
A Highly Efficient Implementation on GPU Clusters
of PDE-Based Pricing Methods

for Path-Dependent Foreign Exchange
Interest Rate Derivatives

Duy-Minh Dang1, Christina C. Christara2, and Kenneth R. Jackson2

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON, N2L 3G1, Canada

dm2dang@uwaterloo.ca
2 Department of Computer Science,

University of Toronto, Toronto, ON, M5S 3G4, Canada
{ccc,krj}@cs.toronto.edu

Abstract. We present a highly efficient parallelization of the computation of the
price of exotic cross-currency interest rate derivatives with path-dependent fea-
tures via a Partial Differential Equation (PDE) approach. In particular, we focus
on the parallel pricing on Graphics Processing Unit (GPU) clusters of long-dated
foreign exchange (FX) interest rate derivatives, namely Power-Reverse
Dual-Currency (PRDC) swaps with FX Target Redemption (FX-TARN) features
under a three-factor model. Challenges in pricing these derivatives via a PDE
approach arise from the high-dimensionality of the model PDE, as well as from
the path-dependency of the FX-TARN feature. The PDE pricing framework for
FX-TARN PRDC swaps is based on partitioning the pricing problem into sev-
eral independent pricing sub-problems over each time period of the swap’s tenor
structure, with possible communication at the end of the time period. Finite dif-
ference methods on non-uniform grids are used for the spatial discretization of
the PDE, and the Alternating Direction Implicit (ADI) technique is employed for
the time discretization. Our implementation of the pricing procedure on a GPU
cluster involves (i) efficiently solving each independent sub-problem on a GPU
via a parallelization of the ADI timestepping technique, and (ii) utilizing MPI for
the communication between pricing processes at the end of the time period of the
swap’s tenor structure. Numerical results showing the efficiency of the parallel
methods are provided.

1 Introduction

In the current era of wildly fluctuating exchange rates, cross-currency interest rate
derivatives, especially FX interest rate hybrid derivatives, referred to as hybrids, are
of enormous practical importance. In particular, long-dated (maturities of 30 years or
more) FX interest rate hybrids, such as Power-Reverse Dual-Currency (PRDC) swaps,
are among the most liquid cross-currency interest rate derivatives [1]. The pricing of
PRDC swaps, especially those with FX Target Redemption (TARN), is a subject of
great interest in practice, especially among financial institutions. In a PRDC swap

B. Murgante et al. (Eds.): ICCSA 2013, Part V, LNCS 7975, pp. 107–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

108 D.M. Dang, C.C. Christara, and K.R. Jackson

with a TARN feature, the sum of all FX-linked PRDC coupon amounts paid to date
is recorded, and the underlying swap is terminated pre-maturely on the first date of
the tenor structure when the accumulated PRDC coupon amount, including the coupon
amount scheduled on that date, has reached or exceeded a pre-determined target cap.
Hence, this exotic feature is usually referred to as a FX-TARN.

As FX interest rate derivatives, such as PRDC swaps, are exposed to movements
in both the spot FX rate and the interest rates in both currencies, multi-factor pricing
models having at least three factors, namely the domestic and foreign interest rates
and the spot FX rate, must be used for the valuation of such derivatives. A popular
choice for pricing PRDC swaps is Monte-Carlo (MC) simulation. However, this ap-
proach has several major disadvantages, such as slow convergence for problems in low-
dimensions, i.e. fewer than five dimensions, and the limitation that the price is obtained
at a single point only in the domain, as opposed to the global character of the Partial
Differential Equation (PDE) approach. In addition, MC methods usually suffer from
difficulty in computing accurate hedging parameters, such as delta and gamma, espe-
cially when dealing with the FX-TARN feature [2]. On the other hand, the pricing of
these derivatives via the PDE approach is not only mathematically challenging but also
very computationally intensive, due to (i) the “curse of dimensionality” associated with
high-dimensional PDEs, and (ii) the complexities in handling path-dependent exotic
features.

Over the last few years, the rapid evolution of Graphics Processing Units (GPUs)
into powerful, cost-efficient, programmable computing architectures for general pur-
pose computations has provided application potential beyond the primary purpose of
graphics processing. In computational finance, although there has been great interest
in utilizing GPUs in developing efficient pricing architectures for computationally in-
tensive problems, the applications mostly focus on MC simulations applied to option
pricing (e.g. [3, 4, 5]). The literature on utilizing GPUs in pricing financial derivatives
via a PDE approach is rather sparse, with scattered work, such as [6, 7, 8, 9, 10]. The lit-
erature on GPU-based PDE methods for pricing cross-currency interest rate derivatives
is even less developed.

In our paper [11], an efficient PDE pricing framework for pricing FX-TARN PRDC
swaps is introduced in the public domain. The approach is to use an auxiliary path-
dependent state variable to keep track of the accumulated PRDC coupon amount. This
allows us to partition the pricing problem of these derivatives into several independent
pricing sub-problems over each period of the swap’s tenor structure, each of which cor-
responds to a discretized value of the auxiliary variable, with possible communication
at the end of each time period.

In this paper, we describe a highly efficient parallelization of the PDE-based com-
putation developed in [11] for the price of FX interest rate swaps with the FX-TARN
feature. We adopt the three-factor pricing model proposed in [12]. Our implementation
involves two levels of parallelism. The first is to use a cluster of GPUs together with
the Compute Unified Device Architecture (CUDA) Application Programming Interface
(API) to solve the afore-mentioned independent sub-problems simultaneously, each on
a separate GPU. Since the main computational task associated with each sub-problem
is the solution of the model three-dimensional PDE, the second level of parallelism

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 109

is exploited via a highly efficient GPU-based parallelization of the ADI timestepping
technique developed in our paper [7] for the solution of the model PDE. In addition,
we utilize the Message Passing Interface (MPI) [13], a widely used message passing
library standard, for efficient communication between the pricing processes at the end
of each time period. The results of this paper show that GPU clusters can provide a
significant increase in performance over GPUs when pricing exotic cross-currency in-
terest rate derivatives with path-dependence features. Although we primarily focus on a
three-factor model, many of the ideas and results in this paper can be naturally extended
to higher-dimensional applications with constraints.

The remainder of this paper is organized as follows. In Section 2, we briefly describe
PRDC swaps with FX-TARN features, then introduce a three-factor pricing model and
the associated PDE. Discretization methods and a PDE-based pricing algorithm for
FX-TARN PRDC swaps are discussed in Section 3. A parallelization of the pricing
algorithm on GPU clusters for FX-TARN PRDC swaps is described in detail in Sec-
tion 4. Numerical results are presented and discussed in Section 5. Section 6 concludes
the paper and outlines possible future work.

2 Power-Reverse Dual-Currency Swaps

2.1 Introduction

Essentially, PRDC swaps are long-dated swaps (maturities of 30 years or more) which
pay FX-linked coupons, i.e. PRDC coupons, referred to as the coupon leg, in exchange
for London Interbank Offered Rate (LIBOR) floating-rate payments, referred to as the
funding leg. Both the PRDC coupon and the floating rates are applied on the domestic
currency principal Nd. There are two parties involved in the swap: the issuer of PRDC
coupons (the receiver of the floating-rate payments – usually a bank) and the investor
(the receiver of the PRDC coupons). We investigate PRDC swaps from the perspective
of the issuer of PRDC coupons. Since a large variety of PRDC swaps are traded, for the
sake of simplicity, only the basic structure is presented here.

To be more specific, we consider the tenor structure

T0 = 0 < T1 < · · · < Tβ < Tβ+1 = T, να = Tα − Tα−1, α = 1, 2, . . . , β + 1, (2.1)

where να represents the year fraction between Tα−1 and Tα using a certain day count-
ing convention, such as the Actual/365 day counting one [14]. Unless otherwise stated,
in this paper, the sub-scripts “d” and “f” are used to indicate domestic and foreign,
respectively. Let Pd(t, T) be the price at time t ≤ T̄ in domestic currency of a domestic
zero-coupon discount bond with maturity T , and face value one unit of domestic cur-
rency. Note that, Pd(t, T) ≤ 1 and Pd(T , T) = 1. For use later in the paper, define

Tα+ = Tα + δ where δ → 0+, Tα− = Tα − δ where δ → 0+, (2.2)

i.e. Tα− and Tα+ are instants of time just before and just after the date Tα, respectively.
Given the tenor structure (2.1), for a “vanilla” PRDC swap, at each time {Tα}βα=1,

there is an exchange of a PRDC coupon amount for a domestic LIBOR floating-rate
payment. More specifically, the funding leg pays the amount ναLd(Tα−1, Tα)Nd at

110 D.M. Dang, C.C. Christara, and K.R. Jackson

T0 T1 T2
� � � Tβ Tβ+1

ν1 ν2

Inflows

Outflows

ν1Ld(T0, T1)Nd ν2Ld(T1, T2)Nd νβLd(Tβ−1, Tβ)Nd

ν1C1Nd ν2C2Nd νβCβNd

Fig. 1. Fund flows in a “vanilla” PRDC swap. Inflows and outflows are from the perspective of
the PRDC coupon issuer, usually a bank.

time Tα for the period [Tα−1, Tα]. Here, Ld(Tα−1, Tα) denotes the domestic LIBOR
rate for the period [Tα−1, Tα], as observed at time Tα−1. This rate is simply-compounded
and is defined by [14]

Ld(Tα−1, Tα) =
1− Pd(Tα−1, Tα)

ναPd(Tα−1, Tα)
. (2.3)

Note that Ld(Tα−1, Tα) is set at time Tα−1, but the actual floating leg payment for the
period [Tα−1, Tα] does not occur until time Tα.

Throughout the paper, we denote by s(t) the spot FX rate prevailing at time t. The
PRDC coupon rate Cα, α = 1, 2, . . . , β, of the coupon amount ναCαNd issued at time
Tα for the period [Tα, Tα+1], α = 1, 2, . . . , β, has the structure

Cα = max
(
cf

s(Tα)

fα
− cd, 0

)
, (2.4)

where cd and cf respectively are constant domestic and foreign coupon rates. The scal-
ing factor fα is usually set to the forward FX rate F (0, Tα) defined by [14]

F (0, Tα) =
Pf (0, Tα)

Pd(0, Tα)
s(0), (2.5)

which follows from no-arbitrage arguments. A diagram of fund flows in a “vanilla”
PRDC swap is presented in Figure 1.1

By letting hα =
cf
fα

, and kα =
cd
cf

fα, the PRDC coupon rate Cα can be viewed as a

call option on FX rates, since, in this case, Cα reduces to

Cα = hα max(s(Tα)− kα, 0). (2.6)

As a result, the PRDC coupon leg in a “vanilla” PRDC swap can be viewed as a portfolio
of long-dated options on the spot FX rate, i.e. long-dated FX options.

In a FX-TARN PRDC swap, the PRDC coupon amount, ναCαNd, α = 1, 2, . . ., is
recorded. The PRDC swap is pre-maturely terminated on the first date Tαe ∈{Tα}βα=1

when the accumulated PRDC coupon amount, including the coupon amount scheduled
on that date, reaches or exceeds a pre-determined target cap, hereinafter denoted by

1 Note that in the above setting, the last period [Tβ , Tβ+1] of the swap’s tenor structure is redun-
dant, since there is no exchange of fund flows at time Tβ+1. However, to be consistent with
[12], we follow the same notation used in [12].

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 111

ac. That is, the associated underlying PRDC swap terminates immediately on the first

date Tαe∈{Tα}βα=1 when
αe∑
α=1

ναCαNd≥ac. In this paper, we discuss the case when the

early termination is determined by the equality, i.e.
αe∑
α=1

ναCαNd = ac. Note that, in

this case, the last PRDC coupon amount could possible get truncated, due to the cap
ac. A description of other variations of FX-TARN PRDC swaps, as well as the financial
motivation for these derivatives can be found in [11].

We conclude this subsection by noting that, usually, there is a settlement in the form
of an initial fixed-rate coupon between the issuer and the investor at time T0 that is not
included in the description above. This signed coupon is typically the value at time T0

of the swap to the issuer, i.e. the value at time T0 of all net fund flows in the swap,
with a positive value of the fixed-rate coupon indicating a fund outflow for the issuer
or a fund inflow for the investor, i.e. the issuer pays the investor. Conversely, a negative
value of this coupon indicates a fund inflow for the issuer.

2.2 The Model and the Associated PDE

We consider the multi-currency model proposed in [12]. We denote by s(t) the spot FX
rate, and by ri(t), i = d, f, the domestic and foreign short rates, respectively. Under the
domestic risk-neutral measure, the dynamics of s(t), rd(t), rf (t) can be described by
[15]

ds(t)

s(t)
= (rd(t)− rf (t))dt+ γ(t, s(t))dWs(t),

drd(t) = (θd(t)− κd(t)rd(t))dt+ σd(t)dWd(t),

drf (t) = (θf (t)− κf (t)rf (t)− ρfs(t)σf (t)γ(t, s(t)))dt + σf (t)dWf (t),

(2.7)

where Wd(t),Wf (t), and Ws(t) are correlated Brownian motions with dWd(t)dWs(t)
= ρdsdt, dWf (t)dWs(t) = ρfsdt, dWd(t)dWf (t) = ρdfdt. The short rates follow
the mean-reverting Hull-White model [16] with deterministic mean reversion rates and
volatility functions, respectively, denoted by κi(t) and σi(t), for i = d, f , while θi(t),
i = d, f , also deterministic, capture the current term structures. The local volatility
function γ(t, s(t)) for the spot FX rate has the functional form [12]

γ(t, s(t)) = ξ(t)
(s(t)
�(t)

)ς(t)−1

, (2.8)

where ξ(t) is the relative volatility function, ς(t) is the time-dependent constant elas-
ticity of variance (CEV) parameter and �(t) is a time-dependent scaling constant which
is usually set to the forward FX rate F (0, t), for convenience in calibration [12]. Let
u≡u(s,rd,rf ,t) denote the domestic value function of a PRDC swap at time t, Tα−1≤
t<Tα, α = β, . . . , 1. Given a terminal payoff at maturity time Tα, then on R+ × R×
R× [Tα−1, Tα), u satisfies the PDE [15]2

2 Here, we assume that u is sufficiently smooth on the domain R+ × R× R× [Tα−1, Tα).

112 D.M. Dang, C.C. Christara, and K.R. Jackson

∂u

∂t
+Lu≡∂u

∂t
+

1

2
γ2(t,s(t))s2

∂2u

∂s2
+

1

2
σ2
d(t)

∂2u

∂r2d
+

1

2
σ2
f (t)

∂2u

∂r2f

+ ρdsσd(t)γ(t,s(t))s
∂2u

∂s∂rd
+ ρfsσf (t)γ(t,s(t))s

∂2u

∂s∂rf
+ ρdfσd(t)σf (t)

∂2u

∂rd∂rf

+(rd−rf)s
∂u

∂s
+
(
θd(t)−κd(t)rd

)∂u
∂rd

+
(
θf (t)−κf(t)rf−ρfsσf (t)γ(t,s(t))

) ∂u
∂rf

− rdu = 0.
(2.9)

Since we solve the PDE backward in time, the change of variable τ = Tα − t is used.
Under this change of variable, the PDE (2.9) becomes

∂u

∂τ
= Lu (2.10)

and is solved forward in τ . The pricing of cross-currency interest rate derivatives in
general, and PRDC swaps in particular, is defined in an unbounded domain

{(s, rd, rf , τ)|s ≥ 0,−∞ < rd < ∞,−∞ < rf < ∞, τ ∈ [0, T]}, (2.11)

where T = Tα − Tα−1. Here, −∞ < rd < ∞ and −∞ < rf < ∞, since the
Hull-White model can yield any positive or negative value for the interest rate. To solve
the PDE (2.10) numerically by FD methods, we truncate the unbounded domain into a
finite-sized computational one

{(s, rd, rf , τ) ∈ [0, s∞]× [−rd,∞, rd,∞]× [−rf,∞, rf,∞]× [0, T]} ≡ Ω × [0, T],
(2.12)

where s∞, rd,∞ and rf,∞ are sufficiently large [17].
Since payoffs and fund flows are deal-specific, we defer specifying the terminal con-

ditions until Section 3. The difficulty with choosing boundary conditions is that, for an
arbitrary payoff, they are not known. A detailed analysis of the boundary conditions is
not the focus of this paper; we leave it as a topic for future research. For this paper,
we impose Dirichlet-type “stopped process” boundary conditions where we stop the
processes s(t), rf (t), rd(t) when any of the three hits the boundary of the finite-sized
computational domain. Thus, the value on the boundary is simply the discounted payoff
for the current values of the state variables [11]

3 Numerical Methods

In this section, we briefly discuss a PDE-based pricing method for FX-TARN PRDC
swaps. The reader is referred to our paper [11] for more details.

3.1 Discretization of the Model PDE

Let the number of sub-intervals be n + 1, p + 1, q + 1, and l in the s-, rd-, rf -,
and τ -directions, respectively. We use a fixed, but not necessarily uniform, spatial grid
together with dynamically chosen timestep sizes. For the discretization of the space
variables in the differential operator L of (2.10), we employ FD central schemes on

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 113

non-uniform grids in the interior of the rectangular domain Ω. More specifically, the
first and second partial derivatives of the space variables in (2.10) are approximated
by the standard three-point stencils central FD schemes, while the cross-derivatives in
(2.10) are approximated by a nine-point (3× 3) FD stencil.3

For the time discretization of the PDE (2.10), we employ the ADI timestepping tech-
nique based on the Hundsdorfer and Verwer (HV) splitting approach [18], henceforth
referred to as the HV scheme. Note that the study of the HV scheme for mixed deriva-
tives high-dimensional PDEs is found in [19]. Let um denote the vector of values of
the unknown prices at time τm on the mesh Ω that approximates the exact solution
um = u(s, rd, rf , τm). We denote by Am the matrix of size npq × npq arising from
the FD discretization of the differential operator L at τm.

Following the HV approach, we decompose the matrix Am into four sub-matrices:
Am = Am

0 +Am
1 +Am

2 +Am
3 . The matrix Am

0 is the part of Am that comes from the
FD discretization of the cross-derivative terms in (2.10), while the matrices Am

1 , Am
2

and Am
3 are the three parts of Am that correspond to the spatial derivatives in the s-,

rd-, and rf -directions, respectively. The term rdu in Lu is distributed evenly over Am
1 ,

Am
2 and Am

3 . Starting from um−1, the HV scheme generates an approximation um to
the exact solution um, m = 1, . . . , l, by4⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 = um−1 +Δτm(Am−1um−1 + gm−1),

(I− θΔτmAm
i)vi = vi−1 − θΔτmAm−1

i um−1

+ θΔτm(gm
i − gm−1

i), i = 1, 2, 3,

ṽ0 = v0 +
1

2
Δτm(Amv3 −Am−1um−1)

+
1

2
Δτm(gm − gm−1),

(I− θΔτmAm
i)ṽi = ṽi−1 − θΔτmAm

i v3, i = 1, 2, 3,

um = ṽ3.

(3.1a)

(3.1b)

(3.1c)

(3.1d)

(3.1e)

In (3.1), the vector gm is given by gm =
∑3

i=0 g
m
i , where gm

i are obtained from the
boundary conditions corresponding to the respective spatial derivative terms.

When solving the PDE (2.10) backward in time over each time period of the swap’s
tenor structure, for damping purposes, we first apply the HV scheme with θ = 1 for
the first few (usually two) initial timesteps, and then switch to θ = 1

2 + 1
6

√
3 for the

remaining timesteps.

3.2 Timestep Size Selector

We use a simple, but effective, timestep size selector, where, given the current stepsize
Δτm, m ≥ 1, the new stepsize Δτm+1 is given by [11]

⎧⎪⎨
⎪⎩

Δτm+1 =

(
min1≤ι≤npq

[
dnorm

|um
ι −u

m−1
ι |

max(N,|um
ι |,|um−1

ι |)

])
Δτm,

Δτm+1 = min
{
Δτm+1, T − τm

}
.

(3.2)

3 On uniform grids, the nine-point FD stencil reduces to a four-point one.
4 This is the scheme (1.4) in [19] with μ = 1

2
.

114 D.M. Dang, C.C. Christara, and K.R. Jackson

Here, dnorm is a user-defined target relative change, and the scale N is chosen so that
the method does not take an excessively small stepsize where the value of the option is
small. Normally, for option values in dollars, N = 1 is used. We use N = 1 for PRDC
swap pricing too. In all our experiments, we used Δτ1 = 10−2 and dnorm = 0.3 on
the coarsest grids. The value of dnorm is reduced by two at each refinement, while
Δτ1 is reduced by four.

3.3 A PDE Pricing Algorithm

Denote by a(t), 0 ≤ a(t) < ac, the auxiliary path-dependent state variable which
represents the accumulated PRDC coupon amount. The value of a FX-TARN PRDC
swap depends on four stochastic state variables, namely s(t), rd(t), rf (t) and the path-
dependent variable a(t). It is important to note that, since a(t) changes only on the
dates {Tα}βα=1, the pricing PDE does not depend on a(t) (see (2.9)). For presentation
purposes, we further adopt the following notation: aα+ ≡ a(Tα+), aα− ≡ a(Tα−).

Pricing FX-TARN PRDC swaps via a PDE approach is highly challenging due to the
path-dependency of the TARN feature and the backward nature of a PDE approach. We
observe that, over each period [T(α−1)+ , Tα−] of the swap’s tenor structure, the back-
ward procedure, which computes the solution backward in time from Tα− to T(α−1)+ ,
needs to be invoked only if the swap is still alive at time T(α−1)+ , i.e. if a(α−1)+

satisfies 0 ≤ a(α−1)+ < ac. Since we progress backward in time and the variable
a(t) is path-dependent, we do not know the exact value of a(α−1)+ . However, since
0 ≤ a(α−1)+ < ac, we can discretize the variable a, as we do with other spatial vari-
ables. To this end, we partition the interval [0, ac] into w + 1 sub-intervals having non-
uniform gridpoints,

0 = a0 < a1 < . . . < aw < aw+1 = ac, (3.3)

where the gridpoints are denser toward ac. The PDE pricing framework for a FX-TARN
PRDC swap involves

(a) across each date {Tα}1α=β and for each discretized value ay of the variable a, ap-
plying certain updating rules to (i) take into account the fund flows scheduled on that
date; (ii) reflect changes in the accumulated PRDC coupon amount, and the possibility
of early termination; and (iii) obtain terminal conditions for the solution of the PDE
from time Tα− to T(α−1)+ .
(b) over each period [T(α−1)+ , Tα−], α = β, . . . , 1, of the swap’s tenor structure, for
each discretized value ay of the variable a, solving the model PDE (2.9) backward in
time from Tα− to T(α−1)+ , with the corresponding terminal condition obtained from
the above step.

Remark 1. To improve the efficiency of the numerical methods, for the solution of the
model PDE, we use non-uniform grids. We denote by Δy

α, y = 0, . . . , w, the non-
uniform three-dimensional grids used for the solution of the PDE corresponding to
ay over the time period [T(α−1)+ , Tα−] in (b) above. The non-uniform grids Δy

α are
more refined around rd(0) and rf (0) in the rd- and the rf -directions, respectively. In
the s-direction, the grids Δy

α, are more refined around the strike kα and around the

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 115

value of s at which the early termination occurs, hereinafter denoted by byα. Note that,
within [T(α−1)+ , Tα−], kα is the same for all sub-problems, but byα, y = 0, . . . , w, are
not. Both kα and byα, y = 0, . . . , w, change from one time period to the next. In our
implementation, we apply linear interpolation along the s- and a-directions to switch
between spatial grids (see Lines 5 and 10 of Algorithm 3.1).

Let uα(t; a) represent the value at time t of a FX-TARN PRDC swap that has (i)
{Tα+1, . . . , Tβ} as pre-mature termination opportunities, i.e. the swap is still alive at
time Tα; and (ii) the total accumulated PRDC coupon amount, including the coupon
amount scheduled on Tα, is equal to a < ac. In particular, the quantity u0(T0; 0) is the
value of the FX-TARN PRDC swap we are interested in at time T0. Also let uy,α̃

α (t; a),
y = 0, . . . , w, α̃ = β, . . . , 1, represent an approximation to uα(t; a) at gridpoints of
the computational grid Δy

α̃. In general, the indices (y, α̃) denote the associated com-
putational grid Δy

α̃, y = 0, . . . , w, α̃ = β, . . . , 1. A backward pricing algorithm for
FX-TARN PRDC swaps is presented in Algorithm 3.1.

4 Efficient Implementation on Clusters of GPUs

4.1 GPU Device Architecture

A GPU is a hierarchically arranged multiprocessor unit, in which several scalar pro-
cessors are grouped into a smaller number of streaming multiprocessors (SMs). Each
SM has shared memory accessed by all its scalar processors. In addition, the GPU has
global (device) memory (slower than shared memory) accessed by all scalar proces-
sors on the chip, as well as a small amount of cache for storing constants. According
to the programming model of CUDA, which we adopt, the host (CPU/master) uploads
the intensive work to the GPU as a single program, called the kernel. Multiple copies
of the kernel, referred to as threads, are then distributed to the available processors,
where they are executed in parallel. Within the CUDA framework, threads are grouped
into threadblocks, which are in turn arranged on a grid. Threads in a threadblock run
on at most one multiprocessor, and can communicate with each other efficiently via the
shared memory, as well as synchronize their executions. For a more detailed description
of the GPU, interested readers are referred to [20].

4.2 GPU Cluster

All of the experiments in this paper were carried out on a GPU cluster with the follow-
ing specifications:
- The cluster has 22 (server) nodes, each of which consists of two quad-core Intel
“Harpertown” host systems with Intel Xeon E5430 CPUs running at 2.66GHz, with
a total of 8GB of memory shared between the two quad-core Xeon processors. Thus,
there are 44 hosts available. All the nodes are interconnected via 4x DDR Infiniband
(16 Gigabytes/s).
- The GPU portion of the cluster is composed of 11 NVIDIA S1070 GPU servers, each
of which contains two pairs of Tesla 10-series (T10) GPUs. Thus, there are 44 GPUs
available. Each pair of the T10 GPUs is attached to a node via a PCI Express 2.0x16

116 D.M. Dang, C.C. Christara, and K.R. Jackson

Algorithm 3.1 Backward algorithm for computing FX-TARN PRDC swaps.

1: construct Δy
β ; set uβ(Tβ+ ; ay) = 0, y = 0, . . . , w;

2: for α = β, . . . , 1 do
3: for each ay, y = 0, . . . , w, do
4: set āy = ay +min(ac − ay, ναCαNd); (3.4)

5: set

uy,α
α−1(Tα+ ; āy) =

⎧
⎪⎨

⎪⎩

0 if āy ≥ ac,
āy−aȳ

aȳ+1−aȳ
uy,α
α (Tα+ ; aȳ+1) +

aȳ+1−āy

aȳ+1−aȳ
uy,α
α (Tα+ ; aȳ)

if aȳ ≤ āy ≤ aȳ+1, ȳ ∈ {0, . . . , w},
(3.5)

where uy,α
α (Tα+ ; aȳ) and uy,α

α (Tα+ ; aȳ+1) are obtained by linear interpolation along
the s-direction on uȳ,α

α (Tα+ ; aȳ) and uȳ+1,α
α (Tα+ ; aȳ+1), respectively;

6: set
ûy,α
α−1(Tα− ; ay) = uy,α

α−1(Tα+ ; āy)−min(ac − ay , ναCαNd); (3.6)

7: solve the PDE (2.9) with the terminal condition (3.6) from Tα− to T(α−1)+ using the
ADI scheme (3.1) for each time τm, m = 1, . . . , l, with the timestep size Δτm selected
by (3.2), to obtain ˆ̂uy,α

α−1(T(α−1)+ ; ay);
8: if α ≥ 2 then
9: construct Δy

α−1

10: linearly interpolate ˆ̂uy,α
α−1(T(α−1)+ ; ay) along the s-direction to obtain

ˆ̂
ûy,α−1
α−1 (T(α−1)+ ; ay);

11: set uy,α−1
α−1 T(α−1)+ ; ay) =

ˆ̂
ûy,α−1
α−1 (T(α−1)+ ; ay) + (1− Pd(Tα))Nd; (3.7)

12: else
13: set uy,α

α−1T(α−1)+ ; ay) = ˆ̂uy,α−1
α (T(α−1)+ ; ay) + (1− Pd(Tα))Nd; (3.8)

14: end if
15: end for
16: end for
17: set u0(T0; 0) = u0(T0+ ; 0);

link. As such, there is a T10 GPU per quad-core Xeon processor, and thus each host has
a GPU associated with it, and vice-versa.
Each NVIDIA Tesla T10 GPU consists of 4GB of global memory, 30 independent SMs,
each containing 8 processors running at 1.44GHz, a total of 16384 registers, and 16 KB
of shared memory per SM.

4.3 GPU-Based Parallel Pricing Framework

The key point in Algorithm 3.1 is that, over each time period [T(α−1)+ , Tα−] of the tenor
structure, we have multiple, entirely independent, pricing sub-problems (processes) to
solve, each of which corresponds to a discrete value ay , y = 0, . . . , w. Hence, within
each time period of the tenor structure, it is natural to assign each of the w + 1 pricing
processes to a separate host/GPU. However, communication between these pricing pro-

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 117

cesses is required across each date of the tenor structure, due to the interpolation (3.5)
along the a-direction.

In the following presentation, we assume that the total number of available hosts
of the cluster is at least w + 1, each host having a respective GPU associated with it.
Under the MPI framework, assume that a group of w + 1 parallel pricing processes
has been created, with the y-th process being associated with the discrete value ay ,
y = 0, . . . , w. Here, the quantities y, y = 0, . . . , w, are referred to as ranks of the
processes in the group. For each instance of α, α = β, . . . , 1, to proceed from Tα to
Tα−1, assume that the values uy,α

α (Tα+ ; ay), y = 0, . . . , w, have been computed at
the previous period of the tenor structure, and are available in the yth host/GPU. Also
assume that the appropriate kernels have been launched by the hosts on the respective
GPUs. Then, the parallel implementation of Algorithm 3.1 for one instance of α can be
described by the following stages:

Stage 1: each thread in each GPU updates its quantity āy via (3.4), then determines the
ranks of those processes from which it will require to receive data in order to apply the
interpolation (3.5); each GPU appropriately collects the ranks’ data from all its threads,
so that each process knows collectively the ranks of those processes from which it will
require to receive data to apply (3.5);
Stage 2: each host copies the ranks’ data from its GPU global memory to the host mem-
ory.
Stage 3: the hosts perform communication amongst each other via MPI, so that each
host receives the data needed for the interpolation (3.5) associated with the host’s pro-
cess.
Stage 4: each host copies the relevant data form its host memory to its GPU global
memory.
Stage 5: each thread in each GPU carries out the interpolation (3.5).
Stage 6: each thread in each GPU computes the PRDC coupons via (3.6).
Stage 7: each GPU solves its associated PDE (2.9) from Tα− to T(α−1)+ with the ter-
minal condition obtained from Stage 6.
Stage 8: each thread in each GPU (possibly) applies linear interpolation along the s-
direction as given on Line 10 of Algorithm 3.1.
Stage 9: each thread in each GPU computes the funding payments via (3.7) or (3.8).

Note that, Stage 3 involves communication among hosts using MPI, while all other
stages take place in each host/GPU, in parallel with and independently from other
hosts/GPUs.

We now give more details of the implementation of the above stages. For presentation
purposes, we denote by uy

α+ the vector of data corresponding to ay , y = 0, . . . , w,
i.e. the vector of data of the process y, available at time Tα+ as it results from the
computations during the last time period [Tα+ , T(α+1)−].

4.4 Stages 1 and 2

For each process y, y = 0, . . . , w, i.e. for each host/GPU, assume that we have an array
of size w + 1 in the host memory, referred to as the array RECV FROM . The ȳth
entry of the array RECV FROM corresponds to the discrete value aȳ , ȳ = 0, . . . , w,

118 D.M. Dang, C.C. Christara, and K.R. Jackson

i.e. it corresponds to the process with rank ȳ of the group. The entries of the array are
of binary type, and are pre-set to a certain value, e.g. 0. The array is copied from the
host memory to the device memory before the kernel of Stage 1 is launched.

We partition the computational grid of size n×p× q into 2-D blocks of size nb×pb.

We let the kernel generate a ceil
(

n
nb

)
× ceil

(
pq
pb

)
grid of threadblocks, where

ceil denotes the ceiling function. All gridpoints of a nb × pb 2-D block are assigned
to one threadblock only, with one thread for each gridpoint.

Each thread of a threadblock of the kernel launched in this stage computes the quan-
tity āy associated with it via (3.4). If the quantity āy satisfies aȳ ≤ āy ≤ aȳ+1 for some
ȳ ∈ {y, . . . , w}, the thread then changes the pre-set values of the ȳ and (ȳ+1)st entries
in the array RECV FROM to 1. This procedure essentially marks the ranks of the
processes from which some data are required by process y. Note that no data loadings
from the global memory are required for this procedure.

The approach adopted here suggests a (w+1−y)-iteration loop in the kernel. During
each iteration, each threadblock works with a pair of aȳ and aȳ+1. Note that, although
it may happen that multiple threads try to write to the same memory location of an
entry of the array at the same time, it is guaranteed that one of the writes will succeed.
Although we do not know which one, it does not matter for our purposes. Consequently,
this approach suffices and works well.

After the kernel of Stage 1 has ended, Stage 2 takes place, in which the array
RECV FROM is copied back to the host memory for use in Stage 3.

4.5 Stages 3 and 4

At this point, each host has the array RECV FROM corresponding to its process.
Next, each process is to determine the ranks of those processes which need its data.

To handle this issue, consider a fictitious (w+1)× (w+1) matrix, for which the ỹth
row, ỹ = 0, . . . , w, is the array RECV FROM of the process of rank ỹ. We observe
that the yth column of this matrix, referred to as the array SEND TO, marks the ranks
of processes which need the yth process data.

To form the array SEND TO in each host, all hosts perform collective communica-
tion via MPI, essentially a parallel matrix transposition using the function
MPI Alltoall(· · ·).

Now, each process has in its host memory the arrays RECV FROM and
SEND TO, in addition to the vector uy

α+ . Thus, each process can easily perform
data exchange with the appropriate processes, by looping through all the “marked” en-
tries of the arrays RECV FROM and SEND TO. In our implementation, we use
MPI Send(· · ·) and MPI Recv(· · ·).

At this point, process y has in its host memory all the vectors of data it needs to carry
out the interpolation scheme (3.5). By the data exchange procedure described above,
these vectors are stored in a buffer in increasing order with respect to their associated
ranks (or discrete values of a). For presentation purposes, we assume that a total of
k − 1, k ≥ 1, vectors of data were fetched by process y from other processes during
Stage 3. We denote the sorted by index list of k vectors, including the vector uy

α+ ,
by {uy1

α+ , . . . ,u
yk

α+}, where yj , j = 1, . . . , k, are in {y, . . . , w}, with y1 = y, and
y1 < y2 < · · · < yk. This concludes Stage 3.

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 119

In Stage 4, these vectors are then copied from the process’ host memory to the global
memory of the respective GPU, before the kernel for Stage 5 is launched.

4.6 Stages 5 and 6

In Stage 5, for a GPU-based implementation of the interpolation procedure, we adopt
the same partitioning approach and assignment of gridpoints to threads as in Stage 1
described earlier. Recall that, in Stage 1, each thread has already computed the quantity
āy associated with it using (3.4). The interpolation (3.5) can be achieved by a k-iteration
loop in the kernel. During the jth iteration of the k-iteration loop in the kernel, each
thread in a threadblock performs linear interpolations, first along the s-direction, then
along the a-direction, using the corresponding values in u

yj

α+ and u
yj+1

α+ . Note that full
memory coalescence is achieved for the data loading of this stage [21].

In Stage 6, using the same partitioning, each thread then computes the PRDC coupons
via (3.6), independently from the others.

4.7 Stage 7

We now discuss a GPU-based parallel algorithm for the solution of the model PDE
problem. The parallelism in a GPU for this stage is based on an efficient paralleliza-
tion of the computation of each timestep of the ADI scheme (3.1a)–(3.1d) developed
in our paper [7]. Below, we summarize our implementation. For details and discus-
sions of related issues, such as memory coalescing and possible improvements, of our
implementation, we refer the reader to [7].

4.7.1 ADI timestepping on GPUs
The HV scheme (3.1a)–(3.1d) can be divided into two phases. The first phase consists
of a forward Euler step (predictor step (3.1a)), followed by three implicit, but unidirec-
tional, corrector steps (3.1b), the purpose of which is to stabilize the predictor step. The
second phase (i.e. (3.1c)-(3.1d)) restores second-order convergence of the discretization
method if the model PDE contains mixed derivatives. Step (3.1e) is trivial. With respect
to the CUDA implementation, the two phases are essentially the same; they can both
be decomposed into matrix-vector multiplications and solving independent tridiagonal
systems. Hence, for brevity, we only summarize our GPU parallelization of the first
phase. For presentation purposes, let

wi = ΔτmAm−1
i um−1 +Δτm(gm−1

i − gm
i), i = 0, 1, 2, 3,

Âm
i = I− θΔτmAm

i , v̂i = vi−1 − θwi, i = 1, 2, 3,

and notice that v0 = um−1 +

3∑
i=0

wi + Δτmgm. It is worth noting that the vectors

wi,vi, i = 0, 1, 2, 3, and v̂i, i = 1, 2, 3, depend on τ , but, to simplify the notation, we
do not indicate the superscript for the timestep index. Our CUDA implementation of
the first phase consists of the following steps:
1. Step a.1: Compute the matrices Am

i , i = 0, 1, 2, 3, and Âm
i , i = 1, 2, 3, and the

120 D.M. Dang, C.C. Christara, and K.R. Jackson

vectors wi, i = 0, 1, 2, 3, and v0.
2. Step a.2: Set v̂1 = v0 − θw1 and solve Âm

1 v1 = v̂1;
3. Step a.3: Set v̂2 = v1 − θw2 and solve Âm

2 v2 = v̂2;
4. Step a.4: Set v̂3 = v2 − θw3 and solve Âm

3 v3 = v̂3;

First phase - Step a.1

We partition the computational grid of size n×p×q into three-dimensional (3-D) blocks
of size nb × pb × q, each of which can be viewed as consisting of q two-dimensional
(2-D) blocks, referred to as tiles, of size nb×pb. For Step a.1, we let the kernel generate

a ceil
(

n
nb

)
× ceil

(
p
pb

)
grid of threadblocks. Each of the threadblocks, in turn,

consists of a total of nbpp threads arranged in 2-D arrays, each of size nb × pb. All
gridpoints of a nb × pb × q 3-D block are assigned to one threadblock only, with one
thread for each stack of q gridpoints. Note that, since each 3-D block has a total of q
nb × pb tiles and each threadblock is of size nb × pb, the approach that we use here
suggests a q-iteration loop in the kernel. During each iteration of this loop, each thread
of a threadblock carries out all the computations/work associated with one gridpoint,
and each threadblock processes one nb × pb tile.

Regarding the construction of the matrices Am
i , i = 0, 1, 2, 3, and Âm

i , i = 1, 2, 3,
note that each of these matrices has a total of npq rows, with each row corresponding to
a gridpoint of the computational domain. Our approach is to assign each of the threads
to assemble q rows of each of the matrices (a total of three entries per row of each
matrix, since all matrices are tridiagonal). More specifically, during each iteration of
the q-iteration loop in the kernel, each group of nbpb rows corresponding to a tile is
assembled in parallel by a nb × pb threadblock, with one thread for each row. That is, a
total of np consecutive rows are constructed in parallel by the threadblocks during each
iteration.

Regarding the parallel computation of the vectors wi, i = 0, 1, 2, 3, it is important to
emphasize that, to calculate the values corresponding to gridpoints of the kth tile (i.e.
the tile on the kth s-rd plane), the data of the two adjacent tiles in the rf -direction (i.e.
the (k− 1)st and the (k+1)st tiles) are needed as well. Since 16KB of shared memory
available per multiprocessor are not sufficient to store many data tiles, each threadblock
works with three data tiles of size nb × pb at a time and proceeds in the rf -direction.
As a result, we utilize a three-plane loading strategy. More specifically, during the kth
iteration of the q-iteration loop in the kernel, assuming the data corresponding to the kth
and (k − 1)st tiles in the shared memory from the previous iteration, each threadblock

1. loads from the global memory into its shared memory the old data (vector um−1)
corresponding to the (k + 1)st tile,
2. computes and stores new values (vectors wi, i = 0, 1, 2, 3 and v0) for the kth tile
using data of the (k − 1)st, kth and (k + 1)st tiles,
3. copies the newly computed data of the kth tile (vectors wi, i = 1, 2, 3 and v0) from
the shared memory to the global memory, and frees the shared memory locations taken
by the data of the (k − 1)st tile, so that they can be used in the next iteration.

Note that the data loading approach for Step a.1 is not fully coalesced, although it is
highly effective. (We believe it is impossible to attain full memory coalescing for the
data-loading part of this phase.)

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 121

First phase - Steps a.2, a.3, a.4

The data partitioning for each of Steps a.2, a.3 and a.4 is different from that for Step a.1
and is motivated by the block structure of the tridiagonal matrices Âm

i , i = 1, 2, 3,
respectively. For example, Âm

1 has pq diagonal blocks, each block being n× n tridiag-
onal, thus the solution of Âm

1 v1 = v̂1, i.e. Step a.2, is computed by first partitioning
Âm

1 and v̂1 into pq independent n × n tridiagonal systems, and then assigning each
tridiagonal system to one of the pq threads generated, i.e. each thread is assigned n
gridpoints along the s-direction.

Regarding the memory coalescing for Steps a.2, a.3 and a.4, note that, in the current
implementation, the data between Steps a.1, a.2, a.3 and a.4 are ordered in the s-, then
the rd-, then the rf -direction. As a result, the data partitionings for the tridiagonal solves
in the rd- and rf -direction, i.e. for solving Âm

i vi = v̂i, i = 2, 3, allow full memory
coalescence, while the data partitioning for solving Âm

1 v1 = v̂1 does not.

4.7.2 Timestep Selector on GPUs
As for the timestep selector (3.2), the key part in implementing it on the GPU involves
finding the minimum element of an array of real numbers. In this regard, we adapt the
parallel reduction technique discussed in [22]. The idea is to partition the array into
multiple sub-arrays of size st, each of which is assigned to a 1-D threadblock of the
same size. During the first kernel launch, each threadblock carries out the reduction
operation via a tree-based approach to find the minimum of the corresponding sub-
array and writes the intermediate result to a location in an array in the global memory.
This array of intermediate minimum elements is then processed in the same manner
by passing it on to a kernel again. This process is repeated until the array of partial
minimums can be handled by a kernel launch with only one threadblock of size st,
after which the minimum element of the initial array is found. More details about the
implementation of the timestep selector can be found in our paper [8].

4.8 Stages 8 and 9

The GPU-based implementation for these stages is straightforward, since each thread
of a threadblock can work independently from the others, i.e. neither communication
between threads nor between processes is required. We use the same partitioning ap-
proach and assignment of gridpoints to threads employed in Stage 1. This approach
allows for full memory coalescence of the loading of data from the global memory.

5 Numerical Results

As parameters to the model, we consider the same interest rates, correlation parame-
ters, and the local volatility function as given in [12]. The domestic (JPY) and foreign
(USD) interest rate curves are given by Pd(0, T) = exp(−0.02 × T) and Pf (0, T) =
exp(−0.05×T). The volatility parameters for the short rates and correlations are given
by σd(t) = 0.7%, κd(t) = 0.0%, σf (t) = 1.2%, κf (t) = 5.0%, ρdf = 25%,
ρds = −15%, ρfs = −15%. The initial spot FX rate is set to s(0) = 105.00, and

122 D.M. Dang, C.C. Christara, and K.R. Jackson

Table 1. The parameters ξ(t) and ς(t) for the local volatility function (2.8). (Table C in [12].)

period (years)
(0, 0.5] (0.5, 1] (1, 3] (3, 5] (5, 7] (7, 10] (10, 15] (15, 20] (20, 25] (25, 30]

ξ(t) 9.03% 8.87% 8.42% 8.99% 10.18% 13.30% 18.18% 16.73% 13.51% 13.51%
ς(t) -200% -172% -115% -65% -50% -24% 10% 38% 38% 38%

the initial domestic and foreign short rate are 0.02 (2%) and 0.05 (5%), respectively,
which follows from the respective interest rate curve. The parameters ξ(t) and ς(t) for
the local volatility function are assumed to be piecewise constant and given in Table 1.
Note that the forward FX rate F (0, t) defined by (2.5) and θi(t), i = d, f , in (2.7), and
the domestic LIBOR rate (2.3) are fully determined by the above information [14].

We consider the tenor structure (2.1) that has the following properties: (i) να = 1
(year), α = 1, . . . , β + 1 and (ii) β = 29 (years). Features of the PRDC swap are: the
domestic and foreign coupons are cd = 2.25%, cf = 4.50% and cd = 8.1, cf = 9.00%,
with the cap ac being set to 50% and 10%, respectively, of the notional.

The truncated computational domain Ω is defined by setting s∞ = 5s(0) = 525.0,
rd,∞ = 10rd(0) = 0.2, and rf,∞ = 10rf (0) = 0.5. The grid sizes and the number of
timesteps reported in the tables in this section are for each time period of the Table 1.
Note that, since the timestep size selector (3.2) is used, the number of timesteps reported
is the average number of timesteps for all sub-problems over all time periods of the
swap’s tenor structure.

We report the quantity “value”, which is the value of the financial instrument. In pric-
ing PRDC swaps, this quantity is expressed as a percentage of the notional Nd. Since
in our case, an accurate reference solution is not available, to provide an estimate of
the convergence rate of the algorithm, we also compute the quantity “logη ratio” which
provides an estimate of the convergence rate of the algorithm by measuring the differ-
ences in prices on successively finer grids, referred to as “change”. More specifically,
this quantity is defined by

logη ratio = logη

(
uapprox(Δx) − uapprox(

Δx
η)

uapprox(
Δx
η)− uapprox(

Δx
η2)

)
,

where uapprox(Δx) is the approximate solution computed with discretization stepsize
Δx. For second-order methods, such as those considered in this paper, the quantity
logη ratio is expected to be about 2.

5.1 Convergence of Computed Prices

In this subsection, we demonstrate the correctness of our implementation. In Table 2,
we present pricing results for FX-TARN PRDC swaps for two different combinations
of cd, cf and ac. In both cases, the number of sub-intervals in the a-direction is 30,
i.e. w = 29 in (3.3). We note, for both cases, the computed prices exhibit second-order
convergence, as expected from the ADI timestepping methods and the interpolation
scheme.

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 123

Table 2. Values of the FX-TARN PRDC swap. The total of GPUs used is w + 1 = 30.

cd = 8.1, cf = 9.00%, ac = 10% cd = 2.25%, cf = 4.50%, ac = 50%

l n+1 p+1 q+1 value change log2 value change log2
(τ) (s) (rd) (rf) (%) ratio (%) ratio

6 30 15 15 18.521 -4.487
12 60 30 30 18.609 8.8e-04 -4.409 7.8e-04
23 120 60 60 18.631 2.2e-04 1.9 -4.389 2.0e-04 1.9
47 240 120 120 18.637 5.9e-05 1.9 -4.384 5.4e-05 1.9

The central question, of course, is whether the approximations of prices of FX-
TARN PRDC swaps computed by the PDE method converge to the exact prices. To
verify this, we compare our PDE-computed prices with prices obtained using MC sim-
ulations. More specifically, using MC simulations, with 106 simulation paths for the
spot FX rate, the timestep size being 1/512, and using antithetic variates as the vari-
ance reduction technique, the benchmark prices for the FX-TARN PRDC swaps are
18.638% (std. dev. = 0.021), and −4.383% (std. dev. = 0.020), respectively for the case
cd = 8.1, cf = 9.00% and cd = 2.25%, cf = 4.50%5. The 95% confidence inter-
vals for the two cases are [18.635, 18.641] and [−4.386,−4.379], respectively, which
contain our PDE-computed prices.

For the case cd = 2.25%, cf = 4.50%, the investor should pay a net coupon of about
4.384% of the notional to the issuer. (Note the negative values in this case.) However,
for the case cd = 8.1, cf = 9.00%, the issuer should pay the investor a net coupon of
about 18.631% of the notional.

5.2 Performance Results

For FX - TARN PRDC swaps, due to the high computational requirements of the pric-
ing algorithm, which make sequentially CPU-based computation practically infeasible,
we do not develop CPU-based numerical methods in this case. Instead, we focus on
numerical methods on a GPU cluster and on a single GPU. In this section, we provide
details of the GPU versus GPU cluster performance comparison in pricing FX-TARN
PRDC swaps.

Additional statistics collected in this subsection include the following. The quanti-
ties “GPU time” and “MPI-GPU time” respectively denote the total computation times,
in seconds (s.), on a single GPU and on the GPU cluster with specifications as in Sub-
section 4.2 using MPI. The quantity “MPI-GPU speed up” is defined as the ratio of the
“GPU time” over the respective “MPI-GPU time”. The quantity “MPI-GPU efficiency”
is defined as

MPI-GPU efficiency =
1

w + 1

GPU time
MPI-GPU time

,

which represents the standard (fixed) efficiency of the parallel algorithm using w + 1
GPUs of the cluster.

5 Our sequential code written in MATLAB for MC simulations took about 2 days to finish.

124 D.M. Dang, C.C. Christara, and K.R. Jackson

Table 3 presents some selected timing results for FX-TARN PRDC swaps for the
case cd = 2.25%, cf = 4.50% and ac = 50%. The timing results for the other case are
approximately the same, and hence omitted. Note that the times in the brackets are the
total times required for data exchange between processes using MPI functions.

It is evident that the MPI-GPU implementation on the cluster are significantly more
efficient than the single-GPU implementation, with the asymptotic speedups being about
25 when using 30 GPUs (15 nodes) of the cluster. Note that, our single-GPU implemen-
tation typically attains a speed up of about 30-31 times over a CPU implementation for
the largest grid considered here [6, 7]. This means that a sequentially CPU-based solver
for the FX-TARN PRDC swap would take approximately 170000 (s.) (≈ 5421.1× 32),
or about 2 days to finish. In practical situations, such time requirements are prohibitive.

It is important to emphasize that the GPU-MPI efficiency increases with finer grid
sizes (Table 3, from 60% to 87%). This is to be expected, since a fixed number of GPUs,
i.e. 30 GPUs, is used for all the experiments, whereas the problem size is increasing,
allowing the GPUs to be used more efficiently.

Table 3. Timing results for the FX-TARN PRDC swaps for the case cd = 2.25%, cf = 4.50%
and ac = 50%. The times in the brackets are those required for data exchange between processes
using MPI functions.

l n p q GPU MPI-GPU
time speed- effi-

(τ) (s) (rd) (rf) (s.) (s.) up ciency
12 60 30 30 114.5 6.1 (0.3) 19.3 60%
23 120 60 60 520.7 21.3 (1.8) 24.1 81%
47 240 120 120 5421.1 206.8 (8.2) 26.3 87%

6 Conclusions and Future Work

This paper presents a parallelization on clusters of GPUs of the PDE-based computation
of the price of FX interest rate swaps with the FX-TARN feature under a three-factor
model. Our PDE approach is to partition the pricing problem into several independent
pricing sub-problems over each time period of the swap’s tenor structure, with possible
communication at the end of the time period. Our implementation of the pricing proce-
dure on clusters of GPU involves (i) efficiently solving each independent sub-problems
on a GPU via a parallelization of the ADI timestepping technique, and (ii) utilizing MPI
for the communication between pricing processes at the end of each time period of the
swap’s tenor structure. The results of this paper show that GPU clusters can provide
a significant increase in performance over GPUs, when pricing exotic cross-currency
interest rate derivatives with path-dependence features.

From a modeling perspective, it is desirable to impose stochastic volatility on the
FX rate so that the market-observed FX volatility smiles are more accurately approxi-
mated [6]. This enrichment to the current model leads to a time-dependent PDE in four

PDE-Based Pricing of FX-TARN PRDC Swaps on GPU Clusters 125

state variables – the spot FX rate, domestic and foreign interest rates, and volatility. In
such an application, a our proposed parallel pricing method is expected to deliver even
larger speedups and better performance when pricing path-dependent foreign exchange
interest rate derivatives.

References

[1] Sippel, J., Ohkoshi, S.: All power to PRDC notes. Risk Magazine 15(11), 1–3 (2002)
[2] Piterbarg, V.V.: TARNs: Models, Valuation, Risk Sensitivities. Wilmott Magazine 14,

62–71 (2004)
[3] Abbas-Turki, L.A., Vialle, S., Lapeyre, B., Mercier, P.: High dimensional pricing of exotic

European contracts on a GPU cluster, and comparison to a CPU cluster. In: Proceedings of
the 2nd International Workshop on Parallel and Distributed Computing in Finance, pp. 1–8.
IEEE Computer Society (2009)

[4] Murakowski, D., Brouwer, W., Natoli, V.: CUDA implementation of barrier option valuation
with jump-diffusion process and Brownian bridge. In: Proceedings of the ACM/IEEE Inter-
national Conference for High Performance Computing, Networking, Storage, and Analysis,
pp. 1–4. IEEE Computer Society (2010)

[5] Tian, Y., Zhu, Z., Klebaner, F.C., Hamza, K.: Pricing barrier and American options under
the SABR model on the graphics processing units. Concurrency and Computation: Practice
and Experience, 867–879 (2012)

[6] Dang, D.M., Christara, C., Jackson, K.: Graphics processing unit pricing of exotic cross-
currency interest rate derivatives with a foreign exchange volatility skew model. Journal of
Concurrency and Computation: Practice and Experience (to appear, 2013),
http://onlinelibrary.wiley.com/doi/10.1002/cpe.2824/abstract

[7] Dang, D.M., Christara, C., Jackson, K.: A parallel implementation on GPUs of ADI fi-
nite difference methods for parabolic PDEs with applications in finance. Canadian Applied
Mathematics Quarterly (CAMQ) 17(4), 627–660 (2009)

[8] Dang, D.M., Christara, C., Jackson, K.: An efficient graphics processing unit-based parallel
algorithm for pricing multi-asset American options. Journal of Concurrency and Computa-
tion: Practice and Experience 24(8), 849–866 (2012)

[9] Egloff, D.: GPUs in financial computing part III: ADI solvers on GPUs with application to
stochastic volatility. Wilmott, 50–53 (March 2011)

[10] Egloff, D.: Pricing financial derivatives with high performance finite difference solvers on
GPUs. In: Hwu, W.-M.W. (ed.) GPU Computing Gems Jade Edition. Applications of GPU
Computing Series, pp. 309–322 (2012)

[11] Dang, D.M., Christara, C., Jackson, K., Lakhany, A.: An efficient numerical PDE approach
for pricing foreign exchange interest rate hybrid derivatives. To appear in the Journal of
Computational Finance (2012), http://ssrn.com/abstract=2028519

[12] Piterbarg, V.: Smiling hybrids. Risk Magazine 19(5), 66–70 (2006)
[13] Gropp, W., Lusk, E., Skjellum, A.: Using MPI-2: Advanced Features of the Message Pass-

ing Interface, 1st edn. MIT Press (1999)
[14] Andersen, L.B., Piterbarg, V.V.: Interest Rate Modeling, 1st edn. Atlantic Financial Press

(2010)
[15] Dang, D.M., Christara, C.C., Jackson, K., Lakhany, A.: A PDE pricing framework for cross-

currency interest rate derivatives. In: Proceedings of the 10th International Conference in
Computational Science (ICCS). Procedia Computer Sciences, vol. 1, pp. 2371–2380. Else-
vier (2010)

http://onlinelibrary.wiley.com/doi/10.1002/cpe.2824/abstract
http://ssrn.com/abstract=2028519

126 D.M. Dang, C.C. Christara, and K.R. Jackson

[16] Hull, J., White, A.: One factor interest rate models and the valuation of interest rate deriva-
tive securities. Journal of Financial and Quantitative Analysis 28(2), 235–254 (1993)

[17] Haentjens, T., In ’t Hout, K.J.: Alternating direction implicit finite difference schemes
for the Heston-Hull-White partial differential equation. Journal of Computational Fi-
nance 16(1), 83–110 (2012)

[18] Hundsdorfer, W.: Accuracy and stability of splitting with stabilizing corrections. Appl. Nu-
mer. Math. 42, 213–233 (2002)

[19] In ’t Hout, K.J., Welfert, B.D.: Unconditional stability of second-order ADI schemes ap-
plied to multi-dimensional diffusion equations with mixed derivative terms. Appl. Numer.
Math. 59, 677–692 (2009)

[20] NVIDIA: NVIDIA Compute Unified Device Architecture: Programming Guide Version 3.2.
NVIDIA Developer Web Site (2010),
http://developer.nvidia.com/object/gpucomputing.html

[21] Dang, D.M.: Modeling multi-factor financial derivatives by a Partial Differential Equation
approach with efficient implementation on Graphics Processing Units. PhD thesis, Depart-
ment of Computer Science, University of Toronto, Toronto, Ontario, Canada (2011)

[22] Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In: GPU
Gems 3, pp. 851–877. NVIDIA (2007)

http://developer.nvidia.com/object/gpucomputing.html

	A Highly Efficient Implementation on GPU Clusters of PDE-Based Pricing Methods for Path-Dependent Foreign Exchange Interest Rate Derivatives
	1 Introduction
	2 Power-Reverse Dual-Currency Swaps
	2.1 Introduction
	2.2 The Model and the Associated PDE

	3 Numerical Methods
	3.1 Discretization of the Model PDE
	3.2 Timestep Size Selector
	3.3 A PDE Pricing Algorithm

	4 Efficient Implementation on Clusters of GPUs
	4.1 GPU Device Architecture
	4.2 GPU Cluster
	4.3 GPU-Based Parallel Pricing Framework
	4.4 Stages 1 and 2
	4.5 Stages 3 and 4
	4.6 Stages 5 and 6
	4.7 Stage 7
	4.7.1 ADI timestepping on GPUs
	4.7.2 Timestep Selector on GPUs
	4.8 Stages 8 and 9

	5 Numerical Results
	5.1 Convergence of Computed Prices
	5.2 Performance Results

	6 Conclusions and Future Work
	References

