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Abstract

Multigrid methods are developed and analyzed for quadratic spline collocation equations arising
from the discretization of one-dimensional second-order differential equations. The rate of convergence
of the two-grid method integrated with a damped Richardson relaxation scheme as smoother is shown
to be faster than 1/2, independently of the step-size. The additive multilevel versions of the algorithms
are also analyzed. The development of quadratic spline collocation multigrid methods is extended to
two-dimensional elliptic partial differential equations. Multigrid methods for quadratic spline colloca-
tion methods are not straightforward: because the basis functions used with quadratic spline collocation
are not nodal basis functions, thus the design of efficient restriction and extension operators is non-
trivial. Experimental results, with V-cycle and full multigrid, indicate that suitably chosen multigrid
iteration is a very efficient solver for the quadratic spline collocation equations.

1. Introduction

Multigrid methods are considered to be some of the most efficient methods for the iterative solu-
tion of linear systems arising from the discretization of partial differential equations. Multigrid
methods have been developed and analyzed for linear systems arising from finite difference or Galerkin
type finite element discretization of differential equations. The related work for finite element colloca-
tion discretization is very limited [Gary81]. This paper develops multigrid methods for quadratic spline
collocation. We include an analytic proof of convergence, using Fourier analysis techniques, indepen-
dent of mesh spacing for a two-level method in one dimension. These results may be extended to two
(or more) dimensions. Numerical tests confirm the high-quality convergence.

The development and analysis of efficient solvers for the spline collocation equations are at a
beginning level. Some solvers for the quadratic spline collocation equations are being considered in
[Chrige] and their parallel performance tested. The present paper contributes to that respect, in the
sense that it develops and analyzes iterative methods for the spline collocation equations with rate of
convergence independent of the step-size and optimal performance. Developing a general convergence
analysis for iterative methods for quadratic spline collocation is more difficult than for Galerkin finite
elements and is a much less mature area.

The application of multigrid methods to quadratic spline collocation is nontrivial since quadratic
spline collocation uses non-nodal basis functions in the discretization. In most conventiona lower order
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finite element methods, nodal basis functions are used; hence, the coefficients in the linear system
represent values of the function at particular nodes on the grid. (A similar interpretation may also be
used for finite difference methods) This is not the case with quadratic spline collocation. The
unknown coefficients do not represent function values hence directly interpolating them between the
grid levels in multigrid makes no sense. We use a clever observation about the structure of the qua
dratic spline collocation basis functions to provide efficient restriction and extension operators, see Sec-
tion 3.1. These operators can also be used with other finite element methods based on quadratic
splines, e.g. quadratic spline Galerkin.

In Section 2, we present a brief overview of the optimal quadratic spline collocation (QSC)
method and the spectral properties of the quadratic spline collocation matrix. In Section 3, we develop
an extension and restriction operator for quadratic splines and carry out the convergence analysis of the
two-grid method for one-dimensional QSC equations. In Section 4, we discuss the implementation of
the multigrid method for two-dimensional QSC equations, and in Section 5 we develop alternative res-
triction operators. In Section 6, we present the results of numerical experiments which indicate that the
multigrid solvers are very efficient compared to other solution methods for QSC equations. The sum-
mary and conclusions from this study are stated in Section 7.

2. The Optimal Quadratic Spline Collocation Method

We consider a boundary value problem described by the operator equation in a domain Q (one-
dimensional or rectangular multi-dimensional),

Lu(x) =g(x) in Q, (2.1)
and some boundary conditions defined on the boundary, 0Q, of Q,
Bu(x) =y(x) on 0Q. (2.2)

Here L is alinear dliptic differential operator, B is a linear boundary differential operator, g and y are
given functions of x (one-dimensional or multi-dimensional), and u is the unknown function of x.

Given a node partition A of Q, we choose a set of basis functions for the quadratic spline space,
that is, the space of quadratic piecewise polynomials of continuity C' on the nodes of the partition.
We also define the set of data points or collocation points in Q and on 0Q. If Q is one-dimensional,
the collocation points are the midpoints of the subintervals of the partition and the boundary nodes. |f
Q is multi-dimensional, the collocation points are tuples of collocation points in each dimension. The
collocation method determines the approximation u, to u by requiring that the residuals Lu,—g and
Bu,-y of the differential operator L and boundary operator B, respectively, are zero on the data
points. If the approximate space is a space of smooth splines, this formulation leads to non-optimal
solution approximations, in the sense that the convergence order of the spline collocation approxima-
tion is lower than the order of the spline interpolant in the same approximation space. The formulation
of the optimal spline collocation methods is based on the construction of appropriate perturbations IP
and IPg of the operators L and B respectively. Two formulations were derived: the one-step or extra-
polated methods, in which u, is determined by requiring that the residuals (L+IP )up—g and
(B+IPg)up—y of the perturbed operators L + P, and B+PPg, respectively, are zero on the data points,
and the multiple-step or deferred-correction methods, in which a low (second) order approximation is
generated first, and in subsequent steps, higher order approximations are generated, by moving the
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perturbation operators to the right hand side of the PDE problem, and applying them to the lower order
approximations of the previous step(s). The number of such steps required depends on the order of the
BVP and the degree of splines used. For example, for second-order problems and quadratic or cubic
splines, two steps suffice. The perturbation operators for quadratic splines and two-dimensional
second-order problems are developed in [Chri94].

Both formulations are equivalent with respect to convergence properties, but the deferred-
correction methods are more efficient with respect to time and memory requirements [Hous38],
[Chri88], because they give rise to a linear system having a smaller bandwidth, with fewer nonzero
entries per row than the extrapolated methods. In this paper we consider multigrid methods for the
solution of the linear system arising from the two-step QSC equations.

2.1. Spectral Properties of the QSC matrix
Our analysis is applied to the QSC matrix arising from the discretization of the BVP
Lu(x)=-u"=g(x) in Q=(0,2 (2.3)
subject to boundary conditions
Bux)=u=0 on x=0,x=1. (2.9)
A set of basis functions for the quadratic spline space constructed on a partition of Q with uni-
form step-size h and n subintervals is the set of quadratic B-splines {@'(x)}Ma, with
o'(x) = %E(%—i +2) where the quadratic spline function & is defined by

B x2 if0<sx<1

F3+6x—2x2 iflsx<?2

€= L g 6x+x2 if2sx<3 (29)
O 0 esewhere
O

We note that a quadratic spline basis function @ has support in at most three elements, and that, at
any point of the domain (0, 1), there are at most three non-zero basis functions. More specifically,
there are exactly three non-zero basis functions on any non-nodal point of (0, 1), and exactly two non-
zero basis functions on any node of the partition of (0, 1). Thus, these basis functions are not the
usual nodal basis functions we are used to from conventional finite element methods.

Based on the functions ¢'(x) we can construct a set of basis functions {"(x)};, so that they
satisfy the homogeneous boundary conditions (2.4). They are

Wi = @100 - @) 5 W) = @), i=2 =15 PR = R — PR (¥)- (26)

For problem (2.3)-(2.4), the QSC method implemented with the basis functions defined by (2.6) results
in atridiagonal linear system of the form

03 -1 0 o 9(h2) O
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where h = Ih.

As shown in [Chri94], the eigenvalues of the matrix A in (2.7) are given by

_ 1, oM
A = Fz_4 sin > (2.8)
and its orthonormal eigenvectors &;,1i =1, - - - ,n are
(8 =72 gnw i=1--.n-1,and & =h gn%}, i=1 -0 (29

3. The Multigrid Method for QSC Equations

In this section, we introduce the use of multigrid methods for QSC. We aso explain the
difficulties that arise when the underlying discretization does not use nodal basis functions and how we
deal with this for the QSC method. The extension and restriction operators developed in the next sub-
section and in sections 4 and 5 are applicable whenever quadratic splines are used as the approximation
space, for example, when quadratic spline Galerkin or collocation is considered as the discretization
method. The analysis, though, in Section 3.3 uses the eigenvalues of the QSC matrix, therefore, it
applies only to the QSC discretization method.

3.1. The Restriction and Extension Operators for QSC Equations
We first develop redtriction and extension operators for QSC equations. Let

e'(x), i =0, --,n+l, be the quadratic spline basis functions constructed with step-size h and
@(x), i =0, -+ ,n/2+1, be the quadratic spline basis functions constructed with step-size 2h. Let
aso PP(x), i =1, -+ ,nand P (x), i =1, - -,n/2, be the respective quadratic spline basis func-

tions that satisfy zero Dirichlet boundary conditions.

Since the basis functions are not nodal, the values of the coefficients do not represent function
values at particular grid points. Thus, directly interpolating these coefficients from a coarse to fine grid
makes no sense. Instead, naively one must calculate the function values on the coarse grid (from the
coefficients), interpolate these to the fine grid, and from these calculate the appropriate coefficients on
the fine grid. That final step, however, would require a global linear system solve, which is clearly
unacceptable.

Fortunately, in the following lemma, we show that any nodal basis function in the coarse grid can
be represented as a particular linear combination of basis functions on the fine grid (i.e. the underlying
spaces are nested). From this we can calculate explicit "interpolation-like" formulas to move the
coefficients directly from the coarse to fine grid.

n2
Lemma 3.1. If q(x) = zeizh 2(x) is the representation of any quadratic spline q(x) with respect to
i=1
n
the basis functions Y2, i =1, - - -,n/2, then q(x) = 3 6MWN(X) is the representation of q(x) with
i=1
respect to the basis functions ", i =1, - - - ,n, where the following relations hold:
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1

o) = 79%“ (3.1a)
0 = %(39,2h +02), =1, ,n>-1 (3.1b)
1 .
0541 = Z(ejZh +3021), j=1,---,n2-1 (3.1¢)
oh = %e?ﬁz. (3.1d)
Proof: Using (2.5) and the definition of ¢'(x), i =0, - - - ,n+1, asin (2.6), we can easily prove that
@'(x), i =0, - ,n+land ¢*"(x), i =0, - - - ,n/2+1, are related by
1
93" = Z(3¢5 + o) (329)
1 .
" = Z((Pgi o3 3¢ @), P =1 2 (3:2b)
1
O = Z(@ + 3¢hn). (3:20)
The relation Y2"(x) = @3"(x) - @&"(x), (3.28), and (3.2b) with i = 1 lead to
1
I = (01 + 303 + ¥3). (32d)
Similarly, we can get
1
e = (U5 + 3bn1 + bn-2) (32¢)

Then

n2
q(x) = Y 6MP(x) =
i=1
1V on h h h
=7 Zz 07 (W2 2(X) + 3 Wz-1(x) + 32 (X) + Wz+(X)) +
+ 262 WH) + 3 WHK) + YB0)) + (33)

+ 2632 WA + 3 W10 + Yho00) =

1
= 2207009 + (303" + 670500 + (6" + 30)l00 + -+ +

1 1
+ (30T 1 + 6TDWN 500 + 7(8T-1 + 30TWR-100 + 720TURX)

Relations (3.1a-d) are derived directly from Relation (3.3).
O
n

nNX——
Relations (3.1a-d) lead to the following extension operator matrix E 0 R 2 for the coefficients
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of the finite element representation of a quadratic spline:

2 0

O

21 g

M3 0

0 31 O

0 O
e-10 13 O 3.4
=70 0 (3.49)

0 0

0 O

0 3 10

U 1 30

0 O

0 20

Thus, if w?" is a vector of size n/2 corresponding to step-size 2h, the respective extended vector w"
corresponding to step-size h is defined by

2h 2h 2h
W1 Wi +3Wi+1 .
wh = 2_;w9i+1:—4 ,i=1 - ,n2-1
(3.4b)
3w.2h +W'2h W2h
ng:'T'”, i=1 - ,n2-1; wnzT”/Z.

For the purpose of carrying out the analysis of the two-grid method for QSC equations, we define the
restriction operator matrix R to be the transpose of E, scaled by 1/2, namely,

R = %ET. (3.59)

Thus, if w" is a vector of size n corresponding to step-size h, the respective restricted vector w?"
corresponding to step-size 2h is defined by

h h h
2wl +3wh +wh 2 W2 + 3wl + 2w
4 e 4

h

wih =

(3.5b)
h h h h
wi'ls + 3w + 3w + W
Wiz/g: i—-2 i-1 i '+1,i=4,6,---,n—2.
4
The restriction operator is applied to residual values on the data points. Note that the restriction opera-
tor R of (3.5) gives rise to the following interpolation formula, which uses the values of a function u at

points h2, 3h/2, 5h/2, and 7h/2 to compute an approximation of u at point 2h:

u(zh) B %(u(%) . 3u(%) +3u (STh) . u(?)). (3.6)

It is worth noticing that the above formula is exact for constant and linear polynomials, but not for
guadratic ones. It is also interesting to note that the quadratic spline collocation stiffness matrix, 2.7,
very closely resembles the matrix arising from centered finite difference, while our extension, 3.4a, and
corresponding restriction operators are quite different from the standard linear ones used with finite
differences.
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3.2. The Coarse Grid Correction Scheme for QSC Equations

Having defined the restriction and extension operators, at any iteration, we have the following
coarse grid correction scheme (or two-grid scheme) for QSC equations:
Step 1: Apply the restriction operator to the residual to obtain a restricted residual vector corresponding
to the coarse grid.
Step 2: Solve the coarse grid QSC system with right-side vector the restricted residual from Step 1.
The result is the vector of coefficients of the finite element representation of the error corresponding to
the restricted residual.
Step 3: Apply the extension operator to the vector of coefficients from Step 3 to obtain a coarse grid
corrected residual corresponding to the fine grid.

We emphasize that the extension operator is applied to the coefficients of the finite element
representation of the error correction and not to the components of the error correction itself. This
is because there is more than one non-zero quadratic spline basis function on the data points. Thus the
values of a function written as a linear combination of the quadratic spline basis functions on the data
points are different from the coefficients of the linear combination. This is true for any finite element
method considered, e.g. collocation or Galerkin, as long as it is based on quadratic splines.

3.3. Convergence Analysis of the Two-Grid Method for QSC Equations

In this section, we study the behavior of the error at any iteration of the two-grid method for
QSC equations. We consider two types of two-grid methods, which turn out to be almost equivalent
as far as convergence rate is concerned. Both methods consist of a simple iterative scheme, like
Richardson’s iteration, integrated with a coarse grid correction scheme. They correspond to multiplica-
tive and additive agorithms in the literature of multilevel methods. We note that the multiplicative ver-
sion can be applied directly as a classical multigrid method. The additive variant, in general, must be
accelerated with a Krylov subspace method.

For the first method we assume that, at some iteration k, given an approximate solution x®, we
first apply a simple relaxation scheme, to get an approximation x = and the respectii}/e residual F( ).
Then we apply the coarse grid correction scheme, as described in Section 3.2, to i ), to obtain the

N

. . n L . . ~(K
preconditioned residual 5. The approximation x**9 is obtained by x®*0 = X +35
The effect of the coarse grid correction scheme on the error can be expressed as the result of the

application of the operator
M. =1 - EATLRA (3.7

to the error vector, where Il is the identity operator of appropriate dimension; A and A’ are the QSC
matrices for step-sizes h and 2h, respectively, as defined in (2.7); and E and R are the extension and
restriction operators respectively, as defined in (3.4)-(3.5).

As a simple relaxation scheme, we choose Richardson’s iteration, damped by the factor F42_

Thus, the effect of one iteration of the relaxation scheme on the error can be expressed as the result of
the application of the operator
h2

M, =1 - —A 3.8
- 38)
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Then, the effect of one iteration of the two-grid method on the error is expressed as the result of the
application of the operator

M = Mc M. (3.9

Theorem 3.1. Let an iteration of the two-grid method for QSC equations (2.7) consist of a Richardson
iteration damped by F42_ and a coarse grid correction scheme characterized by the extension operator
(3.4) and the restriction operator (3.5), and applied to the residual of the damped Richardson iteration

approximation. Then the two-grid method converges with rate bounded by 1/2 and a contraction factor
less than 1/2 in the Euclidean norm, independently of the step-size.

Proof: In our analysis, we follow [Hack94]. Let & ,i=1,---,n,and d;,i =1, ---,n2, be the
eigenvectors of A and A', respectively. Let Q be the matrix with its columns formed by the eigenvec-
tors of A in the following order:

Q =[0n,01,0n-1,02,0n-2, " * * ,On2-1,0n/2+1, On2]- (3.10)
Let Q' be the matrix with its columns formed by the eigenvectors of A" in the natural order:
Q’ = [6'1,6'2, e sé'n/Z]- (311)
_ T R | |
Lets,-_sm%andc,_cos%,l 1, n.

Consider the transformed matrices

~ ~ ~ ~ o~ e 2 .
M, =Q"MQ, M=Q"MQ and M =Q"-M-Q = MM, = (I - E-A-RA)(Il - %_A)
with
E = QT.E.QI , I&I—l = Q!T.AI_]..QI , é = Q'T'R'Q and /Z\ = QTAQ
Taking into account that Ad =A;Q, i =1, ---,n, we get a block-diagona structure for the

transformed matrices. More specificaly,

~ 4 .
A= Fz_blockdlag{Ao,Al, LAY

with
57 00
Ap=[1; A=0, o0 i=1" - n2-1; Ay, =[12]
P oo
where the notation blockdiag{B,, - - - ,B,} denotes a block-diagonal matrix with blocks B4, - - - ,By
on the diagonal. Also,
M, = blockdiag{M, o,M;1, - - Mz}
with
7 00
Mo =[0] ; My =0 SZD' =1, ,n2-1; My, =[12]
P so

T 4 H I I U
A = FZ_blockdlag{A 1L, A, Ale)



with
= [s?-cf].
Noting that
Sin(2] =1)it +3 n(2j +1)i Tt +3 Sin(2] +3)iTt N Sin(2] +5)IT[ So,_sm(ZJ =1)iTt
2n 2n 2n 2n 2n
with j'=(j+1y2, j=135---,n-1, i=1---,n2

we also get

QTRQ = V2 blockdiag{[0].[c} sil, """ .[cRe1 Sve-1lV2[CRl}
and

QTEQ =2QTRQ)".
Thus,
M, = blockdiag{Mco,Mc1, - * = s My}
with
g-_ci4 _SCI ]
Meo=[1; Mg =0 3 4D =1 ,n2-1; Mep =[¥2],
Hs ¢ 1-s
and
M = blockdiag{Mo,M1, - - - ,My0}
with
fl-chc?  -sic? O
Mo=1[0]; M;=10 O, i =1 ---,n2-1; My, = [14].

0 =1[0]; M Lo (-shs 2 = [14]
It is easy to prove that the blocks M; , i =0, - - -,n/2 are symmetric positive definite and so is M.
Therefore the Euclidean norms of M and of the blocks M; , i =0, - - - ,n/2 are the same as the respec-
tive spectral radii. According to Lemma 10.3.1 in [Hack94], the Euclidean norm of the matrix M is
the maximum of the Euclidean norms of the blocks M; , i =0, - - - ,n/2, that make up M.

It is easy to see that the eigenvalues of the bIocks M, i =1, - ,n2-1 are pj; = s°c? and
n2-1 n2-1 n2-1 1 5 2Tt 1

Hip = 2 sPC2. Then, max{ OO, OMi20} = max{2 s?c?} = malx{2 Zsm —1}< > Thus,
1=

2n
S(M) <max{0,12,14} = 1/2. So the Euclidean (spectral) norm of M is bounded by 1/2, indepen-
dently of the step-size. This proves the convergence of the two-grid method for QSC equations

corresponding to the model problem (2.3)-(2.4). .

We now consider the determination of the optimal damping factor in the Richardson relaxation
and the effect of having two or more relaxation sweeps per iteration. Let ' denote the damping fac-
tor, with ' = 4w/ h?, and v denote the number of relaxation sweeps per iteration. Then the matrices

M; as computed above are given by
2

0 s? v

E(l_ci‘l)(l_w)v —SCi (1_—) 0 1
Mo=[1-21"; M = | & _@.p i=hone Mrs =[5 (1-)").

O-siq(1-—)” (1-s)(1-—)'0

O w W O
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The optimal damping factor corresponds to that w that minimizes the maximum eigenvalue of M,
for al i, i.e. for al 0< ¢ < 1. For one smoothing step the optima w is approximately .75 and the
spectral radius of the error iteration matrix is approximately .33. In Table 3.1, we give the approximate
convergence rate p; for the natura damping factor (that is, with w = 1) and for the optimal damping
factor for 1 to 5 smoothing steps.

Table 3.1. Convergence rates of the two-grid method for QSC equations with the natural and the op-
timal damping factors. The damping factor is & = 4w/ h?, with the natural w being 1 and the optimal
as shown in the table. The number of relaxation sweeps per iteration is denoted by v.

Eb E P1 w optimal Po E
L O 0.50 0.75 0.33 O
b U026 0.70 0.19 U
0 O 0
;B g 0.19 0.67 013
% O 0.15 0.64 0.10 O
FFP ﬁ 0.12 0.63 0.08 ﬁ

For the second method we assume that, at some iteration k, given an approximate solution x®
and the respective residual r®, we apply a simple relaxation scheme, to get an approximation X'°.
We aso apply the coarse grid correction scheme, as described in Section 3.2, to r®, to obtain the
preconditioned residual s®. The approximation x&*0 is obtained by x®*0 =5 +s®_ This is
known as an additive multilevel scheme, whereas the first method can be interpreted as a multiplica-

tive multilevel scheme.

In this case, the effect of the coarse grid correction scheme on the error is expressed as the result
of the application of the operator

h2

N=I T-A -E-ATLRA (3.12)

Theorem 3.2. Let an iteration of the two-grid method for QSC equations (2.7) consist of a Richardson

iteration damped by F42_ and a coarse grid correction scheme characterized by the extension operator

(3.4) and the restriction operator (3.5), and applied to the residual of the previous two-grid method
iteration approximation. Then the two-grid method converges with a contraction factor less than /2 in
the Euclidean norm, independently of the step-size.

Proof: The proof is similar to the proof of Theorem 3.1. The transformed matrix N is now

~ ~ o~ ~~ 2 ~
N=Q"N-Q=[l -E-A1RA - hTA]

where Q, E A R and A are the same as in the proof of Theorem 3.1. We can show that
N = blockdiag{Ng,Ny, - - - Nz}
with
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1ci-g -5
No=[0]; N =10 g, i=1 ---,n2-1; Ny =[0].
0=1[0]: N ) s 1-st-c? n2 = [0]

Note that the blocks N; , i =0, - - - ,n/2 are not symmetric positive definite. The Euclidean norm of
n2-1

N; is easily shown to be s¢;, therefore, DDN 00, = max{0, max{s,c,}} = icos% < % This proves

the convergence of the additive two-grid method for QSC equations corresponding to the model prob-

lem (2.3)-(2.4). .

It is certainly possible to use a Gauss-Seidel smoother, rather then the Jacobi-Richardson scheme
used in the analysis above. However, the technical details in calculating the eigenvalues of the error
propagation operator are much more tedious.

4. Extension to Two-Dimensional Problems

We consider the extension of the two-grid method described and analyzed in Section 3 to a gen-
eral two-dimensiona linear elliptic BVP defined in a rectangular domain Q. We first define two-
dimensional extension and restriction operators by relations similar to (3.4b) and (3.5b).

If w2 is a vector of size nmv4 corresponding to step-size 2h in both dimensions, the respective
extended vector w" corresponding to step-size h in both dimensions is defined by the following rela-
tions. The components of w" corresponding to points close to the corners are given by

2h 2h 2h 2h
W11 W1 m2 Wh21 | Wh2,m2
whp = ;Wi = ;Wi = ; Wim = ——a— (4.19)
2 2 2
The components of w" corresponding to points close to the y = 0 boundary are given by
2h 2h 2h
W‘,1+3W 1,1 3wy tWikn .
Whiiq = %; w3 g = — = 1, - ,n2-1 (4.1b)

and similarly for the other points close to the boundary. At the rest of the points, we have for
i=1---,n2-1, j=1, - ,m2-1,

2h 2h 2h
h 9WI2T+3WI1+1+3WI+11+WI+11+1 . h 3WI] +9WI]+1+WI+lj+3wl+lj+l
Wai, 25 = 16 v Woi 2j+1 = 16
(4.1¢)
2h
h _ 3WI2T+WIJ+1+9\NI+11+3WI+11+1 i h WIJ+3WI]+1+3WI+1]+9WI+1J+1
Wi +1,2) = 16 v Wois121+1 = 16

If whisa vector of size nm corresponding to step-size h in both dimensions, the respective res-
tricted vector w? corr%pondi ng to step-size 2h in both dimensions is defined by the following rela-
tions. The component of w?" corresponding to the point close to the (0, 0) corner is given by
Al g+ 6wl, + 2wl g + 6wh, +Owd, + 3whs + 2wl + 3wh, +whs

16

and similarly for the other points close to the corners. The components of w?" corresponding to points
close to the y = 0 boundary are given by

(4.23)

W11 =

h
W o + BWy g + BW g+ 20Why g + BW,, + W, + W, + 3wy, + Wi, + 3w 5 + 3w

s +Whis
(
16 4.2b)

oh
Wiz1
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for i =4,6, - - - ,n-2, and similarly for the other points close to the boundary. At the rest of the

points, we havefori =4,6, - - - ,n-2, j =46, ---,m-2,

W in = (Wigjp +3Wo g + Wy + Wy jug +3WLy o +OWy g+ oWy + 3wy g +
(4.2¢c)

h h h h h h h h
+3W o+ OW g+ OWj + BWijar F Wikgj o F Wiy -1 + 3Wikyj + Wik j+1)Y16.

Given the relations (4.1), it is easily seen that the computational cost of the application of the
extension operator in two dimensions is three floating-point operations (flops) per (non-boundary) com-
ponent, i.e. asymptotically, a total of 3n? flops for an (n+1)x(n+1) grid (i.e. n subintervals in each
dimension).

Similarly, given the relations (4.2), it is easily seen that the computational cost of the application
of the restriction operator in two dimensions is 15 floating-point operations (flops) per (non-boundary)

2
component, i.e. asymptotically, a total of 15nT flops for an (n+1)x(n+1) grid.

5. Alternative Coarse Grid Methods

5.1. The Two-Grid Method with Grids of Step-Size Ratio 4

In this section an alternative two-grid method is presented. We will assume that the fine grid has
step-size h, while the coarse one 4h. A possible advantage of such a two-grid method is that the
coarse problem is of smaller size. In the one-dimensional case it is of size 1/4 of the fine one, instead
of 1/2, but in the two-dimensional case it is of size 1/16, instead of 1/4. A coarse grid problem of
step-size 4h also has the consequence that in the case of a multigrid method (i.e. a recursive application
of the two-grid method until a fixed size coarse grid is reached) the coarsest grid will be reached with

fewer steps. More specifically, Iog4nl steps, instead of Iogznl steps, where n; is the coarsest grid
C C

size. In addition, the restricted vectors are of smaller size, so fewer components need to be computed.

In order to use a coarse grid of step-size 4h, extension and restriction relations between levels 1
and 3 are needed. If the extension and restriction relations (3.4b) and (3.5b) (or (4.1) and (4.2) in two
dimensions) are applied once between levels 1 and 2 (step-sizes h and 2h respectively), and once more
between levels 2 and 3 (step-sizes 2h and 4h respectively), extension and restriction relations directly
between levels 1 and 3 arise. A clear disadvantage in this approach is that the extension and restriction
relations between levels 1 and 3 require more flops than those between levels 1 and 2. For example,
the one-dimensional restriction relation (3.5b) between levels 1 and 2 requires 3 flops (using 4 com-
ponents), while the respective relation between levels 1 and 3 requires 9 flops (using 10 components).
Table 5.1 lists the flops required for the extension and restriction operators in one and two dimensions
when the step-sizes have ratio 2 and 4. Figure 5.1 shows the dependency of components of levels 1, 2
and 3.
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Table 5.1. Floating-point operations required to apply the extension and restriction operators (3.4b)
and (3.5b) in one dimension and the respective ones (4.1) and (4.2) in two dimensions, when the step-
sizes have ratio 2 and 4.

Estep-siz%hand 2h U step-sizesh and 4h
0 g 20 51 g 2D

Cextension U n E 3n2 U 15p H 5.25n2

grestriction 5 15n | 3.75n2 5 2.25n O 6.1875n2

mpEp

I

(@

(b)

Figure 5.1. The dependency of vector components corresponding to grids with step-sizes h, 2h and 4h
when applying (a) the extension operator (3.4b), and (b) the restriction operator (3.5b). A "+" denotes
agrid point, while a"0" a collocation point (midpoint).

5.2. Alternative Restriction Relations

In this section alternative restriction relations are developed. These are advantageous from the
computational complexity point of view when step-sizes of ratio 4 are used. They are also more accu-
rate, as we shall show.

Recall that the restriction operator (3.5) gives rise to the interpolation formula (3.6), which is
exact for polynomials of degree at most one. Consider now the following interpolation formula:

1 h 3h 5h 7h
u(zh) B E( u(z) +9u(50) + (=) ~ (=) (5.1)
This formula is exact for polynomias of degree at most three and uses four components and three
flops.
Cubic interpolation can be used to develop restriction relations between either levels 1 and 2, or

levels 1 and 3, or any two levels. For example, if w" is a vector of size n corresponding to step-size
h, the respective restricted vector w2" corresponding to step-size 2h is defined by

wh_g = 5wh_, + 15wh_; + 5w
16

o 5w+ 15w8 — 5w5 + wh .
s 16 Wz =

(5.2)

h h h h
- Wi +9W'_ +9VV' — Wi
W%g — i-2 |f6 i i+1 ’ i :4,6, I 1n_2_
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Also, if wM is a vector of size n corresponding to step-size h, the respective restricted vector w*"

corresponding to step-size 4h is defined by

—wilg + W, +owly - w)
16 ’

Thus, in the one-dimensional case, only 3 flops are required for the computation of each of the com-

ponents of the restricted vectors, either at level 2 or at level 3.

Relations (5.2) and (5.3) can be extended to two dimensions in a natural way. Table 5.2 lists the
flops required for this type of restriction operator in one and two dimensions when the step-sizes have
ratio 2 and 4. Figure 5.2 shows the dependency of components of levels 1, 2 and 3.

ah —

Wi = i = 4,8, - ,n (53)

Table 5.2. Floating-point operations required to apply the restriction operators (5.2) and (5.3) in one
dimension and the respective ones in two dimensions.

Estep-siz%hand 2h Estep—sizeshand 4hg
oo 20 51 g 2 g
0
d

O
O
- O W

. 0 2 O 2
%eStI‘ICtIOI’] g 1.5n g 3.75n g 0.75n g 0.9375n

@
+ fa) + + fa) +
+ fa + fa) + fa) A fa) + fa + fa + (b)

Figure 5.2. The dependency of vector components corresponding to grids with step-sizes h, 2h and 4h
when applying (a) the restriction operator (5.2), and (b) the restriction operator (5.3). A "+" denotes a
grid point, while a"0" denotes a collocation point (midpoint).

6. Numerical results.

In this section results from numerical experiments that demonstrate the convergence and computa-
tional efficiency of the multigrid method for quadratic spline collocation (QSC) eguations are
presented.

First, some results that demonstrate the effect of the restriction operators (3.5b), (5.2) and (5.3) on
the convergence of the two-grid method are presented. The performance of the V-cycle and the full
multigrid methods using the same three restriction operators are also tested. The V-cycle multigrid
method consists of the recursive application of the two-grid method until a certain coarsest grid level
has been reached. The full multigrid method constructs an initial approximation for each V-cycle start-
ing from the coarsest grid. The interpolation operators used in the full multigrid method are identical
to those discussed above.

These tests were applied to Problem 1, listed in the Appendix, which gives rise to symmetric
linear system if the set of basis functions {Y'(x)} ., is used. Diagonal (Jacobi) preconditioning was
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used as a relaxation scheme. No acceleration method was used. At each iteration, we calculated the
residual of the linear system and the maximum error of the collocation approximation on a constant
8x8 grid. The latter can be considered as an approximation to the maximum norm of the error of the
collocation approximation. These experiments were carried out using MATLAB.

Table 6.1 shows the error and the residual for 5 iterations of the two-grid and the V-cycle and
full multigrid methods with three restriction operators for a 257x257 discretization grid. The coarsest
grid in the case of a multigrid method was 17x17. One relaxation iteration was applied at each level.
The initial solution vector was chosen to be the zero vector and the respective error and residual are
shown as "iteration 0" error and residual, respectively.

The experiments show that the full multigrid method with restriction operator (5.2) in 2D reaches
the discretization error in 1 iteration. The full multigrid method with restriction operator (4.2) is just a
bit behind and needs two iterations to reach the discretization error, while the full multigrid method
with restriction operator (5.3) in 2D needs more than 5 iterations to reach the discretization error. The
two-grid methods with restriction operators (4.2) and (5.2) in 2D require 2-3 iterations to reach the
discretization error, while the respective V-cycle methods take 4-5 iterations. As far as the residual
convergence rate is concerned the full multigrid method with restriction operator (5.2) in 2D is again
the fastest method.

Table 6.1. Observed error of the QSC approximation and residua of the QSC linear system (both in
exponential format) for 5 iterations of the two-grid, the V-cycle and the full multigrid methods
corresponding to Problem 1 for a 257x257 grid size and for the first step of the QSC method.

U method O full multigrid g V-cycle multigrid 0 two-grid g
estr.oper. D (42) (52 (53 (42 (52 (53 H@2 (52 (53 g
O iteration O error O
E 0 53.2e4 32e4 3264 []32e4 3204 3284 (324 32e4 3.2&4%
0 1 01l0e7 258 596 U125 35e6 75e6 U17e7 6.6e8 47e7
0 2 0228 40e8 10e6 Es.geq 92e7 8666 Bz.zes 33e8 5567 [
o 3 U22e8 16e8 30e7 [j21le7 7.6e8 26e6 [j22e8 4.0e8 257 U
O 4 Q228 24e8 17e7 096e8 31e8 17e6 022e8 16e8 lde7 o
0 5 ]2.2e-8 2.1e-8 1.0e-7 %4.8&8 2.4e-8 3.6e-7 %2.2&8 2.4e-8 6.6e-8 [
g g residual g
o 0 018et0 1.8e+t0 1.8e+0 J1.8e+t0 18et0 18e+0 [11.8e+0 1.8e+0 1.8e+0 [
o 1 051e2 1762 85e2 043el1 5201 54el Oleel 15e1 23el O
E 2 56.6&3 6.0e:3 2562 gl.Ge-l 17e1  28el B3.8e—2 2862 6.3e2 E
0 3 nl7e3 17e3 1lle2 j6le2 34e2 15e1 l0e2 76e3 30e2
O 4 05.1e4 55e-4 6.1e3 025e2 7.1e-3 8.8e-2 [13.2e-3 1.5e-3 1.8e-2 [
H 5 H16e4 18e4 38e3 Hl.lez 20e3 5662 Hg.4e~4 48e4 12e2 {

Another parameter in the implementation of the two-grid or multigrid methods is the number of
Jacobi iterations (diagonal preconditioning) applied before the coarse grid correction scheme is applied.
By varying this number we found that, in some cases, it is beneficia from the computational perfor-
mance point of view to apply a few Jacobi iterations before the coarse grid correction scheme is
applied. Figures 6.1(a) and 6.1(b) plot the error and the residual, respectively, versus the number of
floating-point operations (flops) measured by MATLAB for the full multigrid method with three res-
triction operators on a 257x257 discretization grid. The number of relaxation iterations applied at each
level is shown on the figure.
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0.0001 — \ restr. oper. (4.2)
\ - - - - restr. oper. (5.2) in 2D
NN e restr. oper. (5.3) in 2D
1le-05
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1e-06
(@
1e-07
1e-08
\
0
1]
restr. oper. (4.2)
- - - - restr. oper. (5.2) in 2D
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(b)
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Figure 6.1. Plots of the number of floating-point operations (flops) performed by the full multigrid
method with three restriction operators versus the error (in log scale) of the QSC approximation (a) and
the residual (in log scale) of the linear system (b), respectively, corresponding to Problem 1 with grid
size 257x257 and for the first step of the QSC method. The numbers shown on each line indicate the
number of relaxation iterations performed at each level of the multigrid method.

In order to view the details of the performance of the (5.2) restriction operator with 3 relaxations
per level and of the (5.3) restriction operator with 6 relaxations per level we have included Table 6.2.
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Table 6.2. Observed residua of the QSC linear system, error of the QSC approximation (both in ex-
ponential format) and flops (in thousands) required for 5 iterations of the full multigrid method with
restriction operators (5.2) and (5.3), with 3 and 6 relaxations per level respectively, corresponding to
Problem 1 for a 257x257 grid size and for the first step of the QSC method.

U restr. oper. U (5.2) 0 (5.3 0
o, of. rélax. o 3 . 6 .
[0 iteration [J residual error flops 0O residua error flops O
o o D 18e+00 32004 1338 [ 1.8e+00 32004 1388 [
o 1 0 17603 15¢08 15722 0 1.8¢-03 35e08 15665 [
g 2 g 77e05 2208 30055 g 12e04 22e08 29941 g
g 3 0 26606 22008 44389 [ 1.9e05 22608 44218 [
0 4 0 15e07 22008 58722 0 33606 22e08 58494 [
5 5 H11e08 22008 71816 | 69e07 2208 71532

Our experiments show that when the performance criterion is the number of flops to reach the
discretization error the best method is undoubtedly the full multigrid method with restriction operator
(5.2) in 2D and one relaxation iteration per level. When the performance criterion is the slope of the
number of flops versus residual line the best method is the full multigrid method with restriction opera-
tor (5.2) in 2D and three relaxation iterations per level, followed closely by the full multigrid method
with restriction operator (5.3) in 2D and six relaxation iterations per level. The above results do not
contradict [Bran77], where it is stated that, for the standard finite difference discretisation scheme, a
simple injection restriction operator and linear extension operator, the optimal step-size ratio between
the fine and the coarse grids is 2. It is worth noting, though, that for the QSC matrix and the operators
developed in this paper, the observed performance of the multigrid methods with grids of ratio 4 does
not fall so much behind that of methods with grids of ratio 2.

Next, the convergence of the two-grid method on PDE problems with various operators and boun-
dary conditions is tested. Both steps of the QSC method [Chri94] are considered. In some of the
BVPs considered the solution function is not necessarily zero on the boundary. Therefore, the basis
functions used for QSC are the set { ¢'(x)} '3 defined in Section 2. This set of functions gives rise to
unsymmetric linear systems, even for the Laplace operator, because of collocation of the boundary
operator on the boundary collocation points. For this reason and for faster convergence, Bi-CGStab, a
nonsymmetric acceleration method, was used. For the implementation of the Bi-CGStab acceleration
the KSP package [Grop93] was used. Due to the use of the basis functions { @'(x)} "2, the extension
and restriction operators are adjusted on the boundary points.

Diagonal (Jacobi) preconditioning was used as a relaxation scheme. Additional preconditioning
was provided by a coarse grid correction scheme, characterized by the restriction operator (5.3)
extended to two dimensions (with a coarse grid 1/4 the fine grid size in each dimension). The coarse
grid problem, which was 1/16 the fine grid problem size, was solved by a direct band solver without
pivoting. The two preconditioned residuals, one from diagona preconditioning and the second from
coarse-grid preconditioning, were added. This method is referred to as MGJ-BCGS. The stopping cri-
terion used was the relative Euclidean norm of the residual and the tolerance was set to 107! for the
first step of the QSC equations and to 107° for the second step. For the first step of the QSC equations
the initial guess vector was the zero vector, while for the second step the solution vector computed in
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the first step. The solution vector computed was compared with that resulting from a direct solver to
ensure that the quality of approximation produced by the iterative solver was similar to that produced
by a direct solver. Note that the stopping criterion and the tolerance chosen may force an iterative
method to perform more iterations than those needed to reach the discretization error. We believe,
though, that the relative residua is a realistic and commonly used stopping criterion, and the tolerance
chosen, though tough, ensures the equivalence of the iterative method with a direct one. Thus it is fair
to test iterative methods with this stopping criterion and tolerance.

The test problems used are listed in the Appendix. Table 6.3 shows the number of iterations
required for convergence of the two-grid method for Problems 2, 3, 4 and 5 for severa grid sizes.
These experiments were carried out using FORTRAN on a Sparcstationl in double precision.

Table 6.3. Number of iterations required for convergence of the two-grid method for quadratic spline
collocation eguations for several grid sizes and for both steps of the QSC method.

O O  Problem 2 O  Problem 3 O  Problem 4 O  Problens O
Egridsize Estepl stepzﬂstepl stepzﬂstepl stepzﬁstepl steng
0 33x33 0O 31 22 O 38 29 O 46 37 O 94 91 O
E 65x65 E 31 19 E 44 28 E 51 39 E 172 65%
Hl29x129 o 30 20 5 40 3B 5 47 375 4 26 5

For Problem 2, the number of iterations is almost insensitive to the grid size. This behavior
agrees with that predicted by Theorem 3.2. Note that Theorem 3.2 applies to a symmetric linear system
arising from the set of basis functions {y"(x)}-;, while in the experiments the matrix solved is
unsymmetric and its eigenvalues are not known in closed form.

Problem 3 has Neumann conditions on one side of the boundary which make the matrix even
more unsymmetric. Again, the number of iterations, athough larger than for the Dirichlet condition
case, because of the difficulty of the problem, did not significantly vary with the problem size.

Problem 4 has a cross-derivative term, which is of the same order as the second derivative terms
Uy and Uyy. Thus, the symmetry of most of the matrix rows is significantly affected. The number of
iterations, although dlightly larger than that for Problem 3, varies only dlightly with the problem size.

Problem 5 has a variable coefficient for the first derivative (convection) terms. The coefficients
are chosen so that they become relatively large on some parts of the domain. Thus, in the matrix rows
corresponding to these parts of the domain, the first order terms, which are very unsymmetric, are dom-
inant, if the step-size is not very small. The approximation obtained in this case was of reasonable
quality, but the number of iterations was large, unless the step-size was small. The poor, inconsistent
convergence for this problem is not unexpected. In fact, similar behavior is noted for finite differences
and finite elements and specia techniques must be derived to deal with them. The construction of fast
solvers for convection-dominated problems is still in its infancy [Y ser93].

Note that the QSC matrix arising from PDE problems with first order derivative terms when
using the basis functions {@!(x)}"*¢ cannot be written as the sum of a symmetric positive-definite
matrix corresponding to the even order derivative terms and a non-symmetric or indefinite matrix
(corresponding to the first order derivative terms). The dominating terms of the PDE do not give rise
to a symmetric positive-definite matrix. Therefore, the techniques described in [Yser88] or [Xudi92]
are not applicable.
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Finally, the performance of the two-grid method for QSC equations is compared with that of
other solvers [Chri96]. Figure 6.2 shows graphically the observed computational efficiency of several
solvers applied to QSC equations arising from Problem 1. The solvers considered are:

Band-LU Banded Gauss elimination without pivoting.
Rich-CG Conjugate Gradient algorithm without preconditioning.
SC-PCG Domain decomposition method with tridiagonally preconditioned CG solution of the

Schur complement system [Chri90].

SS-GMRES-MG Domain decomposition method with overlapping subdomains (Schwarz splitting), ac-
celerated by GMRES and an additional coarse grid correction scheme similar to that
used for method MGJ-BCGS.

IFIm-CG Incomplete factorization preconditioned CG algorithm with level 1 for fill-in and row
equality modification.

MGJIBCGS The solver described in this paper. (Jacobi relaxation with a coarse grid correction
scheme accelerated by Bi-CGStab.)

Certain solvers, e.g. Rich-CG, are applicable only to symmetric systems. Problem 1 has homogeneous
boundary conditions, allowing the use of the set of basis functions {"(x)} I'-;, which, for the Laplace
operator, give rise to a symmetric linear system. This set of basis functions was used for those solvers
applicable only to symmetric systems.

From the slopes of the time versus grid size lines plotted in Figure 6.2, it becomes clear that
MGJ-BCGS is an optimal method, with respect to asymptotic computational efficiency, and the best in
both absolute and relative terms compared to the solvers considered.

400 4 —+—Band-LU

—Rich—CG
) . SC-PCG
300 /=~~~ SS-GMRES-MG
————— IFIm—CG
——MGJI}-BCGS
200 —
time
100 —
-0
\ \ \ \
60 80 100 120

Figure 6.2. Plot of the time in seconds taken by several methods applied to the system of QSC equa-
tions corresponding to Problem 1 versus the grid size n in one dimension and for the first step of the
QSC method. The dopes in a log-log plot are: Band—LU 4.09; Rich—CG 3.05; SC-PCG 2.71,
SS-GMRES-MG 2.19; IFIm—CG 2.57; MGJ}-BCGS 1.75
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7. Summary and Conclusions

This paper describes the formulation and analysis of multigrid methods for QSC equations.
Extension and restriction operators for quadratic splines are developed. The anaysis is carried out for
a model 1D problem. Alternative restriction operators are developed, for which the ratio of step-sizes
of the coarse grid problem over the fine grid one may be 2 or 4. Two-grid methods as well as mul-
tigrid methods are tested. Experimental results show that the behavior of the methods agrees well with
that predicted by the analysis, even for problems with more general PDE operators and boundary con-
ditions than those assumed in the analysis. The asymptotic computational behavior of the methods is
optimal.

Appendix

Problem 1. U + Uy =g in (0,1)x(0,1)

u=0 on x=0,x=1,y=0,y=1
S S
The function g is chosen so that the exact solution to the problem is u = x 2 (x—1)%y 2 (y-1)2.

u=y on x=0,x=1y=0y=1

Problem 3. U + Uy =g in (0,1)x(0,1)
u=y on x=1
Un:6 on XZO,yzo,yzl
Problem 4. U + Uy + Uy + U + U +U=g in (0,1)x(0,1)
u=y on x=0,x=1,y=0,y=1
Problem 5. 1 1

Ugx + Uy + u =g in (0,1)x(0,1)

u, +
xZ2+102 © y+1072
u=y on x=0,x=1y=0y=1

In Problems 2, 3, 4 and 5 the functions g, y and & (whenever applicable) are chosen so that the exact
solution to the problemsisu = e**,
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