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Abstract

We develop space-time adaptive and high-order methodsfoing American options using a partial differ-
ential equation (PDE) approach. The linear complemenwtardblem arising due to the free boundary is handled
by a penalty method. Both finite difference and finite elenmeathods are considered for the space discretiza-
tion of the PDE, while classical finite differences, such aanR-Nicolson, are used for the time discretization.
The high-order discretization in space is based on an opfinite element collocation method, the main com-
putational requirements of which are the solution of ondidgonal linear system at each time step, while the
resulting errors at the gridpoints and midpoints of the spaartition are fourth-order. To control the space error,
we use adaptive gridpoint distribution based on an erroidégttibution principle. A time stepsize selector is
used to further increase the efficiency of the methods. Nigalezxamples show that our methods converge fast
and provide highly accurate options prices, Greeks, arg erercise boundaries.

Key words: adaptive mesh selection, error equidistribution, quadisgilines, collocation, finite differences, European
option, American option, penalty method

1 Introduction

The pricing of an American option is a difficult task, mainlyedto the early exercise feature of the option
[34, 38]. Typically, at any time, there is a specific valuehw tisset price that divides the asset domain into the early
exercise region, where the option should be exercised inatedyl and the continuation region, where the option
should be held. Hence, the early exercise feature leadsddditional constraint which stipulates that the value of
an American option must be greater than or equal to its paybfs constraint requires special treatment, a fact that
makes an explicit closed form solution for an American apiitractable for most cases. Consequently, numerical
methods must be used.

Although several approaches, such as Monte Carlo simokiib6, 25], lattice (tree) methods [21, 22], or
integral equations [2, 4, 27], can be used for pricing an Acaer option, for problems in low dimensions, i.e.
less than five dimensions, the partial differential equa(ilBDE) approach is very popular, due to its efficiency
and global character. In addition, accurate hedging paesiesuch as delta and gamma, which are essential
for risk-managing financial derivatives, are generally measier to compute via a PDE approach than via other
methods. Using a PDE approach, the American option prichogplpm can be formulated as a time-dependent
linear complementarity problem (LCP) with the inequatitiavolving the Black-Scholes PDE and some additional
constraints [37]. Recently, several approaches for hagdhe LCP have been developed. In particular, various
penalty methods were discussed in [14, 29, 39]. In this payeadopt the penalty method of [14] to solve the LCP.
According to this approach, a penalty term is introducechandiscretized equations in order to enforce the early
exercise constraint. Although this method was originalliithupon a finite volume (FV) discretization method for
the space dimension, the idea of this method could be exdetudether discretization techniques, such as finite
difference (FD) and finite element.

The popularity of finite differences in option pricing is mii due to their intuition and easiness to implement.
Finite elements can also be used as an alternative. Thesetdiation methods offer several advantages over finite
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differences such as: (i) the solution is a piecewise polyinbapproximation to the entire domain, while the method
of finite differences supplies an approximate solution dalgistinct points in the domain, thus interpolation may
become necessary; (ii) there are several finite elementadgifor instance, spline collocation, that supply hedging
parameters, such as delta and gamma, as a by-product, aadditiron, allow other hedging parameters to be
computed in a slightly easier manner than with finite diffeies. In particular, certain spline collocattanethods
have been shown to be effective on uniform and non-uniforigisgior the solution of boundary value problems
[7, 8] and parabolic initial value problems [6].

Using spline collocation in its standard formulation giwedy second-order, thus suboptimal, accuracy. In the
context of parabolic PDESs, this suboptimal spline collmramethod requires the solution of one tridiagonal linear
system at each timestep. In general, high-order methodpaoesusually require larger discretization stencils,
and hence the systems to be solved at each timestep arediatjdrial. In [6], several optimal and efficient
methods based on quadratic spline collocation (QSC) arelale®d for one-dimensional linear parabolic PDEs.
These methods give fourth-order (optimal) convergenceherkhots and midpoints with the main computational
requirements of the methods being the solution of only odétjonal linear system at each timestep. Extensions
of such efficient high-order spline collocation methods pdian pricing, especially to pricing American options,
have not been previously discussed in literature. Thistsboting motivated our work.

Adaptive methods aim at dynamically adjusting the locatibthe gridpoints in order to control the error in the
approximate solution. Although adaptive techniques haenltextensively developed for numerical solutions of
parabolic PDEs (e.g. [7, 12, 13, 36]), they are not so fretjimethe option pricing literature. Example of algorithms
for adaptivity in space and time can be found in [1, 26, 30][1llh a space adaptive mesh refinement based on a
posteriori estimates of the finite element discretizatiommrs of the Black-Scholes equation computed using a
Hilbert sum is proposed. The authors of [30] proposed a spameadaptive FD technique for pricing multi-asset
European options. The adaptivity in space is based on fisshgdhe problem on a coarse grid with large timesteps
for an estimation of the errors, and then resolving the groblvith more gridpoints redistributed in such a way that
the estimated local error is below a certain level. In [26)],esror equation is derived for the global error in the
solution, and the grid and timestep sizes are chosen sutch tokerance on the final global error is satisfied by the
solution. A popular technique for mesh generation and adiaptis based on De Boor’s equidistribution principle
[11]. The underlying idea of this principle is to relocate thodes to equidistribute the error in some chosen norm
(or semi-norm) among the subintervals of the partitionhéitgh adaptive techniques based on an equidistribution
principle are widely used in the numerical solution of PDiaghe best of our knowledge, these techniques have not
been successfully extended to option pricing, in genenal Aamerican option pricing, in particular. This deficiency
further motivated our work.

In this paper, we develop highly accurate and efficient nicaemethods for pricing American options on a
single asset. Although we focus primarily on the one-dinmared case, some of the results in this paper can be
naturally extended to two or more dimensions. The high+ongdethods in the spatial dimension are built upon the
efficient and high-order QSC methods of [6]. Second-ordedsDretization for the spatial variable is also consid-
ered. Adaptive technigues based on the equidistributiortipte of [11] are introduced into the space dimension.
A time stepsize selector [14, 23] is used to further increéhsgerformance of the methods. Numerical results show
that our methods provide highly accurate options prices@raatks, and capture well the moving behavior of the
free boundary. In this paper, we do not include gridsizemesttors and changes of the gridsize from timestep to
timestep, such as those in [36]. We plan to incorporate tigisige estimators presented in [7] into American option
pricing problems in a near future.

INote that, in this paper, we use the term “spline” to refer eximum smoothness piecewise polynomials.
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The remainder of the paper is organized as follows. Sectigmegents a PDE formulation of the pricing
problem for an American option. We restrict our attentiorth® American put options. In Section 3, we describe
discretization methods with strong emphasis on the effieied high-order QSC methods, and discuss the selection
of an appropriate form for the discrete penalty term. A pgnigration for the discretized American put option is
discussed in Section 4. Section 5 introduces an adaptivh aigsrithm for American option pricing and a simple,
but effective, time stepsize selector. Numerical resthis$ lemonstrate the efficiency and accuracy of the methods
are presented in Section 6. Section 7 concludes the paper.

2 Formulation

The Black-Scholes model for American put options takes ¢dnmfof a free boundary problem [34, 38]. The
disadvantage of the free boundary formulation is that tieen explicit mention of the free boundary. To avoid
this, we write the American put option valuation problem mL&CP form, and the optimal free boundary can then
be determined a posteriori. More specifically, denotingSthe value at time of the underlying asset, By the
expiry time of the option, and by = T — ¢ the backward time variable, the early exercise constragudd to the
following LCP for the valué/ (S, 7) of an American put option [37]

ov ov
—_— = = — =LV
or AV =0 U nal o V0L 2.1)
V-V*>0 V-V*r=
subject to the payoff
V*(S) =V (S,0) = max(F — S,0), (2.2)
and the boundary conditions
V(0,7) = E,
(2.3)
V(S,T)~0 as S — S,
where
LV = 1 2528 4 Sa_v —rV. (2.4)

852 oS
Here,S is the right boundary of the semi-truncated spatial domiis, the strikey ando are the positive constant
risk-free interest rate and constant asset volatilitypeetvely.

Following [14], we replace the LCP (2.1) by a non-linear PEained by adding a penalty term to the right side
of the Black-Scholes equation. More specifically, with aagignparameter, ( — oo, we consider the non-linear
PDE for an American put option

ov

8_ — LV = Cmax( ‘/70)7 Sel= (07 500)77_ € [0>T]7 (25)
-

subject to the initial and boundary conditions (2.2) an8).2The penalty termg max(V*—V, 0) effectively ensures
that the solution satisfiels — V* > —e for 0 < ¢ <« 1. Essentially, in the region whefé > V*, the PDE (2.5)

resembles the Black-Scholes equation. On the other hareh wh< V' — VV* < 0, the Black-Scholes inequality
is satisfied, assuring that the early exercise rule is ndatad.

3 Discretization

We now discuss the discretization of (2.5) and the seleaifappropriate forms for the discrete penalty term.
For the rest of the paper, we adopt the following notatiort A& = {SJ =0< SJ < SJ . < SJ 1 < S =
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S~} be a partition of2 = Q U 89 at time;, with spatial stepsizes, not necessarily unifotth= 57 — 57 _ i =
1,2,...,n. In general, the superscrip')tapplied to an operator or a function-ofind/orS denotes evaluation of the
operator or function at time;. Denote byhT =71; —Tj-1,J = 1,2,..., the jth timestep size withp, = 0. Let
VI(8) = V(S,1;) be the approximation to the true solutidi{S, ;). Furthermore lets = V7, vi,...,.v7 "
be the vector of valueg; = V(S7,7;),i=1,...,n— 1. Similarly, denote by *7 = [V;*/ v,/ ... V7|7 the
vector of the payoff valuey’ w7 = V*(SJ) i=1,...,n—1.

To proceed from time;;_; to time7;, we apply the standar@timestepping discretization scheme to (2.5)

(T —0RILHYVI(S) = (T+ (1 — ORI LT HVITYHS) +PI(VI(S)), SeQ, (3.1)
where0 < 6 < 1, and incorporate the boundary conditions (2.3) by setting
VI(0)=E, VI(Sy)=0. (3.2)

Here,Z and P’ denote the identity and penalty operators, respectivehera/P’ is defined byP’ (V7 (S)) =
¢max(V*(S) — V7(S),0). The above timestepping technique, together with the bayndonditions, can be
viewed as equivalent to solving a nonlinear BVP at each tiegesin (3.1), the value8 = 1/2 andf = 1 give
rise to the standard Crank-Nicolson (CN) and the fully-iiwiplmethods, respectively. It is known that the CN
method is second-order accurate, but prone to producingosisuoscillations, while the implicit method is first-
order accurate, but maintains strong stability propeitieg. [31, 40]). To maintain the accuracy of CN as well
as smoothness of the solution, we use the Rannacher smpaduhnnique [32], which applies the fully-implicit
timestepping in the first few (usually two) timesteps.

3.1 Finitedifferences

Applying the standard centered FD discretization for trecsprariable in (3.1) gives rise to ém—1) x (n—1)
algebraic system of the form

(I +6hMI 4+ PHYVI = (I — (1 — Q)R MI~HYVI=t 4 piy+i 4 g/, (3.3)

where M7 is a tridiagonal matrix that arises from discretizidg by FD on A7, I is the identity matrix,P’ is a
diagonal penalty matrix, ang/ is a vector containing certain values arising from the bampdaonditions. The
explicit formula forM7 is

MI=trid{(M7);;_1,(M?);;, (M7); 01}

) 1 o | o o 1 , (3.4)
=tri d{—ioj(Sf)2 {Z — rSfonli, —502(527)2552- — rSfoz%i + —502(55)2@% r‘SJozgz)}
where . .
o = - LQQ,ZM g M
' Wl +hly) hy hf+1 ' hi+1(h? +hiq)
: 2 .
i _ _
= 75 By = >532 = )
hf(hj hz+1) hfhiﬂ hf+1(h + hz-l—l)

and where ri d{-, -, -} denotes a tridiagonal matrix with the sub-, main and supsgehal elements listed in the
brackets, and with the first and last rows modified to take agtmount the boundary conditions. The penalty matrix
PJ is defined by

()i = (3.5)

- ¢ if V<V oand i=1,
0 otherwise.
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3.2 Finitedement collocation methods

For high-order discretization in space, we apply collaratbased on quadratic splines. We remind the reader
that the space of quadratic splines with respect to partitié with » subintervals has dimension+ 2, and thus
we needn + 2 conditions. Two of the: + 2 conditions are obtained from the boundary conditions (&8)Y the
rest come from collocation conditions, as explained furthehis section. LeV’/(S) = >, cg¢{(5) be the spline
approximation td/ (.S, 7;) expressed in terms of appropriate quadratic spline balsisiﬁns# (S) and coefficients
or degrees of freedom (DOF8§. LetDI = {DZJ n_, be the set of collocation points on the partitidd. It is
important to emphasize that the choice of collocation gomay affect the order of convergence of the resulting
methods [8], especially on a non-uniform grid. In the casea afiform partition, i.eA/ = {Sg = th,i =
0,...,n,h = %@}, and quadratic splines, it is natural to havé = {Df = (Sf_1 + Sf)/Q,z‘ =1,...,n}. That
is, for a uniform partition, the set of collocation points B0QSC method is chosen to be the set of the midpoints of
the partition. For a non-uniform partition, the set of colition points is defined slightly differently. In Section 5,
we describe in detail how the set of collocation points for&Xmethod can be constructed on an adaptive grid.
For convenience, leb} = S} = 0 andD/_, = S}, = Sw. Also, letV/ (S) be the quadratic-spline interpolant of
V7 (S) satisfying

VI(S)=VI(8), S=0, SeD!, S =S5. (3.6)

For the convenience of the reader, we first briefly reviewngptiollocation methods for linear parabolic PDEs.
It is known that applying the standard spline collocatioacdgtization to linear parabolic PDEs results in sub-
optimal approximations, i.e. the order of convergence efdpline collocation approximation is less than that of
the interpolant in the same polynomial space. To obtaimwgdt(fourth-order) QSC methods for linear parabolic
PDEs, appropriate perturbations of the differential ofmerd and of the boundary operator, similar to those used
to obtain optimal spline collocation methods for BVPs (¢18]), are developed in [6]. An optimal fourth-order
spline collocation method can be obtained via either defecorrection (two-step method), using the perturbation
operator in the right-hand side of the collocation equatiohthe correction step and requiring the solution of two
tridiagonal linear systems per timestep, or extrapolatmre-step method), using the perturbation operator in the
left-hand side of the collocation equations and requirimg golution of an almost pentadiagonal linear system at
each timestep.

Several optimal (fourth-order) and efficient QSC methodssfilving one-dimensional linear parabolic PDEs
with general boundary conditions have recently been inited and studied in [6]. These methods can be viewed
as combining the two steps of the deferred-correction ntethtm one, and treating the perturbation term for
explicitly, thus maintaining the fourth-order accuracyjil® requiring the solution of only one tridiagonal linear
system per timestep. The QSC discretization for the spatabla considered in this paper can be viewed as an
extension of the efficient and optimal method named QSC-CNrfear one-dimensional parabolic PDEs in [6] to
the context of one-dimensional non-linear PDEs of the fa2rB){ More specifically}’7 (S) is computed by

(T —0RLLI)VI(S) = (T + (1 — O)RLLI ™ + WPL YVI~(S) + PI(VI(S)), S e D, -
Vi) =B, VI(Sx)=0, '
with VO(S) = V(9), Wherepé is an appropriate perturbation 6f. The definition of’PZ: on a general grid can
be found in [8], and is omitted here for brevity. The readeeferred to [6] for detailed discussions of the relevant
methods.

2By “almost pentadiagonal”, we mean that all rows of the magkcept the first two and last two rows, follow a pentadiajqattern.
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As discussed in [6], for one-dimensional linear parabolRER, the perturbation tern®. ' (V7~1(S)) cor-
responding to the first and last collocation points, nanié{yand Dl are responsible for potential instability.
Experiments show that similar conclusion holds for the PRE)( Among several remedies proposed in [6], we
find that the method QSC-CNO, which completely omits theysbdtion terms on the first and last collocation
points, is simple and works well for pricing American opigotience we adopt this choice fﬁ% in (3.7).

Letd = {¢/}" ) andct7 = {7 )4} be the vector of the unknown DOFs for the quadratic splineagpp
mation and the vector of the DOFs for the spline interpoldithe payoff on the partition\’, respectively. Method
(3.7) gives rise to @&n + 2) x (n + 2) algebraic system of the form

(Q) + W Q7 + P))d = (Q) = (1 =)W Q™ + W@y )™ + Pletd + ¢/, (3.8)

wherng is the quadratic spline interpolation matrix for the paotitA7, Q7 arises from discretizing’’ using

QSC, and the matri@;;l arises fromPZ‘l. We refer the reader to [6] and [8] for the explicit definitsoof these
matrices. It is important to note thé¥) is a tridiagonal matrix, as opposed to the identity matrixhie FD case.
The penalty matrixP/ is also a tridiagonal matrix, as opposed to a diagonal onlesifrD case, and is defined by

(P}, = (@) it VI(S)<V*I(S), S=D]_,eDiuoQ, (3.9)
7Y 0 otherwise, '
or, equivalently,P? = PiQ? with
(P, = ¢ if VI(S)<V*(S), S=D! , eDiudQ, and i=I, (3.10)
7Y 0 otherwise. '

4 Penalty iteration

In [14], a penalty iteration algorithm for American put apis in the context of FV discretization methods is
presented. The penalty iteration algorithms for (3.3) &h8l)(are essentially the same with that in [14], and hence,
for brevity, we only present the penalty algorithm for the@@®ethods. Lek be the index of the non-linear penalty
iteration. Letc’(¥) be thekth estimate of/, and P7:(%) be thekth penalty matrix constructed at thth timestep.
The vector of initial guess’(?) is usually chosen to be/—!, which is the vector of the DOFs of the quadratic
spline approximation at the previous timestep. A QSC pgntdtation is presented in Algorithm 1. In general,

Algorithm 1. QSC penalty iteration for American options

1: Initialize ¢(0);

2: ConstructP?(9) using (3.9);

3: for £ =0,..., until convergence&o
4:  Solve (3.8) fored:(k+1);

5. ConstructP?(*+t1) ysing (3.9);
6

7

8

9

if [maxi{Wri’;i(zl)‘%gj),(_ki/f;((li;)(s)' for S = Dg c D} < tol] or {pj,(k) = Pj7(k+1)] then
break; ’
end if
: end for
10: ¢ = cj’(kH);

for points at whichl/7(S) < V*7(S), whereS € A7 for FD methods o1S € D’ for QSC methods, if we want the
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LCP (2.1) to be computed with a relative precisiohwe should have ~ i. So( is well-defined, and cannot
be arbitrarily large. It is worth noting that, in practicesmall number (oneo or two) of penalty iterations usually
suffices to obtain convergence. Note that, in case of FD ndsttibe initial gues& (), for j > 1, is chosen based
on linear extrapolation of the numerical solution from the fprevious timesteps, that is,

. _
gty _ (et he ) oy hr

_—_
— — .
. h

Extensive experiments have shown that this choice of imtiass is more efficient than the standard choice of the
numerical solution at the previous timestep [10]. Fer 1, we setV () = V0,

4.1 Solution of theLCP
We now investigate the discrete solution of the LCP (2.1).fWé¢t consider the FD case. In this case, at each
timestep, the solution of (3.3) is required. We define

FVI = [T+ 0W M — (I — (1 — )R M~ 1)V~ - gj] (4.1)

where[:|; denotes théth component of a vector. In order to obtain an FD approxinsatation of (2.1) with an
arbitrary level of precision, we need to show that the sotuif (3.3) satisfiesf/ij - V* — 0as¢ — oo for
gridpoints wherel—'W > 0. For FD methods, similarly to FV methods in [14], this follew we can show that the
term

[PV = V), (4.2)
is bounded independently gf It is also desirable that the bound be independent of thestiep and the spatial
mesh spacing, so thgtcan be chosen without regard to the grid and the timesteg.she follow the lines of
Theoremy.1 of [14], which essentially gives sufficient conditions thdow us to bound (4.2). For the FD methods,
these sufficient conditions are: (i) the mati%’ arising from discretizing the differential operat6f be anM-
matrix, i.e. a matrix with non-positive off-diagonals, andn-singular with the inverse being non-negative, and
(i) 1 — (1 — O)RL((M7);;_1 + (M?)si11 +7) > 0, where(M7);;_, and (M7);;, are given in (3.4). Note
that condition (ii) arises since we require thf@t— (1 — 6))hZM7~17i~1 pbe bounded (see Appendix A of [14]
for a similar proof in the context of FV methods). When a fulyplicit method is used, condition (ii) is trivially
satisfied, but, when the CN timestepping is used, this ciomdéssentially requires the boundednessn;%%.
In our experiments, this boundedness condition is not aveatisfied. However, we observed that, észlong as
Crank-Nicolson is preceded by a finite number of fully implgteps (Rannacher smoothing [32]), (4.2) is bounded
independently of and¢ can be chosen without regard to the timestep and mesh sp&iindar observations were
also reported in [14], where, in fact, an open question i2gam whether or not we can remove condition (ii) if
the Crank-Nicolson timestepping is preceded by a finite remobfully implicit steps.

We now consider condition (i). For the FD methods, it is maravenient to study the property of the matrix
M7 based on the following sufficient conditions for thé-matrix structure: strict diagonal dominance with positiv
diagonals and non-positive off-diagonals [17]. Note tifahe matrix /7 satisfies these sufficient conditions, then
so does the matriX + Hh]}M J, taking into account that and hj; are positive.

LEMMA 4.1. Assume that the partition/ = {57 }7_ satisfies the conditions

2qJ
o°S;_4

r

Bl

7

IN

, 1=3,4,...,n, (4.3)
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on the spatial stepsizes, whdrge: SJ Sf ;i =3,4,...,n. Then, the matrix\/’ defined in (3.4) is a strictly
diagonally dominant matrix with positive diagonal and rpm;itive off-diagonal entries.

J\2 3
- i _di dig__ oS rSihi L -
Proof: The explicit formula for super-diagonals &1/ is TR R R R AV E R i=1,2,...,n—2,and

a2(87)?

hence the super-diagonal elements are always non-positive sub-diagonal entries @/’ are—h](h]

I
%hfhzl), 1=2,3,...,n— 1. Under the given condition (4.3) on the spatial step lendih sub-diagonal entries
are non-positive. Thus, under (4.3), all rows have nontpesoff-diagonals. Also, all but the first and last rows of
M’ have row sums equal to the positive interest (ate- 0), thus, these rows are strictly d|agonally dominant, with

positive diagonal elements. Taking into account tat= h?, the first row has eIemenM{1 = —10%(8])%6, —

rSiad, +r = (o2 +r)hl /1, andM{2 = —102(8)23%, — rSiaj, = (o + T)% from which we get

Mfl > 0, Mf2 <0, and\M{l\ > nyzy Similarly, for the last row, we havM 12 <0 under condition

(4.3), and the row sum is greater thanThus we also have/; , , , > 0and|M; _,, 4| > [M;_,, ,|. This

concludes the proof. O
For QSC methods, we have not been able to obtain a rigorow$ pirthe boundedness of term

[P — )i (4.4)
However, as a numerical test, we monitor the quantity

ax [maX[O, V*I(8) — VI(9)]
i max(1, V*J(S))

] S =Dl eDi, (4.5)

which is a measure of the maximum relative error in enfor¢hregAmerican constraint using the penalty method.
This quantity will be small if the quantity (4.4) is boundexhd ¢ is sufficiently large. During experiments, we
noticed that, as long as the Rannacher smoothing techn8fl]eq used, the a posteriori error quantity (4.5) is
indeed of the order afol. In Section 6, we report selected statistics of this meafsurall the experiments that we
run.

4.2 Convergence of the penalty iteration

The convergence study of the penalty iteration in TheordnoB[14] essentially consists of the following three
results: (i) the nonlinear penalty iteration convergeshunique solution of the discretized equation for anyahiti
iterate; (ii) the iterates converge monotonically; (ifigtiteration has finite termination.

For FD methods, the proof of convergence of the penaltytierds based on the following two conditions: (a)
the matrixI +6hZ M7 + P7(*) pe non-singular, and (b) the inverse of the mafrxdh? M7 + P#(*) be non-negative,
where P7»(F) s the kth penalty matrix constructed at thh timestep for FD methods using (3.5). Under the
sufficient condition (4.3) for matri®/7 to be anM-matrix, both (a) and (b) are satisfied, sirce 617 M7 + Pi(*)
is a diagonally dominantM-matrix.

For QSC methods, since the unknowns are the degrees of freedle consider an equivalent transformed
discretized problem with the unknowns being values instdatkegrees of freedoms. To this end, instead of (3.8),
we consider the transformed problem

(I +0nQI(@Q) ™ + PHVI = (I = (1= 0)WQH Q) )™ + hlQp (@ )V + PV + 7,
(4.6)
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taking into account (3.9) and (3.10). In (4.6:62' andV*J are vectors of option values and payoff values, respec-
tively, on D7 U 652, andg’ = ¢7(Q?)~. Similarly to the convergence proof in the FD case, two ctimits must

be satisfied at thé&th iteration of thejth timestep: (a) the matrix + Ghj}Qj(Qé)‘l + Pi®) pe non-singular, i.e.
Equation (4.6) should have a unique solution, and (b) therses ofI + Ghj}Qj(Qé)‘l + P pe non-negative,
where P4*) is the kth penalty matrix constructed at thth timestep for QSC methods using (3.10). Consider the
matrix Qj(Qg)‘l. Unfortunately, since, in general, this is a dense matrik witernating signs at the off-diagonal
entries, it cannot be atnv-matrix, hence we cannot use the same technique that wassdior the convergence
proof of FD methods. Rather, we study numerically whethemtiatrixI + 047 Q7 (QJ)~! + P (*) satisfies (a) and
(b). Our numerical results show that, at each timestep andllfgridsizes considered, + 0h2Q7(Q})~! + P7(*)

is hon-singular and its entries are non-negative withinleramce of sizeol ~ % It is also worth noting that the

inverse ofQ7(Q?)~" can be proved to be positive. As shown by the numerical msihi¢ fact that)’ (Q?)~' does
not satisfy the sufficient condition of being &1-matrix does not seem to have ill-effects on the fast corarerg

of the penalty methods applied to QSC methods. Related \is®rs were reported in [14], where a conjecture
was made that the penalty iteration converges rapidly umderh weaker conditions than the sufficient condition
that the discretized differential operator be/afrmatrix.

5 Adaptive mesh methods

To construct the adaptive grids, we usenitorand respectivgrading functions, and the error equidistribution
principle [3, 11]. According to the error equidistributigmminciple, the partition points are distributed in such a
way, that the error in some chosen norm (or semi-norm) isdéfributed among the subintervals of the patrtition.
Depending on the norm chosen, a different monitor and a céigspegrading function arises. Generally, a grading
function has the formg(S,7) = [’ VdsS/ [7> VdS, for some appropriatenonitor function V (S, 7). In this
formula, the value (S, 7) at S represents the portion of the approximate error at tirfeom the left endpoint
of the spatial domain up to poitit. To approximate the value of a grading function, the intisgiravolved in the
formula are approximated using appropriate quadratuesruUsually, the monitor functions involve high-order
derivatives ofl/, which, in a practical situation, are not known. Theref@gproximate values are used to obtain
the respective approximate values of the grading functions

According to [11], for a discretization method with erropportional toh?V (@), whereh is a spatial stepsize and
V(@ is thegth derivative ofv” with respect te, a good grading function &S, 7) = [;” [V (@ [V/rdS/ [7> |V (@) [V/r4S.
For different spatial discretization methods, we possdilyain different grading functions. We first consider the
monitor functions for the FD method. Ignoring higher-ortienms, the truncation errors of the FD approximations
for the first and second spatial derivatives can be boundeerins ofmax(hg)2 and (h{Jr1 - h{) + max(hg)2,
respectively. This means that the FD method is formally-orsier. However, through numerical experiments, we
found tha'[h{Jrl — h{ is small enough so that the error is dominatedxw((h{)? Then, the (spatial) discretization
error of LV in the FD method is considered second-order with respebgtstepsizes, and involves the third deriva-
tive V®, resulting in the grading functiogy (S,7) = [ [V®)|¥4dsS/ [>= |V®)[2/44S. For the QSC methods,
we takeq = 3 (as the error formula for the interpolant suggests) anrd 3 (the global order) [8], resulting in the
grading functior, (S, 7) = [ [V®)|2/6ds/ [ |v®)2/4s.

Given a grading functiod(.S, 7;) for a fixed timer; and a fixed number of subintervalsthe adaptive algorithm
computes pointss?,i = 0,...,n, with £(S),7;) = €(0,7;) = 0 and&(Sh,75) = £(Seo,7j) = 1, such that
£(S7,75) — €(S7_,,7j) =~ 1/n,i = 1,...,n, or equivalently£(S?, ;) ~ i/n. To do this, we apply an iterative
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scheme based on Newton’s method

o
gtk _ gty _ ST =5
’ ‘ él(sjv(k))
Sj’(k) ~ (k’) ; S = (k) (51)
L gty QU VIWds) — fo(fy> VAMds)
o =) :

wheref/z.j’(k) denotes the approximate value to the monitor function atamatsf’(k), andQ(-) is a quadrature rule
approximation to an integral. Several quadrature rulesimeaysed, but, in our experiments, we used the trapezoidal
rule for the FD method and the midpoint rule for the QSC metfid fact that, for the QSC method, the midpoints
are points of high accuracy and no discontinuities motiéte midpoint rule. For FD method, since the gridpoint
values are computed, the trapezoidal rule is a natural ehdtarthermore, we found that the variations between
those quadrature rules have negligible effect in the firgllts. In our experiments, we applied only one iteration of
(5.1). Thatis, at most one re-distribution of the spatiahfstakes place in one timestep, and thus the placement of
the spatial points evolves as the timesteps proceed. Enprts show that this choice works well for the American
option pricing problem and is attractive due to its efficignc

To decide whether one re-distribution of the spatial pamtseeded at a certain timestep, we use the criterion

_fP=vds

n

(5.2)

) Al ; si ~ . ;
rdrift = maij{n} <a, wherer! = ijL vds, i=1,...,n, 1’
i—1

The ratiordrift gives an indication of how well-distributed the partitian If this ratio is too large, it follows that the
maximum error estimate over all subintervals is considgrager than the average estimate, and thus, the current
partition is not well-distributed. That is, for a partitida be well-distributed, the maximum value q’f must be
roughly at mostx times as large as the average vatgjeTypical choices forx are small numbers, such as= 2

[36]. We have used: = 5 in all our experiments, and the results show that this ¢oiteworks well for American
option pricing.

We next discuss in more detail how our adaptive mesh teckrigork. For the purpose of our discussions,
denote by(/il the approximate solution on the partitidd at timestepj. A generic algorithm for timestepping from
time 7;_; to time 7; using an adaptive mesh technique is summarized in AlgorBhriNote that we always start
with a uniform grid as if we do not know how the solutions bafyaand subsequent partitions are fully determined
by the adaptive technique.

We now briefly describe the algorithm. In Lines 1 and 2, we wa@ptimestepping method, usually Crank-
Nicolson, with the exception of the Rannacher smoothingriepie for the first few timesteps, using the same
spatial points for timer; as forr;_;. This computes approximate valuﬁgj = Vij,l. We calculate all needed
guantities and check the criterion in (5.2). If the points aell-distributed, we proceed to the next timestep (Lines
3 and 4). If not, the new location of the spatial poirité is computed using (5.1) (Lines 5 and 6). See Remark
5.1 about an adjustment v for QSC. Next, we need to calculate values of the approxonadt the new spatial
points at timer;, i.e. Vij. There are two ways to do this. The first is to interpoﬁ?{ga;_,l1 from the old partition
A~ to the new partitiomA/ to obtainV{;*, and then apply the same timestepping procedure that waispsty
used at Line 2 to compute values of the approximation at thepaetition points, i.ef/ij. The second way is to
simply interpolatel’};_, from A7~ to A7 to obtainV{;. The first technique is used in the first few) timesteps
(Lines 7, 8 and 9), while the second is used in all subseqireesteps where a remeshing is invoked (Lines 10 and
11). Note that using the first technique for all timestepsniy desirable for functions that are fast-evolving with

time. For functions that evolve slowly with time, such astakie function of an American option, this approach is
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Algorithm 2: An adaptive algorithm for timestepping from_; to 7;
1. LetAJ = AIL
2: ComputeVij by solving either (3.3) or (3.8) with a penalty iteration.
3: if (5.2) is satisfiedhen
4:  Proceed to Line 2
5. else
6:  Apply (5.1) (one iteration) to obtain a ne.
(For QSC, some adjustment 29/ is made, as described in Remark 5.1.)

7. if j < Gthen

8: InterpolateV’;", to obtainV{; .

9 ComputeVij by solving either (3.3) or (3.8) with a penalty iteration.
10: dse

11: InterpolateV’y; , to obtainVy,.

12:  endif

13: end if

14: Proceed to step.

unnecessarily inefficient. During the experiments, we pleskthat (i) remeshings are always required for the first
few timesteps, due to the discontinuity of the initial datagl (ii) using the first technigue for these initial timestep
is absolutely crucial for the accuracy of the numerical rodth In the experimentg, is chosen to bd. Below, we
elaborate on several fine points of Algorithm 2 in the formavharks.

REMARK 5.1. We give some details about how the new partitivohcomputed at Line 2 of the algorithm is adjusted
for QSC. As mentioned earlier, the space of quadratic sphmi¢h respect to a partition with subintervals has
dimensionn 4+ 2. For a uniform grid, the natural choice for collocation geils the set of midpoints and the
two boundary points. However, for a non-uniform partitidinis not obvious how these points can be chosen, so
that the optimal convergence of the resulting methods isgoved. We follow the technique in [7], to construct a
non-uniform grid and a set of collocation points for QSC vigegtain mapping function.

Denote byA = {S; = ih,i =0,...,n,h = 57'0} the uniform partition of) with n subintervals. Assume that
we are timestepping from;_; to 7;, and (5.1) has been applied at Line 2 of Algorithm 2 to give a-noiform
partition A7 = {S7}" . For adaptive QSC methods, we define a mappifg Q@ — Q with 7 being a bijective
strictly increasing function such that

W(0) =0, ¥/(Seo)=Soos U((Sim1+8:)/2)=(S_,+S)/2 i=1..,n (5.3)
We then re-definé\’ and defineD’ by
N =S =¢)(8), i=01,...,n}, DI ={D] =¢I((Si1+5)/2), i=1,....,n}.  (5.4)

The above adjustment &’ was used in [7] in the context of BVPs, and gave improved amyuresults, therefore,
we adopt it here as well.

The mappingy’ is generated using the algorithm for monotone piecewisécdnkerpolation from [15]. It
is important to point out that the basis functio@é(S) are defined with respect to the adjustad. With this
discussion, for the adaptive mesh QSC methods, Line 2 ofralgn 2 can be broken down into the following
substeps:
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2.1 Apply (5.1) (one iteration) to obtaift/ = {S7}"
2.2 Construct the mapping’ : Q — Q using (5.3)
2.3 AdjustA7 and defineD? using (5.4)

REMARK 5.2. In Algorithm 2, interpolation is needed at Lines 2 and 2. Fea@ive mesh FD methods, interpola-
tion at these steps takes place on the option values, whikedfptive mesh QSC methods, interpolation takes place
on other quantities, as explained later. We explain in de&ow how interpolation at these steps of the algorithm
is done.
First, consider adaptive mesh FD methods. Whes 1, i.e. we are timestepping fromy = 0 to 7, one

can take an advantage of the initial boundary conditioncéero interpolation is needed at Line 2. When 1
and a remeshing is required, interpolation needs to berddllproperly to ensure that certain properties of the
problem related to the free boundary are not violated. Folmerican put, at each timestep, the free boundary
point separates the spatial domain into the stopping regibere the option value is equal to the payoff, and the
continuation region, where the option value is greater thampayoff. Since, for adaptive FD methods, interpolation
takes place on the option values, interpolated option gataest be (i) equal (within some tolerance) to the payoff
in the stopping region, and (ii) larger than the payoff andreasing in the continuation region. Several possible
choices for interpolation include cubic spline interpmlator piecewise cubic Hermite interpolation. It is known
that piecewise cubic Hermite interpolation is less osmilg but also less accurate than cubic spline interpatatio
We chose to use cubic spline interpolation, to obtain higloeuracy. With cubic spline interpolation techniques,
we observed that (i) is always satisfied; however, (i) is @otays met. To resolve this problem, we adjust the
interpolated values to the left of the free boundary poirtécequal to the payoff. It should be noted that the free
boundary point at each timestep is approximated using thttipa points and option values available, namely

{871y, VI 11) (Line 2) or({SJ N VL 1) (Line 2).

For adaptive mesh QSC methods, it is important to pomt oalt ithterpolation at Lines 2 and 2 takes place

neither on the option values nor on DOFs correspondmyjtp , and ViJ ., but on the values ofZ + (1 —
O)RLLI~Y + WPl 1)V3J Lor (Z+ (1 —0)hlLi + bl PL)VXJ .- We observed that the standard cubic spline
interpolation worked well in this case, and no specific tailp was needed.

REMARK 5.3. In addition to the Rannacher smoothing technique [32], we allopt another smoothing technique
suggested in [31]. That is, at each timestep, for FD methewds;hoose to position a gridpoint at the strikgthe
initial kink point). We extend this technique to QSC methduspositioning a collocation point at the strike A
combination of the Rannacher smoothing and this techniglmsipreclude large oscillations in the estimation of the
hedging parameters [14, 31]. In addition, when we are istetkin the option value and its hedging parameters at
S = F, this technique provides the benefits of (i) avoiding intdmfion in case of an FD method; and (ii) obtaining
more precise option values and hedging parameters when ar@810d is used, since collocation points are points
of high accuracy. However, in the case of adaptive methd@slocation of the gridpoints or collocation points is
computed dynamically by the adaptive technique, and theistifike £ may fall between gridpoints or collocation
points. In these cases, we need to adjust the grid, so thatrtke E falls at a gridpoint (FD) or collocation point
(QSC). To apply this adjustment, we use the observationttieabption values behave linearly in the area towards
the left boundary of the domain, i.e. in the stopping regemd, therefore, in that region, few points are needed.
Thus, we propose to move one gridpoint from this area to |mevith the strike price, if an FD method is used, or
to make the strike a collocation point, if a QSC method is uséare specifically, for FD method£\’ containsE
as a gridpoint, while for QSC methods, is one of the midpoints of\’, before the adjustment (5.4). Then, under
the mapping (5.3), the set of collocation poifits containsk.

It is important to note that, although it would also be dddeao have a partition with a gridpoint (for FD
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methods) or a collocation point (for QSC methods) at the freendary, it is impossible to construct a partition

with that property, since we do not know beforehand the elxaettion of the free boundary at each timestep. This
issue appears with any method, adaptive or not. Howeveptigdanethods partly resolve this issue. As shown
by numerical results, the adaptive technique concenti@tes of points around the free boundary. As a result,
the approximation of the free boundary at each timestepgislyiaccurate. Note that, the free boundary locations
approximated by adaptive mesh QSC methods are based onttbe a@location points, rather than the set of

gridpoints as in the case of adaptive mesh FD methods.

REMARK 5.4. We now discuss whether the{-matrix stepsize restriction (4.3) for FD methods may ifeer with
the stepsizes chosen by the adaptive technique. We emehhaizcondition (4.3) does not impose any restriction
on hg andh{, since the first row of\/7 does not have a sub-diagonal element and the super-diagienaénts are
(unconditionally) non-positive. For the rest of the stepsi itis possible that the new partitidyy constructed using
(5.1) may not satisfy condition (4.3). If we wish to enforandition (4.3), we can do so by monitoring whether
(4.3) holds, while computing the poin@, 1 =1,...,n— 1, using (5.1), and adjusting the points accordingly, if

. . . 2qJ
needed. For example, if a poifif computed by (5.1) is such that violates condition (4.3), that is, if/ > *
. 2qJ . . .
we can seb] = * andS/ = S/_, + hl. This means that we may need to introduce some extra spetigbp

During the experiments, we monitored carefully whetherdition (4.3) holds, and noticed that, for all the cases
we ran, the points generated by the adaptive FD procedur nelated this condition. Hence, we never had to
introduce more spatial points.

REMARK 5.5. The adaptive technique for FD and QSC used in this papeniesan approximation to the third
spatial derivative/®, of the solution at various points chosen by the adaptivhrigue itself. Similarly, the
high-order QSC method involves an approximatioritd at certain points. Since the exact location of the free
boundary of the American option pricing problem is unknowe, cannot rule out the possibility that the methods
attempt to compute an approximationté®) at the free boundary, at which point the solution is ofify, While

this seems to be a problem from the mathematical point of wigsvnumerical results suggest that this may not be
the case from the practical point of view. As discussed iniSe®, we apply the methods to the European and
American option pricing problems. As it is known, the sadatiof the former is smooth, while that of the latter
has limited smoothness on the free boundary. The fact thatllgcgood results (approximately same order errors
for same discretizations) are obtained for both problemssgan indication that the lack of smoothness at the free
boundary of the solution of the American option pricing pesb may not reduce the effectiveness of the adaptive
technique, or the high-order method. Detailed results mengn Tables 6.1 and 6.2, with a discussion in Section 6.

5.1 Timestep selector

In [23], a simple, but effective, time stepsize selectorr@ppsed. The idea is to predict a suitable time stepsize
for the next timestep, using only information from the catrand previous timesteps. A modified version of this
scheme, given in [14], was shown to work well on both unifodi][and fixed non-uniform grids [14]. It would be
interesting to examine whether this time stepsize selewtoks well in the context of adaptive mesh methods. In
addition, since the benchmark solutions, to which our nicakoption values are compared, are based on option
values from [14], and those values were obtained usingithis $tepsize selector, incorporating it into our methods
enables consistent and fair comparisons. According tq di¢¢n a stepsizﬁ]}“, the new stepsize is selected so

that
hi+2 — | min _ dnorm _ hitl, (5.5)
T i [V (S, +h =V (8] ,m) T

maX(N"V(sgvTj+hi+l)‘7“7(55773)')
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Here,dnor mis a user-defined target relative change, and the $¢asechosen so that the method does not take an
excessively large stepsize in the area where the value aiphen is small. Normally, for option values in dollars,
N = lis used. The reader is referred to [14] for a detailed disonssf this stepsize selector. In all experiments,
we usedh! = 10~3 anddnor m= 0.15 on the coarsest grids. The valuedrior mis reduced by two at each
refinement, whilen! is reduced by four.

6 Numerical results

We first present selected numerical results to demonstrateigh-order convergence rate of the QSC methods
applied to the European option pricing problem. We alsogeiesults to demonstrate the efficiency of the adaptive
mesh technique presented in Section 5 when combined withd@ &0 discretization methods, applied to the same
problem. We then consider the American put option pricingbfegm, and present results that demonstrate the
quality of the QSC approximation to the value and the Greekshis problem, as well as results that indicate the
effectiveness of the adaptive mesh techniques, espeiidtyg accurate tracking of the exercise boundary.

All computations in this section were carried out in MATLARB @ouble precision). The QSC and FD methods
were programmed by us. The linear systems arising from reitree European or the American option pricing
problem were solved using the backslash operator in MATLIBhe case of an American put option, the arising
non-linear systems were solved by the penalty method destin Section 4. We used the MATLAB functions
pchip and ppval to construct and evaluate a monotone Hermite piecewisec d¢ot@rpolant in (5.3) and (5.4),
respectively. We also used the MATLAB functi@plineto construct and evaluate a cubic spline interpolant at
Lines 2 and 2 of Algorithm 2.

In our implementation, as basis functions for the quadssgilme space defined on partitidy , we choose the
functions¢!(S),i = 0,...,n + 1, where

(5—57 ) j j
(ST=-S_,)(5L,=sT) | N
, (5—51_5)(5i —2) (Sl 950 for gi <5<
¢l(S) = (Sﬁ—s€§§><szs—)§3,1> (871 =50)(87=87_) e e (6.1)
i+1— J J
(57157 (7, —50) for Si =55
L 0 elsewhere.

Note thatqﬁg(S) and (¢>g)'(5) are well-defined at the nodes of the partition. Whenever vegiie compute
(q&{)”(S) at a node, we define it by right (without loss of generalityptoauity for Sf 1=0,...,n—1, and by left
continuity forS.

The set of parameters for the option pricing problemg&’is= 100, o = 0.80, » = 0.10, T = 0.25, for both
European and American, whife= 107 was used as the penalty parameter for American options eTf@ameters
are taken from [14], where the penalty approach adoptedsrptper was proposed. The computational domain is
truncated td0, S| = [0, 500], where the condition (3.2) is applied.

In addition to adaptive mesh methods, we also consider aiogte-defined mapping function that produces
non-uniform, but fixed, partitions with finer points near gieke £/, where the discontinuity in the first derivative of
the initial data is. The mapping function considered in fhaper is based onsanh function and was suggested in
[9]. Variations of it appear frequently in the literaturegg35]). According to this mapping, non-uniform parti®
are defined as images of uniform partitions via the function

w(si) = (1 + —Sm};fgf’(b;) “”)E, (6.2)
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wheres; = S;/So =i/n, 1=0,1,...,n. For QSC methods, following (5.4), the set of collocationp®iunder
the mapping (6.2) can be determined with = (S;_1 + Si)/(25») = #, i = 1,...,n.
In (6.2), the parameteat controls the degree of refinement
around the strikg”. Larger values of: indicate finer parti- 500
tions near the strike. It is important to note that by chogsin ol 2828625 |
a = i/n, the gridpointS;, falls exactly at&, and by choos- - a=045 i
ing a = (i + 1) /n, the midpoint(S, 1 + S;)/2 falls exactly oo "
at £. The purpose of the parameteis to ensure that the last 350} 1]
gridpoint falls exactly atS.., the right boundary point. The 300} |
value forb can be obtained by numerically solving the equa{y - / ,‘I |
tionw(1) = Sy with a = i/n for somei, 1 < i < n. Figure ya
6.1 shows the refinement around the strike pfite= 100 2007 /!
for various values ofi on a truncated spatial domdiin 500] 150¢ s v
with n = 80 subintervals. Fon = 80, with ¢ = 0.4 and 100} e -
a = 0.45, the strike is at th83rd and37th gridpoint, respec-
tively, while choosing: = 0.40625 positions the strike at the
33rd midpoint. % S0 100 15 200 250 300 350 400 450 500
Several methods are considered, namely, the adaptive S

mesh FD method (adaptive FD), the adaptive mesh QFBigure 6.1: Spatial mapping function (6.2) with var-

method (adaptive QSC), the non-uniform mesh FD methiggs values of on domain[0, 500] and E = 100.
(non-uniform FD) and the non-uniform mesh QSC method

(non-uniform QSC). The latter two use a predeterminediligion of the spatial points obtained by the mapping
function (6.2). As explained earlier, it is beneficial to bdtie strike as one of the gridpoints (for FD methods) or
as one of the collocation points (for QSC methods). The agaptesh algorithm, adjusted as in Remark 5.3, auto-
matically generates such a grid for the adaptive FD and thptad QSC methods. However, for the non-uniform
FD and the non-uniform QSC methods, in order to kéem the position of a gridpoint and collocation point,
respectively, slightly different’s need to be used. In the experiments, we chinse0.40625 for the non-uniform
QSC methods, while for the non-uniform FB,= 0.4 was used. The gridpoint distributions obtained from these
two values ofa are virtually the same (see Figure 6.1), so the comparisanfag. We emphasize that the initial
spatial grid for the adaptive FD and QSC methods is uniforsrif e do not know the behaviour of the solution.
In this way, we demonstrate more clearly the capabilitiethefadaptive techniques.

Since we compare the efficiency of various methods appliegption pricing, it is important to determine the
computational cost of each method. The complexity of a neettumsidered in this paper, when applied to pricing
either European or American options, at each timestep fwlpeiteration, if any), consists of solving a tridiagonal
linear system of size x n, hence its total cost is proportional 40 For adaptive methods (QSC or FD), for each
adaptive timestep in which a remeshing takes place, tha ersts of either interpolating at Lines 2 and solving a
tridiagonal linear system of sizex n at Line 2 or interpolating at Line 2 of Algorithm 2 should alseincluded. It
can be shown that the computation required to construct ia spbne interpolant is equivalent to solving arx »
tridiagonal linear system. Since the cost for the evalmatibthe cubic spline interpolant at an arbitrary point is
constant, the complexity of interpolation in Line 2 or Linefzhe Algorithm 2 is also proportional te. We model
the total computation cost of each method by the formula

50t ./

total cost= total x n. (6.3)

In (6.3), “total” is the number of timesteps (“timestegs) or the total number of penalty iterations (“penalty
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iterations#") the method requires for pricing a European or an Ameriqgationo, respectively, including the number
of timesteps or penalty iterations required by the adapéeanique, if any, plus the total number of interpolations
in the adaptive steps, if any. Note that the total numbertefrpolations in the adaptive steps is the total number of
steps in which a remeshing by the adaptive technique takee fffadapt#”).

Problem 1. European options

The value of a European option satisfies the Black-Scholeatiem and its exact solution as well as hedging
parameters (the Greeks), such as delta and gamma, can lkdridba literature (e.g. [21]). The adaptive techniques
for European options resemble those presented in Algor&tion American options, except that we do not have a
constraint on the option values as we do in the case of an Aareput option. More specifically, in the case of
a European option, no penalty iteration is needed in Linesd22aof Algorithm 2. Table 6.1 shows the numerical
results for an at-the-money European put optiSn=f FE) obtained by various methods, with variable timesteps
chosen by the time stepsize selector (5.5).

Table 6.1: Observed errors for an at-the-money Europeangpioin and respective orders of convergence by various
methods; variable timesteps are used; Rannacher smoaghapglied in the first few timesteps.

timesteps  value () delta @%) gamma ) | adap{ total
n #| error \order error | order, error \order # cost
adaptive QSC

80 38| 6.67e-04 5.16e-06 5.91e-06 7 | 3.60e+043
160 138| 2.94e-083 4.5 | 2.20e-06 1.2 | 1.12e-06 2.4 9 | 2.35e+04
320 541| 2.64e-07 6.8 | 1.04e-07 4.4 | 3.36e-07 1.7 | 15 | 1.78e+04

non-uniform QSC

80 35| 1.38e-03 6.03e-06 5.79e-06 2.80e+03
240 135| 5.64e-083 2.9 | 4.50e-08 4.4 | 3.54e-07 2.5 3.24e+04
720 538| 2.57e-07 4.9 | 9.59e-09 1.4 | 1.92e-08 2.7 3.87e+04

adaptive FD

80 38| 3.94e-03 2.16e-04 7.69e-04 8 | 3.68e+043
160 73| 3.59e-04 3.5 | 2.23e-05 3.3 | 1.66e-03 2.3 | 10 | 1.33e+04
320 142| 4.30e-05 3.1 | 8.12e-06 1.5 | 4.13e-06 2.0 | 15 | 5.02e+04
640 280| 4.56e-01 6.6 | 1.73e-06 2.3 | 9.57e-07 2.1 | 16 | 1.89e+05

non-uniform FD

80 35| 6.20e-03 9.47e-04 7.45e-06 2.80e+03
160 70| 1.56e-03 2.0 | 2.38e-05 2.0 | 2.09e-06 1.8 1.12e+04
320 139| 3.90e-04 2.0 | 5.94e-06 2.0 | 6.00e-07 1.8 4.45e+04
640 276| 9.70e-03 2.0 | 1.48e-06 2.0 | 1.37e-07 2.1 1.77e+0"
1280 551| 2.43e-083 2.0 | 3.71e-07 2.0 | 3.10e-08 2.2 7.05e+04

Problem 2: American put options

Since no analytic solution for the value of an American putarpis available, it is important to establish a highly

accurate benchmark solution to which we compare our nuadeesults. The “exact” option value was computed
using the data in [14] (Tablé, implicit constraint, volatility =0.80) and extrapolation, assuming quadratic conver-
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gence, as the methods in [14] are supposed to achieve. Wabamacy requirement d0~7, the “exact” option
value is14.6788866. Tables 6.2 and 6.3 present selected numerical results fa-he-money American put option
obtained by various methods considered in this paper. lle /R, the values of the options and relevant statistics
are presented. We denote by “penalty iter #” the total nunalbéterations required by the penalty method over
all timesteps, including the iterations required in thepdsla mesh generation, if any. In Table 6.2, the quantity
“error” is computed as the difference between the “exact! #re numerical solutions; and “adapt #” denotes the
total number of remeshings over all timesteps. In TabletBe3delta and gamma values are presented. Since we do
not have reference values for delta and gamma, to show aenes, we compute the “change” as the difference in
delta and gamma values from the coarser grid and the “ratidh@ratio of changes between successive grids.

Table 6.2: Value of an at-the-money American put option ioleh by various methods; variable timesteps are used;
Rannacher smoothing is applied in the first few timesteps.

timesteps penalty adapt total
n # value error | ordern iter#| # cost

adaptive QSC

80 57| 14.678299]1 5.87e-04 141 16 | 1.26e+04

160 115| 14.6788303 5.63e-05 3.4 266/ 20 | 4.58e+04

320 230| 14.6788877 1.10e-06 5.8 555/ 23 | 1.85e+04
non-uniform QSC

80 54| 14.6778209 1.07e-03 99 7.92e+03

240 112| 14.6788044 8.26e-05 2.3 247 5.93e+04

720 228| 14.6788826 4.40e-06 2.7 597 4,30e+04

adaptive FD

80 58| 14.6730564 5.83e-03 86| 11 | 7.76e+03

160 115| 14.6785531 3.33e-04 4.1 169 12 | 2.90e+04

320 230| 14.6788759 1.07e-05 4.9 368, 20 | 1.24e+04

640 460| 14.6788877 1.10e-06 3.3 779 39 | 5.24e+04
non-uniform FD

80 54| 14.6697752 9.11e-03 63 4,32e+03

160 112| 14.6766413 2.25e-03 2.0 125 1.79e+04

320 227| 14.6783263 5.60e-04 2.0 251 7.26e+04

640 456| 14.6787417 1.45e-04 2.0 507 2.92e+04

1280 914| 14.678844% 4.21e-05 1.8 1001 1.17e+06

2560 1829 14.6788739 1.27e-05 1.8 1990 4.68e+06

We next compile an efficiency comparison between variouhaoust for solving the two option pricing prob-
lems. In Figures 6.2 and 6.3, we plot errors versus computatdsts required by each of the methods for the
European and American option pricing problems, respdgtiv@esides methods described in this paper, we also
consider the uniform grid control variate method of [21]r{tol variate) for the pricing of an American option.
Among the four methods described in this paper, namely ada@SC, adaptive FD, non-uniform QSC, and non-
uniform FD methods, itis evident that the adaptive mesh oulisignificantly outperform the non-uniform methods
in general, with the adaptive QSC method being the most efficnethod, and the non-uniform FD being the least
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Table 6.3: Observed delta and gamma of an at-the-money Aamedption obtained by various methods. These
results correspond to option values in Table 6.2.

delta &%) gamma )
n| value | change| ratio] value | change| ratio
adaptive QSC

80| -0.4056185 0.0100044
160 -0.4056275 9.02e-06 0.0100209 1.62e-05
320| -0.405628% 9.87e-07 9.3 | 0.0100224 1.53e-06 9.1
non-uniform QSC

80| -0.4056154 0.0100211

240| -0.4056260 1.05e-04 0.0100224 1.07e-06

720| -0.4056278 1.86e-06 5.7 | 0.0100227 3.79e-01 2.8
adaptive FD

80| -0.3940293 0.0098209

160| -0.3979309 3.90e-043 0.0098831 6.22e-04

320| -0.4012858 3.35e-03 1.2 | 0.0099521 6.89e-05 1.2
640| -0.4030181 1.73e-03 1.9 | 0.0099779 2.59e-08 1.9
1280 -0.4052580) 2.24e-03 0.8 | 0.0100228 4.49e-05 0.8
non-uniform FD

80| -0.3948632 0.0098251
160| -0.4002006 5.34e-03 0.0099258 1.01e-04
320| -0.4029027 2.70e-03 2.0 | 0.0099752 4.94e-05 2.0
640| -0.404262% 1.36e-03 2.0 | 0.0099996 2.44e-05 2.0
1280 -0.4049447 6.82e-04 2.0 | 0.0100118 1.21e-05 2.0
2560 -0.4052864 3.42e-04 2.0| 0.0100178 6.06e-06 2.0

efficient. Below, we discuss in more detail the efficiency panson between the methods.

More specifically, for low accuracy (abowb—3), the non-uniform QSC and the adaptive QSC are the best
methods (and about equivalent between each other), withdhptive FD being the next best method. For high
accuracy (about0~%), the methods from best to worst are ordered as: adaptive, @&ptive FD, non-uniform
QSC, non-uniform FD.

Between the non-uniform QSC method and the adaptive FD mdethis interesting to observe that, for low
accuracy, the high-order method (non-uniform QSC) winsgleytwhen high accuracy is required, the efficiency of
the adaptive mesh technique becomes more and more prompunaking the adaptive FD asymptotically more
efficient than the non-uniform QSC. This is true for both Exgan and American pricing problems, a fact that
confirms the superior efficiency of the adaptive mesh metbwdspredetermined non-uniform mesh methods.

Furthermore, by comparing the results of the European andrigan pricing problems, we notice that the
accuracies of the adaptive FD, adaptive QSC and non-uni@@8€G methods for the American pricing problem are
not significantly affected by the lack of smoothness of tHatgm at the free boundary; see also Remark 5.5.

To quantify the improvement in efficiency between adaptilzedid adaptive QSC for American option pricing
with a requirement for high accuracy, we compare the res@iléglaptive QSC fon = 320 with those of adaptive
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Figure 6.2: Efficiency comparison of various methoBiggure 6.3: Efficiency comparison of various methods
applied to the European put option pricing problem. applied to the American put option pricing problem.

FD for n = 640; see Table 6.2 (errar.1 x 10~%). For this case, the adaptive QSC cost is about 25% of theotost
adaptive FD. For low accuracy, we can compare the resultdaytive QSC forn = 80 with those of adaptive FD
for n = 160; see Table 6.2 (errofs87 x 10~* and3.33 x 10~*, respectively). For this case, the adaptive QSC cost
seems to be less than 50% (but more than 25%) of the cost ofial&D.

Regarding other methods for American option pricing, the-ooiform FV method of [14] is even less efficient
than the non-uniform FD. These two discretization methasetihe same order, but probably the partitions pro-
duced by the mapping (6.2) are more favorable than the ndarompartitions used in [14]. The two remaining
methods, namely the control variate and the uniform FD arddhst efficient for pricing an American option, with
the control variate being slightly more efficient than unifioFD. Certainly, one may introduce adaptive techniques
to FV methods or to the control variate method, and possihlyrove their efficiency.

Regarding values of delta and gamma of an American opticgepted on Table 6.3, it is evident that (i) all delta
and gamma values indicate convergence, with the delta &ghtmma converging te0.40562 and0.01002 (with
an accuracy ot0~%), respectively; and (ii) the high-order QSC methods (aidagir non-uniform) provide much
more accurate delta and gamma and indicate faster conwerdgieain those provided by the low-order FD methods.
However, between an adaptive method and its non-unifornmtegpart, it does not seem that the adaptive mesh
techniques give substantial benefits in computing theseksrerhese results indicate that high-order methods are
particularly effective when the accurate computation ef@reeks is required.

In Figure 6.4, we show the location of the partition pointsetected timesteps, as computed by the adaptive
QSC method, for the case= 80 and when the number of timesteps is 57. We start with a unifgrith(as if we
do not know how the solution behaves). At the first time sthp,doints are concentrated around the strike. As
the time evolves, the points spread to cover the intervalden the free boundary (which moves frdinto the
left and is marked in black) an#l, with concentration around the free boundary. Almost nasoare needed to
the left of the free boundary (where the solution is linear) few points are needed towards the right end of the
interval, where the solution is almost linear. These resullicate that the adaptive technique faithfully captures
the behavior of the solution, and places more points ardoadiiscontinuity points.
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6.1 Penalty iteration for QSC methods

As a posterior check, we report the quantity (4.5), whichriseasure of the maximum relative error in enforcing
the American constraint using the penalty method with QS0 Aas an additional check, we monitor the size of
the relative residual of Equation (3.8) for all collocatipaints with(P7); ; = 0, where(P7), is defined in (3.9).
Since these collocation points are in the continuationoregive expect that, at those points, the Black-Scholes PDE
is satisfied, and the residual to be zero within machine @psiln Table 6.4, we present observed values of the
guantity (4.5) and the residual of (3.8) at the continuatiegion collocation points from experiments with QSC
methods wherq = 107, selected results of which are reported in Table 6.2 andeTal3. Note that this choice of
the penalty parameter results in a maximum relative err&i) 4 enforcing the American constraint of magnitude
of about10~?, or less, that is, very well below the time and space disaattin errors. At the continuation region
collocation points, the relative residual of (3.8) is of #ize10~!4, i.e. the size of machine epsilon. In addition, in
Table 6.5, we give statistics for test cases with varyingodgalty parametey. It is interesting to observe that that
the number of iterations fluctuates insignificantly withegas in value of. This can be viewed as a result of the
finite termination property of the penalty iteration.

Table 6.4: Observed values of the quantity (4.5) and thelwesiof (3.8) in the continuation region when QSC
methods are employed. These values are collected fromimgres whose results are reported in Table 6.2 and

Table 6.3.

adaptive QSC non-uniform QSC
n | error | residual of n | error | residual of
(4.5) (3.8) (4.5) (3.8)

80 | 6e-10 5e-14 80 | 2e-09 6e-14
160 | 2e-10 3e-14 240 | 6e-09 8e-14
320 | 3e-10 2e-14 720 | 8e-10 7e-14

Table 6.5: Test of varying the penalty parameferith non-uniform QSC. The tolerandel in Algorithm 2 is
chosen to b%. The “***” indicates that iterations fail to converge, mdstely due to machine epsilon limitations.

¢ penalty value error | residual of
iter # (4.5) (3.8)
10 212 | 14.6788016| 8e-06| 7e-14
106 229 | 14.6788044| 6e-09| b5e-14
108 221 | 14.6788044| 7e-10| 4e-14
1019 | 228 | 14.6788044 1le-13| 4e-14

10 12 *kk *kk *kk *kk

We now study the non-singularity of the matdixt- #h2Q7(Q})~" + P7*) in (4.6) and the non-negativeness
of its inverse. We experimented with different values fadsgjizesn and time stepsizesl. The non-singularity
of the matrix is implied from the numerical results. Regagdthe non-negativeness of its inverse, in Table 6.6,
we report the most negative entry of the inverse matrix anahgenalty iterations and the respective value of the
time stepsizeh]} with varying values of the penalty parameterlt is evident from the numerical results in Table
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6.6 that the magnitude of the most negative entry of the g®/& indeed of ordeol ~ % and does not decrease

as the grid sizes increase and time stepsizb,% decrease. The combinationlaﬁ =2.5x107%,5.0 x 10~° and

n = 80 results in a slightly larger magnitude of the most negativieye but such a combination is an extreme case
(too small time stepsize compared to space stepsize), anudidshot be chosen, since it would result in a serious
imbalance between the time and space discretization errors

Table 6.6: Non-negativeness of the inversel of 0h7Q7(Q})~! + P#*) with non-uniform QSC methods with
varying penalty parameter.

¢

W

n = 80

n = 160

n = 320

n = 640

n = 1280

107

5.0e-05
2.5e-04
1.0e-03
5.0e-03
1.0e-02
5.0e-02
1.0e-01
5.0e-01

-6.4704e-03
-6.6615e-03
-7.3388e-09
-2.6086e-09
-4.1441e-09
-8.8121e-09
-1.0813e-08
-1.4420e-08

-6.4981e-09
-6.8037e-09
-1.3990e-09
-6.2358e-09
-8.4235e-09
-1.3083e-08
-1.4614e-08
-1.6993e-08

-6.5259e-09
-3.7908e-09
-5.3757e-09
-1.0501e-08
-1.2526e-08
-1.6013e-08
-1.7000e-08
-1.8422e-08

-5.0510e-09
-5.1415e-09
-9.5919e-09
-1.4175e-08
-1.5623e-08
-1.7837e-08
-1.8412e-08
-1.9201e-08

-5.1324e-09
-9.6309e-09
-1.3699e-08
-1.6833e-08
-1.7696e-08
-1.8924e-08
-1.9225e-08
-1.9593e-08

107

5.0e-05
2.5e-04
1.0e-03
5.0e-03
1.0e-02
5.0e-02
1.0e-01
5.0e-01

-6.4704e-03
-6.6615e-03
-7.3388e-11
-2.6086e-11
-4.1441e-11
-8.8121e-11
-1.0813e-10
-1.4420e-10

-6.4981e-11
-6.8037e-11
-1.3990e-11
-6.2358e-11
-8.4235e-11
-1.3083e-10
-1.4614e-10
-1.6994e-10

-6.5259%e-11
-3.7908e-11
-5.3757e-11
-1.0501e-10
-1.2526e-10
-1.6013e-10
-1.7001e-10
-1.8425e-10

-5.0510e-11
-5.1415e-11
-9.5919e-11
-1.4175e-10
-1.5624e-10
-1.7838e-10
-1.8415e-10
-1.9215e-10

-5.1324e-11
-9.6310e-11
-1.3699e-10
-1.6834e-10
-1.7697e-10
-1.8930e-10
-1.9236e-10
-1.9652e-10

6.2 Early exercise boundary

An interesting problem associated with American optioripg is the analysis of the early exercise boundary
and the optimal stopping time. This problem has attracteot afl attention due to its theoretical and practical
importance. The accuracy with which we locate the free bagntas strong effects on the quality of the numerical
value of the option computed. As mentioned earlier, the teaaalytical expression for the free boundary is not
known and locating it accurately and efficiently is a chajieg problem. Many researchers have investigated
various models, such as integral equations or asymptdtiti@as, leading to approximations for the free boundary
(e.g.[2,5, 24, 27, 33]). The purpose of this subsection getoonstrate the accuracy of the adaptive mesh methods
in locating the free boundary for an American put option atheimestep. We carry out a comparison between
the free boundary values obtained by FD methods and thoséebtby several other methods, namely binomial
methods, trinomial methods, integral equation and asyticpapproximation methods of [33], and a method was
first proposed by Barone-Adesi and Whaley in [2] and latemaergged by MacMillan [27] (the “BWM” method).
The set of parameters B = 10, ¢ = 0.25, » = 0.10, 7' = 0.05 from [33]. The semi-truncated domain in our
experiment ig0, 50] and the penalty parametergs= 107. We used a grid witl200 mesh points and00 constant
timesteps with non-uniform and adaptive FD methods. In fedu5, we plot the profiles of the free boundary
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Figure 6.4: The location of the gridpoints chosen by thiggure 6.5: Profile of the free boundary points obtained
adaptive QSC method applied to the American put dyy-various methods.
tion pricing problem £ = 80).

at each timestep obtained by various methods versus tinig elident that the adaptive technique (adaptive FD)
captures the free boundary locations quite well as timevegpland certainly much better than the non-uniform
methods (non-uniform FD). Note that, for both the binomiadl &rinomial methods, a depth @000 subdivisions
was used, and these results are considered referenc@ssluti[33]. The free boundary locations captured by the
adaptive technique follow closely those obtained by the tnethods and the integral equation method. The profiles
generated by adaptive mesh methods are smooth, while teosgaged by non-uniform methods are highly non-
smooth and look like a step function, and hence do not cagitersnovement of the moving free boundary properly.
The data used for the plot are taken from Tablef [33], except the adaptive FD and non-uniform FD methods,
which are implemented by us.

7 Conclusionsand extensions

We have considered a PDE approach to price American optioittemvon a single asset. We have formulated
several highly accurate and efficient methods for pricingefican options. These methods are built upon second-
order centered FD or optimal fourth-order QSC methods ferdpatial discretization, and are integrated with
adaptive mesh PDE methods, which rely on grading and mohitmtions to determine the distribution of the
error along the spatial dimension, and, from that, the lonabf the spatial gridpoints. At certain timesteps, the
adaptive techniques relocate the nodes to equidistribeterror in some chosen norm among the subintervals of the
partition. For the solution of the LCP at each timestep, wesatered a discrete penalty method. The results show
that adaptive PDE methods are effective on the Americawoptiicing problem, and, in particular, they have better
ratio of accuracy over computational cost compared to timiradaptive (still non-uniform) counterparts, and allow
for more accurate tracking of the moving boundary. Furtleeemhigh-order spatial discretization methods have
better ratio of accuracy over computational cost comparehledir standard second-order counterparts, and provide
highly accurate option values and the Greeks delta and gashtha options. The combination of high-order and
adaptive mesh methods gives the best results regardiogofediccuracy over computational cost.
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We conclude by mentioning some extensions of this work. lilekde desirable to have a theoretical analysis of
the boundedness of (4.4) and the convergence of the petalijion in the context of the QSC methods that we have
observed in the experiments. It would also be interestirextend the pricing methods considered in this paper to
other American-style options, such as American-style Asjations, or the pricing of convertible bonds with early
exercise features. In addition, an application of adag@eéniques to other exotic options, such as barrier options
is of much interest. The fact that we obtained high accuraey ocost by using a uniform grid to start the adaptive
technique and letting the adaptive technique take overghaly” of the solution of the American option pricing
problem is an indication that the adaptive mesh methods patantial to be used as a “black-box” to determine
the behaviour of the solution of other related financial f@ots as well. Extending the adaptive techniques to
multidimensional problems is certainly challenging. listtegard, possible approaches include moving mesh FD
methods, such as [19, 20], moving mesh spline collocatiothods, and skipped grid spline collocation methods
[28]. However, such approaches involve considerable @aethand their effectiveness has not yet been studied
extensively, even for simple PDE problems. There is a lotaiotbe done to make the adaptive and/or high-order
methods effective and practical for the solution of muitiednsional financial problems.

References

[1] Y. AcHDOU AND O. PRONNEAU, Computational Methods for Option Pricin&lAM, Philadelphia, 2005.

[2] G. BARONE-ADESI AND R. WHALEY, Efficient analytic approximations of American option vauournal
of Finance, 42 (1987), pp. 301-320.

[3] G.F. CAREY AND H. T. DINH, Grading functions and mesh redistributidBlAM J. Numer. Anal., 22 (1985),
pp. 1028-1040.

[4] P. CARR, R. ARROW, AND R. MYNENI, Alternative characterizations of American put optipNMathemati-
cal Finance, 2 (1992), pp. 87-106.

[5] X. CHEN AND J. CHADAM, A mathematical analysis of the optimal exercise boundaryAfmerican put
options SIAM J. Math. Anal., 38 (1998), pp. 1613-1641.

[6] C. CHRISTARA, T. CHEN, AND D. M. DANG, Quadratic spline collocation for one-dimensional linear
parabolic partial diffential equationsNumerical Algorithms, 53 (2010), pp. 511-553. do0i:10.2/301075-
009-9317-9, http://www.springerlink.com/content/vb§8702373446/.

[7] C. C. CHRISTARA AND K. S. NG, Adaptive techniques for spline collocatiddomputing, 76 (2006), pp. 259
- 277.

[8] ——, Optimal quadratic and cubic spline collocation on nonumfopartitions Computing, 76 (2006),
pp. 227 — 257.

[9] N. CLARKE AND K. PARROTT, Multigrid for American option pricing with stochastic vaility, Applied
Mathematical Finance, 6 (1999), pp. 177-195.

[10] D. M. DANG, Adaptive finite difference methods for valuing Americanooig Master’s thesis, University of
Toronto, Toronto, Ontario, Canada, 2007.

[11] C.pE BOOR, Good approximation by splines with variable knotsllecture notes in Mathematics, 1974.



24 C. C. CHRISTARA and D. M. DANG

[12] K. ERIKSSON AND C. JOHNSON, Adaptive finite element methods for parabolic problem. linddr model
problem SIAM J. Numer. Anal., 28 (1991), pp. 43—77.

[13] ——, Adaptive finite element methods for parabolic problem. Ihti@al error estimates inL..L, and
LooLoo, SIAM J. Numer. Anal., 32 (1995), pp. 706—740.

[14] P. A. FOrRsSYTH AND K. VETzAL, Quadratic convergence for valuing American options usingeaalty
method SIAM J. Sci. Comput., 23 (2002), pp. 2095-2122.

[15] F. N. FRiITsCH AND R. E. CARLSON, Monotone piecewise cubic interpolatic81AM J. Numer. Anal., 17
(1990), pp. 238—-246.

[16] M. C. Fu, S. B. LAPRISE, D. B. MADAN, Y. Su, AND R. Wu, Pricing American options: A comparison of
Monte Carlo simulation approachgdournal of Computational Finance, 4 (2001), pp. 39-88.

[17] W. HACKBUSH, lterative Solution of Large Sparse Systems of EquatiBpsinger, 1993.

[18] E. N. HousTis, C. C. (HRISTARA, AND J. R. RCE, Quadratic-spline collocation methods for two-point
boundary value probleménternat. J. Numer. Methods Engrg., 26 (1988), pp. 935-952

[19] W. HUANG AND R. D. RUSSELL, A high dimensional moving mesh strategppl. Numer. Math, 26 (1997),
pp. 63-76.

[20] ——, Moving mesh strategy based on a gradient flow equation fordiweensional problemsSIAM J. Sci.
Comput., 20 (1999), pp. 998-1015.

[21] J. C. HuLL, Options, Futures, and Other DerivativeRrentice Hall, seventh ed., 2008.

[22] L. JANG AND M. DAI, Convergence of binomial tree methods for European and Amempath-dependent
options SIAM J. Numer. Anal., 42 (2004), pp. 1094-1109.

[23] C. JoHNsON Numerical solution of partial differerential equations the finite element methp@ambridge
University Press, 1987.

[24] R. KuskE AND J. KELLER, Optimal exercise boundary for an American put opfigyppl. Math. Finance, 5
(2007), pp. 107-116.

[25] F. A. LONGSTAFF ANDE. S. SSHWARTZ, Valuing American options by simulation: A simple leastesga
approach The Review of Financial Study, 14 (2001), pp. 113-149.

[26] P. LOTSTEDT, J. FERSSON L. V. Sybow, AND J. Tysk, Space-time adaptive finite difference method for
European multi-asset option€omputers & Mathematics with Applications, 53 (2007), pp59-1180.

[27] L. MACMILLAN, Analytic approximation for the American put optjolhdvanced Futures Options Research,
1 (1986), pp. 119-139.

[28] K. S. NG, Spline Collocation on Adaptive Grids and Non-Rectangulariains PhD thesis, Department of
Computer Science, University of Toronto, June 2005.

[29] B. NIELSEN, O. XAVHAUG, AND A. TVEITO, Penalty and front-fixing methods for the numerical solution
of American option problemgournal of Computational Finance, 5 (2002), pp. 69-97.



ADAPTIVE AND HIGH-ORDER METHODS FOR VALUING AMERICAN OPTIONS 25

[30] J. FErRssON ANDL. V. Sybow, Pricing European multi-asset options using a space-timapéde FD-
method Comput. Visual Sci., 10 (2007), pp. 173-183.

[31] D. M. PooLEY, K. R. VERzAL, AND P. A. FORSYTH, Convergence remedies for non-smooth payoffs in
option pricing Journal of Computational Finance, 6 (2003), pp. 25—40.

[32] R. RANNACHER, Finite element solution of diffusion problems with irregrutlata, Numerische Mathematik,
43 (1984), pp. 309-327.

[33] R. STAMICAR, D. SEVEOVIE, AND J. CHADAM, The early exercise boundary for the American put near
expiry: Numerical approximatignCanada Applied Mathematics, 7 (1999), pp. 427-444.

[34] D. TAVELLA AND C. RANDALL, Pricing financial instruments: The finite difference methdchn Wiley &
Sons, Chichester, 2000.

[35] J. ToivaNEN, Numerical valuation of European and American options urideu’s jump-diffusion model
SIAM J. Sci. Comput., 30 (2008), pp. 1949-1970.

[36] R. WANG, P. KEAST, AND P. MUIR, A high-order global spatially adaptive collcation methaat f1-D
parabolic PDEs Applied Numerical Analysis, 50 (2004), pp. 239-260.

[37] P. WiLmOTT, J. DEWYNNE, AND S. HowIsSON, Option pricing: Mathematical Models and Computation
Oxford Financial Press, 1993.

[38] P. WILMOTT, S. HowlIsON, AND J. DEWYNNE, Mathematics of Financial Derivatives<Cambridge Uni-
veristy Press, 1995.

[39] R. ZvaN, P. A. FORSYTH, AND K. VETZAL, Penalty methods for American options with stochastic ldiat
Journal of Computational and Applied Mathematics, 91 (1988. 199-218.

[40] ——, Robust numerical methods for PDE models of Asian optidosirnal of Computational Finance, 2
(1998), pp. 39-78.



