Accurate approximation of solutions of
infectious disease models with interventions

Wayne H. Enright (+), Christina C. Christara (f) and Paul H. Muir (1)
(1) Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
{enright, ccc}@es.toronto.edu
(1) Department of Mathematics and Computing, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
paul .muir@smu.ca

Abstract

Since the beginning of the COVID-19 epidemic there has been an intensive global research effort
devoted to the study of the virus and in particular to the development of mathematical models of
COVID-19 that involve systems of ordinary differential equations (ODEs). In this paper, we consider
systems of ODEs rising from an SEIR epidemic model with interventions. The impact of these
interventions is that the solution to the model is nonsmooth at the points in time where the interventions
are introduced or removed. This problem is sufficiently challenging that standard ODE solvers are not
able to obtain numerical solutions of these models that have even moderate accuracy. However, we
show in this paper that dramatic improvements in the accuracy and reliability of approximate solutions
of this model can be obtained by employing carefully chosen, robust, numerical ODE methods. In
particular, we consider an algorithm that can automatically detect, and efficiently and accurately handle
the discontinuities that arise when the model includes interventions that are imposed in an attempt to
restrict the spread of the virus and later removed when the spread of the virus is diminished.

Keywords: modelling infectious diseases; SEIR model; continuous Runge-Kutta methods; initial value problems;
defect error control; discontinuity detection
Mathematics Subject Classification: 65L05, 65L06, 92C60

1 Introduction

While most current high quality ordinary differential equation (ODE) solvers return a continuous
approximate solution, the error of the solution is typically controlled only at a discrete set of points across
the domain. That is, the solvers typically do not provide error control for the continuous approximate
solutions that they return. Over the past two decades, our research group has introduced a class of reliable
methods based on control of the defect of continuous approximate solutions of systems of initial value
ODEs, boundary value ODEs, and delay differential equations (DDEs) (see for example, [11}12}|18]], and
references within). The defect of a continuous approximate solution is the amount by which that solution
fails to satisfy the ODE. Control of the defect means that the computation is adapted so that an estimate
of the maximum defect, over the problem domain, is less than a user-provided tolerance. In this paper,
we consider how the expertise we have gained and the methods we have developed can be employed to
efficiently compute an accurate and reliable approximate solution to a typical mathematical model of an
epidemic with interventions.

In the remainder of this section, we provide a general discussion of the requirements for the effective
approximate solution of mathematical models arising in scientific computation and then identify the
challenges that arise when the model is associated with the simulation of the spread of an epidemic
over time where interventions are introduced to control the spread of the disease and later removed when

August 4, 2025

2 W. H. Enright, C. C. Christara, P. H. Muir

the spread of the disease has diminished. This is followed, in Section 2, with a review of continuous
Runge-Kutta (CRK) methods that can be used to determine a reliable approximate continuous solution to
a system of initial value ODEs, and a discussion of how these methods can be used as the basis for a defect
control strategy. In Section 3, we describe an approach that can be used with many standard ODE solvers
to handle discontinuities, when the user is able to provide information about the conditions under which
each of the discontinuities will arise. We also discuss in Section 3, the algorithm introduced in this paper
that provides automatic detection and handling of discontinuities; no extra information is required from
the user. In Section 4, we illustrate how this algorithm can be used to reliably, efficiently, and accurately
compute approximate solutions to models of epidemics with interventions. We close in Section 5 with
our summary and conclusions.

1.1 Approximating solutions of mathematical models

The determination of reliable approximate solutions of models arising in scientific computation typically
involves four key stages:

* Formulation of the mathematical model of the system being investigated. (The model may involve
parameters, some data-fitting, and systems of ODEs.)

» Approximation of the exact solution of this model relative to a specified accuracy parameter, 7O L.
* Visualization of the approximate solution.

* Consideration of the well-posedness and the stability of the approximate solution. (This may involve
sensitivity analysis).

Each of these stages should be considered when modelling epidemics and when selecting the ODE
method used to approximate the solution of the systems of ODEs that arise. The relevant issues that must
be addressed include:

* An approximate solution must be delivered in a way that is easy to understand, display, and manipulate
by a casual user.

* A discrete approximate solution (available at only a finite number of points in time) is not sufficient
(as it is difficult to visualize and its overall accuracy is difficult to interpret). Therefore, the
numerical method must deliver a continuous approximate solution for any point, t, in the domain of
interest.

» Some measure of the accuracy of the continuous approximate solution must be controlled by the
ODE method and must be easy to quantify and interpret by a user.

* The ODE method must be adaptive and easy to invoke — one need only specify the error tolerance
and the information necessary to define the model. The method will then employ an adaptive
strategy in order to obtain a continuous approximate solution for which some measure of its accuracy
satisfies the prescribed tolerance.

August 4, 2025

Infectious disease models with interventions 3

1.2 A SEIR epidemic model with interventions

Consider modelling the spread of COVID-19 with a typical SEIR epidemic model [[14]] that involves
the following system of initial value ODEs,

L MN—NS—%IS, (L1)
o %IS—aE— L, (12)
= wB Il (1.3)
o~ sr-um, (1.4)

where

* S(t), E(t), I(t) and R(t) denote the populations of Susceptible, Exposed, Infectious and Recovered
individuals at time ¢, where t € [tg, tenal,

* u, 8 and 7y are, respectively, the replenishment, transmission, and recovery rates,
e a~!is the incubation period, N is the total population, and,

* the initial time ¢, and the initial state [S(¢o), F(to), I(to), R(to)] are assumed to be given, with the
model predicting future states corresponding to ¢ > t.

Christara [6] introduced a simulation of COVID-19 in Canada as an interesting application of software
for the numerical solution of ODEs. The simulation is based on the SEIR model, (I.1)-(T.4), with ¢, = 0,
tenda = 99, and,

* the initial conditions representing the populations of susceptible, exposed, infectious, and recovered
individuals in Canada (on a day in early 2020), chosen to be [37740896, 103, 1, 0],

* the fixed model parameters are a = 0.125,~y = 0.06, x = 0.01/365, and,
* the initial value of the transmission rate is 5 = 0.9. (The [parameter is not assumed to be fixed.)

The transmission rate [3 is piecewise constant, initially equal to 0.9, as mentioned above. This value
of /3 leads to local rapid growth in the exposed and infected populations. When FE(t) reaches a value of
25,000, 3 is set to 0.02 (reflecting an attempt to control the spread of the epidemic by limiting interactions,
through public health measures, between infectious and susceptible individuals). This smaller value of
B leads to local rapid decay in the exposed and infected populations. At some later time, F(t) reaches a
value of 10,000, at which point f is reset to 0.9 (reflecting a loosening of the restrictions that were put
in place previously to limit the spread of the virus). The evolution of the disease continues with these
alternating interventions invoked or removed according to the value of E(¢). Each change in the value of
 introduces a discontinuity in the ODE. It is clear from the above description that E(t) should oscillate
between 25,000 and 10,000.

As mentioned above, whenever the (5 value is changed, this introduces a discontinuity in the right-
hand side of the system of ODEs. In order for a numerical method to deliver an accurate solution, the

August 4, 2025

4 W. H. Enright, C. C. Christara, P. H. Muir

method must locate and accurately cross each of these discontinuity points. This is the main challenge
that must addressed when reliably, efficiently, and accurately approximating the solution of this model.

Disease models with interventions similar to the model described above have been considered since at
least 2010 - see, e.g., 2,35, 15,/ 17], and references within. Some papers provide only theoretical analyses
with no numerical results. Most papers that provide numerical results are silent regarding what numerical
methods are used to obtain the results. In the papers that do mention a numerical method, only very limited
detail is provided. From the above list of papers, in [[15]] the author indicates that the classical 4-stage, 4th
order Runge-Kutta method is used with a fixed time step to obtain the numerical solutions presented in
the paper, while in [5]], the authors say that they use Euler’s method for the numerical computations.

We now return to the model described above and consider a straightforward approach for the computation
of a numerical approximation to the solution of the model described above that might be employed by
a typical user. In such an approach, the function that is called by the ODE solver to evaluate the right-
hand side of the ODE system contains ‘if” statements that change the value of J in order to simulate the
imposition and relaxation of public health measures based on the value of E(¢). We implemented this
approach using a standard ODE solver, ode45, from the Matlab problem-solving environment, with its
default tolerances (absolute tolerance, 10~°, relative tolerance, 10~3). In Figure |1} we plot the computed
approximation to £/(¢) versus ¢ that we obtained.

0 | | | | | | | |
0O 10 20 30 40 5 60 70 80 9 100

time (days)

Figure 1: Plot of E(t), number of exposed individuals, vs ¢, time in days, for the SEIR model with a
piecewise constant transmission coefficient, 3. Inaccurate solution obtained using ode45, from the Matlab
problem-solving environment, with default tolerances.

We next present an accurate numerical solution to the model, obtained using a reliable ODE method
(see Section 3), with a relative tolerance of 1075, In Figure [2, we plot this computed approximation to
E(t) versus t.

Examining this plot, we see that E(t), as expected, increases and decreases in a regular fashion
between the upper and lower bounds of 25,000 and 10,000, respectively. There are 13 discontinuities
in the time interval [0, 95].

Returning to Figure |1} we see that the computed solution shown there does not agree with the more
accurate solution shown in Figure 2| In particular, we see that the maximum and minimum E(t) values
do not agree with the correct values of 25,000 and 10,000. As well, the times at which the interventions

August 4, 2025

Infectious disease models with interventions 5

0 | | | | | | |
0 0 20 30 40 50 60 70 80 90 100

time (days)

Figure 2: Plot of E(t), number of exposed individuals, vs ¢, time in days, for the SEIR model with a
piecewise constant transmission coefficient, 5. Accurate solution obtained using a reliable algorithm (see
Section 3).

arise do not agree with the times of the interventions for the accurate solution, and even the number of
interventions is different. (This is not an artifact of the plotting of the computed solution; ode45 is not
able to accurately locate and step through the discontinuities.) Furthermore, this type of behavior is quite
common among ODE solvers when they are applied to this model without the use of a special treatment
to locate and accurately handle each of the discontinuities [1]].

The point of Figure m is to show that a standard ODE solver, used with its default tolerance, when
applied to the model we consider in this paper, will not compute a solution that is at all reasonable. The
point of Figure [2|is to show what an accurate solution to the model looks like. It is not appropriate to
compare the two computations since ode45 returns a solution that is incorrect.

2 CRK methods and defect control

In this section, we briefly review CRK methods and their use within a defect control algorithm.

2.1 CRK methods

Consider a general initial value problem consisting of a system of n ODEs with corresponding initial
conditions of the form

y'(t) = f(t,y(t), y(to) =wyo, for t € [to,tena), y(t) €R", yo€ R

A standard numerical ODE method will introduce a partitioning of the domain, [ty, tenal, to < t1 <
... <ty = tena, and will compute corresponding discrete approximations, v, . . ., yn, Where y; = y(t;).
The y;’s are usually determined from the application of a numerical formula on a sequence of steps of
length h; =t; —t;_1,7=1,..., N, starting from ¢.

On the ith step taken by the ODE method, let z;(¢) be the exact solution of the local initial value ODE
system

Zz/' = f(t, Zl(t», Zi(ti,1> = Yi—1, fort € [tifl, tl] (21)

August 4, 2025

6 W. H. Enright, C. C. Christara, P. H. Muir

A standard s-stage, discrete Runge-Kutta (RK) formula determines y; in terms of y;_; using

Yi = Yi—1 + Ny ijk’j,

J=1

where the j* stage, k., is defined by

ki=f (til + hicj, yi-1 + hiZaj,.kr> ,J=1,...,s.

r=1

Here, b;, ¢j, and a;, are the coefficients that define the discrete RK formula. In order to use the above
formula, it is assumed that the user provides to the ODE solver a function, f(t,y), that gives an evaluation
of the right-hand side of the ODE system.

A discrete RK formula is of p'"-order if it satisfies the condition

yi = z(ts) + O(R™).

A continuous extension of a p"*-order, discrete RK formula, called a continuous RK (CRK) method, is
determined by introducing (§—s) additional stages to obtain an order p continuous solution approximation
for any ¢ € (t;_1,t;). This continuous solution approximation, u;(t), defined on (¢;_1,¢;), has the form

wi(t) = wi(tice + 7hi) = yim1 + hy Z b; (1) kj, (2.2)

Jj=1

where b;(7) is a polynomial of degree at least p and 7 = tffL—*l Since we have assumed that the CRK
method is constructed to be of order p, u;(t) satisfies the condition that

The [u;(t)]Y., polynomials together (for each of the n components of the ODE system) define a vector
of piecewise polynomials, U(t), for t € [to, tena]. We require f(t;—1,vy;—1) and f(t;,y;) to be included in
the set of stages, {k;}°_,, that appear in (2.2). From the discrete RK method, we have k; = f(t;_1, ;1)
and we set ks 1 = f(t;,y;). The interpolant on [t;_1, ;] is represented in Hermite-Birkhoff form and is
required to interpolate y;_; and y; at t;,_; and ¢;. The derivative of the interpolant is required to interpolate
f(ti1,y;-1) and f(¢;,y;) at t;_; and t;. Furthermore, in order to obtain an interpolant of order p, the
derivative of the interpolant is required to interpolate several additional stages from the set, {k; }f-:l. The
Hermite-Birkhoff interpolant, u;(t), on [t;_1, t;], is constructed to satisfy the conditions @;(t;—1) = v;_1,
ftz(tl) = Yi, a;(tl_1> = f(ti—la yi—l), ﬁ;(tz) = f(tzyyz)’ and ﬂ;(tl_l + Crhi) = 1{77«, where r € {1, ey §}
and c, is a coefficient associated with k.. The specific conditions that must be imposed on the Hermite-
Birkhoff basis polynomials in order for these conditions to be satisfied are provided in [[12]]. Finally, ;(t)
is transformed from Hermite-Birkhoff form into the standard CRK form (2.2)). See [9] for further details.
Because u;(t) interpolates y;_1 and y; and its derivative interpolates f(¢;_1,y;-1) and f(¢;,v;), it
follows that U(t) € C'[to, tena)- Then, U(t) is the continuous approximate solution to the ODE model.

August 4, 2025

Infectious disease models with interventions 7

2.2 Defect control for CRKs

As mentioned earlier, an effective method for computing an approximate solution to a system of ODEs
must deliver an error-controlled, continuous solution approximation. One such type of error control is
known as defect control. If we use a CRK method satisfying (6) and (7), then the approximate solution,
U (t), has an associated defect (or residual) of the form

0t)= f(,U) =U(t) = f(t,ui(t)) —ui(t), for t € [t;_1,t], (2.4)

which is a vector with n components.
For an extension of (2.2)), it can be shown that, for sufficiently differentiable f (¢, y(¢)), on the ith step,
[ti—1,t;], we have
5(t) = G(T)h? + O(RP*Y), (2.5)

where 7 = t_;—*l, and G(7) depends on the problem and the CRK formula but not on ;.

To see thisi consider an extension of that is based on applying a “boot-strapping” algorithm
starting with as the base interpolant. We first construct several new stages based on evaluations
of (2.2) and then we construct a new Hermite-Birkhoff interpolant, ;(¢), that interpolates the solution
approximations, y;_; and y;, and whose derivative interpolates f(¢;_1,v;_1), f(t;, y;) and the new stages.
The error of this new interpolant is dominated by the error in the term that depends on y;, which is
O(hP*"). That is, we have

Differentiating this expression, we then also have
ai(t) = %(t) + O(h7), t€ [tio1,til, (2.7)

where this error is also associated with the term in the derivative of the interpolant that depends on y;.
Letting the defect of @;(t) on the ith step be J;(¢), we have

0;(t) = f(t, w(t)) — @i(t) = [f(t, w(t) — w(t)] — [f(t, z(t) — z(t)], (2.8)

where we recall that z;(t) is the exact local solution satisfying 2{(¢) = f(¢, z;(¢)). Rearranging terms in
the above gives

0i(t) = [z(t) — ()] + [f (¢, (1)) — (£, @ ()] (2.9)

Assuming a Lipschitz condition on f(t,(t)) and recalling that the error of @;(t)) is O(h?*") and that the
error of w}(t)) is O(hY), we then have

0i(t) = G(r)BY + O(R™), (2.10)

where G(7) depends on the term of () that depends on y;. This means that the defect, to leading order,
is a multiple of G(7), which is the derivative of the Hermite-Birkhoff basis polynomial for the term that
depends on y;. Since this polynomial is known, we can determine the maximum of its derivative on
7 € [0, 1] and therefore we can determine where, asymptotically, the maximum defect will occur on each
step. See [12] for further details. (As mentioned above, ;(t) is based on (), which is in turn based on
the underlying discrete RK method. For a pth order RK method, f (¢, y(¢)) is required to have continuous

August 4, 2025

8 W. H. Enright, C. C. Christara, P. H. Muir

derivatives up to order p. If f(¢,y(t)) is nonsmooth, this will severely reduce the order of the method.
See, e.g., [4] for further details.)

The above approach gives what is known as an asymptotically correct estimate of the maximum defect
on each step. A defect control time-stepping algorithm will adaptively determine h; in an attempt to
ensure that maximum for ¢ € [t;_1,t;] of ||6(¢)|| is bounded by TOL. The accuracy of an approximate
solution can then be described in terms of the maximum (over all steps) of ||d(¢)||. We have derived
and implemented a class of reliable CRK methods which provide an asymptotically correct control of
an estimate of the maximum of ||J(¢)|| on each step, and are referred to as CRK methods with strict
defect control (SDC-CRKSs). These methods provide an associated estimate of the maximum defect equal
to ||6()||, where { is the location of the maximum defect in [t;_y,t;]. See [12] for a description and
justification of the particular class of methods of this type for orders four to eight.

A numerical ODE method that employs defect control proceeds by taking a sequence of steps from
the initial time, ¢, to the final time, ¢.,4. To employ defect control, the method has additional features.
On each step, in addition to using a discrete formula to obtain an approximate solution at the end of the
step, the method also determines a continuous solution approximation for the whole step. The method
then determines an estimate of the maximum defect of the continuous approximate solution on that step.
If the estimated maximum defect is less than the user-provided tolerance, the step is accepted and the
computation continues to the next step. At this point, the step size may be increased if the estimated
maximum defect is substantially smaller than the tolerance. If the estimated maximum defect is greater
than the tolerance, the step size is said to have failed. In this case, a step selection strategy is employed
to determine a smaller trial step size, and a new step is attempted. As is the case for most reliable ODE
methods with adaptive step size control, we assume that the step selection heuristic will not allow the step
size to more than double after an accepted step. Similarly, if the estimated maximum defect is greater
than the tolerance, we assume that the step selection heuristic will ensure that the new trial step size is not
less than half the failed step size.

When a discontinuity arises, this can substantially complicate the process of attempting to obtain an
accurate and reliable numerical solution in an efficient manner. See for example, [13], in particular Figure
1 in [13]] where it can be seen that the presence of a discontinuity can lead to substantial inefficiencies for
a standard adaptive error control ODE solver.

3 Numerical approximation of the solution of the SEIR model with discontinuities

In this section, we first review a standard approach for discontinuity detection and handling involving
the use of user-provided event functions, and then we introduce our approach for discontinuity detection
and handling, through defect sampling, which does not require any additional information to be provided
by the user.

3.1 Discontinuity detection and handling based on user-provided event functions

An essential consideration for algorithms for discontinuity detection and handling is whether the user
is expected to provide an additional function that provides a characterization of the discontinuity. Such
a function is referred to an event function or a “root function” since the function that characterizes the
discontinuity is constructed so that it has a root at ¢ = t*, the time at which the discontinuity occurs. For
an example of related work (where event functions are used), see [16].

August 4, 2025

Infectious disease models with interventions 9

Assume that the ODE system is written so that y»(¢) corresponds to E(t) in the SEIR model. Then,
event functions that characterize the discontinuities arising from interventions are

g1(t,y(t)) = ya(t) — 25000, (3.1

when y5 (1) is increasing (i.e., when y4(t) > 0), and

92(t, y(t)) = y2(t) — 10000, (3.2)

when y»(t) is decreasing (i.e., when y5(t) < 0). Note that, for each of the above event functions, the time,
t at which an event function has a root is the time when a discontinuity in the SEIR model occurs.

When the user can provide an event function, the solver proceeds as follows. At the end of each
successful time step, the solver evaluates the event function and compares the sign of the event function at
the end of the step with the sign of the event function at the beginning of the time step. When there is no
change in sign, the solver proceeds to the next step. When there is a change in sign, the solver makes use
of the built-in continuous solution approximation available across the step to perform a search to locate
the first time at which the event function equals zero. The solver then steps from the beginning of the time
step, t;_1, to this event time and returns to the user with a solution approximation at the event time. The
user can then call the solver with a new right-hand side function, f(¢,y(t)), that characterizes the ODE
after the discontinuity. Since the right-hand side function has changed, the solver must be restarted with a
cold start. (See the next subsection for a description of a cold start).

This approach makes use of a standard initial value ODE solver that has an event detection capability.
Such solvers are available in many common computing platforms, e.g., Matlab. As mentioned earlier,
while these solvers return a continuous approximate solution, they impose control of an estimate of the
error only at a discrete set of points, i.e., at the end of each time step. No control of the error of the
continuous approximate solution is provided.

3.2 Automatic discontinuity detection and handling

In some applications, the user may not be able to characterize the time at which a discontinuity arises
in terms of an event function. In such cases, it is necessary for the solver to be able to automatically
detect and accurately step past the discontinuity. We now discuss a strategy for the automatic detection
and handling of ODEs with discontinuities that does not require the user to provide event functions that
characterize the times at which the discontinuities arise. The approach is based on earlier work which
began in [[10] and has evolved over a sequence of several investigations, which have focused on improving
the reliability and effectiveness of the numerical methods that are implemented (see, for example, [8, 18],
and references therein).

We now describe the algorithm that implements automatic discontinuity detection and handling.

* As a standard part of the defect control time-stepping algorithm described in Section 2.2, the
software checks that the estimated maximum defect of the continuous numerical solution is less
than the user tolerance. The time-stepping algorithm selects the time-step to attempt to provide an
approximate solution whose defect is slightly less than the tolerance. When the step is successful,
the discontinuity detection algorithm also checks to see (i) if the defect is much less than the
tolerance, and (ii) if the current successful step was proceeded by a failed step for which the defect
of the approximate solution was large, i.e., greater than 1. Since the step size is chosen to attempt

August 4, 2025

10 W. H. Enright, C. C. Christara, P. H. Muir

to deliver an approximate solution whose defect is slightly less than the user tolerance, a defect
of size greater than 1 represents a very large defect. This tells us that there is a large change
in the solution behaviour in the region beyond the right endpoint of the successful step. For the
problem we consider in this paper, that large change in the behaviour of the solution corresponds to
a discontinuity in the derivative of the solution, i.e., in f(¢,y(t)). For the problem we consider in
this paper, there is no other way that the discontinuity detection can be triggered.

* When the above conditions are satisfied, a potential discontinuity is suspected in the region between
the end of the current successful step and the end of the previous failed step. To be more specific,
assume that the successful step is from ¢;_; to t; = ¢;,_; + h; and that the previous failed step
was from ¢;,_; tot;_y + H;, where h; < H;, due to our previous assumptions regarding the step size
selection heuristic. In fact, since there was a failed step with a large defect, obtained using a step size
of H;, the new step h; will have been chosen to be as small as possible, i.e., h; = %) This means
that ¢; < t;_; + H;, and the discontinuity is suspected in the region [¢;,t; 1 + H;| = [t;, t;_1 + 2h].

* To locate the discontinuity, the defect of the current continuous solution approximation is sampled,
using a bisection search, on the interval [t;, t; 1 + H;], to find the time, t* € [t;, t,_1 + H;|, where the
defect first exceeds 1. This point, t*, is the location of the discontinuity. The tolerance employed in
the bisection search is T'O L.

* When t* is located, we evaluate the current continuous solution approximation at ¢*. The resultant
approximate solution value is used as the initial value to restart the computation.

* The computation for the next step is restarted, with a cold start. This means that the solver is
restarted with a small initial step size and no “memory” of the computation that precedes the cold
start. This allows the solver to efficiently step past the discontinuity.

Below we provide the algorithm that corresponds to the process described above. We assume that
[ti_1,t;i1 + H;] is rejected with defect > 1, and the next step [¢;_1, t;] is accepted with defect < TOL.

As mentioned earlier, the approach described above is based on the analysis presented in [10]. An
essential point here is that the above algorithm automatically detects and locates a discontinuity; the
algorithm does not require any information from the user in order to characterize the conditions under
which the discontinuities arise.

Furthermore, it is important to note that we do not use the numerical method to step across a discontinuity
point. The numerical method is only asked to give solution approximations on the parts of the domain
(within tolerance T°O L) where the solution is smooth.

4 Numerical results

In this section, we present numerical results that show that, using the algorithm described in Section
3.2, we can compute an accurate approximation to the solution of the SEIR model with discontinuities
described earlier in this paper.

Assuming we have an ODE solver (with adaptive stepsize and defect control capability) that computes
discrete solution values, y;, and continuous extensions, u;(t), the algorithm described in Section 3.2 can
be successfully applied to this discontinuous SEIR model.

August 4, 2025

Infectious disease models with interventions 11

Algorithm 1 Automatic Discontinuity Detection and Handling in [¢;, t; 1 + 2h;]

Input: Scalars ¢; i, t; and TOL; functions wu;(t), the continuous solution approximation associated with
the step [¢;_1, t;], and defect(t), returning the defect at a given point ¢, using u;(¢).

Output: Scalar t*, the estimated location of discontinuity.

hl‘ = tz — tz‘—l-

t* = bisectCRKd(¢;, t;_1 + 2h;, TOL) % use bisection to determine ¢*

Evaluate u;(t) at t* to obtain the solution approximation at t*.

Do a cold restart from ¢*.

function bisectCRKd(a, b, TOL)
while ((b — a) > TOL) do
tm = (a+b)/2
DEFm = defect(tm)
if (DEFm > 1) then
10: b=tm
11: else
12: a=1tm
13: endif
14: end while
15: Set t* = b; Return(t*)

Eal S A

R A

To investigate the reliability and effectiveness of the algorithm described in Section 3.2, we ran it with
tolerances of 1074, 1075, 107% and 107!, As the exact solution to the problem is unknown, we estimate
the error of a computed quantity by taking the difference (in absolute value) between the quantity and the
same quantity computed with the most severe tolerance (10~1°).

In Table[I] we report approximations for the times (i.e., locations) of discontinuities and the corresponding
values for the number of exposed individuals at these times. We also present the relative error for each
of these quantities, estimated as described above. Although, as mentioned earlier, the problem has 13
discontinuities (see Figure [2)), for brevity, we include information for only the last two discontinuity
times, denoted by 7"D(12) and 7°'D(13), and the corresponding exposed values, F/(12) and F(13). Note
also that, regarding these discontinuity times, one involves the lower limit of £(¢) = 10, 000 and the other
involves the higher limit of £(¢) = 25, 000.

From the results of Table[I| we note that the algorithm satisfies the requested tolerance as well as can
be expected. This is true for both the times at which the discontinuities occur, as well as the values of the
component of the solution corresponding to exposed individuals. Overall, the algorithm is reliable and
faithful to the tolerance.

August 4, 2025

12 W. H. Enright, C. C. Christara, P. H. Muir

Table 1: Approximate values of last and second last discontinuity times, TD(13) and TD(12),
respectively, the corresponding approximate values for the number of exposed individuals, E(13) and
E(12), respectively, and the associated relative differences from the most severe tolerance results, obtained
using the algorithm described in Section 3.2, for the indicated tolerances. The relative difference (“Rel
Diff”’) can be viewed as an approximation to the relative error of the computed solution.

TOL TD(13) Rel Diff TD(12) Rel Diff

10~% | 93.003718841734269 | 3.5 x 10° || 92.419612490702121 | 3.5 x 10~?
1076 || 93.000477491294248 | 2.3 x 1077 || 92.416386344852526 | 2.3 x 1077
108 || 93.000498170684267 | 6.2 x 1079 || 92.416406906408923 | 6.2 x 10~°
10710 || 93.000498747632832 92.416407476858438
E(13) Rel Diff E(12) Rel Diff

10" | 25000.670390978328 | 2.7 x 107 || 9999.9995946587187 | 4.1 x 10~°
1076 || 25000.013092744615 | 5.2 x 10~7 || 9999.9994753177125 | 5.2 x 10~8
1075 || 25000.000115099829 | 4.6 x 1079 || 9999.9999986860366 | 1.3 x 10710
10710 || 25000.000000883927 9999.9999999641277

In Table [2, we report the number of derivative evaluations, i.e., evaluations of f(¢,y), performed by
the algorithm for each of the tolerances.

Table 2: Number of derivative evaluations (NDEVS) when using the algorithm in Section 3.2 (automatic
detection and handling of discontinuities), for the indicated tolerances, TOL.

TOL | NDEVS
1074 1359
1076 1999
1078 2248
10719] 3762

We observe from Table [2 that the number of function evaluations increases in a reasonably smooth
way as the requested tolerance is decreased.

To provide some context for the results given in Table [2] we also provide results obtained using the
Matlab solver, ode45. (This solver implements the DOPRIS method which is based on a 4(5) Runge-
Kutta formula pair [[7]). We employ ode45 using event detection, as described in Section 3.1. When
ode45 is given event functions and allowed to operate in event detection mode to find the times at
which the discontinuities arise, it is able to compute accurate, reliable solutions to the SEIR model with
interventions. Regarding the approximation of the times of the discontinuities and the corresponding
values of E(t), we found that ode45 delivers results of comparable accuracy to those shown in Table

In Table [3| we report the number of derivative evaluations required by ode45 in event detection mode
for tolerances of 107%,107%,1078, and 107!°. We note that the results from Table [3| cannot be directly
compared with those in Table 2| because (i) the DOPRIS method used in ode45 is of lower order than the
Runge-Kutta method used in the implementation of the algorithm from Section 3.2, (ii) the two methods
employ different types of error control (ode45 controls an estimate of the error of the approximate solution

August 4, 2025

Infectious disease models with interventions 13

Table 3: Number of derivative evaluations (NDEVS) for ode45 (using its event detection capability), for
the indicated tolerances, TOL.

TOL | NDEVS
1074 518
10-6 770
1078 | 1514
10710 | 3416

only at a discrete set of points in the problem domain, while the algorithm from Section 3.2 controls
the defect of the continuous approximate solution across the entire domain), and, (iii) ode45 is given
extra information about the locations of the discontinuities through the event functions provided by the
user. Nonetheless, comparing the results from Table 2] with the results from Table [3| we observe that
the implementation of the algorithm from Section 3.2 requires more derivative evaluations than ode45,
although the difference in the number of derivative evaluations becomes less significant as the tolerance
gets sharper. Furthermore, we note that, as the tolerance gets sharper, the number of derivative evaluations
for ode45 increases faster than for the algorithm of Section 3.2. Finally, we emphasize that, for ode45
with event detection, the user is required to interact with the solver in a more sophisticated way, in that,
not only is the definition of the model needed, but also the definition of (one or more) event functions is
needed, and the handling of stopping and restarting the computation at the discontinuity points must be
done by the user.

The point of introducing Tables [2] and [3] is not to compare the efficiencies of the two methods and
respective software, but to show that the algorithm we describe in Section 3.2 is able to deliver accurate
results at a cost that is somewhat comparable to the approach described in Section 3.1, even though the
latter approach requires the user to provide extra information and to interact with the solver in a more
complicated way.

5 Summary and conclusions

In this paper, we have considered an SEIR COVID-19 ODE model representing the spread of the
virus, subject to interventions imposed, under certain conditions, to reduce the spread of the virus; these
interventions are removed when the spread of the virus is sufficiently reduced. The derivative of the
solution of this system of ODEs has discontinuities corresponding to the imposition and removal of these
interventions. We note that the model we have chosen should not be considered to be a definitive COVID-
19 model; it is simply an example of a typical model of this type; similar models that involve solution
components that exhibit rapid growth and decay over certain regions of the domain and that involve
interventions leading to discontinuities in the derivative of the solution to the model will present similar
challenges for standard ODE solvers.

This paper includes numerical results that show that an incorrect solution is obtained when a standard
ODE solver is employed to attempt to solve the model, using a typical approach for the introduction of the
interventions. This paper also shows that it is possible to develop a numerical method that can compute
a high accuracy, defect-controlled continuous solution approximation that can be used together with a
defect sampling algorithm to accurately locate and then step past each discontinuity, allowing an accurate

August 4, 2025

14 W. H. Enright, C. C. Christara, P. H. Muir

solution approximation to be obtained.

The approach described in this paper delivers a continuous approximate solution that can be evaluated
at any point in [t, tenq|. The accuracy of this continuous approximate solution is imposed through control
of an estimate of its defect. The continuous approximate solution that is returned will have an estimated
defect that is less than the user tolerance across the entire domain. The software requires from the user
only the information that is required to define the ODE system and the user tolerance. The significant
advantage of this approach is that it can automatically locate the discontinuities, it does not require the
user to provide additional event functions that characterize the discontinuities.

Author contributions

W. H. Enright: conceptualization, formal analysis, funding acquisition, methodology, software, writing
original draft; C. C. Christara: conceptualization, formal analysis, funding acquisition, methodology,
software, writing review & editing, visualization; P. H. Muir: formal analysis, funding acquisition,
methodology, software, writing review & editing.

Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors would like to thank Jonathan Calver and Humaid Agowun for helpful discussions. Author
W. H. Enright’s work was supported in part by the NSERC Discovery Grant RGPIN-2016-05595. Author
C. C. Christara’s work was supported in part by the NSERC Discovery Grant RGPIN-2021-03502. Author
P. H. Muir’s work was supported in part by the NSERC Discovery Grant RGPIN-2017-05811.

Conflict of interest

The authors declare no conflict of interest.

References

[1] H. AGOWUN AND P. MUIR, Performance analysis of a collection of ODE solvers on COVID-19
models with discontinuities, Saint Mary’s University, Department of Mathematics and Computing
Science, Technical Report 2022_001, https://cs.smu.ca/tech_reports/, (2022).

[2] J. ARINO AND C. MCCLUSKEY, Effect of a sharp change of the incidence function on the dynamics
of a simple disease, Journal of Biological Dynamics, 4 (2010), pp. 490-505.

[3] M. BISIACCO AND G. PILLONETTO, Covid-19 epidemic control using short-term lockdowns for
collective gain, Annual Reviews in Control, 52 (2021), pp. 573-586.

[4] J. BUTCHER, The Numerical Analysis of Ordinary Differential Equations: Runge—Kutta and
General Linear Methods, John Wiley and Sons, New Jersey, 1987.

August 4, 2025

Infectious disease models with interventions 15

[5] X. CHEN, C. XIANG, AND Y. YANG, Sliding mode control of the susceptible-exposed-

asymptomatic-infected-recovered model with vaccination, Mathematical Methods in the Applied
Sciences, 48 (2024), pp. 3936-3955.

[6] C. CHRISTARA, The importance of being computationally accurate: the case of COVID-
19. CSC336 course sample paper, University of Toronto, Toronto, Ontario, Canada,
Wwww.cs.toronto.edu/ ccc/Courses/cssu.pdf, April 2020.

[7] J. DORMAND AND P. PRINCE, A family of embedded Runge-Kutta formulae, Journal of
Computational and Applied Mathematics, 6 (1980), pp. 19-26.

[8] W. ENRIGHT AND H. HAYASHI, A delay differential equation solver based on a continuous Runge-
Kutta method with defect control, Numerical Algorithms, 16 (1997), pp. 349-364.

[9] W. ENRIGHT, K. JACKSON, S. N@RSETT, AND P. THOMSEN, Interpolants for Runge-Kutta
formulas, ACM Transactions on Mathematical Software (TOMS), 12 (1986), pp. 193-218.

[10] W. ENRIGHT, K. JACKSON, S. NORSETT, AND P. THOMSEN, Effective solution of discontinuous

IVPs using a Runge-Kutta formula pair with interpolants, Applied Mathematics and Computation,
27 (1988), pp. 313-335.

[11] W. ENRIGHT AND P. MUIR, New interpolants for asymptotically correct defect control of BVODE:s,
Numerical Algorithms, 53 (2010), pp. 219-238.

[12] W. ENRIGHT AND L. YAN, The reliability/cost trade-off for a class of ODE solvers, Numerical
Algorithms, 53 (2010), pp. 239-260.

[13] C. GEAR AND O. OSTERBY, Solving ordinary differential equations with discontinuities, ACM
Transactions on Mathematical Software, 10 (1984), pp. 23-44.

[14] H. HETHCOTE, The mathematics of infectious diseases, SIAM Review, 42 (2000), pp. 599-653.

[15] V. PICCIRILLO, Nonlinear control of infection spread based on a deterministic SEIR model, Chaos,
Solitons & Fractals, 149 (2021), p. 111051.

[16] L. SHAMPINE AND S. THOMPSON, Event location for ordinary differential equations, Computers
and Mathematics with Applications, 39 (2000), pp. 43—-54.

[17] Y. X1A0, X. XU, AND S. TANG, Sliding mode control of outbreaks of emerging infectious diseases,
Bulletin of mathematical biology, 74 (2012), pp. 2403-2422.

[18] H. ZIVARIPIRAN AND W. ENRIGHT, An efficient unified approach for the numerical solution of
delay differential equations, Numerical Algorithms, 53 (2010), pp. 397-417.

August 4, 2025

	Introduction
	Approximating solutions of mathematical models
	A SEIR epidemic model with interventions

	CRK methods and defect control
	CRK methods
	Defect control for CRKs

	Numerical approximation of the solution of the SEIR model with discontinuities
	Discontinuity detection and handling based on user-provided event functions
	Automatic discontinuity detection and handling

	Numerical results
	Summary and conclusions

