 6.8 shows the solution values and the approximate rates of convergence for the un-
smoothed initial condition. In Table 6.9, results are shown for the smoothed initial condition,
with a discrete averaging procedure as in the case of spread options. The convergence rate for
the smoothed initial condition run is much closer to the theoretical 2.0 than the unsmoothed.
However, it is observed that the error, approximated as the change from one iteration to the
next, seems smaller for the unsmoothed run.
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n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

20 10 0.1 10.4900 5.3185 5.3185 10.9561 5.7400 5.7400

40 20 0.05 10.6550 5.3793 5.3793 11.1369 5.8185 5.8185

80 40 0.025 10.7000 5.3974 5.3974 11.1840 5.8410 5.8410

Ξ3 1.87 1.75 1.75 1.94 1.80 1.80

Table 6.8: Value of the 1-year equal-weighted basket call option with strike K = 100 at
different values of (S1(0), S2(0), ρ(0)), in three successive grid refinements, using the log-
price space formulation PDE (4.3). The domain is Ω∆,log = [1, 5]× [1, 5]× [−1, 1]. Nodes are
placed uniformly, with n1 (resp. n2, n3) being the number of subintervals in the x = log(S1)

(resp. y = log(S2), ρ) direction. Initial condition is not smoothed.

n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

20 10 0.1 11.6381 6.2168 6.2168 12.0654 6.6130 6.6130

40 20 0.05 10.9276 5.5998 5.5998 11.3987 6.0315 6.0315

80 40 0.025 10.7661 5.4514 5.4514 11.2475 5.8931 5.8931

Ξ3 2.14 2.06 2.06 2.14 2.07 2.07

Table 6.9: Value of the 1-year equal-weighted basket call option with strike K = 100 at
different values of (S1(0), S2(0), ρ(0)), in three successive grid refinements, using the log-
price space formulation PDE (4.3). The domain is Ω∆,log = [1, 5]× [1, 5]× [−1, 1]. Nodes are
placed uniformly, with n1 (resp. n2, n3) being the number of subintervals in the x = log(S1)

(resp. y = log(S2), ρ) direction. Initial condition is smoothed.

n1, n2 n3 ∆t (50, 50, -0.2) (40, 50, -0.2) (50, 40, -0.2) (50, 50, 0.2) (40, 50, 0.2) (50, 40, 0.2)

20 10 0.1 10.4788 5.2020 5.2020 10.9576 5.6262 5.6262

40 20 0.05 10.6710 5.3601 5.3601 11.1537 5.8006 5.8006

80 40 0.025 10.7165 5.3985 5.3985 11.2001 5.8428 5.8428

Ξ3 2.08 2.04 2.04 2.08 2.05 2.05

Table 6.10: Value of the 1-year equal-weighted basket call option with strike K = 100 at
different values of (S1(0), S2(0), ρ(0)), in three successive grid refinements, using the price
space formulation PDE (4.1). The domain is Ω∆ = [0, 200] × [0, 200] × [−1, 1]. Nodes are
placed uniformly, with n1 (resp. n2, n3) being the number of subintervals in the S1 (resp. S2, ρ)
direction. Initial condition is not smoothed.
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(50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

log-price space
PDE (4.3)

10.7123 5.4019 5.4019 11.1971 5.8469 5.8469

price space
PDE (4.1)

10.7317 5.4113 5.4113 11.2156 5.8569 5.8569

Asymptotic so-
lution

10.7131 5.3945 5.3945 11.2199 5.8616 5.8616

MC 95% CI [10.5006,
10.7668]

[5.2276,
5.4151]

[5.2429,
5.4309]

[10.9719,
11.2542]

[5.6614,
5.8629]

[5.6782,
5.8804]

Table 6.11: Value comparison for the 1-year equal-weighted basket call option withK = 100 at
different values of (S1(0), S2(0), ρ(0)). Both sets of PDE prices are extrapolated from respec-
tive data in Tables 6.9-6.10 using Richardson extrapolation, assuming quadratic convergence.

We conclude this subsection by noting that, although call payoffs do not satisfy the bound-
edness required in Proposition 5, numerically, we do not observe any problem with conver-
gence, and good agreement is achieved among different approaches. Also see Remark 4.

6.2 Quanto options

In this section, we consider the pricing of a quanto option under stochastic correlation as in
model (3.8) and (3.10). Similar to previous experiments, we assume that the parameters are
calibrated so that Λ ≡ 0. As an illustration, we price a 5-year quanto call option with payoff

g(S(T )) = max(S(T )−K, 0),

where K = 100. The parameters to the model are given in Table 6.12.

Volatility of price σS 30 %
Volatility of exchange rate σR 10 %
Domestic risk-free rate rd 5 %
Foreign risk-free rate rf 3 %
Mean reversion rate of correlation λ 3.0
Mean reversion level of correlation η -0.1
Volatility of correlation σρ 30 %

Table 6.12: Market parameters for quanto option

In this case, the pricing PDE is (3.9). Because there is no cross term in the PDE, by
discretizing the first derivatives carefully in the upwind direction when necessary, a positive
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discretization can be obtained without grid-size restrictions. Therefore, techniques such as non-
uniform spacing can be used without sacrificing a positive discretization. In our experiment,
we use a non-uniform grid that concentrates around the strike value 100 (see, e.g. [7]).

Results in Table 6.13 show that the PDE method has numerically quadratic convergence.
Table 6.14 shows good agreement among solutions obtained from different techniques.

n1 n3 ∆t (100,−0.2) (120,−0.1) (90, 0.0)

50 10 0.5 29.9609 43.9209 23.4803

100 20 0.25 29.9843 43.9513 23.5008

200 40 0.125 29.9894 43.9578 23.5052

400 800 0.0625 29.9907 43.9595 23.5064

Ξ3 2.21 2.22 2.22

Ξ4 1.91 1.90 1.91

Table 6.13: Value of a 5-year quanto call option with strike K = 100 at different values
of (S(0), ρ(0)), in four successive grid refinements, using PDE (3.9). The domain is Ω∆ =

[0, 500]× [−1, 1]. There are n1 (resp. n3) subintervals in the S (resp. ρ) direction.

(100,-0.2) (120, -0.1) (90, 0.0)

PDE (3.9) 29.9910 43.9599 23.5067

Asymptotic
solution

29.9674 43.8848 23.4952

MC 95% CI [29.6126,
30.6397]

[43.3529,
44.6529]

[23.1074,
23.9883]

Table 6.14: Value comparison for the 5-year quanto call option with strikeK = 100 at different
values of (S(0), ρ(0)). The set of PDE prices is extrapolated from respective data in Table 6.13
using Richardson extrapolation, assuming quadratic convergence.

In Table 6.15, we present values of selected partial derivatives of the option price with
respect to the underlying asset price S and the correlation factor ρ. Note that, although second
order convergence is not guaranteed due to the choice of upwind differencing, in most cases
we obtain second order convergence.
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n1 n3 ∆t (100,−0.2) (120,−0.1) (90, 0.0)

∂2V/∂S2

50 10 0.5 4.5994× 10−3 3.1606× 10−3 5.5495× 10−3

100 20 0.25 4.6107× 10−3 3.1625× 10−3 5.5434× 10−3

200 40 0.125 4.6129× 10−3 3.1630× 10−3 5.5444× 10−3

400 800 0.0625 4.6134× 10−3 3.1631× 10−3 5.5445× 10−3

Ξ3 2.31 2.03 2.63

Ξ4 2.36 1.76 2.73

∂V/∂ρ

50 10 0.5 −6.6204× 10−1 −8.8469× 10−1 −5.4737× 10−1

100 20 0.25 −6.6191× 10−1 −8.8515× 10−1 −5.4806× 10−1

200 40 0.125 −6.6194× 10−1 −8.8526× 10−1 −5.4817× 10−1

400 800 0.0625 −6.6196× 10−1 −8.8529× 10−1 −5.4818× 10−1

Ξ3 1.80 2.05 2.70

Ξ4 0.94 2.01 2.78

Table 6.15: Selected sensitivities of the option price with respect to S and ρ.

6.3 Effects of model parameters

In this section, the effect of correlation model parameters on option prices is studied. We will
focus on the max option, which has payoff

V (t = T, S1(T ), S2(T )) = max(S1(T ), S2(T )). (6.1)

For options of this form, it is not necessary to solve the full three-dimensional PDE (4.1).
Instead, a similarity reduction is possible because of the nature of the payoff. For τ = T − t >
0, define W (τ, S1, S2) by

V (τ, S1, S2) = S1W (τ, S1, S2).

Introduce the similarity reduction ξ = S2/S1, corresponding to a change of numéraire. It is
now straightforward to see that

Wτ =
(σ2

S1
+ σ2

S2
− 2ρσS1σS2)ξ2

2
Wξξ +

β2

2
Wρρ + αWρ, (6.2)
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where α, β are chosen as in (3.10). The reduced problem has terminal condition

W (τ = 0, ξ) = max(1, ξ).

The diffusion coefficient in (6.2) is non-negative because σ2
S1

+ σ2
S2
− 2ρσS1σS2 ≥ 0. It should

be noted that r, the risk-free rate, factors out of the pricing problem naturally. This similarity
reduction can be easily seen to be the PDE equivalent to a measure change from the T -forward
measure to the S1-measure.

For illustration purposes we have restricted to non-dividend-paying assets. For dividend-
paying assets, the same variable transformation can be carried out. In that case, a PDE two-
dimensional in space similar to (6.2) will be obtained, with a convection and a discounting
term.

The discretization of (6.2) is less restricted than that of (4.1). A positive discretization is
ensured with usual central differences of the second derivatives and careful discretization of
the first derivatives in the upwind direction where necessary. In our experiment, we solve (6.2)
on a uniform grid of 801× 81 nodes in [0, 5]× [−1, 1], with timestep 0.025.

In Figure 6.1, we show the effect of the long term mean reversion level η of correlation
on the price of the max option. With higher η, the expected value of the total correlation
experienced during the life of the option is increased. Naturally this leads to a lower value of
the optionality. This effect is captured also by the asymptotic solution (5.6), which we restate
here:

V ε,1 = V (0) + ε(ρ− η)σS1σS2D1,1V
(0) + ε(T − t)

(1− η2)σ̃2
ρσ

2
S1
σ2
S2

2 + σ̃2
ρ

D2
1,1V

(0). (6.3)

Recall V (0) is the Black-Scholes price with constant correlation η. The Black-Scholes sensitiv-
ity ∂V (0)

∂η
is negative, and the dominant zeroth order term decreases in value as η increases, for

ε � 1. The effect of the spot-correlation is present in the first order correction (second term
in the above equation), and is of order ε for fast mean-reversion. The sensitivity D1,1V

(0) of
the Black-Scholes price is negative as it is a positive multiple of ∂V (0)

∂η
. This explains the three

decreasing set of prices for different values of ρ(0) = ρ0.

In Figure 6.2, we show the effect of the mean reversion speed λ on the prices of the max
option. As λ increases, it is plausible that any deviation from the mean of the correlation is
more heavily punished with the stronger convection, and one should expect a price closer to
the Black-Scholes price with constant correlation equal to the long-term mean. Once again this
is encoded in (6.3). The terms involving ε decrease in absolute value and convergence towards
V (0), the Black-Scholes price with constant correlation η, is expected.
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Figure 6.1: Effect of η on max option prices.
Other parameters: σS1 = 0.2, σS2 = 0.3, λ =
2.0, σρ = 1.0, maturity is 1 year.
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Figure 6.2: Effect of λ on max option prices.
Other parameters: σS1 = 0.2, σS2 = 0.3, η =
−0.1, σρ = 1.0, maturity is 1 year.

When ρ = η = −0.1, the sensitivity D2
1,1V

(0) is negative. Therefore, while the second term
in (6.3) vanishes, an upward trend is still predicted by the formula (as ε decreases), albeit of a
much smaller magnitude due to the further diminishing effects of σ2

S1
σ2
S2

.

6.4 Summary

In the second part of this thesis (Chapters 3, 4, 5 and 6), we have studied the problem of option
pricing in the presence of stochastic correlation from a computational viewpoint. Starting with
the derivation of the pricing PDE, we have developed two approaches to computing option
values in this setting. Our contributions are listed below.

• We have identified the solution space to be C2 in space, C1 in time (Theorem 1). The key
part of the proof is to show that the discounted risk neutral expectation is a continuous
function, from which the general parabolic theory applies.

• We have developed a finite difference approximation to a modified PDE corresponding
to the pricing problem. We have shown that, if the assets’ truncated boundary is far
enough, setting the value there to zero or discounted payoff results in “small enough”
error. A challenging part of the problem is the specification of the boundary behaviour

when the correlation ρ is ±1. The boundary condition is necessary when one uses such
numerical techniques as the finite difference method. We have proposed a boundary
condition defined by the PDE. Furthermore, we discuss other important numerical issues
such as meshing, discretization of the cross term and numerical stability of the numerical
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scheme (with this somewhat unusual boundary condition. In log price space, under fully
implicit timestepping, our discretization is stable in the l∞-norm.

• When the correlation process exhibits fast mean-reversion, a second approach, based on
singular perturbation ([46]), is developed. The asymptotic solution involves a correction
to the (multi-asset) Black-Scholes price under a constant correlation. This simple yet
powerful solution is useful in computational scenarios where efficiency is important and
where a PDE solution may be costly to implement.

• For options where the values or derivatives for the constant correlation case under the
Black-Scholes multi-dimensional framework do not have known closed-form expres-
sions using elementary functions, we have studied a quadrature method based on the
asymptotic density to compute the price. Explicit expressions of the required density
corrections are provided.

• Our numerical experiments demonstrate the effectiveness of our methods, and the agree-
ment among our methods and Monte Carlo simulations. We have additionally studied
the effect of smoothing on the quality of numerical solution, as an application of our
analysis in Chapter 2. Finally, we have demonstrated that the asymptotic solution is able
to capture effects of model parameters on prices, as shown in our numerical experiments.



Chapter 7

Conclusions and Future Work

7.1 Summary and conclusions of research

In this thesis, we have explored the option pricing problem from a PDE standpoint. The first
part of the thesis is an analysis of a model problem, and our focus is on understanding the
effect of non-smoothness on the numerical solution. The second part of the thesis focuses on
developing computational methods for option pricing problems with stochastic correlation.

In the first part of this thesis, we have developed an analysis of the error arising from the
non-smoothness in initial conditions when approximating the solution of a pricing problem
with a finite difference PDE method. We have built our framework on the sharp error estimate
in [25], and studied three types of non-smoothness that are of financial interest. Whereas the
framework in [25] focuses on the effect of Rannacher timestepping, we utilize their techniques
to study the discretization error due to spatial non-smoothness. We have shown that the error
of the numerical solution under Crank-Nicolson-Rannacher timestepping with central spatial
differences can be decomposed into two components. The first component is a second order
discretization error primarily resulting from the approximation to the heat kernel by a discrete
operator. The second component is a quantization error, loosely defined in [52] as the error
resulting from the resolution of the non-smoothness on the grid. We have obtained explicit
expressions of the two kinds of errors, and discussed how mesh positioning affects the quality
of the numerical solution, as well as the possibility of an optimal positioning of the point of
non-smoothness. We have also studied explicitly the effect of smoothing on the error of the
numerical solution. Thus, the error analysis we developed is a powerful tool that gives the user
explicit advice about how to obtain the desirable order of convergence and how to maintain a
stable convergence order that can be used in extrapolation settings.

In the second part of the thesis, we considered that correlation is a stochastic variable,
and derived a PDE that the price of a European contingent claim under stochastic correlation
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satisfies, in which the correlation is an extra (spatial) variable. We identified that the suitable
solution is C2 in space and C1 in time. We assumed a specific stochastic correlation process,
and showed that the Feller condition for this process matches nicely the Fichera condition on
the PDE correlation boundary. We studied the localization issues for the PDE domain.

Using the PDE derived, we have developed two different approaches to valuing European
options under a stochastic correlation model. The first numerical method is an unconditionally
stable finite difference scheme (under fully implicit timestepping). Unique to this problem
is the specification of the boundary behaviour when the correlation ρ is ±1. The boundary
condition is necessary when one uses such numerical techniques as the finite difference method.
We have proposed a boundary condition defined by the PDE. Furthermore, we discuss other
important numerical issues such as meshing, discretization of the cross term and numerical
stability of the numerical scheme (with this somewhat unusual boundary condition). In log
price space, under fully implicit timestepping, our discretization is stable in the l∞-norm.

A second computational method is developed based on singular perturbation theory, when
the correlation process exhibits fast mean-reversion. The asymptotic solution involves a cor-
rection to the (multi-asset) Black-Scholes price under a constant correlation. This simple yet
powerful solution is useful in computational scenarios where efficiency is important and where
a PDE solution may be costly to implement. For options where the values or derivatives for a
constant correlation under the Black-Scholes multi-dimensional framework do not have known
closed-form expressions using elementary functions, we have studied a quadrature method
based on the asymptotic density. Explicit expressions of the required density corrections are
provided.

Through numerical experiments, we have demonstrated the effectiveness and agreement of
our numerical methods. We have additionally studied the effect of smoothing on the quality
of numerical solution, as an application of our analysis in Chapter 2. Finally, we have demon-
strated that the asymptotic solution is able to capture effects of model parameters on prices, as
shown in our numerical experiments.

The PDE with its numerical and asymptotic solution approaches allow the user to price
options under a more realistic model for correlation than constant or deterministic, and under
various practical settings, either targeting accuracy at the expense of computational power or
targeting purely efficiency.

7.2 Future work

Some possible extensions to the work presented in this thesis are listed below.

• It would be interesting to apply the analysis in Chapter 2 to alternative differencing
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schemes both in time and in space.

• A study of the effect of non-smooth initial conditions on errors for other numerical meth-
ods, such as spline collocation, is important, as mesh positioning could play a big part in
the construction of the basis elements.

• Extension of the analysis in Chapter 2 to PDEs other than the convection-diffusion equa-
tion would be desirable.

• A logical next step to our research work on stochastic correlation is to develop efficient
numerical solutions to multi-asset problems with stochastic correlation structure, and to
include the effect of contagion in the modelling.

• It would be interesting to investigate efficient parallel solvers for the three-dimensional
PDE (3.7).

• The numerical PDE approach developed for European options can be extended to Amer-
ican options using a non-linear penalty iteration.



Appendix A

Properties of the correlation process

The density Φ of the invariant distribution satisfies

∂

∂ρ
(λ(η − ρ)Φ) =

1

2

∂2

∂ρ2
(σ2

ρ(1− ρ2)Φ). (A.1)

The solution that satisfies
∫

Φ = 1 is given by

Φ(x) =
1

2
2λ

σ2
ρ
−1

Γ(2λ
σ2
ρ
)

Γ(λ(1−η)
σ2
ρ

)Γ(λ(1+η)
σ2
ρ

)
(1− x)

λ(1−η)

σ2
ρ
−1

(1 + x)
λ(1+η)

σ2
ρ
−1
. (A.2)

The moments of the process (where subscript t here indicates dependency on time, ρt = ρ(t))
can be evaluated as follows:

E(ρt) =

∫ t

0

λ(η − E(ρu))du.

The solution is given by
E(ρt) = ρ0e

−λt + η(1− e−λt). (A.3)

Taking limit t → ∞, the mean with respect to the invariant distribution is η. This can also be
verified numerically by direct integration with (A.2). Similarly, by Itô’s lemma,

E(ρ2
t ) =

∫ t

0

(
2(ληE(ρu))− (2λ+ σ2

ρ)E(ρ2
u) + σ2

ρ

)
du.

The ODE that arises from this can be solved analytically given E(ρt) above. As t → ∞, the
second moment with respect to the invariant distribution is σ2

ρ+2λη2

2λ+σ2
ρ

. Therefore, the variance is
σ2
ρ(1−η2)

2λ+σ2
ρ
.
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Density calculations

We denote by p(T, S1(T ), S2(T )|t, S1, S2), t ≤ T , the joint transition density function in the
case of constant correlation ρ̄ = η of the terminal prices S1(T ) and S2(T ), given asset prices
S1, S2 at an earlier time t. Note that p(·|·) satisfies the backward Kolmogorov equation

∂p

∂t
+
σ2
S1
S1

2

2

∂2p

∂S2
1

+
σ2
S2
S2

2

2

∂2p

∂S2
2

+ ρ̄σS1σS2S1S2
∂2p

∂S1∂S2

+ rS1
∂p

∂S1

+ rS2
∂p

∂S2

= 0

with the terminal condition p(T, S1(T ), S2(T )|T, S1, S2) = δ(S1(T )−S1, S2(T )−S2), where
δ denotes the Dirac delta function. By direct computation, it can be shown that

p(T, S1(T ), S2(T )|t, S1, S2) =
1

2π
√

det ΣS1(T )S2(T )
e−

1
2
vTAv,

where

Σ = (T − t)

[
σ2
S1

σS1σS2 ρ̄

σS1σS2 ρ̄ σ2
S2

]
, A = Σ−1,

v ≡

(
v1

v2

)
=

 log(
S′1
S1

)− (r −
σ2
S1

2
)(T − t)

log(
S′2
S2

)− (r −
σ2
S2

2
)(T − t)

 .

By straightforward differentiation,

D1,0(p) = S1
∂p

∂S1

= p× (A1,1v1 + A1,2v2)

D0,1(p) = S2
∂p

∂S2

= p× (A2,1v1 + A2,2v2)

D1,1(p) = S1S2
∂2p

∂S1S2

= p×
(

(A1,1v1+A1,2v2) (A2,1v1+A2,2v2) +
ρ̄

σS1σS2(T−t) (1−ρ̄2)

)
.
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Finally,

D2
1,1(p) = D1,1(D1,1(p))

= D1,1(p)×
(

(A1,1v1 + A1,2v2)(A2,1v1 + A2,2v2) +
ρ̄

σS1σS2(T − t)(1− ρ̄2)

)
+ D1,0(p)×

(
− A1,2(A2,1v1 + A2,2v2)− A2,2(A1,1v1 + A1,2v2)

)
+ D0,1(p)×

(
− A1,1(A2,1v1 + A2,2v2)− A2,1(A1,1v1 + A1,2v2)

)
+ p×

(
A1,1A2,2 + A1,2A2,1

)
.

Incidentally, one can verify equalities such that ∂p
∂ρ̄

= σS1σS2(T − t)D1,1(p).
It is then straightforward to apply the right-side of (5.6) to p(·|·) to obtain pε,1m (·|·) for use in
(5.9).
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