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Abstract

There are numerous financial problems that can be posed as optimal control problems, leading to
Hamilton-Jacobi-Bellman or Hamilton-Jacobi-Bellman-Issacs equations. We reformulate these prob-
lems as nonlinear PDEs, involving max and/or min terms of the unknown function, and/or its first and
second spatial derivatives. We suggest efficient numerical methods for handling the nonlinearity in the
PDE through an adaptation of the discrete penalty method [12] that gives rise to tridiagonal penalty
matrices. We formulate a penalty-like method for the use with European exercise rights, and extend
this to American exercise rights resulting in a double-penalty method. We also use our findings to im-
prove the policy iteration algorithms described in [11]. Numerical results are provided showing clear
second-order convergence, and where applicable, we prove the convergence of our algorithms.

AMS subject classification: 65M06, 65M12, 91G20, 91G60, 49M15.
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1 Introduction

There are a number of nonlinear adjustments to the Black-Scholes model [5] that can be posed as optimal
control problems. Some examples that we examine in this paper are stock borrowing fees [10], stock
borrowing fees with American options [11], and the family of transaction cost models introduced in [21],
which is a model that has been criticized and refined in [30, 23, 2, 31].

Optimal control problems can be formulated as nonlinear Hamilton-Jacobi-Bellman (HJB) Partial Differ-
ential Equations (PDEs). We are interested in the numerical solution of these equations. Previous work
involves a kind of policy iteration with Crank-Nicolson timestepping [11] and with Fully Implicit timestep-
ping [14]. Similar methods to solve HJB Variational Inequalities (VIs) have also used policy iteration with
Fully Implicit timestepping [27]. In recent years, there is a trend towards the use of deep learning [15] and
neural network approaches [7] for the numerical solution, especially for high-dimensional problems.

We express the HJB problems as nonlinear PDE problems without involvement of controls. We directly
discretize the nonlinear PDEs. The nonlinear term in the PDE may involve the unknown function, and/or
its first and second spatial derivatives. We use second-order finite differences for spatial discretization and
Crank-Nicolson-Rannacher [26] timestepping. For handling the nonlinearity, we use penalty-like meth-
ods, which, for the spatial derivatives, give rise to tridiagonal matrices. These penalty methods can be
combined with the penalty iteration [12] for American exercise rights, giving rise to double-penalty itera-
tion methods. Motivated by the penalty methods, we revisit the policy iteration method for the controlled
HJB problems and suggest improvements for the case of American exercise rights. The improved policy
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iteration algorithms are designed to be mathematically equivalent to the penalty iteration ones. Numerical
experiments show the second-order convergence of our methods.

As a terminology clarification, we note that, while the terms penalty iteration and policy iteration may
often be used interchangeably in the literature, in this paper, when we refer to penalty iteration methods,
we assume there are no controls and we apply the methods to penalized PDEs, while, policy iteration
methods are applied to the controlled HJB PDEs.

The main contributions of this paper are

1. We present novel techniques of handling nonlinearities involving first and second spatial derivatives
of the unknown function, and the use of multiple penalty and penalty-like matrices, similar to [6].
However, in this work, we handle nonlinearities associated not just with the unknown value function
as is done in [6], but also with its first and second spatial derivatives.

2. We discuss the advantages that these new penalty and penalty-like methods have over the policy
iteration [11] algorithms.

3. We prove the monotonic convergence of our numerical methods where applicable.
4. We introduce a new type of policy iteration algorithms for problems with American-style exercise

rights, that have improved order of convergence and allow the use of variable time stepsizes, leading
to more accurate and efficient solutions, when compared to the methods in [11].

5. In our penalty and policy iteration algorithms, we introduce stopping criteria that avoid oscillatory
iterate behaviour in certain degenerate cases.

6. We provide numerical results on a variety of problems, including transaction cost models developed
in [21], and give results for the model introduced in [31].

7. We extend the penalty iteration algorithm to the passport option pricing problem, which is a contin-
uous control problem.

The organization of the paper is as follows. In Section 2, we present the controlled and the penalized PDE
expressions of the problems considered. In Section 3, after describing the time and space discretization
for the PDEs considered, we introduce the policy and penalty iteration methods, as well as the penalty
matrices for each nonlinear problem considered. In Section 4, we present numerical experiments on each
problem, and compare the policy and penalty iteration methods. In Section 5, we extend the penalty
iteration method to a continuous control problem. Section 6 summarizes our conclusions. Section 7 acts
as an Appendix and presents the study of convergence of the penalty iteration methods introduced, and
convergence to the viscosity solution.

2 Problem formulation

In this section, we show both the control and the nonlinear PDE representations of the problems we are
interested in. The PDE models that we examine are nonlinear extensions of the original Black-Scholes
model [5] for European options.

In the context of nonlinear PDEs, the problems we are solving are of the form

Vτ =
σ2S2

2
VSS + rSVS − rV + nonlinear terms, (1)
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where, in the maximization form,

nonlinear terms = max{L1V,L2V, 0}+ ρmax{V ∗ − V, 0} (2)

with Li being linear second order differential operators, ρ given by

ρ =

{
1/ε for American options
0 for European options,

(3)

V ∗ the initial condition, and 0 < ε � 1, while the minimization form replaces the first max in (2) with
min. In the specific problems we solve, there are up to two Li operators, but the methods proposed are not
restricted by the number of Li’s.

For convenience, we define the differential operator L to represent the Black–Scholes operator

L(r, σ)V ≡ σ2S2

2
VSS + rSVS − rV. (4)

In the context of control problems, the problem we are solving in the maximization form is

Vτ = sup
µ∈{0,1}

sup
Q∈Q̂
{a(S, τ,Q)VSS + b(S, τ,Q)VS + c(S, τ,Q)V + d(V, µ)} , (5)

where Q denotes the control variables which can be one or more of {qi, i = 1, 2, 3}, µ is another control
variable used only when American exercise rights are considered, and d(V, µ) is defined by

d(V, µ) =

{
µ(V ∗ − V )/ε for American options
0 for European options,

(6)

while the minimization form replaces the second sup in (5) with a inf. Clearly, when European exercise
rights are considered, the first sup disappears. Again for convenience, we define an operator J similar to
L

J (Q)V ≡ a(S, τ,Q)VSS + b(S, τ,Q)VS + c(S, τ,Q)V. (7)

Next, we give a brief description of each specific problem.

2.1 Stock Borrowing Fees problem

We extend the borrowing/lending problem from [4] to include stock borrowing fees, denotes by rf . We
assume rb > rl > rf . The problem is described in detail in [10] and [11]. We have

Vτ = sup
Q

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1− q3)((rl − rf )SVS − q2V )

}
(8)

with Q = (q1, q2, q3), q1 ∈ {rl, rb}, q2 ∈ {rl, rb}, q3 ∈ {0, 1} for the short position.

The corresponding nonlinear PDE is given by

Vτ =
σ2S2

2
VSS + rl(SVS − V ) + max{(rb − rl)(SVS − V ),−rfSVS, 0} (9)

for the short position and

Vτ =
σ2S2

2
VSS + rb(SVS − V ) + min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS, 0} (10)

for the long position.
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2.2 Stock Borrowing Fees problem with American exercise rights

When we add an American early exercise feature to the problem described in Section 2.1, we get

Vτ = sup
µ,Q

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1− q3)((rl − rf )SVS − q2V ) + µ

V ∗ − V
ε

}
(11)

where V ∗ denotes the payoff, 0 < ε � 1, Q = (q1, q2, q3), q1 ∈ {rl, rb}, q2 ∈ {rl, rb}, q3 ∈ {0, 1} and
µ ∈ {0, 1}.

The long position, which is claimed to be more interesting in [11], involves a sup inf

Vτ = sup
µ

inf
Q

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1− q3)((rl − rf )SVS − q2V ) + µ

V ∗ − V
ε

}
, (12)

which makes it an HJBI (Hamilton-Jacobi-Bellman-Issacs) equation, corresponding to a stochastic game,
again with 0 < ε� 1, Q = (q1, q2, q3), q1 ∈ {rl, rb}, q2 ∈ {rl, rb}, q3 ∈ {0, 1} and µ ∈ {0, 1}.

The corresponding nonlinear PDEs are given by

Vτ =
σ2S2

2
VSS + rl(SVS − V ) + max{(rb − rl)(SVS − V ),−rfSVS, 0}+ ρmax{V ∗ − V, 0} (13)

for the short position, and

Vτ =
σ2S2

2
VSS+rb(SVS−V )+min{(rl−rb)(SVS−V ),−(rb−rl+rf )SVS, 0}+ρmax{V ∗−V, 0} (14)

for the long position, where ρ = ε−1.

2.3 Transaction Cost model

Transaction cost models have been introduced in [21], and have been extensively debated and refined in
[17, 32, 22, 30]. It is beyond the scope of the paper to discuss the merits and drawbacks of these models;
we use the model given in [31], which is based on [30]. The model is given by the nonlinear PDE

Vτ =
σ2S2

2
VSS + rSVS − rV − κS2|VSS| (15)

where κ is the transaction cost.

Equation (15) can equivalently be expressed as

Vτ =
σ2S2

2
VSS + rSVS − rV + min{κS2VSS,−κS2VSS}. (16)

For a Transaction Cost model with American exercise rights, Yousuf [31], following the logic in [12],
gives

Vτ =
σ2S2

2
VSS + rSVS − rV + min{κS2VSS,−κS2VSS}+ ρmax{V ∗ − V, 0}, (17)

where ρ has the same functionality as the one used for American options in [12].
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For the cases where the payoff V ∗ is convex, VSS ≥ 0, and Equation (16) becomes

Vτ =

(
σ2

2
− κ
)
S2VSS + rSVS − rV, (18)

a type of Black-Scholes PDE; and Equation (17) becomes

Vτ =

(
σ2

2
− κ
)
S2VSS + rSVS − rV + ρmax{V ∗ − V, 0}, (19)

a penalized PDE for American options, as given in [12]. In both cases, the volatility is adjusted and the
adjusted volatility σ′ is given by

σ′ =
√
σ2 − 2κ, (20)

where we also impose the requirement that κ < σ2/2, to ensure a positive coefficient of the diffusion term.
(On the other hand, if the payoff V ∗ is concave, VSS ≤ 0, and σ′ =

√
σ2 + 2κ.)

We also derive a control problem for the Transaction Cost model

Vτ = inf
q∈{−κ,κ}

{(
σ2

2
+ q

)
S2VSS + rSVS − rV

}
(21)

and American exercise rights can be added in the same fashion as in the Stock Borrowing Fee prob-
lem

Vτ = sup
µ∈{0,1}

inf
q∈{−κ,κ}

{(
σ2

2
+ q

)
S2VSS + rSVS − rV + µ

V ∗ − V
ε

}
. (22)

3 Numerical methods

In this section, we discuss specific numerical methods, focusing on the treatment of nonlinear terms.

3.1 Discretization

We describe the discretization of the various specific forms of Equations (1) and (5) here. The semi-infinite
domain [0,∞) on S is truncated to [0, Smax] for some sufficiently large Smax. We use standard second-
order finite differences for the spatial discretization and Crank-Nicolson-Rannacher timestepping [26] for
the temporal discretization. Let τj, j = 0, . . . ,M , be the timesteps at which the solution is computed, with
τ0 = 0 < τ1 < · · · < T . When the timesteps are uniform, the stepsize is ∆τ = T/M , but we also present
results with variable (adaptive) stepsizes. Let Si, i = 0, . . . , N , be the (uniform or nonuniform) spatial
gridpoints in [0, Smax].

Where V ∗ is a put or straddle payoff (i.e. max{K−S, 0} or max{S−K,K−S}, we use the nonuniform
grid described by a smooth mapping function in [9]. This ensures that there is a node on the sole cusp point
which is the strike price K, a requirement for smooth convergence [24]. Since the nonuniform gridpoints
are generated by a smooth mapping of uniform points, the finite difference approximations of the second
derivatives are second order. The mapping function w(x) is defined by

Si ≡ w(xi) =

(
1 +

sinh(β(xi/xN − α))

sinh(βα)

)
K (23)
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where xi, i = 0, . . . , N , are uniform gridpoints in [0, Smax], α is a parameter that controls the density of
the gridpoints in the interval [0, K], and β ensures that w(Smax) = Smax and is numerically solved. In our
examples we choose α = 0.37.

Where V ∗ is a butterfly spread payoff, we define a nonuniform grid with N subintervals where γN + 1
of the points are allocated in the interval [K − 2a,K + 2a] uniformly. To ensure a gridpoint on the three
strike prices K,K ± a, we pick γ so that γN is a multiple of four. The remaining points are allocated
uniformly on the intervals [0, K − 2a) and (K + 2a, Smax] with the distribution of points proportional to
the lengths of the intervals. For the butterfly spread payoff, the grid arising is not smooth at K ± 2a, and
there is no guarantee that the finite difference approximations of the second derivatives are second order.
However, the points of non-smoothness are away from the “interesting area”, and, as will be seen in the
numerical experiments, the grid turns out to be effective for different problems with the butterfly spread
payoff. In our examples, we choose γ = 0.20.

The spatial grid arising from the mapping (23) is often used in financial problems, and the one used for
the butterfly spread payoff is simple and turns out to be effective in the numerical experiments. We remark
that other nonuniform grids as well as adaptive grids, such as those in [8], could be used and potentially
further improve the performance of the methods, but this is not the focus of the paper.

Let vj denote the computed solution vector arising from the approximate values of V at the spatial grid-
points at time τj , with v0 being the initial condition vector. Since we use an iteration method to handle
the nonlinearity, let vj,k, k = 0, . . . ,maxit, denote the computed solution vector at iteration k of timestep
j, with maxit the maximum number of iterations permitted. In the context of policy iteration algorithms,
let A(Q) be the matrix arising from the space discretization of J (Q), and, in the case of American ex-
ercise rights, let R(µ) be a diagonal matrix R(µ) = diag{µi/ε, i = 1, . . . , N}, where, in the discrete
equations, µ is a vector of controls µi ∈ {0, 1}. Note that R = 0, when the exercise rights are European.
Where the control Q has already been computed, the notation Aj and Rj are understood to be A(Qj) and
R(µj). In the context of penalty iteration algorithms, let A be the constant matrix arising from the space
discretization of L(r, σ).

For the boundary conditions at S = 0 and S = Smax, we impose Dirichlet boundary conditions at S = 0
and linear boundary conditions at S = Smax, and use one-sided finite differences to discretize the first
derivative at that endpoint. Thus, we have N unknowns per timestep. However, in Section 7, for the
analysis of the matrix properties, we assume that Dirichlet boundary conditions are used on both endpoints;
this ensures that the discretization matrix is diagonally dominant. Numerical tests have shown that the
solution does not vary substantially based on the type of boundary condition used.

3.2 Policy iteration

The first policy iteration method we use is based on [11], with some small improvements resulting in
Algorithm 1. Specifically, we use the discretization methods described in the previous section (which
can be considered equivalent to “Q-independent discretization” in [11]), we use the nonuniform grids
mentioned earlier, and we use the equivalence of controls as the stopping criterion, to avoid incurring
excessive computational cost. In Section 3.6, we do further improvements to the policy iteration that result
in substantially more efficient algorithm when American exercise rights are present.

The stopping criterion used is the equivalence of controls. When

Qj,k = Qj,k−1 and µj,k = µj,k−1 (24)
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Algorithm 1 Policy iteration for HJB PDEs at step j with θ timestepping

Require: Solve (I − θ∆τ(Aj −Rj))vj = gj−1 + θ∆τRjv∗

where gj−1 = (I + (1− θ)∆τ(Aj−1 −Rj−1))vj−1 + (1− θ)∆τRj−1v∗

subject to Qj
i = arg supQ∈Q̂[A(Q)vj]i and µji = arg supµ∈{0,1}[R(µ)(v∗ − v)]i

1: Initialize vj,0 = vj−1, µj,0 = µj−1, and Qj,0 = Qj−1

2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τ(Aj,k−1 −Rj,k−1))vj,k = gj−1 + θ∆τRj,k−1v∗

4: Compute Qj,k
i = arg supQ∈Q̂[A(Q)vj,k]i, µ

j,k
i = arg supµ∈{0,1}[R(µ)(v∗ − vj,k)]i

5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set vj = vj,k, µj = µj,k, and Qj = Qj,k

we terminate the iteration.

A convergence proof is provided in [28] and an example is given that the number of iterations taken is
proportional to the number of controls (which is essentially the worst case, based on brute force search).
However, we note that in initial value problems where the solution is continuous (as is the case here) the
computed solution at the current timestep is always a close estimate of the solution at the next timestep,
we never have a cold start as assumed in [28], hence, we do not need to worry about worst-case conver-
gence.

3.3 Penalty matrices

To address the discretization of nonlinear terms in Equations (9), (10), (13), (14), (16), and (17), we use
penalty matrices defined in the spirit of those used in [6] and [12]. However, there are two important
differences:

1. We do not introduce a large penalty parameter such as ρ in [12] when handling the max{L1V,L2V, 0}
and min{L1V,L2V, 0} terms. The large penalty parameter ρ in [12] is introduced to capture the
nonlinearity in the Linear Complementarity Problem of the American option valuation. So strictly
speaking, the matrices we introduce when handling the max{L1V,L2V, 0} and min{L1V,L2V, 0}
are not penalty matrices but rather penalty-like (herein referred to as simply penalty) matrices. In
this respect, these penalty matrices are rather similar to those used in [6] to address nonlinearity
arising from different types of valuation adjustments. However, we note that the penalty matrix in
[6] addresses only the V nonlinearity, while in this paper we present penalty matrices that address
the nonlinearity in any derivative term (VSS , VS) as well.

2. Our penalty matrices are not diagonal matrices but tridiagonal matrices; this allows us to handle
the nonlinear terms max{L1V,L2V, 0} and min{L1V,L2V, 0} involving the partial derivatives VS
and VSS , such as max{V − SVS, 0} in the Stock Borrowing Fee problem described in Section 2.1,
and min{κS2VSS,−κS2VSS} in the Transaction Cost model in Section 2.3. Since the discretization
matrixA is tridiagonal, this doesn’t change the sparsity structure of the linear system we are solving.
We will also show under what conditions adding the penalty matrix to A doesn’t change its diagonal
dominance or monotonicity.

January 31, 2022



8 C. C. CHRISTARA, R. WU

To make it easier to define the penalty matrices used in the nonlinear iteration, let T1 and T2 denote the
N × N matrices that compute the first and second derivatives from centered finite differences, and DS

denote a diagonal matrix of size N with the entries being the gridpoints Si. Accordingly, D2
S is a diagonal

matrix of size N + 1 with the entries being S2
i . Thus, the matrices DST1 and D2

ST2 discretize SVS and
S2VSS , respectively. Let also I denote the identity matrix of appropriate dimension.

3.3.1 Stock Borrowing Fees

For the PDE problems (9) and (10), we introduce penalty matrices to handle the nonlinear terms
max{(rb − rl)(SVS − V ),−rfSVS, 0} and min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS, 0}, respec-
tively.

For the short position, let P1 = (rb−rl)(DST1−I) and P2 = −rfDST1 be the tridiagonal matrices arising
from the discretization of (rb − rl)(SVS − V ) and −rfSVS , respectively. Define the tridiagonal penalty
matrix P = P (vj) by

Pi,: =


0 if [P1v

j]i ≤ 0 and [P2v
j]i ≤ 0

[P1]i,: if [P1v
j]i > 0 and [P1v

j]i > [P2v
j]i

[P2]i,: if [P2v
j]i > 0 and [P1v

j]i ≤ [P2v
j]i.

(25)

where the colon notation Pi,: means the entire i-th row of P and is borrowed from MATLAB. Thus, P
is constructed so that it discretizes max{(rb − rl)(SVS − V ),−rfSVS, 0}, with the first branch of (25)
corresponding to the case that max{(rb − rl)(SVS − V ),−rfSVS, 0} = 0, the second branch to the case
that max{(rb − rl)(SVS − V ),−rfSVS, 0} = (rb − rl)(SVS − V ), and the third branch to the case that
max{(rb − rl)(SVS − V ),−rfSVS, 0} = −rfSVS .

For the long position, let P1 = (rl − rb)(DST1 − I) and P2 = −(rb − rl + rf )DST1 be the tridiagonal
matrices arising from the discretization of (rl−rb)(SVS−V ) and−(rb−rl+rf )SVS , respectively. Define
the tridiagonal penalty matrix P = P (vj) by

Pi,: =


0 if [P1v

j]i ≥ 0 and [P2v
j]i ≥ 0

[P1]i,: if [P1v
j]i < 0 and [P1v

j]i < [P2v
j]i

[P2]i,: if [P2v
j]i < 0 and [P1v

j]i ≥ [P2v
j]i.

(26)

Again, P is constructed so that it discretizes min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS, 0}.

3.3.2 American exercise rights

When the American exercise rights are added, the penalty matrix PA = PA(vj) is borrowed from [12].
The penalty matrix PA is diagonal and is defined by

[PA(vj)]i,i =

{
ρ if vji < V ∗i
0 otherwise.

(27)

The use of this matrix, as we shall see in Algorithm 3, is the same as the use in [12], and ρ is a sufficiently
large positive penalty parameter.
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3.3.3 Transaction Cost

The tridiagonal penalty matrix P = P (vj) to handle the term min{κS2VSS,−κS2VSS} in (16) and (17) is
defined by

Pi,: =

{
−κ[D2

ST2]i,: if [D2
ST2v

j]i > 0

κ[D2
ST2]i,: otherwise,

(28)

It is easily seen that Pv discretizes −κS2|VSS|, or, equivalently, min{κS2VSS,−κS2VSS}. Although not
explicitly referring to penalty matrices, the non-smooth Newton’s method in [13] gives rise to the same
matrice P presented in (28).

REMARK 1 Although we presented the penalty matrices for two particular nonlinear problems, the defi-
nition of the penalty matrices can be extended in a straightforward way to all nonlinear PDEs of the form
(1)-(2).

3.4 Penalty iteration

Now, with the definition of the penalty and penalty-like matrices complete, we are ready to give a general
algorithm encompassing Equations (9), (10), (13), (14), (16), and (17).

Let P denote the penalty-like matrix arising from the terms max{L1V,L2V, 0} or min{L1V,L2V, 0}.
Then, the general form of the penalty iteration algorithm becomes Algorithm 2.

Algorithm 2 Tridiagonal penalty iteration at step j, with θ-timestepping

Require: Solve [(I − θ∆τ(A+ P (vj)))]vj = gj

where gj = (I + (1− θ)∆τ(A+ P (vj−1)))vj−1

1: Initialize vj,0 = vj−1 and P j,0 = P (vj−1)
2: for k = 1, . . . ,maxit do
3: Solve [I − θ∆τ(A+ P j,k−1)]vj,k = gj

4: if first stopping criterion satisfied then
5: Break
6: end if
7: Compute P j,k = P (vj,k)
8: if second stopping criterion satisfied then
9: Break

10: end if
11: end for
12: Set vj = vj,k

The first stopping criterion is

max
i
{ |v

j,k
i − v

j,k−1
i |

max(scale, |vj,ki |)
} < tol. (29)

The second stopping criterion is

max
i
{|[P

j,k−1vj,k − P j,kvj,k]i|
max(scale, |[P j,kvj,k]i|)

} < tol. (30)

January 31, 2022



10 C. C. CHRISTARA, R. WU

Typical values are scale = 1 and tol = 10−6.

When either stopping criterion is satisfied, the iteration is terminated.

The second stopping criterion is analogous to the equivalence of controls for the policy iteration. The
motivation behind the second stopping criterion is that with only testing equivalence of penalty matrices
(i.e. P j,k−1 = P j,k) the penalty matrices could be substantially different from each other while the values
that they compute (Pv) do not differ by much. This could lead to oscillations when the penalty matrices
are generated, causing the iterations to continue forever.

The first stopping criterion is borrowed from [11] and is used as a safeguard. In practice, we found that
removing this criterion does not affect the number of iterations by much, but it may be useful to have, as
we avoid an extra computation of the penalty matrix, whenever this criterion takes into effect.

Under certain conditions, Algorithm 2 monotonically converges to the unique solution in a finite number
of iterations. For a proof of this, see Section 7.

3.5 Double penalty iteration for American exercise rights

In the case of American exercise rights, such as the Stock Borrowing Fees with American exercise rights
problem represented by Equations (13) and (14), or the Transaction Cost model with American exercise
rights represented by Equation (17), Algorithm 3 is used. This algorithm applies to all problems with
American instead of European exercise rights, and all of the results for this problem, such as monotonicity
of iterates leading to convergence and the use of variable timesteps to restore the convergence rate to 2.0,
still apply. Therefore, Algorithm 3 is written in a general form to reflect this potential.

Algorithm 3 Tridiagonal double-penalty iteration at step j, with θ-timestepping

Require: Solve [(I − θ∆τ(A+ P (vj))) + PA(vj)]vj = gj + PA(vj)v∗

where gj = (I + (1− θ)∆τ(A+ P (vj−1)))vj−1

1: Initialize vj,0 = vj−1, P j,0 = P (vj−1), and P j,0
A = PA(vj−1)

2: for k = 1, . . . ,maxit do
3: Solve [(I − θ∆τ(A+ P j,k−1)) + P j,k−1

A ]vj,k = gj + P j,k−1
A v∗

4: if first stopping criterion satisfied then
5: Break
6: end if
7: Compute P j,k = P (vj,k), P j,k

A = PA(vj,k)
8: if second stopping criterion satisfied then
9: Break

10: end if
11: end for
12: Set vj = vj,k

The first stopping criterion is identical to Condition (29). The second stopping criterion is

max
i
{|[P

j,kvj,k − P j,k−1vj,k]i|
max(scale, |[P j,kvj,k]i|)

} < tol and P j,k
A = P j,k−1

A . (31)

When either condition (29) or condition (31) is satisfied the iteration is terminated. The motivation for the
two criteria remains the same as for Algorithm 2. Note that the discussion earlier about oscillations in the
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computed penalty matrix does not apply to PA, since PA is diagonal and thus we simply use equivalence
of penalty matrices.

For the short position of the Stock Borrowing Fees problem, we can prove that the algorithm converges
monotonically in a finite number of iterations to the unique solution. For a proof of this, see Section 7. The
long position does not allow such a proof, because the penalty matrix P causes the values of the iterates
to decrease while the American penalty matrix PA causes the values of the iterates to increase on each
iteration. The same reasoning applies to the American Transaction Cost model, where the differing sign
between PA and P ensures that there is no monotone convergence for positive transaction cost.

3.6 Improved policy iteration for American exercise rights

As we will see in the numerical experiments, when problems with American exercise rights are solved with
the policy iteration, the solution exhibits slightly reduced orders of convergence. In the context of penalty
methods for American options [12], this issue is resolved with variable timestepping. However, with
Algorithm 1, the technique of variable timestepping did not work well. We present an improved policy
iteration algorithm which, for European exercise rights, is equivalent to Algorithm 1, but for American
exercise rights, results in stable second order convergence and allows for variable timestepping.

The motivation can be found by analyzing the difference between the penalty iteration algorithm [12] and
the policy iteration algorithm in [11] for American options. It can be determined that the maximization step
computing µ and, therefore, R(µ), in the policy algorithm, is equivalent to calculating the penalty matrix
PA in the penalty algorithm; however, the difference lies in the linear system solved at each iteration. It
can be shown that solving for the next iterate vj,k in the policy iteration of Algorithm 1 is solving

(I−θ∆τA+θ∆τRj,k−1)vj,k = (I+(1−θ)∆τA)vj−1+θ∆τRj,k−1v∗+(1−θ)∆τRj−1(v∗−vj−1). (32)

In contrast, the penalty iteration algorithm [12] solves

(I − θ∆τA+ P j,k−1
A )vj,k = (I + (1− θ)∆τA)vj−1 + P j,k−1

A v∗. (33)

Note that P j
Av

j in (33) is treated fully implicitly and does not involve a θ (nor a ∆τ ) factor, in contrast to
how Rj is treated in (32). We then modify the policy iteration to match the computation of the penalty
iteration, and arrive to the following algorithm.

The first stopping criterion is the same as in Algorithm 2 which is Condition (29). For the second stopping
criterion, if we use the same condition as the one used in Algorithm 1, that is,

Qj,k = Qj,k−1 and µj,k = µj,k−1,

then we run into the same problems with oscillations as mentioned for Algorithm 2. Instead, for the Q
controls, we use a stopping criterion similar to Condition (30), which is also the first part of (31), that
is,

max
i
{|A(Qj,k)vj,k − A(Qj,k−1)vj,k|

max(scale, A(Qj,k)vj,k)
} < tol and µj,k = µj,k−1, (34)

where the motivation and purpose are the same as for Algorithms 2 and 3.
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Algorithm 4 Improved policy iteration for HJB PDEs (including American rights) at step j with θ
timestepping

Require: Solve (I − θ∆τAj +Rj)vj = gj−1 +Rjv∗

where gj−1 = (I + (1− θ)∆τAj−1)vj−1
subject to Qj

i = arg supQ∈Q̂[A(Q)vj]i and µji = arg supµ∈{0,1}[R(µ)(v∗ − v)]i
1: Initialize vj,0 = vj−1, µj,0 = µj−1, and Qj,0 = Qj−1

2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τAj,k−1 +Rj,k−1)vj,k = gj−1 +Rj,k−1v∗

4: if first stopping criterion satisfied then
5: Break
6: end if
7: Compute Qj,k

i = arg supQ∈Q̂[A(Q)vj,k]i, µ
j,k
i = arg supµ∈{0,1}[R(µ)(v∗ − vj,k)]i

8: if second stopping criterion satisfied then
9: Break

10: end if
11: end for
12: Set vj = vj,k, µj = µj,k, and Qj = Qj,k

3.7 Comments on penalty and policy iterations

The double-penalty iteration algorithm (Algorithm 3) that we introduced for American exercise rights (and
other nonlinearities) is an extension of the penalty iteration algorithm (Algorithm 2) introduced for non-
linearities other than American exercise rights. Essentially, Algorithm 3 covers even the case of European
exercise rights, as, if PA = 0, it reduces to Algorithm 2.

In contrast, the improved policy iteration (Algorithm 4) is not, in general, an extension of the policy
iteration Algorithm 1. More specifically, Algorithm 4 is equivalent to Algorithm 1 in the case of European
exercise rights, i.e. the case R = 0, but not in the case of American exercise rights. Both Algorithms 4
and 1 are applicable to both European and American exercise rights, but in the case of American rights
Algorithm 4 is more effective than Algorithm 1, as will be shown through numerical experiments in the
next section.

It is also important to note that Algorithm 4 is mathematically (but not computationally) equivalent to
Algorithm 3. This equivalence is reflected in the next section, where the results are numerically identical
to a tolerance level.

4 Numerical results

We present numerical results from applying Algorithms 1, 2, 3, and 4 to the respective control and penalty
PDE problems. For convenience, we use the abbreviations SBF for Stock Borrowing Fee problem, SBFA
for Stock Borrowing Fee problem with American exercise rights, TC for Transaction Cost model problem,
and TCA for Transaction Cost model problem with American exercise rights. Where the policy and penalty
methods agree with each other to a numerical tolerance, the tables are used for a side-by-side comparison
of policy iteration and penalty iteration in terms of the number of iterations taken.

The payoff for the first two problems (SBF, SBFA) is a straddle payoff, that is, the sum of a call and a put,
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while for TC and TCA, we consider put and butterfly spread payoffs.

For all the problems considered, the exact solution is unknown. In order to study the error and the order of
convergence, we approximate the error by the difference (change) between two grid resolutions of size N
and 2N . We calculate the experimentally observed order of convergence by log2(changeN/change2N).

4.1 Stock Borrowing Fees

We provide the numerical results of the SBF problem, solved with penalty and policy iteration in Table 1.
The SBF problem is complex due to having more controls compared to the subsequent problems. However,
in Table 2, for European options, we have a very small number of average iterations per timestep, and very
stable second order of convergence.

4.2 Stock Borrowing Fees with American exercise rights

We provide the numerical results of the SBFA problem, solved with penalty and policy iteration.

This is the first problem in which we see the degradation of the solution quality as observed in the rate of
convergence for solutions computed with policy iteration Algorithm 1 (note that the rate drops with each
increase in the grid resolution). This phenomenon is expected for American options; see [12] for similar
results with an American put option. The remedy, as suggested in the same paper [12], is to use variable
timesteps based on the difference in the solution at the two previous timesteps.

However, when we introduced the same variable timestep selection method as in [12] in the policy Al-
gorithm 1, the convergence rate did not improve, and we did not get results compatible with the variable
timestep selection method in the penalty Algorithm 3. This is where the penalty Algorithm 3 has an ad-
vantage over the policy Algorithm 1: if we introduce the variable timestep selection method in Algorithm
3, we end up correcting the rate of convergence back to 2.0. However, introducing variable timesteps in
Algorithm 4, gives compatible results with variable timesteps in Algorithm 3. Although the average num-
ber of iterations per timestep with variable timesteps is higher compared to that with constant timesteps, it
would be the wrong metric to focus on, since the total number of iterations is less with variable timesteps.
In fact, comparing Tables 2 and 3, with variable timesteps approximately only half of the number of iter-
ations are required to obtain a solution that is eight times more accurate than the solution obtained with
constant timesteps.

4.3 Transaction Cost model

For testing our methods on the Transaction Cost model problem, we consider two payoffs, the put, which
is convex, and the butterfly spread, which is non-convex. The butterfly spread payoff is given by

V ∗(S) =


0 if S ≤ K − a or S > K + a

S − (K − a) if K − a < S ≤ K

(K + a)− S if K < S ≤ K + a,

(35)

where K is the center strike price and a is a constant. In order to compare our results with existing results
in the literature, we use different parameters, which are shown individually on each table of results.
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Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 27 22.669427 — — 36 1.33 37 1.37
201 52 22.680662 1.12e-02 — 71 1.37 71 1.37
401 102 22.683470 2.81e-03 2.00 140 1.37 140 1.37
801 202 22.684172 7.02e-04 2.00 278 1.38 278 1.38

1601 402 22.684347 1.75e-04 2.00 553 1.38 553 1.38
3201 802 22.684391 4.39e-05 2.00 1104 1.38 1104 1.38

Table 1: Long position of Stock Borrowing Fees problem with constant timesteps; value computed at K;
straddle payoff. Parameters: T = 1, Smax = 1000, K = 100, σ = 0.3, rb = 0.05, rl = 0.03, rf = 0.004;
Penalty results by Algorithm 2, Policy results by Algorithm 1.

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 102 23.068723 — — 138 1.35 131 1.28
201 202 23.079662 1.09e-02 — 272 1.35 261 1.29
401 402 23.082678 3.02e-03 1.86 544 1.35 526 1.31
801 802 23.083541 8.63e-04 1.80 1078 1.34 1050 1.31

1601 1602 23.083804 2.63e-04 1.71 2166 1.35 2123 1.33
3201 3202 23.083890 8.51e-05 1.63 4322 1.35 4254 1.33

Table 2: Long position of Stock Borrowing Fees problem with American exercise rights and constant
timesteps; value computed at K; straddle payoff; Parameters: T = 1, Smax = 1000, K = 100, σ = 0.3,
rb = 0.05, rl = 0.03, rf = 0.004; Penalty results by Algorithm 3, Policy results by Algorithm 1.

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 40 23.076824 — — 71 1.77 68 1.70
201 82 23.082631 5.81e-03 — 142 1.73 139 1.70
401 166 23.083667 1.04e-03 2.49 277 1.67 273 1.64
801 332 23.083875 2.09e-04 2.31 561 1.69 558 1.68

1601 664 23.083922 4.68e-05 2.16 1127 1.70 1126 1.70
3201 1327 23.083932 1.05e-05 2.16 2237 1.69 2296 1.73

Table 3: Long position of Stock Borrowing Fees problem with American exercise rights and variable
timesteps; value computed at K; straddle payoff; Parameters: T = 1, Smax = 1000, K = 100, σ = 0.3,
rb = 0.05, rl = 0.03, rf = 0.004; Penalty results by Algorithm 3, Policy results by Algorithm 4.

4.3.1 Put payoff

Since the put payoff is convex, the model linearizes and is reduced to Equation (18) for European options,
or Equation (19) for American options. Table 4 and Tables 5 and 6 give the results which match the
exact solution and the previously published results [12], respectively. In particular, on Table 4, besides the
convergence to the exact solution 15.852055 (obtained through the Black-Scholes formula), we notice that
we have very few excess iterations, something that matches our expectations for a linear problem. Also, on
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Tables 5 and 6, we run a problem for which the adjusted volatility is σ′ =
√

1− 2× 0.18 = 0.8, the same
as for the problem in Table 11.1 of [12], and the values we obtain are very close to those in [12].

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 102 15.843845 — — 103 1.01 103 1.01
201 202 15.850002 6.16e-03 — 203 1.00 203 1.00
401 402 15.851542 1.54e-03 2.00 403 1.00 403 1.00
801 802 15.851927 3.85e-04 2.00 803 1.00 803 1.00
1601 1602 15.852023 9.63e-05 2.00 1603 1.00 1603 1.00
3201 3202 15.852047 2.41e-05 2.00 3203 1.00 3203 1.00

Table 4: European Transaction Cost model with put payoff (linear problem) and constant timesteps; value
computed at K; Parameters: T = 1, Smax = 1000, K = 100, σ = 0.65, r = 0.05, κ = 0.1. Penalty results
by Algorithm 2, Policy results by Algorithm 1. Exact value is 15.852055.

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 27 14.660480 — — 40 1.48 42 1.56
201 52 14.672650 1.22e-02 — 85 1.63 85 1.63
401 102 14.676668 4.02e-03 1.60 173 1.70 175 1.72
801 202 14.678055 1.39e-03 1.53 359 1.78 365 1.81
1601 402 14.678561 5.06e-04 1.46 745 1.85 747 1.86
3201 802 14.678753 1.93e-04 1.39 1535 1.91 1549 1.93

Table 5: American Transaction Cost model with put payoff and constant timesteps; value computed at K.
Parameters: T = 0.25, Smax = 1000, K = 100, σ = 1.0, r = 0.1, κ = 0.18. Penalty results by Algorithm
3, Policy results by Algorithm 4.

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 42 14.671527 — — 66 1.57 66 1.57
201 85 14.677064 5.54e-03 — 136 1.60 134 1.58
401 171 14.678432 1.37e-03 2.02 278 1.63 281 1.64
801 344 14.678768 3.36e-04 2.03 565 1.64 577 1.68
1601 687 14.678851 8.29e-05 2.02 1144 1.67 1146 1.67
3201 1374 14.678872 2.06e-05 2.01 2272 1.65 2287 1.66

Table 6: American Transaction Cost model with put payoff and variable timesteps; value computed at K.
Parameters: T = 0.25, Smax = 1000, K = 100, σ = 1.0, r = 0.1, κ = 0.18. Penalty results by Algorithm
3, Policy results by Algorithm 4.

It should be noted that, for this problem, the use of stopping criterion (30) instead of P j,k−1 = P j,k is
critical for the success of the method, as, if P j,k−1 = P j,k is used, some components of the solution vector
oscillate by a negligible amount (most likely due to roundoff error), and force the penalty matrix to change
at each oscillation, which results in large number of iterations.
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4.3.2 Butterfly spread payoff

A butterfly spread payoff shows the nonlinearity in Equations (16) and (17). Tables 7 and 8 show the
results obtained.

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 102 0.126405 — — 121 1.19 121 1.19
201 202 0.125742 -6.63e-04 — 236 1.17 236 1.17
401 402 0.125485 -2.57e-04 1.37 474 1.18 474 1.18
801 802 0.125361 -1.24e-04 1.05 936 1.17 935 1.17

1601 1602 0.125323 -3.83e-05 1.70 1879 1.17 1874 1.17
3201 3202 0.125311 -1.20e-05 1.68 3736 1.17 3719 1.16

Table 7: European Transaction Cost model with butterfly spread payoff and constant timesteps; value
computed at K; Parameters: T = 1, Smax = 1000, K = 100, a = 10, σ = 0.65, r = 0.05, κ = 0.1.
Penalty results by Algorithm 2, Policy results by Algorithm 1.

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 102 8.555324 — — 109 1.07 109 1.07
201 202 8.558220 2.90e-03 — 216 1.07 217 1.07
401 402 8.558916 6.95e-04 2.06 429 1.07 429 1.07
801 802 8.559093 1.77e-04 1.97 856 1.07 856 1.07
1601 1602 8.559139 4.64e-05 1.93 1711 1.07 1710 1.07
3201 3202 8.559152 1.28e-05 1.85 3450 1.08 3498 1.09

Table 8: American Transaction Cost model with butterfly spread payoff and constant timesteps; value
computed at 1.1K; Parameters: T = 1, Smax = 1000, K = 100, a = 10, σ = 0.65, r = 0.05, κ = 0.1.
Penalty results by Algorithm 3, Policy results by Algorithm 1.

Common Information Penalty Iterations Policy Iterations
Nodes Tstep Value Change Rate Total Average Total Average

101 42 8.556308 — — 54 1.20 54 1.20
201 87 8.558431 2.12e-03 — 110 1.24 109 1.22
401 176 8.558946 5.15e-04 2.04 220 1.24 219 1.24
801 353 8.559073 1.27e-04 2.02 433 1.23 427 1.21
1601 704 8.559073 3.12e-05 2.03 868 1.23 853 1.21
3201 1407 8.559112 7.81e-06 2.00 1731 1.23 1720 1.22

Table 9: American Transaction Cost model with butterfly spread payoff and variable timesteps; value
computed at 1.1K; Parameters: T = 1, Smax = 1000, K = 100, a = 10, σ = 0.65, r = 0.05, κ = 0.1.
Penalty results by Algorithm 3, Policy results by Algorithm 4.

We do not compute the convergence rate for the American Transaction Cost model at the center strike
price, because the constraint from the American early exercise right causes the price to stay at the same
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Figure 1: Plots of the three-dimensional mesh of values of the Transaction Cost model with European (left)
and American (right) exercise rights. Parameters: T = 1, Smax = 1000, K = 100, σ = 0.65, r = 0.05,
κ = 0.1. Yellow represents larger values and blue represents smaller values.
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Figure 2: From left to right, values of ∆ for Stock Borrowing Fees problem, Stock Borrowing Fees
problem with American exercise rights, Transaction Cost problem, and Transaction Cost problem with
American exercise rights. Long position/worst case considered.

value [16], within rounding errors and errors at the level of ρ−1. Instead, we compute the convergence rate
at 1.1K, shown in Table 8. It is also possible to implement variable timesteps as in [12], to fix the very
small decrease of quality in the convergence rate at 1.1K. Results are included in Table 9.

Although different behaviour at the central strike price is shown in [31], we have reason to believe in
the correctness of our algorithm. The convergence rate is very clearly 2.0, as seen in Tables 8 and 9; in
addition, [31] uses a Padé scheme [18], which imposes certain smoothness requirements on the solution
which do not hold for American options. For one very well-known example, the solution of the American
put option has a discontinuous second derivative [12], which makes precise computation of a solution
difficult. In addition, our results are supported by analysis in [16], indicating that the solution at S = K
stays constant at a. A mesh plot of the solution is given in Figure 1 for European and American exercise
rights.

4.4 Greeks

We discuss the approximation of Greeks, since their smoothness is important to practical applications.
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Figure 3: From left to right, values of Γ for Stock Borrowing Fees problem, Stock Borrowing Fees problem
with American exercise rights, Transaction Cost problem, and Transaction Cost problem with American
exercise rights. Long position/worst case considered.

As can be seen in Figure 2, the computed Deltas of the four problems (SBF, SBFA, TC, and TCA) are
all smooth, with the exception of those problems with American options, which have cusps due to the
constraint that enforces the American exercise right. We see similar behaviour for the computed Gammas
in Figure 3, where the only jump is at the American exercise boundary.

Importantly, we do not see spurious oscillations in the plots, such as those found in [12] with constant
timesteps in the pricing of American put options, nor do we see the discontinuities such as those in the
Uncertain Volatility model, which is similar to the Transaction Cost problem, found in [25] or [14].

5 Extension of the penalty iteration method to continuous control problems

The penalty iteration method can easily be extended to problems with continuous control, by discretizing
the control. As a demonstration, we consider the Passport Option (PO) pricing problem introduced in [1],
which, after some transformations [29], is given by the PDE

Vτ = max
|q|≤1

σ2

2
(S − q)2VSS + ((r − rc − rγ)q − (r − rt − rγ)S)VS − rγV, (36)

where q is the control and denotes the number of shares of S held by the investor, ranging in [−1, 1], and
rc, rt and rγ are various given rates. To apply the penalty iteration method, we discretize the control q on
the interval [−1, 1]. Following the methods of [19, 20], we use Nq evenly spaced points q` along [−1, 1].
Then, for each of the points q`, ` = 1, . . . , Nq, we define the matrix

P` =
σ2

2
(q2` − 2q`DS)T2 + (r − rc − rγ)q`T1, (37)

arising from the terms in (36) involving the control q. To compute the penalty matrix P , we follow the
same logic as for the Stock Borrowing Fee problem, and define the penalty matrix P by

[P ]i,: = [Pk]i,:, where k satisfies [Pkv
j]i ≥ [P`v

j]i, ∀` = 1, . . . , Nq. (38)

For the PO problem, the finite difference discretization of the spatial derivatives, and the timestepping
scheme remains the same as for all problems considered in the paper, with some details on the S-grid
given next. As in [19, 20], the S domain is truncated to [Smin, Smax]. We use custom nonuniform S-grids,
denser towards S = 0.

January 31, 2022



Penalty Methods for HJB PDEs 19

To verify our results and demonstrate the correctness of our method, we compare our results with the
problems in [29]. The authors of [29] attempted two types of problems: the first is a call option with
payoff max(0, S) and the second is an option with digital call payoff 1(S ≥ 0). The first case is convex,
which means that the control will always be either 1 or −1 and is determined by the sign of S. We also
demonstrate our method on the capped call payoff min(1,max(S, 0)) (non-convex) which was used in
[19]. The non-convex digital call and the capped call payoffs are more serious tests of our method. Note
that compared to the results in [29], our results are not scaled by St=0 = 100.

Table 10 presents results from pricing a call payoff passport option with the parameters chosen so that
there is an analytic solution [1, 29]. Table 11 presents results from pricing a digital call payoff passport
option with the parameters chosen as in Table 5 in [29]. Tables 12 and 13 present results from a capped call
payoff passport option with the parameters chosen as in [19], with 9 and 101 points for the discretization
of q, respectively. In all cases, the convergence rate is close to 2. In Tables 10 and 11, our penalty method
reaches six and five, respectively, digits of accuracy with a reasonably low number of iterations. Though
it is difficult to directly compare our method to the one in [19], we note that in Tables 12 and 13 fewer
nodes and timesteps are used than in [19]. (In both [29] and [19], the number of timesteps is quadrupled in
each refinement.) An additional note is that, even if the payoff is non-convex, a finer discretization of the
control seems to have limited benefits, as the difference between Tables 12 (Nq = 9) and 13 (Nq = 101)
is minimal. Finally, we remark that Algorithms 1 and 4 are also applicable to the PO problem.

Nodes Tstep Iter Value Change Rate avg iter
24 7 9 0.1291107 — — 1.29
47 12 14 0.1308031 1.69e-03 — 1.17
93 22 23 0.1312359 4.33e-04 1.97 1.05

185 42 44 0.1313447 1.09e-04 1.99 1.05
369 82 100 0.1313719 2.72e-05 2.00 1.22
737 162 197 0.1313787 6.84e-06 1.99 1.22

1473 322 624 0.1313806 1.83e-06 1.91 1.94

Table 10: Passport Option problem with call payoff and constant timesteps; value computed at S = K = 0.
Parameters: T = 1, S domain [−3, 4], σ = 0.30, r = 0, rc = 0, rt = 0, rγ = 0, Nq = 9. Penalty results by
Algorithm 2. Exact value to six digits 0.131381 [1].

Nodes Tstep Iter Value Change Rate avg iter
21 7 11 0.2365808 — — 1.57
41 12 21 0.2546439 1.81e-02 — 1.75
81 22 41 0.2596610 5.02e-03 1.85 1.86

161 42 82 0.2610057 1.34e-03 1.90 1.95
321 82 157 0.2613551 3.49e-04 1.94 1.91
641 162 303 0.2614405 8.54e-05 2.03 1.87

1281 322 638 0.2614715 3.10e-05 1.46 1.98
2561 642 1303 0.2614802 8.78e-06 1.82 2.03

Table 11: Passport Option problem with digital call payoff and constant timesteps; value computed at
S = −0.25. Parameters: T = 1, S domain [−3, 3], σ = 0.20, r = 0.08, rc = 0.1, rt = 0.04, rγ = 0.035,
Nq = 21. Penalty results by Algorithm 2.
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Nodes Tstep Iter Value Change Rate avg iter
25 7 11 0.1147319 — — 1.57
49 12 18 0.1159619 1.23e-03 — 1.50
97 22 36 0.1162905 3.29e-04 1.90 1.64

193 42 66 0.1163806 9.01e-05 1.87 1.57
385 82 135 0.1164050 2.44e-05 1.88 1.65
769 162 265 0.1164116 6.64e-06 1.88 1.64

1537 322 530 0.1164133 1.67e-06 1.99 1.65

Table 12: Passport Option problem with capped call payoff and constant timesteps; value computed at
S = 0. Parameters: T = 1, S domain [−4, 4], σ = 0.20, r = 0.08, rc = 0.12, rt = 0.05, rγ = 0.03,
Nq = 9. Penalty results by Algorithm 2.

Nodes Tstep Iter Value Change Rate avg iter
25 7 11 0.1147325 — — 1.57
49 12 20 0.1159621 1.23e-03 — 1.67
97 22 44 0.1162908 3.29e-04 1.90 2.00

193 42 84 0.1163807 8.99e-05 1.87 2.00
385 82 164 0.1164051 2.44e-05 1.88 2.00
769 162 311 0.1164117 6.63e-06 1.88 1.92

1537 322 592 0.1164133 1.66e-06 2.00 1.84

Table 13: Passport Option problem with capped call payoff and constant timesteps; value computed at
S = 0. Parameters: T = 1, S domain [−4, 4], σ = 0.20, r = 0.08, rc = 0.12, rt = 0.05, rγ = 0.03,
Nq = 101. Penalty results by Algorithm 2.

6 Conclusions

We formulated and studied penalty and penalty-like methods for nonlinear HJB problems in computational
finance, expressed as penalized nonlinear PDEs. We introduced the use of tridiagonal penalty-like matrices
to account for the nonlinear terms involving the partial derivatives VS and VSS , and presented Algorithms
2 and 3, with the latter being an extension of the former, that can handle American (as well as European)
exercise rights.

We modified the policy algorithm in [11, 14], to allow the effective use of variable timesteps, and to
restore the stable second order of convergence (when Crank-Nicolson-Rannacher timestepping is used)
for American exercise rights, and presented Algorithm 4.

Essentially, Algorithms 3 and 4 can handle all problems considered, including European and American
exercise rights.

We have proved that the methods converge monotonically except for the HJBI case and the Ameri-
can Transaction Cost model, and we have shown that the average number of iterations taken is very
small.

Comparing the penalty and policy iteration methods, more specifically, Algorithms 3 and 4, which are
designed to be mathematically equivalent, and are shown to produce comparable numerical results, an
important advantage of the penalty iteration methods is that they avoid enumeration of all combinations
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of values of control variables to pick the set that produces the minimum (or maximum) of the considered
quantity, thus leading to less computational cost per iteration.

The penalty and policy methods described can be extended to certain continuous control problems.

7 Appendix: proof of convergence

We first study the convergence of the penalty iteration at each timestep, then the convergence of the
timestepping/discretization scheme to the viscosity solution. We carry the analysis based on monotonicity
arguments. For the purpose of the analysis, we assume that the discrete equations are formed with Dirich-
let boundary conditions on both endpoints, and the generic interest rate r is positive. We also assume that
the spatial gridpoints satisfy conditions analogous to those mentioned in Lemma 4.1 of [8]. Under the
above assumptions, the matrix I − θ∆τA arising from θ-timestepping and centered finite differences dis-
cretization of the original Black-Scholes operator (4) is strictly diagonally dominant with positive diagonal
entries and nonpositive off-diagonal entries, therefore monotone. The problems considered involve (be-
sides the original Black-Scholes) additional terms, and result in equations which, compared to the original
Black-Scholes, have either adjusted interest rates for the rSVS and rV terms, or adjusted volatility for the
σ2

2
S2VSS term. In the interest of brevity, we do not present all details, but mention, as two examples, that

the SBF short position PDE involves either rlSVS − rlV or rbSVS − rbV or (rl − rf )SVS − rlV , and the
TC problem involves (σ

2

2
∓ κ)S2VSS . In order to make sure that the adjusted coefficients are positive, we

assume that rb > rl > rf ≥ 0, and κ < σ2/2. Under these assumptions, the matrix I − θ∆τ(A+ P j,k−1)
arising from all problems considered is strictly diagonally dominant with positive diagonal entries and non-
positive off-diagonal entries, therefore monotone. Furthermore, note that the matrix M j,k−1 = A+P j,k−1

is strictly diagonally dominant with negative diagonal entries and non-negative off-diagonal entries.

7.1 Monotonicity of the iterates

We first consider the case of European exercise rights, and prove the following statements:

1. When the penalty matrices compute the maximum with a positive coefficient (i.e. the right hand
side of the PDE involves + max{}), the iterates are monotone increasing. (The same can be proved
when the penalty matrices compute the minimum with a negative coefficient, i.e. −min{}, but we
did not consider such PDE problems.)

2. Similarly, when the penalty matrices compute the minimum with a positive coefficient, (i.e. the right
hand side of the PDE involves + min{}), the iterates are monotone decreasing. (The same can be
proved when the penalty matrices compute the maximum with a negative coefficient, but we did not
consider such PDE problems.)

We will prove both statements simultaneously. The arguments follow the steps in [12] and [6], except
that the penalty matrices here are tridiagonal, and we do not refer to particular matrix entries, but rather
to the result of applying the penalty matrices to vectors. We note that, when the right hand side of the
PDE involves + max{} (respectively + min{}), P j,kvj,k calculates the vector of maximum (respectively
minimum) components. At each penalty iteration k ≥ 1, we have to solve

[I − θ∆τ(A+ P j,k−1)]vj,k = gj (39)
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for vj,k. Consider the next penalty iteration

[I − θ∆τ(A+ P j,k)]vj,k+1 = gj (40)

and write the equation in the previous iteration (39) as

[I − θ∆τ(A+ P j,k)]vj,k = gj + θ∆τ(P j,k−1 − P j,k)vj,k. (41)

Therefore,
[I − θ∆τ(A+ P j,k)](vj,k+1 − vj,k) = θ∆τ(P j,k − P j,k−1)vj,k. (42)

When the right hand side of the PDE involves + max{}, we have P j,kvj,k ≥ P j,k−1vj,k. When the right
hand side of the PDE involves + min{}, we have P j,kvj,k ≤ P j,k−1vj,k.

Since I − θ∆τ(A+ P j,k) is a monotone matrix, it follows from (42) that

if θ∆τ(P j,k − P j,k−1)vj,k ≥ 0, then vj,k+1 − vj,k ≥ 0 (43)

if θ∆τ(P j,k − P j,k−1)vj,k ≤ 0, then vj,k+1 − vj,k ≤ 0. (44)

Therefore, in (43) (+ max{}) the iterates are monotonically increasing, and in (44) (+ min{}) the iterates
are monotonically decreasing. Thus, for both types of problems, we have monotone behaviour of the
iterates.

We now consider American exercise rights. Since adding in the American penalty matrix causes the iter-
ates to increase at each iteration [12], it wouldn’t affect the monotonicity of the iterates if they are otherwise
increasing, but if the iterates are monotonically decreasing otherwise, adding in the American penalty ma-
trix breaks the monotone conditions. Thus, if the PDE right hand side involves + max{} or −min{},
monotonicity (increasing direction) is guaranteed for both European and American exercise rights. On the
other hand, if the PDE right hand side involves + min{} or−max{}, monotonicity (decreasing direction)
is guaranteed only for European exercise rights.

7.2 Proof of iteration convergence

Since, for European rights, the iterates are increasing/decreasing monotonically, we only need to show that
they are bounded above/below. At each iteration, we solve (I − θ∆τM j,k−1)vj,k = gj , where M j,k−1 =
A + P (vj,k−1). For a fixed grid, ||gj||∞ is bounded (i.e. gji is bounded above and below). With the
assumptions that M j,k−1

i,i < 0, and M j,k−1
i,i±1 > 0, boundedness of vj,k above and below can be shown by

standard maximum/minimum analysis. More specifically, we can show that

gjl
1 + θ∆τr

≤ vj,ki ≤
gju

1 + θ∆τr
, for l = arg min

i
vj,ki , u = arg max

i
vj,ki . (45)

The monotonicity and boundedness of the iterates proves the convergence of the iteration.

For problems with an additional American penalty matrix, the proof of convergence doesn’t change as
long as the monotonicity arguments hold.
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7.3 Uniqueness of solution

Recall that, for European rights, we have to solve the nonlinear system

[I − θ∆τ(A+ P j,k)]vj,k = gj (46)

with emphasis on the nonlinearity between the penalty matrix P j,k and vj,k.

Suppose that there exist two solutions, (P1, v1) and (P2, v2). Then,

[I − θ∆τ(A+ P1)]v1 = gj and [I − θ∆τ(A+ P2)]v2 = gj. (47)

Using the two relations in (47), we get

[I − θ∆τ(A+ P2)](v2 − v1) = θ∆τ(P2 − P1)v1. (48)

Here, we apply the results on monotonicity earlier to argue that in the case of the penalty matrix being
based on a maximum, the RHS vector is always nonpositive, and if the penalty matrix is based on a
minimum, the RHS vector is always non-negative. This leads us to conclude that v2 ≥ v1 in the former
case, and v1 ≥ v2 in the latter case.

Since the choices of (P1, v1) and (P2, v2) are rather arbitrary, we can reverse the roles between them and
get

[I − θ∆τ(A+ P1)](v1 − v2) = θ∆τ(P1 − P2)v2, (49)

which leads to the reverse conclusions, that is, v1 ≥ v2 in the former case and v2 ≥ v1 in the latter case.
Therefore, v1 = v2 and P1 = P2, and the solution to the nonlinear problem (46) is unique.

For problems with an additional American penalty matrix, the proof of uniqueness follows the same pro-
cess as in [12], assuming again that the results in Section 7.1 hold.

To conclude the penalty iteration convergence, we note for the tridiagonal treatment of the penalty-like
matrix involving derivative terms, the family of penalty-like and double-penalty methods converge mono-
tonically to the unique solution, with the exception of the double-penalty method for the long position of
Stock Borrowing Fees with American rights, and the Transaction Cost with American rights, due to the
differing sign between the penalty matrices.

7.4 Monotonicity of the discretization scheme

For a point i, after writing a discretization in the form

fi(v
j
i , v

j
i±1, v

j−1
i , vj−1i±1 ) = 0, (50)

a discretization is monotone if a positive perturbation to vji±1, v
j−1
i , vj−1i±1 produces a positive perturbation

to the vji [25]. To simplify matters, it is sufficient to consider one single perturbation δ > 0 to each of the
four variables vji , v

j
i±1, vj−1i , vj−1i±1 , and, given relation (50), show that, for all i,

fi(v
j
i + δ, vji±1, v

j
i , v

j−1
i±1 ) ≥ 0 (51a)

fi(v
j
i , v

j
i±1 + δ, vj−1i , vj−1i±1 ) ≤ 0 (51b)

fi(v
j
i , v

j
i±1, v

j−1
i + δ, vj−1i±1 ) ≤ 0 (51c)

fi(v
j
i , v

j
i±1, v

j−1
i , vj−1i±1 + δ) ≤ 0. (51d)
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The θ-timestepping with spatial discretization for European exercise rights is given by

(I − θ∆τ j(A+ P (vj)))vj − (I + (1− θ)∆τ j(A+ P (vj−1)))vj−1 = 0. (52)

The equation for a specific node vji is

fi(v
j
i , v

j
i±1, v

j−1
i , vj−1i±1 ) ≡ vji − θ∆τ j(M

j
i,i−1v

j
i−1 +M j

i,iv
j
i +M j

i,i+1v
j
i+1)

− vj−1i − (1− θ)∆τ j(M j−1
i,i−1v

j−1
i−1 +M j−1

i,i vj−1i +M j−1
i,i+1v

j−1
i+1 ) = 0 (53)

where M j = A + P (vj) and M j−1 = A + P (vj−1). Note that we have already assumed that M j is
strictly diagonally dominant, with negative diagonal entries and non-negative off-diagonal entries, for all
timesteps j.

Recalling that relation (53) holds, It is straightforward to show (51a), (51b) and (51d). It is also easy to
see that (51c) holds as long as ∆τ j < [−(1− θ)M j−1

i,i ]−1. Thus, as long as ∆τ j < [−(1− θ)M j−1
i,i ]−1, the

discretization is monotone.

With American exercise rights, Equation (52) becomes

(I − θ∆τ j(A+ P (vj)) + PA(vj))vj − (I + (1− θ)∆τ j(A+ P (vj−1)))vj−1 − PA(vj)v∗ = 0 (54)

For the points i for which [PA]i,i = 0, the analysis is the same as for European exercise rights. For the
points for which [PA]i,i = ρ > 0, Equation (53) becomes

fi(v
j
i , v

j
i±1, v

j−1
i , vj−1i±1 ) ≡ vji − θ∆τ j(M

j
i,i−1v

j
i−1 +M j

i,iv
j
i +M j

i,i+1v
j
i+1) + ρvji

− vj−1i − (1− θ)∆τ j(M j−1
i,i−1v

j−1
i−1 +M j−1

i,i vj−1i +M j−1
i,i+1v

j−1
i+1 )− ρv∗i = 0.(55)

Nothing changes in the analysis of the previous section with respect to perturbations on vji±1, v
j−1
i , and

vj−1i±1 , that is, for showing (51b), (51c) and (51d). For showing (51a), since ρ > 0, we have

fi(v
j
i + δ, vji±1, v

j−1
i , vj−1i±1 ) = δ − θ∆τ jM j

i,iδ + ρδ = (1− θ∆τ jM j
i,i + ρ)δ > 0.

Thus, the term arising from the American penalty matrix enhances the monotonicity inequality.

The restriction arising from case 3 above, written for every row i, results in

∆τ j < min
i

{
− 1

(1− θ)M j−1
i,i

}
. (56)

The above analysis shows that, under restriction (56), the discretization is monotone. For CN (θ = 1
2
),

relation (56) becomes

∆τ j < 2 min
i

{
− 1

M j−1
i,i

}
, (57)

while, for fully-implicit timestepping (θ = 1), there is no restriction.
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7.5 Stability of discretization

Under the restriction (56), as well as the conditions that ensure that M is strictly diagonally dominant
with M j−1

i,i < 0, and M j−1
i,i±1 ≥ 0, and assuming Dirichlet and bounded by a fixed value conditions at each

timestep, we can show by standard maximum analysis that

||vj||∞ ≤ max{||vj−1||∞, ||vj||∞,boundary} (58)

which proves the stability of the scheme, under the indicated conditions.

To conclude the proof of convergence to the viscosity solution, we note that the monotonicity, stability and
consistency (obvious from the way the penalty matrices are formed) of the scheme, ensure the convergence
of the computed solution to the viscosity solution [3].

REMARK 2 It is important to note that the conditions indicated are sufficient, but not necessary. We
have, in fact, run many numerical experiments where the condition (56) is not satisfied, especially for fine
discretizations, and we have used linear boundary condition at Smax, but we did not notice any stability
issues, as long as CN is used with Rannacher smoothing.

REMARK 3 Since M j−1
i,i involves a term of O( 1

hi−1hi
), it is clear that the restriction on the CN timestep

size is quite severe, especially for fine spatial discretizations. Essentially, the restriction is of the same
order as that of an explicit scheme. However, we note again, that, although in many experiments the
timestep size chosen did not satisfy the above restriction, we did not notice any stability issues.

REMARK 4 Note that in Equation (56) there is no mention of ρ or of the American penalty matrix, hence,
the restriction on the timestep size is independent of the type of exercise rights.
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