
ADAPTIVE FINITE DIFFERENCE METHODS FOR

VALUING AMERICAN OPTIONS

by

Duy Minh Dang

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2007 by Duy Minh Dang

Abstract

Adaptive Finite Difference Methods for

Valuing American Options

Duy Minh Dang

Master of Science

Graduate Department of Computer Science

University of Toronto

2007

We develop space-time adaptive methods for valuing American options with strong em-

phasis on American put options. We examine the application of adaptive techniques to the

Black-Scholes partial differential equation problem associated with an American put option in

the context of non-uniform second-order finite differences. At certain timesteps, we obtain a

redistribution of the spatial points based on a monitor function that attempts to equidistribute

the error. The proposed finite difference discretization on non-uniform grids and redistribution

of the spatial points lead to linear complementarity problems with M-matrices. The Projected

Successive Over-relaxation and a penalty method are considered to handle the free boundaries.

We study and compare the accuracy and efficiency of the considered methods. A complete

proof of convergence and uniqueness of the projected SOR method under certain conditions is

also presented.

ii

Acknowledgements

This research was supported by the Natural Science and Engineering Research Council (NSERC)

of Canada, the Ontario Graduate Scholarship (OGS) Program, and the Department of Computer

Science at the University of Toronto. I would like to express my special thanks to my thesis

supervisor, Professor Christina Christara, for introducing me to the field of mathematical fi-

nance, and also for her support, guidance, and encouragement during my MSc program. I also

would like to thank Professor Kenneth Jackson for his valuable suggestions and remarks for

improvements. Finally, I would like to thank my beloved parents and my lovely Diem for their

endless support, encouragement and love.

iii

Contents

1 Introduction 1

2 Adaptive Mesh Methods 6

2.1 Spatial error estimation . 6

2.2 Criteria for equidistribution of error . 11

2.3 Algorithm Summary . 12

3 Pricing American Options 15

3.1 Pricing Model . 15

3.2 Discretization with Finite Differences . 18

3.2.1 Discretization for LV . 19

3.2.2 Time Discretization . 19

3.3 Iterative Methods . 21

3.3.1 Projected SOR Method . 23

3.3.2 Penalty Method . 27

4 Adaptive Mesh Methods for Pricing American Options 32

4.1 Algorithm Description . 33

5 Stability and Convergence Analysis 40

5.1 Preliminaries . 41

5.2 L-matrix Property . 42

iv

5.3 Diagonal Dominance . 44

5.4 Implementation Issues . 45

5.5 Crank-Nicolson Method . 47

6 Numerical Results 52

6.1 European Options . 54

6.1.1 Delta and Gamma Valuations . 54

6.1.2 Option Valuation . 64

6.1.3 Initial Guesses and the SOR method 67

6.2 American Options . 72

6.2.1 Uniform Mesh Methods Results . 72

6.2.2 Adaptive Mesh Methods Results . 79

6.2.3 Efficiency Comparison . 90

6.2.4 Early Exercise Boundary . 94

7 Conclusions and Future Work 99

A Convergence Proof of PSOR 101

v

List of Tables

6.1 Model parameters for European and American options 53

6.2 Experimental results for the European put option at S = 100 obtained by uni-

form mesh methods. The analytical results of the option value, delta, and

gamma are 14.45190585, −0.39646799, and 0.00963579, respectively. 56

6.3 Experimental results for the European put option at S = 100 obtained by

adaptive mesh methods. The analytical results of the option value, delta,

and gamma are 14.45190585, −0.39646799, and 0.00963579, respectively. . . . 60

6.4 Experimental results for delta and gamma of the European put option at S =

100. Rannacher smoothing is used. The analytical values of delta and gamma

are −0.39646799 and 0.00963579, respectively. 63

6.5 Experimental results for the European call option at S = 100. Rannacher

smoothing is used. The analytical value of the call is 16.92091465. 65

6.6 Experimental results for the European put option at S = 100. Rannacher

smoothing is used. The analytical value of the put is 14.45190585. 65

6.7 Errors of uniform and adaptive mesh methods applied to the European call

option. The analytical value of the call is 16.92091465. Approximate values

are from Table 6.5. 66

6.8 Errors of uniform and adaptive mesh methods applied to the European put

option. The analytical value of the put is 14.45190585. Approximate values

are from Table 6.6. 66

vi

6.9 Experimental results for the European call option at S = 100 obtained on

uniform grids using SOR-1. The analytical value of the call is 16.92091465. . . 69

6.10 Experimental results for the European call option at S = 100 obtained on

uniform grids using SOR-2. The analytical value of the call is 16.92091465. . . 69

6.11 Iteration comparison between SOR-1 and SOR-2 on uniform grids for the Eu-

ropean call. Numerical results and statistics are from Tables 6.9 and 6.10. . . . 71

6.12 Experimental results for the American put option at S = 100 obtained with

uniform mesh methods and constant timesteps using PSOR-1. Reference

numerical solution from [14] is 14.67882. 74

6.13 Experimental results for the American put option at S = 100 obtained with

uniform mesh methods and constant timesteps using using PSOR-2. Refer-

ence numerical solution from [14] is 14.67882. 74

6.14 Iteration comparison between PSOR-1 and PSOR-2 for uniform mesh meth-

ods and constant timesteps. Numerical results and statistics are from Tables

6.12 and 6.13. 75

6.15 Experimental results for the American put option at S = 100 obtained with

uniform mesh methods with constant timesteps using PENALTY-1. Refer-

ence numerical solution from [14] is 14.67882. 78

6.16 Experimental results for the American put option at S = 100 obtained with

uniform mesh methods with constant timesteps using PENALTY-2. Refer-

ence numerical solution from [14] is 14.67882. 78

6.17 Experimental results for the American put option at S = 100 obtained with

adaptive mesh methods using PSOR-2. The “true” value 14.678886 was gen-

erated with accuracy 10−6 based on the results in [14] and extrapolation. 81

vii

6.18 Comparison of numerical results for the American put option between uni-

form mesh methods and adaptive mesh methods using PSOR-2 with con-

stant timesteps. Numerical results and statistics are from Tables 6.13 and

6.17. The “true” value 14.678886 was generated with accuracy 10−6 based on

the results in [14] and extrapolation. 81

6.19 Experimental results for the American put option at S = 100 obtained with

adaptive mesh methods and constant timesteps using PENALTY-1. The

“true” value 14.678886 was generated with accuracy 10−6 based on the results

in [14] and extrapolation. 83

6.20 Experimental results for the American put option at S = 100 obtained with

adaptive mesh methods and constant timesteps using PENALTY-2. The

“true” value 14.678886 was generated with accuracy 10−6 based on the results

in [14] and extrapolation. 83

6.21 Comparison of numerical results for the American put option between uniform

mesh methods and adaptive mesh methods using PENALTY-2 with constant

timesteps. Numerical results and statistics are from Tables 6.16 and 6.20 . The

“true” value 14.678886 was generated with accuracy 10−6 based on the results

in [14] and extrapolation. 84

6.22 Experimental results for the American put option at S = 100 obtained with

adaptive mesh methods and variable timesteps using PENALTY-2. The

“true” value 14.678886 was generated with accuracy 10−6 based on the results

in [14] and extrapolation. 87

6.23 Comparison between adaptive mesh methods using PENALTY-2 with con-

stant and with variable timesteps. Numerical results and statistics are from

Tables 6.20 and 6.22. The “true” value 14.678886 was generated with accu-

racy 10−6 based on the results in [14] and extrapolation. 87

6.24 Model parameters (I) for comparison of early exercise point in American options. 95

viii

6.25 Model parameters (II) for comparison of early exercise point in American op-

tions. 95

6.26 Early exercise boundary for set of parameters listed in Table 6.24. Uniform

and adaptive mesh methods are used on a 200 × 200 grid with PENALTY-2

and Rannacher smoothing. Smax = 250. 96

6.27 Early exercise boundary for set of parameters listed in Table 6.25. Uniform

and adaptive mesh methods are used on a 200 × 200 grid with PENALTY-2

and Rannacher smoothing. Smax = 50. 96

ix

List of Figures

2.1 A non-uniform spatial grid at time t = tν . 7

2.2 Molecules of the implicit Euler (a), explicit Euler (b), and Crank-Nicolson (c) . 8

3.1 Details and notations of the finite difference grid 18

4.1 Details and notations of an adaptive step . 34

6.1 European put valued numerically using Crank-Nicolson timestepping on a uni-

form 1280× 60 grid. 57

6.2 European put valued numerically using Crank-Nicolson timestepping with adap-

tive mesh methods on a 1280× 64 grid. 61

6.3 Observed error distribution of the European options on a 320× 320 grid. 67

6.4 Maximum residuals of initial guess for SOR methods on the uniform 320 ×
1280 grid. 71

6.5 Maximum residuals of initial guess for PSOR methods on the uniform 320 ×
1280 grid. 76

6.6 The locations of mesh points used by adaptive mesh methods for the American

put on a 160× 640 grid. 89

6.7 American put value at the strike price versus computational cost for uniform

and adaptive mesh methods with different iterative solvers. 91

6.8 American put value at the strike price versus computation cost for adaptive

mesh methods with different iterative solvers. 92

x

6.9 American put value at the strike price versus computational cost for various

methods. 92

6.10 Profile of the free boundary obtained by uniform and adaptive mesh methods

with set of parameters from Table 6.24 on a 200× 200 grid. 98

6.11 Profile of the free boundary obtained by uniform and adaptive mesh methods

with set of parameters from Table 6.25 on a 200× 200 grid. 98

xi

List of Notation

Symbol Meaning

S space variable (asset price)

r risk-free interest rate

σ volatility of the asset price

T final time (the expiry of the option)

t the time variable (forward)

τ τ = T − t (backward)

ν index for the timestep

νmax the total number of timesteps

n the total number of spatial subintervals

tν value of the time variable t at the νth timestep

τ ν value of the time variable τ at the νth timestep

∆tν or ∆τ ν the νth timestep size

Sν
i value of the ith spatial grid point at the timestep ν

∆ν ≡ {Sν
i }n

i=0 the spatial partition at timestep ν

{hν
i }n

i=1 the spatial stepsizes at timestep ν with hν
i = Sν

i − Sν
i−1

V unknown function (option price)

V ν the solution at timestep ν

V ν
i value of the solution at node (Sν

i , tν) or (Sν
i , τ ν)

V ν
k,i value of the solution at Sk

i of spatial partition ∆k at time τ ν

Vν vector of approximate values to V at the νth timestep

Vν
i approximate value to V (Sν

i , tν) or V (Sν
i , τ ν)

Vν
∆k

vector of approximate values to V at time τ ν on space partition ∆k

Vν
k,i the ith component of Vν

∆k
(Vν

k,i ≈ V (Sk
i , τ ν))

Vν,(j) jth estimate of Vν by an iterative method

xii

V ∗ payoff function

V∗,ν vector of payoff values on ∆ν

V∗,ν
i the ith component of V∗,ν

V̂ (S, t) monitor function

V̂ν vector of approximate values to V̂ (S, τ ν)

V̂ν
i the ith component of V̂ν (V̂ν

i ≈ V̂ (Sν
i , τ ν)

ξ(S, t) grading function

ξν vector of approximate values to ξ(S, τ ν) on partition ∆ν

ξ′ν vector of approximate values to
∂ξ

∂S
(S, τν) on partition ∆ν

ξν
i the ith component of ξν (ξν

i ≈ ξ(Sν
i , τ ν))

r̃ν
i an estimate of the error for the ith subinterval [Sν

i−1,S
ν
i]

r̃ν the average of all r̃ν
i ’s

ων relaxation factor for the PSOR method for timestep ν

Matrices are denoted by bold upper-case letters with entries denoted by corresponding bold

lower-case letters with subscripts. Vectors are denoted by bold lower-case letters without sub-

scripts.

A a real matrix named A

ai,j the (i, j) entry of A, 1 ≤ i, j ≤ n with n being the dimension of A

b a real vector named b

bi the ith component b, 1 ≤ i ≤ n with n being the length of b

Frequently, given a matrix A, we define the following matrices

D diagonal part of A

U strictly upper triangular part of A

L strictly lower triangular part of A

xiii

Chapter 1

Introduction

The evaluation of financial option contracts is of considerable importance in finance. An option

is a contract between the holder and the writer that gives the right, but not an obligation, to the

holder to buy or sell a certain asset by a certain time for a given price. In particular, a call

option gives the holder the right to buy, whereas a put option gives the holder the right to sell

its underlying asset, or briefly the underlying, for a prescribed amount, known as strike price.

An important feature of such contracts is the time when the contract holders can exercise their

rights. If this occurs only at the maturity date, the option is classified as a European option. If

holders can exercise any time up to and including the maturity date, the option is said to be an

American option.

The option premium is the price at which the option contract is traded. The premium is

paid by the potential holder (buyer of the option) to the writer of the option. In return, the

writer of the option is obligated to deliver the underlying asset to the option holder if the call

is exercised or buy the underlying asset if the put is exercised. In any case, the writer keeps the

premium whether or not the option is exercised. It is then important to determine a fair price

for an option accurately.

Generally speaking, there are two basic ways to determine the price of an option: analytical

methods and numerical methods. The value of a European option is given by the solution of

1

CHAPTER 1. INTRODUCTION 2

the Black-Scholes partial differential equation (PDE) (see, e.g. [37]). In some cases, European

options can be priced using analytical formulas. In the seminal papers by Black and Scholes

([2]), and Merton ([24]), the authors derive explicit formulas for plain European options, which

are written on a single underlying asset and do not pay dividends. However, most options traded

on exchanges are American. For American options, the Black-Scholes model results in a free

boundary problem and unfortunately, one can not find explicit closed-form solutions to the

American option pricing problem in general.

Due to the non-existence of a general closed-form solution for American options, re-

searchers and practitioners resort to numerical methods, such as lattice methods, simulation-

based methods, PDE-based methods, etc. We refer the reader to the recent paper by Broadie

and Detemple [4], and references therein for a review and comparison of several numerical

methods for valuing American options. Here, we would like to briefly review some popular

numerical methods for American option pricing problems.

Monte-Carlo simulation and lattice methods such as binomial and trinomial trees are very

popular among financial institutions. When used to value an option, Monte-Carlo methods

simulate the development of the underlying asset in a risk-neutral world to determine many

possible path movements. The mean of expected payoffs of each path is obtained and dis-

counted at the risk-free rate to get an estimate of the value of the derivative. However, pricing

American-style options via Monte-Carlo method still remains a very challenging problem due

to the existence of the free boundary ([5], [15]). The path simulation requires a forward algo-

rithm, whereas pricing options with early exercise features generally require backward algo-

rithms from the maturity date (i.e. the end of the path rather than the beginning). The problem

arising from using simulation in pricing American-style options results from using a forward

procedure to a problem that requires a backward algorithm. As a consequence, the methods

will overestimate the true value of the option ([15]). This could be overcome by using a tech-

nique called Least Squares Monte Carlo derived by Longstaff and Schwartz ([22]). The major

advantage of Monte-Carlo simulation is that its convergence rate is generally independent of

CHAPTER 1. INTRODUCTION 3

the number of state variables and thus can be easily adapted to accommodate complex payoffs

and complex stochastic processes, multiple underlying assets, and path-dependent contracts.

However, for low dimension problems, Monte-Carlo simulation approaches suffer from low

efficiency due to high simulation time.

The binomial model was first introduced by Cox, Ross and Rubinstein [8]. The underlying

assumption of the model is that the price of the underlying asset follows a random walk. At

each timestep until maturity, it has a certain probability of moving up and down by a certain

amount. The scheme eventually yields a binomial tree. To calculate the premium, one could

trace the tree backwards, starting at the maturity date where the payoff is known. During the

tracing process, the price of the underlying asset at each node is calculated and compared to

determine whether it is more useful to hold or to execute the option. The process stops when

one reaches the root where the desired price for the option is obtained. The trinomial tree

approach involves a third level of price movements in the tree and is described in [17]. One

major disadvantage of lattice methods is that both binomial and trinomial trees are equivalent

to explicit finite difference methods, hence suffer from a temporal stepsize restriction of the

form ∆t ≤ c∆S2, for some constant c.

Partial differential equation (PDE) based approaches are very popular for problems in low

dimensions because of efficiency reasons. In addition, PDE methods allow us to obtain values

for all points in the spatial domain and hence the term structure of the option, i.e. the devel-

opment of the option value function for each timestep, can be easily visualized. This approach

is first introduced by Brennan and Schwartz in [3]. They propose a finite difference scheme

incorporated with an iterative projection method to explicitly deal with the early exercise con-

straint.

In this thesis, we adopt this approach for the American option pricing problem on a single

asset with constant volatility and interest rate. Due to the early exercise possibility, the problem

in a PDE approach can be formulated as a time dependent linear complementarity problem

(LCP). One approach used by many researchers is to discretize with e.g. finite differences and

CHAPTER 1. INTRODUCTION 4

reduce the problem to a sequence of discrete LCPs, one per each timestep. This formulation

will be described in more detail in Chapter 3. Below we will briefly describe two popular ways

of solving the LCP: relaxation methods and the penalty methods.

One common technique for the solution of the LCPs in this category is the projected suc-

cessive over-relaxation method, also known as PSOR (see, for example [30], [33], [37]). This

method was first proposed by Cryer ([9]) under the assumption that the underlying matrix is

symmetric positive definite. In [9], a proof of the uniqueness and convergence of the PSOR

solution is given under the assumption that the underlying matrix is symmetric positive defi-

nite. A refined version of this approach is presented in [19], and is based on the observation

that the solution of the problem at each timestep can be obtained as a synthesis of the two

independent components corresponding to the two regions of the spatial domain separated by

the free boundary.

Penalty methods have been used by several authors. In [40], Zvan, Forsyth and Vetzal

introduce a penalty formulation of the discretized equations that enforces the early exercise

constraint. In the same paper, a proof of the uniqueness and convergence of the penalty solu-

tion is presented under the assumption that the resulting matrices are M-matrices. A similar

approach is taken by Nielsen, Skavhaug and Tveito in [25] and they introduce a penalty term

in the continuous equations.

Adaptive mesh methods are widely used in the numerical solution of PDEs (see, for exam-

ple, [7], [10], [12], [13] [35], [36]). These methods compute the optimal placing of a given

number of discretization points so that a chosen norm of the error in the computed approxima-

tion is minimized. The ultimate goal of adaptive mesh methods is to obtain a certain level of

accuracy with a smaller number of discretization points, or a higher level of accuracy with the

same number of points, when compared to uniform mesh methods.

We propose a finite difference space discretization on nonuniform grids resulting in M-

matrices The grid has a fixed number of points and the locations of the grid points are de-

termined adaptively by means of monitor functions at selected timesteps so that the positions

CHAPTER 1. INTRODUCTION 5

of grid points are well-distributed. The first-order and the second-order partial derivatives

are approximated using centered finite differences. In order to obtain an M-matrix for each

timestep, a condition on the grid step sizes is enforced by the adaptive procedure. A simple

timestep selector introduced in [14] is added to improve the accuracy and efficiency of the

proposed method.

We integrate the adaptive mesh methods with penalty and PSOR iterative techniques for

the solution of LCP at each timestep. We introduce an improved initial guess solution vector

for both the penalty and PSOR methods. We give a proof of the uniqueness and convergence

of the PSOR solution under the assumption that the associated matrices are M-matrices, not

necessarily symmetric. We present numerical results that demonstrate the performance of the

resulting methods. By the numerical experiments, it is shown that the adaptive placement

of the spatial discretization points correctly captures the behaviour of the American option

pricing problem, by concentrating many more points around the exercise value (i.e., the kink

point in initial conditions) on the first timestep and around the free boundary on the subsequent

timesteps. The numerical experiments also show that the adaptive mesh methods outperform

the uniform ones. Moreover, the improved initial guess substantially reduces the number of

PSOR iterations, while it only slightly reduces the number of penalty iterations.

The thesis is structured as follows. Chapter 2 introduces adaptive mesh methods for initial

value problems (IVPs). The discretization of the American option pricing problem and two

iterative methods for solving the LCPs, namely the PSOR and the penalty methods, are pre-

sented in Chapter 3. In Chapter 4, we discuss an adaptive mesh method for American option

pricing problems. We study the stability and convergence of the proposed method in Chapter 5.

In Chapter 6, we present selected numerical results and study the efficiency of several methods.

Finally, we make some concluding remarks and discuss future work in Chapter 7. A proof of

the uniqueness and convergence of the PSOR solution under certain conditions is presented in

the Appendix A.

Chapter 2

Adaptive Mesh Methods

In this chapter we first introduce a spatial error estimator and then briefly describe a space

adaptive algorithm for initial value problems (IVPs) based on this estimator. This algorithm

will be revisited in more details in the context of American option pricing in the following

chapter.

2.1 Spatial error estimation

We use the idea of grading functions introduced in [6] to construct the error estimator. The

adaptive techniques then relocate the nodes to equidistribute the error in some chosen norm (or

semi-norm) among the subintervals of the partition. This is called equidistribution principle

first introduced in [10] and has been used extensively by many researchers (for example, see

[7], [35], [36]). Both [6] and [10] deal with two-point boundary value problems (BVPs) and

the idea has been extended to parabolic IVPs ([12], [13], [35]). Here we briefly describe the

basic ideas of grading functions and the equidistribution principle in the context of parabolic

IVPs.

Consider a parabolic initial value problem (IVP) described by the PDE

∂V

∂t
− p

∂2V

∂S2
− q

∂V

∂S
− sV = f, for a < S < b, 0 < t ≤ T (2.1)

6

CHAPTER 2. ADAPTIVE MESH METHODS 7

× × × × × × ×
Sν

0 = a Sν
1 Sν

i−1 Sν
i Sν

i+1 Sν
n−1 Sν

n = b

¾ -hν
1 ¾ -hν

i ¾ -hν
i+1 ¾ -hν

n

Figure 2.1: A non-uniform spatial grid at time t = tν

subject to the boundary conditions

V (a, t) = ga(t), V (b, t) = gb(t), for 0 < t ≤ T (2.2)

and the initial condition

V (S, 0) = γ(S), for a ≤ S ≤ b (2.3)

where the functions p(S, t), q(S, t), s(S, t), f(S, t), ga(t), gb(t), and γ(t) are given, (a, b) is a

given interval and V (S, t) is an unknown function. For convenience, letLV ≡ p
∂2V

∂S2
+ q

∂V

∂S
+ sV ,

then the PDE (2.1) can be rewritten as

Vt = LV + f. (2.4)

We now introduce some notations that will be used in subsequent chapters of the thesis. As-

sume that we have a partition ∆ν ≡ {Sν
i }n

i=0 at time t = tν , not necessarily uniform, with step

sizes {hν
i }n

i=1 as shown in Figure 2.1. Let Vν denote the vector of approximate values to V at

time tν with Vν
i being an approximation to V (Sν

i , tν). For convenience, we denote by V ν the

solution at time tν , and let V ν
i represent V (Sν

i , tν).

If the central finite difference formulas are employed for the spatial discretization, we have

∂V ν
i

∂S
= aν

i1V
ν
i−1 + aν

i2V
ν
i + aν

i3V
ν
i+1 + RM ν

i1, (2.5)

where

aν
i1 =

−hν
i+1

hν
i (h

ν
i + hν

i+1)
,

aν
i2 =

hν
i+1 − hν

i

hν
i h

ν
i+1

,

aν
i3 =

hν
i

hν
i+1(h

ν
i + hν

i+1)
,

CHAPTER 2. ADAPTIVE MESH METHODS 8

-

6t

S

ν

ν + 1

i− 1 i i + 1

(a)

i− 1 i i + 1

(b)

i− 1 i i + 1

(c)

v v v

v v v v

v

v

v

v

v

v

v

Figure 2.2: Molecules of the implicit Euler (a), explicit Euler (b), and Crank-Nicolson (c)

and

∂2V ν
i

∂S2
= bν

i1V
ν
i−1 + bν

i2V
ν
i + bν

i3V
ν
i+1 + RM ν

i2, (2.6)

where

bν
i1 =

2

hν
i (h

ν
i + hν

i+1)
,

bν
i2 =

−2

hν
i h

ν
i+1

,

bν
i3 =

2

hν
i+1(h

ν
i + hν

i+1)
.

Here, RMν
i1 and RM ν

i2 are truncation errors whose explicit form of the first non-zero terms

are −hν
i+1h

ν
i

3!

∂3V ν
i

∂S3
and

hν
i+1 − hν

i

3!

∂3V ν
i

∂S3
, respectively. The timestepping is handled by the θ-

scheme

V ν+1
i − V ν

i

∆tν

= θLV ν+1
i + (1− θ)LV ν

i + θf ν+1
i + (1− θ)f ν

i , (2.7)

where ∆tν = tν+1 − tν is the time stepsize. Depending on value of θ, we have different

methods as follows.

• θ = 1: implicit Euler method;

• θ = 0: explicit Euler method;

• θ = 1
2
: the Crank-Nicolson (CN) method.

The connection scheme (stencil) of each method is illustrated in Figure (2.2).

CHAPTER 2. ADAPTIVE MESH METHODS 9

The explicit scheme is conditionally stable with truncation error in O(∆tν). Both the

implicit and CN schemes are unconditionally stable; however the former also has truncation

error in O(∆tν), while the latter has truncation error in O(∆t2
ν), which is more appealing. We

focus on the CN scheme due to its second order of convergence.

The equidistribution principle attempts to find a good placement of the partition points such

that some measure of the spatial error is equally distributed over the subintervals. Depending

on the norm chosen, a different grading function arises, based on which the position of the

partition points is computed. A grading function is of the form

ξ(S, t) =

∫ S

a
V̂ dS∫ b

a
V̂ dS

,

where V̂ (S, t) is an appropriate monitor function. The value ξ(Sν
i , tν), i = 1, . . . , n, of the

grading function at Sν
i and tν represents the portion of the approximate error at time t = tν

from the left endpoint of the spatial domain up to point Sν
i . Appropriate quadrature rules are

used to approximate the integrals. Since all monitor functions involve derivatives of high order

of V , which are unknown under realistic situations, approximate values Vν
i , i = 0, . . . , n, are

used to approximate the derivatives at time tν .

There are several choices for a monitor function. One popular choice is the arclength

function ([36]), resulting in the grading function ξ(S, t) =

∫ S

a

√
1 + (∂V

∂S
)2dS

∫ b

a

√
1 + (∂V

∂S
)2dS

. It is suggested

in [10] that, for a method with error proportional to hp̃V (q̃), where h is a stepsize and V (q̃) is

the q̃-th derivative of V with respect to S, a good grading function is

ξ(S, t) =

∫ S

a
|V (q̃)|1/p̃dS∫ b

a
|V (q̃)|1/p̃dS

.

Ignoring higher order terms, the finite difference approximation in (2.5) is a second-order ap-

proximation and that in (2.6) is a first-order approximation. Actually, the truncation errors

RM ν
i1 and RM ν

i2 can be bounded in terms of max(hν
i)

2 and (hν
i+1 − hν

i) + max(hν
i)

2, re-

spectively. Under the assumption that hν
i+1 ≈ hν

i , the truncation errors RM ν
i1 and RMν

i2 are

proportional to max(hν
i)

2. In this case, the (spatial) discretization error of LV is second order

CHAPTER 2. ADAPTIVE MESH METHODS 10

with respect to the stepsizes, and involves V (3), resulting in the monitor function V̂ = |V (3)|1/2,

and the corresponding grading function is

ξ(S, t) =

∫ S

a
|V (3)|1/2dS∫ b

a
|V (3)|1/2dS

.

However, we encounter some difficulty with these grading and monitor functions. The value

of the American option often oscillates and does not show convergence as grids are refined.

However, if we use the monitor and grading functions V̂ = |V (3)|1/3 and

ξ(S, t) =

∫ S

a
|V (3)|1/3dS∫ b

a
|V (3)|1/3dS

. (2.8)

then the problems are resolved. These are the monitor and grading functions that we use

throughout the course of experiments.

Given a grading function, the equidistribution principle requires that the partition points

satisfy, for a fixed time t = tν ,

ξ(Sν
i , tν)− ξ(Sν

i−1, tν) =

∫ Sν
i

a
V̂ dS∫ b

a
V̂ dS

−
∫ Sν

i−1

a
V̂ dS∫ b

a
V̂ dS

≈ 1

n
,

or equivalently

ξ(Sν
i , tν) =

∫ Sν
i

a
V̂ dS∫ b

a
V̂ dS

≈ i

n
, (2.9)

where i = 1, . . . , n − 1. Note that the two boundary points are fixed, leaving n − 1 points to

distribute.

In order to solve (2.9), one could apply the iterative scheme

S
ν,(k+1)
i = S

ν,(k)
i − ξ(S

ν,(k)
i)− i

n

ξ′(Sν,(k)
i)

, (2.10)

which is based on Newton’s method.

CHAPTER 2. ADAPTIVE MESH METHODS 11

2.2 Criteria for equidistribution of error

Based on the monitor function V̂ (S, t), for a fixed time t = tν , we evaluate two quantities

r̃ν
i =

∫ Sν
i

Sν
i−1

V̂ dS, i = 1, . . . , n, (2.11)

r̃ν =

∫ b

a

V̂ dS

n
, (2.12)

using quadrature rules. It is noted that r̃ν
i represents the estimate of the error for the ith subin-

terval [Sν
i−1,S

ν
i], and r̃ν represents the average of all r̃ν

i ’s. The ratio
max

1≤i≤n−1
{r̃ν

i }
r̃ν gives an

indication of how well-distributed the partition is. Since we are using the equidistribution prin-

ciple for the remeshing, if this ratio is too large, it follows that the maximum error estimate over

the subintervals is considerably larger than the average estimate and thus the current partition

is not well-distributed. At each timestep, the algorithm checks if

rdrift ≡
max

1≤i≤n−1
{r̃ν

i }
r̃ν

≤ α, (2.13)

where α is a small number less than 10. Typical choices for α are α = 2 (see [35]) and α = 4 in

our experiments. That is the maximum value of r̃ν
i must be roughly at most α times as large as

the average value r̃ν
i . We consider a partition that satisfies this property to be well-distributed.

Numerical experiments indicate that this criterion works reasonably well for American option

pricing.

We also consider another criterion for the equidistribution of error, which is suggested in

[6]. We check if

drift ≡ max
1≤i≤n−1

{r̃ν
i } − r̃ν ≤ tol, (2.14)

where tol is a user chosen tolerance. In our experiments for American option pricing, the

choice tol = 10−1 works well for the set of model parameters in Table 6.1.

CHAPTER 2. ADAPTIVE MESH METHODS 12

2.3 Algorithm Summary

In this section, we present a summary of the core code segment of a space adaptive algorithm

for IVPs. This part of the code is executed when proceeding from timestep ν to timestep ν +1.

The algorithm normally works iteratively, with a stopping criterion specified in (2.13) or

(2.14). In our experiments, we set the maximum number of iterations maxit = 1, so that at most

one re-distribution of the spatial points takes place in one time step, thus the placement of the

spatial points evolves as the time steps proceed. We also set the constant smallnum = 6, and

explain below how this constant is used.

We now briefly describe the algorithm. In Line 1, we apply the standard time-stepping

(usually Crank-Nicolson), using the same spatial points in steps ν and ν + 1. We then cal-

culate all quantities necessary to check the criterion (2.13) or (2.14), that decides whether a

re-distribution of the points is needed (Lines 3 and 4). If the points are well-distributed, we

proceed to the next time step (Lines 5 and 6). If not, the new location of the spatial points is

computed using (2.9) (Lines 7 and 8). Next, we need to calculate values of the approximation

at the new spatial points at the ν + 1st time step. There are two ways to do this: the first,

applies interpolation to values of the approximation at the current partition points at the νth

time step, to compute values of the approximation at the new partition points, then applies the

time-stepping procedure to compute values of the approximation at the new partition points, at

the ν + 1st time step; the second, simply applies interpolation to values of the approximation

at the current partition points at the ν + 1st time step, to compute values of the approximation

at the new partition points, at the ν + 1st time step. The first technique is used in the first few

(smallnum) time steps (Lines 9, 10 and 11), while the second is used for all other time steps

(Lines 12 and 13).

The choice of interpolation technique may be important under certain circumstances. In

the case of European option pricing or other problems without special constraints, one can use

standard interpolation techniques, such as cubic spline interpolation, to obtain the interpolated

values. However, we noticed that the interpolation techniques used in valuing American op-

CHAPTER 2. ADAPTIVE MESH METHODS 13

tions should be chosen carefully, due to the existence of the free boundary at each time step.

More discussion on this will be provided in Chapter 4.

We now give the space adaptive algorithm for IVPs, which assumes that an approxima-

tion to V ν is already computed on partition ∆ν , and computes an approximation to V ν+1 on

partition ∆ν+1, which may be different from ∆ν .

CHAPTER 2. ADAPTIVE MESH METHODS 14

Algorithm 1: Brief description of space adaptive algorithm for IVPs
1: apply (2.7) to compute approximation to V ν+1 on partition ∆ν+1 ≡ ∆ν using the given

approximation to V ν ;

2: for k = 1 to maxit do

3: approximate the appropriate derivatives of V ν+1 and estimate the distribution of the

error using (2.8);

4: calculate the quantities (r̃ν+1
i)n−1

i=1 and r̃ν+1 using (2.11) and (2.12);

check criterion (2.13) or (2.14) to decide whether a remeshing is needed;

5: if (2.13) or (2.14) is satisfied then

6: exit;

7: else

8: compute a new partition ∆ν+1 6= ∆ν using (2.9);

9: if ν ≤ smallnum then

10: compute new approximation to V ν on ∆ν+1 using interpolation on current

approximation to Vν ;

11: apply (2.7) to compute new approximation to V ν+1 on partition ∆ν+1 using the

new approximation to V ν ;

12: else

13: compute new approximation to V ν+1 on ∆ν+1 using interpolation on current

approximation to V ν+1;

14: end if

15: end if

16: end for

Chapter 3

Pricing American Options

In this chapter, we review the problem of pricing American options. We first introduce the

pricing model and the formation of the American option valuation as a linear complementarity

problem. We then discuss the numerical computation of American options. In particular,

we present the discretization with finite differences and two iterative methods for solving the

associated constrained matrix problem. Although we restrict our attention to American puts,

the approach can be easily applied to American calls on dividend-paying assets.

3.1 Pricing Model

The model introduced by Black and Scholes [2] and Merton [24] was the first, and is still the

most widely used, for pricing options. They observed a lognormal behavior of asset prices and

derived the following partial differential equation (PDE) that describes the option’s value:

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (3.1)

Here, V = V (S, t) represents the option price; S ≥ 0 is the underlying asset price; r is the

risk-free interest rate; σ is the volatility of the underlying asset price; and 0 ≤ t ≤ T where T

the expiry. In this thesis, we consider only constant volatility and interest rate. However, the

approach presented here can be extended to cases where volatility and interest rate are functions

15

CHAPTER 3. PRICING AMERICAN OPTIONS 16

of the underlying asset price and time. Equation (3.1) is referred to as the Black-Scholes PDE.

It is a parabolic PDE and has many solutions. To obtain a unique solution for a particular

pricing model, the Black-Scholes equation must be associated with additional constraints such

as final conditions, boundary conditions, or free boundary conditions. It can then can be solved

backwards in time from the option expiry time t = T to the present t = 0.

In contrast to European options which can only be exercised at the maturity date T , Amer-

ican options can be exercised at any time up to T . Consequently, identifying the optimal

exercise strategy is an essential part of the valuation problem. For American put options, the

possibility of early exercise requires that

V (S, t) ≥ max(E − S, 0), ∀t ∈ [0, T], (3.2)

otherwise an arbitrage opportunity would arise ([17], [30]).

The evaluation of an American option is associated with a free boundary value problem

([37]), and the exercise boundary curve Sf (t), which varies with time, divides the S-t half strip

[0,∞) × [0, T] into the continuation region and the stopping region. The continuation region

{(S, t) ∈ [0,∞) × [0, T] : V (S, t) > max(E − S, 0)} is the set of all points (S, t) where the

option should be held, whereas in the stopping region {(S, t) ∈ [0,∞) × [0, T] : V (S, t) =

max(E − S, 0)} early exercise is advisable. If Sf (t) is calculated, the American put option

holder should exercise the option as early as possible when S < Sf (t) and hold the option

otherwise.

Under the Black-Scholes framework, the price V (S, t) of an American put option satisfies

either 



∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

V −max(E − S, 0) ≥ 0





(3.3)

in the continuation region, or




∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV < 0

V −max(E − S, 0) = 0





(3.4)

CHAPTER 3. PRICING AMERICAN OPTIONS 17

in the stopping region. We also have additional boundary conditions at the free boundary Sf (t)

V (Sf (t), t) = max(E − Sf (t), 0) = E − Sf (t),

∂V

∂S
(Sf (t), t) = −1,

(3.5)

which are known as smooth boundary conditions ([30]). The final condition is

V (S, T) = max(E − S, 0). (3.6)

The boundary conditions can be obtained by imposing Dirichlet boundary conditions which

are given by

V (0, t) = E,

V (S, t) ∼ 0 as S →∞.

(3.7)

These conditions are based on some additional knowledge about asymptotic behavior of the

solutions, which may not be available in complex contracts. For simplicity, in this thesis we

consider only Dirichlet boundary conditions for American options.

Define the operator

LV ≡ 1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV (3.8)

and let V ∗ = max(E − S, 0) denote the payoff function. The American put option pricing can

be reformulated as the linear complementarity problem (LCP)





∂V

∂t
+ LV = 0

V − V ∗ ≥ 0





or





∂V

∂t
+ LV < 0

V − V ∗ = 0





. (3.9)

together with the final condition (3.6), boundary conditions (3.7), and smooth boundary condi-

tions (3.5). The optimal free boundary Sf (t) is automatically captured by this formulation and

can be determined a-posteriori. Solutions of linear complementarity problems can be obtained

by several iterative methods such as the projected successive over-relaxation method or the

penalty methods. We will discuss these two methods in a later section.

CHAPTER 3. PRICING AMERICAN OPTIONS 18

-

6τ

τ ν

τ ν+1

×

×

?
∆τν
6

SSν
i−1 Sν

i Sν
i+1

× × ×

¾ hν
i - ¾hν

i+1-

v
¡¡ª

node (Sν
i+1, τ ν+1)

Figure 3.1: Details and notations of the finite difference grid

3.2 Discretization with Finite Differences

In order to write the LCP (3.9) in more conventional form so that we can solve it backwards in

time, define τ = T − t, so that it becomes





∂V

∂τ
− LV = 0

V − V ∗ ≥ 0





or





∂V

∂τ
− LV > 0

V − V ∗ = 0





. (3.10)

For the discretization of the time variable, we choose a set of grid points forward in time with

respect to τ

{τ 0, τ 1, . . . , τ νmax−1, τ νmax} τ 0 = 0 < τ 1 < · · · < τ νmax−1 < τ νmax = T (3.11)

Define ∆τ ν = τ ν+1 − τ ν , ν = 0, 1, . . . , νmax − 1. Usually, we use uniform time stepsize

but we may make use of a non-uniform time stepsizes to speed up efficiency. The choice of

spatial discretization is more complicated. The infinite domain [0,∞) must be truncated down

to [0,Smax] and the boundary condition at S = ∞ is replaced by the boundary condition at

S = Smax. More discussion on how to choose value Smax can be found in Chapter 6. The

spatial partition on the truncated domain at time level τ ν is denoted by ∆ν . The Figure 3.1

illustrates part of the entire (S, τ) grid using the same notations introduced in previous chapter.

CHAPTER 3. PRICING AMERICAN OPTIONS 19

3.2.1 Discretization for LV

We use non-uniform central finite difference formulas defined in (2.5) and (2.6) for the spatial

discretization. Assume that we want to proceed from time step ν to time step ν +1. Recall that

LV ≡ 1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV . Substituting (2.5) and (2.6) into LV ν

i , i = 1, . . . , n−1 and

ignoring the truncation errors, we obtain

LV ν
i =

1

2
σ2(Sν

i)
2(bν

i1V
ν
i−1 + bν

i2V
ν
i + bν

i3V
ν
i+1) + rSν

i (a
ν
i1V

ν
i−1 + aν

i2V
ν
i + aν

i3V
ν
i+1)− rVν

i

=
(1

2
σ2(Sν

i)
2bν

i1 + rSν
i a

ν
i1

)
Vν

i−1 +
(1

2
σ2(Sν

i)
2bν

i2 + rSν
i a

ν
i2 − r

)
Vν

i

+
(1

2
σ2(Sν

i)
2bν

i3 + rSν
i a

ν
i3

)
Vν

i+1,

where aν
i1, a

ν
i2, a

ν
i3 and bν

i1, b
ν
i2, b

ν
i3 are specified in (2.5) and (2.6), respectively. Let

mν
i,i−1 = −1

2
σ2(Sν

i)
2bν

i1 − rSν
i a

ν
i1, (3.12)

mν
i,i = −1

2
σ2(Sν

i)
2bν

i2 − rSν
i a

ν
i2 + r, (3.13)

mν
i,i+1 = −1

2
σ2(Sν

i)
2bν

i3 − rSν
i a

ν
i3, (3.14)

then

LV ν
i = −mν

i,i−1V
ν
i−1 −mν

i,iV
ν
i −mν

i,i+1V
ν
i+1, (3.15)

i = 1, 2, . . . , n− 1. (3.16)

3.2.2 Time Discretization

Recall that under the change of variable τ = T − t, the Black-Scholes PDE used for American

options becomes

∂V

∂τ
− LV = 0,

or equivalently

∂V

∂τ
= LV, (3.17)

CHAPTER 3. PRICING AMERICAN OPTIONS 20

where LV ≡ 1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV . Applying the θ-timestepping scheme (2.7) to (3.17),

we obtain
V ν+1

i − V ν
i

∆τ ν

= θLV ν+1
i + (1− θ)LV ν

i

⇐⇒
V ν+1

i − θ∆τ νLV ν+1
i = V ν

i + (1− θ)∆τ νLV ν
i . (3.18)

Substituting the discretization formula (3.15) for LV into (3.18) gives

Vν+1
i + θ∆τ ν(m

ν+1
i,i−1V

ν+1
i−1 + mν+1

i,i Vν+1
i + mν+1

i,i+1V
ν+1
i+1)

= Vν
i − (1− θ)∆τ ν(m

ν
i,i−1V

ν
i−1 + mν

i,iV
ν
i + mν

i,i+1V
ν
i+1). (3.19)

Note that in equation (3.19), we have mν
i,i−1 = mν+1

i,i−1,m
ν
i,i = mν+1

i,i and mν
i,i+1 = mν+1

i,i+1.

For simplicity, we use mν
i,i−1,m

ν
i,i and mν

i,i+1 on both sides of equation (3.19), resulting in the

following one:

Vν+1
i + θ∆τ ν(m

ν
i,i−1V

ν
i−1 + mν

i,iV
ν+1
i + mν

i,i+1V
ν+1
i+1)

= Vν
i − (1− θ)∆τ ν(m

ν
i,i−1V

ν
i−1 + mν

i,iV
ν
i + mν

i,i+1V
ν
i+1). (3.20)

Writing this in matrix form, we have

(I + θ∆τ νM
ν)Vν+1 = (I− (1− θ)∆τ νM

ν)Vν , (3.21)

where I is the identity matrix and Mν is a tridiagonal matrix in R(n−1)×(n−1). Matrix Mν has

the following form:

Mν =




mν
1,1 mν

1,2 0 . . . 0

mν
2,1 mν

2,2 mν
2,3 . . . 0

.

. . . mν
i,i−1 mν

i,i mν
i,i+1

. . .

.

0 . . . mν
n−2,n−3 mν

n−2,n−2 mν
n−2,n−1

0 . . . 0 mν
n−1,n−2 mν

n−1,n−1




,

CHAPTER 3. PRICING AMERICAN OPTIONS 21

with mν
i,i−1,m

ν
i,i,m

ν
i,i+1, i = 1, . . . , n− 1 being defined in (3.12). Note that besides constants

σ and r, matrix Mν depends also on spatial partition at the time level τ ν .

As we mentioned earlier, we would like to use the CN method due to its second order

of convergence. However, for CN method, spurious oscillations can be introduced into the

solution. Even though these oscillations may be small if we look at the option value, they can

be magnified when computing the option delta and gamma [42]. In this thesis, we focus on the

CN scheme, but we use the implicit Euler scheme for the Rannacher smoothing technique. We

will discuss the oscillatory behavior of the CN method and its remedy in Chapter 5.

Under the above discretization, the LCP (3.10) is re-formulated as a constrained matrix

problem of the form




AνVν+1 = bν

Vν+1 −V∗,ν+1 ≥ 0





or





AνVν+1 > bν

Vν+1 −V∗,ν+1 = 0





, (3.22)

which must be solved in order to proceed from time step ν to time step ν + 1. Here,

Aν = I + θ∆τ νM
ν , bν = (I− (1− θ)∆τ νM

ν)Vν , (3.23)

are both dependent on the space partition ∆ν and time step size ∆τ ν . We denote V∗,ν as a

vector of payoff values on spatial partition ∆ν , where the ith component is

V∗,ν
i = max(E − Sν

i , 0).

In the next section, we will discuss some iterative methods for solving this type of problem.

3.3 Iterative Methods

Before we describe the application of the projected successive over-relaxation and the penalty

method on pricing American options, we first review some background on iterative methods.

We are interested in solving the linear system of equations

Ax = b, A ∈ Rn×n,b,x ∈ Rn. (3.24)

CHAPTER 3. PRICING AMERICAN OPTIONS 22

With a suitable matrix Q ∈ Rn×n, we can re-write (3.24) as

Qx = (Q−A)x + b

⇐⇒
x = (I−Q−1A)︸ ︷︷ ︸

G

x + Q−1b︸ ︷︷ ︸
c

,

resulting in the iteration scheme

x(k+1) = Gx(k) + c, (3.25)

where k is the iteration index and G is the iteration matrix. It has been proved in [34] that

iteration scheme (3.25) converges if and only if ρ(G) < 1 where ρ(G) denotes the spectral

radius of G. Moreover, to optimize the convergence, we would like to have ρ(G) to be as

small as possible. One way is to split the matrix A into three parts A = D+L+U, where D,

L and U represent the diagonal, strictly lower triangular and strictly upper triangular parts of

A, respectively. We now introduce the relaxation methods.

Let ω > 0 denote the relaxation parameter. We let Q = D
ω

+ L, which results in the

iteration matrix

G = I−Q−1A

= I− (
D

ω
+ L)−1A.

This leads to the iteration scheme

x(k+1) = (I− (
D

ω
+ L)−1A)x(k) + (

D

ω
+ L)−1b. (3.26)

Substituting A = D + L + U into (3.26) and rearranging the resulting formula, we obtain the

relaxation scheme

x(k+1) = x(k) + ωD−1(b− Lx(k+1) − (D + U)x(k)). (3.27)

Note that in formula (3.27), when x
(k+1)
i is being computed, all previous components x

(k+1)
j ’s,

j = 1, . . . , i − 1, are already computed and thus they can be used to compute x
(k+1)
i to speed

CHAPTER 3. PRICING AMERICAN OPTIONS 23

up the convergence. In component form, (3.27) can be written as




for i = 1, . . . , n do

y
(k+1)
i =

1

ai,i

(
bi −

∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j

)

x
(k+1)
i = x

(k)
i + ω(y

(k+1)
i − x

(k)
i)

endfor

(3.28)

Letting ω = 1, this results in the Gauss-Seidel method. For 0 < ω < 1, the scheme is called

successive under-relaxation, and for 1 < ω < 2, we obtain the successive over-relaxation

(SOR) method.

3.3.1 Projected SOR Method

The projected SOR (PSOR) method for linear complementarity problems was first proposed

by Cryer in [9]. The method is well-known and widely applied for pricing American options

(see [33], [30]). In this section, we first discuss the PSOR method and then we present an

algorithm which performs PSOR iteration for solving the constrained matrix problem resulting

from American option pricing.

Let us now consider a generic problem of the form




Ax = b

x ≥ g





or





Ax > b

x = g





. (3.29)

For the solution of this problem, Cryer [9] proposes the PSOR based on modifications of

the iterative scheme of the SOR method by including at each iteration the constraint x ≥ g.

More specifically, the PSOR method for solving problem (3.29) is




for i = 1, . . . , n do

y
(k+1)
i =

1

ai,i

(
bi −

∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j

)

x
(k+1)
i = max

(
gi,x

(k)
i + ω(y

(k+1)
i − x

(k)
i)

)

endfor

(3.30)

CHAPTER 3. PRICING AMERICAN OPTIONS 24

The proof of convergence for the PSOR method under the condition that matrix A is symmetric

positive definite can be found in [9]. In our case, due to adaptivity, the underlying matrix at

each timestep in our case is highly non-symmetric and thus the convergence condition in [9]

does not apply. In Appendix A, we present a proof to show that if the matrix A belongs to a

specific class of matrices and the relaxation parameter ω satisfies certain conditions, then the

convergence of the PSOR method is guaranteed.

Both SOR and PSOR methods start with some initial guess x(0) and compute successive

approximations x(k) to the solution for k = 1, . . . until some stopping criterion is satisfied. The

stopping criterion we use is

‖ x(k+1) − x(k) ‖≤ tol,

where ‖ . ‖ could be 2-norm or ∞-norm and tol is a user-defined tolerance.

The relaxation parameter ω plays an important role on the convergence rate of the (P)SOR

method. The optimal relaxation parameter can be determined when A is a positive definite

matrix (see [39]). However, the matrix at each time step is not symmetric due to adaptivity, it

is not easy to find the optimal ω in our case. For the numerical solutions of IVPs, a technique

to approximate dynamically the optimal relaxation parameter for (P)SOR method at each time

step is proposed in [37]. To explain the technique described in [37], consider three successive

timesteps ν − 1, ν , ν + 1. Let ων and itν denote the value of the relaxation parameter and the

number of iterations required for convergence at timestep ν, respectively. First, we compare

the number of iterations the method required in timesteps ν − 1 and ν, which use ων−1 and

ων , respectively. Here, ων = ων−1 + ∆ω with ∆ω being a very small, constant number either

greater or smaller than zero. Typically, the value of ∆ω in absolute value is between 0.01 and

0.05. Depending on the result of that comparison we decide the value of ων to be used in the

next timestep by adjusting ∆ω as follows.

(a) If itν−1 < itν , set ∆ω = −∆ω;

(b) Set ων+1 = ων + ∆ω;

We adopt this technique in our experiments.

CHAPTER 3. PRICING AMERICAN OPTIONS 25

The initial guess also plays a role in the convergence of the (P)SOR method. The most

common initial guess is x(0) = 0. In the context of IVPs, a better initial guess for the current

time step is the approximate solution for the previous time step. However, using extrapolation

on the approximations at the previous time steps could produce even a better initial guess.

More discussion on this will be provided next.

We now give an implementation of the PSOR method for solving the LCP resulting from

American options. Recall that the LCP is described by (3.9) and the discretization of the

partial differential operator gives rise to the constrained matrix problem (3.22). We notice the

similarities in form between the constrained matrix problem (3.22) and problem (3.29) and

thus the PSOR iterative scheme can be used to solve the non-linear problem associated with

the American option pricing. For each iteration and each component of the solution vector,

the valuation involves a comparison between the value of the option that would be obtained if

the holder does not exercise and the value of the option that would be obtained if the holder

does exercise the option. Since it is assumed that the holder would act optimally, the larger of

these two values would be chosen as the value of the option at that point. We introduce some

additional notations used for the algorithm and for the rest of the thesis.

Vν+1,(k): kth estimate of Vν+1;

aν
i,j: (i, j)th entry of matrix Aν ;

bν
i : ith entry of vector bν ;

A brief description of PSOR iteration for valuing an American put is presented in Algorithm

2.

It has been noted in the literature that the convergence rate of the PSOR method deteriorates

when the discretization is refined which makes PSOR a very slow method on finer grids. The

convergence rate of the PSOR method depends on the initial guess and relaxation factor ω. As

we mentioned earlier, we follow a technique in [37] to dynamically determine ω at each time

step. With respect to the initial guess, one popular choice for the initial guess is

Vν+1,(0) = Vν , (3.31)

CHAPTER 3. PRICING AMERICAN OPTIONS 26

which is an approximate solution at the previous time step τ ν . Our experimental results show

that this initial guess still results in deteriorating behaviors of the convergence rate. However,

deterioration of the convergence rate could be reduced if we had a better initial guess. In

particular, we use linear extrapolation on Vν and Vν−1, resulting in the initial guess

Vν+1,(0) =
(∆τ ν + ∆τ ν−1)

∆τ ν−1

Vν − ∆τ ν

∆τ ν−1

Vν−1, ν = 2, . . . , νmax. (3.32)

In case of constant timesteps, that is ∆τ ν = ∆τ ν−1, ν = 2, . . . , νmax, the above formula

reduces to

Vν+1,(0) = 2Vν −Vν−1, ν = 2, . . . , νmax.

Experiment results show that for option pricing, this choice of initial guess produce much

faster convergence and the deterioration of convergence rate on finer grids is less serious than

those obtained from the choice (3.31). We provide numerical results related to this issue in

Chapter 6.

Algorithm 2: Brief description of PSOR American put option constraint iteration
1: initialize Vν+1,(0);

2: for k = 0, . . . , until convergence do

3: for i = 1, . . . , n− 1 do

4: calculate Ṽ
ν+1,(k+1)
i =

1

aν
i,i

(
bν

i −
∑
j<i

aν
i,jV

ν+1,(k+1)
j −

∑
j>i

aν
i,jV

ν+1,(k)
j

)
;

V
ν+1,(k+1)
i = max

(
V∗,ν+1

i ,V
ν+1,(k)
i + ων+1(Ṽ

ν+1,(k+1)
i −V

ν+1,(k)
i)

)
;

5: end for

6: if ‖ Vν+1,(k+1) −Vν+1,(k) ‖≤ tol then

7: break;

8: end if

9: end for

10: Vν+1 = Vν+1,(k+1);

CHAPTER 3. PRICING AMERICAN OPTIONS 27

3.3.2 Penalty Method

While the PSOR method explicitly applies the constraints at each iteration of computing the

option price, the penalty method applies the constraints implicitly, using a nonsmooth Newton

iteration. As described earlier, the LCP for an American put is





∂V

∂τ
− LV = 0

V − V ∗ ≥ 0





or





∂V

∂τ
− LV > 0

V − V ∗ = 0





, (3.33)

where V ∗ = max(E−S, 0) is the payoff for an American put andLV ≡ 1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV.

The idea of the penalty methods is to add a penalty term to the right hand side of equation
∂V

∂τ
− LV = 0, in order to ensure that the early exercise constraint is fulfilled. The penalty

term should be negligible when V > V ∗ so that it does not affect the solution of the Black-

Scholes PDE, and of non-negligible size when V approaches V ∗, so that V does not become

less than V ∗. Nielsen et al. propose a continuous penalty formulation in [25]. They define a

barrier function bar(S) = E − S and the penalty term by
εC

V + ε− bar(S)
, where 0 < ε ¿ 1

is a parameter and C is a positive constant. Thus the LCP is formulated as the nonlinear PDE

∂V
∂τ
− LV = εC

V +ε−bar(S)
. One should note that the penalty term is of order ε and hence very

small when V À bar(S) and thus the Black Scholes PDE is satisfied in this case. In addition,

if V → bar(S), then the penalty term approaches C which makes
∂V

∂τ
− LV = C > 0 and

thus the early exercise constraint is not violated.

A discrete penalty formulation is proposed by Zvan et al. in [40]. A penalty term is added

to the discrete equations. The resulting problem can again be viewed as a non-linear PDE. The

nonlinear discretized equations are solved by Newton iterations. This approach has the advan-

tage that advanced discretization methods like flux limiters (see [41]) can be incorporated. In

addition, other types of constraints such as time-dependent barriers can also fit easily into the

framework. In this thesis, we follow this approach and we briefly describe it for an American

put option below.

CHAPTER 3. PRICING AMERICAN OPTIONS 28

Problem (3.33) is replaced by the non-linear PDE

∂V

∂τ
− LV = P̂ (V ∗, V), (3.34)

where P̂ (V ∗, V) is the penalty term defined by

P̂ (V ∗, V) = ζ max(V ∗ − V, 0).

Here, the positive penalty parameter ζ , ζ → ∞, effectively ensures that the solution satisfies

V − V ∗ ≥ −ε for 0 < ε ¿ 1.

We explain intuitively how this works. If V > V ∗ then P̂ (V ∗, V) = 0, hence (3.34)

becomes 



∂V

∂τ
− LV = 0

V − V ∗ > 0





On the other hand, if −ε ≤ V − V ∗ < 0, i.e. P̂ (V ∗, V) > 0, then we have




∂V

∂τ
− LV = P̂ (V ∗, V) > 0

V − V ∗ ≥ −ε for 0 < ε ¿ 1





.

Except for the penalty part, the discretization of equation (3.34) has been discussed in Section

3.2. Let p̂ν+1
i denote a discrete penalty term corresponding to the node (Sν+1

i , τ ν+1), and recall

the definition of the discrete differential operator LV ν
i in equation (3.15). The discretized

version of equation (3.34) could be written as

V ν+1
i − V ν

i

∆τ ν

= θLV ν+1
i + (1− θ)LV ν

i + p̂ν+1
i , i = 1, 2, . . . , n− 1, (3.35)

where the penalty term p̂ν+1
i is defined by

p̂ν+1
i =





1

∆τ ν

(V ∗,ν+1
i − V ν+1

i)L if V ν+1
i < V ∗,ν+1

i ,

0 otherwise.
(3.36)

Here, L is a large positive number referred to as penalty factor chosen so that L ' O(1
ε
). We

will define L precisely in terms of convergence tolerance later.

CHAPTER 3. PRICING AMERICAN OPTIONS 29

Equation (3.35) represents a set of nonlinear equations due to the penalty term (3.36). Let

us write these equations in matrix form. Let the diagonal matrix P̂ ∈ R(n−1)×(n−1) be given by

p̂(V ν+1)ij =





L if Vν+1
i < V∗,ν+1

i and i = j,

0 otherwise.
(3.37)

Recall equation (3.21) for the discretization of the Black-Scholes PDE. Then we can write

equations (3.35)-(3.36) as

[I + θ∆τ νM
ν + P̂(V ν+1)]Vν+1 = (I− (1− θ)∆τ νM

ν)Vν + [P̂(V ν+1)]V∗,ν+1, (3.38)

where I and M are as defined in Section 3.2.2. With notations for Aν and bν defined in (3.23),

Equation (3.38) can be written as

[Aν + P̂(V ν+1)]Vν+1 = bν + [P̂(V ν+1)]V∗,ν+1. (3.39)

An iterative technique for the solution of Equation (3.38) is presented in Algorithm 3.

Let us further study Algorithm 3 to see how it works. Suppose we have that Vν+1,(0)
i = Vν

i

and Vν
i > V∗,ν+1

i , i.e it is not optimal to early exercise at node (Sν+1
i , τ ν+1). Since V

ν+1,(0)
i =

Vν
i > V∗,ν+1

i , we have that p̂(V ν+1)ii = 0. If after one iteration, V
ν+1,(1)
i > V∗,ν+1

i , then

it is still not optimal to exercise, so p̂(V ν+1)ii = 0. If V
ν+1,(1)
i < V∗,ν+1

i , it is now optimal

to exercise early so p̂(V ν+1)ii = L, and the penalty term p̂ν+1
i adds value to the solution at

this node forcing V
ν+1,(2)
i to increase, resulting in V

ν+1,(2)
i > V

ν+1,(1)
i . This is the monotone

convergence property of the iterates.

Eventually, the iterates converge to a solution where either

Vν+1
i ≥ V∗,ν+1

i ⇒ p̂(V ν+1)ii = 0,

or 



V∗,ν+1
i −Vν+1

i > 0 ⇒ p̂(V ν+1)ii > 0,

V∗,ν+1
i −Vν+1

i ≤ ε; ε ¿ 1.

Therefore, the converged solution of Algorithm 3 either satisfies a discrete form of the Black-

Scholes PDE with Vν+1
i > V∗,ν+1

i or Vν+1
i − V∗,ν+1

i & −ε for some ε, 0 < ε ¿ 1. Thus,

Algorithm 3 generates an approximation to the solution of the LCP.

CHAPTER 3. PRICING AMERICAN OPTIONS 30

It has been proved in [14] that the parameter L is closely related to the maximum relative

error in enforcing the American constraint using the penalty method. This error is calculated

by the quantity max
i,ν

max[0, V ∗
i − V ν

i]

max(1, V ∗
i)

. To ensure that this quantity is small, the penalty factor

must be sufficiently large. In the stopping region, where early exercise is advisable, we have

that Vν+1
i & V∗,ν+1

i − ε. As L →∞, the solution is more accurate, i.e ε → 0 since ε ' O(1
L
),

but we could expect the round-off errors to dominate if L > 1

machine ε
. In [14], it has been

shown that as L →∞, in the stopping region where V∗,ν+1
i 6= 0 we have

∣∣∣V
∗,ν+1
i −Vν+1

i

V∗,ν+1
i

∣∣∣ ≈ 1

L
.

Therefore, if we want an accuracy tol in Algorithm 3, we must have

L ' 1

tol
. (3.40)

So L is well-defined, and cannot be arbitrarily large. It is worth noting that, in practice, one

or two iterations usually suffices to obtain convergence. It is worth mentioning that through

numerical experiments, we observe effects of two different initial guesses (3.31) and (3.32)

on the convergence rate of the penalty method, although, in this case, the effects are not as

significant as in the case of PSOR. In Chapter 6, we present selected numerical results of the

penalty method related to this issue.

CHAPTER 3. PRICING AMERICAN OPTIONS 31

Algorithm 3: Penalty iteration for American options
1: initialize Vν+1,(0);

2: construct P̂(V ν+1,(0)) using (3.37);

3: for k = 0, . . . , until convergence do

4: solve (3.38) for Vν+1,(k+1);

5: construct P̂(V ν+1,(k+1)) using (3.37);

6: if
[
maxi

|Vν+1,(k+1)
i −V

ν+1,(k)
i |

max(1,|Vν+1,(k+1)|) < tol
]

or
[
P̂(V ν+1,(k)) = P̂(V ν+1,(k+1))

]
then

7: break;

8: end if

9: end for

10: Vν+1 = Vν+1,(k+1);

Chapter 4

Adaptive Mesh Methods for Pricing

American Options

In this chapter, we illustrate how the adaptive mesh techniques based on the equidistribution

principle are applied to the pricing of American options on one underlying asset. We will

revisit Algorithm 1 in more detail and refer to Algorithms 2 and 3 as subroutines.

Recall that the price of an American option can be computed from the LCP





∂V

∂τ
− LV = 0

V − V ∗ ≥ 0





or





∂V

∂τ
− LV > 0

V − V ∗ = 0





, (4.1)

which can be solved on a discrete domain by applying either the PSOR method or the penalty

method. The details of the discretization and resulting matrices and vectors for the LCP depend

on the desired discretization methods and have been discussed in previous chapters. If we solve

the non-linear problem by PSOR, then the resulting constrained matrix problem that needs to

be solved in order to proceed from time step ν to time step ν + 1 is described by




AνVν+1 = bν

Vν+1 −V∗,ν+1 ≥ 0





or





AνVν+1 > bν

Vν+1 −V∗,ν+1 = 0





. (4.2)

On the other hand, if the penalty method is used, then at each time step, we need to solve the

32

CHAPTER 4. ADAPTIVE MESH METHODS FOR PRICING AMERICAN OPTIONS 33

matrix problem

[Aν + P̂(V ν+1)]Vν+1 = bν + [P̂(V ν+1)]V∗,ν+1, (4.3)

possibly more than once, but usually at most once or twice per timestep. Here, matrix Aν and

vector bν are defined in (3.23) and the penalty matrix P̂ is defined in (3.37).

4.1 Algorithm Description

Algorithm 1 assumes that an approximation to V ν is already computed on partition ∆ν , and

computes an approximation to V ν+1 on partition ∆ν+1 which may be different from ∆ν . This

is done by using a grading function which involves high-order derivatives of V . However,

we did not specify how the appropriate derivatives of V at fixed time τ ν+1 and the estimate

of the distribution of the error are calculated. In this chapter, we will provide more details

on these matters. As mentioner earlier, the monitor function at time τ that we are using is

V̂ (S, τ) = |V (3)|1/3, and the corresponding grading function is

ξ(S, τ) =

∫ S

a
|V (3)|1/3dS∫ b

a
|V (3)|1/3dS

, (4.4)

where V (3) denotes
∂3V

∂S3
. Since we do not have a closed-form expression for the derivative

of V , we have to use approximate values Vi, i = 0, . . . , n, to approximate the third deriva-

tive by the means of finite differences. The integrals appearing in the grading function can

be approximated by appropriate quadrature rules such as the midpoint or trapezoidal rule. We

now introduce some new notations used in the adaptive algorithm. For easy reference, we also

repeat relevant previously defined notations below.

∆ν : spatial partition at time τ ν , ∆ν ≡ {Sν
i }n

i=0, where Sν
i is the ith spatial point at time τ ν ;

Vν
∆k

: vector of approximate values to V at time τ ν on space partition ∆k with components

Vν
k,i ≈ V (Sk

i , τ ν); for simplicity let V ν
k,i denote V (Sk

i , τ ν);

V̂ν : vector of approximate values to V̂ (S, τ ν) = |V (3)|1/2 on partition ∆ν , with the ith com-

ponent being V̂ν
i ≈ V̂ (Sν

i , τ ν);

CHAPTER 4. ADAPTIVE MESH METHODS FOR PRICING AMERICAN OPTIONS 34

-

6τ

τ ν

τ ν+1

×

×

S

v v v
Sν

i−1 Sν
i Sν

i+1

v v v
Sν+1

i−1 Sν+1
i Sν+1

i+1

@
@

@
@@I

A
A

A
A
AK

£
£
£
££±

∆ν = {Sν
i }n

i=0

∆ν+1 = {Sν+1
i }n

i=0

?

∆τν

6

Figure 4.1: Details and notations of an adaptive step

ξν and ξ′ν : vector of approximate values to ξ(S, τ ν) and
∂ξ

∂S
(S, τν) on partition ∆ν , respec-

tively;

ξν
i : the ith component of ξν , with ξν

i ≈ ξ(Sν
i , τ ν);

We now briefly describe the algorithm. First of all, we initialize all financial parameters of the

pricing problem such as E, T, σ, r as well as the grid variables including the truncated domain

[Smin,Smax], number of space partition points n, number of time steps νmax. In addition, we

also need the accuracy tolerance for the iterative method that we use to solve the LCP and

initial value of relaxation parameter ω ∈ [1, 2] if PSOR is used.

Generally, the core calculations for each time step consist of four main parts: (I) solving the

LCP, (II) checking if a new partition is needed, (III) computing the new grid, (IV) computing

values on the new grid. If the current grid is well-distributed, steps (III-IV) are omitted. We

now describe each part in detail.

In part (I) (Line 4), we solve the LCP (4.1) to proceed from time step ν to time step ν + 1

using either the PSOR method or the penalty method. For either method, we need to construct

the matrix Aν and vectors bν and V∗,ν+1 based on the spatial partition ∆ν and time step size

∆τν . The construction formulas for Aν , bν , and V∗,ν+1 are defined in (3.23). If PSOR is used,

the solution of the LCP can be obtained from Algorithm 2 with smart initial guess based on

CHAPTER 4. ADAPTIVE MESH METHODS FOR PRICING AMERICAN OPTIONS 35

extrapolation as defined in (3.32). If we use the penalty method, Algorithm 3 is invoked. After

this step we obtain Vν+1
∆ν

, the vector of approximate solution at time τ ν+1 but on the same

partition ∆ν of the previous time step.

In part (II) (Lines 5 - 7), we determine whether or not the current partition ∆ν is well-

distributed for the time τ ν+1. The general idea of this procedure is explained in Algorithm

1. Here, we discuss it in more detail. First, we approximate the monitor function V̂ (S, τ ν+1)

on partition ∆ν+1 = ∆ν using Vν+1
∆ν

(Line 5). The FD approximation formula for the third

derivative appearing in the monitor function is

∂3V ν+1
ν,i

∂S3
≈ 3!

(
cν
i1V

ν+1
ν,i−1 + cν

i2V
ν+1
ν,i + cν

i3V
ν+1
ν,i+1 + cν

i4V
ν+1
ν,i+2

)
, (4.5)

where

cν
i1 =

1

−hν
i−1(h

ν
i−1 + hν

i)(h
ν
i−1 + hν

i + hν
i+1)

,

cν
i2 =

1

hν
i−1h

ν
i (h

ν
i + hν

i+1)
,

cν
i3 =

1

−hν
i h

ν
i+1(h

ν
i−1 + hν

i)
,

cν
i4 =

1

hν
i+1(h

ν
i + hν

i+1)(h
ν
i−1 + hν

i + hν
i+1)

.

We obtain the vector V̂ν+1 whose components are V̂ν+1
i ≈ |V (3)(Sν+1

i , τ ν+1)|1/2, i = 0, 1, . . . , n.

Note that V̂ν+1
0 and V̂ν+1

n are set to zero due to the fact that the values at the two boundary

points are given, hence no errors. Approximating the grading function ξ and its derivative
∂ξ

∂S
as well as quantities r̃ν+1

i and r̃ν+1 (Line 6) on partition ∆ν+1 = ∆ν is done by employ-

ing some quadrature rules such as the midpoint or trapezoid rules. If the points of partition

∆ν+1 are well-distributed (meaning either criterion (2.13) or (2.14) is satisfied), then partition

∆ν+1 = ∆ν and Vν+1
∆ν+1

= Vν+1
∆ν

are accepted and we move to the next time step (Line 9). If

not, the new partition ∆ν+1 6= ∆ν is computed using one iteration of (2.10) (Line 11). This

step is in part (III).

Once a new partition is generated, we need to compute the values of approximation on the

new ∆ν+1. The steps involved are in part (IV) (Lines 12-18). As mentioned in Algorithm

CHAPTER 4. ADAPTIVE MESH METHODS FOR PRICING AMERICAN OPTIONS 36

1, there are two ways to do this. The first is to interpolate Vν
∆ν

from the old partition ∆ν to

the new partition ∆ν+1 to obtain Vν
∆ν+1

and apply the time-stepping procedure to compute

Vν+1
∆ν+1

(Lines 13-15). The second way is simply to interpolate Vν+1
∆ν

from ∆ν to ∆ν+1 to

obtain Vν+1
∆ν+1

(Line 17). The output of the algorithm would be the partition at the last time step

together with an approximation on that partition. The free boundary is also calculated. The

Figure 4.1 illustrates a subset of the points used in steps ν and ν + 1.

CHAPTER 4. ADAPTIVE MESH METHODS FOR PRICING AMERICAN OPTIONS 37

Algorithm 4: Adaptive algorithm to compute American option
1: Initialization of variables and parameters

2: Core calculations

3: for ν = 0, 1, . . . , νmax − 1 do

4: solve the matrix problem (4.2) for Vν+1
∆ν

; set ∆ν+1 = ∆ν ;

5: construct V̂ν+1 using (4.5);

6: approximate ϑ =

∫ Smax

Smin

V̂ (S, τ ν+1)dS, ξν+1
i =

∫ Sν+1
i

Smin
V̂ (S, τ ν+1)dS

ϑ
, ξ′ν+1

i =
V̂ν+1

i

ϑ
,

r̃ν+1
i =

∫ Sν+1
i

Sν+1
i−1

V̂ (S, τ ν+1)dS, and r̃ν+1 =
ϑ

n
;

7: check stopping criterion (2.13) or (2.14)

8: if (2.13) or (2.14) is satisfied then

9: ∆ν+1 = ∆ν ; Vν+1
∆ν+1

= Vν+1
∆ν

;

10: else

11: compute (new) ∆ν+1 ≡ {Sν+1
i }n

i=0 using Sν+1
i = Sν+1

i − ξν+1
i − i

n

ξ′ν+1
i

;

12: if ν ≤ smallnum then

13: compute Vν
∆ν+1

using interpolation on
(
(Sν

i)
n
i=0,V

ν
∆ν

)
;

14: construct new matrix Aν , and vectors bν and V ∗,ν+1 on the new partition ∆ν+1;

15: solve again the matrix problem (4.2) for Vν+1
∆ν+1

using Vν
∆ν+1

;

16: else

17: compute Vν+1
∆ν+1

using interpolation on
(
(Sν

i)
n
i=0,V

ν+1
∆ν

)
;

18: end if

19: end if

20: end for

21: Results

22: output ∆νmax and Vνmax
∆νmax

;

23: compute and output the free boundary Sf ;

CHAPTER 4. ADAPTIVE MESH METHODS FOR PRICING AMERICAN OPTIONS 38

Regarding the two ways of handling part (IV), note that the first technique involves solving

the LCP again on the new partition ∆ν+1. To do this, we need to construct the matrix Aν , and

vectors bν and V ∗,ν+1 again on the new partition and apply an iterative method to solve the

problem. This part is costly and thus should be avoided, if not needed. Through experiments

we observe that we need to apply the first technique only for the first few time steps (smallnum).

This produces good results without sacrificing computation time.

Normally, in the case of European options or other problems without constraints, one can

use standard interpolation techniques, such as cubic spline interpolation, to obtain interpolated

values. However, due to existence of the free boundary at each timestep, the interpolation tech-

niques used in the pricing of American option must be chosen carefully. At each timestep, the

free boundary point separates the spatial domain into the continuation region and the stopping

region. The relationships between the option value and the payoff in the continuation and the

stopping regions are expressed in (3.3) and (3.4), respectively. In order to maintain accuracy of

the option valuation, interpolated option values which are obtained at Line 13 (timestep ν) or

Line 17 (timestep ν +1) of Algorithm 4 must satisfy these requirements. This means that these

interpolated option values must be either (a) equal (within some tolerance) to the payoff in the

stopping region or (b) larger than the payoff in the continuation region. With cubic spline in-

terpolation techniques, we observe that (b) is always satisfied. However, (a) is not always met

since the interpolated option values are sometimes larger than the corresponding payoff values

in the stopping region. This could result in poor approximation of the free boundary point at

that timestep and could affect the accuracy of the option value at the next timestep. As time

evolves, this could diminish the accuracy of the option value approximation and free boundary

point approximation at the last timestep. To deal with this situation, we first use standard cubic

spline interpolation to obtain interpolated values. We then approximate the free boundary point

at that timestep using the partition and option values available, namely
(
(Sν

i)
n
i=0,V

ν
∆ν

)
(Line

13) or
(
(Sν

i)
n
i=0,V

ν+1
∆ν

)
(Line 17). All interpolated values in the stopping region are set to the

corresponding payoff values. Experiments show that this simple technique works pretty well

CHAPTER 4. ADAPTIVE MESH METHODS FOR PRICING AMERICAN OPTIONS 39

for American options.

Chapter 5

Stability and Convergence Analysis

In this chapter, we study the stability and convergence of the adaptive method used for pricing

American options introduced in previous chapter.

The numerical solution of the pricing an American option typically consists of two parts:

(1) discretizing the problem on a finite mesh and (2) computing an approximate solution to the

resulting constrained matrix problem using an iterative method. As we mentioned earlier, there

are various ways to discretize the problem and also there is a variety of iterative solvers that

can be used for constrained matrix problems. Since the convergence of iterative solvers for

constrained matrix problems can be guaranteed for specific classes of matrices it is important

to investigate the properties of matrices resulting from our approach.

One of the most favorable class of matrices is the class of symmetric positive definite

matrices. The stability and convergence of many solvers are guaranteed in this case. However,

in our case, the underlying matrices are highly non-symmetric and due to the non-uniform grids

resulting from adaptivity, it is fairly hard to enforce symmetry and at the same time preserve

the accuracy of the method. Hence, we need to consider a favorable subclass of non-symmetric

matrices which can guarantee the stability and convergence. The class that we will examine is

the class of M-matrices.

40

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 41

5.1 Preliminaries

Let x be a vector in Rn and A be a square matrix in Rn×n. As previously defined, we write

ai,j for the (i, j)th element of matrix A and xi for the ith component of vector x. We say

A ≥ 0 if ai,j ≥ 0,∀i, j, 1 ≤ i, j ≤ n. Also, recall that A is strictly diagonal dominant

if |ai,i| >
n∑

j=1,j 6=i

|ai,j|, and diagonal dominant if |ai,i| ≥
n∑

j=1,j 6=i

|ai,j|. We say matrix A is re-

ducible if there is permutation P under which A has the structure



A1 0

B A2


 ,

where A1 and A2 are square matrices. A matrix is irreducible if it is not reducible.

Definition 1. (L-matrix,[39])

A real matrix A in Rn×n is said to be an L-matrix if

ai,i > 0, ∀i, 1 ≤ i ≤ n, (5.1)

and

ai,j ≤ 0, ∀i 6= j, 1 ≤ i, j ≤ n. (5.2)

Definition 2. (M-matrix,[39])

A real matrix A in Rn×n is called an M-matrix if (5.2) holds, if A is nonsingular, and if

A−1 ≥ 0.

Definition 3. (irreducibly (row) diagonally dominant matrix,[32])

A real matrix A in Rn×n is called an irreducibly (row) diagonally dominant if it is irreducible

and diagonally dominant with strict diagonal dominance in at least one row.

Note that while the L-matrix property are easy to verify, the M-matrix property is not,

since normally we are interested in large and sparse matrices whose inverses are costly to

compute and explicit formulae for the inverse elements are not available. For this reason, we

are interested in sufficient conditions for M-matrix structure. Some of important criterions of

the M-matrix structure are listed below.

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 42

Theorem 1. A strictly diagonally dominant L-matrix is an M-matrix.

Proof. A proof can be found in [16].

Theorem 2. An irreducibly (row) diagonally dominant L-matrix is an M-matrix.

Proof. A proof can be found in [16] or in [32].

With respect to the American option pricing problem, we need to solve the constrained

matrix problem (3.22) at each time step. We employ either the PSOR or the penalty methods.

The convergence of the penalty method on American option pricing has been proved in [14]

under the condition that Mν is an M-matrix. (Note that if Mν is an M-matrix, so is Aν).

However, the convergence condition for PSOR mentioned in [9] requires Aν to be symmetric

positive definite and obviously this condition is not satisfied in our case. For that reason,

we would like to resort to the M-matrix class to prove that the PSOR method for American

option pricing is convergent if matrix Aν is an M-matrix. In Appendix A, we present a proof

of convergence for the PSOR method on American option pricing under certain conditions

involving matrix A and the relaxation parameter ω.

Normally, sufficient conditions for a matrix to be an M-matrix listed in Theorem 2 are

milder than those listed in Theorem 1. Nonetheless, both theorems require the L-matrix struc-

ture. As we shall see, the L-matrix structure automatically results in strict diagonal dominance

in our case. For this reason, we will study the sufficient conditions in Theorem 1.

5.2 L-matrix Property

We first investigate the L-matrix structure of Mν . Recall that to have L-matrix structure, the

entries of Mν must satisfy

mν
i,j =





≤ 0 ∀i 6= j

> 0 ∀i = j

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 43

As we mentioned earlier, Mν is a tridiagonal matrix of the following form

Mν =




mν
1,1 mν

1,2 0 . . . 0

mν
2,1 mν

2,2 mν
2,3 . . . 0

.

. . . mν
i,i−1 mν

i,i mν
i,i+1

. . .

.

0 . . . mν
n−2,n−3 mν

n−2,n−2 mν
n−2,n−1

0 . . . 0 mν
n−1,n−2 mν

n−1,n−1




,

where the entries mν
i,i−1,m

ν
i,i,m

ν
i,i+1 are defined in (3.12).

Obviously, all super-diagonal entries mν
i,i+1, i = 2, 3, . . . , n − 1, of Mν are negative and

hence non-positive since aν
i3 =

hν
i

hν
i+1(h

ν
i +hν

i+1)
and bν

i3 = 2
hν

i+1(h
ν
i +hν

i+1)
are both positive. However,

sub-diagonal entries mν
i,i−1, i = 2, 3, . . . , n − 1, of Mν are not guaranteed to be non-positive.

The explicit formula for mν
i,i−1 is

mν
i,i−1 = −1

2
σ2(Sν

i)
2bν

i1 − rSν
i a

ν
i1

= − σ2(Sν
i)

2

hν
i (h

ν
i + hν

i+1)
+

hν
i+1rS

ν
i

hν
i (h

ν
i + hν

i+1)
.

Note that non-positive off-diagonal in Mν could result from the convection term ∂V
∂S

dominating

the diffusion term ∂2V
∂S2 . In this case, the central finite differences produce non-positive sub-

diagonal entries in Mν . We could fix this by using forward differences for ∂V
∂S

instead of

central differences so that mν
i,i−1 = − σ2(Sν

i)2

hν
i (hν

i +hν
i+1)

, i = 2, 3, . . . , n− 1, and hence non-positive.

However, this modification could result in overall first order of convergence, except that if only

a few nodes are modified then we could expect order of convergence between 1 and 2. For

this reason, we do not follow this approach. Another approach which guarantees non-positive

sub-diagonal entries for Mν is to impose conditions on the spatial step sizes so that mν
i,i−1,

i = 2, 3, . . . , n− 1, is non-positive, that is mν
i,i−1 ≤ 0. This results in the following condition

on the step sizes:

hν
i+1 ≤

σ2Sν
i

r
, i = 2, 3, . . . , n− 1. (5.3)

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 44

This condition imposes a restriction on points Sν
i+1, i = 2, 3, . . . , n − 1, leaving the first two

interior points Sν
1 and Sν

2 unrestricted. The reason is that the step size hν
1 appears in the formula

for mν
1,3 which is a negative super-diagonal entry and hν

2 appears in the first entry bν
1 of bν due

to Dirichlet boundary conditions.

For constant spatial step sizes, if the partition point Sν
3 satisfies (5.3), then all other points

Sν
i , i > 3, of the partition satisfy (5.3) as well. However, on a non-uniform grid, this condition

must be imposed on each node of the partition. We will explain in detail later how condition

(5.3) is ensured at each time step.

So far, we have discussed conditions that guarantee Mν to have mν
i,j ≤ 0,∀i 6= j. To

ensure that Mν is a L-matrix, we must check the positivity of all diagonal entries of Mν . We

have that

mν
i,i = −1

2
σ2(Sν

i)
2bi2 − rSν

i ai2 + r.

Note that ai2 = −(ai1 + ai3) and bi2 = −(bi1 + bi3) are both negative. Taking into account

σ, r and Sν
i are positive, it is obvious that mν

ii is positive. Hence, all diagonal entries of Mν are

positive. It follows that if condition (5.3) is ensured, then matrix Mν is an L-matrix.

Now we consider matrix Aν . Since Aν = I + θ∆τ νM
ν , it follows that under condition

(5.3), Aν is also an L-matrix. Note that Aν is also a tridiagonal matrix with non-positive

off-diagonal entries and positive diagonal entries, taking into account θ and ∆τ ν are positive.

5.3 Diagonal Dominance

We now investigate the diagonal dominance property of matrix Mν . Consider the ith row,

2 ≤ i ≤ n−2 of matrix Mν . Taking into account that ai2 = −(ai1+ai3) and bi2 = −(bi1+bi3),

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 45

we have

|mν
i,i| = | − 1

2
σ2(Sν

i)
2bi2 − rSν

i ai2 + r|

= |1
2
σ2(Sν

i)
2(bi1 + bi3) + rSν

i (ai1 + ai3) + r|

= |1
2
σ2(Sν

i)
2bi1 + rSν

i ai1 +
1

2
σ2(Sν

i)
2bi3 + rSν

i ai3 + r|

= | −mν
i,i−1 −mν

i,i+1 + r|.

As mentioned in the previous section, under condition (5.3), all off-diagonal entries mν
i,i−1,m

ν
i,i+1

of Mν are non-positive. It then follows that

|mν
i,i| = | −mν

i,i−1 −mν
i,i+1 + r|,

= |mν
i,i−1|+ |mν

i,i+1|+ r,

> |mν
i,i−1|+ |mν

i,i+1|.

The first and last rows of Mν are obviously strictly diagonally dominant. Thus matrix Mν is

strictly diagonally dominant under the condition (5.3) on step sizes. Under this condition, the

matrix Mν is both strictly diagonally dominant and possesses the L-matrix structure and thus

by Theorem 1, it is an M-matrix. Moreover, if Mν is strictly diagonally dominant then Aν is

too. It follows that if (5.3) is true, Aν is an M-matrix.

5.4 Implementation Issues

We have shown that under condition (5.3), the matrix Mν possesses the L-matrix structure and

is strictly diagonally dominant and hence it is an M-matrix. Matrix Aν is also an Mν under

this condition. However, condition (5.3) may limit the movement of points induced by the

adaptive technique and hence may affect the quality of the resulting partition. In this section,

we discuss some of the implementation issues related to this matter.

Note that condition (5.3) involves only the stepsizes of the space partition as well as volatil-

ity and risk-free interest rate with the latter two being constant. That means if the partition ∆ν

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 46

satisfies condition (5.3) then this condition is guaranteed at all subsequent time steps until the

adaptivity is invoked and a new partition is obtained. For this reason, to ensure condition (5.3)

at any time step, we do as follows. We impose condition (5.3) for ν = 0, that is, when we

proceed from time τ 0 = 0 to time τ 1. Whenever the adaptive technique is invoked, we control

the movement of points (only if we have to) so that the resulting partition satisfies the step size

condition. We do not have to check condition (5.3) until the adaptive movement of points is

called again. By this way, we can always guarantee that at any times τ ν , the matrices Mν and

Aν have the M-matrix structure.

We now discuss how to enforce condition (5.3) in the adaptive procedure. Assume that

we are proceeding from time step ν to ν + 1 and the adaptivity is invoked. Note that it is

ensured that Mν and Aν are M-matrices as we already explained. However Mν+1 and Aν+1

may not be. Recall that the new partition ∆ν+1 is constructed point by point in one sweep

from the left boundary to the right boundary. During the construction process, if the point Sν+1
i+1

violates condition (5.3), meaning hν+1
i+1 >

σ2Sν+1
i

r
, then we enforce hν+1

i+1 =
σ2Sν+1

i

r
. By this

way, we can ensure condition (5.3) and at the same time minimize our interference with the

movement of points produced by the adaptive technique. However, there is one catch with this

approach. Consider the interior point Sν+1
n−1 which is close to the right boundary. Once this point

is constructed, we do not have any choice for the next point Sν+1
n if hν+1

n fails the condition

since the next point is a boundary point hence fixed. Thus we cannot impose condition (5.3) on

the last step size and consequently, Mν+1 and Aν+1 may not be an L-matrix since it may have a

positive off-diagonal entry on the last row. In this case, they are nearly M-matrices. However,

we can always introduce a few more points so that condition (5.3) is satisfied. We monitor

very carefully condition (5.3) throughout the testing and noticed that the points generated by

the adaptive procedure never violated this condition and hence we never had to interfere with

the adaptive technique.

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 47

5.5 Crank-Nicolson Method

In this section we would like to mention two important issues of the CN method: (a) the

stability and (b) spurious oscillations and suggested remedies.

Recall the θ-timestepping method described by (3.20)

Vν+1
i + θ∆τ ν(m

ν
i,i−1V

ν+1
i−1 + mν

i,iV
ν+1
i + mν

i,i+1V
ν+1
i+1)

= Vν
i − (1− θ)∆τ ν(m

ν
i,i−1V

ν
i−1 + mν

i,iV
ν
i + mν

i,i+1V
ν
i+1),

or in matrix form (3.21)

(I + θ∆τ νM
ν)Vν+1 = (I− (1− θ)∆τ νM

ν)Vν .

With θ = 1
2
, we obtain the Crank-Nicolson (CN) method. Generally speaking, the numerical

solution Vν+1 will not be equal to the true solution V ν+1 due to (a) truncation errors introduced

at each timestep by FD approximations and (b) round-off errors. In the case of an unstable

method, such errors can grow without bound as the number of timesteps increases. Informally

speaking, in option pricing, we would like the option price to stay finite as the number of

timesteps increases (νmax →∞) for a fixed T and a finite computational domain [0,Smax].

We can write (3.21) as

Vν+1 = (I + θ∆τ νM
ν)−1(I− (1− θ)∆τ νM

ν)Vν ,

or

Vν+1 = BVν

with

B = (I + θ∆τ νM
ν)−1(I− (1− θ)∆τ νM

ν).

Thus

Vν = BνV0,

where V0 is an initial values at time τ = 0. We would like to have ‖Vν‖p bounded in-

dependently of the number of timesteps νmax and number of spatial partition points n (as

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 48

n, νmax → ∞). Here, ‖.‖p denotes a vector norm with p either ∞ or the RMS-norm (where

‖x‖RMS = ‖x‖2/
√

n =
√

1
n

∑n
i=1 x2

i for x ∈ Rn).

In case the case the matrix B is symmetric, the set of eigenvectors of B forms a orthogonal

basis for Rn. Thus, we can decompose V0 and any error vector into a linear combination of

those eigenvectors. In this case, the necessary and sufficient conditions for stability is that all

eigenvalues of B are less than one in magnitude.

However, if B is not symmetric, like in our case, then we do not know if the eigenvectors

form a basis and therefore it is hard to study the stability of the CN method using this tech-

nique. One could turn to the von Neumann method which only works for constant coefficient

equations and hence requires the change of variable x = log(S).

In order to show the stability of the operator B, we could study the boundedness of the

powers of B (see [11]). We say that B is

• strictly stable if ‖Bν‖ ≤ 1 ∀ν, n > 0,

• strongly stable if ‖Bν‖ ≤ C ∀ν, n > 0,

• algebraically stable if ‖Bν‖ ≤ Cnανβ, where C, α, β are constant independent of ν

and n. Here, n is the dimension of B. Algebraic stability is obviously a weaker condition

than either strict or strong stability. According to Lax Equivalence Theorem, strong stability

is a necessary and sufficient condition for convergence for all initial data. Algebraic stability

yields convergence only for certain initial data.

Under quite general conditions, it has been shown in [11] that the CN method is alge-

braically stable in the sense that it satisfies ‖Bν‖∞ ≤ Cn1/2. Here, α = 1/2 and β = 0. Since

both α, β are less than one, we have mild growth of errors in this case. In our case, since the

matrix I+ θ∆τ νM
ν is anM-matrix, it is straightforward to show, using maximum principles,

that ‖Vν+1‖∞ ≤ ‖Vν‖∞, and hence strict stability follows (see [38]).

Even though the CN method is unconditionally stable in the above sense, it is a non-

dissipative scheme, meaning that high-frequency oscillations may persist for many timesteps,

especially with non-smooth initial conditions. In our case, the initial condition is a hockey-

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 49

stick function with discontinuity in the first derivative at the strike and hence we would expect

that oscillations can be introduced in the solution. Even though these oscillations may be small

or even unnoticeable when we look at the option values, they could become magnified when

computing delta and gamma. Experimental results in Chapter 6 agree with these predictions.

Note that these oscillations are not the result of instability, since the oscillations do not grow

excessively. Stability only deals with the limit as the νmax and n tend to infinity. Let us in-

formally investigate a bit more on this issue to see why oscillations are possible with the CN

method.

First, we consider the θ-timestepping with θ = 1, i.e the implicit method. Substituting

θ = 1 into (3.20), we have

Vν+1
i + ∆τ ν(m

ν
i,i−1V

ν+1
i−1 + mν

i,iV
ν+1
i + mν

i,i+1V
ν+1
i+1) = Vν

i ,

or equivalently,

(1 + ∆τ νm
ν
i,i)V

ν+1
i = Vν

i −∆τ νm
ν
i,i−1V

ν+1
i−1 −∆τ νm

ν
i,i+1V

ν+1
i+1 . (5.4)

Notice that mν
i,i−1 and mν

i,i+1 are non-positive, and mν
i,i are positive. Taking into account

that ∆τ ν is positive, we have that −∆τ νm
ν
i,i−1 and −∆τ νm

ν
i,i+1 are non-negative. It is then

straightforward to prove that ‖V ν+1‖ ≤ ‖V ν‖. By the maximum principle, we can conclude

that the implicit method is unconditionally stable, that is, there is no restriction on the timestep

sizes. The details of the proof are straightforward and can readily be found in the literature.

However, what we want to investigate here is the spurious behaviors of the solution. Note that

from (5.4) we have,

Vν+1
i =

Vν
i −∆τ νm

ν
i,i−1V

ν+1
i−1 −∆τ νm

ν
i,i+1V

ν+1
i+1

1 + ∆τ νmν
i,i

≤
[1−∆τ ν(m

ν
i,i−1 + mν

i,i+1)

1 + ∆τ νmν
i,i

]
Vν,max

i ,

(5.5)

and

Vν+1
i ≥

[1−∆τ ν(m
ν
i,i−1 + mν

i,i+1)

1 + ∆τ νmν
i,i

]
Vν,min

i , (5.6)

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 50

with Vν,min
i = min{Vν+1

i−1 ,Vν
i ,V

ν+1
i+1 } and Vν,max

i = max{Vν+1
i−1 ,Vν

i ,V
ν+1
i+1 }. Note that the

quantity
1−∆τ ν(mν

i,i−1+mν
i,i+1)

1+∆τ νmν
i,i

is positive and less than 1 due to the fact that A is strictly diag-

onally dominant. Relations (5.5) and (5.6) indicate that values of Vν+1
i are bounded by the

maximum and minimum values of all neighboring nodes and hence spurious behaviors cannot

occur in the discrete solution.

Now, let us consider the CN method. Substituting θ = 1
2

into (3.20), we obtain

Vν+1
i +

∆τ ν

2
(mν

i,i−1V
ν+1
i−1 + mν

i,iV
ν+1
i + mν

i,i+1V
ν+1
i+1)

= Vν
i −

∆τ ν

2
(mν

i,i−1V
ν
i−1 + mν

i,iV
ν
i + mν

i,i+1V
ν
i+1),

or equivalently,

(1 +
∆τ ν

2
mν

i,i)V
ν+1
i = −∆τ ν

2
mν

i,i−1(V
ν
i−1 + Vν+1

i−1)− ∆τ ν

2
mν

i,i+1(V
ν
i+1 + Vν+1

i+1)

+ (1− ∆τ ν

2
mν

i,i)V
ν
i .

(5.7)

From (5.7), it is obvious that we cannot use the same arguments with the implicit method

to bound the minimum and maximum discrete values of Vν+1
i by those of neighboring nodes,

since the coefficient 1− ∆τ ν

2
mν

i,i can be negative unless the timestep size satisfies the condition

∆τ ν ≤ 2

mν
i,i

. (5.8)

From here, we can see why spurious oscillations may occur when the CN method is used if

condition (5.8) is not satisfied. If we impose condition (5.8), then oscillations are guaranteed

not to occur. Note that this is not a necessary condition but a sufficient one: this limitation

on timestep sizes is double the limitation on timestep sizes for the explicit method. However,

taking into account that mν
i,i ' O(1

h2), this limitation could be severe, especially in cases of an

option with very long maturity. In such a case, since we have to use very small timestep sizes,

the method takes many timesteps and hence very long computation time.

We would like to use the CN method as much as possible due to its second order of con-

vergence in time (O(∆τ ν)
2). In case of European and American options, the CN method can

cause difficulties such as lower order of convergence (lower than quadratic convergence as

CHAPTER 5. STABILITY AND CONVERGENCE ANALYSIS 51

theoretically expected) and highly oscillatory delta and gamma in the region near the strike.

In order to restore the order of convergence and suppress the oscillations, we appeal to the

Rannacher smoothing technique [28]: for the first two steps, we employ the implicit method

(θ = 1) and we switch to CN method for the remaining timesteps. In addition, we adopt an-

other smoothing technique suggested in [27], that is, we choose the grid so that there is always

a node at the strike E (the kink point) at each timestep. One consideration is that adaptive grids

may not have a node at the strike. In this case, noticing that the option values behave linearly in

the area towards the left boundary of the domain, we propose to move one point from this area

to line up with the strike price. Another way to handle the convergence and oscillation issues

is presented in [20] where the ratio between the timestep sizes and the spatial stepsize are kept

constant and small enough.

Note that the Rannacher smoothing and having a node at the strike do not guarantee to

preclude oscillation but we are certain to get second order of convergence (second order con-

vergence does not imply no oscillations). As we shall see later in Chapter 6, in practice these

methods work very well for European and American options.

Chapter 6

Numerical Results

In this chapter, we illustrate results from adaptive mesh methods for certain option pricing

problems. Our primary focus is adaptive mesh methods for American option pricing described

in Chapter 4. However, we start by providing numerical results of adaptive mesh methods ap-

plied to European option pricing problem to show the effectiveness of the methods on problems

without constraints. We then present experimental results of the adaptive techniques on pricing

of American put options.

For convenience, we denote a grid with n nodes and ν timesteps by “n × ν grid”. For

example, a “2560× 2560 grid” means a grid with 2560 spatial grid points and 2560 timesteps.

Notations used and the statistics collected in this chapter include:

“Nodes”: the number of spatial grid points.

“Timesteps”: the total number of timesteps in the time dimension.

“Value”: numerical value of the option at S = E unless otherwise stated.

“Change”: the difference in the numerical value from coarser grid.

“Ratio”: the ratio of the changes on successive grids.

“Adapt. #”: the number of times the adaptive techniques were invoked over all timesteps.

“Avg. ω”: the average value of (P)SOR relaxation factor ω over all timesteps.

“Min.” (“Max.”): the minimum (maximum) number of iterations required by an iterative

52

CHAPTER 6. NUMERICAL RESULTS 53

Table 6.1: Model parameters for European and American options

Parameter Value

Time to expiry T 0.25 (years)

Interest rate r 10% (0.1)

Exercise price E 100

Volatility σ 80% (0.8)

Tolerance ε 1.e− 07

method over all timesteps.

“Total” (“Avg.”): the total (average) number of iterations required by an iterative method

over all timesteps.

For purpose of comparison of the total number of iterations between two iterative methods,

Method-1 and Method-2, we define “Percentage Saved” to be

Method-1 Total−Method-2 Total
Method-1 Total

× 100%.

This quantity represents the percentage of iterations saved when Method-2 is used instead of

Method-1.

As we mentioned earlier, the infinite spatial domain [0,∞) must be truncated down to

[0,Smax] and the boundary condition at S = ∞ is replaced by the boundary condition at

S = Smax. Values for S = Smax must be chosen with care so that the effects of the truncation

is minimized. For example, in case of European options, it is suggested in [18] that, with the

exercise price E, Smax can be selected as

Smax ≥ E exp(
√

2σ2T | ln(tol)|),

where tol is user-defined tolerance. As discussed in [38], this choice of Smax is somewhat

pessimistic. An alternative suggested in [38] is

Smax ≥ E exp((r − σ2

2
)T + σµ

√
T .

CHAPTER 6. NUMERICAL RESULTS 54

With µ = 3, this alternative is a typical choice for European options while with µ of higher

value can be used for more complicated problems.

In our experiment, we choose

Smax = max
(
φE, E exp((r − σ2

2
)T + σµ

√
T)

)
, (6.1)

with φ = 5, µ = 3, and tol = 10−7. Note that the choice of φ = 5 has been used in [21] for a

similar American put option, whereas in [20], φ = 4 is used.

With model parameters given in Table 6.1, we have

Smax = max
(
φE, E exp((r − σ2

2
)T + σµ

√
T)

)

= max
(
500, 314

)
.

We choose Smax = 500 and with this choice the strike price E is one of the grid points if

uniform grids are used.

6.1 European Options

For European option pricing problems on one underlying stock and with constant interest rate

and volatility, analytical formulas for option values and corresponding deltas and gammas are

available (see [37]). We can compute their exact solutions and thus are able to compare the

errors of their numerical solutions, giving us an objective evaluation of different numerical

methods. Linear systems from European option pricing can be solved using standard LU-

factorization. In MATLAB, the backslash “\” operator is a very convenient tool to solve such

linear systems.

6.1.1 Delta and Gamma Valuations

For an option pricing problem, it is of practical importance to determine the delta and gamma

for hedging purposes. As we mentioned earlier, although the values of the options appear

CHAPTER 6. NUMERICAL RESULTS 55

smooth, spurious oscillations can be introduced in the delta and magnified in the gamma. In

this subsection, we first examine the effectiveness of the Rannacher smoothing technique as

a remedy to these problems for both uniform and adaptive mesh methods. We then study the

accuracy of the adaptive mesh methods on evaluating delta and gamma. Note that

delta =
∂V

∂S
, gamma =

∂2V

∂S2
,

and thus they can be numerically evaluated using the FD formulas (2.5) and (2.6).

Ranacher Smoothing Technique

As we noted earlier, the Rannacher smoothing technique guarantees the second order of con-

vergence of the numerical methods, not the preclusion of oscillations. However, as we shall

see later, in practice this smoothing technique works well. For illustrative purposes, we run

experiments with small number of timesteps to exaggerate oscillatory behaviors of delta and

gamma in the area around the strike.

The numerical results of the European put option value, delta, and gamma obtained by

uniform mesh methods are presented in Table 6.2. As expected, numerical results for the

option value with no smoothing exhibit only first order of convergence (ratio 2) as the grids are

refined. In addition, although numerical results of the option value are convergent, oscillations

are introduced into delta (note the first three numerical values of delta and their corresponding

orders of convergence). More seriously, the numerical values of gamma are divergent away

from the analytical value 0.00963579.

The reason for the poor convergence and erratic behaviors of non-smoothed runs can be

explained by examining the plots the option value, delta, and gamma as shown in the left side

of Figure 6.1. Although the option value appears smooth, spurious oscillations are present in

delta and magnified in gamma, which explains inaccurate numerical results for gamma. These

numerical experiments indicate that results with no smoothing could be erratic and unreliable.

CHAPTER 6. NUMERICAL RESULTS 56

Table 6.2: Experimental results for the European put option at S = 100 obtained by uniform

mesh methods. The analytical results of the option value, delta, and gamma are 14.45190585,

−0.39646799, and 0.00963579, respectively.

Time- No Rannacher Smoothing Rannacher Smoothing

Nodes steps Value Change Ratio Value Change Ratio

option value

80 4 13.99245349 14.19003389

160 8 14.22162842 0.22917492 14.38679335 0.19675946

320 16 14.33708514 0.11545673 2.0 14.43536312 0.04856977 4.1

640 32 14.39463936 0.05755422 2.0 14.44771420 0.01235108 3.9

1280 64 14.42331694 0.02867758 2.0 14.45084925 0.00313505 3.9

2560 128 14.43762354 0.01430660 2.0 14.45164050 0.00079125 4.0

delta

80 4 -0.39638078 -0.39870701

160 8 -0.39631553 0.00006525 -0.39701854 0.00168848

320 16 -0.39636014 -0.00004462 -1.5 -0.39660691 0.00041163 4.1

640 32 -0.39640556 -0.00004542 1.0 -0.39650305 0.00010385 4.0

1280 64 -0.39643457 -0.00002901 1.6 -0.39647681 0.00002624 4.0

2560 128 -0.39645072 -0.00001615 1.8 -0.39647020 0.00000661 4.0

gamma

80 4 0.04296038 0.01034088

160 8 0.07702208 0.03406169 0.00985280 -0.00048808

320 16 0.14475634 0.06773426 0.5 0.00971313 -0.00013967 3.5

640 32 0.28004460 0.13528825 0.5 0.00966665 -0.00004648 3.0

1280 64 0.55053557 0.27049097 0.5 0.00964924 -0.00001742 2.7

2560 128 1.09147600 0.54094043 0.5 0.00964201 -0.00000723 2.4

CHAPTER 6. NUMERICAL RESULTS 57

The same problem is run with the Rannacher smoothing and numerical results are presented in

Table 6.2. Plots of smoothed runs are shown on the right side of Figure 6.1. The oscillations in

delta and gamma have disappeared.

50 60 80 100 120 140 150
0

10

20

30

40

50

Asset Price

O
pt

io
n

V
al

ue

50 60 80 100 120 140 150
−1

−0.8

−0.6

−0.4

−0.2

0

Asset Price

O
pt

io
n

D
el

ta

50 60 80 100 120 140 150
−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

Asset Price

O
pt

io
n

G
am

m
a

(a) No Rannacher Smoothing

50 60 80 100 120 140 150
0

10

20

30

40

50

Asset Price

O
pt

io
n

V
al

ue

50 60 80 100 120 140 150
−1

−0.8

−0.6

−0.4

−0.2

0

Asset Price

O
pt

io
n

D
el

ta

50 60 80 100 120 140 150
2

4

6

8

10

12

14
x 10

−3

Asset Price

O
pt

io
n

G
am

m
a

(b) Rannacher Smoothing

Figure 6.1: European put valued numerically using Crank-Nicolson timestepping on a uniform

1280× 60 grid.

CHAPTER 6. NUMERICAL RESULTS 58

We now examine the Rannacher smoothing in the context of adaptive mesh techniques.

The numerical results are presented in Table 6.3. Non-smoothed runs yield numerical results

of extremely erratic behaviors and are very unreliable. The delta and gamma are consider-

ably worse than those obtained by uniform mesh methods without smoothing. For example,

numerical values of gamma explode as the grids are refined. However, with the Rannacher

smoothing, the adaptive mesh methods produce results of higher accuracy than those obtained

by uniform mesh methods with smoothing. The convergence rates are stable and there are no

signs of oscillations.

The plots of option value, delta, and gamma evaluated using adaptive mesh methods are

presented in Figure 6.2. These plots agree with what is observed from other numerical results.

For instance, when the Rannacher smoothing is not used, the plot of delta has a spike in the

area near the strike and this spike is seriously magnified in the plot of gamma, which explains

the erratic results of delta and gamma in Table 6.3. Note that in the plot of gamma, the vertical

axis scale is much coarser than that of other plots, in order to make the magnitude of the

oscillations in gamma more visible. With the Rannacher smoothing, the plots of delta and

gamma are oscillation-free which explains the improved results in Table 6.3.

Experiments with both uniform and adaptive mesh methods show the effectiveness of the

Rannacher smoothing. Note that, in Chapter 5, we discuss the effects of non-smooth payoff

on the accuracy of the numerical solutions. When we apply constant timesteps with the CN

method, there are two remedies suggested in [14]: (i) Rannacher smoothing, i.e. taking a

small number of fully implicit timesteps (we have used two in our experiments) after each non-

smooth initial state, then using CN timesteping thereafter; and (ii) if the initial condition is a

continuous piecewise linear function, such as the payoff for a European or American option,

we select the grid points so that the strike is one of the grid points. In all non-smoothed runs,

we put the strike at one of the grid points. If we employ (ii) without employing (i), the solutions

still exhibit linear convergence rate and delta and gamma are highly oscillatory (in Tables 6.2

and 6.3). However, using (i) eliminates all oscillations and restores quadratic convergence of

CHAPTER 6. NUMERICAL RESULTS 59

the solutions. These experimental results agree with those in [20]. We conclude that (ii) is not

as useful as (i) in dealing with oscillations.

CHAPTER 6. NUMERICAL RESULTS 60

Table 6.3: Experimental results for the European put option at S = 100 obtained by adaptive

mesh methods. The analytical results of the option value, delta, and gamma are 14.45190585,

−0.39646799, and 0.00963579, respectively.

Time- No Rannacher Smoothing Rannacher Smoothing

Nodes steps Value Change Ratio Value Change Ratio

option value

80 4 13.49720284 14.23600445

160 8 13.96202101 0.46481817 14.39753530 0.16153084

320 16 14.20464193 0.24262091 1.9 14.43810113 0.04056583 4.0

640 32 14.32774073 0.12309880 2.0 14.44841082 0.01030969 3.9

1280 64 14.38969623 0.06195550 2.0 14.45102565 0.00261483 3.9

2560 128 14.42077137 0.03107515 2.0 14.45168474 0.00065909 4.0

delta

80 4 -0.03699890 -0.39799018

160 16 -0.41784154 -0.38084264 -0.39688787 0.00110231

320 32 -0.26516071 0.15268083 -2.5 -0.39656957 0.00031829 3.5

640 64 -0.35618995 -0.09102925 -1.7 -0.39649289 0.00007669 4.2

1280 128 -0.52281268 -0.16662272 0.5 -0.39647391 0.00001898 4.0

2560 256 -0.67591263 -0.15309995 1.1 -0.39646967 0.00000424 4.5

gamma

80 4 3.53180179 0.01023244

160 16 14.92104252 11.38924074 0.00985197 -0.00048808

320 32 54.14855677 39.22751424 0.3 0.00969283 -0.00013967 2.4

640 64 195.51518416 141.36662740 0.3 0.00967086 -0.00004648 7.2

1280 128 636.78231621 441.26713204 0.3 0.00964722 -0.00001742 0.9

2560 256 2113.78720093 1477.00488472 0.3 0.00963991 -0.00000723 3.2

CHAPTER 6. NUMERICAL RESULTS 61

50 60 80 100 120 140 150
0

10

20

30

40

50

Asset Price

O
pt

io
n

V
al

ue

50 60 80 100 120 140 150
−1.6

−1.2

−0.8

−0.4

0

0.4

0.8

Asset Price

O
pt

io
n

D
el

ta

50 60 80 100 120 140 150
−200

0

200

400

600

800

Asset Price

O
pt

io
n

G
am

m
a

(a) No Rannacher Smoothing

50 60 80 100 120 140 150
0

10

20

30

40

50

Asset Price

O
pt

io
n

V
al

ue

50 60 80 100 120 140 150
−1

−0.8

−0.6

−0.4

−0.2

0

Asset Price

O
pt

io
n

D
el

ta

50 60 80 100 120 140 150
2

4

6

8

10

12

14
x 10

−3

Asset Price

O
pt

io
n

G
am

m
a

(b) Rannacher Smoothing

Figure 6.2: European put valued numerically using Crank-Nicolson timestepping with adap-

tive mesh methods on a 1280× 64 grid.

CHAPTER 6. NUMERICAL RESULTS 62

Adaptive Mesh Methods

We now examine the accuracy of the adaptive mesh methods in calculating the delta and

gamma. In Table 6.4, numerical results of European put delta and gamma are presented. In

these tests adaptive mesh methods seem to provide more accurate delta and gamma than those

given by uniform mesh methods. These more accurate results are obtained with small number

of adaptivity calls compared to the total number of timesteps.

CHAPTER 6. NUMERICAL RESULTS 63

Table 6.4: Experimental results for delta and gamma of the European put option at S = 100.

Rannacher smoothing is used. The analytical values of delta and gamma are −0.39646799 and

0.00963579, respectively.

Time Uniform Adaptive

Nodes steps Value Change Ratio Value Change Ratio Adapt. #

delta

20 80 -0.41153152 -0.40401549 5

40 160 -0.39973218 0.01179934 -0.39806386 0.00595163 6

80 320 -0.39726507 0.00246711 4.8 -0.39663459 0.00142927 4.2 10

160 640 -0.39666616 0.00059891 4.1 -0.39651054 0.00012405 11.5 15

320 1280 -0.39651747 0.00014870 4.0 -0.39647798 0.00003256 3.8 18

640 2560 -0.39648036 0.00003711 4.0 -0.39647045 0.00000753 4.3 22

1280 5120 -0.39647108 0.00000927 4.0 -0.39646857 0.00000188 4.0 33

gamma

20 80 0.01036238 0.00987314 5

40 160 0.00977775 -0.00058463 0.00966562 -0.00020752 6

80 320 0.00966991 -0.00010784 5.4 0.00963787 -0.00002774 7.5 10

160 640 0.00964424 -0.00002567 4.2 0.00963638 -0.00000149 18.6 15

320 1280 0.00963790 -0.00000634 4.0 0.00963590 -0.00000048 3.1 18

640 2560 0.00963632 -0.00000158 4.0 0.00963582 -0.00000008 6.1 22

1280 5120 0.00963592 -0.00000040 4.0 0.00963580 -0.00000002 4.0 33

CHAPTER 6. NUMERICAL RESULTS 64

6.1.2 Option Valuation

Since analytical solutions of European option problems are available, we can easily compare

the accuracy of the adaptive mesh methods with uniform mesh methods.

In Tables 6.5 and 6.6, numerical results of the European call and put are presented, re-

spectively. It is obvious that the adaptive mesh methods provide much more accurate results

with moderate additional cost. Let us take the 2560 × 2560 grid as an example. On this grid,

numerical results obtained by uniform mesh methods for both European call and put options

are only 5-digit accurate. However, with adaptive mesh techniques, we can obtain numerical

solutions of 8-digit and 9-digit accuracy for the call and put, respectively. This is significant

improvement in terms of accuracy. More importantly, these accurate results are obtained by

invoking the adaptive technique only a small number of times compared to the total number of

time steps: 20 and 23 times out of a total number of timesteps of 2560 for European call and

put, respectively.

In Table 6.7 we compare the relative errors between the adaptive mesh methods and uniform

mesh methods. Relative errors are defined as

Relative error =
|approximate value− true value|

|true value| × 100%.

These results again show that adaptive mesh techniques outperform uniform mesh methods in

terms of accuracy.

In Figure 6.3, the true errors of the European call and put are plotted versus the asset price

S. As we expected, the errors on the uniform grid are very large in the region around the strike

and small elsewhere. The errors of the adaptive mesh methods are much smaller in the region

around the strike price E and more well-distributed than those obtained by the uniform mesh

method. This is clearly what error equidistribution is intended to achieve.

CHAPTER 6. NUMERICAL RESULTS 65

Table 6.5: Experimental results for the European call option at S = 100. Rannacher smoothing

is used. The analytical value of the call is 16.92091465.

Time Uniform Adaptive

Nodes steps Value Change Ratio Value Change Ratio Adapt. #

40 40 16.73573950 16.86397895 3

80 80 16.87521977 0.13948027 16.91045931 0.04648037 4

160 160 16.90952630 0.03430653 4.1 16.91968136 0.00922205 5.0 7

320 320 16.91806973 0.00854342 4.0 16.92071007 0.00102871 9.0 8

640 640 16.92020355 0.00213383 4.0 16.92089772 0.00018765 5.5 11

1280 1280 16.92073688 0.00053333 4.0 16.92091285 0.00001514 12.4 14

2560 2560 16.92087021 0.00013333 4.0 16.92091453 0.00000168 9.0 20

Table 6.6: Experimental results for the European put option at S = 100. Rannacher smoothing

is used. The analytical value of the put is 14.45190585.

Time Uniform Adaptive

Nodes steps Value Change Ratio Value Change Ratio Adapt. #

40 40 14.26674966 14.41562094 4

80 80 14.40621571 0.13946605 14.44733426 0.03171333 5

160 160 14.44051869 0.03430298 4.1 14.45093759 0.00360332 8.8 6

320 320 14.44906122 0.00854253 4.0 14.45180252 0.00086494 4.2 9

640 640 14.45119483 0.00213360 4.0 14.45189405 0.00009153 9.5 13

1280 1280 14.45172811 0.00053328 4.0 14.45190439 0.00001034 8.9 19

2560 2560 14.45186142 0.00013331 4.0 14.45190584 0.00000145 7.2 23

CHAPTER 6. NUMERICAL RESULTS 66

Table 6.7: Errors of uniform and adaptive mesh methods applied to the European call option.

The analytical value of the call is 16.92091465. Approximate values are from Table 6.5.

Time Uniform Adaptive

Nodes steps Value Absolute Relative Value Absolute Relative

Error Error Error Error

40 40 16.73573950 0.18517515 1.0944% 16.86397895 0.05693570 0.3365%

80 80 16.87521977 0.04569488 0.2700% 16.91045931 0.01045534 0.0618%

160 160 16.90952630 0.01138835 0.0673% 16.91968136 0.00123329 0.0073%

320 320 16.91806973 0.00284492 0.0168% 16.92071007 0.00020458 0.0012%

640 640 16.92020355 0.00071110 0.0042% 16.92089772 0.00001693 0.0001%

1280 1280 16.92073688 0.00017777 0.0011% 16.92091285 0.00000180 0.0000%

2560 2560 16.92087021 0.00004444 0.0003% 16.92091453 0.00000012 0.0000%

Table 6.8: Errors of uniform and adaptive mesh methods applied to the European put option.

The analytical value of the put is 14.45190585. Approximate values are from Table 6.6.

Time Uniform Adaptive

Nodes steps Value Absolute Relative Value Absolute Relative

Error Error Error Error

40 40 14.26674966 0.18515619 1.2812% 14.41562094 0.03628491 0.2511%

80 80 14.40621571 0.04569014 0.3162% 14.44733426 0.00457159 0.0316%

160 160 14.44051869 0.01138716 0.0788% 14.45093759 0.00096826 0.0067%

320 320 14.44906122 0.00284463 0.0197% 14.45180252 0.00010333 0.0007%

640 640 14.45119483 0.00071102 0.0049% 14.45189405 0.00001180 0.0001%

1280 1280 14.45172811 0.00017774 0.0012% 14.45190439 0.00000146 0.0000%

2560 2560 14.45186142 0.00004443 0.0003% 14.45190584 0.00000001 0.0000%

CHAPTER 6. NUMERICAL RESULTS 67

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

E
rr

or

Asset Price

uniform

adaptive FD

(a) European call

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

Asset Price

E
rr

or

unifrom

adaptive FD

(b) European put

Figure 6.3: Observed error distribution of the European options on a 320× 320 grid.

6.1.3 Initial Guesses and the SOR method

For European option pricing, the matrix problem at each timestep can be solved using a direct

method (LU factorization, for instance). However, we would like to study the effects of the

initial guess on the convergence rate of iterative methods in the context of non-constrained

matrix problems such as those associated with European option pricing. In particular, we

would like to study the convergence of the SOR method using two different initial guesses at

each timesteps. As we mentioned earlier, for the iterative numerical solution at timestep ν + 1,

there are two initial guesses whose effects on convergence rate we would like to examine. The

first initial guess is the numerical solution at the previous timestep,

Vν+1,(0) = Vν ,

as mentioned in (3.31) on page 25. The other one is based on the extrapolation of numerical

solutions of the two previous timesteps,

Vν+1,(0) =
(∆τ ν + ∆τ ν−1)

∆τ ν−1

Vν − ∆τ ν

∆τ ν−1

Vν−1,

CHAPTER 6. NUMERICAL RESULTS 68

as mentioned in (3.32), or equivalently

Vν+1,(0) = 2Vν −Vν−1

with constant timesteps. The two corresponding SOR methods are referred to as SOR-1 and

SOR-2, respectively. As mentioned earlier, we adopt a technique given in [37] to dynamically

determine the relaxation factor ω at each time step.

CHAPTER 6. NUMERICAL RESULTS 69

Table 6.9: Experimental results for the European call option at S = 100 obtained on uniform

grids using SOR-1. The analytical value of the call is 16.92091465.

Time Avg. No. Iters

Nodes steps Value Change Ratio ω Min. Max. Total Avg.

20 80 16.13223086 1.02 7 11 572 7.17

40 160 16.73676514 0.60453428 1.01 9 12 1445 9.03

80 320 16.87547343 0.13870829 4.4 1.10 11 13 3684 11.51

160 640 16.90958974 0.03411632 4.1 1.20 14 19 9290 14.52

320 1280 16.91808561 0.00849587 4.0 1.32 19 30 24990 19.52

640 2560 16.92020753 0.00212192 4.0 1.45 24 48 63454 24.79

1280 5120 16.92073788 0.00053035 4.0 1.55 31 77 162781 31.79

Table 6.10: Experimental results for the European call option at S = 100 obtained on uniform

grids using SOR-2. The analytical value of the call is 16.92091465.

Time Avg. No. Iters

Nodes steps Value Change Ratio ω Min. Max. Total Avg.

20 80 16.13223086 1.02 4 9 345 4.31

40 160 16.73676514 0.60453428 1.01 4 9 668 4.17

80 320 16.87547339 0.13870826 4.4 1.01 4 13 1320 4.13

160 640 16.90958953 0.03411614 4.1 1.01 4 19 2625 4.11

320 1280 16.91808489 0.00849536 4.0 1.01 3 30 5312 4.15

640 2560 16.92020885 0.00212396 4.0 1.13 2 48 9449 3.69

1280 5120 16.92073798 0.00052912 4.0 1.15 2 77 23987 4.68

CHAPTER 6. NUMERICAL RESULTS 70

The numerical results of the European call option obtained by SOR-1 and SOR-2 are pre-

sented in Tables 6.9 and 6.10, respectively. The numerical values of the call price from these

two tables are almost identical and exhibit quadratic convergence to the analytical solution

16.92091465 as we expected. The average numbers of iterations per timesteps in Table 6.9

indicate that the convergence rate of SOR-1 deteriorates seriously as grids are refined. For in-

stance, the average number of iterations increase by more than 300% as grids are refined from

20 × 80 to 1280 × 5120. However, it is interesting to notice that the SOR-2 method requires

substantially smaller number of iterations than SOR-1 does and the convergence rate of SOR-2

remains almost the same as grids are refined. Comparisons in Table 6.11 indicate that SOR-2

is significantly more efficient than SOR-1, especially on finer grids.

From these results, we would expect that at each timestep the maximum in absolute value

of initial residual (residual of an initial guess) of SOR-1 to be higher than those of SOR-

2 (hence SOR-1 requires less iterations to converge). In addition, for an IVP solved by an

iterative method like this case, we would normally expect that the (maximum) initial residuals

will decrease as time evolves. Plots of the maximum initial residual at each timestep v.s.

the timestep index of the two methods in semilogy scale are presented in Figure 6.4. These

plots agree with our expectations. For each timestep, the maximum in absolute value of the

initial residual of SOR-2 is smaller than that of SOR-1 and it shows decreasing trend with

the increase of the timestep index. For SOR-1, the initial residual decreases at the beginning,

which is expected, but once it hits a plateau, the initial residual does not decrease considerably

as the initial residual of SOR-2 does.

With these numerical results, we would also expect the same behaviors from PSOR and

the penalty methods used for American option pricing. In the subsequent sections, we would

also like to present numerical results on the effects of these two initial guesses on the conver-

gence rate of iterative methods for American option pricing using uniform and adaptive mesh

methods.

CHAPTER 6. NUMERICAL RESULTS 71

Table 6.11: Iteration comparison between SOR-1 and SOR-2 on uniform grids for the European

call. Numerical results and statistics are from Tables 6.9 and 6.10.

Time SOR-1 SOR-2 Percentage

Nodes steps Value Total Value Total Saved

20 80 16.13223086 572 16.13223086 345 40%

40 160 16.73676514 1445 16.73676514 668 54%

80 320 16.87547343 3684 16.87547339 1320 64%

160 640 16.90958974 9290 16.90958953 2625 71%

320 1280 16.91808561 24990 16.91808489 5312 79%

640 2560 16.92020753 63454 16.92020885 9449 85%

1280 5120 16.92073788 162781 16.92073798 23987 86%

0 200 400 600 800 1000 1200 1400
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Timestep Index

M
ax

. I
ni

tia
l R

es
id

ua
l

SOR−1
SOR−2

Figure 6.4: Maximum residuals of initial guess for SOR methods on the uniform 320 × 1280

grid.

CHAPTER 6. NUMERICAL RESULTS 72

6.2 American Options

Both PSOR and the penalty methods can be used to handle the free boundary problem from

American option pricing.

In this section, we first present selected numerical results for American put option pricing

using uniform mesh methods and later results obtained by adaptive mesh methods. We employ

PSOR and the penalty methods to solve the associated constrained matrix problem. We then

study and compare the efficiency of corresponding methods. Finally, we examine and compare

the accuracy of the adaptive mesh methods in locating the free boundary point.

6.2.1 Uniform Mesh Methods Results

The purpose of this project is to study the accuracy and effectiveness of adaptive mesh methods

in American option pricing. However, as we mentioned earlier, one issue we also want to

investigate is the effects of initial guesses on the convergence rate of iterative methods. We

have investigated this issue in the context of IVPs with non-constrained matrix problems at

each timestep. The purpose of this section is to experimentally examine this issue in the context

of constrained matrix problems using uniform mesh methods.

PSOR Method

It has been reported in the literature that the convergence of the PSOR method deteriorates

greatly as the grids are refined. As we mentioned earlier, the convergence rate of PSOR de-

pends strongly on the choice of relaxation parameter ω and the initial guess at each timestep.

Experiments with European options indicate that the quality of the initial guess plays a role

in the rate of convergence of an iterative method. In particular, SOR with initial guess (3.32)

based on extrapolation

Vν+1,(0) =
(∆τ ν + ∆τ ν−1)

∆τ ν−1

Vν − ∆τ ν

∆τ ν−1

Vν−1,

CHAPTER 6. NUMERICAL RESULTS 73

or equivalently

Vν+1,(0) = 2Vν −Vν−1

with constant timesteps, can greatly help reduce the deterioration as grids are refined and is

considerably more efficient than SOR with initial guess (3.31)

Vν+1,(0) = Vν .

It is our expectation that PSOR applied to American options will behave similarly with these

two initial guesses. PSOR with initial guesses (3.31) and (3.32) are hereafter referred to as

PSOR-1 and PSOR-2, respectively. As in European option pricing, we follow the technique

presented in [37] to dynamically determine ω at each time step.

In Tables 6.12 and 6.13, numerical results for the American put option obtained on uniform

grids using PSOR-1 and PSOR-2 are presented, respectively. In both tables, we observe that

the numerical results exhibit quadratic convergence as expected. Our numerical values show

strong agreement with numerical solution 14.67882 from [14]. In addition, numerical results

in both tables are almost identical, with differences from the 7th digit. These results indicate

that both PSOR-1 and PSOR-2 converge to the same numerical solution.

Now we examine numerical results from Tables 6.12 and 6.13 more closely. The number

of iterations required for convergence behaves similarly as in European case. For a particular

grid, PSOR-2 requires considerably smaller total number of iterations than PSOR-1 does as

we expected. The deterioration of the convergence rate of the PSOR-1 method increases as

the grids are refined. For instance, the average number of iterations per timestep increases by

about nearly 100% as the grids are refined from 20 × 80 to 1280 × 5120 (from 4.86 to 8.39).

These deteriorating results agree with our expectations and with numerical results from [20]

and [21]. On the contrary, numerical results from Table 6.13 indicate that the average number

of iterations per timestep required by PSOR-2 does not increase as grids are refined. Thus, for

American option pricing with uniform mesh methods, an initial guess based on extrapolation

formula (3.32) helps reduce the deterioration of the convergence rate significantly.

CHAPTER 6. NUMERICAL RESULTS 74

Table 6.12: Experimental results for the American put option at S = 100 obtained with uni-

form mesh methods and constant timesteps using PSOR-1. Reference numerical solution

from [14] is 14.67882.

Time Avg. No. Iters

Nodes steps Value Change Ratio ω Min. Max. Total Avg.

20 80 13.83869378 1.02 4 11 389 4.86

40 160 14.47322178 0.63452800 1.02 4 11 793 4.96

80 320 14.62625295 0.15303118 4.1 1.04 4 11 1784 5.58

160 640 14.66532254 0.03906958 3.9 1.07 6 11 4152 6.49

320 1280 14.67541079 0.01008825 3.9 1.17 4 11 8878 6.94

640 2560 14.67799031 0.00257952 3.9 1.29 5 12 19454 7.60

1280 5120 14.67864721 0.00065690 3.9 1.42 5 18 42980 8.39

Table 6.13: Experimental results for the American put option at S = 100 obtained with uni-

form mesh methods and constant timesteps using using PSOR-2. Reference numerical solu-

tion from [14] is 14.67882.

Time Avg. No. Iters

Nodes steps Value Change Ratio ω Min. Max. Total Avg.

20 80 13.83869377 1.02 4 9 341 4.26

40 160 14.47322179 0.63452801 1.01 4 9 663 4.16

80 320 14.62625312 0.15303133 4.1 1.01 4 10 1312 4.10

160 640 14.66532258 0.03906947 3.9 1.01 4 10 2613 4.08

320 1280 14.67541039 0.01008781 3.9 1.01 4 11 5312 4.15

640 2560 14.67799450 0.00258411 3.9 1.04 3 12 8919 3.48

1280 5120 14.67865142 0.00065692 3.9 1.18 2 18 21463 4.19

CHAPTER 6. NUMERICAL RESULTS 75

Table 6.14: Iteration comparison between PSOR-1 and PSOR-2 for uniform mesh methods

and constant timesteps. Numerical results and statistics are from Tables 6.12 and 6.13.

Time PSOR-1 PSOR-2 Percentage

Nodes steps Value Total Value Total Saved

20 80 13.83869378 389 13.83869377 341 12%

40 160 14.47322178 793 14.47322179 663 16%

80 320 14.62625295 1784 14.62625312 1312 26%

160 640 14.66532254 4152 14.66532258 2613 37%

320 1280 14.67541079 8878 14.67541039 5312 40%

640 2560 14.67799031 19454 14.67799450 8919 54%

1280 5120 14.67864721 42980 14.67865142 21463 50%

For comparison purposes, the total numbers of iterations required by PSOR-1 and PSOR-

2 are listed in Table 6.14. We can see that as the timestep and mesh size are reduced, the

percentage saved increases, making PSOR-2 more efficient than PSOR-1 on finer grids.

Since PSOR-2 requires a smaller number of iterations, we would expect that its maximum

(in absolute value) initial residuals at each timestep to be smaller than that of PSOR-1. This

behavior has been experimentally confirmed in the previous section on SOR applied to Euro-

pean option pricing problems. We compute the maximum initial residual at each timestep as

follows. For an initial guess, we can roughly estimate the free boundary. As discusses earlier

in Chapter 3 on page 15, the free boundary separates the domain into two regions, namely the

continuation region and the stopping region. In each region, it is straight forward to estimate

the maximum initial residual. The maximum initial residual over the whole domain can be

approximated by the larger of the two maximum initial residuals. The plots of the maximum

initial residuals of PSOR-1 and PSOR-2 versus timestep indices on a semilogy scale are pre-

sented in Figure 6.5 and the plots agree with our expectations. We can see that PSOR-2 has a

CHAPTER 6. NUMERICAL RESULTS 76

0 200 400 600 800 1000 1200 1400
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Timestep Index

M
ax

. I
ni

tia
l R

es
id

ua
l

PSOR−1
PSOR−2

Figure 6.5: Maximum residuals of initial guess for PSOR methods on the uniform 320× 1280

grid.

smaller initial residual at each timestep than PSOR-1. We can conclude that the initial guess

based on extrapolation (3.32) can help to reduce significantly the convergence deterioration of

PSOR as grids are refined. In the next section, we present numerical results obtained by adap-

tive mesh methods using the PSOR method. For efficiency reasons, we use PSOR-2 to solve

the associated constrained matrix problems at each timestep in the adaptive mesh methods.

Penalty Method

In Tables 6.15 and 6.16, numerical results with the penalty method on uniform grids are pre-

sented. The penalty methods with initial guess (3.31) (previous timestep solution) and (3.32)

(based on extrapolation) are referred to as PENALTY-1 and PENALTY-2, respectively. Our

numerical values strongly agree with the numerical solution from [14] and with those obtained

by PSOR presented in the previous section. We observe that the total number of iterations re-

CHAPTER 6. NUMERICAL RESULTS 77

quired by PENALTY-2 are smaller than those required by PENALTY-1, which is similar to the

relation between the number of iterations required by (P)SOR-2 and (P)SOR-1. As we noted

earlier, the penalty method converges in about one or two iterations, which is significantly faster

than (P)SOR. Due to this fast convergence, the observed differences (or percentage saved) in

number of iterations required for convergence between PENALTY-1 and PENALTY-2 is not as

significant as those between (P)SOR-1 and (P)SOR-2.

CHAPTER 6. NUMERICAL RESULTS 78

Table 6.15: Experimental results for the American put option at S = 100 obtained with uni-

form mesh methods with constant timesteps using PENALTY-1. Reference numerical solu-

tion from [14] is 14.67882.

Time No. Iters

Nodes steps Value Change Ratio Min. Max. Total Avg.

20 80 13.83869377 1 2 82 1.02

40 160 14.47322179 0.63452802 1 2 164 1.02

80 320 14.62625315 0.15303136 4.1 1 2 327 1.02

160 640 14.66532280 0.03906965 3.9 1 2 655 1.02

320 1280 14.67541115 0.01008834 3.9 1 2 1309 1.02

640 2560 14.67799017 0.00257902 3.9 1 2 2618 1.02

1280 5120 14.67864926 0.00065909 3.9 1 2 5238 1.02

Table 6.16: Experimental results for the American put option at S = 100 obtained with uni-

form mesh methods with constant timesteps using PENALTY-2. Reference numerical solu-

tion from [14] is 14.67882.

Time No. Iters

Nodes steps Value Change Ratio Min. Max. Total Avg.

20 80 13.83869377 1 2 81 1.01

40 160 14.47322179 0.63452802 1 2 162 1.01

80 320 14.62625315 0.15303136 4.1 1 2 321 1.00

160 640 14.66532280 0.03906965 3.9 1 2 642 1.00

320 1280 14.67541115 0.01008834 3.9 1 2 1283 1.00

640 2560 14.67799017 0.00257902 3.9 1 2 2565 1.00

1280 5120 14.67864926 0.00065909 3.9 1 2 5130 1.00

CHAPTER 6. NUMERICAL RESULTS 79

6.2.2 Adaptive Mesh Methods Results

We present selected numerical results for American put option pricing obtained by adaptive

mesh methods. The adaptive mesh algorithm in use is Algorithm 4 on page 37. Similar to

the uniform mesh methods, the constrained matrix problem at each timestep is solved using

(P)SOR or the penalty method. In this section, we present experimental results by the iterative

method PENALTY-1, PENALTY-2, or PSOR-2, which are defined as previously.

Note that so far we have been comparing our numerical solutions to the solution 14.67882

from [14]. It is worth noting that this result was obtained using a fixed non-uniform grid with

1073 nodes and 554 variable timesteps. This means that the spatial grid is non-uniform and is

the same at all timesteps and the timesteps are not uniform. The domain used in [14] is [0, 1000]

and the authors use small uniform spatial stepsizes (a total of 865 nodes out of 1073 nodes) in

the region [0, 200] which includes the strike price and the free boundary and larger spatial

stepsizes in the remaining region which is not of significant financial interest. We would like

to emphasize that this is not a purely uniform mesh method. With adaptive mesh techniques,

we would expect much more accurate results than this so we need a better reference. We use

extrapolation on the results provided in [14], assuming quadratic convergence, as the methods

are supposed to achieve. With an accuracy requirement of 10−6, our new reference solution is

14.678886. We refer to it as the “true” value.

PSOR Method (PSOR-2)

Numerical results are presented in Table 6.17. In this case, the convergence rate for PSOR

deteriorates even more dramatically on finer grids than it does with uniform mesh methods.

For comparison purposes, we repeat selected numerical results for PSOR-2 with uniform and

adaptive mesh methods in Table 6.18. It is clear from these experimental results that adaptive

mesh methods with PSOR-2 are more efficient than uniform mesh methods with PSOR-2. For

instance, let us consider an accuracy requirement of 10−2 as an example. With adaptive mesh

methods, it takes 4973 iterations on a 80 × 320 grid to get 14.67549376, whereas the uniform

CHAPTER 6. NUMERICAL RESULTS 80

mesh methods take 5312 iterations on a larger grid of size 320 × 1280 to get 14.67541039,

which is less accurate. The efficiency of the adaptive mesh methods is clear.

CHAPTER 6. NUMERICAL RESULTS 81

Table 6.17: Experimental results for the American put option at S = 100 obtained with adap-

tive mesh methods using PSOR-2. The “true” value 14.678886 was generated with accuracy

10−6 based on the results in [14] and extrapolation.

Time Avg. No. Iters Adap.

Nodes steps Value Change Ratio ω Min. Max. Total Avg. #

20 80 14.58152345 1.04 4 124 824 10.30 9

40 160 14.66359198 0.08206853 1.14 4 125 1763 11.02 13

80 320 14.67549376 0.01190178 6.9 1.24 5 526 4973 15.54 13

160 640 14.67835422 0.00286046 4.2 1.41 6 1629 13718 21.43 16

320 1280 14.67877355 0.00041933 6.8 1.46 7 6439 34167 26.69 19

640 2560 14.67887154 0.00009798 4.3 1.53 8 21673 92444 36.11 31

Table 6.18: Comparison of numerical results for the American put option between uniform

mesh methods and adaptive mesh methods using PSOR-2 with constant timesteps. Nu-

merical results and statistics are from Tables 6.13 and 6.17. The “true” value 14.678886 was

generated with accuracy 10−6 based on the results in [14] and extrapolation.

Time Uniform Adaptive

Nodes steps Value Total Value Total Adapt. #

20 80 13.83869377 341 14.58152345 824 9

40 160 14.47322179 663 14.66359198 1763 13

80 320 14.62625312 1312 14.67549376 4973 13

160 640 14.66532258 2613 14.67835422 13718 16

320 1280 14.67541039 5312 14.67877355 34167 19

640 2560 14.67799450 8919 14.67887154 92444 31

CHAPTER 6. NUMERICAL RESULTS 82

Penalty Method

Numerical results are presented in Tables 6.19 and 6.20. First, we compare the results between

PENALTY-1 and PENALTY-2 in the context of adaptive mesh techniques. Again, the behav-

iors are expected, as between (P)SOR-1 and (P)SOR-2. PENALTY-1 and PENALTY-2 are

almost identical except PENALTY-1 requires more iterations to converge than PENALTY-2.

These experiments again confirm that the initial guess (3.32) can help to reduce the number of

iterations needed for convergence without affecting numerical values.

CHAPTER 6. NUMERICAL RESULTS 83

Table 6.19: Experimental results for the American put option at S = 100 obtained with adap-

tive mesh methods and constant timesteps using PENALTY-1. The “true” value 14.678886

was generated with accuracy 10−6 based on the results in [14] and extrapolation.

Time No. Iters Adap.

Nodes steps Value Change Ratio Min. Max. Total Avg. #

20 80 14.58126790 1 3 101 1.26 9

40 160 14.66379516 0.08252726 1 4 197 1.23 12

80 320 14.67562816 0.01183300 7.0 1 6 371 1.16 13

160 640 14.67837088 0.00274273 4.3 1 9 735 1.15 14

320 1280 14.67876877 0.00039789 6.9 1 12 1509 1.18 21

640 2560 14.67884555 0.00007678 5.2 1 18 3065 1.20 40

1280 5120 14.67886475 0.00001920 4.0 1 23 6468 1.26 75

Table 6.20: Experimental results for the American put option at S = 100 obtained with adap-

tive mesh methods and constant timesteps using PENALTY-2. The “true” value 14.678886

was generated with accuracy 10−6 based on the results in [14] and extrapolation.

Time No. Iters Adap.

Nodes steps Value Change Ratio Min. Max. Total Avg. #

20 80 14.58126790 1 3 101 1.26 9

40 160 14.66379516 0.08252726 1 4 192 1.20 12

80 320 14.67562816 0.01183300 7.0 1 6 356 1.11 13

160 640 14.67837088 0.00274273 4.3 1 9 695 1.09 14

320 1280 14.67876877 0.00039789 6.9 1 12 1398 1.09 21

640 2560 14.67884555 0.00007678 5.2 1 18 2818 1.10 40

1280 5120 14.67886475 0.00001920 4.0 1 23 5849 1.14 75

CHAPTER 6. NUMERICAL RESULTS 84

Table 6.21: Comparison of numerical results for the American put option between uniform

mesh methods and adaptive mesh methods using PENALTY-2 with constant timesteps.

Numerical results and statistics are from Tables 6.16 and 6.20 . The “true” value 14.678886

was generated with accuracy 10−6 based on the results in [14] and extrapolation.

Time Uniform Adaptive

Nodes steps Value “true” - Value Total Value “true” - Value Total Adapt. #

20 80 13.83869377 8.4019e-001 81 14.58126790 9.7618e-002 101 9

40 160 14.47322179 2.0566e-001 162 14.66379516 1.5091e-002 192 12

80 320 14.62625315 5.2633e-002 321 14.67562816 3.2578e-003 356 13

160 640 14.66532280 1.3563e-002 642 14.67837088 5.1512e-004 695 14

320 1280 14.67541115 3.4748e-003 1283 14.67876877 1.1723e-004 1398 21

640 2560 14.67799017 8.9583e-004 2565 14.67884555 4.0450e-005 2818 40

1280 5120 14.67864926 2.3674e-004 5130 14.67886475 2.1250e-005 5849 75

Next, we compare the results between uniform mesh methods and adaptive mesh methods.

For comparison purposes, in Table 6.21 we repeat selected numerical results of uniform mesh

methods and adaptive mesh methods using the penalty method PENALTY-2. We can see that

the adaptive mesh methods can produce more accurate results than the uniform mesh method

by invoking the adaptive algorithm only a small number of times. Although for a specific

grid size, the adaptive mesh methods require more iterations, they are still significantly more

efficient than the uniform mesh methods since they produce much more accurate values. For

instance, if we need a 10−3 accuracy (we are interested in the value 14.678), the uniform mesh

methods can produce the solution 14.67799017 on a 640 × 2560 grid with 2565 iterations;

however, the adaptive mesh method can produce the numerical solution 14.67837088 with a

total of only 695 iterations on a much smaller grid of size 160 × 640. This is a significant

CHAPTER 6. NUMERICAL RESULTS 85

improvement in efficiency and accuracy.

CHAPTER 6. NUMERICAL RESULTS 86

Timestep Selector

We would like to test the application of a simple timestep selector suggested in [14]. The

timestep selector proves to work very well on both uniform grids (see [20], and [21]) and non-

uniform grids (see [14]). We would like to examine whether it works well in the context of

adaptive mesh methods.

This method uses only information from the current timestep to predict a suitable timestep

adjustment for the next timestep. It employs a relative change criterion. Specifically, given an

initial timstep ∆τ ν+1, then the new timestep is selected so that

∆τν+2 =

(
min

i

[
dnorm

|V (Si,τ ν+∆τ ν+1)−V (Si,τ ν)|
max(D,|V (Si,τ ν+∆τ ν+1)|,|V (Si,τ ν)|)

)]
∆τ ν+1, (6.2)

where dnorm is a target change (during the timestep) specified by user. The scalar D is chosen

so that the method does not take an excessively large timestep in the area where the value of

the option is small. Normally, for options in dollars, D = 1 is used. In practice, the true values

V (Si, τ ν + ∆τ ν+1) and V (Si, τ ν) in (6.2) are replaced by approximate values V(Si, τ ν +

∆τ ν+1) and V(Si, τ ν), respectively. We choose ∆τ 0 for the coarsest grid, and then ∆τ 0 is

divided by 4 at each grid refinement. There is no problem with ∆τ 0 being too conservative

since the subsequent timesteps will allow the timestep size to increase very rapidly. The value

of dnorm is reduced by two at each grid refinement. In the following runs, we use values of

∆τ 0 = 10−3 and dnorm = 0.25 on the coarsest grid. More analysis regarding this timestep

selector can be found in [14].

Numerical results of adaptive mesh methods with variable timesteps are presented in Table

6.22. The effectiveness of the timestep selector is obvious in that the total number of iterations

is reduced (because of the smaller number of timesteps) and the numerical option values is

more accurate. For comparison purposes, in Table 6.23, we repeat selected numerical results

of PENALTY-2 with constant timesteps and variable timesteps.

CHAPTER 6. NUMERICAL RESULTS 87

Table 6.22: Experimental results for the American put option at S = 100 obtained with adap-

tive mesh methods and variable timesteps using PENALTY-2. The “true” value 14.678886

was generated with accuracy 10−6 based on the results in [14] and extrapolation.

Time No. Iters Adap.

Nodes steps Value Change Ratio Min. Max. Total Avg. #

20 33 14.60795215 1 2 60 1.82 11

40 69 14.66648980 0.05853765 1 3 100 1.45 16

80 137 14.67694906 0.01045927 5.6 1 3 178 1.30 21

160 275 14.67867207 0.00172300 6.1 1 3 337 1.23 24

320 550 14.67885648 0.00018442 9.3 1 4 676 1.23 39

640 1100 14.67888023 0.00002375 7.8 1 9 1399 1.27 61

1280 2198 14.67888300 0.00000277 8.6 1 18 2982 1.36 115

Table 6.23: Comparison between adaptive mesh methods using PENALTY-2 with constant

and with variable timesteps. Numerical results and statistics are from Tables 6.20 and 6.22.

The “true” value 14.678886 was generated with accuracy 10−6 based on the results in [14] and

extrapolation.

Constant Timesteps Variable Timesteps

Time “true” - Time “true” -

Nodes steps Value Value Total steps Value Value Total

20 80 14.58126790 9.7618e-002 101 33 14.60795215 7.0934e-002 60

40 160 14.66379516 1.5091e-002 192 69 14.66648980 1.2396e-002 100

80 320 14.67562816 3.2578e-003 356 137 14.67694906 1.9369e-003 178

160 640 14.67837088 5.1512e-004 695 275 14.67867207 2.1393e-004 337

320 1280 14.67876877 1.1723e-004 1398 550 14.67885648 2.9520e-005 676

640 2560 14.67884555 4.0450e-005 2818 1100 14.67888023 5.7700e-006 1399

1280 5120 14.67886475 2.1250e-005 5849 2198 14.67888300 3.0000e-006 2982

CHAPTER 6. NUMERICAL RESULTS 88

Grid Distribution

In Figure 6.6, mesh point distributions are presented for a 160 × 640 grid. We observe that

the mesh points are distributed in a significantly non-uniform manner, and they follow the

movements of the free boundary quite well. As we expected, points are concentrated in the

region around the strike. In addition, there is another important region which is the one around

the free boundary point. As mentioned in Section 3.1, the free boundary values are functions

of time and hence move. At the first timestep (ν = 1), the free boundary is very close to the

strike and hence we observe that all the points are clustered into this region. As time evolves,

the free boundary moves away (towards the left boundary) from the strike. Hence we observe

that grid points fan out and points are clustered towards that direction. At the same time, the

adaptive mesh methods still keep many points around the strike. At the end, we can see that

mesh points are separated into two main regions: the region around the strike and the one

around the free boundary. Capturing the movements of the free boundary location is essential

for accurate option value approximation. More examples concerning the free boundary points

are given in Section 6.2.4.

CHAPTER 6. NUMERICAL RESULTS 89

E

∣∣∣ ν = 0, τ ν = 0

ν = 2, τ ν = 0.00078125

ν = 3, τ ν = 0.001171875

ν = 4, τ ν = 0.0015625

ν = 9, τ ν = 0.003515625

ν = 11, τ ν = 0.004296875

ν = 12, τ ν = 0.0046875

ν = 15, τ ν = 0.005859375

ν = 28, τ ν = 0.0109375

ν = 30, τ ν = 0.01171875

ν = 57, τ ν = 0.022265625

ν = 61, τ ν = 0.023828125

ν = 111, τ ν = 0.043359375

ν = 114, τ ν = 0.04453125

ν = 215, τ ν = 0.083984375

ν = 414, τ ν = 0.16171875

Figure 6.6: The locations of mesh points used by adaptive mesh methods for the American put

on a 160× 640 grid.

CHAPTER 6. NUMERICAL RESULTS 90

6.2.3 Efficiency Comparison

In this section, we would like to graphically compare the efficiency of selected methods for

valuing American put options. In particular, we compare PSOR-2 and PENALTY-2 used on

uniform and adaptive grids with each other. It is clear from the numerical experiments that the

initial guess (3.32) based on extrapolation from previous timesteps requires fewer iterations

to converge than (3.31) based on only the previous approximation. For this reason, we only

compare efficiency of the methods using the initial guess (3.32).

To compare the efficiency, we plot values versus computation costs. We model the compu-

tation cost of a method by

computation cost = Total× Nodes,

where Total is the total number of iterations for all timesteps and Nodes is the number of spatial

grid points as we defined earlier. We say Method-1 is more efficient than Method-2, given a

computation cost, if Method-1 yields more accurate values than Method-2, or alternatively,

Method-1 can attain a certain level of accuracy with less cost than Method-2. Efficiency is

an important issue, especially in practical situations where time is a constraint and we want

reasonably accurate results.

First, let us compare the efficiency between uniform and adaptive mesh methods. Efficiency

plots of uniform and adaptive mesh methods using PSOR-2, PENALTY-1, and PENALTY-2 are

presented in Figure 6.7. From this, it is very clear that adaptive mesh methods are more efficient

than uniform mesh methods for any iterative method used. For example, for the same computa-

tion cost, adaptive mesh methods always yield more accurate values (closer to the “true” one).

These results are expected from numerical results presented in the previous section.

Next, we compare the efficiency of adaptive mesh methods using different iterative solvers,

namely adaptive mesh methods using PSOR-2, PENALTY-1, and PENALTY-2 with uniform

timesteps and adaptive mesh methods using PENALTY-2 with variable timesteps. The plots

are presented in Figure 6.8. From the numerical results collected, the adaptive mesh methods

CHAPTER 6. NUMERICAL RESULTS 91

using PENALTY-2 with variable timesteps are the most efficient ones. Figure 6.8 shows this

fact graphically. The worst method among all these four is the adaptive mesh method with

uniform timesteps and PSOR-2. Adaptive mesh methods using PENALTY-1 and PENALTY-2

are of almost the same level of efficiency, with PENALTY-2 being slightly more efficient than

PENALTY-1.

10
4

10
5

10
6

13.8

14

14.2

14.4

14.6

Computation cost = Total × Nodes

V
al

ue

10
3

10
4

10
5

10
6

13.8

14

14.2

14.4

14.6

Computation cost = Total × Nodes

V
al

ue

10
3

10
4

10
5

10
6

13.8

14

14.2

14.4

14.6

Computation cost = Total × Nodes

V
al

ue

‘‘true" value
PSOR−2 adaptive
PSOR−2 uniform

‘‘true" value
PENALTY−1 adaptive
PENALTY−1 uniform

‘‘true" value
PENALTY−2 adaptive
PENALTY−2 uniform

Figure 6.7: American put value at the strike price versus computational cost for uniform and

adaptive mesh methods with different iterative solvers.

CHAPTER 6. NUMERICAL RESULTS 92

10
3

10
4

10
5

10
6

14.58

14.6

14.62

14.64

14.66

14.68

Computation cost = Total × Nodes

V
al

ue

"true" value
PENALTY−2 adaptive, var. time
PENALTY−2 adaptive
PENALTY−1 adaptive
PSOR−2 adaptive

Figure 6.8: American put value at the strike price versus computation cost for adaptive mesh

methods with different iterative solvers.

10
4

10
5

10
6

14.65

14.655

14.66

14.665

14.67

14.675

14.68

Computation cost = Total × Nodes

V
al

ue

"true" value
adaptive
non−uniform [14]
uniform

Figure 6.9: American put value at the strike price versus computational cost for various meth-

ods.

CHAPTER 6. NUMERICAL RESULTS 93

In Figure 6.9, we plot numerical values versus computation cost of three different methods:

(1) adaptive mesh method using PENALTY-2 (our most efficient one), (2) (purely) uniform

mesh method using PENALTY-2 implemented by us, and (3) the non-uniform mesh method

as presented in [14]. Note that all three methods employ the penalty method to solve the

constrained matrix problem at each timestep. It is obvious that the adaptive finite different

method outperforms uniform and non-uniform mesh methods in terms of efficiency.

CHAPTER 6. NUMERICAL RESULTS 94

6.2.4 Early Exercise Boundary

An interesting problem associated with American option pricing is the analysis of the early

exercise boundary and the optimal stopping time. This problem has attracted a lot of attention

due to its theoretical and practical importance. At each timestep, the free boundary point is de-

scribed by (3.5) on page 17. The accuracy with which we locate the free boundary has strong

effects on the quality of the numerical value of the option computed. The exact analytical ex-

pression for the free boundary is not known. One standard way to locate the free boundary is

to use binomial or trinomial methods. In addition, many researchers have investigated various

models such as integral equations or asymptotic solutions leading to approximation for the free

boundary. The purpose of this section is to demonstrate the accuracy of the adaptive mesh

methods in locating the free boundary for an American put option at each timestep. We carry

out a comparison between our numerical free boundary points and those obtained by several

other methods, namely binomial methods, trinomial methods, integral equations, asymptotic

approximations, and a method proposed by MacMillan, Barone- Adesi and Whaleys in [1] and

[23] (the M.B.W approximation method). We refer the reader to the paper [31] for complete

references and numerical results for these methods. Note that for both the binomial and tri-

nomial methods a depth of 1000 subdivisions was used. In [31], reference results from the

trinomial tree were computed using the software package “Option Calculator” developed by

Srivastava et al. at Carnegie Mellon University.

Under the smooth condition (3.5), the free boundary point marks the change of the function

from being linear to non-linear. We would expect that, with such a change, the approximation

error in the region around the free boundary is higher and, hence, by the equidistribution princi-

ple, the region around the strike will be more refined, resulting in a more accurate free boundary

approximation. For comparison purposes, we experiment with two different sets of parameters

used in [31] listed in Tables 6.24 and 6.25. Numerical results for the free boundary locations

at selected times are presented in Tables 6.26 and 6.27, respectively. Corresponding results

by other methods listed in these tables can be found in Tables 1 and 2 in [31], respectively.

CHAPTER 6. NUMERICAL RESULTS 95

Table 6.24: Model parameters (I) for comparison of early exercise point in American options.

Parameter Value

Time to expiry T 0.05 (years)

Interest rate r 10% (0.1)

Exercise price E 50

Volatility σ 40% (0.4)

Tolerance ε 10−7

Table 6.25: Model parameters (II) for comparison of early exercise point in American options.

Parameter Value

Time to expiry T 0.05 (years)

Interest rate r 10% (0.1)

Exercise price E 10

Volatility σ 25% (0.25)

Tolerance ε 10−7

Method PENALTY-2 is used to solve the constrained matrix problem at each timestep.

In [31], the authors refer to approximations by binomial and trinomial methods as accurate

values. In most cases, these two methods yield approximations that agree up to in the third

decimal place. Hence, we also use approximations computed by these two methods as refer-

ences. Numerical results obtained by uniform and adaptive mesh methods on a 200× 200 grid

are presented in Tables 6.26 and 6.27. First, it is obvious that the uniform mesh methods give

very poor results compared to those by binomial and trinomial methods and all other methods.

In most cases, uniform mesh methods underestimate the free boundary, giving results with two

digits of accuracy. For instance, in both Tables 6.26 and 6.27, the approximation by the uni-

form mesh method at τ = 0.05 underestimates by about 0.16 dollars or 16 cents compared

CHAPTER 6. NUMERICAL RESULTS 96

Table 6.26: Early exercise boundary for set of parameters listed in Table 6.24. Uniform and

adaptive mesh methods are used on a 200×200 grid with PENALTY-2 and Rannacher smooth-

ing. Smax = 250.

Time Integral Binomial Trinomial Asymp. M.B.W Adap. Uniform

(τ = T − t) Equation Method Method Solution Approx. Method Method

0.00100 (8.76 hours) 48.3819 48.3915 48.3915 48.4176 48.4871 48.3634 47.5000

0.00500 46.8631 46.8836 46.8833 46.9771 47.0678 46.8971 46.2500

0.01000 (3.65 days) 45.8848 45.9115 45.9122 46.0773 46.1507 45.9326 45.0000

0.05000 (2.6 weeks) 42.6111 42.6681 42.6672 43.3211 43.0562 42.6425 42.5000

Table 6.27: Early exercise boundary for set of parameters listed in Table 6.25. Uniform and

adaptive mesh methods are used on a 200×200 grid with PENALTY-2 and Rannacher smooth-

ing. Smax = 50.

Time Integral Binomial Trinomial Asymp. M.B.W Adap. Uniform

τ = T − t Equation Method Method Solution Approx. Method Method

0.001 (8.76 hours) 9.8099 9.8111 9.8111 9.8154 9.8225 9.8151 9.7500

0.005 9.6349 9.6375 9.6374 9.6533 9.6593 9.6423 9.5000

0.010 (3.65 days) 9.5232 9.5265 9.5266 9.5553 9.5546 9.5219 9.5000

0.050 (2.6 weeks) 9.1550 9.1600 9.1601 9.2865 9.2047 9.1530 9.0000

CHAPTER 6. NUMERICAL RESULTS 97

to the approximations obtained by the binomial and trinomial methods, which is significant.

However, it is very interesting to note that the adaptive mesh methods capture the free boundary

locations quite well as time evolves. In most cases, approximations by adaptive mesh methods

agree with binomial and trinomial methods up to the first decimal place, whence the differ-

ences are in cents only. For instance at the time level τ = 0.05, from Tables 6.26 and 6.27, the

adaptive mesh methods yield results which are off by about 2 and 1 cents, respectively. At the

time level τ = 0.01, the adaptive mesh methods give results that underestimate those computed

by binomial and trinomial methods by about 0.5 cents only (see Table 6.27). Compared with

results by other methods considered accurate in the literature, our numerical free boundary

points exhibit similar level of accuracy. It is important to note that we use only a 200 × 200

grid, which is of modest size.

From these numerical results, we can see that the adaptive mesh methods locate the free

boundary with accuracy comparable to other methods, but with fewer points. In comparison

with uniform mesh methods, adaptive mesh methods are clearly superior in accuracy in locating

the free boundary. In Figures 6.10 and 6.11, profiles of the free boundary obtained by uniform

and adaptive mesh methods are presented. The profiles generated by adaptive mesh methods

are smooth while those by uniform mesh methods are highly non-smooth and look like a step

function. Note that the free boundary is a function of time, as discussed in Section 3.1, hence

moving as time evolves. Profiles of the free boundary point that look like a step function do

not capture this movement properly. On the contrary, as we discussed in the section on grid

distribution, the adaptive mesh methods can capture the movement of the free boundary point

with time well.

CHAPTER 6. NUMERICAL RESULTS 98

0 0.01 0.02 0.03 0.04 0.05
42

44

46

48

50

Time

A
ss

et
 P

ric
e

uniform
adaptive

Figure 6.10: Profile of the free boundary obtained by uniform and adaptive mesh methods with

set of parameters from Table 6.24 on a 200× 200 grid.

0 0.01 0.02 0.03 0.04 0.05
9

9.2

9.4

9.6

9.8

10

Time

A
ss

et
 P

ric
e

uniform
adaptive

Figure 6.11: Profile of the free boundary obtained by uniform and adaptive mesh methods with

set of parameters from Table 6.25 on a 200× 200 grid.

Chapter 7

Conclusions and Future Work

The American option pricing problem is an important and challenging problem in finance due

to the existence of the free boundary. In this paper, we have considered a PDE approach

to price American options written on a single asset with constant volatility and interest rate.

Although we focused the discussion on American put options, the ideas and method considered

are useful for other American style options, such as American call options on dividend-paying

assets, American style Asian options, or the pricing of convertible bonds with early exercise

features.

Our approach is based on finite differences integrated with adaptive mesh methods which

rely on grading and monitor functions to determine the distribution of the error along the spatial

dimension. At certain timesteps, the adaptive techniques relocate the nodes to equidistribute

the error in some chosen norm among the subintervals of the partition. We monitor the spatial

discretization and redistribution of grid points so that at each timestep the resulting matrix

has an M-matrix structure. For the solution of the LCP at each timestep, we considered two

iterative methods, the PSOR and penalty methods, with two different initial guesses: one is

the approximation to the solution at the previous step and the other one is based of linear

extrapolation of approximations to the solution at the previous two steps.

We examined the convergence rate of PSOR and the penalty methods under the effects

99

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 100

of the initial guesses for option pricing using both uniform and adaptive mesh methods. Ex-

perimental results show that the initial guess based on extrapolation significantly reduces the

deterioration of the convergence rates of PSOR as grids are refined. The effects of the initial

guesses on the convergence of the penalty method is not as significant due to the fast conver-

gence of the method; however the penalty method with initial guess based on extrapolation

still converges faster. The penalty method saves many iterations and much computation time

compared to the PSOR method. Therefore, we choose to combine the penalty method with

initial guess based on extrapolation with the adaptive mesh methods.

We investigated and compared the accuracy and efficiency of the adaptive mesh methods

with uniform and certain prescribed non-uniform finite difference discretization methods for

the evaluation of the American put options. We found that the adaptive mesh methods are

superior to the other two methods in terms of accuracy and efficiency. An important feature

of the American option pricing problem is the early exercise. We compared the accuracy of

the adaptive mesh methods in locating the early exercise boundary with several other methods.

The results are very promising: our method performs as well as any others proposed in the

literature and it is significantly better than uniform mesh methods.

Several of the ideas considered in the thesis could be useful for other derivative pricing

problems that can be modelled by PDEs: for example, barrier and Asian options, or con-

trol problems, such as those involving the Hamilton-Jacobi-Bellman equation. Moreover, the

adaptive techniques can be combined with gridsize estimators in order to pick the number of

discretization points so that the error in the approximation is below a given error tolerance.

Solving multi-dimensional option pricing problems by adaptive mesh techniques is an interest-

ing and challenging problem.

Appendix A

Convergence Proof of PSOR

We first describe the notations used in this proof. Let |.| and ‖.‖p denote the absolute value and

the standard norm, respectively, with p = 2 or ∞. All matrices and vectors are real. For a real

matrix A ∈ Rn×n, let |A| denote the matrix obtained from A by replacing each element ai,j

of A by |ai,j|. A similar notation holds for vectors in Rn. We say that A ≤ Ã if and only if

ai,j ≤ ãi,j for each pair (i, j), 1 ≤ i, j ≤ n. Similarly, x ≤ x̃ if and only if xi ≤ x̃i, 1 ≤ i ≤ n,

where x and x̃ are vectors in Rn. Here, xi denotes the ith entry of the vector x.

Let us consider the generic constrained matrix problem (3.29)




Ax = b

x ≥ g





or





Ax > b

x = g





,

and the corresponding PSOR algorithm (3.30)




for i = 1, . . . , n do

y
(k+1)
i =

1

ai,i

(
bi −

∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j

)

x
(k+1)
i = max

(
gi,x

(k)
i + ω(y

(k+1)
i − x

(k)
i)

)

endfor

This problem is the same with the constrained matrix problem (4.2) arising at each time step

in American option pricing with A,b and g playing the role of Aν ,bν and the payoff V∗,ν+1,

101

APPENDIX A. CONVERGENCE PROOF OF PSOR 102

respectively. We assume that A is an M-matrix and strictly diagonally dominant. Recall

that Aν has these properties. We will prove that under these conditions, and if the relaxation

parameter ω satisfies 0 < ω < ω̃ = 2 mini{ ai,i∑
j |ai,j |} then the PSOR algorithm (3.30) converges

to the unique solution of the constrained matrix problem (3.29).

The proof is based on the idea of contractions under partial ordering introduced in Chapter

13 in [26] and organized as follows. In Lemma 1, we develop an upper bound for |x(k+1)
i −x

(k)
i |,

then in Lemma 2 a recursive bound for |x(k+1)−x(k)|. In Lemma 3, we show that under certain

conditions, the spectral radius of a relevant matrix is less than 1. This is needed in Theorem 3

that proves the convergence of the sequence generated by PSOR algorithm (3.30). In Lemma

4, we establish an equivalence between solving the constrained matrix problem (3.29) and

computing a vector x satisfying

xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

= 0, 1 ≤ i ≤ n.

In Lemma 5, we prove that if matrix A is an M-matrix, then the constrained matrix prob-

lem (3.29) has an unique solution. These five lemmas and the theorem will be the basis for

showing that the sequence x(k) generated by the PSOR algorithm (3.30) is convergent, that is,

limk→∞ x(k) = x̃ and the limit point x̃ uniquely solves the constrained matrix problem (3.29).

LEMMA 1. Assume that all diagonal entries of the matrix A in the constrained matrix problem

(3.29) are positive, that is ai,i > 0, for 1 ≤ i ≤ n. Let x(k+1) and x(k) be the (k + 1)st and kth

solutions generated by the PSOR algorithm 3.30. Then,

|x(k+1)
i − x

(k)
i | ≤ |1− ω||x(k)

i − x
(k−1)
i |+ ω

ai,i

(∑
j<i

|ai,j||x(k+1)
j − x

(k)
j |)

+
ω

ai,i

(∑
j>i

|ai,j||x(k)
j − x

(k−1)
j |),

for 1 ≤ i ≤ n.

APPENDIX A. CONVERGENCE PROOF OF PSOR 103

Proof. From the PSOR algorithm (3.30), we have

x
(k+1)
i = max

(
gi, (1− ω)x

(k)
i +

ω

ai,i

(bi −
∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j)

)
, (A.1)

x
(k)
i = max

(
gi, (1− ω)x

(k−1)
i +

ω

ai,i

(bi −
∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j)

)
. (A.2)

Subtracting (A.2) from (A.1), we obtain 1

x
(k+1)
i − x

(k)
i = max

(
gi, (1− ω)x

(k)
i +

ω

ai,i

(bi −
∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j)

)

−max
(
gi, (1− ω)x

(k−1)
i +

ω

ai,i

(bi −
∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j)

)

≤ max
(
0, (1− ω)(x

(k)
i − x

(k−1)
i)− ω

ai,i

(∑
j<i

ai,j(x
(k+1)
j − x

(k)
j)

)

− ω

ai,i

(∑
j>i

ai,j(x
(k)
j − x

(k−1)
j)

))
.

Then we have the following inequality 2:

max(0,x
(k+1)
i − x

(k)
i) ≤ max

(
0, (1− ω)(x

(k)
i − x

(k−1)
i)− ω

ai,i

(∑
j<i

ai,j(x
(k+1)
j − x

(k)
j)

)

− ω

ai,i

(∑
j>i

ai,j(x
(k)
j − x

(k−1)
j)

))
.

(A.3)

We can obtain a similar result for max(0,x
(k)
i − x

(k+1)
i), that is

max(0,x
(k)
i − x

(k+1)
i) ≤ max

(
0, (1− ω)(x

(k−1)
i − x

(k)
i)− ω

ai,i

(∑
j<i

ai,j(x
(k)
j − x

(k+1)
j)

)

− ω

ai,i

(∑
j>i

ai,j(x
(k−1)
j − x

(k)
j)

))
.

(A.4)

1It can easily be shown that for any a, b, c ∈ R, max(a, b)−max(a, c) ≤ max(0, b− c).
2For any a, b, c ∈ R, if a ≤ max(b, c), then max(a, b) ≤ max(b, c).

APPENDIX A. CONVERGENCE PROOF OF PSOR 104

Summing up (A.3) and (A.4), and taking into account that ai,i > 0, we obtain 3

|x(k+1)
i − x

(k)
i | ≤ |(1− ω)(x

(k)
i − x

(k−1)
i)− ω

ai,i

(∑
j<i

ai,j(x
(k+1)
j − x

(k)
j)

)

− ω

ai,i

(∑
j>i

ai,j(x
(k)
j − x

(k−1)
j)

)|

≤ |1− ω||x(k)
i − x

(k−1)
i |+ ω

ai,i

(∑
j<i

|ai,j||x(k+1)
j − x

(k)
j |)

+
ω

ai,i

(∑
j>i

|ai,j||x(k)
j − x

(k−1)
j |),

(A.5)

for 1 ≤ i ≤ n.

LEMMA 2. Let A in the constrained matrix problem (3.29) be a strictly diagonally dominant

M-matrix in Rn×n with D, L and U representing the diagonal, strictly lower triangular and

strictly upper triangular parts of A, respectively. Then, x(k+1) and x(k) satisfy

|x(k+1) − x(k)| ≤ (I− ωD−1|L|)−1|I− ωD−1(A− L)||x(k) − x(k−1)|,

where x(k+1) and x(k) are the (k + 1)st and kth solutions generated by the PSOR algorithm

(3.30), respectively.

Proof. First, we prove

(I− ωD−1|L|)|x(k+1) − x(k)| ≤ |I− ωD−1(A− L)||x(k) − x(k−1)|.

For simplicity, let

y = (I− ωD−1|L|)|x(k+1) − x(k)|, (A.6)

and

ỹ = |I− ωD−1(A− L)||x(k) − x(k−1)|.

Note that ỹ can be rewritten as

ỹ = |I− ωD−1(A− L)||x(k) − x(k−1)|

= |I− ωD−1(D + U)||x(k) − x(k−1)|

= |(1− ω)I− ωD−1U||x(k) − x(k−1)|,

3For any a ∈ R, max(0, a) + max(0,−a) = |a|.

APPENDIX A. CONVERGENCE PROOF OF PSOR 105

or equivalently,

ỹ =
(|1− ω|I + ωD−1|U|)|x(k) − x(k−1)|. (A.7)

We have relation (A.7) since U ≤ 0,D > 0 and hence −ωD−1U = ωD−1|U| ≥ 0 and in

addition, (1− ω)I and ωD−1|U| do not share any index of non-zero entries.

We prove that yi ≤ ỹi,∀i, 1 ≤ i ≤ n using induction on the row index i.

i = 1 :

We have that

y1 = |x(k+1)
1 − x

(k)
1 |

and

ỹ1 = |1− ω||x(k)
1 − x

(k−1)
1 |+ ω

a1,1

(∑
j>1

|a1,j||x(k)
j − x

(k−1)
j |).

Then y1 ≤ ỹ1 follows directly from Lemma 1 when i = 1.

Assume that yi ≤ ỹi for each i, 1 ≤ i ≤ k̃ − 1, where 2 ≤ k̃ ≤ n. Now we prove that

yk̃ ≤ ỹk̃.

i = k̃ : We have

yk̃ = − ω

ak̃,k̃

(∑

j<k̃

|ak̃,j||x(k+1)
j − x

(k)
j |) + |x(k+1)

k̃
− x

(k)

k̃
|,

and

ỹk̃ = |1− ω||x(k)

k̃
− x

(k−1)

k̃
|+ ω

ak̃,k̃

(∑

j>k̃

|ak̃,j||x(k+1)
j − x

(k)
j |).

Note that we can get an upper bound for the term |x(k+1)

k̃
− x

(k)

k̃
| in yk̃ using Lemma 1 with

i = k̃. Thus we have

yk̃ ≤ − ω

ak̃,k̃

(∑

j<k̃

|ak̃,j||x(k+1)
j − x

(k)
j |) + |1− ω||x(k)

k̃
− x

(k−1)

k̃
|

+
ω

ak̃,k̃

(∑

j<k̃

|ak̃,j||x(k+1)
j − x

(k)
j |) +

ω

ak̃,k̃

(∑

j>k̃

|ak̃,j||x(k)
j − x

(k−1)
j |)

= |1− ω||x(k)

k̃
− x

(k−1)

k̃
|+ ω

ak̃,k̃

(∑

j>k̃

|ak̃,j||x(k)
j − x

(k−1)
j |)

= ỹk̃.

APPENDIX A. CONVERGENCE PROOF OF PSOR 106

By induction, we conclude that yi ≤ ỹi, ∀i, 1 ≤ i ≤ n, or equivalently

(I− ωD−1|L|)|x(k+1) − x(k)| ≤ |I− ωD−1(A− L)||x(k) − x(k−1)|.

Now we consider the matrix I − ωD−1|L|. Since the matrix ωD−1|L| is strictly lower

triangular and ωD−1|L| ≥ 0, it follows that I−ωD−1|L| is a unit lower triangular matrix (with

non-positive off-diagonal entries). Thus I− ωD−1|L| is invertible and (I− ωD−1|L|)−1 ≥ 0.

4 Then I− ωD−1|L| is a monotone matrix. 5 Hence we have

|x(k+1) − x(k)| ≤ (I− ωD−1|L|)−1|(I− ωD−1(A− L)
)||x(k) − x(k−1)|.

In the next lemma, we will show that if 0 < ω < ω̃ = 2 mini{ ai,i∑
j |ai,j |} then the spectral

radius of matrix (I− ωD−1|L|)−1|(I− ωD−1(A− L)
)| is less than 1.

LEMMA 3. Let A,D, L and U be as in Lemma 2 and 0 < ω < ω̃ = 2 mini{ ai,i∑
j |ai,j |}. Then

the spectral radius of matrix H = (I− ωD−1|L|)−1|I− ωD−1(A− L)| is less than 1, that is

ρ(H) < 1.

Proof. Note that under condition (5.3), the matrix A is a strictly row diagonally dominant.

Thus it follows that 1 < ω̃ ≤ 2. We will prove ‖H‖∞ < 1 instead, noting the property

ρ(H) ≤ ‖H‖∞.

By matrix norm properties, we have ‖H‖∞ ≡ max
z 6=0

‖Hz‖∞
‖z‖∞ = max

‖z‖∞=1
{‖Hz‖∞}. Let z be

an arbitrary vector in Rn such that ‖z‖∞ = 1. Then it suffices to prove that ‖Hz‖∞ < 1.

4(I− ωD−1|L|)−1 =
∑n−1

k̂=0
(ωD−1|L|)k̂ ≥ 0

5A square matrix A is called monotone if det(A) 6= 0 and A−1 ≥ 0. Thus, Ax ≤ Ay implies x ≤ y (see
[39]). Actually, in this case I− ωD−1|L| is an M-matrix.

APPENDIX A. CONVERGENCE PROOF OF PSOR 107

First, we rewrite H as

H = (I− ωD−1|L|)−1|I− ωD−1(A− L)|

=
(
D−1(D− ω|L|))−1

D−1|D− ω(A− L)|

= (D− ω|L|)−1|D− ω(D + U)|

= (D− ω|L|)−1|(1− ω)D− ωU)|.

For simplicity, let h̃ = Hz. Then,

(D− ω|L|)h̃ = |(1− ω)D− ωU)|z

= (|1− ω|D + ω|U|)z.
(A.8)

In order to prove that ‖h̃‖∞ < 1, we will show that each entry of h̃ is less than 1 in absolute

value, that is |h̃i| < 1, i = 1, . . . , n.

i = 1: From (A.8), we have

|h̃1| =
|1− ω|a1,1z1 + ω(

∑
j>1 |a1,j|zj)

a1,1

≤ |1− ω|a1,1|z1|+ ω(
∑

j>1 |a1,j||zj|)
a1,1

≤ |1− ω|a1,1 + ω
∑

j>1 |a1,j|
a1,1

If 0 < ω ≤ 1, it follows that

|h̃1| ≤
(1− ω)a1,1 + ω

∑
j>1 |a1,j|

a1,1

= 1− ω + ω

∑
j>1 |a1,j|
a1,1︸ ︷︷ ︸
<1

< 1− ω + ω = 1.

APPENDIX A. CONVERGENCE PROOF OF PSOR 108

If 1 < ω < ω̃, it follows that

|h̃1| ≤
(ω − 1)a1,1 + ω

∑
j>1 |a1,j|

a1,1

=
ω(

∑
j>1 |a1,j|+ a1,1)− a1,1

a1,1

= ω

∑
j |a1,j|
a1,1

− 1

< 2− 1 = 1,

for any choice of ω since ω < 2 mini{ ai,i∑
j |ai,j |}.

Now we assume that |h̃i| < 1 for each i, 1 ≤ i ≤ k̃ − 1, where 2 ≤ k̃ ≤ n We will now

prove |h̃k̃| < 1. Taking into account (A.8), we have

−ω
(∑

j<k̃

|ak̃,j|h̃j

)
+ ak̃,k̃h̃k̃ = |1− ω|ak̃,k̃zk̃ + ω

(∑

j>k̃

|ak̃,j|zj

)
,

or equivalently,

h̃k̃ =
|1− ω|ak̃,k̃zk̃ + ω

(∑
j>k̃ |ak̃,j|zj

)
+ ω

(∑
j<k̃ |ak̃,j|h̃j

)

ak̃,k̃

≤ |1− ω|ak̃,k̃|zk̃|+ ω
(∑

j>k̃ |ak̃,j||zj|
)

+ ω
(∑

j<k̃ |ak̃,j||h̃j|
)

ak̃,k̃

≤ |1− ω|ak̃,k̃ + ω
(∑

j>k̃ |ak̃,j|+
∑

j<k̃ |ak̃,j|
)

ak̃,k̃

=
|1− ω|ak̃,k̃ + ω

∑
j 6=k̃ |ak̃,j|

ak̃,k̃

.

We can use the same argument as in the case i = 1, obtaining |h̃k̃| < 1. By induction, we

conclude that |h̃i| < 1,∀i, 1 ≤ i ≤ n and thus ρ(H) < 1.

In the next lemma, we establish the equivalence between the constrained matrix problem

(3.29) and computing x ∈ Rn such that

xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

= 0, 1 ≤ i ≤ n.

APPENDIX A. CONVERGENCE PROOF OF PSOR 109

LEMMA 4. Let A,D, L and U be as in Lemma 2 and ω > 0. Then computing a vector x

satisfying

xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

= 0, 1 ≤ i ≤ n,

is equivalent to solving the constrained matrix problem




Ax = b

x ≥ g





or





Ax > b

x = g





.

Proof. For convenience, we denote (Ax−b)i the ith component of Ax−b, that is (Ax−b)i =

∑
j ai,jxj − bi.

(⇐=)

Assume that





(Ax− b)i = 0

xi ≥ gi





. We have

xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)

︸ ︷︷ ︸
0

)
= xi −max(gi,xi)︸ ︷︷ ︸

xi

= 0.
(A.9)

Assume that





(Ax− b)i > 0

xi = gi





. We have

xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)

︸ ︷︷ ︸
<0

)
= xi − gi = 0.

(A.10)

(=⇒)

First, we prove that (b−Ax)i ≤ 0, 1 ≤ i ≤ n by contradiction. Assume otherwise, that for

some i, 1 ≤ i ≤ n, (b−Ax)i > 0. Note that since ω > 0 and ai,i > 0, under this assumption

max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)

︸ ︷︷ ︸
>0

)
> xi.

Then we would have

xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

< 0,

APPENDIX A. CONVERGENCE PROOF OF PSOR 110

a contradiction. Hence (b−Ax)i ≤ 0, 1 ≤ i ≤ n.

We now consider all possibilities for the max
(
gi,xi + ω

ai,i
(bi −

∑
j ai,jxj)

)
.

If

xi +
ω

ai,i

(bi −
∑

j

ai,jxj) ≥ gi, (A.11)

then

max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

= xi +
ω

ai,i

(bi −
∑

j

ai,jxj),

thus

0 = xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

= − ω

ai,i

(bi −
∑

j

ai,jxj)

whence

(Ax− b)i = 0.

In this case, since bi −
∑

j

ai,jxj ≤ 0, from (A.11) we have xi ≥ gi.

If

xi +
ω

ai,i

(bi −
∑

j

ai,jxj) < gi, (A.12)

then

0 = xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

= xi − gi,

or

xi = gi. (A.13)

Note that we always have bi −
∑

j

ai,jxj ≤ 0 as proved earlier. In this case, we have bi −
∑

j

ai,jxj < 0.

Otherwise, if bi −
∑

j

ai,jxj = 0, then it follows from (A.12) that xi < gi, thus contradicts

with (A.13).

LEMMA 5. Let A be as in Lemma 2. Then the constrained matrix problem (3.29)




Ax = b

x ≥ g





or





Ax > b

x = g





has at most one solution.

APPENDIX A. CONVERGENCE PROOF OF PSOR 111

Proof. Assume that there are two different solutions y and z to problem (3.29). We have




Ay = b

y ≥ g





or





Ay > b

y = g





(A.14)

and 



Az = b

z ≥ g





or





Az > b

z = g





. (A.15)

For convenience, we denote (Ax− b)i and (x− g)i the ith component of Ax− b and x− g,

respectively. For an arbitrary index i, 1 ≤ i ≤ n, we always have




(Ay − b)i = 0

(y − g)i ≥ 0





or





(Ay − b)i > 0

(y − g)i = 0





.

Thus it follows that

min
(
(Ay − b)i, (y − g)i

)
= 0.

From (A.15), we have (Az− b)i ≥ 0 and (z− g)i ≥ 0. Thus it follows that

0 = min
(
(Ay − b)i, (y − g)i

)

≥ min
(
(Ay − b)i − (Az− b)i, (y − g)i − (z− g)i

)
,

or equivalently,

min
(
(A(y − z))i, (y − z)i

) ≤ 0. (A.16)

We can interchange the roles of yi and zi and obtain

min
(
(A(z− y))i, (z− y)i

) ≤ 0,

and hence 6

max
(
(A(y − z))i, (y − z)i

) ≥ 0. (A.17)

Note that relations (A.16) and (A.17) are true for any i, 1 ≤ i ≤ n. For convenience, let

Ai denote the ith row of matrix A. Now we consider two matrices Â and Ã constructed as

6It can be shown that for any a, b ∈ R, if min(a, b) ≤ 0 then max(−a,−b) ≥ 0.

APPENDIX A. CONVERGENCE PROOF OF PSOR 112

follows:

Âi =





Ai if (A(y − z))i ≤ 0

Ii if (A(y − z))i > 0

and

Ãi =





Ai if (A(y − z))i ≥ 0

Ii if (A(y − z))i < 0.

Now consider Â(y − z). By the construction of Â, we have that

(Â(y − z))i =





(A(y − z))i if (A(y − z))i ≤ 0

(y − z)i if (A(y − z))i > 0

If (A(y − z))i ≤ 0, then it is obvious that (Â(y − z))i ≤ 0. If (A(y − z))i > 0, then by

inequality (A.16), we must have that (y − z)i ≤ 0 since if (y − z)i > 0, the inequality (A.16)

does not hold. Thus, in all cases, (Â(y − z))i ≤ 0 for any i, 1 ≤ i ≤ n. As a result, we have

Â(y − z) ≤ 0. By the construction of Â, it is a strictly diagonally dominant L-matrix hence

an M-matrix. It follows that Â is monotone and thus Â(y − z) ≤ 0 implies y − z ≤ 0.

Using a similar line arguments, we obtain Ã(y − z) ≥ 0 and that Ã is monotone. Thus

Ã(y − z) ≥ 0 implies y − z ≥ 0. From y − z ≤ 0 and y − z ≥ 0, we obtain y = z.

In the next theorem, we establish the convergence of the sequence {x(k)} and show that the

limit point of the sequence uniquely solves the constrained matrix problem (3.29).

Theorem 3. Let A,D, L and U be as in Lemma 2 and the relaxation factor ω such that

ρ(I−ωD−1|L|)−1|I−ωD−1(A−L)|) < 1. Then the sequence {x(k)} generated by the PSOR

algorithm (3.30) converges to the unique solution x̃ of the constrained matrix problem (3.29).

Proof. By Lemma 2, we have

|x(k+1) − x(k)| ≤ (I− ωD−1|L|)−1|(I− ωD−1(A− L)
)|︸ ︷︷ ︸

H

|x(k) − x(k−1)|

≤ H2|x(k−1) − x(k−2)|

. . .

≤ Hk|x(1) − x(0))|,

(A.18)

APPENDIX A. CONVERGENCE PROOF OF PSOR 113

and as a result

lim
k→∞

|x(k+1) − x(k)| = 0. (A.19)

From (A.18), we find that for any k, m ≥ 0,

|x(k+m) − x(k)| ≤
m∑

k̃=1

|x(k+k̃) − x(k+k̃−1)|

≤
m∑

k̃=1

Hk̃|x(k) − x(k−1)|

≤ (I−H)−1H|x(k) − x(k−1)|

≤ (I−H)−1Hk|x(1) − x(0)|

= Hk (I−H)−1|x(1) − x(0)|︸ ︷︷ ︸
constant vector

,

taking into account that

(I−H)−1 =
∞∑

k̃=1

Hk̃ ≥ 0,

m−1∑

k̃=1

Hk̃ ≤ (I−H)−1,

since H ≥ 0 and ρ(H) < 1. Thus the sequence {x(k)} is a Cauchy sequence, 7 hence converges

to some limit point x̃, 8 that is

x(k) → x̃ as k →∞. (A.20)

Note that from (A.19) and (A.20), we have

x
(k)
i → x

(k−1)
i ,

x
(k)
i → x̃i,

as k →∞,

(A.21)

for 1 ≤ i ≤ n. Substituting x
(k)
i into the PSOR algorithm (3.30) and taking the limit with

7A sequence {s(k)} is called a Cauchy sequence if for each ε > 0 there exists a number N such that m,n > N
implies |s(m) − s(n)| < ε (see Definition 10.8 in [29]).

8A sequence is a convergent sequence if and only if it is a Cauchy sequence (see Theorem 10.11 in [29]).

APPENDIX A. CONVERGENCE PROOF OF PSOR 114

respect to k, we have

x̃i = lim
k→∞

x
(k)
i = lim

k→∞
max

(
gi,x

(k−1)
i +

ω

ai,i

(bi −
∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j − ai,ix

(k−1)
i)

)

= max
(
gi, x̃i +

ω

ai,i

(bi −
∑
j<i

ai,jx̃i −
∑
j>i

ai,jx̃i − ai,ix̃i)
)

= max
(
gi, x̃i +

ω

ai,i

(bi −
∑

j

ai,jx̃j)
)
,

for 1 ≤ i ≤ n, due to (A.21). Thus we know that the limit point x̃ of the sequence {x(k)}
satisfies

xi = max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)
,

or equivalently,

xi −max
(
gi,xi +

ω

ai,i

(bi −
∑

j

ai,jxj)
)

= 0. (A.22)

By Lemma 4 and (A.22), we conclude that the sequence {x(k)} generated by the PSOR

algorithm (3.30) converges to a solution of the constrained matrix problem (3.29). The unique-

ness of the solution is guaranteed by Lemma 5.

Bibliography

[1] G. Barone-Adesi and R.E. Whaley. Efficient analytic approximations of American option

values. Journal of Finance, 42:301–320, 1987.

[2] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of

Political Economics, 81:637–659, 1973.

[3] Michael J. Brennan and Eduardo Schwartz. The valuation of American put options. Jour-

nal of Finance, 32:449–462, 1977.

[4] M. Broadie and J. Detemple. Recent advances in numerical methods for pricing deriav-

tives securities. In Numerical Methods in Finance, pages 43–66. Cambridge University

Press, 1997.

[5] Russel E. Caflisch and Suneal Chaudhary. Monte Carlo methods for American options.

In Proceedings of the 36th conference on Winter simulation, pages 1656 – 1660, Wash-

ington, D.C, December 2004. Association for Computing Machinery.

[6] Graham F. Carey and Hung T. Dinh. Grading functions and mesh redistribution. SIAM J.

Numer. Anal., 22(5):1028–1040, 1985.

[7] C. C. Christara and K. S. Ng. Adaptive techniques for spline collocation. Computing,

76(3):259 – 277, 2006.

[8] J. Cox, S. Ross, and M. Rubinstein. Option pricing: a simplified approach. Journal of

Financial Economics, 7:229–263, 1979.

115

BIBLIOGRAPHY 116

[9] Colin W. Cryer. The solution of a quadratic programming problem using systematic

overrelaxation. SIAM Journal on Control and Optimization, 9:385–392, 1971.

[10] C. de Boor. Good approximation by splines with variable knots II. Lecture notes in

Mathematics, 1974.

[11] Y. d’Halluin, P. A. Forsyth, and K. Vetzal. Robust numerical methods for contingent

claims under jump diffusion processes. IMA Journal of Numerical Analysis, 25:87–112,

2005.

[12] K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problem. I. A

linear model problem. SIAM J. Numer. Anal., 28:43–77, 1991.

[13] K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problem. II.

Optimal error estimates in L∞L2 and L∞L∞. SIAM J. Numer. Anal., 32:706–740, 1995.

[14] P. A. Forsyth and K. Vetzal. Quadratic convergence for valuing American options using

a penalty method. SIAM J. Sci. Comput., 23(6):2095–2122, 2002.

[15] Michael C. Fu, Scott B. Laprise, Dilip B. Madan, Yi Su, and Rongwen Wu. Pricing

American options: A comparison of Monte Carlo simulation approaches. Journal of

Computational Finance, 4(3):39–88, Spring, 2001.

[16] W. Hackbush. Iterative Solution of Large Sparse Systems of Equations. Springer, 1993.

[17] John C. Hull. Options, Futures, and Other Derivatives. Prentice Hall, sixth edition, 2006.

[18] R. Kangro and R. Nicolaides. Far field boundary conditions for Black-Scholes equations.

SIAM J. Numer. Anal., 38(4):1357–1368, 2000.

[19] M.D. Koulisianis and T.S. Papatheodorou. Improving projected successive overrelaxation

method for linear complementarity problems. Applied Numerical Mathematics, 45:29–

40, 2003.

BIBLIOGRAPHY 117

[20] Dongyi Li. On convergence of numerical methods for pricing convertible bonds. Master’s

thesis, University of Toronto, Toronto, Ontario, Canada, 2007.

[21] Lucy Xingwen Li. Pricing convertible bonds using Partial Differential Equations. Mas-

ter’s thesis, University of Toronto, Toronto, Ontario, Canada, 2005.

[22] F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: A simple

least-squares approach. The Review of Financial Study, 14:113–149, 2001.

[23] L.W. MacMillan. Analytic approximation for the American put option. Advanced Futures

Options Research, 1:119–139, 1986.

[24] Robert C. Merton. The theory of rational option pricing. Bell Journal of Economics and

Management Science, 4:141–183, 1973.

[25] B. Nielsen, O. Skavhaug, and A. Tveito. Penalty and front-fixing methods for the numer-

ical solution of American option problems. Journal of Computational Finance, 5(4):69–

97, 2002.

[26] J. M. Ortega and Rheinboldt. Iterative solution of nonlinear equations in several vari-

ables. Academic Press, New York, London, 1970.

[27] D. M Pooley, K. R. Verzal, and P. A. Forsyth. Convergence remedies for non-smooth

payoffs in option pricing. Journal of Computational Finance, 6:25–40, Summer, 2003.

[28] R. Rannacher. Finite element solution of diffusion problems with irregular data. Nu-

merische Mathematik, 43(2):309–327, 1984.

[29] Kenneth A. Ross. Elementary analysis : the theory of calculus. Springer-Verlag, New

York, 1980.

[30] Rudiger Seydel. Tools for Computational Finance. Springer, 2002.

BIBLIOGRAPHY 118

[31] R. Stamica, D. Sevcovic, and John Chadam. The early exercise boundary for the Ameri-

can put near expiry: Numerical approximation. Canada Applied Mathematics, 7(4):427–

444, 1999.

[32] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Society

for Industrial and Applied Mathematics, Philadelphia, second edition, 2004.

[33] D. Tavella and C. Randall. Pricing financial instruments: The finite difference method.

John Wiley & Sons, Chichester, 2000.

[34] R.S Varga. Matrix Iterative Analysis. Springer, second edition, 2000.

[35] R. Wang, P. Keast, and P. Muir. A high-order global spatially adaptive collcation method

for 1-D parabolic PDEs. Applied Numerical Analysis, 50:239–260, 2004.

[36] A.B. White. On selection of equidistributing meshed for two-point boundary value prob-

lems. SIAM J. Numer. Anal., 16:472–502, 1979.

[37] Paul Wilmott, Sam Howison, and Jeff Dewynne. Mathematics of Financial Derivatives.

Cambridge Univeristy Press, 1995.

[38] H. Windcliff, P. A . Forsyth, and K. R. Vetzal. Analysis of the stability of the linear

boundary condition for the Black-Scholes equation. Journal of Computational Finance,

8:65–92, Fall, 2004.

[39] D. M. Young. Iterative solution of large linear system. Academic Press, New York, 1971.

[40] R. Zvan, P. A. Forsyth, and K. Vetzal. Penalty methods for American options with

stochastic volatility. Journal of Computational and Applied Mathematics, 91:199–218,

1998.

[41] R. Zvan, P. A. Forsyth, and K. Vetzal. Robust numerical methods for PDE models of

Asian options. Journal of Computational Finance, 2:39–78, 1998.

BIBLIOGRAPHY 119

[42] R. Zvan, P. A. Forsyth, and K. Vetzal. Swing low, swing high. RISK, 11:71–75, 1998.

