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We develop a pricing model for convertible bonds with dividend protection subject to
credit risk by extending the models developed by Tsiveriotis and Fernandes (TF), and
by Ayache, Forsyth and Vetzal (AFV). We consider two techniques to incorporate the
dividend protection feature: Conversion Ratio Adjustment and Dividend Pass-Thru. We
apply finite difference methods to discretize the PDEs associated with our models, and
study the Projected Successive Over-Relaxation and penalty methods to handle the free
boundaries. We compare these two methods in terms of convergence rate, number of
iterations per time step and computation time for pricing convertible bonds without
dividends. Finally we apply the penalty method, the better of the two methods, to solve
the systems arising from our models for convertible bonds with dividend protection. We
examine the convergence rates and discuss the difference between the results from the

extended TF and AFV models, with both dividend protection techniques.
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Chapter 1

Introduction and Literature Survey

A convertible bond is a standard corporate bond that usually pays regular coupons
and principal, but has an additional conversion feature. The issuer of the convertible
bond grants the holder the option to convert the bond into a predetermined amount of
the issuing company’s stock at certain times in the future. Because of this feature, the
convertible bond incorporates elements of both debt and equity. A convertible bond often
has some additional features such as callability (i.e., the issuer has the right to buy the
bond back at certain times at some predetermined price) and puttability (i.e., the holder
has the right to sell the bond back to the issuer at certain times at a particular price).
Besides these features, a convertible bond may also have some exotic and complicated
features, such as trigger prices and “soft call” provisions. All of these features make it

complicated to determine a fair price for a convertible bond.

The convertible bond market is expanding rapidly. In the U.S.; in 2000, just over
$60 billion of new convertible bonds were issued, whereas over $105 billion were issued
in 2001. The global market for convertible bonds exceeded $500 billion in 2002 [1].
There are two frequently cited rationales on why firms issue convertible bonds. First,
issuing convertible bonds is an indirect means to add equity to the capital structure,

since convertible bonds can be regarded as a form of delayed equity. Second, convertible
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bonds allow a firm to borrow more cheaply relative to straight bonds in the sense that
the coupons on convertible bonds are normally lower than those on comparable straight

bonds [21].

In recent years, a new convertible bond feature, dividend protection, has emerged.
If the issuing company increases its dividend on the common stock, the stock price will
decrease and consequently the conversion value of the convertible bond will decrease.
To keep the convertible bonds attractive in this case, a so-called dividend protection
provision is added to the contract, giving convertible bond holders insurance against
the decline of the issuing company’s stock caused by an increase in the dividend: if the
issuing company increases its dividend on the common stock, the convertible bond will
be adjusted to become convertible to more shares or the convertible bond holders will
receive a cash compensation proportional to the increase in dividend amount. Over the
past several years, convertible bonds with dividend protection have grown in popularity.
As stated in [13], in the U.S., in 2004, 90% of the proceeds and 87% of new convertible
securities had some form of dividend protection, compared to 45% and 43%, respectively,

in 2003 and 14% and 11%, respectively, in 2002.

As a convertible bond is a hybrid security of equity and debt, it is exposed to three
sources of risk: equity risk, interest rate risk and credit risk. The modeling of the inherent
credit risk has been one of the major focuses of convertible bond pricing. The modern
academic literature on convertible bond valuation was pioneered by the papers of Ingersoll
[14] and Brennan and Schwartz [3] [4]. These models are based on Merton’s structural
approach to modeling default. In this approach, the basic underlying variable is the value
of the issuing firm. The firm’s debt and equity are claims contingent on the firm’s value,
and options on its debt and equity are compound options on this variable. The asset
value of the firm is modeled using geometric Brownian motion. Default occurs when the
firm’s value becomes sufficiently low that it is unable to meet its financial obligations.

Under the assumption of no dividends and no coupons, Ingersoll developed closed form
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solutions for the convertible bond price. Brennan and Schwartz [3] extended Ingersoll’s
model by including discrete dividends, and applied finite difference methods to solve the
partial differential equation (PDE) for the price of the convertible bond. Later, Brennan
and Schwartz [4] extended their work to a two-factor stochastic model describing both
the value of the firm and the interest rate. However, they found that a stochastic term

structure had little impact on the convertible bond price.

Since the firm value is not directly observable in the market, recent research on
convertible bond pricing has moved away from modeling the firm value and towards the
modeling of equity. The equity value approach prices convertible bonds based on the
equity value instead of on the firm value, and models equity as a geometric Brownian
motion. The first equity-based models were faced with the great difficulty of modeling
credit risk. Early papers with an ad hoc approach to discounting cash flows generated by
convertible bonds include those of McConnell and Schwartz [18], Cheung and Nelken [5],
and Ho and Pfeffer [11]. Many of these models do not explicitly model bankruptcy, but
instead uniformly apply a somewhat arbitrary risky spread to the risk-free discount rate
to model credit risk. More recent papers recognize that equity and debt components of
convertible bonds are subject to different default risk. Tsiveriotis and Fernandes (TF)
[25] effectively split the convertible bond into two separate components: a cash-only
component and an equity component. The cash-only component receives bond cash
flows and is discounted using a risky rate. The equity component receives equity flows
and is discounted using a risk-free rate. The evolution of each component is described
by a partial differential equation. These equations are coupled through their respective
boundary conditions. A related approach was promoted by Goldman Sachs [23] and

involves careful weighting of risky and risk-free discounting in a binomial lattice.

Along with the development of convertible bond models, there have been significant
developments in credit risk modeling. In particular, Jarrow and Turnbull [15] introduced

the reduced form approach to modeling credit risk. This approach models default as
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the first jump in a Poisson process. Upon default, the stock price jumps to zero (or a
very low value) and a certain percentage of the bond is assumed to be recovered. In
recent work, Ayache, Forsyth and Vetzal (AFV) [1] extend the reduced form approach
to model credit risk associated with convertible bonds, and detail exactly what happens
on default. AFV argue that many of the existing models, such as the TF model [25], are
incomplete because they do not explicitly specify what happens in the event of a default
by the issuing company, and this can result in internal inconsistencies. AFV also solve
the PDEs associated with their model by finite difference methods rather than using slow

binomial or trinomial trees.

The objective of this thesis is to valuate convertible bonds with dividend protection
subject to credit risk. Our task involves two main parts: modeling and implementation.
First, we will consider two existing models, namely the TF and AFV models, and adjust
them to incorporate the dividend protection feature. The reason for choosing these two
models is that they are the two most commonly used models in practice and they model
credit risk in different ways. Second, we will apply finite difference methods to discretize
the PDEs associated with our models and find a fast and robust numerical algorithm to

solve the resulting systems.

The organization of this thesis is as follows. Chapter 2 introduces the TF and AFV
models for pricing convertible bonds, and describes our proposed approach to valuat-
ing convertible bonds with dividend protection based on these two models. Chapter 3
presents finite difference discretization of the PDEs associated with our proposed ap-
proach. Chapter 4 first explores two numerical methods for handling the free boundary
associated with a convertible bond without dividends under the TF model: the Projected
Successive Over-Relaxation (PSOR) and the penalty methods. Then the better of the
two methods is used to solve the systems arising from our models of a convertible bond
with dividend protection derived from the TF and AFV models, respectively. Chap-

ter 5 presents the numerical results from the better method determined in Chapter 4,
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and compares the results from our extension of the TF and AFV models for the follow-
ing cases: a convertible bond without dividends, a convertible bond with dividends but
without dividend protection, and a convertible bond with dividends and with dividend
protection. Chapter 6 contains our conclusions and a discussion of some possible future

work.



Chapter 2

Modeling

Convertible bond modeling is complicated for several reasons. One reason is that convert-
ibles have many possible features, such as conversion, callability and puttability, which
must be taken into account for pricing. Correct modeling of these features increases
the complexity of the model. Another reason is that convertible bonds are exposed to
three sources of risk: equity risk, credit risk and interest rate risk. The modeling of
credit risk has been a major source of difficulty in convertible bond modeling. In the
literature, many approaches to pricing convertible bonds subject to credit risk have been
proposed. In this research thesis, we consider two commonly used models: the one devel-
oped by Tsiveriotis and Fernandes (TF) [25], and the one developed by Ayache, Forsyth,
and Vetzal (AFV) [1]. We adjust these models to incorporate the dividend protection

feature.
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2.1 Models for Pricing Convertible Bonds with Credit

Risk

2.1.1 TF Model

The core idea behind the TF model is that the convertible bond (CB) consists of an equity
and a bond component, and these components have different default risks, so credit risk
is incorporated differently in each component when pricing CBs. The underlying equity
has zero default risk because it is assumed that the issuing company can always deliver
its own stock. Whereas, coupon and principal payments, and any put provisions which
allow the holder to sell the CB back to the issuer, depend on the issuer’s timely access to
the required cash amounts and thus bear credit risk. This credit risk is modeled by the
use of the market-observed credit spread between a bond from the same issuing company
that is not convertible and a risk-free government bond. Therefore, in the TF model, the
value of the CB is split into two parts: the “Cash-Only” part of the CB (COCB) and
the equity part. The holder of a COCB is entitled to all cash flows, and no equity flows,
that an optimally behaving holder of the corresponding CB would receive. The COCB
is discounted at a risky rate. On the other hand, the equity part represents the value of
the CB related to payments in equity and is discounted at the risk-free rate. The above
splitting results in a system of two coupled Black-Scholes-like PDEs. For simplicity, TF
use a single-factor model, i.e., a CB is viewed as an equity-only derivative. Moreover, the
COCRB itself is considered to be a derivative of the underlying equity. The two coupled

Black-Scholes-like equations are

oU  o%S8?0*U oUu

E—i— 5 ﬁ—{—rgS%—r(U—B)—(7"+7"C)B+f(t)=0 (2.1)

and
a—B+ﬁ82—B+rsa—B—(r+ )B+ f(t)=0 (2.2)
ot 2 o052 9759 e - '
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where U is the value of the CB, B the value of the COCB, S the price of the underlying
stock, r the risk-free interest rate, r, the growth rate of the stock, which, according to the
discussion of the TF model in [12], can be regarded as the risk free rate, r. the observed
credit spread implied by the straight bonds of the same issuer for similar maturities as
the CB, and f(t) the external flows (in cash or equity) to the derivative. For example,

for a bond paying a coupon of ¢; at time ¢;, we have

F(8) =3 ot =),

where § is the Dirac function. We will ignore f(t) for now; the handling of external flows
is discussed in Section 2.2.3.

Equations (2.1) and (2.2) are coupled through appropriate final and boundary condi-
tions reflecting the terms of each individual CB, and need to be solved simultaneously.
For example, assume that the CB has the face value of F', pays a coupon payment of
¢; = K semiannually and matures at time 7. The CB can be converted into « shares of
the company’s stock at any time during the life of the CB, is callable by the issuer at a
price B, at any time after T¢, and is puttable by the holder at a price B, at any time

after T,. Then the corresponding final and boundary conditions are as follows:

e Final conditions at maturity (assuming put and call will not occur at maturity):

F+K ifF+ K >&kS
U(S,T) =<
kS otherwise,
F+K if F+ K > kS
B(S,T) = (2.3)
0 otherwise.

e Upside constraints due to conversion for ¢ € [0, T:

U(S,t) > kS, (2.4

B(S,t) =0, ifU < &S,
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where U is the “continuous value” of the CB when none of the events of conversion,
puttability, and callability occurs. We use U in a similar way in the following

constraints.

e Upside constraints due to callability by the CB issuer for t € [T, T:

U(S,) < max(B, £9), (2.5)

B(S,t)=0, ifU> B,

where it is assumed that the holder has the right to convert if the issuer calls the

CB.
e Downside constraints due to puttability by the CB holder for ¢ € [T, T:

U(S,t) > B, (2.6)

A

B(S,t) =B, ifU<B,.

Notice that in the TF model, the handling of the COCB value (B) when a call occurs is
different from when a put occurs. The rationale behind this is that when a call occurs,
the issuing company must have the required amount of money on hand to buy back the
CB, so this payment does not have default risk and thus B should be equal to 0. On the
other hand, when a put occurs, i.e., the holder of the CB sells the CB back to the issuer,
the issuer may face financial difficulties and may not have timely access to the required
cash amounts, so this payment bears default risk and thus B should be set to the put

price B,.

2.1.2 AFV Model

Ayache, Forsyth and Vetzal [1] extend the reduced-form approach and derive a different
model, based on a hedging portfolio, where the risk due to the stochastic process followed
by the stock price is eliminated, and assuming a Poisson default process. They use a

deterministic hazard rate p(S,t) to model the credit risk: the probability of default in



CHAPTER 2. MODELING 10

[t,t + dt] conditional on no-default in [0,¢] is p(S,t)dt. The AFV model provides a
general single-factor framework for valuing risky convertible bonds. It accommodates
many different assumptions about the behavior of the stock price in the case of default
and recovery after default.

The AFV model assumes that, upon default, the stock price jumps according to
S+ = Si(l - 77)5

where ST is the stock price immediately after default, S~ is the stock price right before
default, and 0 < n < 1. Further, upon default, the holder of the convertible bond can
choose to receive either the amount RX (where 0 < R < 1 is the recovery factor, and
there are many possible assumptions for X, e.g. the face value of bond, discounted bond
cash flows, or the pre-default value of the bond portion of the convertible bond) or shares
worth kS~(1 — n) (where & is the conversion ratio).

Under these assumptions and defining

oU 028? 0?U oU
MU =~ — (55 + (r+p)S 55 — (r+p)U), (2.7)

the value of the convertible bond U satisfies:
o if B, > kS:
MU —p max(kS(1—1n),RX) =0
U — max(B,,kS) >0
U-B.<0

MU —p max(kS(1—n),RX) >0
V| U —max(By,kS) =0
U-B.<0

MU —p max(kS(1—1n),RX) <0
V| U —max(Bp,kS) >0 ; (2.8)
U-B.=0
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where the notation (z = 0)V (y = 0) V (z = 0) means that at least one of z = 0,y =

0,z = 0 holds at each point in the solution domain, and p is the hazard rate;

e if B, < kS:
U =kS. (2.9)

Several possible assumptions can be made about X. Assuming X to be B, the
pre-default bond component of the convertible bond, the AFV model provides a new
decomposition of the convertible bond into bond and equity components so that U =
B + C, where B is the value of the bond component and C is the value of the equity
component. According to [1], the PDEs and free boundary constraints associated with

this decomposition are

MC —p max(kS(1 —n) — RB,0) =0
C — (max(B, kS) — B) <0
C—-(kS—B)>0

C = max(B., kS) — B

( MC — p max(kS(1 —n) — RB,0) <0
( MC — p max(kS(1 —n) — RB,0) >0

Vv : (2.10)
C=kS—B
and
MB — RpB =0
MB — RpB <0 MB — RpB >0
B—-B.<0 v v ) (2.11)
B =B, B=B,-C
B—-(B,—C)>0
The final conditions at maturity for U, C' and B, respectively, are:
U(S,T) = max(kS, F + K), (2.12)

C(S,T) = max(kS — F — K, 0), (2.13)
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and

B(S,T) = F + K. (2.14)

Notice that the difference between the AFV and the TF splittings is that, for the former,
only B < B, is required, while for the latter, B = 0 when U = kS, and C' = 0 when

U = B, are required.

2.1.3 Connection between the TF and AFV Models

Although the TF and AFV models are different, there is some connection between them.
As stated in [1], we can view the TF model as a partial default model (the stock price
does not jump upon default, and thus n = 0) since the equity part of the convertible
bond is discounted at the risk-free rate (see Equation (2.1)). More specifically, setting
n =0 and X = B, the PDEs governing U and B under the AFV model become

oU  o%S8%?0°U ou

5 + 352 + TS% — (r+p)U + pmax(kS, RB) = 0, (2.15)

0B ¢*S?0°B 0B
— t = S— — 1-R))B = 0. 2.16
ot * o a5 s ~ el =R) (216)
Comparing Equations (2.2) and (2.16) (ignoring f(t)), we can see that they are exactly
the same if r. = p(1 — R). However, this does not mean that if r. = p(1 — R), the TF
model becomes the partial default AFV model. Setting r. = p(1— R), the PDE governing
the value of U under the TF model in Equation (2.1) becomes (ignoring f(t))
oU o252 0%U ou
—+—-5+rS——rU—-p(l—-R)B=0. 2.17
ot 3 a5 T UL (2.17)
It is easy to see that, in general, (2.17) is not equivalent to (2.15). In Chapter 5, we

will use the connection between the TF and AFV models outlined above to compare the

numerical results obtained from these two models.
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2.2 Owur Proposed Approach for Pricing Convertible

Bonds with Dividend Protection

We know of two types of dividend protection [13]: Conversion Ratio Adjustment, which
promises to adjust the conversion ratio when the dividend on the underlying common
stock is changed, and Dividend Pass-Thru, which promises to pass on increases in divi-
dend amount to the convertible bond holders. Conversion Ratio Adjustment constitutes
the overwhelming majority (over 99%) of convertible bond dividend protection cases [13].
Our proposed approach extends either the TF model or the AFV model described above
to incorporate either of these two types of dividend protection. In our approach, we as-
sume the interest rate is deterministic and the stock price is the only underlying variable,
because, according to [10], the random nature of the spot interest rate is of second-order
importance. Moreover, we assume that dividend payments on the common stock are paid
discretely, which is the standard practice. The handling of discrete dividend payments is
discussed in detail in Section 2.2.3. In the following sections, we discuss our models for

Conversion Ratio Adjustment and Dividend Pass-Thru in detail.

2.2.1 Conwversion Ratio Adjustment

Assume the stock price at t =ty = 0 is S, the underlying stock pays dividend D; for the
time period [t;,t;11], 1 = 0,1,...,d, where t4.1 = T. The conversion ratio at the time of
issue (t = 0) is k. For our extensions of the TF and AVF models, the Conversion Ratio
Adjustment comes into play only at the final and boundary conditions for the associated
PDEs. Motivated by the idea presented in [13], we adjust the conversion ratio as follows:
when deciding whether or not the convertible bond should be (voluntarily or forcibly)
converted into stock, the conversion ratio for the time period [t;, t;1] (for i = 1,...,d)

is changed, according to
Sint
Sint — (D — Do) 4

: (2.18)

Ri = Ko
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where the notation (-); means

z ifz>0
(z)+ =
0 otherwise.
More specifically, we adjust the TF and AFV models respectively to incorporate the

Conversion Ratio Adjustment as follows.

e For the TF model:
Apply Equations (2.1) and (2.2) to govern the evolution of the value of the convert-
ible bond (U) and the value of COCB (B), respectively, for ¢ € [0,7]. Apply the
final/boundary conditions (Equations (2.3) — (2.6)) using appropriate conversion
ratios for different time periods, i.e., ko for [0,1] and &; for [t;,¢;11] computed by

Equation (2.18) fori=1,...,d.

e For the AFV model:
Apply Equations (2.7) — (2.14) to the convertible bond for ¢ € [0,7]. Apply the
final/boundary conditions using appropriate conversion ratios for different time
periods, i.e., ko for [0,;] and k; for [t;,¢;11] computed by Equation (2.18) for
i=1,....d.

2.2.2 Diwidend Pass-Thru

For the Dividend Pass-Thru, the issuing company passes the excess dividend payouts
onto the convertible bond holder. The excess dividend payouts to the convertible bond
holder can be viewed as coupon payments which are paid at each dividend payment date
for which the new dividend is greater than the initial dividend.

Assume the same dividend scheme as the one in Section 2.2.1. The excess dividend
payout K to the holder of one convertible bond at the dividend payment date ¢; (for

i=1,...,d) is determined by

K= k(D; = Do)+ (2.19)
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where k is the conversion ratio. Therefore, to incorporate the Dividend Pass-Thru into
the TF and AFV models, we just add the excess dividend payouts at dividend payment
dates as computed by Equation (2.19) to the coupon payments of the convertible bond,
with the PDEs and final/boundary conditions for each model being unchanged. The

treatment of coupon payments will be discussed in the next section.

2.2.3 Dividend, Coupon and Accrued Interest Payments

In this section, we discuss in detail the handling of dividend, coupon and accrued interest
payments. The treatment described below applies to both the TF and AFV models in
the same way.

In our approach, we assume a discrete dividend model, i.e., dividend payments on
the common stock are paid discretely (e.g., quarterly, semi-annually or annually). If
a discrete dividend D is paid at time %4, according to the no-arbitrage argument and
following the idea of discrete dividend handling for American options presented in [27],

we must have

S(thH) =S(t;) - D, (2.20)
U(S(tg),tq) = U(S(t7),tq), (2.21)
B(S(tg),ts) = B(S(tq), 1), (2.22)
and
C(S(tg),tg) = C(S(tq), ta), (2.23)

where ¢, is the time immediately before the dividend payment, ¢} the time immediately
after the dividend payment, S(¢;) the stock price immediately before the dividend pay-
ment, S(t}) the stock price immediately after the dividend payment, and U(S,t), B(S,t)
and C(S,t) denote the value of the convertible bond, the value of the bond component
of the CB and the value of the equity component of the CB, respectively, when the

underlying stock price is S at time ¢.
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The rationale for Equation (2.20) is clear; see, for example, [27]. The rationale behind
Equations (2.21) to (2.23) is that, since the holder of the convertible bond (and also the
holder of the bond component and the equity component) does not receive the dividend
on the stock, to avoid arbitrage possibility, the value of the convertible bond (also the
bond component and the equity component) must be the same immediately before and
immediately after the dividend date.

Consider a coupon payment K; paid at time ¢;. Let ¢;” be the time immediately after
the coupon payment, and ¢; the time immediately before the coupon payment. By a

similar no-arbitrage argument, the discrete coupon payments are handled by setting

Us,t;) = U(St)+ K;,

C(Svt;) = C(Satj)v (2.24)

where U is the value of the convertible bond, B the value of the bond component and C
the value of the equity component.

The call price B, and the put price B, in the boundary conditions for the PDEs
described earlier are dirty prices which include accrued interest, whereas in practice the
quoted call price and quoted put price are clean prices. Therefore, in our implementation,
we need to compute the accrued interest to get the actual call price and put price. Let
t be the current time in the forward direction. If the last coupon payment was paid at
t;_1 and the next coupon payment in the amount of K; is paid at ¢;, then the accrued

interest on the pending coupon payment at time ¢ is normally taken to be

t—1;1

Accl(t) = K,——.
t; —tio1

(2.25)
The dirty call price B, and the dirty put price B, are computed by

B.(t) = B + Accl(t),

By(t) = B + Accl (¢), (2.26)
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where B¢ and By are the respective clean prices.

According to Hull [12], we assume that the conversion, call and put would happen
immediately after the coupon payment; and in our numerical procedure, we apply the
convesion, callability and puttability constraints first, and then add the coupon payment

(because we are proceeding backwards in time).



Chapter 3

Finite Difference Discretization

From Chapter 2, we can see that incorporating the dividend protection (either Conversion
Ratio Adjustment or Dividend Pass-Thru) into the TF and AFV models does not change
the original PDEs associated with these models. However, the PDEs in the TF and
AFV models are parabolic PDEs for which an analytical solution is not known for the
associated conversion, callability and puttability constraints. Therefore, we must solve
the PDEs numerically. In this chapter, we use the Finite Difference Method (FDM) for
both the spatial and temporal discretization for the PDEs arising from the TF and AFV

models, respectively.

3.1 Variable Transformations for PDEs

To simplify the problem, we consider some variable transformations for the PDEs asso-

ciated with the TF and AFV models.

3.1.1 Transformed PDEs Associated with the TF Model

We apply two variable transformations for the coupled PDEs (2.1) and (2.2). Recall that

U is the value of the CB, and B the value of COCB.

18
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e Set 7 =T —t to transform the PDEs from forward to backward time.
Equations (2.1) and (2.2) become
oU 025% 9°U oU

5, = o5 agz "5 ~ (WU —B)~(r+r)B, (3.1)
0B 0252 9’°B 0B
S = T 4rSog— (r+rJB. (3.2)

We ignore f(t) for now and handle coupon payments as described in Section 2.2.3.
The same approach applies to the PDEs associated with the AFV model as well.

We refer to these two transformed PDEs as 7-transformed PDEs.

e Set =T —tand z = ln(Sit) (where Sj,; is the stock price at ¢t = 0).

Then we have

ou oUdx 0U1

oS 8z dS 0z S’

0B 0B 1

08 9z S’

U _ 0% 0Ly

_ oz
052 — 89S oS
_1a%) 1oUu
TS 9S S?ox
10U 10U
T S2022  S20x
_1,9°U oU
- §(W_a—x)’
B _ 1 0B 0B
57~ Tl ")

Therefore, Equations (2.1) and (2.2) become

oU 0?2 0*U % U
or = 2o T F)gy ~TU-B) = (r+r)B, (33)
OB o’ 0’B 0% 0B
o = 2o TR T UATIE o4

We refer to these two transformed PDEs as x-transformed PDEs.
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In Chapter 4, we explore two numerical methods, namely the PSOR method and the
penalty method, to solve the PDEs arising from a convertible bond without dividends
under the TF model. Our preliminary investigation showed that x-transformed PDEs
work better for the PSOR method, while 7-transformed PDEs work better for the
penalty method. Therefore, we use x-transformed PDEs for the PSOR method, and

T-transformed PDEs for the penalty method throughout this research thesis.

3.1.2 Transformed PDEs Associated with the AFV Model

We set 7 =T — ¢t and the PDEs in Section 2.1.2 become (setting X = B)

oUu 282 52U oUu
= JTW‘F(T +p77)5—_(T+p)U+pmaX(K’S(1_n)aRB)a (35)

or oS

0B 0252 9°B 0B

— = el = - B+ RpB _
oC 028? 9?C oC

% gr e — 1) - RB .
o 5 932 + (r +p77)585 (r +p)C + pmax(xkS(1 — n) — RB,0), (3.7)

where U is the value of the convertible bond, B the value of the bond component, and

C the value of the equity component.

3.2 Formation of Finite Difference Discretization

In this section, we discuss how to apply the Finite Difference Method to discretise the
transformed PDEs described in the previous section in both the spatial and temporal

dimensions.

3.2.1 The Finite Difference Grid

It is clear that the domain of S is [0, 00). In the implementation, we need to approximate
the upper limit oo with a sufficiently large positive number S,,,,. For the 7-transformed
PDEs and the z-transformed PDEs, respectively, we consider the region enclosed by

[Smin, Smaz) X [0, T] and [Zmin, Tmaz] X [0, T], with uniform step-sizes in the spatial and
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temporal dimensions. Clearly, S,.;, = 0. The choice of S,,,; is more complicated. On
one hand, S,,.; has to be sufficiently large in order to avoid excessive error due to the
truncation of the infinite domain. On the other hand, an unnecessarily large value of
Smae increases the computational cost unnecessarily. Li [17] has shown that, for American
options with exercise price equal to 100 and for convertible bonds with stock price at
t = 0 equal to 100, S,,. = 500 is a reasonable upper limit on S in the finite difference
method. Since our numerical examples described later use similar parameters for the
convertible bond as those in [17], we choose S, = 500 as the upper limit on S in our
case too. For the implementation in the x variables, we use ,,;,, = —16 and x,,,, = 2,
which corresponds to Sy, = 1.12535 x 107 and S,,4, = 738.906, respectively. (Recall
that S = Si,cexp(z), and S,y = 100 in our examples.)

Letting AS = (Siaz — Smin)/N and Az = (Tyae — Tmin) /N, we divide the S-axis (or

z-axis) into N equally spaced intervals. Then the spatial grid points are
Sp = Spmin +nAS, n=0,1,...,N.

or

Tp = Tmin + nAz, n=0,1,...,N.

In order to avoid interpolation errors when computing the convertible bond’s value at
t = 0 for the spot stock price, we choose N such that the spot stock price S;,; or the
corresponding spot = value x;,; is a grid point in the spatial dimension.

Letting A7 = T'/M, we divide the 7-axis into M equally spaced intervals. Then the

temporal grid points are
Tm =mAT, m=0,1,..., M.

We use the notation U to denote our numerical approximation to U (S, T,) (or U(zy, 7)),
the value of U at the grid point (S, 7.,) (or (z,,7,)). Similar notation applies to B and

C as well.
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3.2.2 Discretization of the 7- Transformed PDEs Associated with

the TF Model

We use central differences to approximate the first and second derivatives in the spatial
dimension, and use the f-method to approximate the first derivative in the temporal
dimension. We derive the finite difference discretization for the 7-transformed PDEs
associated with the TF model in detail; the discretization for the PDEs associated with
the AFV model follows in a similar way.

Using central differences in the spatial dimension, we have

oU Ui = U]
95 Tma) TR
and
o0*U Urdt —2umtt 4+ yrt!
oz o ) X AS? |

Using the f-method in the temporal dimension, PDE (3.1) can be approximated by the

discretized equation

m+1 _ Jrm 2 2Um —_oUum Uum um. —pym
() <"25" nl T T g, S a ch;”)
-
p (ﬁs}; UmAt — oUmHL 4 U s UmAt -yt
2 AS?2 " 2AS
—rUmtt — TCB,TH), (3.8)

forn=1,.... N—1landm=0,...,M — 1.
Forn=1,...,N — 1, define

0 0’Sy  rSa A
N YN DN

2 ¢2
o°S; 1Sy

Bn = <2A52 + 2AS> AT, (3.9)

Using (3.9), Equation (3.8) becomes (after simplification)

Ut = 0 (omU! = (rAT + o + Ba) Ut + BuUTHY)
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= UP+ (1= 0) (anUy — (PAT + 0 + B)U + BuUT )

—re (1= 0)B + 0B;+!) Ar. (3.10)

Similarly, PDE (3.2) can be approximated by the discretized equation

Bm—|—1 — Bm 0.252 B™ _ 9Bm + B™ m - _ Bm
n n — 1 _ 9 n ~“n+1 n n—1 Sn n+1 n—1 _ . Bm
Ar ( )< > AS? T TToAS (r+ 7B,
0 02S2 it — 2BmHt 4 gt S Bt — B!
2 AS? " 2AS
—(r+ TC)BZ?“), (3.11)

forn=1,....N—land m=0,...,M — 1.

Substituting (3.9) into (3.11), we get
B — 0 (an Byt — (1 + 1) AT + 0 + Ba) Bt + BB
= B+ (1-0) (nBpy — ((r+ 1) AT + 0 + Ba) Bl + BB ) - (3.12)
Note that for the -method, we have the following:

for =0, we get the explicit scheme;
for 6=1/2, we get the Crank-Nicolson scheme;
for =1, we get the fully implicit scheme.

We discuss the choice of # in Chapter 4.

3.2.3 Discretization of the z-Transformed PDEs Associated with

the TF Model

Using central differences in the spatial dimension and the #-method in the temporal

dimension, PDEs (3.3) and (3.4) can be approximated by the discretized equations

umtt —ym o?Um, —2Um + UM o? UM, —Um
n n _ 1—0 Y Yn+l n n—1 Y \Zn+tl n—1 Um _— cBm
AT ( )<2 Ax? +r 2) 2Az ™n = TePn
) ( o Up! =20 + U | o\ U — Ut

2 N =)= %A,

—rUmtt — rCB,TH) (3.13)
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and
Bm—|—1 — Bm 2 B™ _ 9Bm™ B™ 2 B™ _ Bm
- AT o= -0 (07 = Axn? e +(r- %) n+12A:E = TC)B?)
) (a_? Bt —aBptiy B o BI - B
2 Ax? 2 2Ax
—(r+ Tc)32"+1>, (3.14)

forn=1,..., N—landm=0,...,M — 1.
Define

o? r— %2
= — A
@ (2Aaj2 2Az ) i

o? r—2
b = 2Ax2+ 2Azx AT (3.15)

Using (3.15), Equations (3.13) and (3.14) become (after simplification)

Ut = 0 (aUpt! = (rAr + o+ BUPT + UL

= U+ (1-0) (ol — (rAT+a + AU + BUR,)

—re (1= 0)By +0B+") Ar (3.16)
and
B7* =0 (Bt — ((r+ 1) AT+ a + B)Br ! + BB
= B+ (1-0) (aBp, — (r + 7o) AT + o+ B)B + BB, , (3.17)
respectively.

3.2.4 Discretization of the Transformed PDEs Associated with

the AFV Model

Using similar discretizations as in Section 3.2.3, PDEs (3.5), (3.6) and (3.7) can be
approximated by the discretized equations

m m
Un+1 - Un—l

+ (r +pn)Sn SAS

Upt —UR _ ) _ gy (<52 Ukt = 207 + U,y
AT 2 AS?
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—(r +p)U" + pmax (kS,(1 — n), RBZ‘))

oS3 Uil = 205 + U Uit — U
0 ( 2 AS? +r PSR
—(r +p)UM + pmax (mSn(l -n), RB,TH)), (3.18)
Bm+1_Bm O.QSQBm —ZBm—i—Bm m - _ Bm
n n — 1— n —n+l n n—1 n+1 n—1
Ar (=9 ( 2 AS? TSRS
~(r+0- R)p)B;;“>
o’SE By — 2Bt 4+ B Bt — Bt
+9< 5 NG + (4 pn) S
~(r+0- R)p)B;"“), (3.19)
and
cmtl — om a?S:Cm | —20m 4+ Cm cm,—Cm
n n — 1— n —n+l n n—1 - n+1 n—1
At 1-9) < > AS? TS =R
—(r +p)C" + pmax (nSn(l —n)— RB;", 0))
0252 O — 201 4 O ol — om!
0( 2 AS? TS TR
—(r +p)C™! + pmax (/{Sn(l —n) — RB™ 0)), (3.20)
forn=1,....N—land m=0,...,M — 1.
Forn=1,..., N — 1, define
2 2
AFV o°Sy _ (r+Pn)Sy
= - A
n <2A52 2AS o
2 2
AFV o°Sy | (r+Pn)Sy
= AT. 21
On <2AS2 T ToAs ! (3:21)

Using (3.21), Equations (3.18), (3.19) and (3.20) become (after simplification)
Ut = 0T~ ((r+ p)AT + oY 4 BV )UR 4 g U
= Uy +(1-9) (a;i‘FVU;”l — (r+p) AT+ 0"V + AU + BfFVUTTH)
+p((1 — 0) max (nSn(l -n), RB;”)

+6 max (/{Sn(l -n), RB;”“))AT, (3.22)
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Byt —¢ <a;4FVBg_+11 - ((7" + (1= R)p)Ar+ )™ + ﬁ;‘FV) Byt + 5§FVB,T++11>

= B+ (1-06) <oz,‘3FVB;”1 - ((7‘ +(1- R)p)AT + a2V 4 BffFV> B

+ﬂfFVB7T+1> , (3.23)

and

Ot = o Cml — ((r+ AT + oY + VYO 4 VO
= "4 (1-0) (a;;‘FVqT_l — ((r +p) AT + o 4 BV O + ﬁ;;‘FVc*;”H)

+p<(1 — f) max (IiSn(l —n) — RB, 0)

+0max (kS (1 — ) — RBI, o)) Ar, (3.24)

3.3 Boundary Conditions

In this section, we discuss how to incorporate the boundary conditions for the transformed

PDEs described in Section 3.1.

3.3.1 For the 7-Transformed PDEs Associated with the TF

Model
e When §=25,,,, =0:
PDEs (3.1) and (3.2) reduce to

ou

o = —rU—r.B,
0B

e B
5 (r+r.)B,

which can be discretized as

U(?H—l - U(7)n m m m-+1 m+1
—Qx = —(1=6)(rUs* +r.B§*) — 0(rU™ +r.By*"),
By — B

A = —(1—=0)(r+r.)By—0(r +r.)By.
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The equations above can be rearranged as

27

(1+0rAnT+ = (1- (1 0)rA7)U — reAr((1 - 6) By +6Bp+),

(1+0(r +r)AT)BPtt = (1—(1-0)(r+ro)AT) By,
form=0,...,M —1.

e When S = 5,4 :

In this case, the convertible bond will be converted into stock, so we have

m+1

Byt =0,

form=0,...,M —1.

(3.25)

(3.26)

(3.27)

(3.28)

3.3.2 For the z-Transformed PDEs Associated with the TF

Model

e When x = 2, :

We saw earlier that, when S = 0, the PDEs (3.1) and (3.2) reduce to

oU

= = i U-r.B,
5, rU —r
0B

— = — B.
5 (r+re)

Since these equations do not involve any derivatives with respect to S, they also

apply to the z-transformed PDEs (3.3) and (3.4) at + = —oo. Therefore, we are

approximating the boundary condition at *x = —oco by our numerical boundary

condition at & = Zyn, and we use (3.25) and (3.26) for the boundary conditions of

the discretized versions of (3.3) and (3.4) as well.
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e When x = 2,04 :

As for the case S = S,,4, for the 7-transformed PDEs, we have

Ut = KSiexp(zy), (3.29)

Butt = 0, (3.30)

form=0,.... M —1.

3.3.3 For Transformed PDEs Associated with the AFV Model

e When S=5,,,, =0:
PDEs (3.5), (3.6) and (3.7) reduce to

oU

o = —(r+p)U + pRB,
0B

oC

5, = ~r+p)C,

which can be discretized as

U(?)n—}—l - U(;n m m m+1 m+1

—Ar T ~(1=0)((r +P)U5" —pRBf") — 6((r +p)Us"*" — pRBy"™+),

Bgn-i—l _ Bgn m m+1

BB (e o+ 0 R
m+1 _ m

% = —(1=0)(r +p)CF — (r + p)Cy+.

The equations above can be rearranged as

(1+0(r +pAT)UF = (1= (1= 0)(r +p)AT)UF"

+pRAT((1 - 0)By" + 0By+), (3.31)

(1 +0(r+(1- R)p)AT) Bl = (1 —@-0)(r+(- R)p)AT) By,

(3.32)
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(1+0(r+pAT)Cptt = (1-(1-0)(r+p)AT)CF, (3.33)
form=0,...,M —1.

e When S = S,z ¢

Similarly as in the case of PDEs associated with the TF model, we have the fol-

lowing:
Uyt = kS, (3.34)
Butt = 0, (3.35)
Cutt = kS, (3.36)

form=0,...,.M —1.

3.4 Matrix Formulation

The discretized equations and boundary conditions described in the previous sections

can be written in matrix format. For m = 0,..., M, define
vm o= (U U - Upy U,
B™ = (By" BY" .-+ By, BR)",

cm o= (Cfr Cf - Oy CR),
and let I be the (N + 1) x (N + 1) identity matrix. Then we have the following:

e For the 7-Transformed PDEs Associated with the TF Model:
Equation (3.10), for n = 1,..., N — 1, together with the boundary conditions for

U in (3.25) and (3.27) can be written in matrix format as

(T—O0My)U™ = (T+ (1 - 0)My)U™ = rA7((1 = 0)B™ + 9B™ ), (3.37)
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where
—rAT 0 0 e 0
(0] —(’I"AT—{—OQ +ﬁ1) ﬁl 0
My — 0 Qo —(rAT + s + () .. 0 ,
0 e aN_1 —(rAT +an—1+ Bn-1) Bn-1
0 0 0 . 0

and o, and B, (for n =1,..., N — 1) are defined in (3.9).

Similarly, Equation (3.12), for n = 1,..., N — 1, together with the boundary con-

ditions for B in (3.26) and (3.28) can be written in matrix format as

(I—6Mg)B™" = (I+ (1 - 6)Mg)B™, (3.38)
where
—(r 4+ 1) AT 0 0 .0
o —((r + 1) AT + a1 + B1) B .0
Mg = 0 o —((r+r)AT+as+82) ... 0
Bn-1
0 0 0 0

At the first glance, it is not easy to see that the boundary conditions for U and B in
Equations (3.27) and (3.28) are incorporated in the matrix formulations (3.37) and
(3.38). In the following, we show that they are. The last row in (3.38) is equivalent

to

Butt = BY (3.39)

whence

BN =BM'=BN"?=...=B%=0 (3.40)
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since BY = 0 follows from the final condition (2.3). Therefore, (3.38) incorporates

the boundary condition (3.28). Similarly, The last row in (3.37) is equivalent to
URtt = UR —rAr((1-0)BY + 0BT, (3.41)
which becomes
Untt =y, (3.42)
since B = By = 0 by (3.40). Therefore,

UM =UN"'=UN"2=-..=Uy = kSy (3.43)

since Uy = kSy follows from the final condition (2.3). Therefore, (3.37) incorpo-

rates the boundary condition (3.27).

e For the z-Transformed PDEs Associated with the TF Model:
Equation (3.16), for n = 1,..., N — 1, together with the boundary conditions for

U in (3.25) and (3.29) can be written in matrix format as

(T— M) U™ = (T+ (1 - O)MG)U™ — r Ar((1— 0)B™ + 9B™ ), (3.44)

where
—rAT 0 0 0
a —(rAt+a+p) B 0
0 o —(rAT+a+ 0
s ( 5) |
0 o —(rAt+a+p8) B
0 0 0

and o and § are defined in (3.15).

Similarly, Equation (3.17), for n = 1,..., N — 1, together with the boundary con-

ditions for B in (3.26) and (3.30) can be written in matrix format as

(T— M) B™ = (T+ (1 - 0)M5) B™, (3.45)
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where

—(r + 1) AT 0 0 .0
a —((r+rJ)AT +a+fB) B .. 0

0 o' —((r+ro)Ar+a+p8) ... 0

B

0 0 0 0

Following reasoning similar to that for the 7-Transformed PDEs associated with

the TF model, we can see that the boundary conditions for U and B in Equations

(3.29) and (3.30) have been incorporated in the matrix formulations (3.44) and

(3.45), respectively.

e For the 7-Transformed PDEs Associated with the AFV Model:

Equation (3.22), for n = 1,..., N — 1, together with the boundary conditions for

U in (3.31) and (3.34) can be written in matrix format as

(T—oMEFVIU™! = (T+(1-0MH™Y)U™ + pAT((l — 0) max (k(1 — n)S, RB™)

where

AFV _
My ' =

n

(So St

+60 max (lﬁ(l -n)S, RBm+1)) (3.46)
—ry AT 0 0 ... 0
affVo —(ry AT + MV + BAFY) Arv .. 0
0 aytV —(rgAT + TV + BV 00
AFV
N-1
0 0 0 0

aAFV and BAFV (for n = 1,...,N — 1) are defined in (3.21), ry = r +p, S =

Snx_1 Sy)T, and the max in (3.46) and the equations below is taken

componentwise (as in MatLab).
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Similarly, Equation (3.23), for n = 1,..., N — 1, together with the boundary con-

ditions for B in (3.32) and (3.35) can be written in matrix format as

(T— oMAFV)B™! = (T+ (1 - O)MJ™Y)B™, (3.47)
where
—rgAT 0 0 . 0
oV —(rpAT + o FV 4 BAFY) ARV .0
M"Y = 0 gtV —(rgAT + adFV +83MV) ... 0 ;
AFV
N-1
0 0 0 e 0

and rp=r+(1-R)p .

Finally, Equation (3.24), for n = 1,..., N — 1, together with the boundary condi-

tions for C in (3.33) and (3.36) can be written in matrix format as

(I—oMEVIC™! = (I+(1-0)METY)C™ +pm<(1 — 0) max (k(1 —n)S — RB™,0)

+6 max (K(l —n)S — RB™, O)> (3.48)

where MAFY = M&AFV, and 0 is the (N + 1) x 1 zero-vector.

Following similar reasoning as in the case for the 7-Transformed PDEs associated
with the TF model, we can see that the boundary conditions for U, B and C in
Equations (3.34), (3.35) and (3.36) have been incorporated in the matrix formula-
tions (3.46), (3.47) and (3.48), respectively.



Chapter 4

Numerical Algorithms

Due to the complexity of the conversion, callability and puttability features associated
with a convertible bond, it is not possible to apply direct methods to solve the discretized
systems arising from either the TF model or the AFV model described in the previous
chapter. Therefore, iterative methods are needed to incorporate the free boundary con-
ditions arising from conversion, callability and puttability constraints. In this chapter,
we consider two iterative methods: the Projected Successive Over-Relaxation (PSOR)
method and the penalty method. First, we apply the PSOR method and the penalty
method, respectively, to solve the systems arising from a convertible bond without div-
idends under the TF model, and compare the numerical results produced by these two
methods in terms of rate of convergence, number of iterations and computation time.
Then we apply the better of the two methods from this comparison to solve the systems
arising from a convertible bond with dividend protection under both the TF and AFV

models.

34



CHAPTER 4. NUMERICAL ALGORITHMS 35

4.1 The PSOR Method Versus the Penalty Method
for Convertible Bonds Without Dividends Ap-

plied to the TF Model

4.1.1 PSOR Method

The PSOR method is an extension of the SOR method for solving free boundary problems
such as those arising from American options [27]. It can also be used to solve the
free boundary problem arising from convertible bonds [17]. The idea behind the PSOR
method is to explicitly apply the conversion, callability and puttability constraints to
the SOR values (defined later) of B and U at each iteration so that the effect of the
constraints is immediately felt in the calculation of each component of B and U.

In this case, we use the z-transformed PDEs described in Section 3.1 (i.e., set 7 = T —t
and x = ln(%)) We use the Crank-Nicolson scheme for the discretization in the
temporal dimension (i.e., set # = 1/2 in the #-method). For the boundary points, we use
Equations (3.25), (3.26), (3.29) and (3.29) to compute Uy*™, By**!, UP+! and BR*.
Then apply the conversion, callability and puttability constraints explicitly to update
their values according to Algorithm 1.

For the interior points, we need to apply the PSOR method. From Equations (3.17) and
(3.16), forn=1,..., N — 1, we have (setting 6 = 1/2)
Byt — 2 (0B — ((r + ) AT + ot BB + GB)
= Br 4 (- ) (0B — ((r+r) A+t 6B+ ABL)

and

1
Ut - 3 (eUmt! — (rAT + a + QU + BUTS)
1
= Ur+(-3) (aU, — (rAT + a + B)UT + BUTT,)

—re ((1- %)B,T +OBH) A
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Algorithm 1 Explicit application of the conversion, callability and puttability con-

straints to U™ and B™™ for the TF model
Given U™ and B™*!,

{Apply the callability constraint:}
if U™ > max(B,,«xS,) then
Ut = max(B,, kSy,);
Bmt =,
end if
{Apply the puttability constraint:}

if Umt! < B, then

Uptt = By;
Byt = By,
end if

{Apply the conversion constraint:}
if UMt < kS, then

Umntl = kSy;

Bmtl =,
end if
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So the Gauss-Seidel iterates are:

—mA1k+1 1 , ,
By T 24 (rtr )Ar+a+ﬁ<aB;n‘+11 A BB B,
c
+@ = ((r+ AT + o+ B)BY + BBR, ). (4.)
—mA1k+1 1 m+1, : m
U, T 24rArta+ B (aUnlel T U el

+2 = AT+ a+ HUP + BUR, - rebr(B + Byt heH)). (42)
The SOR values of B™"! and U™ at iteration k + 1 are given by

Bkl o gLk (B pmatky (4.3)

gm+bhsl — mlk g @At pmely (4.4)

where k£ > 0 is the iteration index, m = 0,..., M — 1 the time-step index, and 1 < w < 2
the over-relaxation parameter. Note that we start with the initial guess B™+t10 = B™
and Um+H0 = Um,

Then letting U tbk+l = m+lk+l and Brtbrtl — Bm+lk+l e apply the conversion,
callability and puttability constraints to U™ 11 and B™+LE+L ysing Algorithm 1 (re-
placing U™, B™*! and S, with UPTA+L BmtLE+tl and S, exp(z,), respectively).

Finally, the conditions for exiting the PSOR iteration are

||Bm+1,k+1 _ Bm+1,k

oo <€,

HUm—H,k—H . Um—|—1,k

|oo§€a

where € is the tolerance. When these conditions are satisfied, we terminate the PSOR
iteration and set
Um+1 — Um+1,k+1

m+1 __ m+1,k+1
B =B .

The pseudocode for the Crank-Nicolson time-stepping and PSOR iteration are given

in Algorithm 2 and Algorithm 3.
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Algorithm 2 Crank-Nicolson time-stepping for a Convertible Bond Without Dividends

applied to the TF model
U= BY=F + K; {F: face value of the bond; K: coupon payment at maturity}

for n=0to N do
if U? < kS exp(z,) then
U2 = RS exp(an):
BY =0;
end if
end for
for m=0to M —1do
t=T — (m+1)A7; {T is the maturity, A7 is the time interval}
calculate Accl(t) using (2.25);
calculate B.(t) and B,(t) using (2.26) if applicable;
calculate UJ"*! and BJ"™! using (3.25) and (3.26);
apply the conversion, callability and puttability constraints explicitly to U™ and
B! using Algorithm 1;
calculate UV and BT using (3.29) and (3.30);
apply the conversion, callability and puttability constraints explicitly to Ut! and
B! using Algorithm 1;
call the PSOR iteration;
if t € coupon payment period then
Uumtt = ymtl + K;
Bm™tl = pmtl 4 K
end if

end for
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Algorithm 3 PSOR iteration for a Convertible Bond Without Dividends applied to the

TF model
for k =0 to MAXLOOP do

errory = errorg = (;

forn=1to N —-1do

calculate B mtl ket using (4.1);
calculate Bm+1 k+1 ysing (4.3); BmLAtl = §7rlrb+1,k+1
calculate U, mALi using (4.2);
calculate Um+1 R+l ysing (4.4); Umtlk+l = Um—|—1 k+1

apply the conversion, callability and puttability constraints explicitly to Um+1A+1
and Bm™+LEFL ysing Algorithm 1;

errory = max(errory, |[Um A+l — gmtLk)),

errorg = max(errorg, |BMLETL . pmilk|).
end for
if errory < e and errorg < ¢ then
break;
end if

end for

mAl — Lk,
U =U

m+l _ pm+lk+l.
B =B ;
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4.1.2 Penalty Method

The PSOR method applies the constraints explicitly at each iteration of computing the
values of U and B, whereas the penalty method applies the constraints implicitly. Li
presented a penalty scheme for a convertible bond without dividends in [17], but we
believe her approach is not complete in that she did not incorporate the constraint
U < max(B, kS) into the penalty term. In this section, we develop a complete penalty
scheme for a convertible bond without dividends.

For the penalty method, we work with the 7-transformed PDEs described in Section
3.1. According to the TF model [1], the equation for the convertible bond value U can
be written as

ou 025? 9*U ou

5 = 5 ag t7Sag ~ (U= B)=(r+r)B (4.5)

subject to the constraints

U

v

max(Bp, kS), (4.6)

U < max(B.kS). (4.7)

We apply the penalty method to solve the above constrained problem. Notice that this
problem is also dependent on B. We follow the method described in [1] to decouple the
resulting system involving U and B. The idea is as follows.

First, the value of B™*! is estimated by solving (3.38), ignoring any constraints. This
value of B™"! is then used to compute U™"! by solving (3.37), ignoring any constraints.
Then, we apply the conversion, callability and puttability constraints explicitly to U™}
and B™! as describled in Algorithm 1. We then use the adjusted value of B™*! for the
constrained problem (4.5), (4.6) and (4.7), and apply the penalty method to solve for
umtt,

Now we detail the penalty scheme for solving the constrained problem (4.5), (4.6)

and (4.7). Define the payoff functions for a convertible bond as

*
Uceil

(S,7) = max(B,kS),
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U}(loor(‘s’ 7-) = maX(BpaK’S)' (48)

The penalty scheme can be written as

ou 025%9?U ou . .
3 = 5 3% + rsﬁ —rU —r.B — pmax(U — Uz, 0) + pmax(Ujy,,, — U, 0),

where p > 0 is the penalty parameter.

According to the results from [7], in which Forsyth and Vetzal apply the penalty
method to the valuation of American options, and since we adopt a similar penalty
scheme in the valuation of convertible bonds, we expect that the solution of (4.9) satisfies
(or almost satisfies) Ut,,,, < U < Ug,;. Notice that for any U(S,7), at most one of the
two penalty terms in (4.9) is active. We can also see that the penalty method satisfies
the constraints approximately by introducing penalty terms. In the following, we discuss
the discretization for equation (4.9).

The discretization of equation (4.9) without the penalty terms has been discussed in

Section 3.2.2. The discretization of equation (4.9) can be written as

FUTH = —p™ ! 4 gt (4.10)
where
FUM = (U -0
=0 (Ut = (rAT + o + Bu) U + BLUTSY)
—(1 = 6) (U — (PAT + 6 + Bu) U + BoUT )
+rA7 (1= 0)By + 0B*), (4.11)
e _ ) U = Ui pAr U > UL,
0 otherwise,
and
= Urinorm = Ui )pAT i U < Uit

0 otherwise.
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Define
pAT if UMt > Ut

Tceil(UT'an—kl) — ceil,n (412)
0 otherwise,
and
pAT i UM < Uyl

floor,n»

Thioor (UM = (4.13)

0 otherwise.

Then (4.10) can be written as

U U = 0 (Ut — (rAT + o + B)UR L + AU
+(1 = 0) (U, — (PAT + a + B) UL + BuUL,)
—rA ((1—0)B + 0B7+1)
~Teea (U™ (U = Uz ) + Trioor (Un ) Uiporn — U™,

(4.14)

Define Peii (U™ 1) and Pgoor (U™ 1) to be (N +1) X (N +1) diagonal matrices satisfying:

pAr i UM > U™ and i = j,

Pceil(Um+1)ij — ceil,i (415)
0 otherwise,
and
e TrmA *,m+1 .
Poor (U7), = pAT U™ < Uiy and i = j, (4.16)
oor ij — .
0 otherwise.
Extending (3.37), we can write (4.14) in matrix form as
[I _ QMU + Pceil(Um+1) + Pﬂoor(Um+1)]Um+1
= [I+(1—-0)My]U™ - r AT[(1 — 6)B™ + §B™]
+Pceil(Um+1)U:e’;?+1 + Pﬂoor(UmH)U;l’Z;:—l- (4-17)

In the light of [7], we expect that the solution to (4.17) satisfies

urtt sttt 50 or UMM U™ 50 as p— oo

ceil,n floor,n



CHAPTER 4. NUMERICAL ALGORITHMS 43

at nodes for which FU™ # 0. According to [17], we can set p = 1/tol in practice,
where tol is the tolerance for the penalty iteration which is discussed later.
We use a generalized Newton’s Method to solve the discrete non-linear equations

(4.17). Define

+7.AT[(1 - 0)B™ + 0B™ ]
AP it (U™ (U™ = Uit = Paoor (U™ (Ugimad ™ — U™ ).

ceil

(4.18)

Therefore, solving (4.17) is equivalent to finding U™ such that F(U™) = 0. According

to [7], we define the derivative of the penalty terms, required in Newton’s Method, as

.
*,1M : *y,m+1
aPC@iI(UrT+1)(U7T+1 - Ucéil,zl) ) IOAT if U7Tzn+1 > Uceil,:z_ )
+1 o
Uy 0 otherwise;
\
and )
m *, m _ i m *,m+1
anIOOT(Un +1)(Ufl:)TzL):—,'r1z - Un +1) = ,OA’T' if Un t < Ufl;r)rér,n’
+1
ouy! 0 otherwise.

\

Then the Jacobian of F(U™"!) can be computed as
J(U™) =1— My + Peeit(U™) + Prioor (U™ ).
Applying Newton’s Method to solve F(U™!) = 0, we have

J(Um—l—l,k)sk — —F(Um+1’k),

Um+1,k+1 — Um+1’k+Sk, (419)

where S} is the full Newton step obtained in the kth iteration, and U™tk is the kth
estimate for U™*!.

From (4.18) and (4.19), we can get the following (after simplification):

[I - HMU + Pceil(Um—i—l,k) + Pﬂoor(Um+1’k)]Um+l’k+l



CHAPTER 4. NUMERICAL ALGORITHMS 44

= [I+ (1 -0)MylU™ - r AT[(1 —§)B™ + 0B™"]

+P it (U™ THRNUET + Proor (U™ U (4.20)

ceil floor »

which yields the penalty iteration described in Algorithm 4. The penalty time-stepping
algorithm is shown in Algorithm 5. Notice that in Algorithm 5 we use the fully im-
plicit scheme to get the estimates for B™*! and U™"! prior to applying the penalty
method. According to [7] and [17], the fully implicit step is necessary for smoothing the

discontinuity for both the value of the COCB and that of the CB.

4.1.3 Comparison of Numerical Results

In this section, we compare the numerical results for the PSOR and penalty methods for
a convertible bond without dividends under the TF model. We compare the convergence
ratio, number of iterations and computation time incurred by these two methods, and
pick the better method to apply to the convertible bond with dividend protection under
the TF and AFV models. Otherwise stated, throughout this research thesis, all im-
plementation was in Matlab 6 and all experiments were performed on a Dell PowerEdge
SC1425 (2xP4Xeon-3.6GHz) compute server under the operating system of RedHat Linux
7.3 (2.4.x kernel).

The parameters for the Convertible Bond without dividends are shown in Table 4.1. In
the numerical results tables, “Price” is the convertible bond price at ¢ = 0 and S;,,; = 100;
“Grid Size” is the number of intervals in the spatial dimension; “Diff” is the difference be-
tween the solutions of the coarser grid and the finer grid; “Ratio” is the ratio of successive
differences; “No. of Iterations” is the number of PSOR or penalty method iterations for
each time-step; “max” is the maximum number of iterations over all time-steps; “min”
is the minimum number of iterations; “avg” is the average number of iterations for each
time-step; and “Time” is the total computation time in seconds obtained with the Mat-

lab function CPUTIME. At each refinement, the number of time-steps and the grid size
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Algorithm 4 Penalty iteration for a Convertible Bond without dividends under the TF

model
U, = max(B, kS);

ce

Utpor = max(By, xS);
for n=0to N do
if Um0 > U then
Pceiz(UﬁnH’O) = pAT;
else
Peea(Ut10) = 0;
end if
if Um0 < Ugmt then
Pptoor (U419) = pAT:
else
Prioor (UFH10) = 0;
end if
end for
for k£ =0, ..., until convergence do
solve (4.20);
update Py and Prjper using U™ HF+! by Equations (4.15) and (4.16);
if [|[UmebE — gk < tol or
[Prcit (U5 1) == Pogyg (U™ 1%) and Pyigor (U™ 15 +1) == Ppyoq, (U™+1#)] then
exit from for loop;

end if

end for

m+1 _ 7rm+1lk+1.
U =U :
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Algorithm 5 Penalty time-stepping for a Convertible Bond without dividends under

the TF model
U= B = F + K; {F: face value of the bond; K: coupon payment at maturity}

for n=0to N do

if U, < kS,, then

U, = kSy;
B, = 0;
end if
end for

form=0to M —1do
t=T— (m+1)A7; {T is the maturity, A7 is the time interval}
calculate Accl(t) using (2.25);
calculate B.(t) and B,(t) using (2.26) if applicable;
calculate B™*! using the fully implicit method (3.38);
calculate U™ using B™*! and the fully implicit method (3.37);
apply constraints to U™! and B™*! explicitly using Algorithm 1;
call the Penalty iteration with the Crank-Nicolson method to compute U™*!;
B™+! = min(Bm+, Umt);
if t € coupon payment period then
Umtl = gl 4 K
Bl — Bmtl 4 [
end if

end for
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are doubled.

Table 4.1: Model parameters for the Convertible Bond without dividends

Parameter Value
Time to maturity 7' D years
Conversion 0 to 5 years into 1 share
Conversion ratio k 1.0
Face value F’ 100
Clean call price B¢ 110 from year 3 to year 5
Clean put price B 105 during year 3
Coupon payments K $4.0
Coupon dates .5, 1.0, 1.5, ..., 5.0
Risk-free interest rate r 5% or 0.05
Credit risk r, 2% or 0.02
Volatility o 20% or 0.20

Underlying stock price at t = 0 (S;;) 100
Tolerance for PSOR Iteration e 1.0e-06

Tolerance for Penalty Iteration tol 1.0e-06

The results in Tables 4.2 and 4.3 are for a convertible bond without dividends under
the TF model, with parameter values given in Table 4.1. Table 4.2 shows the numerical
results obtained using the PSOR method and the transformation S = 100e”; Table 4.3

shows the numerical results obtained using the Penalty method.

Notice that we use the transformation S = 100e” for the PSOR method, while not for
the penalty method. To make the results comparable, we choose the grid size used for

these two methods such that the stepsizes near the grid point S = 100 are approximately
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Table 4.2: Results for the PSOR method for a convertible bond without dividends under

the TF model computed in the z variables with S = 100e”

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg | Time
100 288 124.11018940 11 6 8.2 Os
200 576 124.00570243 | -0.10448697 15 8 | 9.8 Is
400 1152 123.98757448 | -0.01812795 | 5.8 26 9 |12.1] 3s
800 2304 123.98069631 | -0.00687817 | 2.6 24 | 10 | 144 | 10s
1600 4608 123.97358049 | -0.00711581 | 1.0 36 | 12 | 18.3 | 59s
3200 9216 123.96759892 | -0.00598157 | 1.2 62 | 14 | 23.2 | 299s
6400 18432 | 123.96639480 | -0.00120412 | 5.0 | 110 | 17 | 29.7 | 1362s
12800 36864 | 123.96588647 | -0.00050832 | 2.4 | 201 | 19 | 38.0 | 7008s
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Table 4.3: Results for the penalty method for a convertible bond without dividends under

the TF model computed in the S variables

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg | Time
100 100 124.02819396 4 1 1.7 Os
200 200 124.03535203 | 0.00715807 4 1 1.9 1s
400 400 123.98909449 | -0.04625754 | 0.2 4 1 ] 20 2s
800 800 123.98167193 | -0.00742255 | 6.2 7 1 |21 7s
1600 1600 123.97510793 | -0.00656401 | 1.1 10 1 ] 22| 27s
3200 3200 123.96949235 | -0.00561558 | 1.2 13 1 | 24| 112s
6400 6400 123.96709697 | -0.00239538 | 2.3 15 1 | 2.6 | 500s
12800 12800 | 123.96577303 | -0.00132394 | 1.8 15 1 | 2.8 | 2186s
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equal for both methods. Therefore, we have

100e®® = 100+ AS

AS
Ax
= 14+ —

‘ 100

AS :

1+ Az =~ 1+m (since 1+ z ~ e* for small )

Ar =~ as

100

B8 2

N, = N

]Vz =~ 3.6N5,

where N, is the grid size in the z-dimension, and Ng the grid size in the S-dimension.

The choice of grid size in Tables 4.2 and 4.3 roughly reflects the above relationship.
From Tables 4.2 and 4.3, we can see that as the time and grid step-sizes are reduced,

both methods appear to be converging to a value which is approximately 123.965. In the

following, we compare the numerical results for these two methods in more detail.

Comparison of the Convergence Ratio

Table 4.4 shows the average convergence ratio and its standard deviation obtained by the
PSOR method (Table 4.2) and the penalty method (Table 4.3). From Tables 4.2, 4.3 and
4.4, we can see that both methods achieve about a first-order convergence rate with re-
spect to A7 on average, although Crank-Nicolson time stepping, which has second-order
convergence with respect to A7 for sufficiently smooth problems, is used as the under-
lying method for both the PSOR and the penalty iterations. We also see that for both
methods, the order of convergence oscillates erratically, with standard deviation 1.98 for
the PSOR method and 2.11 for the penalty method. Similar convergence rate oscillations
for convertible bond pricing can also be observed in [1] and [9]. We believe that the rea-
son for the convergence rate degeneration and oscillation comes from the discontinuities

associated with the convertability, callability, puttability and discrete coupon payments
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associated with the convertible bond. As far as the convergence ratio is concerned, we

cannot claim that one of the two methods is substantially better than the other.

Table 4.4: Comparison of the convergence ratio for the PSOR and penalty methods (CB

without dividends under the TF model)

Method Average Ratio | Standard Deviation
PSOR method 3.0 1.98
Penalty method 2.1 2.11

Comparison of the Number of Iterations and Computation Time

Table 4.5 shows the comparison on the average number of iterations for each time-step
and the computation time required by the PSOR method and the penalty method, re-
spectively. The saved percentage for the average number of iterations for each time-step

and the computation time is computed by

PSOR Iters — Penalty Iters PSOR Time — Penalty Time
or :

PSOR Iters PSOR Time

From Table 4.5, it is clear that the penalty method saves significantly in both the
average number of iterations for each time-step and the overall computation time. The
saving becomes more significant as the grid is refined. In terms of the number of iterations
and the computation time, the penalty method has a significant advantage over the PSOR
method.

Combining the above comparisons together, we can conclude that the penalty method
is more efficient than the PSOR method, therefore we choose to use the penalty method in
our numerical scheme to compute the price of a convertible bond with dividend protection

in the following section.
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Table 4.5: Comparison of the average number of iterations for each time-step and com-
putation time for the PSOR and penalty methods (CB without dividends under the TF

model)

PSOR Method Penalty Method Percentage Saved

Time-steps(M) Price Iters | Time Price Iters | Time | Iters Time
100 124.11018940 | 8.2 0s | 124.02819396 | 1.7 0s | 79.3% -
200 124.00570243 | 9.8 Is | 124.03535203 | 1.9 Is | 80.6% 0%

400 123.98757448 | 12.1 | 3s | 123.98909449 | 2.0 2s |83.5% | 33.3%

800 123.98069631 | 14.4 | 10s | 123.98167193 | 2.1 7s 185.4% | 30.0%

1600 123.97358049 | 18.3 | 59s | 123.97510793 | 2.2 | 27s | 88.0% | 54.2%

3200 123.96759892 | 23.2 | 299s | 123.96949235 | 2.4 | 112s | 89.7% | 62.5%

6400 123.96639480 | 29.7 | 1362s | 123.96709697 | 2.6 | 500s | 91.3% | 63.3%

12800 123.96588647 | 38.0 | 7008s | 123.96577303 | 2.8 | 2186s | 92.6% | 68.8%
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4.2 Penalty Method for Convertible Bonds With Div-

idend Protection

In this section, we discuss how to apply the penalty method to convertible bonds with

dividend protection under the TF and AFV models, respectively.

4.2.1 Under the TF Model

Conversion Ratio Adjustment

As described in Section 2.2.1, the Conversion Ratio Adjustment comes into play at the
final /boundary conditions for the problem. Therefore, the algorithm is similar to the
one for convertible bonds without dividends except that we need to apply appropriate
conversion ratios to different time periods during the life of the convertible bond according
to (2.18), and to handle discrete dividend payments on the underlying stock according to
(2.20), (2.21), (2.22) and (2.23). The penalty iteration algorithm is the same as Algorithm

4. We give the pseudocode for the penalty time-stepping algorithm in Algorithm 6.

Dividend Pass-Thru

As described in Section 2.2.2, for Dividend Pass-Thru, the PDEs and boundary/final
conditions are the same in this case as for a convertible bond without dividends. The
only difference is that we treat the excess dividend payouts at dividend payment dates
as coupon payments to the convertible bond. Therefore, the algorithm is similar to
the one for convertible bonds without dividends except that we need to add the excess
dividend payouts at dividend payment dates computed by (2.19) as coupon payments to
the convertible bond according to (2.24), and to handle discrete dividend payments on
the underlying stock according to (2.20), (2.21), (2.22) and (2.23). The penalty iteration

algorithm is the same as Algorithm 4. We give the pseudocode for the penalty time-
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Algorithm 6 Penalty time-stepping for a Convertible Bond with dividend protection

using Conwversion Ratio Adjustment under the TF model
D =Dy D, ... Dgy]; {discrete dividends on the underlying stock}

k= [Ko K1 ... Kq| computed by (2.18);{conversion ratios for different time periods}
U= B = F + K; {F: face value of the bond; K: coupon payment at maturity}
for n =0to N do
if U, < k45, then
Un = KqSn; Bn = 0;
end if
end for
for m=0to M —1do
t=T— (m+1)A7; {T is the maturity, A7 is the time interval}
calculate Accl(t) using (2.25);
calculate B.(t) and B,(t) using (2.26) if applicable;
calculate B™*! using the fully implicit method in (3.38);
calculate U™ using B™*! and the fully implicit method in (3.37);
get corresponding & for ¢ from [kg K1 ... Kq;
apply constraints to U™*! and B™*! explicitly using Algorithm 1;
call the Penalty iteration with the Crank-Nicolson method to compute U™*!;
B™! = min(B™t!, U™ T);
if t € coupon payment period then
ymtl = ymtl 4 K; Bt = pmtl 4 K
end if
if ¢t € dividend payment period then
adjust U™ and B™*! according to (2.21) and (2.22);
end if

end for
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stepping algorithm in Algorithm 7.

4.2.2 Under the AFV Model

We first consider the penalty method for convertible bonds without dividends, and then
extend the algorithm to handle convertible bonds with dividend protection using Con-

version Ratio Adjustment and Dividend Pass-Thru, respectively.

For Convertible Bonds Without Dividends

We work with the transformed PDEs under the AFV model described in section 3.1.
According to [1], the equations for the convertible bond value U in (2.7), (2.8) and (2.9)

can be written (after transformation) as

ou 0?5? 9°U ou

v _ oY o 1—1n),RB 4.21
9 5 952 +7°SaS (r +p)U + pmax(kS(1 — n), RB) (4.21)

subject to the constraints
U > max(B,,kS5), (4.22)
U < max(BkS). (4.23)

We apply the penalty method to solve the above constrained problem. As for the TF
model, we use the method described in [1] to decouple the resulting system involving U
and B, as follows.

First, the value of B™*! is estimated by solving (3.47), ignoring any constraints. This
value of B™! is then used to estimate C™*! by solving (3.48), ignoring any constraints.
Then, we apply the constraints encompassed in the Linear Complimentarity Problems
(2.10) and (2.11) explicitly to C™*! and B™*!. We then use the adjusted value of B™*!
for the constrained problem (4.21), (4.22) and (4.23), and apply the penalty method to

solve for U™t1,
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Algorithm 7 Penalty time-stepping for a Convertible Bond with dividend protection

using Dividend Pass-Thru under the TF model
D =[Dy D, ... Dy]; {discrete dividends on the underlying stock}

K' = [K{ K} ... K]] computed by (2.19); {excess dividend payout on each dividend
date}
U = B = F + K; {F: face value of the bond; K: coupon payment at maturity}
for n=0to N do
if U, < kS,, then
U, =kSp; B, =0;
end if
end for
for m=0to M —1do
t=T — (m+1)Ar; {T is the maturity, A7 is the time interval}
calculate Accl(t) using (2.25);
calculate B.(t) and B,(t) using (2.26) if applicable;
calculate B™*! using the fully implicit method in (3.38);
calculate U™ using B™*! and the fully implicit method in (3.37);
apply constraints to U™*! and B™! explicitly using Algorithm 1;
call the Penalty iteration with the Crank-Nicolson method to compute U™*!;
B™! = min(B™t! U™,
if t € coupon payment period then
Um+l = UmHl 4 K B = Bt 4 K
end if
if ¢t € dividend payment period then
get corresponding K’ for ¢ from [K| K} ... K};
Umntt =ymtt + K'; Bt = B+ K
adjust U™ and B™*! according to (2.21) and (2.22);
end if

end for
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Following the same approach as discussed above for the TF model, we can write the
penalty scheme for the constrained problem (4.21), (4.22) and (4.23) as

oU 0252 9*U oUu
E = TW—!—TS%—(T+p)U+pmaX(/£S(1—77),RB)
—pmax(U — Uzy,0) + pmax(Uj,,, — U,0), (4.24)

ceil’

*

where p > 0 is the penalty parameter, R the recovery rate, and the payoff functions U},;

and Uj,,,, are defined in (4.8).
Similarly as described above for the TF model, taking (3.46) into account, we can get

the corresponding discretization equations in matrix form as
[I _ QM%FV + Pceil(Um+1) + Pﬂoor(Um+1)]Um+1
= [I+(1-0MEVIU™ + pAT[(1 — 0) max(k(1 — 1)S, RB™) + § max(x(1 — 1)S, RB™)]

APt (U™ UL + Paoor (U™ U, (4.25)

ceil

where Peeit(U™!) and Pgoor(U™!) are defined in (4.15) and (4.16).
Applying the generalized Newton’s Method to solve the discrete non-linear equations

(4.25), we get the following penalty iteration
[I _ OMGFV 4 Pceil(Um-i—l,k) + Pﬁoor(Um+1’k)]Um+l’k+1
= [I+(1-0)MEFVIU™ + pAT[(1 — 0) max(k(1 — 1)S, RB™) + § max(x(1 — n)S, RB™)]

+Peeit (U™ USTT 4 Pgoor (UMTHR)UETHL (4.26)

ceil floor

The pseudocode for the penalty iteration and the penalty time-stepping algorithm is
shown in Algorithms 8 and 9, respectively. Note that Algorithm 8 differs from Algorithm

4 only in the point where (4.26) is solved.

Conversion Ratio Adjustment

The handling of the Conversion Ratio Adjustment is similar to the corresponding case
of the TF model. The penalty iteration algorithm is the same as Algorithm 8. The

pseudocode for the penalty time-stepping algorithm is shown in Algorithm 10.
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Algorithm 8 Penalty iteration for a Convertible Bond without dividends under the AFV

model
U, = max(B, kS);

ce

Utpor = max(By, xS);
for n=0to N do
if Um0 > U then
Pceiz(UﬁnH’O) = pAT;
else
Peea(Ut10) = 0;
end if
if Um0 < Ugmt then
Pptoor (U419) = pAT:
else
Prioor (UFH10) = 0;
end if
end for
for k£ =0, ..., until convergence do
solve (4.26);
update Py and Prjper using U™ HF+! by Equations (4.15) and (4.16);
if [|[UmebE — gk < tol or
[Prcit (U5 1) == Pogyg (U™ 1%) and Pyigor (U™ 15 +1) == Ppyoq, (U™+1#)] then
exit from for loop;

end if

end for

m+1 _ 7rm+1lk+1.
U =U :
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Algorithm 9 Penalty time-stepping for a Convertible Bond without dividends under

the AFV model
U= B = F + K; {F: face value of the bond; K: coupon payment at maturity}

for n =0to N do
if U, < kS,, then
U, =kS,; B, =0;
end if
end for
for m=0to M —1do
t=T— (m+1)A7; {T is the maturity, A7 is the time interval}
calculate Accl(t) using (2.25);
calculate B.(t) and B,(t) using (2.26) if applicable;
calculate B™*! using the fully implicit method in (3.47);
calculate C™*! using B™™! and the fully implicit method in (3.48); {apply con-
straints to B™ and C™ ! explicitly:}
for n=0to N do
B™t! = min(B,, B™);
if B, > kS, then
Bp+t = max(Bpt!, B, — C+Y);
else
Cm! = max(kS, — Bm™t!, Cmtl;
end if
end for
C™! = min(C™, max(kS, B.) — B™!);
call the Penalty iteration with the Crank-Nicolson scheme to compute U™*1;
B™! = min(B™t! ymtl), omtl = gt — pmtl.
if t € coupon payment period then
gmtt = ymtt + K; Bt = B 4+ K
end if

end for




CHAPTER 4. NUMERICAL ALGORITHMS 60

Algorithm 10 Penalty time-stepping for a Convertible Bond with dividend protection

using Conversion Ratio Adjustment under the AFV model
D =Dy D, ... Dgy]; {discrete dividends on the underlying stock}

Kk = [Ko K1 ... Kq| computed by (2.18); {conversion ratios for different time periods}
U= B = F + K; {F: face value of the bond; K: coupon payment at maturity}
for n =0to N do
if U, < k45, then
Un = KqSn; Bn = 0;
end if
end for
for m=0to M —1do
t=T— (m+1)A7; {T is the maturity, A7 is the time interval}
calculate Accl(t) using (2.25);
calculate B.(t) and B,(t) using (2.26) if applicable;
calculate B™*! using the fully implicit method in (3.47);
calculate C™! using B™*! and the fully implicit method in (3.48);
get corresponding k for ¢ from [kg K1 ... Kq;
apply constraints to B™*! and C™*! explicitly as in Algorithm 9;
call the Penalty iteration with the Crank-Nicolson scheme to compute U™*!;
B+ = min(B™, Uy, Ol = Ul g,
if t € coupon payment period then
ymtl = ymtl 4 K; Bt = pmtl 4 K
end if
if t € dividend payment period then
adjust U™ B™+! and C™! according to (2.21), (2.22) and (2.23);
end if

end for
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Dividend Pass-Thru

The handling of the Dividend Pass-Thru is similar to the corresponding case of the TF
model. The penalty iteration algorithm is the same as Algorithm 8. The pseudocode for

the penalty time-stepping algorithm is given in Algorithm 11.
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Algorithm 11 Penalty time-stepping for a Convertible Bond with dividend protection

using Dividend Pass-Thru under the AFV model
D =[Dy D, ... Dy]; {discrete dividends on the underlying stock}

K' = [K{ K} ... K]] computed by (2.19); {excess dividend payout on each dividend
date}
U = B = F + K; {F: face value of the bond; K: coupon payment at maturity}
for n=0to N do
if U, < kS,, then
U, =kSp; B, =0;
end if
end for
for m=0to M —1do
t=T — (m+1)Ar; {T is the maturity, A7 is the time interval}
calculate Accl(t) using (2.25);
calculate B.(t) and B,(t) using (2.26) if applicable;
calculate B™*! using the fully implicit method in (3.47);
calculate C™! using B™*! and the fully implicit method in (3.48);
apply constraints to B™! and C™*! explicitly as in Algorithm 9;
call the Penalty iteration with the Crank-Nicolson scheme to compute U™*!;
B™! = min(B™t! ym™tl), cmtl = gt — pmtls
if t € coupon payment period then
UmHl = gmHl 4 K B = Bt 4 K
end if
if ¢t € dividend payment period then
get corresponding K’ for ¢ from [K] K} ... K};
ugmtl = gm+l  K'; Bt = Bmt 4 K’ {add excess dividend payout}
adjust U™ B™+ and C™*! according to (2.21), (2.22) and (2.23);
end if

end for




Chapter 5

Numerical Results

In this chapter, we illustrate numerical results from the penalty method described in
Chapter 4 under the TF and AFV models, respectively, for the following three cases:
a convertible bond without dividends, a convertible bond with dividends but without
dividend protection, and a convertible bond with dividends and with dividend protection.
We will compare the results under the TF and AFV models, and present some plots based

on these results.

The parameters for the Convertible Bond without dividends are shown in Table 4.1
in Chapter 4, and the parameters for the Convertible Bond with dividends are shown in
Table 5.1. Recall that in the numerical results tables, “Price” is the convertible bond
price at t = 0 and S;,; = 100; “Grid Size” is the number of intervals in the spatial
dimension; “Diff” is the difference in the solution from the coarser grid; “Ratio” is the
ratio of successive differences; “No. of Iterations” is the number of iterations for each
time-step; “max” is the maximum number of iterations over all time-steps; “min” is the
minimum number of iterations; and “avg” is the average number of iterations for each

time-step. At each refinement, the number of time-steps and the grid size are doubled.

Also notice that, we preset the dividends scheme in Table 5.1. This handling is only

for research purpose. In practice, there is a designated team in the issuing company
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responsible for predicting the future dividends scheme.

Table 5.1: Model parameters for the Convertible Bond with dividends

Parameter

Value

Time to maturity 7'
Conversion
Conversion ratio k
Face value F
Clean call price B¢
Clean put price B
Coupon payments K
Coupon dates
Dividends D;
Dividend dates
Risk-free interest rate r
Credit risk 7.
Hazard rate p
Volatility o
Underlying stock price at ¢ = 0 (Sipt)

Tolerance for Penalty Iteration tol

O years

0 to 5 years into k shares
1.0

100

110 from year 3 to year 5
105 during year 3

$4.0

.5, 1.0, 1.5, ..., 5.0
2,3,4,4, 4

0, 1.0, 2.0, 3.0, 4.0

5% or 0.05

2% or 0.02

2% or 0.02

20% or 0.20

100

1.0e-06

5.1 Results under the TF Model

Table 5.2 shows the numerical results obtained using the penalty method for a convertible

bond without dividends. Table 5.3 shows the numerical results obtained using the penalty

method for a convertible bond with dividends, but without dividend protection. Table
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5.4 shows the numerical results obtained using the penalty method for a convertible
bond with dividend protection via Conversion Ratio Adjustment. Table 5.5 shows the
numerical results obtained using the penalty method for a convertible bond with dividend

protection via Dividend Pass-Thru.

Table 5.2: Results of penalty method for a convertible bond without dividends under the

TF model

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 124.02819396 4 1 1.7
200 200 124.03535203 | 0.00715807 4 1 1.9
400 400 123.98909449 | -0.04625754 | 0.2 4 1 |20
800 800 123.98167193 | -0.00742255 | 6.2 7 1 ] 21
1600 1600 123.97510793 | -0.00656401 | 1.1 10 1 ] 22
3200 3200 123.96949235 | -0.00561558 | 1.2 13 1 | 24
6400 6400 123.96709697 | -0.00239538 | 2.3 15 1 |26
12800 12800 | 123.96577303 | -0.00132394 | 1.8 15 1 |28

From Tables 5.2 - 5.5, we can see that as the time and grid step-sizes are reduced, for
all cases, the numerical solutions appear to be converging to a final value. In all cases,
the price in the last line of each table appears to be accurate to the 1-cent level. We can
also observe that, for all cases, the average number of iterations per time-step is quite
small, ranging from 1.7 to 3.2, which means that for typical grids and time step-sizes, the
penalty method converges rapidly, and thus works efficiently. Also, as the time step-size
is reduced, the average number of iterations per time-step is relatively stable. As for the
convergence ratio, we can see that it often oscillates. Table 5.6 shows the average ratio

and the standard deviation for each case.
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Table 5.3: Results of penalty method for a convertible bond with dividends but without

dividend protection under the TF model

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 119.21868575 5 1 1.9
200 200 119.12859464 | -0.09009111 5 1 1.9
400 400 119.10405994 | -0.02453470 | 3.7 5 1 1.9
800 800 119.10258054 | -0.00147940 | 16.6 7 1 1.9
1600 1600 119.09395718 | -0.00862336 | 0.2 12 1 1.9
3200 3200 119.08816203 | -0.00579515 | 1.5 15 1 |20
6400 6400 119.08562921 | -0.00253282 | 2.3 19 1 |20

12800 12800 | 119.08481504 | -0.00081417 | 3.1 20 1 |21

Table 5.4: Results of penalty method for a convertible bond with dividend protection via

Conversion Ratio Adjustment under the TF model

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 120.25106182 3 1 1.7
200 200 120.15377813 | -0.09728368 3 1 | 17
400 400 120.11342896 | -0.04034918 | 2.4 4 1 1.7
800 800 120.09813870 | -0.01529026 | 2.6 6 1 ] 1.7
1600 1600 120.09001783 | -0.00812087 | 1.9 9 1 |18
3200 3200 120.08261291 | -0.00740492 | 1.1 12 1 |18
6400 6400 120.07958142 | -0.00303149 | 2.4 14 1 119

12800 12800 | 120.07660169 | -0.00297973 | 1.0 14 1 |20




CHAPTER 5. NUMERICAL RESULTS 67

Table 5.5: Results of penalty method for a convertible bond with dividend protection via
Dividend Pass-Thru under the TF model

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 123.14311958 4 1 1.8
200 200 123.07521340 | -0.06790618 | 0.0 4 1 |20
400 400 123.06847768 | -0.00673573 | 10.1 4 1 | 21
800 800 123.07564489 | 0.00716721 | 0.9 7 1 |22
1600 1600 123.07725381 | 0.00160892 | 4.5 10 1 | 24
3200 3200 123.07849987 | 0.00124607 | 1.3 13 1 | 27
6400 6400 123.08055845 | 0.00205858 | 0.6 15 1 ] 3.0

12800 12800 | 123.08115076 | 0.00059231 | 3.5 15 1 ] 32

under the TF model

CBs Average Ratio | Standard Deviation
CB without dividends 2.1 2.11

CB with dividends without divi- 4.6 6.02

dend protection

CB with dividend protection 1.9 0.70
(Conversion Ratio Adjustment)

CB with dividend protection 3.5 3.59
(Dividend Pass-Thru)

Table 5.6: Comparison of penalty method for different featured CBs on convergence ratio
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From Table 5.6, we can see that the penalty method achieves roughly between first-
order and second-order convergence with respect to A7 on average, and the convergence
ratio oscillates erratically. We conjecture that the following factors may be the reason:
the discontinuities caused by the convertability, callability, puttability, discrete coupon
payments and dividends associated with a convertible bond; and the use of a fully implicit
scheme to get the estimate of the value of B before applying the penalty method to
compute U for each time-step. As stated in Chapter 4, the convergence oscillation for
convertible bonds pricing can also be observed in the works of other researchers; see, for

example, [1] and [9].

To see the impact of dividend protection on the convertible bond value, we present
the following plots. Figure 5.1 shows the convertible bond price without dividends, with
dividends but without dividend protection, and with dividend protection via Conversion
Ratio Adjustment, respectively, under the TF model for different underlying stock prices.
Figure 5.2 is similar except that the dividend protection is via Dividend Pass-Thru.
Figure 5.3 shows the difference between the convertible bond price without dividend
protection and the one with dividend protection via Conversion Ratio Adjustment and

Dividend Pass- Thru, respectively.

From Figures 5.1 and 5.2, we can see that the value of the convertible bond with-
out dividends is higher than the one with dividends but without dividend protection
as expected. The dividend protection either via Conversion Ratio Adjustment or via
Dividend Pass-Thru increases the convertible bond value compared to the one without
dividend protection. From Figure 5.3, we can see that the Conversion Ratio Adjustment
and Dividend Pass- Thru results exhibit different trends on the increase in percentage of
the convertible bond value compared to the one without protection: for the former, the
increase is small for small S, increases as S increases and reaches the maximum of about
1.1% at S =~ 140, and then decreases after this point as S increases; for the latter, the

increase is very large (around 4%) for small S, reaches a maximum of about 4.1% at
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Figure 5.1: Price comparison for Convertible Bonds without dividends, with dividends

but without dividend protection, and with dividend protection via Conversion Ratio

Adjustment under the TF model
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Figure 5.2: Price comparison for Convertible Bonds without dividends, with dividends
but without dividend protection, and with dividend protection via Dividend Pass-Thru

under the TF model
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Figure 5.3: Price difference between Convertible Bonds without dividend protection and

with dividend protection under the TF model
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S = 55, and then decreases after this point as S increases. Overall, we find that dividend
protection via Dividend Pass- Thru provides better protection than via Conversion Ratio
Adjustment against future dividend payouts on the common stock. This is because Div-
tdend Pass-Thru injects a new cash flow that did not exist before, 7.e., a windfall. It is
interesting to observe that the value of the convertible bond with dividend protection via
Dividend Pass-Thru is even higher than the one without dividends for small S in Figure
5.2. We believe that there are two reasons for this. First, for small S, a convertible
bond behaves just like a straight bond and thus the extra dividend on the stock does not
penalize the value of the embedded conversion option. Second, as stated earlier, Divi-
dend Pass-Thru injects a new cash flow that did not exist before. This over-protection

phenomenon for small S is also observed in [13].

5.2 Results under the AFV Model

Recall that according to the AFV model, specific assumptions are made about the be-
havior of the stock price on default, and recovery after default, i.e., we have various
choices of n € [0,1] and R € [0, 1]. In the following sections, we present numerical results

obtained for different values of n and R.

5.2.1 Settingn=0and R=0

As noted in Section 2.1.3, the TF model is a partial default model (the stock price does
not jump upon default, and thus n = 0), and the PDEs governing the value of B under
the TF and AFV models are exactly the same if r. = p(1 — R). Therefore, to make the
results from the AFV model as comparable as possible to the ones obtained under the
TF model, we set n =0 and R = 0 (thus making p = r.) for the AFV model.

Table 5.7 shows the numerical results obtained using the penalty method for a con-

vertible bond without dividends. Table 5.8 shows the numerical results obtained using
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the penalty method for a convertible bond with dividends, but without dividend pro-
tection. Table 5.9 shows the numerical results obtained using the penalty method for a
convertible bond with dividend protection via Conversion Ratio Adjustment. Table 5.10
shows the numerical results obtained using the penalty method for a convertible bond

with dividend protection via Dividend Pass-Thru.

Table 5.7: Numerical results for the penalty method for a convertible bond without

dividends under the AFV model (n =0 and R = 0)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 124.88822145 4 1 1.9
200 200 124.91342626 | 0.02520481 4 1 2.0
400 400 124.91820687 | 0.00478061 | 5.3 4 1 |21
800 800 124.91864116 | 0.00043430 | 11.0 6 1 ] 22
1600 1600 124.91835971 | -0.00028146 | 1.5 9 1 | 24
3200 3200 124.91810039 | -0.00025932 | 1.1 12 1 | 27
6400 6400 124.91794182 | -0.00015857 | 1.6 14 1 | 31

12800 12800 | 124.91789360 | -0.00004822 | 3.3 15 1 |33

From Tables 5.7 - 5.10, we can see that, as the time and grid step-sizes are reduced,
each numerical solution appears to be converging to a final value. Moreover, the price in
the last line of each table appears to be accurate to at least the 0.1-cent level. We can also
observe that, for all cases, the average number of iterations per time-step is quite small,
ranging from 1.8 to 3.8, which means that, for typical grids and time-steps, the penalty
method converges rapidly per time-step, and thus works efficiently. Also, as the time
step-size is reduced, the average number of iterations per time-step is relatively stable.

As for the convergence ratio, we can see that it often oscillates in all cases, much as it
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Table 5.8: Numerical results for the penalty method for a convertible bond with dividends

but without dividend protection under the AFV model (n =0 and R = 0)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 120.91900823 6 1 1.9
200 200 120.86225303 | -0.05675520 8 1 120
400 400 120.85031078 | -0.01194225 | 4.8 5 1 |21
800 800 120.84498418 | -0.00532660 | 2.2 10 1 |21
1600 1600 120.84333085 | -0.00165334 | 3.2 9 1 |23
3200 3200 120.84253260 | -0.00079825 | 2.1 12 1 |24
6400 6400 120.84220182 | -0.00033077 | 2.4 14 1 | 27

12800 12800 | 120.84212648 | -0.00007534 | 4.4 15 1 |29

Table 5.9: Numerical results for the penalty method for a convertible bond with dividend

protection via Conversion Ratio Adjustment under the AFV model (n =0 and R = 0)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 121.85920559 4 1 1.8
200 200 121.76751971 | -0.09168588 4 1 1.9
400 400 121.75351681 | -0.01400290 | 6.5 4 1 |20
800 800 121.74696831 | -0.00654850 | 2.1 6 1 |21
1600 1600 121.74471433 | -0.00225397 | 2.9 9 1 ] 22
3200 3200 121.74391364 | -0.00080069 | 2.8 12 1 | 24
6400 6400 121.74358547 | -0.00032817 | 2.4 14 1 |26

12800 12800 | 121.74350360 | -0.00008187 | 4.0 15 1 |28
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Table 5.10: Numerical results for the penalty method for a convertible bond with dividend

protection via Dividend Pass-Thru under the AFV model (n =0 and R = 0)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 124.21280355 4 1 1.9
200 200 124.15998867 | -0.05281489 4 1 |21
400 400 124.15176246 | -0.00822621 | 6.4 4 1 2.2
800 800 124.14842095 | -0.00334151 | 2.5 6 1 |24
1600 1600 124.14786001 | -0.00056094 | 6.0 9 1 |26
3200 3200 124.14762734 | -0.00023267 | 2.4 12 1 129
6400 6400 124.14757991 | -0.00004743 | 4.9 14 1 | 34

12800 12800 | 124.14755784 | -0.00002207 | 2.1 15 1 | 38

did for the TF model. Table 5.11 shows the average ratio and the standard deviation for

each case.

From Table 5.11, we can see that the penalty method achieves roughly between first-
order and second-order convengence with respect to A7 on average, and the convergence
ratio oscillates erratically. We believe the reason for this is similar to the one stated for

the TF model.

Figure 5.4 shows the convertible bond price without dividends, with dividends but
without dividend protection, and with dividend protection via Conversion Ratio Adjust-
ment, respectively, for different underlying stock prices. Figure 5.5 is similar except that
the dividend protection is via Dividend Pass-Thru. Figure 5.6 shows the difference be-
tween the convertible bond price without dividend protection and the one with dividend

protection via Conwversion Ratio Adjustment and Dividend Pass-Thru, respectively.

We found that Figures 5.4 to 5.6 exhibit similar phenomena to those observed in
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Figure 5.4: Price comparison for Convertible Bonds without dividends, with dividends

but without dividend protection, and with dividend protection via Conversion Ratio

Adjustment under the AFV model (n =0 and R = 0)
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Figure 5.5: Price comparison for Convertible Bonds without dividends, with dividends
but without dividend protection, and with dividend protection via Dividend Pass-Thru

under the AFV model (n =0 and R = 0)
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Figure 5.6: Price difference between Convertible Bonds without dividend protection and

with dividend protection under the AFV model (n =0 and R = 0)
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Table 5.11: Comparison of the convergence ratio for the penalty method for CBs with
different dividend features under the AFV model (n =0 and R = 0)

CBs Average Ratio | Standard Deviation
CB without dividends 4.0 3.78
CB with dividends without divi- 3.2 1.17

dend protection
CB with dividend protection 3.5 1.63
(Conwversion Ratio Adjustment)

CB with dividend protection 4.1 1.95

(Dividend Pass-Thru)

Figures 5.1 to 5.3 obtained under the TF model.

5.2.2 Setting n=1and R=0.5

To see the performance of the penalty method for different settings of n and R under the
AFV model, we set n = 1 and R = 0.5, i.e., we assume that the stock price jumps to
zero upon default and the recovery rate is 0.5 after default. In Tables 5.12 to 5.15, we
present the numerical results for the four cases mentioned earlier under the AFV model
with n =1 and R = 0.5.

From Tables 5.12 - 5.15, we can see similar behavior to the setting of n = 0 and
R = 0. As the time and grid step-sizes are reduced, each numerical solution appears to
be converging to a final value. Moreover, the price in the last line of each table appears
to be accurate to at least the 0.1-cent level. For all cases, the penalty method converges
rapidly per time-step. In addition, the average number of iterations per time-step is
quite small, ranging from 1.3 to 3.1; as the time step-size is reduced, the average number

of iterations per time-step is relatively stable, but the convergence ratio often oscillates
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Table 5.12: Numerical results for the penalty method for a convertible bond without

dividends under the AFV model (n =1 and R = 0.5)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 127.97396334 3 1 1.4
200 200 128.00504688 | 0.03108354 3 1 1.5
400 400 128.01244098 | 0.00739410 | 4.2 4 1 1.6
800 800 128.01406851 | 0.00162752 | 4.5 6 1 1.8
1600 1600 128.01437732 | 0.00030882 | 5.3 9 1 120
3200 3200 128.01440547 | 0.00002815 | 11.0 | 13 1 |23
6400 6400 128.01438972 | -0.00001576 | 1.8 14 1 |28

12800 12800 | 128.01437698 | -0.00001273 | 1.2 14 1 | 31

Table 5.13: Numerical results for the penalty method for a convertible bond with divi-

dends but without dividend protection under the AFV model (n =1 and R = 0.5)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 123.80720808 3 1 1.4
200 200 123.75014376 | -0.05706432 3 1 1.4
400 400 123.74035011 | -0.00979366 | 5.8 4 1 1.5
800 800 123.73616887 | -0.00418123 | 2.3 6 1 1.7
1600 1600 123.73519223 | -0.00097664 | 4.3 9 1 1.9
3200 3200 123.73475525 | -0.00043699 | 2.2 13 1 |21
6400 6400 123.73461316 | -0.00014209 | 3.1 14 1 ] 25

12800 12800 | 123.73455692 | -0.00005623 | 2.5 14 1 129
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Table 5.14: Numerical results for the penalty method for a convertible bond with dividend

protection via Conversion Ratio Adjustment under the AFV model (n =1 and R = 0.5)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 124.85010965 3 1 1.4
200 200 124.76148924 | -0.08862040 3 1 14
400 400 124.74955829 | -0.01193096 | 7.4 4 1 1.5
800 800 124.74426437 | -0.00529391 | 2.3 6 1 1.7
1600 1600 124.74275811 | -0.00150626 | 3.5 9 1 1.9
3200 3200 124.74232206 | -0.00043605 | 3.5 13 1 |21
6400 6400 124.74217947 | -0.00014259 | 3.1 14 1 2.5

12800 12800 124.74212179 | -0.00005768 | 2.5 14 1 2.8

Table 5.15: Numerical results for the penalty method for a convertible bond with dividend

protection via Dividend Pass-Thru under the AFV model (n =1 and R = 0.5)

Time-steps | Grid Size No. of Iterations
(M) (N) Price Diff Ratio | max | min | avg
100 100 126.78643871 3 1 1.3
200 200 126.72922621 | -0.05721250 3 1 1.4
400 400 126.72048433 | -0.00874188 | 6.5 4 1 1.5
800 800 126.71689842 | -0.00358591 | 2.4 6 1 1.6
1600 1600 126.71631899 | -0.00057944 | 6.2 9 1 1.7
3200 3200 126.71607846 | -0.00024052 | 2.4 13 1 2.0
6400 6400 126.71603444 | -0.00004402 | 5.5 14 1 |23

12800 12800 | 126.71601550 | -0.00001894 | 2.3 14 1 |26
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erratically. Table 5.16 shows the average ratio and the standard deviation for each case.

Table 5.16: Comparison of the convergence ratio for the penalty method for CBs with
different dividend features under the AFV model (n =1 and R = 0.5)

CBs Average Ratio | Standard Deviation
CB without dividends 4.7 3.49
CB with dividends without divi- 3.4 1.42

dend protection
CB with dividend protection 3.7 1.87
(Conwversion Ratio Adjustment)
CB with dividend protection 4.2 2.05
(Dividend Pass-Thru)

From Table 5.16, we can see that the penalty method achieves roughly between first-
order and second-order convengence with respect to A7 on average, and the convergence

ratio oscillates erratically.

5.3 Comparison of Numerical Results for the TF and
AFV models

As stated earlier in this chapter, the TF model is similar to the partial default AFV
model (n = 0) with recovery rate R = 0. In this section, we compare the numerical
results for a convertible bond with dividend protection using the TF and AFV models
(with » = 0 and R = 0), respectively.

Table 5.17 shows the numerical results for a convertible bond with dividend protection
under both models. We can see that for both Conversion Ratio Adjustment and Dividend

Pass-Thru, the TF model achieves solutions correct to about $0.01, while the AFV model
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can achieve solutions correct to about $0.0001, on the finest grid smallest time step listed
in the table. We can conclude from this that, to achieve the same level of accuracy,
the TF model needs considerably finer grids and/or smaller time steps than the AFV
model. We believe that this is because the bond component of the TF model has a
time-dependent knock-out barrier introduced by the callability constraint (see Equation
(2.5)), which is difficult to compute accurately [1]. We can also see that the AFV model
(with n = 0 and R = 0) gives a price about $1.00 higher than the TF price, which agrees
with a similar observation in [1] for the price of a convertible bond without dividends

using the TF and AFV models.

Table 5.17: Comparison of the numerical results for the TF and AFV models (n = 0 and

R = 0) both using the penalty method for a convertible bond with dividend protection

Time-steps | Grid Size | Conversion Ratio Adjustment Dividend Pass-Thru

(M) (N) TF AFV TF AFV
100 100 120.25106182 | 121.85920559 | 123.14311958 | 124.21280355
200 200 120.15377813 | 121.76751971 | 123.07521340 | 124.15998867
400 400 120.11342896 | 121.75351681 | 123.06847768 | 124.15176246
800 800 120.09813870 | 121.74696831 | 123.07564489 | 124.14842095
1600 1600 120.09001783 | 121.74471433 | 123.07725381 | 124.14786001
3200 3200 120.08261291 | 121.74391364 | 123.07849987 | 124.14762734
6400 6400 120.07958142 | 121.74358547 | 123.08055845 | 124.14757991
12800 12800 | 120.07660169 | 121.74350360 | 123.08115076 | 124.14755784

Table 5.18 shows the average convergence ratio and the associated standard deviation
for both models. From Table 5.18, we can see that, for both the Conversion Ratio
Adjustment and Dividend Pass-Thru, the AFV model achieves a higher convergence rate

with respect to A7 on average than the TF model, but the convergence ratio oscillates
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erratically for both models.

Table 5.18: Comparison of the convergence ratio for a convertible bond with dividend

protection under the TF and AFV models (n = 0 and R = 0) both using the penalty

method
Conversion Ratio Adjustment | Dividend Pass-Thru
TF AFV TF AFV
Average Ratio 1.9 3.5 3.5 4.1
Standard Deviation | 0.70 1.63 3.59 1.95

As described in previous sections, for both models, both Conversion Ratio Adjustment
and Dividend Pass-Thru increase the convertible bond value compared to a similar CB
without dividend protection. Moreover, the latter offers better protection. However, it is
worth noting that we cannot say that Dividend Pass-Thru is preferable from the issuers’
point of view when they choose the type of dividend protection to offer the convertible
bond holders at the time of issuing, since Dividend Pass-Thru will erode the earnings of
the issuing company to pay the convertible bond holders. Consequently, it may not be
fair to the existing equity share holders [13]. Although Dividend Pass-Thru increases the
convertible bond value more than Conversion Ratio Adjustment, this increase comes at a
cost: the issuer may increase its future cash outflows to pay the convertible bond holders
the excess dividends. This is not the case for Conversion Ratio Adjustment. Therefore,
in practice, it is not an easy decision for issuers to choose between these two types of
dividend protection.

It is important in practice to determine delta and gamma for hedging purposes [12].
Figure 5.7 shows the plots of delta and gamma around S = 100 at ¢ = 0 for similar
convertible bonds with different dividend features under the TF model using the penalty

method: without dividends, with dividends but without dividend protection, with div-
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idend protection via Conversion Ratio Adjustment, and with dividend protection via
Dividend Pass-Thru. In Figure 5.8, we display similar plots of delta and gamma un-
der the AFV model using the penalty method. In these plots, delta and gamma are

approximated by

& UM, - U,y

0S 1=0.5=5,, 2AS

2] UM, = 203 + U,
052 1 o 5=, AS? ’

respectively. When computing delta and gamma, we use the numerical results from the
mesh with (M, N) = (3200, 3200). From Figures 5.7 and 5.8, we can see that, for both

models, the penalty method results in smooth delta and gamma values for all cases.
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Figure 5.7: Delta and Gamma for convertible bonds with different dividend features

under the TF model using the penalty method
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Figure 5.8: Delta and Gamma for convertible bonds with different dividend features

under the AFV model using the penalty method
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Chapter 6

Conclusions and Future Work

Convertible bonds are a popular financial instrument with complex behavior. It is very
difficult to model and evaluate convertible bonds, especially when taking credit risk into
consideration. In recent years, a new convertible bond feature, dividend protection has
emerged and become more and more popular. This new protection provision also makes
the convertible bond valuation more complicated. In this paper, we attempt to use a
numerical PDE approach to price convertible bonds with dividend protection subject to

credit risk.

We considered two existing models, namely the TF and AFV models, and extended
them to incorporate the two major dividend protection methods, Conversion Ratio Ad-
justment and Dividend Pass-Thru, respectively. Having developed a pricing model for
convertible bonds with dividend protection, we sought a fast and robust numerical al-
gorithm to implement the model. We considered two iterative methods, the PSOR, and
penalty methods, for this purpose. First, we compared the PSOR and penalty methods
for pricing a convertible bond without dividends under the extended TF model in terms
of the convergence ratio, number of iterations and computation time. We found that both
methods achieve about first-order convergence rate with respect to time step-size A7 on

average, and the order of convergence oscillates erratically for both methods. However,

88
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the penalty method saves many iterations and much computation time compared to the
PSOR method, and the saving becomes more significant as the grid is refined. Therefore,
we choose to apply the penalty method to the convertible bond with dividend protection.

We studied the numerical results for the TF and AFV models both using the penalty
method for the following three cases: a convertible bond without dividends, a convertible
bond with dividends but without dividend protection, and a convertible bond with div-
idends and with dividend protection. In particular, we compared the numerical results
for a convertible bond with dividend protection via Conversion Ratio Adjustment and
Dividend Pass-Thru using the TF and AFV models, respectively. We found that, for
both Conversion Ratio Adjustment and Dividend Pass-Thru, the AFV model achieves
more accurate solutions than the TF model using the same fine grid and small time step;
and the AFV model achieves a higher convergence rate with respect to A7 on average
than the TF model, but the convergence ratio oscillates erratically for both models. We
believe this is because of the discontinuities associated with the convertibility, callability,
puttability and discrete coupon payments of the convertible bond. We also observed that,
for both models, both Conversion Ratio Adjustment and Dividend Pass-Thru increase
the convertible bond value compared to a similar CB without dividend protection, and
the latter offers better protection but over-protects for small S. In addition, the penalty
method results in smooth delta and gamma for both models.

As for the future work, there are two major issues. First, from the numerical results,
we can see that the convergence rate of our proposed numerical algorithm for pricing
convertible bonds with dividend protection often oscillates erratically. Further research
needs to be conducted to make it stable. Second, we apply the penalty method to
remove the free boundary associated with the convertible bond pricing problem, but the
penalty term is discrete in the current approach. In the future, we may consider using a

continuous penalty term for the penalty method.
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