
Pricing multi-asset American options on Graphics Processing Units using a PDE

approach

Duy Minh Dang, Christina C. Christara and Kenneth R. Jackson

Department of Computer Science

University of Toronto, Toronto, ON, M5S 3G4, Canada

{dmdang, ccc, krj}@cs.toronto.edu

Abstract—We develop highly efficient parallel pricing methods
on Graphics Processing Units (GPUs) for multi-asset American
options via a Partial Differential Equation (PDE) approach. The
linear complementarity problem arising due to the free boundary is
handled by a penalty method. Finite difference methods on uniform
grids are considered for the space discretization of the PDE, while
classical finite differences, such as Crank-Nicolson, are used for
the time discretization. The discrete nonlinear penalized equations
at each timestep are solved using a penalty iteration. A GPU-based
parallel Alternating Direction Implicit Approximate Factorization
technique is employed for the solution of the linear algebraic
system arising from each penalty iteration. We demonstrate the
efficiency and accuracy of the parallel numerical methods by
pricing American options written on three assets.

Keywords-American option, multi-asset, penalty method, Alter-
nating Direction Implicit Approximate Factorization, Graphics
Processing Units, GPUs, parallel computing, finite difference

I. INTRODUCTION

The pricing of an American option is a challenging task,

mainly due to the early exercise feature of the option, which

leads to an additional constraint that the value of an American

option must be greater than or equal to its payoff [14]. This

constraint requires special treatment, a fact that makes an

explicit closed form solution for an American option intractable

for most cases. Consequently, numerical methods must be

used. Recently, multi-asset options, i.e. options written on more

than one underlying asset, have become increasingly popular.

The problem of pricing multi-asset American options is not

only mathematically challenging but also very computationally

intensive. As a result, there is great interest in developing

efficient numerical methods for pricing multi-asset American

options.

Although several approaches, such as lattice (tree) methods

and Monte Carlo simulations, can be used for pricing an

American option, for problems in low dimensions, i.e. less

than five dimensions, the partial differential equation (PDE)

approach is very popular, due to its efficiency, global character

and ease in computing accurate hedging parameters, such as

delta and gamma. Using a PDE approach, the American option

pricing problem can be formulated as a time-dependent linear

complementarity problem (LCP) with the inequalities involving

the Black-Scholes PDE and some additional constraints [16].

In this paper, we adopt the penalty method of [6] to solve

the LCP. In this approach, a penalty term is added to the

discretized equations to enforce the early exercise constraint.

The solution of the resulting discrete nonlinear equations at

each timestep can be computed via a penalty iteration.1 An

advantage of the penalty method of [6] is that it is readily ex-

tendable to handle multi-factor problems. In a multi-dimensional

application, applying direct methods, such as LU factorization,

to solve the linear system arising at each penalty iteration can

be computationally expensive. A very popular alternative is to

use iterative methods, such as Biconjugate Gradient Stabilized

(BiCGStab), in combination with a preconditioning technique,

such as an Incomplete LU factorization [14]. Another possible

approach is to employ Alternating Direction Implicit Approxi-

mate Factorization (ADI-AF) techniques, which involve solving

only a few tridiagonal systems in each spatial dimension. It

is rather surprising that, while these efficient techniques have

been widely used in the numerical solution of multi-dimensional

nonlinear PDEs arising in computational fluid dynamics [17],

to the best of our knowledge, these techniques have not been

successfully extended to multi-asset American option pricing.

Over the last few years, the rapid evolution of Graphics

Processing Units (GPUs) into powerful, cost-efficient, pro-

grammable computing architectures for general purpose com-

putations has provided application potential beyond the pri-

mary purpose of graphics processing. In computational finance,

although there has been great interest in utilizing GPUs in

developing efficient pricing architectures for computationally

intensive problems [1], [4], the existing literature on GPU-based

numerical methods for multi-asset American option pricing is

rather sparse and mostly focuses on Monte Carlo simulations

[1] and quadrature integrations [15]. The literature on GPU-

based PDE methods for multi-asset American options is even

less developed. In addition, to the best of our knowledge, a

combination of an efficient GPU-based parallelization of ADI-

AF techniques with a penalty approach for the pricing of multi-

asset American options has not been previously discussed in the

literature. These shortcomings motivated our work.

This paper discusses the application of GPUs to price multi-

factor American options in the Black-Scholes framework via a

PDE approach. Our approach is built upon the penalty method

of [6] and an efficient GPU-based parallel ADI-AF algorithm

for solving the linear algebraic system arising at each penalty

iteration. Finite difference (FD) methods on uniform grids are

considered for the space discretization of the pricing PDE, while

classical finite differences, such as Crank-Nicolson, are used

1The penalty iteration described in [6] is essentially a Newton iteration, but,
to be consistent with [6], we use the term penalty iteration throughout this paper.

Copyright 978-1-4244-9061-5/10/$26.00 c©2010 IEEE

for its time discretization. The results of this paper demonstrate

the efficiency of the parallel numerical methods and show that

GPUs can provide a significant increase in performance over

CPUs when pricing multi-factor options with early exercise

features. Although we primarily focus on a three-factor model,

many of the ideas and results in this paper can be naturally

extended to higher-dimensional applications with limitations.

The remainder of this paper is organized as follows. Section II

presents a PDE formulation of the pricing problem for a multi-

asset American option and the discretization methods. We

restrict our attention to American put options on the arithmetic

average of three underlying assets. A penalty iteration for the

discretized American option and an associated ADI-AF scheme

are discussed in Section III. Section IV discusses a GPU-based

parallel implementation of the ADI-AF methods. Numerical

results and related discussions are presented in Section V.

Section VI concludes the paper and outlines possible future

work.

II. FORMULATION OF THE PRICING PDE AND

DISCRETIZATION

A. Formulation

We denote by si(t), i = 1, 2, 3, the value at time t of the ith
underlying asset, by T the expiry time of the option, and by

τ = T − t the time to expiry. For simplicity, let s = (s1, s2, s3).
The early exercise constraint leads to the following LCP for the

value u(s, τ) of an American put option [16]
{

∂u

∂τ
− Lu = 0

u− u∗ ≥ 0

}
and

{
∂u

∂τ
− Lu > 0

u− u∗ = 0

}
,

s ∈ Ω ≡ (0, s1,∞)×(0, s2,∞)×(0, s3,∞), τ ∈ (0, T],

(1)

subject to the initial (payoff) condition

u∗(s) = u(s, 0) = max
(
E −

3∑

i=1

wisi, 0
)

on (∂Ω ∪ Ω)× {0}, (2)

and the boundary conditions [10]

u(s, t) = u∗(s) on ∂Ω× (0, T], (3)

where

Lu ≡
1

2

3∑

i,j=1

ρijσiσjsisj
∂2u

∂si∂sj
+

3∑

i=1

(r−di)si
∂u

∂si
−ru. (4)

Here, ∂Ω is the boundary of Ω; r > 0 is the constant riskless

interest rate; di ≥ 0 is the constant asset dividend yield; σi ≥
0 is the constant volatility of the ith underlying asset; ρij is

the correlation factor between the ith and jth assets satisfying

|ρij | ≤ 1 for i, j = 1, 2, 3, and ρii = 1 for i = 1, 2, 3; E > 0
is the strike price of the option, wi > 0 is the weight of the ith
asset in the basket, and si,∞, i = 1, 2, 3, is the right boundary

of the spatial domain of the ith underlying asset. In the exact

mathematical formulation of the problem, si,∞ = ∞, but, in the

numerical approximation, we truncate the semi-infinite domain

and take si,∞ to be an appropriately chosen large value, as is

explained in more detail in Section V.

Following [6], with a penalty parameter ζ, ζ → ∞, we

consider the non-linear PDE for the penalty formulation of

the price u(s, τ) of an American put option written on three

underlying assets

∂u

∂τ
−Lu = ζmax(u∗ − u, 0), s ∈ Ω, τ ∈ [0, T], (5)

subject to the initial and boundary conditions (2) and (3),

respectively. The penalty parameter ζ effectively ensures that

the solution satisfies u − u∗ ≥ −ǫ for 0 < ǫ ≪ 1. Essentially,

in the region where u ≥ u∗, the PDE (5) resembles the three-

dimensional (3-D) Black-Scholes equation. On the other hand,

when −ǫ ≤ u − u∗ < 0, the 3-D Black-Scholes inequality
∂u
∂τ

− Lu > 0 is satisfied and u ≈ u∗.

B. Discretization

For the discretization of the space variables in the differential

operator Lu, we employ second-order FD schemes in the rect-

angular domain Ω. Let the number of subintervals be n+1, p+1,

q+1 and l, in the s1-, s2-, s3- and τ -directions, respectively. The

uniform grid mesh widths in the respective direction are denoted

by ∆s1 =
s1,∞
n+ 1

, ∆s2 =
s2,∞
p+ 1

, ∆s3 =
s3,∞
q + 1

, and ∆τ =
T

l
.

The gridpoint values of a FD approximation are denoted by

um
i,j,k≈u(s1i,s2j ,s3k,τm)=u(i∆s1,j∆s2,k∆s3,m∆τ),

where i = 0, . . . , n + 1, j = 0, . . . , p + 1, k = 0, . . . , q + 1,

m = 0, 1, . . . , l. Second-order FD approximations to the first

and second partial derivatives of the space variables in (4) are

obtained by central schemes, while the cross-derivatives are

approximated by a four-point FD stencil. For example, at the

reference point (s1i, s2j , s3k, τm), ∂u
∂s1

and ∂2u
∂s2

1

are respectively

approximated by

∂u

∂s1
≈
um
i+1,j,k−um

i−1,j,k

2∆s1
,
∂2u

∂s21
≈
um
i+1,j,k−2um

i,j,k+um
i−1,j,k

(∆s1)2
,

(6)

while the cross derivative ∂2u
∂s1∂s2

is approximated by

um
i+1,j+1,k + um

i−1,j−1,k − um
i−1,j+1,k − um

i+1,j−1,k

4∆s1∆s2
. (7)

Similar approximations can be obtained for the remaining

spatial derivatives. For brevity, we omit the derivations of (6)

and (7), but, using Taylor expansions, it can be verified that each

of these formulas has a second-order truncation error, provided

that the function u is sufficiently smooth. The FD discretization

of the spatial differential operator L of (5) is performed as

follows. At the spatial grid Ω, each spatial derivative appearing

in the operator L is replaced by its corresponding FD scheme

(as in (6) and (7)). We denote by Lum
i,j,k the FD discretization

of L at (s1i, s2j , s3k, τm).
To proceed from time τm−1 to time τm, we apply the standard

θ-timestepping discretization scheme to (5)

(I − θ∆τL)um
i,j,k = (I + (1 − θ)∆τL)um−1

i,j,k + Pum
i,j,k, (8)

2

where 0 ≤ θ ≤ 1, and incorporate the boundary conditions (3)

by setting um
i,j,k=u∗

i,j,k, if i={0, n+ 1}, or j={0, p+ 1}, or

k={0, q+1}, with u∗
i,j,k being the payoff value at the reference

point (s1i, s2j , s3k, ·). Here, I and P denote the identity and

penalty operators, respectively, where P is defined by

Pum
i,j,k = ζmax(u∗

i,j,k − um
i,j,k, 0).

In (8), the values θ = 1/2 and θ = 1 give rise to the

standard Crank-Nicolson (CN) and the fully-implicit methods,

respectively. It is known that the CN method is second-order

accurate, but prone to producing spurious oscillations, while

the fully-implicit method is first-order accurate, but maintains

strong stability properties (e.g. [12]). To maintain the accuracy

of CN as well as smoothness of the solution, we use the

Rannacher smoothing technique [13], which applies the fully-

implicit timestepping in the first few (usually two) timesteps

followed by the CN method on the remaining timesteps. We

adapt the penalty iteration algorithm in [6] to solve the set

of discrete nonlinear penalized equations (8). In the following

section, we present the penalty iteration algorithm and an

associated ADI-AF scheme.

III. PENALTY ITERATION AND AN ASSOCIATED ADI-AF

TECHNIQUE

Unless otherwise stated, assume that the mesh points are

ordered in the s1-, s2- , then s3- directions. Let um denote the

vector of values at time τm on the mesh Ω that approximates

the exact solution um = u(s, τm). Furthermore, denote by u∗

the vector of the payoff values on Ω. Let κ, κ ≥ 0, be the index

of the penalty iteration. Let um,(κ) be the κth estimate of um.

The initial guess um,(0) is chosen to be the numerical solution

at the previous timestep. At each penalty iteration, we need to

solve an npq × npq algebraic system of the form [6]

(I+ θ∆τA +Pm,(κ))um,(κ+1) = (I− (1− θ)∆τA)um−1

+Pm,(κ)u∗ +∆τg. (9)

Here, I denotes the identity matrix; −A is the matrix FD

approximation to the differential operator L; Pm,(κ) is the

diagonal penalty matrix and g is a vector containing values

arising from the boundary conditions. For brevity, we omit the

explicit formula for A. The penalty matrix Pm,(κ) is defined

by

(
Pm,(κ)

)
ij
≡

{
ζ if u

m,(κ)
i < u∗

i and i = j,

0 otherwise.
(10)

Note that the matrix on the left hand size of (9) is essentially

the Jacobian of the discrete nonlinear penalized system arising

from (8). In general, if we want (5) to be solved with a relative

precision tol, we should have ζ ≃ 1
tol

[2]. For future use, we

decompose the matrix A into four submatrices

A = A0 +A1 +A2 +A3.

The matrices A1, A2 and A3 are the parts of A that correspond

to the spatial derivatives in the s1-, s2- and s3-directions,

respectively, while the matrix A0 is the part of A that comes

from the FD discretization of the mixed derivative terms in the

operator L. The term ru in L is distributed evenly over A1, A2

and A3. For simplicity, let Dm,(κ) = I+Pm,(κ).

We adapt the ADI-AF approach discussed in [17] to solve

(9) by first writing an ADI-AF scheme for (9) in the form

(
Dm,(κ)+θ∆τA1

)(
Dm,(κ)

)−1(
Dm,(κ)+θ∆τA2

)(
Dm,(κ)

)−1

(
Dm,(κ)+θ∆τA3

)
um,(κ+1) = (I− (1− θ)∆τA)um−1

+Pm,(κ)u∗ +∆τg

+
(
Dm,(κ)

)−1

(θ∆τ)2
(
A1A2 +A1A3 +A2A3

)
um,(κ)

+
(
Dm,(κ)

)−2

(θ∆τ)3A1A2A3u
m,(κ) − θ∆τA0u

m,(κ).

(11)

We then subtract
(
Dm,(κ) + θ∆τA1

)(
Dm,(κ)

)−1(
Dm,(κ) +

θ∆τA2

)(
Dm,(κ)

)−1(
Dm,(κ)+θ∆τA3

)
um,(κ) from both sides

of (11). The resulting ADI-AF scheme for the correction

∆um,(κ), where ∆um,(κ) = um,(κ+1) − um,(κ), is given by

(
Dm,(κ)+θ∆τA1

)(
Dm,(κ)

)−1(
Dm,(κ)+θ∆τA2

)(
Dm,(κ)

)−1

(
Dm,(κ)+θ∆τA3

)
∆um,(κ) = −(I+ θ∆τA)um,(κ)

+ (I− (1 − θ)∆τA)um−1 +Pm,(κ)
(
u∗ − um,(κ)

)
+∆τg,

(12)

which can be equivalently written as the following steps:

(
Dm,(κ)+θ∆τA1

)(
∆um,(κ)

)(1)

=bm,(κ),

(13.1)
(
Dm,(κ)+θ∆τA2

)(
∆um,(κ)

)(2)

=Dm,(κ)
(
∆um,(κ)

)(1)

,

(13.2)
(
Dm,(κ)+θ∆τA3

)(
∆um,(κ)

)(3)

=Dm,(κ)
(
∆um,(κ)

)(2)

,

(13.3)

∆um,(κ) =
(
∆um,(κ)

)(3)

.

(13)

Here, for simplicity, we denote by bm,(κ) the right-hand-side

of (12). The corresponding ADI-AF FD penalty algorithm is

presented in Algorithm 1.

REMARK 1: Due to the similarities between the ADI-AF

scheme (12) and an ADI method, such as the Douglas and

Rachford scheme [9], the fact that the mixed derivatives are

treated solely explicitly in (12) would normally lead to an

expectation that second-order of convergence of the numerical

methods would be lost. This is a typical problem of ADI meth-

ods (e.g. see [9]). However, as the numerical results indicate,

the ADI-AF scheme (12) exhibits second-order convergence.

This does not contradict with the aforementioned problem of

ADI methods, since these ADI methods are used in a non-

iterative context, whereas, in our case, the ADI-AF scheme

is applied iteratively. While the first iterate um,(1) could be

a first-order accurate approximate solution, it seems that, with

3

Algorithm 1: ADI-AF FD penalty iteration for American

options

1: initialize um,(0);

2: construct Pm,(0) using (10)

3: for κ = 0, . . . , until convergence do

4: solve (13) for ∆um,(κ);

set um,(κ+1) = um,(κ) +∆um,(κ);

5: construct Pm,(κ+1) using (10)

6: if
[

max
1≤i≤npq

{ |u
m,(κ+1)
i − u

m,(κ)
i |

max(1, |u
m,(κ+1)
i |)

}
< tol

]
or

[
Pm,(κ) = Pm,(κ+1)

]
then

7: break;

8: end if

9: end for

10: um+1 = um,(κ+1);

further penalty iterations, um,(κ) can converge to a second-order

accurate approximate solution at each timestep. Detailed results

are given in Tables I and II, with a discussion in Section V.

REMARK 2: There are at least two possible approaches to

extend the ADI-AF scheme (12). In the first approach, one

can develop an ADI-AF scheme based on the second-order

backward differentiation formula (BDF2) for the time derivative

∂u

∂τ
=

3um − 4um−1 + um−2

2∆τ
+O((∆τ)2).

While having approximately the same computational cost per

penalty iteration as the ADI-AF scheme (12), an ADI-AF

scheme based on this approach takes advantage of the numerical

solution available from the previous two timesteps i.e. the

timesteps m−1 and m−2, to compute the numerical solution at

the current timestep, i.e. the timestep m. In this case, the initial

guess um,(0) can be given by the second-order linear two-level

extrapolation 2um−1−um−2. Note that, in the context of pricing

American put options written on one asset using the same

penalty approach, extensive experiments have shown that using

as initial guess for the penalty iteration an approximation based

on linear two-level extrapolation of the numerical solutions

from the previous two timesteps gives rise to a more efficient

technique than using the standard choice of the numerical

solution at the previous timestep [2]. Thus, we expect that an

ADI-AF scheme based on the BDF2 formula may converge

faster, i.e. using a smaller average number of penalty iterations

per timestep, than the ADI-AF scheme presented in this paper.

In the second approach, to maintain the second-order accu-

racy for um,(κ) at each penalty iteration, a special treatment to

the cross-derivative terms, similar to those suggested in [3] or

[8] in the context of ADI timestepping methods, could be added

to the scheme (12). However, a scheme based on this approach

entails solving an additional tridiagonal linear system along

each spatial dimension, similar to (13.1) - (13.3), possibly with

different right-side vectors. That is, the computational cost per

penalty iteration of an ADI-AF scheme based on this approach is

approximately double that of the scheme (12). It is not obvious

whether an ADF-AF scheme based on this approach would be

more efficient than the scheme (12). We plan to investigate the

efficiency of the aforementioned two approaches in a future

paper.

REMARK 3: The FD discretization for the spatial variables

described in (6) implies that, if the gridpoints are ordered

appropriately, all the linear systems in (13) are block-diagonal

with tridiagonal blocks. As a result, the number of floating-point

operations per iteration is directly proportional to npq, which

yields a significant reduction in computational cost compared

to the application of a direct method. Moreover, the block

diagonal structure of these matrices gives rise to a natural,

efficient parallelization for the solution of the linear system (13).

However, it is less obvious how the computation of the vector

bm,(κ) can be efficiently parallelized. We address this point in

more detail in the following section.

IV. GPU IMPLEMENTATION OF THE ADI-AF SCHEME

A. GPU device architecture

The modern GPU can be viewed as a set of indepen-

dent streaming multiprocessors (SMs), each of which contains,

amongst others, several scalar processors which can execute

floating-point arithmetic, a multi-threaded instruction unit, and

shared memory which can be accessed by all scalar processors

of a multiprocessor. In addition, the global (device) memory

in a GPU can be accessed by all processors on the chip.

Furthermore, constant cache, a small part of the device memory

dedicated to storing constants, is also available. Functions that

run on the GPUs are called kernels. When a program invokes

a kernel, many copies of this kernel, referred to as threads,

are distributed to the available multiprocessors, where they are

executed. We use the programming model of CUDA, which is

an instance of the widely used Single Instruction Multiple Data

(SIMD) parallel programming style. Within the CUDA frame-

work, threads are grouped into threadblocks, which are in turn

arranged on a grid. It is important to note that threads within

the same threadblock are able to communicate with each other

very efficiently via the shared memory or to synchronize their

executions. On the other hand, threads belonging to different

threadblocks are not able to communicate efficiently with each

other, nor to synchronize their executions. For a more detailed

description of the GPU, see [11].

Due to various hardware considerations, the current genera-

tion of CUDA devices bundles multiple threads for execution.

To optimize performance, it is important to ensure coalesced

data loads from the global memory. Since the CUDA memory

consists of 16 memory banks, to achieve maximum memory

performance, memory accesses at any one time are handled by

groups of 16 threads, referred to as half-warps, each thread

accessing a different bank. Global memory access by threads in

a half-warp is coalesced if (i) the threads in the half-warp access

consecutive global memory locations and (ii) the number of

threads along the first dimension of the threadblock is a multiple

of 16. We refer interested readers to [11] for a more complete

discussion of all the requirements.

4

The NVIDIA Tesla series is the first family of GPUs that

is dedicated to general purpose computing. The NVIDIA Tesla

10-series (T10) GPUs (Tesla S1060/S1070 - server version),

which are used for the experiments in this paper, consists of

30 independent SMs, each containing 8 processors running at

1.44GHz, a total of 16384 registers, and 16 KB of shared

memory.

B. GPU implementation

We now discuss a GPU-based parallel algorithm for each of

the penalty iterations of Algorithm 1. In particular, we focus on

describing the parallel implementation of the ADI-AF scheme

(13) (Line 4) and the stopping criterion (Line 6) of the penalty

algorithm. For presentation purposes, let

wm−1 = (1− θ)∆τAum−1,

w(κ) = θ∆τAum,(κ),

Â
m,(κ)
i = Dm,(κ) + θ∆τAi, i = 1, 2, 3,

∆̂u
(κ),i

= Dm,(κ)
(
∆um,(κ)

)(i−1)

, i = 2, 3,

and notice that

bm,(κ) = um−1 − um,(κ) − (wm−1 +w(κ))

+Pm,(κ)
(
u∗ − um,(κ)

)
+∆τg.

Here, to simplify the notation, we do not indicate the superscript

for the timestep index of the vectors w(κ) and ∆̂u
(κ),i

, i = 2, 3.

The computation of the ADI-AF scheme (13) and the checking

of the stopping criterion of Algorithm 1 consist of the following

steps:

(i) Step a.1: Compute the matrices Ai, Â
m,(κ)
i , i = 1, 2, 3,

and Dm,(κ), and the vectors wm−1, w(κ) and bm,(κ);

(ii) Step a.2: Solve Â
m,(κ)
1

(
∆um,(κ)

)(1)

= bm,(κ);

(iii) Step a.3: Compute ∆̂u
(κ),2

and solve

Â
m,(κ)
2

(
∆um,(κ)

)(2)

= ∆̂u
(κ),2

;

(iv) Step a.4: Compute ∆̂u
(κ),3

and solve

Â
m,(κ)
3

(
∆um,(κ)

)(3)

= ∆̂u
(κ),3

;

(v) Step a.5: Check the stopping criterion.

In [5], a past work of ours, we present a parallel ADI

timestepping method implemented efficiently on GPUs for

the solution of multi-dimensional linear parabolic PDEs. We

observe similarities between the computation of the scheme

(13) and that of the ADI timestepping method in [5]. More

specifically, the computation of the vector bm,(κ) in Step a.1

resembles the explicit Euler predictor step, while Steps a.2-a.4

are essentially the same as the three implicit corrector steps in

[5], each of which involves solving a block-diagonal system

with tridiagonal blocks along a spatial dimension. The GPU-

based parallelization of the ADI-AF scheme considered in this

paper can be viewed as a natural extension of the parallelization

of the ADI timestepping method presented in [5]. For brevity,

we only present the main steps of the parallel algorithm for the

pb = 2nb = 4

q = 10

p = 8 n = 8

s3

s1

s2

Figure 1. An illustration of the partitioning approach considered for Step a.1.
The computational domain is partitioned into 3-D blocks of size nb×pb×q ≡

4 × 2 × 10, each of which can be viewed as consisting of ten 4 × 2 tiles, or
as 8(= 4× 2) stacks of 10 gridpoints.

ADI-AF scheme (13). A more detailed discussion of the similar

ADI algorithm can be found in [5].

1) Step a.1: We assume that, initially, the vectors um−1,

um,(κ) and u∗ are in the global memory, and any needed con-

stants (model parameters) are in the constant cache. Note that

the data copying from the host memory to the device memory

occurs on the first timestep only, for the initial condition (payoff)

data and the model constants. Data for the subsequent timesteps

and steps of the ADI-AF scheme (13) are stored in the global

memory.

Recall that we have a discretization grid of n× p× q points.

We can view a set of q consecutive gridpoints in the s3-direction

as a “stack” of q gridpoints. The general idea for distributing the

data and computation of Step a.1 is to assign the work associated

with each stack of q gridpoints (and the respective rows of

matrices Ai, Â
m,(κ)
i , i = 1, 2, 3, (or Pm,(κ)) and components

of vectors wm−1, w(κ) and bm,(κ)) to a different thread. More

specifically, we partition the computational grid of size n×p×q
into 3-D blocks of size nb×pb×q, each of which can be viewed

as consisting of q two-dimensional (2-D) blocks, referred to as

tiles, of size nb × pb. For Step a.1, we let the kernel generate

a ceil
(

n
nb

)
× ceil

(
p
pb

)
grid of threadblocks, where ceil

denotes the ceiling function. Each of the threadblocks, in turn,

consists of a total of nbpp threads arranged in 2-D arrays, each

of size nb × pb. All gridpoints of a nb × pb × q 3-D block are

assigned to one threadblock only, with one thread for each stack

of q gridpoints in the s3 direction (see Figure 1).

Note that, since each 3-D block has a total of q nb × pb
tiles and each threadblock is of size nb × pb, the approach that

we use here suggests a q-iteration loop in the kernel. While

the construction of the matrices Ai and Â
m,(κ)
i , i = 1, 2, 3,

(or Pm,(κ)) is relatively simple, the computation of matrix-

vector multiplications embedded in wm−1 and w(κ) is more

complicated. More specifically, due to the FD schemes (6) and

(7), at each iteration, a threadblock carrying the computation of

a tile needs the values of neighbouring gridpoints from adjacent

tiles in the s1 and s2 directions, referred to as halo values. Since

5

different tiles belong to different threadblocks, it is essential

that the halo values that a threadblock needs be loaded into

the shared memory as well. Because 16KB of shared memory

available per multiprocessor are not sufficient to store many data

tiles, each threadblock works with three data tiles of size nb×pb
and their halo values at a time and proceeds in the s3-direction.

More specifically, during the kth iteration of the q-iteration loop

in the kernel, each threadblock

1. loads from the global memory into its shared memory

the old data (vectors um−1, um,(κ) and u∗) corresponding to

the (k + 1)st tile, and the associated halos (in the s1- and s2-

directions), if any,

2. computes and stores new values of vectors wm−1, w(κ)

and bm,(κ), and new rows of the matrices Dm,(κ), Ai and

Â
m,(κ)
i , i = 1, 2, 3 (a total of three entries per row - by

computing the corresponding rows of Pm,(κ), a total of one

entry per row, and of Ai, a total of three entries per row)

corresponding the kth tile using data of the (k − 1)st, kth and

(k + 1)st tiles, and of the associated halos, if any,

3. copies the newly computed data of the kth tile (vectors

wm−1 and bm,(κ) and matrices Dm,(κ), Ai and Â
m,(κ)
i , i =

1, 2, 3) from the shared memory to the global memory, and frees

the shared memory locations taken by the data of the (k− 1)st

tile, and associated halos, if any, so that they can be used in the

next iteration.

REMARK 4: Regarding the GPU computation for the vectors

wm−1 and w(κ), to ensure the data transfer coalescing, it is

necessary to have the tile size in the s1-direction, i.e. nb, be

a multiple of 16, since each half-warp is of size 16 and that

gridpoints at Step a.1 are ordered in the s1-direction first. (See

a discussion in Subsection IV-A.) Under these conditions, the

data loading strategy described above allows the interior and the

halos along the s1-direction of the data tiles to be read from

global memory into the shared memory in a coalesced way.

However, halos along the s2-direction cannot be accessed via

a coalesced pattern. The reader is referred to [5] for a more

detailed discussion. It is worth emphasizing that the vector

wm−1 is computed only in the first penalty iteration of the

mth timestep. This vector is then loaded in a coalesced fashion

from the global memory to the shared memory for use in

subsequent penalty iterations of that timestep. As experimental

results indicate, although the data loading approach for Step a.1

is not fully coalesced, it is highly effective.

REMARK 5: Note that the matrices Ai, i = 1, 2, 3, do not

depend on the timestep and iteration indices. Hence, after these

matrices have been constructed in the first penalty iteration of

the first timestep, they can be loaded (via a coalesced pattern)

from the global to the shared memory for use in Step a.1 of the

subsequent penalty iterations.

2) Steps a.2, a.3, a.4: The data partitioning for Steps a.2, a.3

and a.4 is different from that for Step a.1 and is motivated by the

block structure of the tridiagonal matrices Â
m,(κ)
i , i = 1, 2, 3.

For example, Â
m,(κ)
1 has pq diagonal blocks, and each block is

tridiagonal of size n×n, while Â
m,(κ)
2 has nq diagonal blocks,

and each block is tridiagonal of size p× p. Each of these inde-

pendent tridiagonal systems is assigned to a different thread. For

example, the solution of Â
m,(κ)
1

(
∆um,(κ)

)(1)

= bm,(κ) (Step

a.2) is computed by first partitioning Â
m,(κ)
1 and bm,(κ) into

pq independent n × n tridiagonal systems, and then assigning

each tridiagonal system to one of the pq threads generated.

In our implementation, each of the 2-D threadblocks used in

Steps a.2, a.3 and a.4 has the identical size rt × ct, where the

values of rt and ct are determined by numerical experiments to

maximize the performance. The size of the grid of threadblocks

is determined accordingly. For example, for the parallel solution

of Â
m,(κ)
1

(
∆um,(κ)

)(1)

= bm,(κ), a 2-D grid of threadblocks

of size ceil(p
rt
)× ceil(q

ct
) is invoked.

As an example, a summary of the Step a.2 is given below: A

grid of ceil(p/rt)×ceil(q/ct) threadblocks is invoked, each

of which consists of an rt × ct array of threads. Each thread is

assigned n points along the s1-direction.

Each threadblock

1. loads from the global memory to its shared memory its

rows of Â
m,(κ)
1 and its components of bm,(κ);

2. solves rtct tridiagonal n × n systems (its part of

Â
m,(κ)
1

(
∆um,(κ)

)(1)

= bm,(κ)), with each thread solv-

ing one system;

3. copies its newly computed components of
(
∆um,(κ)

)(1)

from its shared memory to the global memory.

3) Step a.5: Although we can launch a separate kernel to

check the stopping criterion after Step a.4 has completed, in the

current implementation, the checking of the stopping criterion is

done during the kernel generated in Step a.4. More specifically,

each threadblock of the kernel launched in Step a.4 needs to

load its components of the vectors um,(κ) and u∗ (in addition

to its rows of the matrices Dm,(κ) and Am
3 , and its components

of the vector
(
∆um,(κ)

)(2)

for the solution of the independent

tridiagonal systems). After each thread of a threadblock com-

putes its component of the vector ∆̂u
(κ),3

corresponding to the

reference point (s1i, s2j, s3k, ·), it computes the quantity

|u
m,(κ+1)
i,j,k − u

m,(κ)
i,j,k |

max(1, |u
m,(κ+1)
i,j,k |)

(14)

and the corresponding row of the penalty matrix Pm,(κ+1)

(one entry). If the quantity (14) is greater than or equal to

the tolerance tol, the thread then changes the pre-set value of

a flag variable stored in a global memory location. Similarly,

if two corresponding rows of the matrices Pm,(κ) (obtained

from the matrix Dm,(κ)) and Pm,(κ+1) are different, the thread

then changes the pre-set value of another flag variable stored

in a different global memory location. Note that the two pre-

set flag variables are copied from the host memory to the

device memory before the kernel of Step a.4 is launched. After

the kernel has ended, the values of the two flag variables are

copied back to the host memory to be checked. (These host-

device copies are cheap.) The stopping criterion is satisfied

if the two pre-set values were not altered during the kernel.

Although it may happen that multiple threads try to write to the

6

same memory location of a flag variable at the same time, it is

guaranteed that one of the writes will occur. Although we do

not know which one, for the purpose of checking the stopping

criterion, this approach suffices and works well.

REMARK 6: In the current implementation, the data between

Steps a.1, a.2, a.3 and a.4 are ordered in the s1-, then s2-, then

s3-directions. As a result, memory coalescence is fully achieved

only for the tridiagonal solves in the s2- and s3-directions, but

not in the s1-direction. (Hence, the loading of components of

the vectors um,(κ) and u∗ used for the checking of the stopping

criterion in Step a.5 is fully coalesced.) See [5] for a more

detailed discussion.

V. NUMERICAL RESULTS

We use the set of parameters for three assets taken from [10]:

E=100, r=0.03, T =0.25, σ1=σ2=σ3=0.2, d1=d2=d3=
0, ρ12 = ρ13 = ρ23 = 0.5. The spot prices are chosen to be

s1(0) = s2(0) = s3(0) = E. We consider the weights of the

assets to be w1=w2=w3=
1
3 , so that we have

∑3
i=1 wisi(0) =

1
3

∑3
i=1 si(0) = E. The penalty parameter ζ = 107 is used. We

choose s1,∞=s2,∞=s3,∞=3E=300.
We used the CUDA 3.1 driver and toolkit, and all the

experiments with the GPU code were conducted on a NVIDIA

Tesla T10 connected to a two quad-core Intel “Harpertown”

host system with Intel Xeon E5430 CPUs running at 2.66GHz,

8GB of FBM PC 5300 RAM. However, only one CPU core

was employed for the experiments with the CPU code, i.e.

the CPU version of the GPU code of the ADI-AF methods

to price multi-asset American options, written by us. Note

that the CPU code is not multi-threaded. The CPU and GPU

computation times, respectively denoted by “CPU time” and

“GPU time”, measure the total computational times using the

functions cutStartTimer() and cutStopTimer(). The

GPU times include the overhead for memory transfers from the

CPU to the device memory. All computations are carried out in

double-precision. The size of each tile used in Step a.1 is chosen

to be nb × pb ≡ 32× 4, and the size of each threadblock used

in the parallel solution of the independent tridiagonal systems

in Steps a.2, a.3 and a.4 is rt × ct ≡ 32× 4, which appears to

be optimal on a Tesla T10.

The quantity “speedup” is defined as the ratio of the CPU

time over the corresponding GPU time. The quantity “value”

denotes the spot value of the option, and the quantity “error”

is computed as the absolute difference between our numerical

solutions and an accurate reference solution. To show conver-

gence, we compute the quantity “logη ratio” which is defined by

logη ratio=logη

(
uref−uapprox(∆s)

uref−uapprox(
∆s
η

)

)
, where uref is an accurate

reference solution. We denote by “iter. #” the total number of

penalty iterations over all timesteps and by “avg. iter. #” the

average number of penalty iterations per timestep required by

the penalty method.

Although most basket options are written on arithmetic av-

erages, using geometric averages instead allows us to compute

an accurate benchmark solution using a dimension reduction

approach. We take the payoff of a geometric average American

put option to be max(E − g(t), 0), where g(t) is defined

by g(t) =
(∏3

i=1 si(t)
) 1

3

. Using the multi-dimensional Itô’s

formula, it can be shown [7] that this option is equiva-

lent to an American put option written on one asset with

starting value g(0) =
(∏3

i=1 si(0)
) 1

3

, strike E, volatility

σg =
(

1
32

∑3
i,j=1 ρijσiσj

) 1

2

and risk-neutral drift rg = r −(
1
3

∑3
i=1

(
di+

1
2σ

2
i

)
− 1

2σ
2
g

)
. With the set of parameters used,

we have g(0) = 100, σg = 0.1633, and rg = 0.03 − 0.0067.

The benchmark solution is 3.00448 obtained using an accurate,

adaptive, high-order pricing method developed in [2] for pricing

American put options written on one asset.

The reference price of the arithmetic average American put

option is 2.94454 [10]. However, since this price may not be

very accurate, we estimate the rate of convergence by computing

the “change” as the difference in values between a coarser grid

and a finer one, and the “ratio” as the ratio of changes between

successive grids.

Tables I and II present selected numerical results for the

American options on the geometric and arithmetic average of

three assets. First, we comment on the computed prices and

their convergence. In both cases, the computed prices for the

American put option on the CPU and GPU are identical and

exhibit second-order convergence. We believe that this favorable

behavior is due to the iterative application of the ADI-AF

scheme (12); see also Remark 1.

Regarding the timing results, the GPU is significantly faster

than the CPU for any size of the discretized problem and has

a speedup ratio of about 18 for the largest grid we considered.

It is worth noting that the average number of penalty iterations

per timestep required for convergence is about 3-4 iterations,

which is slightly higher than that in the case of American

options written on one-asset; see, for example, [2], [6], where

1-2 iterations per timestep are required. This may be a mild

side-effect of the error in the approximate factorization scheme.

VI. CONCLUSIONS AND FUTURE WORK

This paper discusses a GPU-based parallel algorithm for

pricing multi-asset American options via a PDE approach. The

algorithm is based on a combination of the penalty approach for

handling the LCP and an efficient parallel ADI-AF method on

GPUs for the solution of the linear algebraic system arising

at each penalty iteration. Numerical results indicate that the

proposed GPU-based parallel algorithm is very effective for

pricing such derivatives.

At the time of writing this paper, more powerful GPUs with

more processors, such as NVIDIA Tesla 20-series based on the

“Fermi” architecture, have become available on the market. The

increase in the number of parallel processors (448 processors

in Tesla C2050) and significant improvements of peak double

precision performance (515 GFLOPS in Tesla C2050), as well

as the increase in the memory bandwidth (144GB/s in Tesla

C2050) should increase the performance of the parallel GPU-

based ADI-AF algorithm. In addition, each SM on the new

“Fermi” GPUs has 64KB of on-chip memory that can be

configured between the shared memory (16KB/48KB) and the

7

l n p q value error log
2

iter. avg. CPU GPU speed
(τ) (s1) (s2) (s3) ratio # # time (s.) time (s.) up
20 45 45 45 2.9571 4.7e-2 76 3.8 2.4 0.4 5.9
40 90 90 90 2.9931 1.1e-2 2.0 160 4.0 44.8 3.5 12.8
80 180 180 180 3.0016 2.8e-3 2.0 340 4.3 803.3 46.8 17.1

Table I
SPOT VALUES AND PERFORMANCE RESULTS FOR PRICING AN AMERICAN PUT OPTION ON THE GEOMETRIC AVERAGE OF THREE ASSETS.

l n p q value error ratio iter. avg. CPU GPU speed
(τ) (s1) (s2) (s3) # # time (s.) time (s.) up
20 45 45 45 2.8885 55 2.8 1.5 0.3 5.1
40 90 90 90 2.9292 4.1e-2 128 3.2 32.0 2.6 12.3
80 180 180 180 2.9403 1.1e-2 3.7 278 3.5 598.3 32.4 18.4

Table II
SPOT VALUES AND PERFORMANCE RESULTS FOR PRICING AN AMERICAN PUT OPTION ON THE ARITHMETIC AVERAGE OF THREE ASSETS.

L1 cache (48KB/16KB). Tripling the amount of shared memory

could yield performance improvements for the GPU-based ADI-

AF methods. Also, with the availability of L1/L2 cache on this

new GPU architecture, the programming is expected to be much

simpler.
We conclude the paper by mentioning some possible ex-

tensions of this work. It would be desirable to have a theo-

retical analysis of the second-order convergence of the ADI-

AF techniques that we have observed in the experiments. In

addition, it would also be interesting to investigate the efficiency

of other possible ADI-AF schemes (see Remark 2). To further

increase the accuracy and efficiency of the numerical methods,

support for non-uniform grids presented in [2] could be incorpo-

rated. From a parallelization perspective, extending the current

implementation to a multi-GPU platform should increase the

performance of the GPU algorithm presented here.

ACKNOWLEDGMENT

This research was supported in part by the Natural Sciences

and Engineering Research Council (NSERC) of Canada. Ac-

cess to a GPU cluster was provided by the Shared Hierar-

chical Academic Research Computing Network (SHARCNET:

www.sharcnet.ca).

REFERENCES

[1] L. A. ABBAS-TURKI AND B. LAPEYRE, American options pric-
ing on multi-core graphic cards, in Proceedings of International
Conference on Business Intelligence and Financial Engineering,
IEEE Computer Society, 2009, pp. 307–311.

[2] C. CHRISTARA AND D. M. DANG, Adaptive and high-order
methods for valuing American options, To appear in the Journal
of Computational Finance, (2010), pp. 1–25.

[3] J. CRAIG AND A. SNEYD, An alternating-direction implicit
scheme for parabolic equations with mixed derivatives, Comp.
Math. Appl., 16 (1988), pp. 341–350.

[4] D. M. DANG, Pricing of cross-currency interest rate derivatives
on Graphics Processing Units, in Proceedings of the 3rd In-
ternational Workshop on Parallel and Distributed Computing in
Finance, IEEE Computer Society, 2010, pp. 1–8.

[5] D. M. DANG, C. CHRISTARA, AND K. JACKSON, Parallel imple-
mentation on GPUs of ADI finite difference methods for parabolic
PDEs with applications in finance, To appear in the Canadian
Applied Mathematics Quarterly (CAMQ), (2010), pp. 1–30.

[6] P. A. FORSYTH AND K. VETZAL, Quadratic convergence for
valuing American options using a penalty method, SIAM J. Sci.
Comput., 23 (2002), pp. 2095–2122.

[7] J. C. HULL, Options, Futures, and Other Derivatives, Prentice
Hall, seventh ed., 2008.

[8] W. HUNDSDORFER AND J. VERWER, Numerical Solution
of Time-Dependent Advection-Diffusion-Reaction Equations,
Springer Series in Computational Mathematics, vol. 33, Springer-
Verlag, Berlin, 2003.

[9] K. IN’T HOUT AND B. WELFERT, Unconditional stability of
second-order ADI schemes applied to multi-dimensional diffusion
equations with mixed derivative terms, Appl. Numer. Math, 59
(2009), pp. 677–692.

[10] P. KOVALOV, V. LINETSKY, AND M. MARCOZZI, Pricing multi-
asset American options: A finite element method-of-lines with
smooth penalty, Journal of Scientific Computing, 33 (2007),
pp. 209–237.

[11] NVIDIA, NVIDIA Compute Unified Device Architecture pro-
gramming guide version 2.3, NVIDIA Developer Web Site,
(2009). http://developer.download.nvidia.com.

[12] D. M. POOLEY, K. R. VERZAL, AND P. A. FORSYTH, Conver-
gence remedies for non-smooth payoffs in option pricing, Journal
of Computational Finance, 6 (2003), pp. 25–40.

[13] R. RANNACHER, Finite element solution of diffusion problems
with irregular data, Numerische Mathematik, 43 (1984), pp. 309–
327.

[14] D. TAVELLA AND C. RANDALL, Pricing financial instruments:
The finite difference method, John Wiley & Sons, Chichester,
2000.

[15] A. H. TSE, D. B. THOMAS, AND W. LUK, Option pricing
with multi-dimensional quadrature architectures, in Proceedings
of the 2009 International Conference on Field-Programmable
Technology, IEEE Computer Society, 2009, pp. 427 – 430.

[16] P. WILMOTT, J. DEWYNNE, AND S. HOWISON, Option pricing:
Mathematical Models and Computation, Oxford Financial Press,
1993.

[17] T. P. WITELSKI AND M. BOWEN, ADI schemes for higher-order
nonlinear diffusion equations, Applied Numerical Mathematics,
45 (2001), pp. 331–351.

8

