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Abstract

Credit and total valuation adjustments (CVA and XVA) are significant in equity markets, as parts
of the risk management under Basel III framework. In addition, path-dependent derivatives, such
as American-type ones, are heavily traded in markets. Therefore, it is important to accurately and
efficiently compute valuation adjustments for American-type derivatives. In this paper, we derive a
two-dimensional (2D) in space partial differential equation (PDE) for pricing American-type deriva-
tives including the XVA, assuming the counterparty default risk follows a mean-reversion stochastic
process, while the self-party has constant default risk. We reformulate the time-dependent, 2D nonlin-
ear PDE into penalty form, which includes two nonlinear source terms. We employ the double-penalty
iteration for the 2D PDE to resolve the two nonlinear terms, while we use a finite difference scheme
for the spatial discretization, and Crank-Nicolson-Rannacher timestepping. We introduce algorithms
for the accurate calculation of the free boundary. We also formulate an asymptotic approximation
technique, similar to the one developed for the European case problem, but adjusted for the Ameri-
can put option problem. A key step is to derive the asymptotic approximation to the free boundary
for the American put option. We present numerical experiments in order to study the accuracy and
effectiveness of the 2D PDE and asymptotic approximations.

Key words: valuation adjustment; stochastic default; mean reversion process; free boundary; Black-Scholes
PDE; asymptotic approximation

1 Introduction
American-type financial derivatives are widely traded on markets, and this makes the accurate and

efficient pricing important. Credit valuation adjustment (CVA) and debt value adjustment (DVA) are the
valuation adjustments to financial derivative prices due to the bilateral trading parties’ default risks. Often,
people use the total valuation adjustment (XVA) to refer to the sum of several different types of valuation
adjustments. In this paper, we study modelling XVA pricing for American put options, numerical methods
to approximate the free boundary of the linear complementarity problem arising and the price of XVA,
under stochastic counterparty default intensity. Although we use American put option as an example, the
ideas and techniques can be extended similarly to other financial derivatives.

Partial differential equations (PDEs) are often used to model option pricing, including XVA pricing.
Monte Carlo simulation is another popular approach used in many research works. The PDE approach
has several advantages: more accurate and reproducible valuation, faster convergence especially in low-
dimensions, and more accurate and efficient computation of the so-called Greeks. In addition, the PDE
formulation is easier to modify to make it suitable for American option pricing, because the exercise
boundary is not easily obtained by Monte Carlo methods. The most obvious downside of PDE approach
is that it suffers from the curse of dimensionality when the model has many (e.g five or more) spatial
dimensions. The PDE formulation of bilateral XVA firstly appeared in Burgard and Kjaer’s researches
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[4, 5, 6, 7]. In their work, using the replication technique, and assuming constant default risks for both
parties, a PDE model is derived to obtain the derivatives’ value if CVA is considered. Compared to
the vanilla Black-Scholes PDE, the XVA PDE involves a nonlinear source term. In [2, 3], the authors
proposed PDEs for pricing European and American style options, respectively, with XVA, considering
stochastic spreads. They use the finite element method for spatial discretization and the characteristic
method for timestepping. They solve the nonlinear term arising from XVA by a fixed-point method, and
the complementarity problem from American option constraints by the augmented Lagrangian active set
method. In [8], the authors developed a double-penalty method to efficiently deal with the nonlinear
terms arising from XVA and the linear complementarity constraints for American derivatives, assuming
both counterparty default intensities are constant.

If we assume that the counterparty default risk intensities or other variables are stochastic, the spatial
dimension of the problem is increased, which also increases the computation exponentially. In this paper,
we assume that the default intensity of one counterparty is stochastic following mean-reversion, more
specifically, a Cox-Ingersoll-Ross (CIR) process. This makes the counterparty default intensity λC a
spatial variable in the PDE formulation, and results in a two-dimensional (2D) time-dependent nonlinear
PDE problem, with a nonlinear term arising from the American constraint and another from XVA, the
latter involving explicitly the variable λC . We extend the double-penalty method in [8] to the solution of
the 2D PDE. We present algorithms for the accurate calculation of the free boundary for any λC .

Singular perturbation theory can be applied to multi-dimensional (e.g. 2D) PDEs to obtain approxi-
mations to their solution using lower-dimensional (e.g. 1D) PDEs and some correction terms, assuming
certain functions, variables, or parameters have asymptotic expansions in terms of a small quantity. Such
techniques are much more efficient than directly solving the multi-dimensional PDE. However, they are
also challenging when linear complementarity PDE problems are to be solved, because the location of
the boundary to the PDE region is unknown. In [12], the authors consider American options under fast
mean-reversion volatility, and apply asymptotic expansion in terms of the mean-reversion speed for both
the option price and the free boundary. As a result, the solution and free boundary of the 2D American
problem are approximated by the solution and free boundary, respectively, of an 1D American problem
plus appropriate correction terms. The authors claim that the asymptotic accuracy of the free boundary
approximation is only order of half. In later work [1], additional correction terms are introduced and the
approximation to the free boundary is slightly improved. In [16], the authors give a general presentation
of singular perturbation theory and apply it to the Black-Scholes PDE assuming a small volatility, in terms
of which the expansions are written. They use this technique to price vanilla European, American and
Barrier options. In their American options asymptotic approximations, they also expand the value of the
free boundary in terms of volatility, and come up with multiple correction terms added to the strike price.

We assume a fast mean-reverting λC , and develop an efficient approximation method similar to the one
presented in [9], designed to work for American derivatives. The idea of dealing with the free boundary
in this paper is similar to the one in [12, 1], but expansions are in terms of the mean reversion speed, and
we use more expansion terms.

In this paper, we present the 2D PDE formulation of American XVA pricing assuming mean-reverting
counterparty default intensity, numerical algorithms for computing the solution and free boundary, and
an asymptotic approach for approximating the solution and free boundary using the solution of an 1D
American XVA pricing problem and some correction terms. More specifically, the contributions of this
work are

• We formulate a time-dependent PDE in two spatial dimensions, with multiple nonlinear source terms.
One nonlinear term models the American constraint, and the other (which in turn consists of multiple
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subterms) models the XVA adjustments.

• We extend the double-penalty method [8] to handle the different nonlinear source terms of the 2D
PDE.

• We develop algorithms for the accurate approximation of the free boundary for any λC .

• We extend the asymptotic approximation we developed for European derivatives in [9] to American
derivatives in the XVA pricing problem, and present algorithms to compute an asymptotic approxi-
mation to the free boundary, and an asymptotic approximation to the American XVA price. We study
how the approximate free boundary affects our asymptotic approximated prices.

• We present numerical experiments to study the accuracy of the 2D PDE and asymptotic approxima-
tions, the effect of speed of mean-reversion to the adjusted prices and to the free boundary, and the
behavior of the free boundary as the counterparty default intensity varies. We also compare the 2D
PDE and asymptotic approximations.

The outline of this paper is as follows. In Section 2, we present the formulation of the American-
type XVA pricing problem as a linear complementarity PDE. We also present the penalty form to the
corresponding problem. In Section 3, we describe the numerical methods used for discretizations, the
appropriate boundary conditions, the double-penalty method to deal with the multiple nonlinearities, and
the algorithm for the accurate calculation of the free boundary. In Section 4, we present the asymptotic
approximations to the free boundary and to the solution of the problem. In Section 5, numerical ex-
periments’ results are shown to compare the numerical PDE and asymptotic solutions for American put
options, and to study their accuracy and effectiveness. Section 6 presents the conclusions and possible
future works.

2 Formulation
In this section, we show the PDE formulation of the XVA pricing problem for American derivatives,

with the stochastic counterparty default risk considered. The respective European XVA PDE model was
developed in [9], using multiple hedging arguments, including underlying assets, the zero-coupon bonds
of the two parties, risk-free zero-coupon bonds and another similar financial derivative; see also [11].
Similarly to the original American option PDE, the XVA pricing for American derivatives, when the
stochastic counterparty default intensity is considered, is also a linear complementarity problem (LCP).
In this paper, we assume that, if either party of a contract defaults, the Mark-to-Market value M is same
as the value of the derivative including XVA, V̂ . We use the same notations as those in [9]: Let S be
the underlying stock value, t the forward time, T the expiry time of the contract, σ the volatility in S, r
the risk-free interest rate, γ the dividend yield of S, q the stock repo rate, λB the bank default intensity,
λC the counterparty default intensity, RB the recovery percentage on M(= V̂ ) if seller defaults, RC the
recovery percentage on M(= V̂ ) if counterparty defaults, rF the seller’s funding rate for borrowed cash,
where rF = r+(1−RB)λB if derivative cannot be used as collateral, and sF = rF − r. The positive and
negative values of any financial security W are denoted as W+ ≡ max{W, 0} and W− ≡ min{W, 0}.
Let also rR = q − γ. Furthermore, let κ and θ be the rate and level of mean reversion, respectively, and
σλC the CIR mean reversion process volatility.

When the backward time τ = T − t is applied, the American derivative price V̂ (τ, S, λC), taking
stochastic risk into account, satisfies{

∂V̂
∂τ

− LV̂ − f(λC , V̂ ) > 0

V̂ − V ∗ = 0

}
or

{
∂V̂
∂τ

− LV̂ − f(λC , V̂ ) = 0

V̂ − V ∗ ≥ 0

}
(1)
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where

LV̂ ≡1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

(2)

+ rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ ,

f(λC , V̂ ) ≡− (sF + (1−RC)λC)V̂
+ − (1−RB)λBV̂

−, (3)

V ∗ ≡V̂ (0, S, λC). (4)

Problem (1) is a free boundary problem, with the free boundary being a surface which can be written as
Sfb(τ, λC). The free boundary separates the domain into two regions. We refer to the region where the
left part of (1) holds as exercise or penalty region, and the region where the right part of (1) holds as hold
or PDE region. Without loss of generality, we consider the American put case. In this case, in the hold
region in (1), we have S ≥ Sfb, while, in the exercise region, we have S < Sfb. We also have the initial
condition

V̂ (0, S, λC) = (K − S)+, (5)

and the free boundary conditions

V̂ (τ, Sfb, λC) = K − Sfb, (6)

∂V̂

∂S
(τ, Sfb, λC) = −1, (7)

∂V̂

∂λC

(τ, Sfb, λC) = 0. (8)

2.1 Penalty formulation

For one-asset American option pricing without considering default risk, Forsyth and Vetzal [10] pro-
posed the discrete penalty method to numerically solve the LCP. A large positive penalty term is added
to the Black-Scholes equation, resulting in a nonlinear PDE. In [10], a rigorous study of equivalence be-
tween the LCP and the penalized nonlinear PDE is presented. In [8], the double-penalty method is firstly
introduced to solve the LCP arising from American type XVA with constant bilateral default risk, which,
in its penalty formulation, has multiple nonlinear terms.

In the current multi-dimensional American XVA problem, with stochastic counterparty default risk, a
similar penalty term can be added. The penalty form of (1) is written as{

∂V̂
∂τ

= LV̂ + f(λC , V̂ ) + pmax(V ∗ − V̂ , 0),

V̂ (0, S, λC) = (K − S)+,
(9)

where p is a large positive penalty factor. The penalty term forces the solution of (9) to approximately
satisfy the obstacle condition V̂ − V ∗ ≥ 0.

2.2 Penalized-form PDE with constant default intensity

For later purposes, we give here the 1D American XVA LCP when the default intensity λC is given by
a constant λc

C , formulated in [8],{
∂V̂ c

∂τ
− LcV̂ c − f(λc

C , V̂
c) > 0

V̂ c − V ∗ = 0

}
or

{
∂V̂ c

∂τ
− LcV̂ c − f(λc

C , V̂
c) = 0

V̂ c − V ∗ ≥ 0

}
(10)
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and the associated penalized PDE,

∂V̂ c

∂τ
= LcV̂ c + f(λc

C , V̂
c) + pmax{V ∗ − (V̂ c)−, 0}, (11)

where

LcV̂ c ≡1

2
(σS)2S2∂

2V̂ c

∂S2
+ rRS

∂V̂ c

∂S
− rV̂ c. (12)

Here, V̂ c is the adjusted American derivative price when taking constant default intensity λc
C into account,

and the initial conditions are V̂ c(0, S) = (K − S)+. The LCP (10) has a free boundary Sc
fb(τ), satisfying

the free boundary conditions

V̂ c(τ, Sc
fb) = K − Sc

fb, (13)

∂V̂ c

∂S
(τ, Sc

fb) = −1. (14)

3 Numerical 2D PDE methods
3.1 Domain and discretization

The domain of PDE (9), which is the same that of the PDE problem (1), is semi-infinite in the two
spatial variables: (τ, S, λC) ∈ (0, T ] × [0,∞) × [0,∞). For computational purposes, the semi-infinite
domains of S and λC are truncated, and we get the computational domain (τ, S, λC) ∈ (0, T ]×[0, Smax)×
[0, λmax

C ), for sufficiently large Smax and λmax
C . Then, [0, Smax] and [0, λmax

C ] are discretized with S0 =
0 < S1 < . . . < SN = Smax and (λC)0 = 0 < (λC)1 < . . . < (λC)M = λmax

C the (uniform or
nonuniform) gridpoints in the S and λC directions, respectively.

For the time domain, let τj, j = 0, . . . , Nt, with τ0 = 0 < τ1 < · · · < τNt = T , denote the timesteps
at which the solution is computed. If uniform timesteps are used, then ∆τ = T/Nt is the time stepsize,
otherwise, let ∆τ j = τj − τj−1.

The space discretization of the PDE (1) uses techniques similar to [9], except that the penalty term
needs to be taken into account. All interior points are discretized by second-order centered differences,
while boundary points by one-sided differences.

For the boundary and corner equations, we again use similar treatment as in [9], with the addition of
the penalty term pmax(V ∗− V̂ , 0). Omitting the details for brevity, we give one example how the penalty
term is introduced. On {(S, λC) ∈ {S = 0} × [0, λmax

C ]}, set S = 0 in (9), and, instead of Equation (44)
in [9], obtain

∂V̂

∂τ
=

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ κ[θ − λC ]
∂V̂

∂λC

− rV̂ + f(λC , V̂ ) + pmax(V ∗ − V̂ , 0), (15)

which, with λC = 0 on the left, and linear boundary condition ∂2V̂
∂λ2

C
= 0 on the right, is numerically solved

as an 1D parabolic PDE, giving Dirichlet boundary conditions for (9) on S = 0.
Note that the boundary conditions on {(S, λC) ∈ {S = 0} × [0, λmax

C ]} are solved separately, while
the boundary conditions on {(S, λC) ∈ {S = Smax} × [0, λmax

C ]}, {(S, λC) ∈ (0, Smax) × {λC = 0}},
and {(S, λC) ∈ (0, Smax)×{λC = λmax

C }} form part of the N(M +1)×N(M +1) linear system solved
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at each timestep. In [9], there is more detailed discussion on the European boundary conditions including
corners as well as the discretization of the conditions.

We use the ϑ-method †, in its Crank-Nicolson-Rannacher formulation, for time-stepping, that is, apply
four half-timesteps of Backward Euler (BE ϑ = 1), then continue with the remaining Nt − 2 (full)
timesteps as Crank-Nicolson (CN, ϑ = 1

2
).

3.2 Penalty discretization and double-penalty iteration

In this subsection, we briefly present the discretization of the nonlinear terms pmax(V ∗ − V̂ , 0) (aris-
ing from the early-exercise of American options) and f(λC , V̂ ) (arising from the XVA, with stochastic
λC), and the algorithm used for the solution at each timestep. Let v̂j, j = 0, . . . , Nt, be the computed
solution vector at time τj , v̂0 be the initial condition vector, and v∗ be the vector of values of payoff V ∗,
all vectors with components along the spatial gridpoints in a bottom-up (λC direction) then left-to-right
(S direction) ordering.

Because there are similarities between the method used here and the method in [8], as well as between
some matrices used here and in [9], rather than repeating the material in [8] and [9], we refer to some
relations in [8, 9], and emphasize on the differences.

The nonlinear term pmax(V ∗ − V̂ , 0) is discretized as PA(v̂
j)(v∗ − v̂j), where PA(v̂

j) is a diagonal
matrix defined as in Equation (4.9) in [8]. However, there are differences between the PA of [8], and
the PA used here. The PA matrix of [8] is a diagonal matrix with “p”s followed by zeroes along the
diagonal. The PA matrix here is also diagonal, but should be viewed as a block-diagonal matrix with
diagonal blocks, with the nonzero components not concentrated towards the top-left, but rather “block-
concentrated” towards the top-left of each block, and the zeroes towards the bottom-right of each block.

The nonlinear term f(λC , V̂ ) is discretized as PX(v̂
j)(v̂j), where PX(v̂

j) is a diagonal matrix defined
as matrix P in Equation (54) in [9].

Once we have the PA and PX matrices defined, and assuming A is the matrix arising from the space
discretization of LV̂ (two-dimensional), and I the identity matrix of compatible order, we need to solve
the system of algebraic equations given by Equation (4.11) in [8]. This system is solved by the discrete
double-penalty iteration given as Algorithm 3 in [8], with the stopping criterion given by Equation (4.12)
in [8].

We emphasize that the two nonlinear terms are updated simultaneously, and not in a nested way. The
sparsity structure of the matrix solved at each iteration is block-tridiagonal, just as A is. Note that, as in
[9], the diagonal of A is enhanced by PX , under typical conditions. Also, since p > 0, the diagonal of
I− ϑ∆τ j(A+ P j,k−1

X ) is enhanced by PA.

3.3 Numerical approximation of free boundary of multi-dimensional American XVA problem

In this subsection, we show how to numerically approximate the free boundary of the multi-dimensional
American XVA problem on a specific desired λC point, assuming we already have numerical solutions on
the grid points, (Si, (λC)j), i = 1, . . . , N, j = 0, . . . ,M .

The naive way is that, for a fixed λC , we choose the free boundary point as the point Sk to the left of
the first grid point Sk+1, where the numerical solution is a certain tolerance, e.g. 2tol = 2

p
, or more above

the payoff function. Following this naive way, Sk maybe different for each λC , but it is always chosen
among the grid points Si, i = 1, . . . , N .

†Note that the ϑ notation for the time-stepping method is different from the θ(t) notation in the CIR model
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The above approximation is improved in accuracy following [15]. Along each λC line, for which we
want to approximate the free boundary, we construct an interpolant V∂(S) of the first (with respect to
S) derivative values and find for which S it satisfies V∂(S) = −1. The interpolant is constructed using
three points {(Si,

∂V̂
∂S

(Si, λC)), i = k + 1, k + 2, k + 3} away from the naive free boundary Sk and in the
PDE region (hold region), as the error on Sk is contaminated with errors from the early exercise region
that are not smooth, and the finite difference approximations involving Sk are inaccurate. See Algorithm
1 for details. To solve the nonlinear equation V∂(S) + 1 = 0 we can use the standard quadratic root
formula or Newton’s method with initial guess Sk+1. An alternative is to construct a quadratic interpolant
VI(S) of V̂ (S) using {(Si, V̂ (Si), λC), i = k + 1, k + 2, k + 3}, and to solve VI(S) − V ∗(S) = 0 for S.
This nonlinear equation has a double root, so Newton’s method is expected to be slow. But the quadratic
formula could still work well. In our code, we used the MATLAB function fsolve on V∂(S) + 1 = 0
with initial guess Sk+1, and tolerance 10−9.

In Algorithm 1, we assume we have already computed numerical approximations to V̂ (Si, (λC)j),
i = 1, 2, . . . , N, j = 0, 1, . . . ,M . For simplicity, we denote the approximations by V̂ (Si, (λC)j) as well.
Furthermore, we note that Algorithm 1 works even if the given λC is not a gridpoint; see Step 1 of
Algorithm 1. We also note that the FD approximation to ∂V̂

∂S
(Sk+1) in Step 4 is one-sided, to avoid using

points into the exercise region.

Algorithm 1 American XVA 2D PDE: Approximation of the free boundary for a given λC .

1: If λC is not a grid point, compute approximations ˆ̂
V (Si, λC) to V̂ (Si, λC), i = 1, 2, . . . , N ,

by cubic spline interpolation on the values V̂ (Si, (λC)j), i = 1, 2, . . . , N, j = 0, 1, . . . ,M .

Let V̂ (Si) =
ˆ̂
V (Si, λC), i = 1, 2, . . . , N .

2: If λC is grid point (λC)j , let V̂ (Si) = V̂ (Si, (λC)j), i = 1, 2, . . . , N .
3: Find the leftmost point Sk+1, such that V̂ (Sk+1)− V ∗(Sk+1) ≥ 2tol.
4: Compute finite difference approximations ∂V̂

∂S
(Si), to ∂V̂

∂S
(Si, λC), i = k + 1, k + 2, k + 3.

5: Construct the quadratic interpolant V∂(S) of ∂V̂ (S)
∂S

using {(Si,
∂V̂
∂S

(Si)), i = k + 1, k + 2, k + 3}.
6: Solve V∂(S) + 1 = 0 for S with initial guess Sk+1, to get the free boundary SλC

fb for the given λC .

4 Asymptotic methods
Numerically solving the time-dependent multi-dimensional PDE, especially including multiple non-

linear source terms, is computationally expensive. An asymptotic approximation can ease this problem
[11, 9, 14]. An asymptotic approximation requires the solution of a lower-dimensional PDE and applies
some correction terms to it by a closed-form formula. However, asymptotic approximation for path-
dependent derivatives is more complicated due to the lack of explicit formula for the corrections terms.
For example, for American put, this problem is more involved due to the singularities at the free bound-
aries, because, usually at the free boundary points, the solutions are only C1. In [12, 1], the authors applied
asymptotic expansions to both the value function and the free boundary and find an asymptotic correction
to the free boundary, which transforms the two-dimensional free boundary problem into a fixed boundary
problem.

The stochastic differential equation that the CIR process for λC follows is the same as given by Equa-
tion (59) in [9]. Following [13, 14, 8, 9], we assume κ = 1/ϵ, where ϵ > 0 is small. We also scale σλC

July 26, 2025



8 Y. CHEN, C. CHRISTARA

as σλC = ν√
ϵ
, to keep ν2 constant as ϵ becomes smaller. Hence we can rewrite the equation in the hold

region of (1) as

(
1

ϵ
L0 +

1√
ϵ
L1 + L2)V̂ = 0, (16)

where

L0 ≡
1

2
ν2λC

∂2

∂λ2
C

+ (θ − λC)
∂

∂λC

, (17)

L1 ≡ ρσSνS
√

λC
∂2

∂S∂λC

, (18)

L2 ≡ (− ∂

∂τ
) +

1

2
(σS)2S2 ∂2

∂S2
+ rRS

∂

∂S
− rI + f(λC , V̂ ), (19)

with I being the identity operator.

4.1 Asymptotic expansions

We apply asymptotic expansion to both V̂ and Sfb with respect to ϵ,

V̂ ≡ V̂ ϵ = V̂0 +
√
ϵV̂1/2

‡ + ϵV̂1 + ϵ
√
ϵV̂3/2 + . . . , (20)

Sfb ≡ Sϵ
fb = Sf0 +

√
ϵSf1/2 + ϵSf1 + . . . , (21)

which converge to the exact respective solutions if ϵ → 0. In this paper, we use the first three terms of
(20) to estimate V̂ , such that V̂ ≈ V̂ ϵ,1 ≡ V̂0 +

√
ϵV̂1/2 + ϵV̂1, and the first two terms of (21) to estimate

the free boundary Sfb, such that Sfb ≈ S
ϵ,1/2
fb ≡ Sf0 +

√
ϵSf1/2.

In the following, we derive formulae for computing V̂0, V̂1/2, V̂1, Sf0 and Sf1/2. Let ⟨·⟩ denote expec-
tation with respect to the invariant distribution of λC .
The expansion of the partial differential equation (16) (hold region) gives

O(
1

ϵ
) : L0V̂0 = 0 (22)

O(
1√
ϵ
) : L0V̂1/2 + L1V̂0 = 0 (23)

O(1) : L0V̂1 + L1V̂1/2 + L2V̂0 = 0 (24)

O(
√
ϵ) : L0V̂3/2 + L1V̂1 + L2V̂1/2 = 0. (25)

We also expand the free boundary conditions (6), (7) and (8), keeping terms up to
√
ϵ, as

V̂0(Sf0) +
√
ϵ(Sf1/2

∂V̂0

∂S
(Sf0) + V̂1/2(Sf0)) = K − Sf0 −

√
ϵSf1/2, (26)

∂V̂0

∂S
(Sf0) +

√
ϵ(Sf1/2

∂2V̂0

∂S2
(Sf0) +

∂V̂1/2

∂S
(Sf0)) = −1, (27)

∂V̂0

∂λC

(Sf0) +
√
ϵ(Sf1/2

∂2V̂0

∂S∂λC

(Sf0) +
∂V̂1/2

∂λC

(Sf0)) = 0, (28)

‡In the notations V̂1/2, S1/2 and V̂3/2, the subscripts are consistent with the powers of the associated ϵ coefficients.
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where, for brevity, though all quantities are at (τ, Sf0, λC), we omit τ and λC . From Equations (26)–(28),
we have

V̂0(Sf0) = K − Sf0, (29)

∂V̂0

∂S
(Sf0) = −1, (30)

∂V̂0

∂λC

(Sf0) = 0, (31)

Sf1/2
∂2V̂0

∂S2
(Sf0) +

∂V̂1/2

∂S
(Sf0) = 0. (32)

In the exercise region, the condition V̂ = (K − S)+ suggests that V̂0 = (K − S)+, V̂1/2 = 0 and V̂1 = 0.
Since we have (22) in the hold and V̂0 = (K − S)+ in the exercise regions, V̂0 is independent of λC in

both regions, i.e. V̂0 = V̂0(τ, S). This implies L1V̂0 = 0. Then, in the hold region, Equation (23) results
in L0V̂1/2 = 0, which, together with V̂1/2 = 0 in the exercise region, imply V̂1/2 is independent of λC as
well in both regions. i.e. V̂1/2 = V̂1/2(τ, S). This also results in L1V̂1/2 = 0 in the hold region.

In the hold region, since L1V̂1/2 = 0, Equation (24), reduces to L0V̂1 +L2V̂0 = 0, which, as a Poisson
equation with respect to L0 in λC , results in ⟨L2⟩V̂0 = 0, which, in turn, is the PDE in the hold region
of LCP (10), with λc

C = θ. In addition, Equations (29)-(30) indicate that Sf0 satisfies the free boundary
conditions (13)-(14) for this LCP. In the exercise region, we have V̂0 = (K − S)+. Therefore, V̂0 is the
solution to the 1D American Black-Scholes XVA problem with constant default intensity being the mean
of the CIR model, that is, LCP (10), with λc

C = θ, and Sf0 is the free boundary of the LCP. To compute
the solution to this problem, no analytical formula is available. An advanced numerical method, such as
a penalty method, can be used to approximate the corresponding 1D penalized PDE (11) with terminal
condition V̂0(0, S) = (K − S)+.
As in [9], from (25), we get ⟨L2⟩V̂1/2 = −⟨L1V̂1⟩. Using L0V̂1 = −L2V̂0, ⟨L2⟩V̂1/2 = −⟨L1V̂1⟩, and
techniques similar to [9], we can obtain the solution to V̂1 in terms of V̂0. Likewise, we can obtain the
solution to V̂1/2 in terms of V̂0. The formulae are as in [9],

V̂1/2(τ, S) = −τρσSνS(1−RC)⟨
√
λC⟩

∂V̂ +
0

∂S
, (33)

V̂1(τ, S, λC) = (1−RC)(θ − λC)V̂
+
0 + τ(1−RC)

2 θν
2

2
V̂ +
0 , (34)

but notice that, here, V̂0 is the solution to the 1D American Black-Scholes XVA problem with constant
default intensity λc

C = θ. Note that the approximation V̂ ≈ V̂ ϵ,1 (with V̂1/2 as in (33) and V̂1 as in (34))
is only for the hold region, while, in the exercise region, we have V̂ = V ∗. From (32) and (33), we also
have the correction to the free boundary

Sf1/2 =
−∂V̂1/2

∂S

∂2V̂0

∂S2

∣∣∣∣∣
S=Sf0

=
τρσSν(1−RC)⟨

√
λC⟩(∂V̂

+
0

∂S
+ S

∂2V̂ +
0

∂S2 )

∂2V̂0

∂S2

∣∣∣∣∣
S=Sf0

. (35)

From the view of computation, given V̂0, Sf0 is computed in a way similar to Algorithm 1, but adjusted to
work on the 1D problem. See steps 1–4 of Algorithm 2.
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Note that, for Equations (33) and (35), we define

∂V̂ +
0

∂S
≡

{
∂V̂0

∂S
V̂0 > 0

0 V̂0 ≤ 0
and

∂2V̂ +
0

∂S2
≡

{
∂2V̂0

∂S2 V̂0 > 0

0 V̂0 ≤ 0
, (36)

and, in Equation (35), the partial derivatives at S = Sf0 are taken to be one-sided derivatives into the hold
region; see Algorithm 2.

In the following, we describe the algorithm we apply for the approximation of Sf0 and of the derivative

values ∂V̂0

∂S
(Sf0), and ∂2V̂0

∂S2 (Sf0), that are needed in (35). In Algorithm 2, we assume we have already com-
puted numerical approximations to V̂0(Si), i = 1, 2, . . . , N . For simplicity, we denote the approximations
by V̂0(Si) as well.

Algorithm 2 American XVA PDE: Approximation of Sf0 (steps 1–4), ∂V̂ +
0

∂S
(Sf0) (step 5), and ∂2V̂0

∂S2 (Sf0)

and ∂2V̂ +
0

∂S2 (Sf0) (steps 6–8).

1: Find the leftmost point Sk+1, such that V̂0(Sk+1)− V ∗(Sk+1) ≥ 2tol.
2: Compute finite difference approximations to ∂V̂0

∂S
(Si), i = k + 1, k + 2, k + 3.

3: Construct the quadratic interpolant V∂,0(S) of ∂V̂0(S)
∂S

using {(Si,
∂V̂0

∂S
(Si)), i = k + 1, k + 2, k + 3}.

4: Solve V∂,0(S) + 1 = 0 for S with initial guess Sk+1, to get the free boundary Sf0.

5: Set ∂V̂0

∂S
(Sf0) = −1; set ∂V̂ +

0

∂S
(Sf0) as in (36).

6: Compute finite difference approximations to ∂2V̂0

∂S2 (Si), i = k + 1, k + 2, k + 3.

7: Construct the quadratic interpolant V∂∂,0(S) of ∂2V̂0(S)
∂S2 using {(Si,

∂2V̂0

∂S2 (Si)), i = k+1, k+2, k+3}.

8: Evaluate V∂∂,0(Sf0) and set ∂2V̂0

∂S2 (Sf0) = V∂∂,0(Sf0); set ∂2V̂ +
0

∂S2 (Sf0) as in (36).

It is important to note that the interpolants V∂,0(S) and V∂∂,0(S) are constructed using values into the
hold region (where sufficient smoothness holds) and away from the penalty region, and that the approxi-
mations to ∂V̂0

∂S
(Sf0) and ∂2V̂0

∂S2 (Sf0) are constructed using extrapolation of the interpolants.
To conclude, given a certain point, our asymptotic approximation to the American put option value

including XVA, with stochastic default intensity, is summarized in Algorithm 3.
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Algorithm 3 American XVA PDE: Asymptotic approximation to the free boundary and to the put option
value at a given point Sspot

1: Compute V̂0, by numerically solving the 1D American put option XVA PDE (11), with λc
C = θ, using

the double-penalty method in [8].
2: Compute V̂ +

0 , ∂V̂0

∂S
and ∂V̂ +

0

∂S
at Sspot, using V̂0, finite differences and (36).

3: Compute Sf0,
∂V̂ +

0

∂S
(Sf0), ∂2V̂0

∂S2 (Sf0), and ∂2V̂ +
0

∂S2 (Sf0), using V̂0 and Algorithm 2.
4: Compute correction terms V̂1/2 and V̂1 at Sspot, by Equations (33) and (34), respectively.
5: Compute correction term Sf1/2 to free boundary, by Equation (35).
6: Obtain the free boundary approximation S

ϵ,1/2
fb = Sf0 +

√
ϵSf1/2.

7: if Sspot ≥ S
ϵ,1/2
fb then

8: V̂ ≈ V̂ ϵ,1 = V̂0 +
√
ϵV̂1/2 + ϵV̂1.

9: else
10: V̂ ≈ V ∗ (payoff function)
11: end if

REMARK 1 Similarly as in [12], the basic strategy for constructing an asymptotic approximation is to
asymptotically expand both the value V̂ and the free boundary Sfb in terms of ϵ, and obtain an approx-
imated free boundary. Then, using the approximated free boundary, we divide the spot price region into
the hold and exercise region, and apply a different formula for the price at each region. However, the ap-
proximated free boundary is O(ϵ) from the true free boundary Sfb. Hence, when the spot price S is close
to the exercise boundary, the contract might move to the exercise region, in which case, the derivatives do
not exist long enough for the mean-reverting effects of fast mean-reverting stochastic counterparty default
intensity. In this case, the asymptotic approximation is not expected to be accurate. This technique is more
effective when it is applied to approximate the value away from the approximated free boundary S

ϵ,1/2
fb .

5 Numerical experiments
In this section, we show results of numerical experiments from applying the proposed methods on

American put options. Table 1 presents the values of parameters we used in the experiments.
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Parameter Value
Domain of S [0, 8K]

Domain of λC [0, 6.05]
Strike Price, K 15

Time to maturity, T 1
Volatility of asset, σS 0.4

Volatility of intensity of party C, σλC 0.2
Correlation between S and λC , ρ 0.3

Mean reversion level of intensity of party C, θ 0.05
Mean reversion rate of intensity of party C, κ 1

Repo rate minus dividend, rR = q − γ 0.015
Interest rate, r 0.03

Default intensity of party B, λB 0.02
Recovery rate of party B, RB 0.4
Recovery rate of party C, RC 0.3

Funding spread, sF (1−RB)λB

Table 1: Model parameters for bilateral XVA with stochastic default intensity in American put options.

5.1 Numerical PDE with double-penalty iterations

The spatial domain of (S, λC), [0, Smax]×[0, λmax
C ], is discretized into N×M subintervals. We choose

the truncated boundaries, Smax = 8K and λmax
C = 6.05, when σλC = 0.2, as suggested in [9]. More

generally, λmax
C = θ + 30σλC . In [9], the effect of truncated boundaries is studied in details for European

options. We do not expect different behavior for American options, as far as truncated boundaries are
concerned. We also choose to use nonuniform gridpoints on both S dimension and λC dimension. The
gridpoints on S are concentrated around the strike price K, while the gridpoints on λC are concentrated
towards 0. The formulae of the nonuniform mappings from uniform grids on these two spatial dimensions
can be found in [9].

The spatial derivatives are discretized by standard second-order centered differences, except the first
derivatives in the boundary conditions, which are discretized by first-order forward or backward differ-
ences. The number of timesteps in denoted by Nt, and ∆t = T/Nt, as defined in Section 3. As explained
in Section 3, the timestepping scheme is Crank-Nicolson-Rannacher. Algorithm 3 in [8], with the matrices
as described in Section 3.2 in this paper, is used at each timestep. In all tables in this section, “iter tot” and
“iter avg” mean total and average (per timestep) number of iterations. The tolerance tol of double-penalty
iteration is set to 10−7, thus p = 107.

We present results from pricing the XVA of American put options with stochastic counterparty default
intensity, and with the parameter settings in Table 1. For American put options, the XVA with stochastic
counterparty default intensity does not have an analytical solution. The error at one resolution is estimated
by the difference from the previous (coarser) resolution. In Table 2, we show the results at-the-money
with different resolutions. We notice that the average number of double-penalty iterations is around 2,
and varies very little with grid size. The numerical results do not exhibit any instability, and the order of
convergence is 2, which is the same as the theoretically expected convergence. In Table 3, we also list
numerical results for several spot prices and different levels of default risk. In this problem with K = 15,
asset price S = 7.5 is expected to be in the exercise region, while asset prices S = 15 and S = 30 are
expected to be in the hold region. From Tables 2 and 3, we notice that when the underlying asset prices
S = 15 and S = 30, the order of convergence is approximately 2 as expected. From Table 3, at S = 7.5,
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the numerical solution converges quickly to 7.5, and this is because the errors in the exercise region are
related to 1

p
= 10−7 and less affected by the discretization size. Therefore, for high resolutions, the errors

are beyond the seven digits, and calculating the order of convergence makes no sense.
We are also interested in the behavior of the free boundaries for different counterparty default intensi-

ties λC . In Table 4, we show the location and convergence of the free boundaries when λC = 0.0615927
and λC = 0.1364300 for the double-penalty method for several grid sizes. These λC points are chosen
because they are grid points of all λC-grids from the coarsest to the finest. We could have picked other
arbitrary λC points, but in such case, we need to apply interpolation to the computed values on the grid
points to obtain the values at the arbitrary λC points, a procedure that may increase the errors. From
Table 4, we notice that although the order of convergence of the free boundaries of the double-penalty
method is not very stable, the changes from coarse to fine grids generally decrease and go down to levels
of about 10−3. In Table 5, we show the values of the free boundaries for several different λC that are not
gridpoints. It is clear that, as the λC value increases, the free boundary value also increases, which means
that the American derivative will be exercised for a larger range of S values. Usually, large counterparty
default intensity results in valuation reduction in adjusted price. With the “push-up” effect of the payoff
constraints from American put options, the free boundary should move to the right in the S-dimension.

We also investigate how the free boundary location changes with varying κ. Here, we assume that,
as κ changes, σλC also changes, so that ν remains constant, i.e. σλC = ν

√
κ. This scaling is the same

as the one assumed in [9], and helps obtain results comparable to those obtained from the asymptotic
approximation. Figure 1 plots the values of the free boundaries, versus counterparty default intensity λC ,
with various κ. From Figure 1, we again see that the free boundary increases with increasing default
intensities λC . We also notice, from Figure 1, that the free boundaries are less sensitive with respect to
κ around λC = 0.05, which is the long-run mean of mean-reversion process. When λC is smaller, the
free boundaries increase with increasing κ, while, when λC is large, the free boundaries decrease with
increasing κ.

N M Nt iter tot iter avg
V̂ value for put option

value diff in V̂ order
16 8 10 19 1.90 2.1254085 – –
32 16 18 33 1.83 2.1619127 3.65e-02 –
64 32 34 72 2.12 2.1714040 9.49e-03 1.94

128 64 66 149 2.26 2.1741303 2.73e-03 1.80
256 128 130 310 2.38 2.1748854 7.55e-04 1.85
512 256 258 678 2.63 2.1750101 1.25e-04 2.60

Richardson extrapolated value: 2.1750516
Table 2: Results from solving (9) for American put option including bilateral XVA with stochastic default
intensity on counterparty using Algorithm 3 in [8] with the parameters in Table 1 when S is at-the-money
(S = K = 15) and λC = θ. Nonuniform grids are used.

July 26, 2025



14 Y. CHEN, C. CHRISTARA

N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.025) (30, 0.05) (30, 0.1)
128, 66, 68 7.4999991 7.4999954 7.5000017 0.1224851 0.1213862 0.1191487

256,128,130 7.5000007 7.4999998 7.5000000 0.1227464 0.1216452 0.1194031
512,256,258 7.5000000 7.5000000 7.5000000 0.1227959 0.1216946 0.1194522

order —- —- —- 2.40 2.39 2.37

Table 3: Results at various points (S, λC) from solving (9) for American put option including bilateral
XVA with stochastic default intensity on counterparty using Algorithm 3 in [8] with the parameters in
Table 1. Nonuniform grids are used.

N
FB at λC = 0.0615927 FB at λC = 0.1364300

value diff order value diff order
16 7.7115593 – – 7.8072792 – –
32 8.2664888 5.55e-01 – 8.5645010 7.57e-01 –
64 8.3707357 1.04e-01 2.41 8.7553107 1.91e-01 1.99

128 8.4228745 5.21e-02 1.00 8.8585797 1.03e-01 0.89
256 8.4436199 2.07e-02 1.33 8.8946672 3.61e-02 1.52
512 8.4494439 5.82e-03 1.83 8.9049210 1.03e-02 1.82

Table 4: Free boundary locations and orders of convergence for various counterparty default intensity λC-
points from solving (9) for American put option including bilateral XVA with stochastic default intensity
on counterparty using Algorithm 3 in [8] with the parameters in Table 1. Nonuniform grids are used.
Algorithm 1 is used for the calculation of free boundaries.

λC 0.01 0.025 0.05 0.1 0.2
FB 8.0060641 8.1536824 8.3647338 8.7032745 9.1982301

Table 5: Free boundary locations for various counterparty default intensity λC-points from solving (9)
for American put option including bilateral XVA with stochastic default intensity on counterparty using
Algorithm 3 in [8] with the parameters in Table 1. Nonuniform grids are used and N = 512. Algorithm 1
is used for the calculation of free boundaries.
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Figure 1: Free boundary locations versus the counterparty default intensity λC , with various mean-
reversion speeds κ from solving (9) for American put option including bilateral XVA with stochastic
default intensity on counterparty using Algorithm 3 in [8] with the parameters in Table 1. Nonuniform
grids are used and N = 512. Algorithm 1 is used for the calculation of free boundaries.

5.2 Comparison of asymptotic and numerical approximations

In order to numerically investigate the accuracy of the asymptotic approximation and compare to
the finite difference PDE solutions in American type financial derivatives, we show the American put
option values including XVA with mean-reversion counterparty default intensity, with the parameters of
Table 1, except that we vary the speed of mean-reversion parameter, κ. We present Table 6, in which
κ is varying from 1 to 5. This table can also help us numerically analyze how the asymptotic solution
accuracy is affected by the speed of mean-reversion parameter κ. In Table 6, we keep ν = σλC

√
ϵ

constant, where κ = 1√
ϵ
, and σλC is varying with varying κ. The exact solutions to these problems

are not known. Therefore, we compute the numerical approximations by the 2D PDE approach and
asymptotic approximations. Also, we compute a highly accurate numerical approximation extrapolated
from the two finest grids of the 2D PDE approximations using Richardson extrapolation. The results by
Richardson extrapolation are considered as the most accurate approximations. In Table 6, we notice, for
points in the exercise region, both the 2D PDE solution (with high resolution) and the asymptotic give
exact results within tolerance O(1

p
). In this case, Richardson extrapolation deviates from the exact results,

as extrapolation brings wrong digits in the numerical 2D PDE solution beyond the seventh digit to the
left. For these points, extrapolation with respect to the grid size does not make sense. For most points in
the hold region, we notice that the agreement between the PDE and asymptotic solutions is in the third of
higher significant decimal digit, and as κ increases there is stronger agreement.
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(7.5, 0.05) (7.5, 0.1) (15, 0.05) (15, 0.1) (30, 0.05) (30, 0.1)
κ = 1, σλC = 0.2, ν = 0.2

PDE FDM 7.5000000 7.5000000 2.1750101 2.1403166 0.1216946 0.1194522
PDE extrap 7.5000001 7.5000000 2.1750516 2.1403572 0.1217110 0.1194685
asymptotic 7.5000000 7.5000000 2.1947775 2.1187456 0.1236463 0.1194102

κ = 2, σλC = 0.28, ν = 0.2
PDE FDM 7.5000000 7.5000000 2.1756124 2.1497291 0.1217586 0.1202117
PDE extrap 7.5000001 7.5000000 2.1756538 2.1497695 0.1217750 0.1202280
asymptotic 7.5000000 7.5000000 2.1879855 2.1499696 0.1228682 0.1207502

κ = 3, σλC = 0.35, ν = 0.2
PDE FDM 7.5000000 7.5000000 2.1758164 2.1556302 0.1217499 0.1205987
PDE extrap 7.5000001 7.5000000 2.1758578 2.1556707 0.1217664 0.1206150
asymptotic 7.5000000 7.5000000 2.1850350 2.1596910 0.1225268 0.1211148

κ = 4, σλC = 0.4, ν = 0.2
PDE FDM 7.5000000 7.5000000 2.1758642 2.1595322 0.1217224 0.1208164
PDE extrap 7.5000001 7.5000000 2.1759056 2.1595729 0.1217389 0.1208328
asymptotic 7.5000000 7.5000000 2.1832931 2.1642851 0.1223242 0.1212652

κ = 5, σλC = 0.45, ν = 0.2
PDE FDM 7.5000000 7.5000000 2.1758420 2.1622297 0.1216910 0.1209478
PDE extrap 7.5000001 7.5000000 2.1758835 2.1622708 0.1217075 0.1209643
asymptotic 7.5000000 7.5000000 2.1821117 2.1669053 0.1221864 0.1213391

Table 6: Values of V̂ at several points (S, λC) and by different approaches for American put option
including bilateral XVA with stochastic default intensity on counterparty with the parameters in Table 1,
except that κ varies as indicated, and σλC = 0.2

√
κ. The grid size for the PDE solution is N = 512,M =

256, and extrapolation takes place between N = 256,M = 128 and N = 512,M = 256.

In Figure 2, top, we plot the “errors” of the PDE and the asymptotic solutions versus κ. The PDE
solution is calculated with N = 512,M = 256. The errors are approximated by the difference between
the respective approximations and the PDE extrapolated solution. From Figure 2, we can see the errors
of the asymptotic solutions are decreasing with increasing κ at some constant order with few fluctuations,
while the errors of the PDE solution are κ-independent. The latter errors are mainly affected by the S-
points of evaluation, and are larger on the strike K than far away. Numerically, we observe that the order
of convergence of asymptotic solution with respect to κ−1 is approximately 0.75. We believe that the
reason why this order is lower than in the European case, is that the free boundary approximation is of
low order.

In Figure 2, bottom, we present a similar plot, but versus the grid size N . As expected, the PDE
solution converges (at order 2) with N , exhibiting the same accuracy for different κ, while the asymptotic
solution accuracy is unaffected by N . However, the asymptotic solution is again more accurate for S
away from the strike and for larger κ. The asymptotic solution is more accurate than the PDE one for
small values of N (e.g. N = 64), S away from the strike, and larger values of κ. Clearly, the asymptotic
solution is a lot more efficient than the PDE one in all cases, as it involves the PDE solution of an 1D
problem and a few explicit formulae.
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Figure 2: Accuracy comparison between 2D PDE and asymptotic approximations for American put op-
tion valuation including bilateral XVA assuming stochastic default intensity on counterparty with the
parameters in Table 1, except κ as indicated, and σλC = 0.2

√
κ. Top is accuracy versus κ, with

N = 512,M = 256 for the PDE solution. Bottom is accuracy versus N , with κ as indicated in the
legend.

In Table 7, we also compare the free boundary locations computed by the numerical 2D PDE solutions
at specific λC points, and with various κ values, with those computed by the asymptotic approach (which
vary with κ, but not with λC). As mentioned in the previous subsection, the free boundary location
changes very little with respect to κ when λC = 0.05. Considering the 2D PDE approach, when λC is
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less than the mean, the free boundaries are increasing with κ, while when λC is larger than the mean,
the free boundaries are decreasing with κ. Furthermore, in the case that λC is away from the mean,
the differences of free boundaries between the numerical PDE and asymptotic approximations become
smaller as κ increases, because of the mean-reversion effects.

κ 1 2 3 4 5
λC = 0.025

PDE FDM 8.1536824 8.1766449 8.1935013 8.2090283 8.2205320
asymptotic 8.3312995 8.3317912 8.3320091 8.3321389 8.3322275
difference -1.78e-01 -1.55e-01 -1.39e-01 -1.23e-01 -1.12e-01

λC = 0.05
PDE FDM 8.3647338 8.3682853 8.3687280 8.3681869 8.3672369
asymptotic 8.3312995 8.3317912 8.3320091 8.3321389 8.3322275
difference 3.34e-02 3.65e-02 3.67e-02 3.60e-02 3.50e-02

λC = 0.1
PDE FDM 8.7032745 8.6694023 8.6429295 8.6238303 8.6075403
asymptotic 8.3312995 8.3317912 8.3320091 8.3321389 8.3322275
difference 3.72e-01 3.38e-01 3.11e-01 2.92e-01 2.75e-01

Table 7: Comparison of free boundary locations given by different approaches at various λC points for
American put option including bilateral XVA with the parameters in Table 1, except that κ varies as
indicated, and σλC = 0.2

√
κ. The grid size for the PDE solution is N = 512,M = 256. Algorithms 1

and 2 are used for the calculation of free boundaries for the (2D) PDE FDM and the asymptotic methods,
respectively.

5.3 Comparison of American and European type XVA

In order to compare the American and European put options with XVA, we solve the respective prob-
lem for European case, considering the same parameter settings, as shown in Table 1, and produce results
for European options to be compared to the results in Tables 2 and 3 for American options. The results
for European options are presented in Tables 8 and 9. Comparing the results of Tables 2 and 6, we easily
see that the average number of iterations in each timestep is about 1.1 to 1.2 for European options, which
is smaller than the ones for American options. We expect smaller number of iterations for European
derivatives, since the American case has more nonlinearity. Also, for American derivatives, the average
of number of iterations depends a little more on problem size than for the European case. Furthermore,
from Tables 2, 3, 8 and 9, we can directly observe that the American derivative including XVA has slightly
larger values than the European one, which is expected from the nature of American derivatives.
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N M Nt iter tot iter avg
V̂ value for put option

value diff in V̂ order
16 8 10 12 1.20 2.0790884 – –
32 16 18 22 1.22 2.1114901 3.24e-02 –
64 32 34 40 1.18 2.1196343 8.14e-03 1.99

128 64 66 77 1.17 2.1218013 2.17e-03 1.91
256 128 130 150 1.15 2.1223410 5.40e-04 2.01
512 256 258 297 1.15 2.1224747 1.34e-04 2.01

Richardson extrapolated value: 2.1225193
Table 8: Results for European put option including bilateral XVA with stochastic default intensity on
counterparty using the penalty-like algorithm in [8] with the parameters in Table 1 when S is at-the-
money (S = K = 15) and λC = θ. Nonuniform grids are used.

N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.025) (30, 0.05) (30, 0.1)
128, 66, 68 6.9954401 6.9205456 6.7723182 0.1215826 0.1204373 0.1180971
256,128,130 6.9956602 6.9207611 6.7725231 0.1218132 0.1206653 0.1183202
512,256,258 6.9957152 6.9208149 6.7725743 0.1218705 0.1207220 0.1183757

order 2.00 2.00 2.00 2.01 2.01 2.01

Table 9: Results at various points (S, λC) for European put option including bilateral XVA with stochastic
default intensity on counterparty using the penalty-like algorithm in [8] with the parameters in Table 1 at
various points. Nonuniform grids are used.

6 Conclusions
We formulated and studied, from a perspective of computation issues, the bilateral XVA pricing of

American-type financial derivatives, with focus on American put options, assuming stochastic counter-
party default intensity. We formulated a 2D time-dependent linear complementarity PDE problem, re-
formulated it into a 2D time-dependent PDE with multiple nonlinear source terms, and developed two
approaches to numerically approximate the option’s value and free boundary. For the first approach,
the direct numerical 2D PDE approximation, we used Algorithm 3 in [8] with the matrices adjusted as
described in Section 3.2 for handling the nonlinear terms (one from XVA and another one from the Amer-
ican constraints). We also provided Algorithm 1 for the accurate calculation of the free boundary for any
λC . For the second approach, the asymptotic approximation, we extended the asymptotic approximation
formulation of XVA in European derivatives [9] to American derivatives, as well as developed the asymp-
totic approximation of the free boundary location. The asymptotic approximations to the price and the free
boundary need the solution to the 1D American XVA PDE with constant counterparty default intensity,
and a few corrections terms. We presented Algorithms 2 and 3 for the calculation of the correction terms,
and the asymptotic approximations to the free boundary and the price. The numerical experiments show
that the numerical 2D PDE approximation converges at stable second order in terms of the grid size, while
the free boundary calculated based on it converges at order close to two. The asymptotic approximation
price has a 0.75 convergence rate in terms of κ−1, however, it is at least one order more efficient than the
numerical 2D PDE approximation, so that, in some cases, it is preferable to use.

Regarding future research directions, for the American XVA problem, it is interesting to study the
error of the asymptotic formula of the free boundary approximation, as the range of the untrusted area
around the approximated free boundary is important in the XVA pricing problem. It is also interesting to
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improve the accuracy of the asymptotic approximation of free boundary to the same accuracy level of the
asymptotic approximation of price, which is at least O(ϵ3/2). This may need one or two more correction
terms to our existing asymptotic approximation.

In addition, XVA pricing often involves multiple assets in a portfolio. This results in a problem
with many dimensions. It would be interesting to study some modern approximation techniques, such as
machine learning and neural network approaches, for this XVA problem. We hope that such techniques
will provide reasonable accuracy solutions, while overcome the curse of dimensionality.
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