
EFFICIENT AND ACCURATE NUMERICAL PDE METHODS FOR
PRICING FINANCIAL DERIVATIVES

by

Mufan Li

Supervisor: Christina Christara
April 2015



EFFICIENT AND ACCURATE NUMERICAL PDE METHODS FOR
PRICING FINANCIAL DERIVATIVES

by

Mufan Li

Supervisor: Christina Christara
April 2015



Abstract

Efficient and Accurate Numerical PDE Methods for
Pricing Financial Derivatives

Mufan Li
Bachelor of Applied Science and Engineering

Department of Electrical and Computer Engineering
University of Toronto

2015

The main difficulty in pricing American options comes from the early exercise right, creat-
ing a non-linear constraint on the Black-Scholes PDE. Under a finite difference discretization
of the PDE, the price of an American can be approximated, with several techniques to properly
handle the American Constraint. While both an iterative penalty method and a direct opera-
tor splitting method are convergent, the efficiency and quality require a comprehensive study.
Using Crank-Nicolson time stepping and non-uniform grids, the methods are compared in nu-
merical experiments. The criteria include order of convergence, efficiency, and complexity.
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Chapter 1

Introduction

A financial derivative, or just derivative, is a security whose value depends on the values of
one or more other securities, the latter often referred to as the underlying securities, or just
the underlying. An option is a type of derivative that gives the holder the right, but not the
obligation, to buy or sell an underlying security at a certain price (strike price) and time (expiry

time) in the future. Since it is a tradable security, it should have a price. The accurate calculation
of options’ prices is critical for the smooth operation of the markets, and has been the subject
of much research study [5].

There are several mathematical models that describe the price of an option. According to a
well-known model, the option’s price V (S, t), where S is the underlying price and t the time,
satisfies the Black-Scholes (BS) Partial Differential Equation (PDE) [5], subject to appropriate
initial and boundary conditions.

In its simplest form, the option that allows exercise only at a certain future date is called an
European option. An European option admits an analytical solution formula. However, some
of the most commonly traded options allow exercise at all times before the expiry date. Known
as the American options, these securities do no admit a closed form solution. The complexity
that arises from the early exercise right can be formulated as a mathematical problem, common
known as linear complementarity problem (LCP). This problem involves, not only the BS PDE,
but also a related partial differential inequality, which, together, give rise to some non-linearity
in the problem.

There are three main numerical approaches to price American options, lattice based dis-
cretization, Monte Carlo simulations, and the numerical PDE methods. It should be noted that
all three approaches compute approximations to American option prices, the accuracy of which
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CHAPTER 1. INTRODUCTION 2

can be controlled by appropriate parameters.

The lattice approach, also known as binomial (or trinomial) trees, provides an approxima-
tion to the option price in discrete time and underlying price points. The lattice is created by
constructing all possible price paths of the underlying asset, which forms the shape of a tree.
With the asset price at the expiry, the lattice allows for the calculation of the option at the pre-
vious step, and this procedure can be taken to the initial node containing the current price. The
solution converges to continuous price as the number of nodes in the lattice increases.

Monte Carlo simulations takes full advantage of Martingale pricing, where the option price
is the expected discounted payoff under the risk-neutral measure. By simulating a large number
of paths, the expected value can be approximated by averaging the simulation results. While
Monte Carlo is quick to find the option price at one point of the underlying asset price, the
results are not reproducible due to the nature of the random simulation.

The PDE approach models the pricing problem as a PDE with appropriate boundary and
initial conditions, and possibly some additional conditions. In this approach the unknown
option price is a function of the underlying price (treated as a spatial variable) and of time. The
main advantage compared to the lattice and Monte Carlo methods is that the PDE approach
provides values at many points of the underlying price and time domains, as well as a spectrum
of the price derivatives (the “Greeks”). The most common PDE approach is the finite difference
method. By discretizing the time and space (underlying price) dimensions as a grid, one can
infer the values at each grid point from the boundary points and relations between nearby points
arising from the PDE.

The methods of interest in this study are the finite difference PDE methods for solving
the LCP arising in American option pricing. While there are many approaches to resolve the
non-linearity, there is no commonly accepted optimal method. These methods can be catego-
rized into two types, direct and iterative. The direct solvers produce an explicit solution with
the number of calculations being known in advance. Iterative methods approximate a solution
by continuous improvement of an initial guess, and use a stopping criterion to decide when
enough improvement has been achieved. The number of improvement steps and, therefore the
number of calculations is not known in advance. Although most methods of both types will
continue to improve (i.e. reduce) the error with increased computation complexity, the order
of convergence of a PDE discretization method is crucial in quantifying the rate of error reduc-
tion as compared to the increase in computational complexity. Additionally, the placement of
discrete points can also affect the performance and accuracy of the solver.

The main gap in this research area is a comprehensive evaluation of these methods on
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a complete set of criteria. This thesis’ primary objective is to study and compare different
methods for the solution of the LCP, using criteria including accuracy, order of convergence,
efficiency, and complexity.



Chapter 2

Formulation of problem

2.1 Asset Price Model and Black-Scholes PDE

An asset’s price movements is commonly modeled by a geometric Brownian motion,

dS = µSdt+ σSdW (2.1)

where S is the asset price, µ is the drift, σ is the volatility, t is the (forward) time, and W is the
standard Wiener process. For simplification of later equations, a change of variable τ = T − t
is introduced, where T is the expiry of the option. Thus, τ = 0 and τ = T correspond to
the expiry and the current times, respectively. It can be shown [5], that, if S follows (2.1),
and if certain additional conditions hold, the price V (S, τ) of an European option satisfies the
Black-Scholes (BS) equation

∂V

∂τ
=

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV (2.2)

where r is the risk-free interest rate, and the equation is subjected to boundary and initial
conditions depending on the specific type of derivative.

For later convenience, we define

LV ≡ 1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV. (2.3)

4



CHAPTER 2. FORMULATION OF PROBLEM 5

Thus, the BS PDE takes the form
∂V

∂τ
= LV. (2.4)

The S variable, considered as space variable spans the domain [0,∞). The τ variable,
which is the (backward) time variable, spans the domain [0, T ]. In the typical option pricing
problem, we are interested in calculating the current price of the option for any S in the domain,
i.e. V (S, τ), for τ = T and S ∈ [0,∞).

We next discuss initial and boundary conditions that the European option prices satisfy. To
this end, we distinguish between call options, that allow the holder to buy, and put options that
allow the holder to sell. Let K be the strike price.

To present the initial conditions for European call and put options, we consider the case
τ = 0 (or t = T ), i.e. the option value at expiry. The price of an option at expiry is determined
by a payoff function Φ(S), which, for European call and put options is given by

Vcall(S, τ)|τ=0 = Φcall(S) = max(S −K, 0)

Vput(S, τ)|τ=0 = Φput(S) = max(K − S, 0)
(2.5)

respectively.

The price of European call and put options at the boundary of the spatial domain is given
by

Vcall(0, τ) = 0, Vcall(S, τ) −−−→
S→∞

S −Ke−rτ

Vput(0, τ) = Ke−rτ , Vput(S, τ) −−−→
S→∞

0
(2.6)

respectively.

2.2 American options

For American options, there is an additional key constraint due to the ability to exercise at
anytime before expiry T , which adds complexity to the problem:

V (S, τ) ≥ Φ(S), 0 ≤ τ ≤ T. (2.7)
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At any point in time, the holder of an American option can always decide whether to ex-
ercise the right or to continue holding. This leads to a decision (interior or free) boundary at
Sf (τ), where for each τ it is optimal to exercise on one side of the boundary (left), and optimal
to hold on the other (right). More specifically, the American put pricing problem is described
as below:

V (S, 0) = Φput(S) = max(K − S, 0), for 0 ≤ S ≤ Sf (τ)

∂V

∂τ
− LV > 0, for 0 ≤ S < Sf (τ)

∂V

∂S
(Sf (τ), τ) = −1

V (S, τ) > Φput(S) = max(K − S, 0), for Sf (τ) < S <∞
∂V

∂τ
− LV = 0, for Sf (τ) < S <∞

V (∞, τ) = 0

(2.8)
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Figure 2.1: Comparison of an European and an American put option prices with the same
parameters K = 100, σ = 0.8, T = 5, and r = 0.1. The American option follows different
shapes on the two sides of the free boundary Sf (τ) ≈ 51.57, where it is linear as the exercise
value on the left, and curved on the right.
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The respective linear complementarity problem (LCP) is

∂V

∂τ
− LV ≥ 0,

V − Φ ≥ 0,

(
∂V

∂τ
− LV )(V − Φ) = 0.

(2.9)

While the initial conditions for the American call and put options remain the same as for
their European counterparts, some boundary conditions need to be adjusted to incorporate the
extra constraint (2.7).

The price of American call and put options at the boundary of the spatial domain is given
by

Vcall(0, τ) = 0, Vcall(S, τ) −−−→
S→∞

S −Ke−rτ

Vput(0, τ) = K, Vput(S, τ) −−−→
S→∞

0
(2.10)

respectively.



Chapter 3

Numerical Methods

3.1 Finite Difference Method

To numerically solve a PDE like the Black-Scholes equation, the time and price dimensions of
the problem are discretized using finite differences. Instead of working with the full continuous
price function V (S, τ), the function is sampled at specific points that form a grid. While
the spatial domain of the continuous problem is [0,∞), i.e. semi-infinite, for the discretized
problem, the spatial domain is truncated to [0, Smax], for an appropriately large value of Smax.

Given that S ∈ [0, Smax], τ ∈ [0, T ], each sample is labeled with indices based on the
position in the grid. Suppose there are NS steps in the price direction and Nτ in the time
direction. For simplicity of presentation, we first assume that the points in both the spatial
and time directions are uniform, i.e, with hS = Smax

NS
and hτ = T

Nτ
, we have Si = ihS, i =

0, 1, . . . , NS , and τj = jhτ , j = 0, 1, . . . , Nτ . (Later in the thesis, we consider non-uniform
grids.) Then the option price at the (i, j)th point is denoted by Vi,j , and we have Vi,j = V (Si, τj)

∀i = 0, 1, . . . , NS, j = 0, 1, . . . , Nτ

The initial conditions of the discretized call and put pricing problem are

Vcall(Si, τ)|τ=0 = Φcall(Si) = max(Si −K, 0)

Vput(Si, τ)|τ=0 = Φput(Si) = max(K − Si, 0)

i = 0, 1, . . . , NS,

(3.1)

respectively.

For the European options, the boundary conditions of the discretized call and put pricing

8
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Figure 3.1: A sample uniform price discretization grid with Smax = 800,K = 100, andNS = 5
combined with a uniform time discretization with T = 0.25 and Nτ = 5.

problem are

Vcall(0, τj) = 0, Vcall(Smax, τj) = Smax −Ke−rτj

Vput(0, τj) = Ke−rτj , Vput(Smax, τj) = 0

j = 0, 1, . . . , Nτ ,

(3.2)

respectively.

We then discuss how the partial derivative terms in the BS PDE are discretized. We consider
the forward and backward Euler discretizations of the first derivative ∂V

∂τ
, and the centered

differences discretizations of the first and second spatial derivatives ∂V
∂S

and ∂2V
∂S2 given by

∂V

∂τ

∣∣∣∣
i,j

=
Vi,j+1 − Vi,j

hτ
+O(hτ ) (3.3a)

∂V

∂τ

∣∣∣∣
i,j+1

=
Vi,j+1 − Vi,j

hτ
+O(hτ ) (3.3b)

∂V

∂S

∣∣∣∣
i,j

=
Vi+1,j − Vi−1,j

2hS
+O(h2S) (3.3c)

∂2V

∂S2

∣∣∣∣
i,j

=
Vi+1,j − 2Vi,j + Vi−1,j

h2S
+O(h2S). (3.3d)

In the above discretization schemes, O(hτ ) and O(h2S) represent the residual terms. With
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the above discretizations, LV can be discretized as below, where ci,k are scalars:

LV |i,j = (
1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV )

∣∣∣∣
i,j

=
1

2
σ2S2Vi+1,j − 2Vi,j + Vi−1,j

2hS
+ rS

Vi+1,j − Vi−1,j
2hS

− rVi,j +O(h2S)

= ci,i+1Vi+1,j + ci,iVi,j + ci,i−1Vi−1,j +O(h2S).

(3.4)

Since LV |i,j can be reduced to a linear combination of Vi,j’s, then for each time step τj , the
above equation can be vectorized, and rewritten in matrix form as

LVj = CVj + Dj +O(h2S) (3.5)

with
Vj =

[
V1,j V2,j · · · VNS−1,j

]T
Dj =

[
c1,0V0,j 0 · · · 0 cNS−1,NSVNS ,j

]T

C =


c1,1 c1,2 0 0 · · · 0

c2,1 c2,2 c2,3 0 · · · 0
. . . . . . . . . . . . . . . . . .

0 · · · 0 0 cNS−1,NS−2 cNS−1,NS−1


(3.6)

where the value of Dj is given by the boundary conditions, therefore known a priori.

For the time derivative, the approximation can be approached either as a forward step or a
backward step. At the j-th step, the forward approach will relate one unknown point Vi,j+1 to
three known points Vi−1,j , Vi,j , and Vi+1,j . As a result, Vi,j+1 can be found explicitly:

LV |i,j =
Vi,j+1 − Vi,j

hτ
+O(hτ )

Vj+1 = Vj + hτ [LVj +O(hτ )]

= Vj + hτ
[
CVj + Dj +O(hτ + h2S)

] (3.7)

Similarly, if a backward step was taken, one known point Vi,j will be related to three un-
known points Vi−1,j+1, Vi,j+1, and Vi+1,j+1. This setup forms a system of equations, which can
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be solved implicitly with given boundary conditions:

LV |i,j+1 =
Vi,j+1 − Vi,j

hτ
+O(hτ )

Vj = Vj+1 − hτ
[
LVj+1 +O(hτ )

]
= Vj+1 − hτ

[
CVj+1 + Dj+1 +O(hτ + h2S)

]
Vj+1 =

[
I− hτC

]−1[
Vj + hτ

(
Dj+1 +O(hτ + h2S)

)]
(3.8)

While the implicit (backward) scheme is unconditionally stable, the explicit (forward)
scheme is stable only when the constraint hτ

h2S
≤ c̃, where c̃ some constant, is satisfied. The

two methods can be used in combination, with weight θ ∈ [0, 1]. Setting θ = 0 gives the
explicit scheme, while setting θ = 1 gives the implicit scheme. Once again, the equation can
be rewritten in matrix form:

Vi.j+1 − Vi,j
hτ

= θLV |i.j+1 + (1− θ)LV |i.j +O(hτ )

[I− hτθC] Vj+1 − hτθDj+1 = [I + hτ (1− θ)C]Vj + hτ (1− θ)Dj + hτO(hτ + h2S).
(3.9)

Combining the terms into single matrices, we get

CimVj+1 + Dim,j+1 = CexVj + Dex,j + hτO(hτ + h2S) (3.10)

where
Cim = I− hτθC, Dim,j+1 = −hτθDj+1

Cex = I + hτ (1− θ)C, Dex,j = hτ (1− θ)Dj.
(3.11)

The scheme is most optimal at θ = 0.5 which gives the Crank-Nicolson (CN) scheme,
reducing the error term in the above equation to O(h2τ + h2S).

Both the fully implicit and the CN schemes are stable without a condition of the form
hτ
h2S
≤ c̃. However, it is known that the fully implicit scheme has stronger stability properties.

Therefore, it is a better choice when we deal with the discontinuity in the initial condition’s
first derivative. This leads to the Rannacher smoothing scheme, where the first two time steps
use fully implicit scheme, smoothing out the discontinuity. [4]

For the American options, the discretization steps are similar, with a slightly different
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boundary condition for the call and put respectively:

Vcall(0, τj) = 0, Vcall(Smax, τj) = Smax −Ke−rτj

Vput(0, τj) = K, Vput(Smax, τj) = 0

j = 0, 1, . . . , Nτ .

(3.12)

The discretization of (2.9) also yields a matrix form for the LCP as

(CimVj+1 + Dim,j+1)− (CexVj + Dex,j) ≥ 0,

Vj −Φ ≥ 0,[
(CimVj+1 + Dim,j+1)− (CexVj + Dex,j)

]
·
[
Vj −Φ

]
= 0

(3.13)

where the (·) operator denotes element wise multiplication. Note for the explicit scheme (θ =

0), the Cim matrix becomes the identity, and the LCP constraint can be enforced directly by
setting all Vi,j , where Vi,j < Φ(Si), to Φ(Si) at each time step.

3.2 Choice of Grids

Generally, using a uniform grid is the safest choice when the solution shape is unknown. For
the Black-Scholes PDE, the solutions tend to follow a certain common shape, allowing to take
advantage of the relatively linear areas.
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Call Option
Put Option

Figure 3.2: Typical solutions to the Black-Scholes PDE when strike price K = 100.

Observe from the figure above, the solution only takes a complex curved shape near the
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strike price, while the majority stays mostly straight. As a result, the finite difference approxi-
mation error is minimal at these straight parts, but rather bottlenecks near the strike. Thus, by
taking smaller steps near the strike and larger steps away, i.e. having denser points near the
strike and sparser points away from it, the discretization error can be reduced even with the
same number of points, and therefore, computations.

We then define a general (possibly non-uniform) grid using similar notation:

0 = S0 < S1 < . . . < SNS = Smax

0 = τ0 < τ1 < . . . < τNτ = T

hSi = Si+1 − Si, hτj = τj+1 − τj
Vi,j = V (Si, τj)

∀i = 0, 1, . . . , NS, j = 0, 1, . . . , Nτ

(3.14)

The finite difference approximations in the price dimension then take on a different form:

∂V

∂S

∣∣∣∣
i,j

=
h2SiVi+1,j + (h2Si+1

− h2Si)Vi,j − h
2
Si+1

Vi−1,j

hSi(hSi + hSi+1
)hSi+1

+O(hSi · hSi+1
) (3.15a)

∂2V

∂S2

∣∣∣∣
i,j

=
2hSiVi+1,j − 2(hSi+1

+ hSi)Vi,j + 2hSi+1
Vi−1,j

hSi(hSi + hSi+1
)hSi+1

+O(hSi+1
− hSi) +O(max{h2Si+1

, h2Si}).
(3.15b)

A non-uniform grid scheme can be defined by a monotonically increasing function

W : [0, Smax] 7−→ [0, Smax] (3.16)

whereW maps a uniform grid [0, hS, 2hS, · · · , NShS] to a non-uniform grid [0, S1, S2, · · · , SNS ].

In this thesis, we consider two discretization grids in the price direction. The first grid,
referred to as W1(S)-grid, arises from the mapping function

W1(S) =

1 +
sinh

(
b( S
Smax
− a)

)
sinh(ba)

K (3.17)

where a is a parameter determining the concentration near the strike K, and b is chosen such
that W1(Smax) = Smax. Choosing larger a generates more concentration near the strike. When
a = i

NS
for some integer i < NS , the point Si+1 is placed at the strike K; when a =

i+ 1
2

NS
, the
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strike K falls at the midpoint between Si and Si+1.

The second grid, referred to as W2(S)-grid, arises from the mapping function

W2(S) = K + c0 sinh

(
c1

S

Smax

+ c2(1−
S

Smax

)

)
c1 = sinh−1

(
Smax −K

c0

)
, c2 = sinh−1

(
−K
c0

) (3.18)

where c0 is a parameter determining the concentration near the strike K, c1 and c2 are chosen
based on c0. Choosing a smaller c0 generates more concentration near the strike.
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Figure 3.3: A sample non-uniform price discretization grid with Smax = 800, K = 100,
NS = 50, and c0 = 8 under the W2(S) scheme combined with a uniform time discretization
with T = 0.25 and Nτ = 10.

Notice in Figure 3.3, the grid points are placed in high concentration near the strike K as
desired. Since the parameters a and c0 can be chosen such that the two mapping functions
create highly similar grids, this thesis will use only W2(S)-grid to avoid repetition.

Similar to the price derivative, the time derivative also display consistent patterns, but the
concentration required is less obvious to determine before solving the PDE. We consider the
method suggested in [2], where the time step is selected adaptively based on the intuition

hτj+1
∼
[
∂V

∂τ

]−1
j

(3.19)
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and specifically the time step is selected by

hτj+1
= hτj min

i

[
dnorm

max(d0, |Vi,j+1|, |Vi,j|)
|Vi,j+1 − Vi,j|

]
(3.20)

where dnorm is the target relative change per time step, and d0 is chosen as a scale so that hτ
is not reduced due to the value Vi,j being close to zero. Although the scheme also requires
a selection of the initial step hτ0 , the choice of dnorm will dominate the behavior of this grid
selector given small initial step. Once dnorm is selected for the coarsest (most sparse) grid,
dnorm is then halved for each doubling of the number of steps.

Price S

0 200 400 600 800

T
im

e
 t

0

0.05

0.1

0.15

0.2

0.25

Non-Uniform Discretization Grid

Figure 3.4: A sample non-uniform price discretization grid with Smax = 800, K = 100,
NS = 50, and c0 = 8 under the W2(S) scheme combined with an adaptive non-uniform time
discretization with T = 0.25 , Nτ = 10 , and dnorm = 0.2

From Figure 3.4, we can observe that more grid points are concentrated near the beginning
where the time derivative is the greatest.

3.3 Discrete Penalty

The setup up to this point is sufficient for the pricing of an European option, however we need
to address the non-linearity caused by the LCP (2.9) . Instead of enforcing the LCP explicitly
by setting Vi,j ≥ Φ(Si), i = 1, . . . , NS−1, j = 1, . . . , Nτ , the penalty method in [2] adds a term
that punishes the difference arising from not satisfying the constraint instead. The formulation
results in the relation

∂V

∂τ
= LV + ρmax(Φ− V, 0) (3.21)
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where ρ is the penalty parameter, and is typically chosen to be a large positive number.

Observe if V ≥ Φ, then ∂V
∂τ

= LV ; otherwise if V < Φ, the derivative ∂V
∂τ

grows arbitrarily
large, forcing V to grow until V ≥ Φ is satisfied. Given the initial condition V |τ=0 = Φ, then
as the penalty parameter ρ→∞, the LCP constraint V ≥ Φ is satisfied.

In the discrete case, a penalty term is placed on the next step at Vj+1, resulting in the
relation

Vj+1 −Vj = (1− θ)hτ (CVj + Dj) + θhτ (CVj+1 + Dj+1) + Pj+1(Φ−Vj+1) (3.22)

where Pj+1 is the penalty matrix, with the (i, n)th element defined as

[
Pj

]
i,n

=

ρ if i = n and Vi,j < Φi

0 otherwise
(3.23)

Observe Pj is a diagonal matrix, with diagonal elements either ρ or 0. In other words, a penalty
is only applied to the terms where Vi,j < Φi.

Relation (3.22) can be further simplified to

[
Cim + Pj+1

]
Vj+1 + Dim,j+1 = CexVj + Dex,j + Pj+1Φ. (3.24)

Note that Pj+1 depends on Vj+1, so (3.24) is non-linear.

In order to solve the above discrete non-linear equation, a Newton iteration will be used.
This approach requires an initial guess of Vj+1. The iteration will continue until a convergence
criterion is reached.

For simplification of multiple indices, new notations will be introduced for the penalty
iterations only. Let the iteration occur at the (j + 1)th time step, define Vk as the kth estimate
of Vj+1, and Pk as the penalty for Vk. Note the boundary points in Dj do not change as these
points always satisfy the LCP constraint. The iteration algorithm then follows:
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Penalty Iteration for American Options

Initialize V0 = Vj

For k = 1, 2, · · ·

solve
[
Cim + Pk

]
Vk + Dim,j+1 = CexVj + Dex,j + PkΦ

if
[
max
i

|Vk+1 −Vk|
max(1, |Vk+1|)

<
1

ρ

]
or [Pk+1 = Pk] quit

EndFor

Vj+1 = Vk

(3.25)

Observe the two convergence criteria. The first criterion stops the iteration when improve-
ments become small. Since the size of ρ determines the size of improvements, it is reasonable
to use 1

ρ
as the tolerance. The second criterion stops the iteration when the penalty matrix no

longer changes, which further iterations will yield no difference. It is important to note the
convergence of Newton iterations is significantly improved by a good initial guess. In the case
of American options, Vj is usually very close to Vj+1, which allows the algorithm to converge
within one to two iterations.

3.4 Operator Splitting

In contrast to the penalty iteration, the operator splitting method used in [3] is a direct solver.
The key idea is to decouple the complex operators into two intermediate steps. Here the L
operator (2.3) and the LCP (2.9) are treated separately, resulting in a simple correction at
each time step. Compared to explicitly setting Vi,j ≥ Φ(Si), this approach involves a Crank-
Nicolson intermediate step, which improves the residual term to O(h2τ + h2S).

Similar to the penalty scheme, an additional term is used to resolve the inequality arising
from the LCP (∂V

∂τ
− LV ≥ 0). Let the auxiliary term be

λ ≡ ∂V

∂τ
− LV (3.26)
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The LCP can be rewritten in terms of λ as

λ ≥ 0,

V − Φ ≥ 0,

λ(V − Φ) = 0

(3.27)

Once again, the PDE recovered with λ can be discretized and rewritten in matrix form

(CimVj+1 + Dim,j+1)− (CexVj + Dex,j)− hτλj+1 = 0 (3.28)

where Vj+1 and λj+1 are both unknown vectors. Instead of solving the above equation, an
intermediate term Uj is introduced such that,

(CimUj+1 + Dim,j+1)− (CexVj + Dex,j)− hτλj = 0 (3.29a)

Cim(Vj+1 −Uj+1)− hτ (λj+1 − λj) = 0 (3.29b)

Observe adding (3.29a) and (3.29b) results in the original setup (3.28) . Next (3.29b) is ap-
proximated by setting θ = 0, hence Cim becomes the identity matrix, and we get

Vj+1 −Uj+1 − hτ (λj+1 − λj) = hτθC(Vj+1 −Uj+1) ≈ 0 (3.30)

As a result, the operator splitting method takes a Crank-Nicolson step to the intermediate
term Uj+1, then takes an explicit step to the final solution Vj+1. In equation form,

(CimUj+1 + Dim,j+1)− (CexVj + Dex,j)− hτλj = 0 (3.31a)

Vj+1 −Uj+1 − hτ (λj+1 − λj) = 0 (3.31b)

Since Equation (3.31b) contains only vectors, it can be detached into independent equa-
tions. In other words, for each i, the pair of Vi,j+1 and λi,j+1 can be analyzed as a stand alone
equation:

Vi,j+1 − Ui,j+1 − hτ (λi,j+1 − λi,j) = 0. (3.32)

From the LCP constraints (3.27), we know that for each i, there exist two possible cases,
either Vi,j+1 − Φi = 0 or λi,j+1 = 0. We first suppose Vi,j+1 − Φi = 0, from Equation (3.32)
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we get
Vi,j+1 − Φi = Ui,j+1 − Φi + hτ (λi,j+1 − λi,j) = 0

λi,j+1 = λi,j −
1

hτ
(Ui,j+1 − Φi)

(3.33)

Note it is possible to have λi,j+1 < 0 in computation if λ decreases to zero in between two time
steps, i.e. τ ∈ (τj, τj+1). Due to the LCP constraints (3.27), the (continuous) λ stops decreasing
once it reaches zero, therefore has a value of λi,j+1 = 0. Also note since the alternate case leads
to λi,j+1 = 0, we get an explicit solution

λi,j+1 = max

(
λi,j −

1

hτ

[
Ui,j+1 − Φi

]
, 0

)
(3.34)

Alternatively, we suppose λi,j+1 = 0. Similarly, from Equation (3.32) we get

Vi,j+1 = Ui,j+1 − hτλi,j (3.35)

Once again, it is possible to have Vi,j+1 − Φi < 0 in computation. Therefore we apply the
LCP constraints (3.27) to get

Vi,j+1 = max

(
Ui,j+1 − hτλi,j,Φi

)
(3.36)

Observe that if λi,j+1 > 0, we have the first case where Vi,j+1 − Φi = 0. This leads to

Vi,j+1 = Ui,j+1 + hτ (λi,j+1 − λi,j) = Φi (3.37)

Therefore, there exist an explicit solution that satisfy both scenarios:

Vi,j+1 = max

(
Ui,j+1 + hτ (λi,j+1 − λi,j),Φi

)
(3.38)

Altogether, we can find the intermediate term Uj+1, the auxiliary term λi,j+1, and the price
term Vj+1 explicitly

Uj+1 = C−1im
[
CexVj + Dex,j + Dim,j+1 + hτλj

]
λi,j+1 = max

(
λi,j −

1

hτ

[
Ui,j+1 − Φi

]
, 0

)
Vi,j+1 = max

(
Ui,j+1 + hτ (λi,j+1 − λi,j),Φi

) (3.39)
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In summary, the penalty method takes a direct route to the solution, but the process may
require more than one iteration per time step, therefore more than one set of computations (a
set of computations being mainly the solution of a tridiagonal system). In contrast, operator
splitting takes an indirect route, but only requires one set of computations. This trade-off allows
the splitting method to work with more grid points in the space direction and more steps in the
time direction at the same computation cost as the penalty scheme. The next section describes
how the two approaches compare numerically.



Chapter 4

Results

4.1 European Options

The PDE solver was implemented and tested using MATLAB. Numerical experiments were
conducted with the following parameters on an European Put option:

Put Option: K = 100, T = 0.25, σ = 0.8, r = 0.1

Finite Difference: θ = 0.5

Grid: Smax = 1000, c0 = 20, d0 = 1

dnorm = [0.003, 0.0015, 0.00075, . . .]

(4.1)

Recall dnorm is halved each time the number of time steps is expected to approximately double.
For the adaptive time steps, the initial time step is chosen by hτ0 = hτ,uniform/1000, and dnorm
will dominate the rate of step size growth. Hence each experiment using adaptive time steps
correspond to an experiment using uniform time steps. Rannacher smoothing is also used for
all the experiments.

Here, we introduce VChange as the difference between the values of V at a specific point
obtained in the past two experiments with increasingly finer grids, and VRatio as the ratio of the
past two VChange.

21
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We also introduce the price derivatives, also known as the Greeks:

Delta: ∆ =
∂V

∂S

Gamma: Γ =
∂2V

∂S2
.

(4.2)

Here, ∆Change, ∆Ratio, ΓChange, and ΓRatio are defined in the same sense as VChange and VRatio.
The Greeks are commonly used parameters in options trading, hence their accurate calculation
is just as important as that of the price.

We also introduce Nit as the number of iterations, where each iteration involve the solution
of a tridiagonal matrix system. Notice that Nit ≥ Nτ when the penalty iteration method is
used. The computation cost is defined as the number of price grid points NS (cost of inverting
a tridiagonal matrix is O(NS)) multiplied by the number of iterations taken in the run Nit.

A small adjustment to c0 is applied to avoid the strike K landing on a specific grid point.
This is done by a local search through nearby points of c0 that places the strike K closest to
the midpoint between two grid points. Most adjustments are less than 10%, therefore having
minimal effect on concentration.

In Tables 4.1 to 4.5, we have numerical results for the European put at S = K = 100

(at-the-money). Observe also in Figure 4.1, both uniform and non-uniform grids converge at
the same rate. While the non-uniform grid provides the same order of convergence, the error is
significantly improved for V , ∆, and Γ.

Observe when both experiments used uniform time steps, VChange is significantly improved
with W2(S) scheme for non-uniform grid in Table 4.2, compared the uniform grid in Table 4.1.
Furthermore, VChange is improved again by using adaptive time stepping in 4.3.

We also observe the behaviour of adaptive time steps over time in Figure 4.2. The time steps
is observed to increase aggressively in the beginning, as the initial time step at approximately
10−7 increased very quickly to the scale of the plot at approximately 10−4. This explosive
growth then slowed down drastically as the time increased and the time derivative decreased in
value.
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NS Nτ Nit V VChange VRatio
54 25 25 14.603887

108 50 50 14.519163 -0.084724
216 100 100 14.435627 -0.083536 1.01
432 200 200 14.447840 0.012213 -6.84
864 400 400 14.450890 0.003049 4.01

1728 800 800 14.451652 0.000762 4.00

Table 4.1: Values of European put option with parameters (4.1) at-the-money using uniform S
grid and uniform time steps.

NS Nτ Nit V VChange VRatio
54 25 25 14.435351

108 50 50 14.448452 0.013101
216 100 100 14.451101 0.002649 4.95
432 200 200 14.451712 0.000611 4.34
864 400 400 14.451858 0.000146 4.18

1728 800 800 14.451894 0.000036 4.12

Table 4.2: Values of European put option with parameters (4.1) at-the-money usingW2(S)-grid
and uniform time steps.

NS Nτ Nit V VChange VRatio
54 38 38 14.442542

108 62 62 14.450322 0.007781
216 110 110 14.451575 0.001252 6.21
432 207 207 14.451831 0.000257 4.88
864 403 403 14.451888 0.000057 4.50

1728 795 795 14.451901 0.000013 4.36

Table 4.3: Values of European put option with parameters (4.1) at-the-money using W2(S)-
grid, and adaptive time stepping with initial time step hτ0 = hτ,uniform/1000.

NS Nτ Nit ∆ ∆Ratio Γ ΓRatio
54 25 25 -0.40364025 0.0096432396

108 50 50 -0.39844661 0.0096300076
216 100 100 -0.39674885 3.06 0.0096482509 -0.73
432 200 200 -0.39653807 8.05 0.0096388955 -1.95
864 400 400 -0.39648550 4.01 0.0096365650 4.01

1728 800 800 -0.39647237 4.00 0.0096359828 4.00

Table 4.4: Delta and Gamma values of European put option with parameters (4.1) at-the-money
using uniform S grid and uniform time steps.
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NS Nτ Nit ∆ ∆Ratio Γ ΓRatio
54 38 38 -0.39680141 0.0096237397

108 62 62 -0.39655588 0.0096323359
216 110 110 -0.39649054 3.76 0.0096349288 3.32
432 207 207 -0.39647370 3.88 0.0096355739 4.02
864 403 403 -0.39646943 3.94 0.0096357352 4.00

1728 795 795 -0.39646835 3.96 0.0096357753 4.02

Table 4.5: Delta and Gamma values of European put option with parameters (4.1) at-the-money
using W2(S)-grid, and adaptive time stepping with initial time step hτ0 = hτ,uniform/1000.
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Figure 4.1: Performance comparison between the uniform and non-uniform grids for comput-
ing the Price, Delta, and Gamma values at-the-money of the European put option with param-
eters (4.1) on a log-log plot. Here, “uniform” applies to both the S and time directions, while
“non-uniform” means that the W2(S)-grid and adaptive time stepping were used with initial
time steps hτ0 = hτ,uniform/1000.
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Figure 4.2: The size of time steps over time for the adaptive time step method for the European
put with parameters (4.1) using initial time step hτ0 = 3.125×10−7 and dnorm = 1.375×10−4.
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4.2 American Options

Similar numerical experiments were conducted with the following parameters on an American
Put option:

Put Option: K = 100, T = 0.25, σ = 0.8, r = 0.1

Finite Difference: θ = 0.5, ρ = 1e6

Grid: Smax = 1000, c0 = 20, d0 = 1

Penalty: dnorm = [0.003, 0.0015, 0.00075, . . .]

Operator: dnorm = [0.0022, 0.0011, 0.00055, . . .]

(4.3)

We chose different values of dnorm for the two methods so that the number of iterations Nit are
closer and easier to compare. Rannacher smoothing is also used for all the experiments.

Here, we introduce Sf,Change and Sf,Ratio for the free boundary in the same sense as VChange
and VRatio.

First, we observe that the Penalty and Operator Splitting methods behave quite similarly
on uniform grids as shown in Figure 4.3. In Tables 4.6 to 4.7, we can observe a slightly better
VChange for the operator splitting method compared to penalty given less computation cost. The
two methods were able to find the exact same free boundaries Sf given the same grid in Tables
4.8 to 4.9. In the same tables, we also observe that the Delta and Gamma values computed by
the two methods are very close to each other.

NS Nτ Nit V VChange VRatio
54 25 28 14.794245

108 50 55 14.729485 -0.064760
216 100 111 14.657730 -0.071755 0.90
432 200 222 14.673097 0.015367 -4.67
864 400 445 14.677253 0.004156 3.70

1728 800 894 14.678396 0.001143 3.64

Table 4.6: Penalty iteration results for values of American put option with parameters (4.3)
at-the-money using uniform S grid and uniform time steps.

Next from Figure 4.4 we infer the non-uniform grid scheme consistently improves the error
of V , ∆, and Γ for the penalty scheme. However, we note that with the non-uniform grid, Sf
did not achieve a significant improvement over the uniform grid case. This is most likely due
to the concentration of grid points being focused on the strike rather than on the free boundary.
In this case, the two values Sf ≈ 51 and K = 100 are quite far apart, resulting in the free
boundary losing in accuracy.
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Figure 4.3: Performance comparison between the penalty and the operator splitting methods
on a uniform S grid and uniform time stepping for computing the Price, free boundary, Delta,
and Gamma values at-the-money of the American put option with parameters (4.3) on a log-log
plot.

NS Nτ Nit V VChange VRatio
54 25 25 14.794513

108 50 50 14.729943 -0.064570
216 100 100 14.658126 -0.071817 0.90
432 200 200 14.673365 0.015239 -4.71
864 400 400 14.677389 0.004024 3.79

1728 800 800 14.678471 0.001082 3.72

Table 4.7: Operator splitting results for values of American put option with parameters (4.3)
at-the-money using uniform S grid and uniform time steps.

NS Nτ Nit Sf Sf,Ratio ∆ ∆Ratio Γ ΓRatio
54 25 28 59.2593 -0.41252800 0.0100255188

108 50 55 59.2593 -0.40745545 0.0100202263
216 100 111 55.5556 -0.40588568 3.23 0.0100381027 -0.30
432 200 222 53.7037 2.00 -0.40569427 8.20 0.0100278161 -1.74
864 400 445 52.7778 2.00 -0.40564580 3.95 0.0100250119 3.67

1728 800 894 52.3148 2.00 -0.40563316 3.84 0.0100242240 3.56

Table 4.8: Penalty iteration results for free boundary, Delta, and Gamma values of American
put option with parameters (4.3) at-the-money using uniform S grid and uniform time steps.
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NS Nτ Nit Sf Sf,Ratio ∆ ∆Ratio Γ ΓRatio
54 25 25 59.2593 -0.41254621 0.0100259027

108 50 50 59.2593 -0.40746724 0.0100202821
216 100 100 55.5556 -0.40589316 3.23 0.0100380743 -0.32
432 200 200 53.7037 2.00 -0.40569828 8.08 0.0100277540 -1.72
864 400 400 52.7778 2.00 -0.40564787 3.87 0.0100249811 3.72

1728 800 800 52.3148 2.00 -0.40563413 3.67 0.0100242023 3.56

Table 4.9: Operator splitting results for free boundary, Delta, and Gamma values of American
put option with parameters (4.3) at-the-money using uniform S grid and uniform time steps.

Ideally, we would like adaptive changes in the S grid such that there is consistent concen-
tration of points near the value of Sf (τ) as τ varies. This type of grid will ultimately improve
the accuracy of Sf at a cost of some increase in computation and complexity. In [1], certain
adaptive S-grid techniques are used with the penalty method, and indicate that two concentra-
tions of S-points, one for the strike and one for the free boundary (which moves to the left over
time) may better capture the behaviour of the American price problem.

When comparing the two methods, namely penalty and operator splitting with the non-
uniform scheme, we can observe that the operator splitting method begins to show some insta-
bility. In Table 4.11, we can see the operator splitting method is not converging monotonically.
Although operator splitting can exhibit better VChange as seen in Figure 4.5, the behavior is not
as consistent. Otherwise, the accuracies of both methods are quite comparable.

One important distinction between the two methods is the number of linear system solu-
tions. The penalty method is iterative, sometimes requiring the solution of more one linear
systems. On the other hand, the operator splitting method is a direct solver, requiring only one
linear system solution. While the difference is minor in one price dimension, operator splitting
will naturally scale better in higher dimensions.

Finally we study the behavior of Sf (τ) over time. Both methods showed consistent shape
of the free boundary in Figure 4.6. Note the plot used an experiment with very sparse grid
for demonstration purposes. In practice the grid can be much more refined. For the penalty
method, the movement in Sf (τ) is driven entirely by the penalty matrix Pj , while for the
operator splitting method by the auxiliary term λj . The diagonal of the penalty matrix Pj

penalizes the region right of Sf (τ) for falling below the exercise value Φ(S), therefore the
value of S corresponding to the diagonal entry of Pj switching from ρ to 0 marks the free
boundary Sf (τ). Observe Figure 4.7, the diagonal of Pj takes discrete values of either 0 or ρ,
and the boundary dividing the discrete values is exactly the free boundary Sf (τ).
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Not surprisingly, in the operator splitting method, the auxiliary term λ gives rise to a surface
very similar to the diagonal of Pj , as shown in Figure 4.8. Observe here majority of the points
λi,j takes a value of 0 or 10 as well, however without a sharp edge compared to the diagonal
of the penalty matrix. The reason for the initialization of λ ≈ 10 is due to its approximation of
the time derivative

λi,1 = max

(
−Ui,1 − Φi

hτ
, 0

)
≈ max

(
− ∂V

∂τ

∣∣∣∣
i,0

, 0

)

= max

(
−
[

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

]
i,0

, 0

) (4.4)

For Si < K, the price of the put is approximately Vi,0 ≈ K − Si, which leads to

λi,1 ≈ max (0− rSi(−1) + r(K − Si), 0)

= rK

= 10

(4.5)

which is the value of λ observed in Figure 4.8 when it is non-zero.

NS Nτ Nit V VChange VRatio
54 38 51 14.666084 0.000000 0.00

108 62 88 14.676292 0.010207 0.00
216 110 162 14.678275 0.001984 5.15
432 208 313 14.678733 0.000458 4.33
864 405 615 14.678842 0.000109 4.22
1728 799 1183 14.678869 0.000027 4.06

Table 4.10: Penalty iteration results for values of American put option with parameters (4.3)
at-the-money using W2(S)-grid and adaptive time stepping with initial time steps hτ0 =
hτ,uniform/1000.



CHAPTER 4. RESULTS 30

Computation Cost
10

5
10

6

C
h
a
n
g
e

10
-6

10
-4

10
-2

10
0

Penalty - Uniform vs. Non-Uniform Grid

Price - Uniform
Price - Non-Uniform
Delta - Uniform
Delta - Non-Uniform
Gamma - Uniform
Gamma - Non-Uniform
Free Boundary - Uniform
Free Boundary - Non-Uniform

Figure 4.4: Performance comparison between the uniform and non-uniform grids using the
penalty method for computing the Price, free boundary, Delta, and Gamma values at-the-money
of the American put option with parameters (4.3) on a log-log plot. Here, the W2(S)-grid and
adaptive time stepping were used with initial time steps hτ0 = hτ,uniform/1000.

NS Nτ Nit V VChange VRatio
54 46 46 14.667658 0.000000 0.00

108 78 78 14.677313 0.009656 0.00
216 145 145 14.678802 0.001489 6.48
432 279 279 14.678981 0.000179 8.31
864 547 547 14.678952 -0.000029 -6.20

1728 1085 1085 14.678916 -0.000036 0.79

Table 4.11: Operator splitting results for values of American put option with parameters
(4.3) at-the-money using W2(S)-grid and adaptive time stepping with initial time step hτ0 =
hτ,uniform/1000.
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NS Nτ Nit Sf Sf,Ratio ∆ ∆Ratio Γ ΓRatio
54 38 51 60.0120 0.00 -0.40591239 0.00 0.0100117440 0.00

108 62 88 54.1134 0.00 -0.40570493 0.00 0.0100204951 0.00
216 110 162 53.6617 13.06 -0.40564854 3.68 0.0100230679 3.40
432 208 313 52.6657 0.45 -0.40563361 3.78 0.0100236843 4.17
864 405 615 52.1655 1.99 -0.40562973 3.85 0.0100238336 4.13

1728 799 1183 52.0223 3.50 -0.40562874 3.92 0.0100238697 4.14

Table 4.12: Penalty iteration results for free boundary, Delta, and Gamma values of American
put option with parameters (4.3) at-the-money using W2(S)-grid and adaptive time stepping
with initial time step hτ0 = hτ,uniform/1000.

NS Nτ Nit Sf Sf,Ratio ∆ ∆Ratio Γ ΓRatio
54 46 46 60.0120 0.00 -0.40597656 0.00 0.0100150027 0.00

108 78 78 54.1134 0.00 -0.40573957 0.00 0.0100218326 0.00
216 145 145 53.6617 13.06 -0.40566477 3.17 0.0100236014 3.86
432 279 279 52.6657 0.45 -0.40564086 3.13 0.0100238967 5.99
864 547 547 52.1655 1.99 -0.40563284 2.98 0.0100239172 14.34

1728 1085 1085 52.0223 3.50 -0.40563003 2.86 0.0100239026 -1.40

Table 4.13: Operator splitting results for free boundary, Delta, and Gamma values of American
put option with parameters (4.3) at-the-money using W2(S)-grid and adaptive time stepping
with initial time step hτ0 = hτ,uniform/1000.
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Figure 4.5: Performance comparison between the penalty and operator splitting methods on
a W2(S)-grid with adaptive time stepping for computing the Price, free boundary, Delta, and
Gamma values at-the-money of the American put option with parameters (4.3) on a log-log
plot. The initial time step was hτ0 = hτ,uniform/1000.
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Figure 4.6: The free boundary is plotted over time for both the penalty and operator splitting
methods solving the American put option problem with parameters (4.3). Here, theW2(S)-grid
and adaptive time stepping were used. The specific penalty method experiment corresponds
to parameters NS = 109, Nτ = 62, and dnorm = 0.0011, or row 2 of Table 4.10. The
specific operator splitting experiment corresponds to parameters NS = 109, Nτ = 78, and
dnorm = 0.0011, or row 2 of Table 4.11.
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Figure 4.7: The diagonal of the penalty matrix Pj is plotted as a surface over time and price
for the penalty method solving the American put option problem with parameters (4.3). Here,
the W2(S)-grid and adaptive time stepping were used. The specific experiment corresponds to
parameters NS = 109, Nτ = 62, and dnorm = 0.0011, or row 2 of Table 4.10.
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Figure 4.8: The auxiliary term λi,j is plotted as a surface over time and price for the operator
splitting method solving the American put option problem with parameters (4.3). Here, the
W2(S)-grid and adaptive time stepping were used. The specific experiment corresponds to
parameters NS = 109, Nτ = 78, and dnorm = 0.0011, or row 2 of Table 4.11.



Chapter 5

Conclusions and Future Works

In this thesis, we have studied several numerical methods for pricing European and American
options in detail. First, we studied the finite difference method for pricing the European option
through the solution of the Black-Scholes PDE. By increasing the computation cost, we have
shown the error in price and the Greeks are converging at a consistent rate. Furthermore, the
use of non-uniform grid and adaptive time steps significantly improve the absolute error at the
same computation cost.

We then studied the penalty iteration and operator splitting methods for pricing the Ameri-
can put option. While both methods showed consistent convergence on uniform grids in price
and time, the penalty method has shown more stable convergence rate when using non-uniform
grid and adaptive time steps. Overall, the two methods are quite comparable in terms of abso-
lute error in price, free boundary, and the Greeks.

There are several areas of possible extensions to this study. Since the penalty iteration
requires more than one solution of a linear system per time step, its computational cost is ex-
pected to scale faster in multiple dimensions than the operator splitting method, which requires
only one linear system solution per time step. As a result, the operator splitting method could
potentially improve the performance of a high dimensional pricing problem.

Additionally, there is no available guideline to optimally select parameters for the non-
uniform grid and adaptive time steps. Optimization of these parameters will continue to im-
prove the error beyond the current results. The use of an adaptive grid seen in [1] could also
be explored to improve the accuracy of the free boundary. Finally, many techniques studied
in this thesis is not limited to European and American options, but also applicable for a wide
range of derivative products.
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