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Abstract

We develop space-time adaptive and high-order methods for valuing American options using a partial differ-
ential equation (PDE) approach. The linear complementarity problem arising due to the free boundary is handled
by a penalty method. Both finite difference and finite elementmethods are considered for the space discretiza-
tion of the PDE, while classical finite differences, such as Crank-Nicolson, are used for the time discretization.
The high-order discretization in space is based on an optimal finite element collocation method, the main com-
putational requirements of which are the solution of one tridiagonal linear system at each time step, while the
resulting errors at the gridpoints and midpoints of the space partition are fourth-order. To control the space error,
we use adaptive gridpoint distribution based on an error equidistribution principle. A time stepsize selector is
used to further increase the efficiency of the methods. Numerical examples show that our methods converge fast
and provide highly accurate options prices, Greeks, and early exercise boundaries.

Key words: adaptive mesh selection, error equidistribution, quadratic splines, collocation, finite differences, European

option, American option, penalty method

1 Introduction

The pricing of an American option is a difficult task, mainly due to the early exercise feature of the option
[34, 38]. Typically, at any time, there is a specific value of the asset price that divides the asset domain into the early
exercise region, where the option should be exercised immediately, and the continuation region, where the option
should be held. Hence, the early exercise feature leads to anadditional constraint which stipulates that the value of
an American option must be greater than or equal to its payoff. This constraint requires special treatment, a fact that
makes an explicit closed form solution for an American option intractable for most cases. Consequently, numerical
methods must be used.

Although several approaches, such as Monte Carlo simulations [16, 25], lattice (tree) methods [21, 22], or
integral equations [2, 4, 27], can be used for pricing an American option, for problems in low dimensions, i.e.
less than five dimensions, the partial differential equation (PDE) approach is very popular, due to its efficiency
and global character. In addition, accurate hedging parameters, such as delta and gamma, which are essential
for risk-managing financial derivatives, are generally much easier to compute via a PDE approach than via other
methods. Using a PDE approach, the American option pricing problem can be formulated as a time-dependent
linear complementarity problem (LCP) with the inequalities involving the Black-Scholes PDE and some additional
constraints [37]. Recently, several approaches for handling the LCP have been developed. In particular, various
penalty methods were discussed in [14, 29, 39]. In this paper, we adopt the penalty method of [14] to solve the LCP.
According to this approach, a penalty term is introduced in the discretized equations in order to enforce the early
exercise constraint. Although this method was originally built upon a finite volume (FV) discretization method for
the space dimension, the idea of this method could be extended to other discretization techniques, such as finite
difference (FD) and finite element.

The popularity of finite differences in option pricing is mainly due to their intuition and easiness to implement.
Finite elements can also be used as an alternative. These discretization methods offer several advantages over finite
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differences such as: (i) the solution is a piecewise polynomial approximation to the entire domain, while the method
of finite differences supplies an approximate solution onlyto distinct points in the domain, thus interpolation may
become necessary; (ii) there are several finite element methods, for instance, spline collocation, that supply hedging
parameters, such as delta and gamma, as a by-product, and, inaddition, allow other hedging parameters to be
computed in a slightly easier manner than with finite differences. In particular, certain spline collocation1 methods
have been shown to be effective on uniform and non-uniform grids for the solution of boundary value problems
[7, 8] and parabolic initial value problems [6].

Using spline collocation in its standard formulation givesonly second-order, thus suboptimal, accuracy. In the
context of parabolic PDEs, this suboptimal spline collocation method requires the solution of one tridiagonal linear
system at each timestep. In general, high-order methods in space usually require larger discretization stencils,
and hence the systems to be solved at each timestep are not tridiagonal. In [6], several optimal and efficient
methods based on quadratic spline collocation (QSC) are developed for one-dimensional linear parabolic PDEs.
These methods give fourth-order (optimal) convergence on the knots and midpoints with the main computational
requirements of the methods being the solution of only one tridiagonal linear system at each timestep. Extensions
of such efficient high-order spline collocation methods to option pricing, especially to pricing American options,
have not been previously discussed in literature. This shortcoming motivated our work.

Adaptive methods aim at dynamically adjusting the locationof the gridpoints in order to control the error in the
approximate solution. Although adaptive techniques have been extensively developed for numerical solutions of
parabolic PDEs (e.g. [7, 12, 13, 36]), they are not so frequent in the option pricing literature. Example of algorithms
for adaptivity in space and time can be found in [1, 26, 30]. In[1], a space adaptive mesh refinement based on a
posteriori estimates of the finite element discretization errors of the Black-Scholes equation computed using a
Hilbert sum is proposed. The authors of [30] proposed a space-time adaptive FD technique for pricing multi-asset
European options. The adaptivity in space is based on first solving the problem on a coarse grid with large timesteps
for an estimation of the errors, and then resolving the problem with more gridpoints redistributed in such a way that
the estimated local error is below a certain level. In [26], an error equation is derived for the global error in the
solution, and the grid and timestep sizes are chosen such that a tolerance on the final global error is satisfied by the
solution. A popular technique for mesh generation and adaptation is based on De Boor’s equidistribution principle
[11]. The underlying idea of this principle is to relocate the nodes to equidistribute the error in some chosen norm
(or semi-norm) among the subintervals of the partition. Although adaptive techniques based on an equidistribution
principle are widely used in the numerical solution of PDEs,to the best of our knowledge, these techniques have not
been successfully extended to option pricing, in general, and American option pricing, in particular. This deficiency
further motivated our work.

In this paper, we develop highly accurate and efficient numerical methods for pricing American options on a
single asset. Although we focus primarily on the one-dimensional case, some of the results in this paper can be
naturally extended to two or more dimensions. The high-order methods in the spatial dimension are built upon the
efficient and high-order QSC methods of [6]. Second-order FDdiscretization for the spatial variable is also consid-
ered. Adaptive techniques based on the equidistribution principle of [11] are introduced into the space dimension.
A time stepsize selector [14, 23] is used to further increasethe performance of the methods. Numerical results show
that our methods provide highly accurate options prices andGreeks, and capture well the moving behavior of the
free boundary. In this paper, we do not include gridsize estimators and changes of the gridsize from timestep to
timestep, such as those in [36]. We plan to incorporate the gridsize estimators presented in [7] into American option
pricing problems in a near future.

1Note that, in this paper, we use the term “spline” to refer to maximum smoothness piecewise polynomials.
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The remainder of the paper is organized as follows. Section 2presents a PDE formulation of the pricing
problem for an American option. We restrict our attention tothe American put options. In Section 3, we describe
discretization methods with strong emphasis on the efficient and high-order QSC methods, and discuss the selection
of an appropriate form for the discrete penalty term. A penalty iteration for the discretized American put option is
discussed in Section 4. Section 5 introduces an adaptive mesh algorithm for American option pricing and a simple,
but effective, time stepsize selector. Numerical results that demonstrate the efficiency and accuracy of the methods
are presented in Section 6. Section 7 concludes the paper.

2 Formulation

The Black-Scholes model for American put options takes the form of a free boundary problem [34, 38]. The
disadvantage of the free boundary formulation is that thereis an explicit mention of the free boundary. To avoid
this, we write the American put option valuation problem in an LCP form, and the optimal free boundary can then
be determined a posteriori. More specifically, denoting byS the value at timet of the underlying asset, byT the
expiry time of the option, and byτ = T − t the backward time variable, the early exercise constraint leads to the
following LCP for the valueV (S, τ) of an American put option [37]





∂V

∂τ
− LV = 0

V − V ∗ ≥ 0



 and





∂V

∂τ
− LV > 0

V − V ∗ = 0



 , (2.1)

subject to the payoff
V ∗(S) = V (S, 0) = max(E − S, 0), (2.2)

and the boundary conditions
V (0, τ) = E,

V (S, τ) ∼ 0 as S → S∞,
(2.3)

where

LV ≡
1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV. (2.4)

Here,S∞ is the right boundary of the semi-truncated spatial domain,E is the strike,r andσ are the positive constant
risk-free interest rate and constant asset volatility, respectively.

Following [14], we replace the LCP (2.1) by a non-linear PDE obtained by adding a penalty term to the right side
of the Black-Scholes equation. More specifically, with a penalty parameterζ, ζ → ∞, we consider the non-linear
PDE for an American put option

∂V

∂τ
− LV = ζmax(V ∗ − V, 0), S ∈ Ω ≡ (0, S∞), τ ∈ [0, T ], (2.5)

subject to the initial and boundary conditions (2.2) and (2.3). The penalty termζmax(V ∗−V, 0) effectively ensures
that the solution satisfiesV − V ∗ ≥ −ǫ for 0 < ǫ ≪ 1. Essentially, in the region whereV ≥ V ∗, the PDE (2.5)
resembles the Black-Scholes equation. On the other hand, when−ǫ ≤ V − V ∗ < 0, the Black-Scholes inequality
is satisfied, assuring that the early exercise rule is not violated.

3 Discretization

We now discuss the discretization of (2.5) and the selectionof appropriate forms for the discrete penalty term.
For the rest of the paper, we adopt the following notation. Let ∆j ≡ {Sj

0 ≡ 0 < Sj
1 < Sj

2 < . . . < Sj
n−1 < Sj

n ≡
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S∞} be a partition of̄Ω ≡ Ω ∪ ∂Ω at timeτj, with spatial stepsizes, not necessarily uniform,hj
i = Sj

i − Sj
i−1, i =

1, 2, . . . , n. In general, the superscriptj applied to an operator or a function ofτ and/orS denotes evaluation of the
operator or function at timeτj. Denote byhj

τ = τj − τj−1, j = 1, 2, . . ., thejth timestep size withτ0 = 0. Let
V̄ j(S) ≡ V̄ (S, τj) be the approximation to the true solutionV (S, τj). Furthermore, let̄V j = [V̄ j

1 , V̄
j
2 , . . . , V̄

j
n−1]

T

be the vector of values̄V j
i ≡ V̄ (Sj

i , τj), i = 1, . . . , n− 1. Similarly, denote byV ∗,j = [V ∗,j
1 , V ∗,j

2 , . . . , V ∗,j
n−1]

T the
vector of the payoff valuesV ∗,j

i = V ∗(Sj
i ), i = 1, . . . , n− 1.

To proceed from timeτj−1 to timeτj, we apply the standardθ-timestepping discretization scheme to (2.5)

(I − θhj
τL

j)V̄ j(S) = (I + (1 − θ)hj
τL

j−1)V̄ j−1(S) + Pj(V̄ j(S)), S ∈ Ω, (3.1)

where0 ≤ θ ≤ 1, and incorporate the boundary conditions (2.3) by setting

V̄ j(0) = E, V̄ j(S∞) = 0. (3.2)

Here,I andPj denote the identity and penalty operators, respectively, wherePj is defined byPj(V̄ j(S)) =

ζmax(V ∗(S) − V̄ j(S), 0). The above timestepping technique, together with the boundary conditions, can be
viewed as equivalent to solving a nonlinear BVP at each timestep. In (3.1), the valuesθ = 1/2 andθ = 1 give
rise to the standard Crank-Nicolson (CN) and the fully-implicit methods, respectively. It is known that the CN
method is second-order accurate, but prone to producing spurious oscillations, while the implicit method is first-
order accurate, but maintains strong stability properties(e.g. [31, 40]). To maintain the accuracy of CN as well
as smoothness of the solution, we use the Rannacher smoothing technique [32], which applies the fully-implicit
timestepping in the first few (usually two) timesteps.

3.1 Finite differences

Applying the standard centered FD discretization for the space variable in (3.1) gives rise to an(n−1)×(n−1)

algebraic system of the form

(I + θhj
τM

j + P̄ j)V̄ j = (I − (1 − θ)hj
τM

j−1)V̄ j−1 + P̄ jV ∗,j + ḡj , (3.3)

whereM j is a tridiagonal matrix that arises from discretizingLj by FD on∆j , I is the identity matrix,P̄ j is a
diagonal penalty matrix, and̄gj is a vector containing certain values arising from the boundary conditions. The
explicit formula forM j is

M j ≡ trid{(M j)i,i−1, (M
j)i,i, (M

j)i,i+1}

= trid{−
1

2
σ2(Sj

i )
2βj

1i − rSj
iα

j
1i,−

1

2
σ2(Sj

i )
2βj

2i − rSj
iα

j
2i + r,−

1

2
σ2(Sj

i )
2βj

3i − rSj
iα

j
3i)},

(3.4)

where

αj
1i = −

hj
i+1

hj
i (h

j
i + hj

i+1)
, αj

2i =
(hj

i+1 − hj
i )

hj
ih

j
i+1

, αj
3i =

hj
i

hj
i+1(h

j
i + hj

i+1)
,

βj
1i =

2

hj
i (h

j
i + hj

i+1)
, βj

2i = −
2

hj
ih

j
i+1

, βj
3i =

2

hj
i+1(h

j
i + hj

i+1)
,

and wheretrid{·, ·, ·} denotes a tridiagonal matrix with the sub-, main and super-diagonal elements listed in the
brackets, and with the first and last rows modified to take intoaccount the boundary conditions. The penalty matrix
P̄ j is defined by

(P̄ j)i,l ≡

{
ζ if V̄ j

i < V ∗,j
i and i = l,

0 otherwise.
(3.5)
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3.2 Finite element collocation methods

For high-order discretization in space, we apply collocation based on quadratic splines. We remind the reader
that the space of quadratic splines with respect to partition ∆j with n subintervals has dimensionn + 2, and thus
we needn + 2 conditions. Two of then + 2 conditions are obtained from the boundary conditions (3.2), and the
rest come from collocation conditions, as explained further in this section. Let̄V j(S) =

∑
i c

j
iφ

j
i (S) be the spline

approximation toV (S, τj) expressed in terms of appropriate quadratic spline basis functionsφj
i (S) and coefficients

or degrees of freedom (DOFs)cji . Let Dj ≡ {Dj
i }

n
i=1 be the set of collocation points on the partition∆j. It is

important to emphasize that the choice of collocation points may affect the order of convergence of the resulting
methods [8], especially on a non-uniform grid. In the case ofa uniform partition, i.e.∆j ≡ {Sj

i = ih, i =

0, . . . , n, h = S∞

n }, and quadratic splines, it is natural to haveDj ≡ {Dj
i = (Sj

i−1 + Sj
i )/2, i = 1, . . . , n}. That

is, for a uniform partition, the set of collocation points for a QSC method is chosen to be the set of the midpoints of
the partition. For a non-uniform partition, the set of collocation points is defined slightly differently. In Section 5,
we describe in detail how the set of collocation points for a QSC method can be constructed on an adaptive grid.
For convenience, letDj

0 ≡ Sj
0 = 0 andDj

n+1 ≡ Sj
n = S∞. Also, let V̄ j

I (S) be the quadratic-spline interpolant of
V j(S) satisfying

V̄ j
I (S) = V̄ j(S), S = 0, S ∈ Dj , S = S∞. (3.6)

For the convenience of the reader, we first briefly review spline collocation methods for linear parabolic PDEs.
It is known that applying the standard spline collocation discretization to linear parabolic PDEs results in sub-
optimal approximations, i.e. the order of convergence of the spline collocation approximation is less than that of
the interpolant in the same polynomial space. To obtain optimal (fourth-order) QSC methods for linear parabolic
PDEs, appropriate perturbations of the differential operator L and of the boundary operator, similar to those used
to obtain optimal spline collocation methods for BVPs (e.g.[18]), are developed in [6]. An optimal fourth-order
spline collocation method can be obtained via either deferred-correction (two-step method), using the perturbation
operator in the right-hand side of the collocation equations of the correction step and requiring the solution of two
tridiagonal linear systems per timestep, or extrapolation(one-step method), using the perturbation operator in the
left-hand side of the collocation equations and requiring the solution of an almost pentadiagonal linear system at
each timestep.2

Several optimal (fourth-order) and efficient QSC methods for solving one-dimensional linear parabolic PDEs
with general boundary conditions have recently been introduced and studied in [6]. These methods can be viewed
as combining the two steps of the deferred-correction method into one, and treating the perturbation term forL

explicitly, thus maintaining the fourth-order accuracy, while requiring the solution of only one tridiagonal linear
system per timestep. The QSC discretization for the space variable considered in this paper can be viewed as an
extension of the efficient and optimal method named QSC-CN for linear one-dimensional parabolic PDEs in [6] to
the context of one-dimensional non-linear PDEs of the form (2.5). More specifically,̄V j(S) is computed by

(I − θhj
τL

j)V̄ j(S) = (I + (1 − θ)hj
τL

j−1 + hj
τP

j−1
L )V̄ j−1(S) + Pj(V̄ j(S)), S ∈ Dj,

V̄ j(0) = E, V̄ j(S∞) = 0,
(3.7)

with V̄ 0(S) = V̄ 0
I (S), wherePj

L is an appropriate perturbation ofLj. The definition ofPj
L on a general grid can

be found in [8], and is omitted here for brevity. The reader isreferred to [6] for detailed discussions of the relevant
methods.

2By “almost pentadiagonal”, we mean that all rows of the matrix, except the first two and last two rows, follow a pentadiagonal pattern.
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As discussed in [6], for one-dimensional linear parabolic PDEs, the perturbation termsPj−1
L (V̄ j−1(S)) cor-

responding to the first and last collocation points, namelyDj
1 andDj

n, are responsible for potential instability.
Experiments show that similar conclusion holds for the PDE (2.5). Among several remedies proposed in [6], we
find that the method QSC-CN0, which completely omits the perturbation terms on the first and last collocation
points, is simple and works well for pricing American options. Hence we adopt this choice forPj

L in (3.7).
Let cj ≡ {cji}

n+1
i=0 andc∗,j ≡ {c∗,ji }n+1

i=0 be the vector of the unknown DOFs for the quadratic spline approxi-
mation and the vector of the DOFs for the spline interpolant of the payoff on the partition∆j, respectively. Method
(3.7) gives rise to a(n+ 2) × (n + 2) algebraic system of the form

(Qj
0 + θhj

τQ
j + P j)cj = (Qj−1

0 − (1 − θ)hj
τQ

j−1 + hj
τQ

j−1
P )cj−1 + P jc∗,j + gj , (3.8)

whereQj
0 is the quadratic spline interpolation matrix for the partition ∆j , Qj arises from discretizingLj using

QSC, and the matrixQj−1
P arises fromPj−1

L . We refer the reader to [6] and [8] for the explicit definitions of these
matrices. It is important to note thatQj

0 is a tridiagonal matrix, as opposed to the identity matrix inthe FD case.
The penalty matrixP j is also a tridiagonal matrix, as opposed to a diagonal one in the FD case, and is defined by

(P j)i,l ≡

{
ζ(Qj

0)i,l if V̄ j(S) < V ∗,j(S), S = Dj
i−1 ∈ Dj ∪ ∂Ω,

0 otherwise,
(3.9)

or, equivalently,P j = ¯̄P jQj
0, with

( ¯̄P j)i,l ≡

{
ζ if V̄ j(S) < V ∗,j(S), S = Dj

i−1 ∈ Dj ∪ ∂Ω, and i = l,

0 otherwise.
(3.10)

4 Penalty iteration

In [14], a penalty iteration algorithm for American put options in the context of FV discretization methods is
presented. The penalty iteration algorithms for (3.3) and (3.8) are essentially the same with that in [14], and hence,
for brevity, we only present the penalty algorithm for the QSC methods. Letk be the index of the non-linear penalty
iteration. Letcj,(k) be thekth estimate ofcj , andP j,(k) be thekth penalty matrix constructed at thejth timestep.
The vector of initial guesscj,(0) is usually chosen to becj−1, which is the vector of the DOFs of the quadratic
spline approximation at the previous timestep. A QSC penalty iteration is presented in Algorithm 1. In general,

Algorithm 1: QSC penalty iteration for American options

1: Initialize cj,(0);
2: ConstructP j,(0) using (3.9);
3: for k = 0, . . . , until convergencedo
4: Solve (3.8) forcj,(k+1);
5: ConstructP j,(k+1) using (3.9);

6: if
[
maxi{

|V̄ j,(k+1)(S)−V̄ j,(k)(S)|

max(1,|V̄ j,(k+1)(S)|)
for S = Dj

i ∈ Dj} < tol
]

or
[
P j,(k) = P j,(k+1)

]
then

7: break;
8: end if
9: end for

10: cj = cj,(k+1);

for points at whichV̄ j(S) < V ∗,j(S), whereS ∈ ∆j for FD methods orS ∈ Dj for QSC methods, if we want the
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LCP (2.1) to be computed with a relative precisiontol we should haveζ ≃
1

tol
. Soζ is well-defined, and cannot

be arbitrarily large. It is worth noting that, in practice, asmall number (one or two) of penalty iterations usually
suffices to obtain convergence. Note that, in case of FD methods, the initial guess̄V j,(0), for j > 1, is chosen based
on linear extrapolation of the numerical solution from the two previous timesteps, that is,

V̄ j,(0) =
(hj

τ + hj−1
τ )

hj−1
τ

V̄ j−1 −
hj

τ

hj−1
τ

V̄ j−2.

Extensive experiments have shown that this choice of initial guess is more efficient than the standard choice of the
numerical solution at the previous timestep [10]. Forj = 1, we setV̄ 1,(0) = V̄ 0.

4.1 Solution of the LCP

We now investigate the discrete solution of the LCP (2.1). Wefirst consider the FD case. In this case, at each
timestep, the solution of (3.3) is required. We define

F V̄ j
i ≡

[
(I + θhj

τM
j)V̄ j − (I − (1 − θ)hj

τM
j−1)V̄ j−1 − gj

]
i
, (4.1)

where[·]l denotes thelth component of a vector. In order to obtain an FD approximatesolution of (2.1) with an
arbitrary level of precision, we need to show that the solution of (3.3) satisfies̄V j

i − V ∗
i → 0 as ζ → ∞ for

gridpoints whereF V̄ j
i > 0. For FD methods, similarly to FV methods in [14], this follows if we can show that the

term
[P̄ j(V ∗,j − V̄ j)]i (4.2)

is bounded independently ofζ. It is also desirable that the bound be independent of the timestep and the spatial
mesh spacing, so thatζ can be chosen without regard to the grid and the timestep sizes. We follow the lines of
Theorem4.1 of [14], which essentially gives sufficient conditions thatallow us to bound (4.2). For the FD methods,
these sufficient conditions are: (i) the matrixM j arising from discretizing the differential operatorLj be anM-
matrix, i.e. a matrix with non-positive off-diagonals, andnon-singular with the inverse being non-negative, and
(ii) 1 − (1 − θ)hj

τ ((M j)i,i−1 + (M j)i,i+1 + r) ≥ 0, where(M j)i,i−1 and (M j)i,i+1 are given in (3.4). Note
that condition (ii) arises since we require that(I − (1 − θ))hj

τM j−1V̄ j−1 be bounded (see Appendix A of [14]
for a similar proof in the context of FV methods). When a fullyimplicit method is used, condition (ii) is trivially
satisfied, but, when the CN timestepping is used, this condition essentially requires the boundedness ofh

j
τ

mini(h
j
i )

2
.

In our experiments, this boundedness condition is not always satisfied. However, we observed that, as long as
Crank-Nicolson is preceded by a finite number of fully implicit steps (Rannacher smoothing [32]), (4.2) is bounded
independently ofζ andζ can be chosen without regard to the timestep and mesh spacing. Similar observations were
also reported in [14], where, in fact, an open question is posed on whether or not we can remove condition (ii) if
the Crank-Nicolson timestepping is preceded by a finite number of fully implicit steps.

We now consider condition (i). For the FD methods, it is more convenient to study the property of the matrix
M j based on the following sufficient conditions for theM-matrix structure: strict diagonal dominance with positive
diagonals and non-positive off-diagonals [17]. Note that,if the matrixM j satisfies these sufficient conditions, then
so does the matrixI + θhj

τM j, taking into account thatθ andhj
τ are positive.

LEMMA 4.1. Assume that the partition∆j ≡ {Sj
i }

n
i=0 satisfies the conditions

hj
i ≤

σ2Sj
i−1

r
, i = 3, 4, . . . , n, (4.3)
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on the spatial stepsizes, wherehj
i = Sj

i − Sj
i−1, i = 3, 4, . . . , n. Then, the matrixM j defined in (3.4) is a strictly

diagonally dominant matrix with positive diagonal and non-positive off-diagonal entries.

Proof: The explicit formula for super-diagonals ofM j is− σ2(Sj
i )2

hj
i+1(h

j
i
+hj

i+1)
−

rSj
i hj

i

hj
i+1(h

j
i
+hj

i+1)
, i = 1, 2, . . . , n− 2, and

hence the super-diagonal elements are always non-positive. The sub-diagonal entries ofM j are−
σ2(Sj

i )2

hj
i (h

j
i+hj

i+1)
+

rSj
i hj

i+1

hj
i (h

j
i +hj

i+1)
, i = 2, 3, . . . , n− 1. Under the given condition (4.3) on the spatial step length, the sub-diagonal entries

are non-positive. Thus, under (4.3), all rows have non-positive off-diagonals. Also, all but the first and last rows of
M j have row sums equal to the positive interest rate(r > 0), thus, these rows are strictly diagonally dominant, with
positive diagonal elements. Taking into account thatSj

1 = hj
1, the first row has elementsM j

1,1 = −1
2σ

2(Sj
1)

2βj
21 −

rSj
1α

j
21 + r = (σ2 + r)hj

1/h
j
2, andM j

1,2 = −1
2σ

2(Sj
1)

2βj
31 − rSj

1α
j
31 = −(σ2 + r)

(hj
1)2

hj
2(h

j
1+hj

2)
, from which we get

M j
1,1 > 0, M j

1,2 < 0, and|M j
1,1| > |M j

1,2|. Similarly, for the last row, we haveM j
n−1,n−2 < 0 under condition

(4.3), and the row sum is greater thanr. Thus we also haveM j
n−1,n−1 > 0 and|M j

n−1,n−1| > |M j
n−1,n−2|. This

concludes the proof. �

For QSC methods, we have not been able to obtain a rigorous proof of the boundedness of term

[P j(c∗,j − cj)]i. (4.4)

However, as a numerical test, we monitor the quantity

max
i,j

[max[0, V ∗,j(S) − V̄ j(S)]

max(1, V ∗,j(S))
,
]
, S = Dj

i ∈ Dj, (4.5)

which is a measure of the maximum relative error in enforcingthe American constraint using the penalty method.
This quantity will be small if the quantity (4.4) is bounded,andζ is sufficiently large. During experiments, we
noticed that, as long as the Rannacher smoothing technique [32] is used, the a posteriori error quantity (4.5) is
indeed of the order oftol. In Section 6, we report selected statistics of this measurefor all the experiments that we
run.

4.2 Convergence of the penalty iteration

The convergence study of the penalty iteration in Theorem 6.1 of [14] essentially consists of the following three
results: (i) the nonlinear penalty iteration converges to the unique solution of the discretized equation for any initial
iterate; (ii) the iterates converge monotonically; (iii) the iteration has finite termination.

For FD methods, the proof of convergence of the penalty iteration is based on the following two conditions: (a)
the matrixI+θhj

τM j+P̄ j,(k) be non-singular, and (b) the inverse of the matrixI+θhj
τM j+P̄ j,(k) be non-negative,

where P̄ j,(k) is the kth penalty matrix constructed at thejth timestep for FD methods using (3.5). Under the
sufficient condition (4.3) for matrixM j to be anM-matrix, both (a) and (b) are satisfied, sinceI+θhj

τM j + P̄ j,(k)

is a diagonally dominantM-matrix.
For QSC methods, since the unknowns are the degrees of freedom, we consider an equivalent transformed

discretized problem with the unknowns being values insteadof degrees of freedoms. To this end, instead of (3.8),
we consider the transformed problem

(I + θhj
τQ

j(Qj
0)

−1 + ¯̄P j) ¯̄V j = (I − (1 − θ)hj
τQ

j−1(Qj−1
0 )−1 + hj

τQ
j−1
P (Qj−1

0 )−1) ¯̄V j−1 + ¯̄P j ¯̄V ∗,j + ¯̄gj ,

(4.6)
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taking into account (3.9) and (3.10). In (4.6),¯̄V j and ¯̄V ∗,j are vectors of option values and payoff values, respec-
tively, onDj ∪ ∂Ω, and ¯̄gj = gj(Qj

0)
−1. Similarly to the convergence proof in the FD case, two conditions must

be satisfied at thekth iteration of thejth timestep: (a) the matrixI + θhj
τQj(Qj

0)
−1 + ¯̄P j,(k) be non-singular, i.e.

Equation (4.6) should have a unique solution, and (b) the inverse ofI + θhj
τQj(Qj

0)
−1 + ¯̄P j,(k) be non-negative,

where ¯̄P j,(k) is thekth penalty matrix constructed at thejth timestep for QSC methods using (3.10). Consider the
matrixQj(Qj

0)
−1. Unfortunately, since, in general, this is a dense matrix with alternating signs at the off-diagonal

entries, it cannot be anM-matrix, hence we cannot use the same technique that was employed for the convergence
proof of FD methods. Rather, we study numerically whether the matrixI+ θhj

τQj(Qj
0)

−1 + ¯̄P j,(k) satisfies (a) and
(b). Our numerical results show that, at each timestep and for all gridsizes considered,I + θhj

τQj(Qj
0)

−1 + ¯̄P j,(k)

is non-singular and its entries are non-negative within a tolerance of sizetol ≃ 1
ζ . It is also worth noting that the

inverse ofQj(Qj
0)

−1 can be proved to be positive. As shown by the numerical results, the fact thatQj(Qj
0)

−1 does
not satisfy the sufficient condition of being anM-matrix does not seem to have ill-effects on the fast convergence
of the penalty methods applied to QSC methods. Related observations were reported in [14], where a conjecture
was made that the penalty iteration converges rapidly undermuch weaker conditions than the sufficient condition
that the discretized differential operator be anM-matrix.

5 Adaptive mesh methods

To construct the adaptive grids, we usemonitorand respectivegrading functions, and the error equidistribution
principle [3, 11]. According to the error equidistributionprinciple, the partition points are distributed in such a
way, that the error in some chosen norm (or semi-norm) is equidistributed among the subintervals of the partition.
Depending on the norm chosen, a different monitor and a respective grading function arises. Generally, a grading
function has the formξ(S, τ) =

∫ S
0 Ṽ dS/

∫ S∞

0 Ṽ dS, for some appropriatemonitor function Ṽ (S, τ). In this
formula, the valueξ(S, τ) at S represents the portion of the approximate error at timeτ from the left endpoint
of the spatial domain up to pointS. To approximate the value of a grading function, the integrals involved in the
formula are approximated using appropriate quadrature rules. Usually, the monitor functions involve high-order
derivatives ofV , which, in a practical situation, are not known. Therefore,approximate values are used to obtain
the respective approximate values of the grading functions.

According to [11], for a discretization method with error proportional tohpV (q), whereh is a spatial stepsize and
V (q) is theqth derivative ofV with respect toS, a good grading function isξ(S, τ)=

∫ S
0 |V (q)|1/pdS/

∫ S∞

0 |V (q)|1/pdS.

For different spatial discretization methods, we possiblyobtain different grading functions. We first consider the
monitor functions for the FD method. Ignoring higher-orderterms, the truncation errors of the FD approximations
for the first and second spatial derivatives can be bounded interms ofmax(hj

i )
2 and (hj

i+1 − hj
i ) + max(hj

i )
2,

respectively. This means that the FD method is formally first-order. However, through numerical experiments, we
found thathj

i+1 − hj
i is small enough so that the error is dominated bymax(hj

i )
2. Then, the (spatial) discretization

error ofLV in the FD method is considered second-order with respect to the stepsizes, and involves the third deriva-
tive V (3), resulting in the grading functionξf (S, τ) =

∫ S
0 |V (3)|2/4dS/

∫ S∞

0 |V (3)|2/4dS. For the QSC methods,
we takeq = 3 (as the error formula for the interpolant suggests) andp = 3 (the global order) [8], resulting in the
grading functionξq(S, τ) =

∫ S
0 |V (3)|2/6dS/

∫ S∞

0 |V (3)|2/6dS.

Given a grading functionξ(S, τj) for a fixed timeτj and a fixed number of subintervalsn, the adaptive algorithm
computes pointsSj

i , i = 0, . . . , n, with ξ(Sj
0, τj) ≡ ξ(0, τj) = 0 and ξ(Sj

n, τj) ≡ ξ(S∞, τj) = 1, such that
ξ(Sj

i , τj) − ξ(Sj
i−1, τj) ≈ 1/n, i = 1, . . . , n, or equivalently,ξ(Sj

i , τj) ≈ i/n. To do this, we apply an iterative
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scheme based on Newton’s method

S
j,(k+1)
i = S

j,(k)
i −

ξ(S
j,(k)
i ) − i

n

ξ′(S
j,(k)
i )

,

≈ S
j,(k)
i −

Q(
∫ S

j,(k)
i

0 Ṽ j,(k)dS) − i
nQ(

∫ S∞

0 Ṽ j,(k)dS)

Ṽ
j,(k)
i

,

(5.1)

whereṼ j,(k)
i denotes the approximate value to the monitor function evaluated atSj,(k)

i , andQ(·) is a quadrature rule
approximation to an integral. Several quadrature rules maybe used, but, in our experiments, we used the trapezoidal
rule for the FD method and the midpoint rule for the QSC method. The fact that, for the QSC method, the midpoints
are points of high accuracy and no discontinuities motivates the midpoint rule. For FD method, since the gridpoint
values are computed, the trapezoidal rule is a natural choice. Furthermore, we found that the variations between
those quadrature rules have negligible effect in the final results. In our experiments, we applied only one iteration of
(5.1). That is, at most one re-distribution of the spatial points takes place in one timestep, and thus the placement of
the spatial points evolves as the timesteps proceed. Experiments show that this choice works well for the American
option pricing problem and is attractive due to its efficiency.

To decide whether one re-distribution of the spatial pointsis needed at a certain timestep, we use the criterion

rdrift ≡
maxi{r

j
i }

rj ≤ α, whererj
i =

∫ Sj
i

Sj
i−1

Ṽ dS, i = 1, . . . , n, rj =
R S∞

0
eV dS

n . (5.2)

The ratiordrift gives an indication of how well-distributed the partition is. If this ratio is too large, it follows that the
maximum error estimate over all subintervals is considerably larger than the average estimate, and thus, the current
partition is not well-distributed. That is, for a partitionto be well-distributed, the maximum value ofrj

i must be
roughly at mostα times as large as the average valuerj

i . Typical choices forα are small numbers, such asα = 2

[36]. We have usedα = 5 in all our experiments, and the results show that this criterion works well for American
option pricing.

We next discuss in more detail how our adaptive mesh techniques work. For the purpose of our discussions,
denote bȳV j

∆l the approximate solution on the partition∆l at timestepj. A generic algorithm for timestepping from
time τj−1 to time τj using an adaptive mesh technique is summarized in Algorithm2. Note that we always start
with a uniform grid as if we do not know how the solutions behave, and subsequent partitions are fully determined
by the adaptive technique.

We now briefly describe the algorithm. In Lines 1 and 2, we apply a timestepping method, usually Crank-
Nicolson, with the exception of the Rannacher smoothing technique for the first few timesteps, using the same
spatial points for timeτj as forτj−1. This computes approximate valuesV̄ j

∆j ≡ V̄ j
∆j−1 . We calculate all needed

quantities and check the criterion in (5.2). If the points are well-distributed, we proceed to the next timestep (Lines
3 and 4). If not, the new location of the spatial points∆j is computed using (5.1) (Lines 5 and 6). See Remark
5.1 about an adjustment to∆j for QSC. Next, we need to calculate values of the approximation at the new spatial
points at timeτj, i.e. V̄ j

∆j . There are two ways to do this. The first is to interpolateV̄ j−1
∆j−1 from the old partition

∆j−1 to the new partition∆j to obtainV̄ j−1
∆j , and then apply the same timestepping procedure that was previously

used at Line 2 to compute values of the approximation at the new partition points, i.e.̄V j
∆j . The second way is to

simply interpolateV̄ j
∆j−1 from ∆j−1 to ∆j to obtainV̄ j

∆j . The first technique is used in the first few (β) timesteps
(Lines 7, 8 and 9), while the second is used in all subsequent timesteps where a remeshing is invoked (Lines 10 and
11). Note that using the first technique for all timesteps is only desirable for functions that are fast-evolving with
time. For functions that evolve slowly with time, such as thevalue function of an American option, this approach is
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Algorithm 2: An adaptive algorithm for timestepping fromτj−1 to τj

1: Let ∆j = ∆j−1

2: ComputeV̄ j
∆j by solving either (3.3) or (3.8) with a penalty iteration.

3: if (5.2) is satisfiedthen
4: Proceed to Line 2
5: else
6: Apply (5.1) (one iteration) to obtain a new∆j.

(For QSC, some adjustment to∆j is made, as described in Remark 5.1.)
7: if j < β then
8: InterpolateV̄ j−1

∆j−1 to obtainV̄ j−1
∆j .

9: ComputeV̄ j
∆j by solving either (3.3) or (3.8) with a penalty iteration.

10: else
11: InterpolateV̄ j

∆j−1 to obtainV̄ j
∆j .

12: end if
13: end if
14: Proceed to stepj.

unnecessarily inefficient. During the experiments, we observed that (i) remeshings are always required for the first
few timesteps, due to the discontinuity of the initial data;and (ii) using the first technique for these initial timesteps
is absolutely crucial for the accuracy of the numerical methods. In the experiments,β is chosen to be4. Below, we
elaborate on several fine points of Algorithm 2 in the form of remarks.

REMARK 5.1. We give some details about how the new partition∆j computed at Line 2 of the algorithm is adjusted
for QSC. As mentioned earlier, the space of quadratic splines with respect to a partition withn subintervals has
dimensionn + 2. For a uniform grid, the natural choice for collocation points is the set of midpoints and the
two boundary points. However, for a non-uniform partition,it is not obvious how these points can be chosen, so
that the optimal convergence of the resulting methods is preserved. We follow the technique in [7], to construct a
non-uniform grid and a set of collocation points for QSC via acertain mapping function.

Denote by∆ ≡ {Si = ih, i = 0, . . . , n, h = S∞

n } the uniform partition of̄Ω with n subintervals. Assume that
we are timestepping fromτj−1 to τj , and (5.1) has been applied at Line 2 of Algorithm 2 to give a non-uniform
partition∆j = {Sj

i }
n
i=0. For adaptive QSC methods, we define a mappingψj : Ω̄ → Ω̄ with ψj being a bijective

strictly increasing function such that

ψj(0) = 0, ψj(S∞) = S∞, ψj((Si−1 + Si)/2) = (Sj
i−1 + Sj

i )/2, i = 1, . . . , n. (5.3)

We then re-define∆j and defineDj by

∆j ≡ {Sj
i = ψj(Si), i = 0, 1, . . . , n}, Dj ≡ {Dj

i = ψj((Si−1 + Si)/2), i = 1, . . . , n}. (5.4)

The above adjustment of∆j was used in [7] in the context of BVPs, and gave improved accuracy results, therefore,
we adopt it here as well.

The mappingψj is generated using the algorithm for monotone piecewise cubic interpolation from [15]. It
is important to point out that the basis functionsφj

i (S) are defined with respect to the adjusted∆j. With this
discussion, for the adaptive mesh QSC methods, Line 2 of Algorithm 2 can be broken down into the following
substeps:
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2.1 Apply (5.1) (one iteration) to obtain∆j ≡ {Sj
i }

n
i=0

2.2 Construct the mappingψj : Ω̄ → Ω̄ using (5.3)
2.3 Adjust∆j and defineDj using (5.4)

REMARK 5.2. In Algorithm 2, interpolation is needed at Lines 2 and 2. For adaptive mesh FD methods, interpola-
tion at these steps takes place on the option values, while for adaptive mesh QSC methods, interpolation takes place
on other quantities, as explained later. We explain in detail below how interpolation at these steps of the algorithm
is done.

First, consider adaptive mesh FD methods. Whenj = 1, i.e. we are timestepping fromτ0 = 0 to τ1, one
can take an advantage of the initial boundary condition, hence no interpolation is needed at Line 2. Whenj > 1

and a remeshing is required, interpolation needs to be tailored properly to ensure that certain properties of the
problem related to the free boundary are not violated. For anAmerican put, at each timestep, the free boundary
point separates the spatial domain into the stopping region, where the option value is equal to the payoff, and the
continuation region, where the option value is greater thanthe payoff. Since, for adaptive FD methods, interpolation
takes place on the option values, interpolated option values must be (i) equal (within some tolerance) to the payoff
in the stopping region, and (ii) larger than the payoff and decreasing in the continuation region. Several possible
choices for interpolation include cubic spline interpolation or piecewise cubic Hermite interpolation. It is known
that piecewise cubic Hermite interpolation is less oscillating, but also less accurate than cubic spline interpolation.
We chose to use cubic spline interpolation, to obtain higheraccuracy. With cubic spline interpolation techniques,
we observed that (ii) is always satisfied; however, (i) is notalways met. To resolve this problem, we adjust the
interpolated values to the left of the free boundary point tobe equal to the payoff. It should be noted that the free
boundary point at each timestep is approximated using the partition points and option values available, namely(
{Sj−1

i }n
i=0, V̄

j−1
∆j−1

)
(Line 2) or

(
{Sj−1

i }n
i=0, V̄

j
∆j−1

)
(Line 2).

For adaptive mesh QSC methods, it is important to point out that interpolation at Lines 2 and 2 takes place
neither on the option values nor on DOFs corresponding toV̄ j−1

∆j−1 and V̄ j
∆j−1 , but on the values of(I + (1 −

θ)hj
τLj−1 + hj

τP
j−1
L )V̄ j−1

∆j−1 or (I + (1 − θ)hj
τLj + hj

τP
j
L)V̄ j

∆j−1 . We observed that the standard cubic spline
interpolation worked well in this case, and no specific tailoring was needed.

REMARK 5.3. In addition to the Rannacher smoothing technique [32], we also adopt another smoothing technique
suggested in [31]. That is, at each timestep, for FD methods,we choose to position a gridpoint at the strikeE (the
initial kink point). We extend this technique to QSC methods, by positioning a collocation point at the strikeE. A
combination of the Rannacher smoothing and this technique helps preclude large oscillations in the estimation of the
hedging parameters [14, 31]. In addition, when we are interested in the option value and its hedging parameters at
S = E, this technique provides the benefits of (i) avoiding interpolation in case of an FD method; and (ii) obtaining
more precise option values and hedging parameters when a QSCmethod is used, since collocation points are points
of high accuracy. However, in the case of adaptive methods, the location of the gridpoints or collocation points is
computed dynamically by the adaptive technique, and thus the strikeE may fall between gridpoints or collocation
points. In these cases, we need to adjust the grid, so that thestrikeE falls at a gridpoint (FD) or collocation point
(QSC). To apply this adjustment, we use the observation thatthe option values behave linearly in the area towards
the left boundary of the domain, i.e. in the stopping region,and, therefore, in that region, few points are needed.
Thus, we propose to move one gridpoint from this area to line up with the strike price, if an FD method is used, or
to make the strike a collocation point, if a QSC method is used. More specifically, for FD methods,∆j containsE
as a gridpoint, while for QSC methods,E is one of the midpoints of∆j , before the adjustment (5.4). Then, under
the mapping (5.3), the set of collocation pointsDj containsE.

It is important to note that, although it would also be desirable to have a partition with a gridpoint (for FD



ADAPTIVE AND HIGH-ORDER METHODS FOR VALUING AMERICAN OPTIONS 13

methods) or a collocation point (for QSC methods) at the freeboundary, it is impossible to construct a partition
with that property, since we do not know beforehand the exactlocation of the free boundary at each timestep. This
issue appears with any method, adaptive or not. However, adaptive methods partly resolve this issue. As shown
by numerical results, the adaptive technique concentratesa lot of points around the free boundary. As a result,
the approximation of the free boundary at each timestep is highly accurate. Note that, the free boundary locations
approximated by adaptive mesh QSC methods are based on the set of collocation points, rather than the set of
gridpoints as in the case of adaptive mesh FD methods.

REMARK 5.4. We now discuss whether theM-matrix stepsize restriction (4.3) for FD methods may interfere with
the stepsizes chosen by the adaptive technique. We emphasize that condition (4.3) does not impose any restriction
onhj

2 andhj
1, since the first row ofM j does not have a sub-diagonal element and the super-diagonalelements are

(unconditionally) non-positive. For the rest of the stepsizes, it is possible that the new partition∆j constructed using
(5.1) may not satisfy condition (4.3). If we wish to enforce condition (4.3), we can do so by monitoring whether
(4.3) holds, while computing the pointsSj

i , i = 1, . . . , n − 1, using (5.1), and adjusting the points accordingly, if

needed. For example, if a pointSj
i computed by (5.1) is such thathj

i violates condition (4.3), that is, ifhj
i >

σ2Sj
i−1

r ,

we can sethj
i =

σ2Sj
i−1

r , andSj
i = Sj

i−1 + hj
i . This means that we may need to introduce some extra spatial points.

During the experiments, we monitored carefully whether condition (4.3) holds, and noticed that, for all the cases
we ran, the points generated by the adaptive FD procedure never violated this condition. Hence, we never had to
introduce more spatial points.

REMARK 5.5. The adaptive technique for FD and QSC used in this paper involves an approximation to the third
spatial derivative,V (3), of the solution at various points chosen by the adaptive technique itself. Similarly, the
high-order QSC method involves an approximation toV (3) at certain points. Since the exact location of the free
boundary of the American option pricing problem is unknown,we cannot rule out the possibility that the methods
attempt to compute an approximation toV (3) at the free boundary, at which point the solution is onlyC1. While
this seems to be a problem from the mathematical point of view, the numerical results suggest that this may not be
the case from the practical point of view. As discussed in Section 6, we apply the methods to the European and
American option pricing problems. As it is known, the solution of the former is smooth, while that of the latter
has limited smoothness on the free boundary. The fact that equally good results (approximately same order errors
for same discretizations) are obtained for both problems gives an indication that the lack of smoothness at the free
boundary of the solution of the American option pricing problem may not reduce the effectiveness of the adaptive
technique, or the high-order method. Detailed results are given in Tables 6.1 and 6.2, with a discussion in Section 6.

5.1 Timestep selector

In [23], a simple, but effective, time stepsize selector is proposed. The idea is to predict a suitable time stepsize
for the next timestep, using only information from the current and previous timesteps. A modified version of this
scheme, given in [14], was shown to work well on both uniform [10] and fixed non-uniform grids [14]. It would be
interesting to examine whether this time stepsize selectorworks well in the context of adaptive mesh methods. In
addition, since the benchmark solutions, to which our numerical option values are compared, are based on option
values from [14], and those values were obtained using this time stepsize selector, incorporating it into our methods
enables consistent and fair comparisons. According to [14], given a stepsizehj+1

τ , the new stepsize is selected so
that

hj+2
τ =

(
min

i

[
dnorm

|V̄ (Sj
i ,τj+hj+1

τ )−V̄ (Sj
i ,τj)|

max(N,|V̄ (Sj
i ,τj+hj+1

τ )|,|V̄ (Sj
i ,τj)|)

])
hj+1

τ . (5.5)
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Here,dnorm is a user-defined target relative change, and the scaleN is chosen so that the method does not take an
excessively large stepsize in the area where the value of theoption is small. Normally, for option values in dollars,
N = 1 is used. The reader is referred to [14] for a detailed discussion of this stepsize selector. In all experiments,
we usedh0

τ = 10−3 anddnorm = 0.15 on the coarsest grids. The value ofdnorm is reduced by two at each
refinement, whileh0

τ is reduced by four.

6 Numerical results

We first present selected numerical results to demonstrate the high-order convergence rate of the QSC methods
applied to the European option pricing problem. We also present results to demonstrate the efficiency of the adaptive
mesh technique presented in Section 5 when combined with QSCor FD discretization methods, applied to the same
problem. We then consider the American put option pricing problem, and present results that demonstrate the
quality of the QSC approximation to the value and the Greeks for this problem, as well as results that indicate the
effectiveness of the adaptive mesh techniques, especiallyin the accurate tracking of the exercise boundary.

All computations in this section were carried out in MATLAB (in double precision). The QSC and FD methods
were programmed by us. The linear systems arising from either the European or the American option pricing
problem were solved using the backslash operator in MATLAB.In the case of an American put option, the arising
non-linear systems were solved by the penalty method described in Section 4. We used the MATLAB functions
pchip and ppval to construct and evaluate a monotone Hermite piecewise cubic interpolant in (5.3) and (5.4),
respectively. We also used the MATLAB functionspline to construct and evaluate a cubic spline interpolant at
Lines 2 and 2 of Algorithm 2.

In our implementation, as basis functions for the quadraticspline space defined on partition∆j , we choose the
functionsφj

i (S), i = 0, . . . , n+ 1, where

φj
i (S) ≡





(S−Sj
i−2)2

(Sj
i −Sj

i−2)(Sj
i−1−Sj

i−2)
for Sj

i−2 ≤ S ≤ Sj
i−1,

(S−Sj
i−2)(S

j
i −x)

(Sj
i −Sj

i−2)(Sj
i −Sj

i−1)
+

(Sj
i+1−S)(x−Sj

i−1)

(Sj
i+1−Sj

i−1)(S
j
i −Sj

i−1)
for Sj

i−1 ≤ S ≤ Sj
i ,

(Sj
i+1−S)2

(Sj
i+1−Sj

i−1)(Sj
i+1−Sj

i )
for Sj

i ≤ S ≤ Sj
i+1,

0 elsewhere.

(6.1)

Note thatφj
i (S) and (φj

i )
′(S) are well-defined at the nodes of the partition. Whenever we need to compute

(φj
i )

′′(S) at a node, we define it by right (without loss of generality) continuity for Sj
i , i = 0, . . . , n− 1, and by left

continuity forSj
n.

The set of parameters for the option pricing problems isE = 100, σ = 0.80, r = 0.10, T = 0.25, for both
European and American, whileζ = 107 was used as the penalty parameter for American options. These parameters
are taken from [14], where the penalty approach adopted in this paper was proposed. The computational domain is
truncated to[0, S∞] ≡ [0, 500], where the condition (3.2) is applied.

In addition to adaptive mesh methods, we also consider a certain pre-defined mapping function that produces
non-uniform, but fixed, partitions with finer points near thestrikeE, where the discontinuity in the first derivative of
the initial data is. The mapping function considered in thispaper is based on asinh function and was suggested in
[9]. Variations of it appear frequently in the literature (e.g. [35]). According to this mapping, non-uniform partitions
are defined as images of uniform partitions via the function

ω(si) =
(
1 +

sinh(b(si − a))

sinh(ba)

)
E, (6.2)



ADAPTIVE AND HIGH-ORDER METHODS FOR VALUING AMERICAN OPTIONS 15

wheresi = Si/S∞ = i/n, i = 0, 1, . . . , n. For QSC methods, following (5.4), the set of collocation points under
the mapping (6.2) can be determined withsi = (Si−1 + Si)/(2S∞) = i−1/2

n , i = 1, . . . , n.
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Figure 6.1: Spatial mapping function (6.2) with var-
ious values ofa on domain[0, 500] andE = 100.

In (6.2), the parametera controls the degree of refinement
around the strikeE. Larger values ofa indicate finer parti-
tions near the strike. It is important to note that by choosing
a = i/n, the gridpointSi+1 falls exactly atE, and by choos-
ing a = (i+ 1

2)/n, the midpoint(Si+1 + Si)/2 falls exactly
atE. The purpose of the parameterb is to ensure that the last
gridpoint falls exactly atS∞, the right boundary point. The
value forb can be obtained by numerically solving the equa-
tion ω(1) = S∞ with a = i/n for somei, 1 ≤ i ≤ n. Figure
6.1 shows the refinement around the strike priceE = 100

for various values ofa on a truncated spatial domain[0, 500]
with n = 80 subintervals. Forn = 80, with a = 0.4 and
a = 0.45, the strike is at the33rd and37th gridpoint, respec-
tively, while choosinga = 0.40625 positions the strike at the
33rd midpoint.

Several methods are considered, namely, the adaptive
mesh FD method (adaptive FD), the adaptive mesh QSC
method (adaptive QSC), the non-uniform mesh FD method
(non-uniform FD) and the non-uniform mesh QSC method
(non-uniform QSC). The latter two use a predetermined distribution of the spatial points obtained by the mapping
function (6.2). As explained earlier, it is beneficial to have the strike as one of the gridpoints (for FD methods) or
as one of the collocation points (for QSC methods). The adaptive mesh algorithm, adjusted as in Remark 5.3, auto-
matically generates such a grid for the adaptive FD and the adaptive QSC methods. However, for the non-uniform
FD and the non-uniform QSC methods, in order to keepE in the position of a gridpoint and collocation point,
respectively, slightly differenta’s need to be used. In the experiments, we chosea = 0.40625 for the non-uniform
QSC methods, while for the non-uniform FD,a = 0.4 was used. The gridpoint distributions obtained from these
two values ofa are virtually the same (see Figure 6.1), so the comparisons are fair. We emphasize that the initial
spatial grid for the adaptive FD and QSC methods is uniform, as if we do not know the behaviour of the solution.
In this way, we demonstrate more clearly the capabilities ofthe adaptive techniques.

Since we compare the efficiency of various methods applied tooption pricing, it is important to determine the
computational cost of each method. The complexity of a method considered in this paper, when applied to pricing
either European or American options, at each timestep (or penalty iteration, if any), consists of solving a tridiagonal
linear system of sizen × n, hence its total cost is proportional ton. For adaptive methods (QSC or FD), for each
adaptive timestep in which a remeshing takes place, the extra costs of either interpolating at Lines 2 and solving a
tridiagonal linear system of sizen×n at Line 2 or interpolating at Line 2 of Algorithm 2 should alsobe included. It
can be shown that the computation required to construct a cubic spline interpolant is equivalent to solving ann×n

tridiagonal linear system. Since the cost for the evaluation of the cubic spline interpolant at an arbitrary point is
constant, the complexity of interpolation in Line 2 or Line 2of the Algorithm 2 is also proportional ton. We model
the total computation cost of each method by the formula

total cost= total× n. (6.3)

In (6.3), “total” is the number of timesteps (“timesteps#”) or the total number of penalty iterations (“penalty
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iterations#”) the method requires for pricing a European or an American option, respectively, including the number
of timesteps or penalty iterations required by the adaptivetechnique, if any, plus the total number of interpolations
in the adaptive steps, if any. Note that the total number of interpolations in the adaptive steps is the total number of
steps in which a remeshing by the adaptive technique takes place (“adapt#”).

Problem 1: European options
The value of a European option satisfies the Black-Scholes equation and its exact solution as well as hedging
parameters (the Greeks), such as delta and gamma, can be found in the literature (e.g. [21]). The adaptive techniques
for European options resemble those presented in Algorithm2 for American options, except that we do not have a
constraint on the option values as we do in the case of an American put option. More specifically, in the case of
a European option, no penalty iteration is needed in Lines 2 and 2 of Algorithm 2. Table 6.1 shows the numerical
results for an at-the-money European put option (S = E) obtained by various methods, with variable timesteps
chosen by the time stepsize selector (5.5).

Table 6.1: Observed errors for an at-the-money European putoption and respective orders of convergence by various
methods; variable timesteps are used; Rannacher smoothingis applied in the first few timesteps.

timesteps value (V ) delta (∂V
∂S ) gamma (∂

2V
∂S2 ) adapt total

n # error order error order error order # cost

adaptive QSC

80 38 6.67e-04 5.16e-06 5.91e-06 7 3.60e+03
160 138 2.94e-05 4.5 2.20e-06 1.2 1.12e-06 2.4 9 2.35e+04
320 541 2.64e-07 6.8 1.04e-07 4.4 3.36e-07 1.7 15 1.78e+05

non-uniform QSC

80 35 1.38e-03 6.03e-06 5.79e-06 2.80e+03
240 135 5.64e-05 2.9 4.50e-08 4.4 3.54e-07 2.5 3.24e+04
720 538 2.57e-07 4.9 9.59e-09 1.4 1.92e-08 2.7 3.87e+05

adaptive FD

80 38 3.94e-03 2.16e-04 7.69e-05 8 3.68e+03
160 73 3.59e-04 3.5 2.23e-05 3.3 1.66e-05 2.3 10 1.33e+04
320 142 4.30e-05 3.1 8.12e-06 1.5 4.13e-06 2.0 15 5.02e+04
640 280 4.56e-07 6.6 1.73e-06 2.3 9.57e-07 2.1 16 1.89e+05

non-uniform FD

80 35 6.20e-03 9.47e-05 7.45e-06 2.80e+03
160 70 1.56e-03 2.0 2.38e-05 2.0 2.09e-06 1.8 1.12e+04
320 139 3.90e-04 2.0 5.94e-06 2.0 6.00e-07 1.8 4.45e+04
640 276 9.70e-05 2.0 1.48e-06 2.0 1.37e-07 2.1 1.77e+05

1280 551 2.43e-05 2.0 3.71e-07 2.0 3.10e-08 2.2 7.05e+05

Problem 2: American put options
Since no analytic solution for the value of an American put option is available, it is important to establish a highly
accurate benchmark solution to which we compare our numerical results. The “exact” option value was computed
using the data in [14] (Table4, implicit constraint, volatility =0.80) and extrapolation, assuming quadratic conver-
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gence, as the methods in [14] are supposed to achieve. With anaccuracy requirement of10−7, the “exact” option
value is14.6788866. Tables 6.2 and 6.3 present selected numerical results for an at-the-money American put option
obtained by various methods considered in this paper. In Table 6.2, the values of the options and relevant statistics
are presented. We denote by “penalty iter #” the total numberof iterations required by the penalty method over
all timesteps, including the iterations required in the adaptive mesh generation, if any. In Table 6.2, the quantity
“error” is computed as the difference between the “exact” and the numerical solutions; and “adapt #” denotes the
total number of remeshings over all timesteps. In Table 6.3,the delta and gamma values are presented. Since we do
not have reference values for delta and gamma, to show convergence, we compute the “change” as the difference in
delta and gamma values from the coarser grid and the “ratio” as the ratio of changes between successive grids.

Table 6.2: Value of an at-the-money American put option obtained by various methods; variable timesteps are used;
Rannacher smoothing is applied in the first few timesteps.

timesteps penalty adapt total
n # value error order iter # # cost

adaptive QSC

80 57 14.6782991 5.87e-04 141 16 1.26e+04
160 115 14.6788303 5.63e-05 3.4 266 20 4.58e+04
320 230 14.6788877 1.10e-06 5.8 555 23 1.85e+05

non-uniform QSC

80 54 14.6778209 1.07e-03 99 7.92e+03
240 112 14.6788044 8.26e-05 2.3 247 5.93e+04
720 228 14.6788826 4.40e-06 2.7 597 4.30e+05

adaptive FD

80 58 14.6730564 5.83e-03 86 11 7.76e+03
160 115 14.6785531 3.33e-04 4.1 169 12 2.90e+04
320 230 14.6788759 1.07e-05 4.9 368 20 1.24e+05
640 460 14.6788877 1.10e-06 3.3 779 39 5.24e+05

non-uniform FD

80 54 14.6697752 9.11e-03 63 4.32e+03
160 112 14.6766413 2.25e-03 2.0 125 1.79e+04
320 227 14.6783263 5.60e-04 2.0 251 7.26e+04
640 456 14.6787417 1.45e-04 2.0 507 2.92e+05

1280 914 14.6788445 4.21e-05 1.8 1001 1.17e+06
2560 1829 14.6788739 1.27e-05 1.8 1990 4.68e+06

We next compile an efficiency comparison between various methods for solving the two option pricing prob-
lems. In Figures 6.2 and 6.3, we plot errors versus computation costs required by each of the methods for the
European and American option pricing problems, respectively. Besides methods described in this paper, we also
consider the uniform grid control variate method of [21] (control variate) for the pricing of an American option.
Among the four methods described in this paper, namely adaptive QSC, adaptive FD, non-uniform QSC, and non-
uniform FD methods, it is evident that the adaptive mesh methods significantly outperform the non-uniform methods
in general, with the adaptive QSC method being the most efficient method, and the non-uniform FD being the least
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Table 6.3: Observed delta and gamma of an at-the-money American option obtained by various methods. These
results correspond to option values in Table 6.2.

delta (∂V
∂S ) gamma (∂

2V
∂S2 )

n value change ratio value change ratio

adaptive QSC

80 -0.4056185 0.0100048
160 -0.4056275 9.02e-06 0.0100209 1.62e-05
320 -0.4056285 9.87e-07 9.3 0.0100224 1.53e-06 9.1

non-uniform QSC

80 -0.4056154 0.0100213
240 -0.4056260 1.05e-05 0.0100224 1.07e-06
720 -0.4056278 1.86e-06 5.7 0.0100227 3.79e-07 2.8

adaptive FD

80 -0.3940293 0.0098209
160 -0.3979309 3.90e-03 0.0098831 6.22e-05
320 -0.4012858 3.35e-03 1.2 0.0099521 6.89e-05 1.2
640 -0.4030181 1.73e-03 1.9 0.0099779 2.59e-05 1.9

1280 -0.4052580 2.24e-03 0.8 0.0100228 4.49e-05 0.8

non-uniform FD

80 -0.3948632 0.0098251
160 -0.4002006 5.34e-03 0.0099258 1.01e-04
320 -0.4029027 2.70e-03 2.0 0.0099752 4.94e-05 2.0
640 -0.4042625 1.36e-03 2.0 0.0099996 2.44e-05 2.0

1280 -0.4049447 6.82e-04 2.0 0.0100118 1.21e-05 2.0
2560 -0.4052864 3.42e-04 2.0 0.0100178 6.06e-06 2.0

efficient. Below, we discuss in more detail the efficiency comparison between the methods.
More specifically, for low accuracy (about10−3), the non-uniform QSC and the adaptive QSC are the best

methods (and about equivalent between each other), with theadaptive FD being the next best method. For high
accuracy (about10−6), the methods from best to worst are ordered as: adaptive QSC, adaptive FD, non-uniform
QSC, non-uniform FD.

Between the non-uniform QSC method and the adaptive FD method, it is interesting to observe that, for low
accuracy, the high-order method (non-uniform QSC) wins, while, when high accuracy is required, the efficiency of
the adaptive mesh technique becomes more and more pronounced, making the adaptive FD asymptotically more
efficient than the non-uniform QSC. This is true for both European and American pricing problems, a fact that
confirms the superior efficiency of the adaptive mesh methodsover predetermined non-uniform mesh methods.

Furthermore, by comparing the results of the European and American pricing problems, we notice that the
accuracies of the adaptive FD, adaptive QSC and non-uniformQSC methods for the American pricing problem are
not significantly affected by the lack of smoothness of the solution at the free boundary; see also Remark 5.5.

To quantify the improvement in efficiency between adaptive FD and adaptive QSC for American option pricing
with a requirement for high accuracy, we compare the resultsof adaptive QSC forn = 320 with those of adaptive
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Figure 6.2: Efficiency comparison of various methods
applied to the European put option pricing problem.
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Figure 6.3: Efficiency comparison of various methods
applied to the American put option pricing problem.

FD for n = 640; see Table 6.2 (error1.1 × 10−6). For this case, the adaptive QSC cost is about 25% of the costof
adaptive FD. For low accuracy, we can compare the results of adaptive QSC forn = 80 with those of adaptive FD
for n = 160; see Table 6.2 (errors5.87× 10−4 and3.33× 10−4, respectively). For this case, the adaptive QSC cost
seems to be less than 50% (but more than 25%) of the cost of adaptive FD.

Regarding other methods for American option pricing, the non-uniform FV method of [14] is even less efficient
than the non-uniform FD. These two discretization methods have the same order, but probably the partitions pro-
duced by the mapping (6.2) are more favorable than the non-uniform partitions used in [14]. The two remaining
methods, namely the control variate and the uniform FD are the least efficient for pricing an American option, with
the control variate being slightly more efficient than uniform FD. Certainly, one may introduce adaptive techniques
to FV methods or to the control variate method, and possibly improve their efficiency.

Regarding values of delta and gamma of an American option presented on Table 6.3, it is evident that (i) all delta
and gamma values indicate convergence, with the delta and the gamma converging to−0.40562 and0.01002 (with
an accuracy of10−5), respectively; and (ii) the high-order QSC methods (adaptive or non-uniform) provide much
more accurate delta and gamma and indicate faster convergence than those provided by the low-order FD methods.
However, between an adaptive method and its non-uniform counterpart, it does not seem that the adaptive mesh
techniques give substantial benefits in computing these Greeks. These results indicate that high-order methods are
particularly effective when the accurate computation of the Greeks is required.

In Figure 6.4, we show the location of the partition points atselected timesteps, as computed by the adaptive
QSC method, for the casen = 80 and when the number of timesteps is 57. We start with a uniformgrid (as if we
do not know how the solution behaves). At the first time step, the points are concentrated around the strike. As
the time evolves, the points spread to cover the interval between the free boundary (which moves fromE to the
left and is marked in black) andE, with concentration around the free boundary. Almost no points are needed to
the left of the free boundary (where the solution is linear) and few points are needed towards the right end of the
interval, where the solution is almost linear. These results indicate that the adaptive technique faithfully captures
the behavior of the solution, and places more points around the discontinuity points.
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6.1 Penalty iteration for QSC methods

As a posterior check, we report the quantity (4.5), which is ameasure of the maximum relative error in enforcing
the American constraint using the penalty method with QSC. Also, as an additional check, we monitor the size of
the relative residual of Equation (3.8) for all collocationpoints with(P j)i,l = 0, where(P j)i,l is defined in (3.9).
Since these collocation points are in the continuation region, we expect that, at those points, the Black-Scholes PDE
is satisfied, and the residual to be zero within machine epsilon. In Table 6.4, we present observed values of the
quantity (4.5) and the residual of (3.8) at the continuationregion collocation points from experiments with QSC
methods whenζ = 107, selected results of which are reported in Table 6.2 and Table 6.3. Note that this choice of
the penalty parameter results in a maximum relative error (4.5) in enforcing the American constraint of magnitude
of about10−9, or less, that is, very well below the time and space discretization errors. At the continuation region
collocation points, the relative residual of (3.8) is of thesize10−14, i.e. the size of machine epsilon. In addition, in
Table 6.5, we give statistics for test cases with varying thepenalty parameterζ. It is interesting to observe that that
the number of iterations fluctuates insignificantly with changes in value ofζ. This can be viewed as a result of the
finite termination property of the penalty iteration.

Table 6.4: Observed values of the quantity (4.5) and the residual of (3.8) in the continuation region when QSC
methods are employed. These values are collected from experiments whose results are reported in Table 6.2 and
Table 6.3.

adaptive QSC non-uniform QSC

n error residual of n error residual of
(4.5) (3.8) (4.5) (3.8)

80 6e-10 5e-14 80 2e-09 6e-14
160 2e-10 3e-14 240 6e-09 8e-14
320 3e-10 2e-14 720 8e-10 7e-14

Table 6.5: Test of varying the penalty parameterζ with non-uniform QSC. The tolerancetol in Algorithm 2 is
chosen to be1ζ . The “***” indicates that iterations fail to converge, mostlikely due to machine epsilon limitations.

ζ penalty value error residual of
iter # (4.5) (3.8)

104 212 14.6788016 8e-06 7e-14
106 229 14.6788044 6e-09 5e-14
108 221 14.6788044 7e-10 4e-14
1010 228 14.6788044 1e-13 4e-14
1012 *** *** *** ***

We now study the non-singularity of the matrixI + θhj
τQj(Qj

0)
−1 + ¯̄P j,(k) in (4.6) and the non-negativeness

of its inverse. We experimented with different values for gridsizesn and time stepsizeshj
τ . The non-singularity

of the matrix is implied from the numerical results. Regarding the non-negativeness of its inverse, in Table 6.6,
we report the most negative entry of the inverse matrix amongall penalty iterations and the respective value of the
time stepsizehj

τ with varying values of the penalty parameterζ. It is evident from the numerical results in Table
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6.6 that the magnitude of the most negative entry of the inverse is indeed of ordertol ≃ 1
ζ , and does not decrease

as the grid sizesn increase and time stepsizeshj
τ decrease. The combination ofhj

τ = 2.5 × 10−4, 5.0 × 10−5 and
n = 80 results in a slightly larger magnitude of the most negative entry, but such a combination is an extreme case
(too small time stepsize compared to space stepsize), and should not be chosen, since it would result in a serious
imbalance between the time and space discretization errors.

Table 6.6: Non-negativeness of the inverse ofI + θhj
τQj(Qj

0)
−1 + ¯̄P j,(k) with non-uniform QSC methods with

varying penalty parameterζ.

ζ hj
τ n = 80 n = 160 n = 320 n = 640 n = 1280

5.0e-05 -6.4704e-03 -6.4981e-09 -6.5259e-09 -5.0510e-09 -5.1324e-09
2.5e-04 -6.6615e-03 -6.8037e-09 -3.7908e-09 -5.1415e-09 -9.6309e-09
1.0e-03 -7.3388e-09 -1.3990e-09 -5.3757e-09 -9.5919e-09 -1.3699e-08

107 5.0e-03 -2.6086e-09 -6.2358e-09 -1.0501e-08 -1.4175e-08 -1.6833e-08
1.0e-02 -4.1441e-09 -8.4235e-09 -1.2526e-08 -1.5623e-08 -1.7696e-08
5.0e-02 -8.8121e-09 -1.3083e-08 -1.6013e-08 -1.7837e-08 -1.8924e-08
1.0e-01 -1.0813e-08 -1.4614e-08 -1.7000e-08 -1.8412e-08 -1.9225e-08
5.0e-01 -1.4420e-08 -1.6993e-08 -1.8422e-08 -1.9201e-08 -1.9593e-08

5.0e-05 -6.4704e-03 -6.4981e-11 -6.5259e-11 -5.0510e-11 -5.1324e-11
2.5e-04 -6.6615e-03 -6.8037e-11 -3.7908e-11 -5.1415e-11 -9.6310e-11
1.0e-03 -7.3388e-11 -1.3990e-11 -5.3757e-11 -9.5919e-11 -1.3699e-10

109 5.0e-03 -2.6086e-11 -6.2358e-11 -1.0501e-10 -1.4175e-10 -1.6834e-10
1.0e-02 -4.1441e-11 -8.4235e-11 -1.2526e-10 -1.5624e-10 -1.7697e-10
5.0e-02 -8.8121e-11 -1.3083e-10 -1.6013e-10 -1.7838e-10 -1.8930e-10
1.0e-01 -1.0813e-10 -1.4614e-10 -1.7001e-10 -1.8415e-10 -1.9236e-10
5.0e-01 -1.4420e-10 -1.6994e-10 -1.8425e-10 -1.9215e-10 -1.9652e-10

6.2 Early exercise boundary

An interesting problem associated with American option pricing is the analysis of the early exercise boundary
and the optimal stopping time. This problem has attracted a lot of attention due to its theoretical and practical
importance. The accuracy with which we locate the free boundary has strong effects on the quality of the numerical
value of the option computed. As mentioned earlier, the exact analytical expression for the free boundary is not
known and locating it accurately and efficiently is a challenging problem. Many researchers have investigated
various models, such as integral equations or asymptotic solutions, leading to approximations for the free boundary
(e.g. [2, 5, 24, 27, 33]). The purpose of this subsection is todemonstrate the accuracy of the adaptive mesh methods
in locating the free boundary for an American put option at each timestep. We carry out a comparison between
the free boundary values obtained by FD methods and those obtained by several other methods, namely binomial
methods, trinomial methods, integral equation and asymptotic approximation methods of [33], and a method was
first proposed by Barone-Adesi and Whaley in [2] and later augmented by MacMillan [27] (the “BWM” method).
The set of parameters isE = 10, σ = 0.25, r = 0.10, T = 0.05 from [33]. The semi-truncated domain in our
experiment is[0, 50] and the penalty parameter isζ = 107. We used a grid with200 mesh points and200 constant
timesteps with non-uniform and adaptive FD methods. In Figure 6.5, we plot the profiles of the free boundary
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Figure 6.5: Profile of the free boundary points obtained
by various methods.

at each timestep obtained by various methods versus time. Itis evident that the adaptive technique (adaptive FD)
captures the free boundary locations quite well as time evolves, and certainly much better than the non-uniform
methods (non-uniform FD). Note that, for both the binomial and trinomial methods, a depth of1000 subdivisions
was used, and these results are considered reference solutions in [33]. The free boundary locations captured by the
adaptive technique follow closely those obtained by the tree methods and the integral equation method. The profiles
generated by adaptive mesh methods are smooth, while those generated by non-uniform methods are highly non-
smooth and look like a step function, and hence do not capturethe movement of the moving free boundary properly.
The data used for the plot are taken from Table2 of [33], except the adaptive FD and non-uniform FD methods,
which are implemented by us.

7 Conclusions and extensions

We have considered a PDE approach to price American options written on a single asset. We have formulated
several highly accurate and efficient methods for pricing American options. These methods are built upon second-
order centered FD or optimal fourth-order QSC methods for the spatial discretization, and are integrated with
adaptive mesh PDE methods, which rely on grading and monitorfunctions to determine the distribution of the
error along the spatial dimension, and, from that, the location of the spatial gridpoints. At certain timesteps, the
adaptive techniques relocate the nodes to equidistribute the error in some chosen norm among the subintervals of the
partition. For the solution of the LCP at each timestep, we considered a discrete penalty method. The results show
that adaptive PDE methods are effective on the American option pricing problem, and, in particular, they have better
ratio of accuracy over computational cost compared to theirnon-adaptive (still non-uniform) counterparts, and allow
for more accurate tracking of the moving boundary. Furthermore, high-order spatial discretization methods have
better ratio of accuracy over computational cost compared to their standard second-order counterparts, and provide
highly accurate option values and the Greeks delta and gammaof the options. The combination of high-order and
adaptive mesh methods gives the best results regarding ratio of accuracy over computational cost.
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We conclude by mentioning some extensions of this work. It would be desirable to have a theoretical analysis of
the boundedness of (4.4) and the convergence of the penalty iteration in the context of the QSC methods that we have
observed in the experiments. It would also be interesting toextend the pricing methods considered in this paper to
other American-style options, such as American-style Asian options, or the pricing of convertible bonds with early
exercise features. In addition, an application of adaptivetechniques to other exotic options, such as barrier options,
is of much interest. The fact that we obtained high accuracy over cost by using a uniform grid to start the adaptive
technique and letting the adaptive technique take over the “study” of the solution of the American option pricing
problem is an indication that the adaptive mesh methods havepotential to be used as a “black-box” to determine
the behaviour of the solution of other related financial problems as well. Extending the adaptive techniques to
multidimensional problems is certainly challenging. In this regard, possible approaches include moving mesh FD
methods, such as [19, 20], moving mesh spline collocation methods, and skipped grid spline collocation methods
[28]. However, such approaches involve considerable overhead, and their effectiveness has not yet been studied
extensively, even for simple PDE problems. There is a lot more to be done to make the adaptive and/or high-order
methods effective and practical for the solution of multidimensional financial problems.
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