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Abstract

We integrate optimal quadratic and cubic spline collocation methods for second-order two-point
boundary value problems with adaptive grid techniques, andgrid size and error estimators. Some
adaptive grid techniques are based on the construction of a mapping function that maps uniform to
non-uniform points, placed appropriately to minimize a certain norm of the error. One adaptive grid
technique for cubic spline collocation is mapping-free andresembles the technique used in COLSYS
(COLNEW) [2, 4]. Numerical results on a variety of problems,including problems with boundary or
interior layers, and singular perturbation problems indicate that, for most problems, the cubic spline
collocation method requires less computational effort forthe same error tolerance, and has equally
reliable error estimators, when compared to Hermite piecewise cubic collocation. Comparison results
with quadratic spline collocation are also presented.
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1 Introduction

Optimal Quadratic Spline Collocation (QSC) and Cubic Spline Collocation (CSC) methods on non-
uniform partitions have been recently developed [7] for thesolution of linear two-point Boundary Value
Problems (BVPs). The development and analysis of the methods in [7] are based on a functionw, that
maps uniform partition points to non-uniform ones. It was shown that, for a certain grid sizeN , when the
mapping function is such that more points are placed in regions of large variation of the solution to the
BVP and fewer in other regions, the observed errors are much smaller than when the same total number
of equidistant points are used.

Under realistic situations, an appropriate mapping function for a given BVP is not known or given.
In this paper, we present adaptive techniques for the construction of an appropriate mapping function for
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a given BVP. We then introduce grid size and error estimatorsfor QSC and CSC, and present adaptive
techniques for solving a BVP within a certain error tolerance.

The outline of this paper is as follows. In Section 2, we describe an algorithm (PlaceMap), that, given
a certain grid sizeN and a BVP, computes the best placement of the grid points to minimize a certain norm
of the error. This algorithm can be integrated with QSC or CSC. We also describe a way to compute an
(approximation to an) appropriate mapping function from uniform to non-uniform partitions, for the given
problem. In Section 3, we present an algorithm (AdaptSolve1) for CSC, that, given a certain tolerance
and a BVP, computes an approximation to the minimum grid sizeN and a respective CSC approximation
to the BVP solution, so that the error in a certain norm is below the given tolerance. This technique is
mapping-free and resembles the one in COLSYS (COLNEW) [2, 4], with a few differences which we
elaborate. In the same section, we also present two alternative adaptive techniques for solving a BVP
by QSC or CSC within a certain tolerance, that are based on theconstruction of a mapping function. In
Section 4, we present numerical results that demonstrate the behaviour of the adaptive QSC and CSC
methods on a variety of problems, including problems with boundary or interior layers, and singular
perturbation problems. We compare the results from CSC and from Hermite piecewise cubic collocation
(which we refer to as HPCC) as implemented in COLSYS.

Throughout this paper, we adopt the notation of [7]. Let
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2 Construction of Mapping Function using Adaptive Techniques

In [7], we assumed thats
i

= w(x

i

); i = 0; : : : ; N , andw
i

= w(�

i

); i = 0; : : : ; N +1, for some predefined
smooth enough and strictly monotone increasing bijective mapping functionw. In this section, we relax
the assumption thatw is predefined, and discuss the use of adaptive techniques to generate mapping
functions appropriate for the problem considered. We describe the techniques for QSC, but they can be
easily adjusted for CSC.

The primary idea is to first construct a non-uniform grids

i

, i = 0; : : : ; N , using adaptive techniques,
then construct a monotone Hermite piecewise cubic interpolantw such thatw(s
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We use the adaptive techniques and the idea ofgrading functions presented in [5] to construct the non-

uniform grid. According to these techniques, the partitionpoints are distributed so that the error in some
chosen norm (or semi-norm) is equidistributed among the subintervals of the partition. Depending on the
norm chosen, a different grading function arises, based on which the partition points are constructed. A
grading function is of the form�(x) =

R

x

0

ûdx=

R

1

0

ûdx, for some appropriatemonitor function û. The
value�(x) of the grading function atx denotes the portion of the approximate error from the left endpoint
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up to pointx. All monitor functions involve high derivatives ofu, which, under realistic situations, are
not known. Therefore, the spline approximationu

�

is substituted in place ofu, to obtain the respective
approximate grading functions.

According to [5], withu
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The grading functions we considered for CSC are�
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The following algorithm is taken from [5] and adjusted for the QSC method. Given a grading function

�(x) and a number of subintervalsN , the algorithm computes pointss
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The algorithm works iteratively, with a stopping criterionsuggested in [5]. That is, at each iteration, we

calculate the “drift”max
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ûdxg �
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ûdx=N from the target placement of the points. The stopping
criterion is thendrift < tol, wheretol is a user chosen tolerance. During the experiments, we noticed
that sometimes the drift oscillates as the iterations proceed, resulting in the partition points vibrating with
small amplitude. However, we noticed that the partition points were already distributed reasonably well.
This phenomenon was also noticed in [5]. It may result in the adaptive algorithm ending without reaching
the stopping criterion and leaving us with the last set of points, even if those were not the points of the
smallest drift. To get the “most” from the adaptive method, at each iteration we save the set of partition
points that gives the smallest drift, and use these to compute the interpolant.

Once we have the non-uniform grid, we use the algorithm for monotone piecewise cubic interpolation
from [9] to generate the mapping functionw. In this way, the mapping function is inC1, that is, it does
not satisfy the assumptions of the theorems in [7]. However,it has worked well in all experiments, as will
be shown in Section 4. It is worth noting that a piecewise linearC0 interpolant did not give satisfactory
results.

For the approximation of all integrals arising in the algorithm we use the midpoint rule, since for QSC
the midpoints are points of high accuracy and no discontinuities. Note that the approximation tou0 is
given directly by the derivative of the standard (first step)QSC approximation, while the approximation
to u

(3) is computed as shown in Section 2.2 of [7].
The outline of the algorithm, which we refer to asPlaceMap, is as follows:

PickN (usuallyN = 32) and initial meshs
i

, i = 0; : : : ; N (usually uniform)
Pick grading function�(x)
For itadpt = 1; : : : ; maxstep do

Use the first step of QSC on meshs
i

, i = 0; : : : ; N , with �

i
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i

)=2, i = 1; : : : ; N ,
to approximateu
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Approximate the appropriate derivatives ofu at �
i

, i = 1; : : : ; N

Compute new pointss
i

, i = 0; : : : ; N , redistributed according to�
Calculate drift
If drift smaller than all previous iterations, saves

i
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If drift < tol then exit loop
End
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i

, i = 0; : : : ; N , to construct monotone Hermite interpolantw

OutputN , s
i

, i = 0; : : : ; N , w, and approximation tou

In the case that the data of the problem are given only on certain points, and we do not have a way to
evaluate the source terms and the coefficient functions of the problem at the points chosen by the adaptive
technique, the QSC method is still applicable. Given a set ofpointsT

w

� fw
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= 1g, we can construct a monotone Hermite piecewise cubic interpolantw such thatw(�
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, i = 0; : : : ; N + 1. Once we have the mapping functionw, we can define the nodess
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),
i = 0; : : : ; N , of the partition, then setup the collocation equations, since all stepsizes we need are now
defined.

It is important to note that the algorithmPlaceMap is usually applied to a relatively small grid size
N , usuallyN = 32. Oncew has been constructed, this samew is used to generate the nodes and the
collocation points for other grid sizes, by mapping points of a uniform partition of any grid size to the
respective points of a non-uniform partition. There are some alternatives to this procedure, which we
briefly discuss.

(a) We can apply the adaptive algorithm for any chosenN , and construct a mapping function based on
the computed grid points. Thus the mapping function may be different for eachN . This procedure is more
costly, since both the adaptive and the interpolation algorithms are applied for largerN ’s. We tested this
procedure numerically for some problems, but since the error results were compatible with those using
the same mapping computed with a smallN , we present only the latter in the next section. It is worth
pointing out that, if the mapping function is to be constructed only once, the size of the grid on which it
is constructed is crucial for the success of the method. In general, the appropriate grid size is not known
apriori, thus, in most realistic situations, the mapping needs to be constructed for anyN , or for a large
enoughN , determined based on the problem.

(b) We can get rid of the mapping completely, by applying the adaptive algorithm for any chosenN ,
then computing the position of the non-uniform midpoints byTaylor expansions based at the grid points.
More specifically, once the grid points are computed, we haveH

i

, i = 0; : : : ; N � 1, and from these the
stepsizesha

i

, i = 1; : : : ; N , andhb
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in [7] and similar expansions forH

i

, i = 0; : : : ; N � 1. We developedO(h

3

) andO(h

4

) approximations
of ha

i

andhb
i

and tested them numerically on some problems. The order of convergence obtained was
about 3 or a bit above 3, but below the optimal 4. Therefore, wedo not present these results. From the
above discussion, it becomes clear that it is difficult to getrid of the mapping function in non-uniform
QSC, since the method requires both the non-uniform “midpoints” w

i

, and the grid pointss
i

. However,
as mentioned in [7], the implementation of CSC is essentially mapping-free.
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3 Adaptive Mesh Generation

For practical purposes, a user needs to solve a problem within a certain error tolerance. The above proce-
dure of adaptive placement of grid points and mapping function computation can be useful in this context,
if it is combined with grid size and error estimators. Extrapolation through two runs, one of double size as
the other can be used to estimate the error and the grid size needed to reach a given tolerance. However,
for the grid size estimator to be reliable, a procedure is needed to gradually advance the grid size, until
enough points are taken so that the solution behaviour is properly captured.

Given the above, we have implemented an adaptive mesh generation technique similar to the one in
COLSYS, with a few differences. This technique can be used with CSC or QSC. It is important to note,
though, that the CSC method only requires the grid points (and not both the midpoints and grid points),
therefore, it does not necessarily need the computation of amapping function. We also note that the
computation of the mapping function for large grid sizes increases the computational cost of the method.
We present here an overview of the adaptive technique in COLSYS and elaborate on the differences we
applied for CSC.

We first select a grading function�(x). For anmth order BVP, the grading function arising from the
monitor function chosen in COLSYS is�

G
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R

x

0

(u
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dx=
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dx, which, for
Hermite piecewise cubic polynomials (k = 2) and second-order BVPs (m = 2), is the same as�
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.
We now introduce grid size and error estimators. In the following discussion, for convenience, the

subscripts[N ℄ and[2N ℄ denote number of subintervals used to compute piecewise polynomial or spline
approximations (andnot values of functions at the respective collocation points).

The grid size estimation in each iteration of the adaptive procedure in COLSYS is done according to
a formula developed by theory. The error�
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(x) � u
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(x) � u(x) in the Gaussian spline collocation
approximationuG
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[N ℄

jj

1

�

C(

�

N

)

k+m

(1 + O(h)) + O(h

2k

), where� �

R

1

0

ju

(k+m)

j

1=(k+m)

dx, andC is a constant that depends on
m andk [3]. For Hermite piecewise cubic polynomials and second-order BVPs,C = 1=384. Given
a toleranceTOL, COLSYS estimates that it will require a grid of sizeNestC = d�(
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e to
obtain a spline approximationuG

[N ℄

such that the error satisfiesjj�G
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(x)jj

1

� TOL. However, for many
problems the above grid size estimator often underestimates the required number of points, especially
when� is calculated by composite quadrature based on a small number of points.

The problem is partly overcome by toughening the user chosentolerance by a factor of 10, a fact that
we observed in the code of COLSYS. However, even with the tougher tolerance, the number of points
is usually underestimated, and it takes several iterationsof the adaptive procedure until a reasonable grid
size estimation is made. That is, COLSYS gradually advancesthe mesh, and recomputes� andNestC.
Each time the grid size changes and new points are selected, the new points are checked for sufficient error
equidistribution. Each time the grid size increases and theequidistribution of error improves, the grid size
estimator becomes more reliable. The error estimation and the decision for termination of computation in
COLSYS are done by extrapolation through two runs, one of double grid size as the other. OnceuG

[N ℄

and

u
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[2N ℄

have been computed, the error for anyM is estimated by�G
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We have incorporated similar techniques for grid size and error estimators in our code. Let�3

[N ℄

�
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u

3

�

(x)�u(x) be the error in the CSC approximationu3
�

with grid sizeN . If we follow COLSYS, the grid
size estimator predicts that

NestC = d�(
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TOL

)

1=4

e (1)

subintervals are needed, to havejj�3
[NestC℄

jj

1

� TOL, where� �

R

b
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ju
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dx. Note that we do not
have a theoretical derivation for the value ofC for CSC, but we calculated it experimentally based on
the following arguments. We assume that the error behaves as�

3

[N ℄

� Ch

4

u

(4)

+ higher order terms.
Consider the simple BVPu00 = 12x

2, with u(0) = 0 andu(1) = 1. This has the solutionu = x

4, with
u

(4)

= 24, which implies that the error behaves as�

3

[N ℄

� 24Ch

4. By applying CSC on this problem we
found thatC = 1=384. (By similar tests, for QSC, the midpoint error was found to behave ash4u(4)=128.)
However, as in COLSYS, we found that, for many problems,NestC often underestimates the required
number of points. (We did not use a factor of 10 to toughen the tolerance.) For the error estimation we
use extrapolation as in COLSYS.
The outline of the algorithm, which we refer to asAdaptSolve1, is as follows:

PickN (usuallyN = 32) and initial meshs
i

, i = 0; : : : ; N (usually uniform)
Pick grading function�(x) and toleranceTOL
For itadpt = 1; : : : ; maxstep do

Use CSC on meshs
i

, i = 0; : : : ; N , to computeu
[N ℄

Approximate the required derivatives ofu on s
i

, i = 0; : : : ; N

Calculatedrift = max

i

f

R

s

i+1

s

i

ûdxg=(

R

1

0

ûdx=N)

If just doubled, applyerr est, if err est < TOL, exit loop, end, end
Decide whether to redistribute, double, half, or start over

End
If TOL=4 < err est < TOL anddrift > 2, redistribute once, end
OutputN , s

i

, i = 0; : : : ; N , u
[N ℄

anderr est

It is important to note that algorithmAdaptSolve1 includes the construction of the adaptive mesh and
the approximate solution to the problem within toleranceTOL. It does not compute a mapping function.
(A mapping function may be implicitly defined by the computedlocation of the grid points, but it is never
explicitly computed or used.) Notice also that the drift in this algorithm is calculated in a relative way, as
in COLSYS, and not in an absolute way, as in [5] andPlaceMap.

The decision whether to redistribute, double, half, or start over with a new set of grid points is taken
according to similar criteria as in COLSYS, with the following differences:

(a) COLSYS doubles the grid size if the sameN has been used 3 consecutive times, or ifN=2, N
have been used alternatively 3 consecutive times, or ifdrift � 2. We also do the same, but we allow
one more (fourth) redistribution of the points for the sameN before doubling if1:1 < drift � 2 and
err est1=err est > err est=TOL, whereerr est1 is the first error estimate,err est the current error
estimate. The reason for this difference from COLSYS is thatthrough our experiments we noticed that
having a better point distribution helps when we are close tothe desired tolerance, while it may worsen
the results if we are far from the desired tolerance. Being far from the desired tolerance is usually due
to the fact that the grid size is too small, so a proper point distribution cannot occur. Notice that the
relationerr est1=err est > err est=TOL can be interpreted as being less than half-way away from the
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desired error tolerance. Thus, we allow a fourth redistribution if the mesh is fairly well but not very well
distributed, and if we are “close” to the desired tolerance.

(b) COLSYS computes the error estimate only when the grid is doubled. We compute the error
estimate when the grid is doubled, as well as when a redistribution has taken place as long as the data for
the half grid size have been computed. Thus we have a more updated error estimate. In addition, COLSYS
uses a factor of 10 to toughen the tolerance whenNestC is computed. We do not use a factor of 10 to
toughen the tolerance, but we do one more redistribution ifTOL=4 < err est < TOL anddrift > 2.
Through our experiments we found that the (updated) error estimate is in general reliable, except if the
points are not well distributed.

(c) COLSYS starts over (i.e. picks a completely new grid sizeN = NestC=2 and a uniform grid) if
N < NestC < 2N . We start over ifN < NestC < 2N=1:1. The reason for the1:1 factor is that when
NestC is too close to2N , starting over wastes all the information already computed(i.e. the distribution
of points), while at the same time the choiceN = NestC=2 will only save a very small number of points.

As mentioned above, algorithmAdaptSolve1 does not compute a mapping. Doubling the grid size
means making the current midpoints and grid points new grid points and settingN = 2N , just as COLSYS
does. A variation of the algorithm implements doubling by computing a mapping function for each new
mesh, then computing a double size mesh by mapping the uniform double size mesh to a non-uniform
one. We refer to this variation asAdaptSolve2. Thus,AdaptSolve2 for CSC computes a mapping for
each new mesh except the last (largest) one. We implemented this algorithm for CSC, but, since the results
were very similar to the results ofAdaptSolve1, and sinceAdaptSolve2 involves extra computation, we
do not present them.

It is worth mentioning that algorithmAdaptSolve1 can be easily adjusted for QSC, if we also take
into consideration that, for QSC, the location of the collocation points (“midpoints”) needs to be computed
for each new mesh. Thus,AdaptSolve1 for QSC computes a mapping function each time a new mesh
(including the last one) is computed either by redistribution or by doubling or by choosing a new mesh
size. Moreover, since, in the QSC case, the computation of the mapping function is not avoided, the
implementation ofAdaptSolve2 does not involve extra computation, compared toAdaptSolve1. We
have implemented both algorithms for QSC and present some results for comparison.

3.1 An alternative adaptive mesh generation algorithm

Algorithm AdaptSolve1 (or its variationAdaptSolve2) can be used in a more indirect context. More
specifically, the algorithm as presented above is used to select a grid size and an appropriate placement of
the points, so that the solution computed for that grid reaches a certain tolerance. But, the same algorithm
can be used to select an appropriate grid size, on which an effective mapping function is computed. Then,
the mapping function and extrapolation can be used to compute the final grid size and placement of points,
on which the solution is computed so that it reaches a certaintolerance. This procedure gives rise to an
alternative adaptive mesh generation algorithm, which computes an approximation tou within tolerance
TOL. We refer to it asAdaptSolve3 and summarize it as follows:

Apply algorithmAdaptSolve1 with tolerance
p

TOL

Let ^

N be the mesh size selected byAdaptSolve1
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Apply algorithmPlaceMapwith N =

^

N

Let ŝ
i

, i = 0; : : : ;

^

N , be the grid points,w the mapping function
andu

[

^

N ℄

the solution computed byPlaceMap
Generate pointss

i

, i = 0; : : : ; 2

^

N , by the mapping functionw
Computeu

[2

^

N℄

ons
i

, i = 0; : : : ; 2

^

N

Use extrapolation between^N and2 ^

N to obtainerr est

If err est < TOL, exit algorithm, end
Use extrapolation between^N and2 ^

N to predictN so thatu
[N ℄

reachesTOL
Generate pointss

i

, i = 0; : : : ; N , by the mapping functionw
Computeu

[N ℄

on s
i

, i = 0; : : : ; N

Use extrapolation between2 ^

N andN to obtainerr est

OutputN , s
i

, i = 0; : : : ; N , u
[N ℄

anderr est

Note thatAdaptSolve3 generates a mapping at a relatively small, but problem and tolerance depen-
dent grid size^N . The choice of tolerance

p

TOL (when runningAdaptSolve1 in order to calculate^N )
is supported by our experiments and the following arguments. Using tolerance

p

TOL, we try to balance
the trade-off between using too few points to calculate the mapping (as in the case of usingN = 32 for
all problems and tolerances) and using too many points (as inthe case ofAdaptSolve2, where redistri-
butions are applied to all but the last grid). When too few points are used to calculate the mapping the
behaviour of the solution may not be captured, while when lots of points are used, the cost increases, and,
in addition, our experiments indicate that more points do not necessarily improve the effectiveness of the
mapping function, but sometimes degrade it, possibly due toincreased computational errors.

Algorithm AdaptSolve3 can be implemented for CSC and QSC. We present results from this algo-
rithm in the next section. Here we note that, such an algorithm is particularly effective with QSC, since it
avoids the computation of mapping functions for large grids.

4 Numerical Results

In this section, we first present numerical results to demonstrate the convergence of the QSC and CSC
methods for BVPs with non-uniform grids, using the adaptively computed mapping functions with the
procedurePlaceMap. We then present results to demonstrate the effectiveness of the adaptive mesh
generation algorithms presented in Section 3, with CSC and QSC.

All computations in this section were carried out in double precision. The QSC and CSC methods
were programmed in MATLAB by us. The linear systems arising were solved by Gauss elimination using
the backslash operator or thelu function in MATLAB. We used the MATLAB functionsphip andppval
to construct and evaluate a monotone Hermite piecewise cubic interpolant.

In our implementation, as basis functions for the quadraticspline spaceS
�

w

we choose the functions
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In all tables, the notationx:y�z meansx:y�10

�z. The observed errors of QSC and CSC are denoted
by � and�3, respectively. The uniform normk � k

1

is approximated by the maximum absolute value on a
constant grid of 2001 evaluation points, independently of the discretization grid.

We present results from experiments with the mapping functions constructed by the adaptive technique
PlaceMapon the following three Problems.

PROBLEM 1 f(1 + �x)u

0

g

0

= 0 in (0; 1); u(0) = 0; u(1) = 1:

The solution of this problem isu(x) =

log(1+�x)

log(1+�)

, and has a boundary layer atx = 0, the sharpness of
which is controlled by the magnitude of�. Problem 1 was taken from [6] and was also used in [7].

PROBLEM 2 u

00

+ u

0

� u = g in (0; 1); u(0) = 0; u(1) = 0:

The functiong is chosen so thatu(x) = log(1+x�) log(1+(1�x)�)

log(1+�)

2

is the solution to the problem. This function
has boundary layers at both ends, and their sharpness is controlled by the magnitude of�.

PROBLEM 3 � (1=� + �(x� �)

2

)u

00

� (2�(x� �))u

0

= g in (0; 1); u(0) = 0; u(1) = 0:

The functiong is chosen so that the exact solution to this problem isu(x) = (1� x)(artan(�(x� �)) +

artan(��)), which for large� has an interior layer near�. Problem 3 was taken from [5].
In PlaceMap, we usedtol = 10

�2, maxstep = 20 and a grid size ofN = 32 to constructw, for
each problem, independently of the size of the discretization grid used to solve the problem. We test the
performance of QSC on Problem 1 with mapping functionsw

q6

andw
q7

, respectively, and compare it with
the performance when the mapping function isw

e

(x) = ((1+�)

x

�1)=�, which is the inverse of the exact
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N error order error order error order error order error order error order
QSC w

e

w

q6

w

q7

k�(x)k

1

j�(w

i

)j k�(x)k

1

j�(w

i

)j k�(x)k

1

j�(w

i

)j

32 1.62-3 1.64-3 1.70-3 1.69-3 6.32-3 6.32-3
64 1.14-4 3.8 1.10-4 3.9 1.27-4 3.7 1.24-4 3.8 4.87-4 3.7 4.76-4 3.7
128 7.43-6 3.9 6.93-5 4.0 8.32-6 3.9 7.82-6 4.0 3.86-5 3.7 3.91-5 3.6
256 5.12-7 3.8 4.34-7 4.0 5.45-7 3.9 4.92-7 4.0 3.18-6 3.6 3.01-6 3.7
CSC w

e

w

8

w

9

k�

3

(x)k

1

j�

3

0

(s

i

)j k�

3

(x)k

1

j�

3

0

(s

i

)j k�

3

(x)k

1

j�

3

0

(s

i

)j

32 3.14-3 2.21+1 3.07-3 2.13+1 9.94-3 7.03+1
64 2.10-4 3.9 1.43+0 3.9 2.04-4 3.9 1.39+0 3.9 5.67-4 4.1 4.45+0 4.0
128 1.34-6 4.0 9.39-2 3.9 1.30-5 4.0 9.32-2 3.9 3.53-5 4.0 3.57-1 3.6
256 8.49-7 4.0 6.12-3 3.9 8.27-7 4.0 6.17-3 3.9 2.22-6 4.0 2.56-2 3.8

Table 1: Observed errors and respective orders of convergence corresponding to Problem 1 with� =

10; 000, solved by QSC and mapping functionsw
e

, w
q6

, andw
q7

, and by CSC and mapping functionsw
e

,
w

8

, andw
9

.

solutionu, and which, for this problem, is expected to produce good results. The adaptive method forw
q6

andw
q7

reached the tolerance in 7 and 6 iterations, respectively. Table 1 shows that the approximate QSC
solutions arising fromw

q6

, w
q7

andw
e

have optimal global and local convergence for the points indicated.
Similar results are shown for CSC and the mapping functionsw

8

, w
9

, andw
e

. The adaptive method for
w

8

andw
9

reached the tolerance in 6 and 7 iterations, respectively. It should be noted that, for QSC,
w

e

produces errors very close to those ofw

q6

, and, for CSC,w
e

produces errors very close to those of
w

8

. Certainly, under realistic situations, it is not always possible to construct an analytic formula for a
mapping function such asw

e

. It should also be noted that the errors from the CSC method are, in general,
slightly lower than those from the QSC method, something which is expected. In a few cases (see, for
example, some errors in Table 1), the QSC errors are smaller.

We next present results from QSC and CSC applied to Problem 2.The adaptive methodPlaceMap
applied to QSC with eitherw

q5

or w
q6

required 9 iterations to reach the tolerance, while when applied to
CSC with eitherw

7

or w
8

required 7 iterations to reach the tolerance. Table 2 shows results from the
application of QSC and CSC to this problem. In the table,�

ij

� w(Æ

ij

), j = 1; 2, i = 1; : : : ; N , where
Æ

ij

� x

i

� �

j

h; j = 1; 2, i = 1; : : : ; N , and�
1

� (3 �

p

3)=6 and�
2

� (3 +

p

3)=6. Notice that the
approximate QSC solution arising fromw

q5

has less derivative error than the one arising fromw

q6

, while
the opposite is true if we look at the function error. Also, the approximate CSC solution arising fromw

7

has less derivative error than the one arising fromw

8

, while the opposite is true if we look at the function
error. This is expected from the definitions ofw

q5

, w
q6

, w
7

andw
8

.
We next consider Problem 3 and present the results in Table 3.The adaptive methodPlaceMap

applied to QSC with mapping functionsw
q5

andw
q6

did not reach the tolerance in 20 iterations, but the
minimum drift was obtained in 5 and 11 iterations, respectively. The adaptive method applied tow

q7

and
w

q2

required 5 and 11 iterations, respectively to reach the tolerance.PlaceMapapplied to CSC withw
7

,
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N error order error order error order error order
QSC w

q5

w

q6

j�(w

i

)j j�

0

(�

ij

)j j�(w

i

)j j�

0

(�

ij

)j

32 6.13-2 1.50-0 4.28-3 1.22+1
64 4.38-3 3.8 3.50-1 2.1 4.61-4 3.2 4.90+0 1.3
128 2.74-4 4.0 4.39-2 3.0 3.71-5 3.6 9.80-1 2.3
256 1.79-5 3.9 5.97-3 2.9 2.88-6 3.7 1.82-1 2.4
CSC w

7

w

8

j�

3

(s

i

)j j�

3

0

(s

i

)j j�

3

(s

i

)j j�

3

0

(s

i

)j

32 1.68-2 1.16+1 8.37-3 5.27+1
64 8.34-4 4.3 6.01-1 4.3 5.64-4 3.9 4.51-0 3.6
128 6.05-5 3.8 2.07-2 4.9 4.00-5 3.8 3.27-1 3.8
256 3.92-6 3.9 1.15-3 3.9 2.67-6 3.9 2.60-2 3.7

Table 2: Observed errors and respective orders of convergence corresponding to Problem 2 with� =

10; 000, solved by QSC and mapping functionsw
q5

andw
q6

, and by CSC and mapping functionsw
7

and
w

8

.

w

8

, w
9

andw
2

required 19, 19, 6 and 6 iterations, respectively, to reach the tolerance.
We now present numerical results from (the mapping-free) CSC integrated with the adaptive procedure

AdaptSolve1 of Section 3 and from HPCC as implemented in COLSYS on Problems 1, 2 and 3, as well as
two singular perturbation problems taken from [3]. Resultson more problems are found in [11]. Problems
4 and 5 have a sharp interior layer when" is close to zero. In the experiments, we set" = 10

�4.

PROBLEM 4 "u

00

+ 2xu

0

= g in (�1; 1); u(�1) = �1; u(1) = 1:

The exact solution to this problem isu(x) = erf(x=

p

").

PROBLEM 5 "u

00

+ xu

0

= g in (�1; 1); u(�1) = �2; u(1) = 0:

The exact solution to this problem isu(x) = os(�x) + erf(x=

p

2")=erf(1=

p

2").
For both CSC and HPCC (COLSYS), the tolerance is first set toTOL = 10

�6, the grading function
is �

8

, and the initial grid has 32 uniform subintervals. Table 4 shows the CSC and HPCC sequences of
grid sizes the adaptive algorithms generated. When the gridsize remains the same, the method attempts
to improve error equidistribution. Note that the error estimator in COLSYS is applied only when the grid
is doubled, while in CSC, it is also applied when a new redistribution takes place after doubling.

For all problems and methods the tolerance is successfully reached, and the actual error obtained
by CSC and HPCC are about compatible. Taking into account that HPCC uses two Gaussian points per
subinterval, on Problems 3 and 4 CSC requires the same numberof collocation points as HPCC, and gives
about the same error as HPCC; on Problems 2 and 5 CSC requires less collocation points than HPCC,
for about the same error; and on Problem 1 CSC requires more collocation points. Overall, CSC is a
competitive method with respect to both the number of collocation points and the reliability of the error
estimator.
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N error order error order error order error order
QSC w

q5

w

q6

w

q7

w

q2

32 2.43-3 7.14-4 1.19-3 1.27-1
64 2.84-4 3.1 4.82-5 3.9 1.12-4 3.4 5.78-3 4.5
128 1.77-5 4.0 3.03-6 4.0 7.09-6 4.0 4.63-4 3.6
256 1.12-6 4.0 1.91-7 4.0 4.43-7 4.0 3.08-5 3.9
CSC w

7

w

8

w

9

w

2

32 1.79-3 1.12-3 5.23-4 2.23-1
64 6.37-5 4.8 2.87-5 5.1 4.09-5 3.7 7.49-3 4.9
128 3.12-6 4.4 1.28-6 4.5 2.21-6 4.2 4.63-4 4.0
256 1.75-7 4.2 7.06-8 4.2 1.24-7 4.2 2.80-5 4.0

Table 3: Observed grid point errors and respective orders ofconvergence corresponding to Problem 3
with � = :5 and� = 100, solved by QSC and mapping functionsw

q5

, w
q6

, w
q7

andw
q2

, and by CSC and
mapping functionsw

7

, w
8

, w
9

andw
2

.

In Figure 1, we plot the exact solution and the non-uniform grids generated by CSC and HPCC for
Problems 2, 4 and 5. The non-uniform grid points (y-coordinates) are plotted versus the respective uniform
grid points (x-coordinates). This type of plot, gives a visualization of the mappingsw generated by each
of the two methods. (We emphasize that the computation of themappings is not required by CSC and
AdaptSolve1, but we only compute them in order to visualize them by the plot.) In regions where the
graph ofw is flat, the non-uniform grid points are very dense (i.e. the uniform points span a large region,
and the non-uniform points a small one), while whenw rises sharply, the non-uniform grid points are very
sparse. We note that in some regions of the domains the mappings of the two methods may differ in a
visible way, but in the layer regions, the differences are invisible. In the same figure, we show the location
of selected CSC and HPCC grid points. Because the number of points is large, we select to show one grid
point for every two of them. It is worth pointing out that, when the solution to some problem exhibits
certain symmetry (e.g. Problems 2, 4), we expect the mapping(and the distribution of points) to reflect
that symmetry to some extent. It turns out that COLSYS deviates visibly from the symmetric mapping in
Problem 2 and even more visibly in Problem 4. We believe that this may be attributed partly to the too
few redistributions that COLSYS applies.

In Table 5, we present brief results on Problems 1 to 5 for morevalues of the toleranceTOL. The final
grid sizesN to reach the estimated errors and the respective actual errors for CSC and HPCC are shown.
For CSC, there is one case where the tolerance is missed by a little (Problem 3, tolerance10�8), and for
HPCC, there are two such cases (Problem 4, tolerances10

�5 and10�7). There are also few discrepancies
in both methods, in that the grid obtained for a tougher tolerance may be coarser than for a less tough
tolerance. However, both methods perform reasonably well.There are about five cases where CSC uses
fewer collocation points than HPCC and about four cases where HPCC uses fewer collocation points.

In Table 6, we present results from QSC integrated with algorithmsAdaptSolve1 andAdaptSolve2.
We emphasize that both algorithms, when implemented with QSC, require the construction of a mapping
function for each new mesh, including the last (largest) one. The difference between the two algorithms is
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Figure 1: Exact solutionsu and non-uniform grids by CSC and HPCC (COLSYS) for Problems 2, 4 and
5 (from left to right). The location of every second CSC and HPCC grid point is shown byj along the
bottom and top axes, respectively.

that, inAdaptSolve1 the mapping is used to find only the location of the collocation points (“midpoints”),
while in AdaptSolve2 the mapping is used to find the location of the collocation points, as well as the
location of the grid points and midpoints of the double size mesh when doubling. From the experiments,
it seems thatAdaptSolve2 for QSC is slightly preferable toAdaptSolve1, in that it requires a smaller
grid size to reach the tolerance, for some of the cases considered. (A similar comparison ofAdaptSolve1
andAdaptSolve2 for CSC did not reveal any significant differences.) Both algorithms miss the tolerance
by a little bit in few cases, but both algorithms perform satisfactorily. Comparing QSC and CSC, CSC
requires a smaller grid size than QSC for several cases (especially for tough tolerances), while there are
few cases among those considered where the opposite happens.

In Table 7, we present results from QSC and CSC integrated with algorithmAdaptSolve3. This al-
gorithm turns out to be very effective for the cases considered. In several cases, both QSC and CSC
with AdaptSolve3 require smaller grid sizes than the respective methods withAdaptSolve1 or Adapt-
Solve2. We emphasize thatAdaptSolve3 generates a mapping at a relatively small, but problem and
tolerance dependent grid size^N . This extra computation is not substantial compared to the total, there-
fore AdaptSolve3 is a competitive alternative toAdaptSolve1 or AdaptSolve2. However, we note that
AdaptSolve3 relies heavily on extrapolation, which, in turn, relies on whether the computed mapping
function properly captured the behaviour of the solution. Clearly, there is no theory that guarantees that
this is always the case, but, similarly, no theory guarantees thatAdaptSolve1 always computes a solu-
tion within the given tolerance. In general, all methods considered performed satisfactorily for the cases
considered.
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CSC -AdaptSolve1
Probl N and est. error act. error

1 32 32 32 64 36 72 36 72
2.8-3 1.0-2 6.8-3

36 72 144 72 144 144 288
2.7-2 3.4-2 1.6-5 1.6-5 8.5-7 2.8-7

2 32 32 32 64 62 124 109 218
2.4-2 1.3+1 4.1+0

109 218 109 218 218 436
3.7-3 1.1-5 1.0-5 6.9-7 2.3-7

3 32 32 32 64 128 128 256
7.1-5 4.2-6 5.8-6 2.8-7 6.1-7

4 32 64 128 256 128 256 128 256
6.2-2 3.8-2 7.3-3 1.1-2 5.1-3

512 256 512
3.9-4 1.8-7 5.6-8

5 32 64 128 128 64 128 128 64
5.4-2 2.0-2 1.9-2 2.5-2 2.2-2

128 256 128 256 128 256
3.0-2 1.4-2 8.7-4 2.7-7 5.5-7

HPCC-COLSYS
Probl N and est. error act. error

1 32 32 32 64 51 102 51 102
9.5-4 2.0-6 1.5-7 1.8-7

2 32 32 32 64 64 64 128 256
2.3-3 5.8-6 5.0-7 1.1-7

3 32 32 32 64 128
8.1-6 6.1-7 5.3-7

4 32 64 64 64 128 64 128
8.6-2 1.2-5 2.5-6

64 128 256
1.4-5 1.8-7 1.3-7

5 32 32 32 64 62 124 248
8.0-4 3.7-6 2.9-7 2.6-7

Table 4: Sequences of grid sizesN , estimated errors, and actual errors for CSC and HPCC (COLSYS)
with a tolerance of10�6 on the indicated problems. The estimated error is given in the formx:y�z below
the respective grid size. For some problems, the sequence ofgrid sizes continues over in a second line.
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TOL 1.0-4 1.0-5 1.0-6 1.0-7 1.0-8
CSC -AdaptSolve1
Probl N 128 256 288 512 1024

1 act.err. 7.3-6 4.6-7 2.8-7 8.1-8 5.1-9
est.err. 2.2-5 1.4-6 8.5-7 8.1-8 5.1-9

Probl N 128 256 436 864 2048
2 act.err. 8.6-5 5.4-6 2.3-7 4.1-8 6.6-10

est.err. 6.9-5 5.4-6 6.9-7 4.1-8 1.4-9
Probl N 64 128 256 512 512

3 act.err. 3.5-5 2.9-6 6.1-7 1.5-8 1.2-8
est.err. 6.7-5 3.2-6 2.8-7 1.3-8 1.0-8

Probl N 256 512 512 394 1024
4 act.err. 1.2-6 9.4-8 5.6-8 2.9-8 3.0-10

est.err. 7.1-7 3.9-8 1.8-7 4.1-8 3.3-10
Probl N 146 256 256 500 1024

5 act.err. 2.4-6 3.4-7 5.5-7 2.1-8 1.2-9
est.err. 1.1-4 6.8-7 2.7-7 1.3-8 8.7-10

HPCC-COLSYS
Probl N 64 116 102 176 256

1 act.err. 1.8-6 1.9-7 1.8-7 1.9-8 4.1-9
est.err. 9.2-6 1.2-6 1.5-7 1.7-8 3.8-9

Probl N 108 100 256 512 564
2 act.err. 1.3-5 5.3-6 1.1-7 7.2-9 4.2-9

est.err. 2.7-5 6.6-6 5.0-7 3.5-8 6.0-9
Probl N 36 64 128 256 512

3 act.err. 5.9-5 2.4-6 5.3-7 2.7-8 2.1-9
est.err. 5.6-5 3.9-6 6.1-7 4.1-8 2.7-9

Probl N 118 116 256 348 544
4 act.err. 2.4-7 1.3-5 1.3-7 2.9-7 2.7-9

est.err. 1.1-6 3.8-6 1.8-7 7.8-8 1.4-8
Probl N 64 140 248 512 1024

5 act.err. 2.6-5 1.9-6 2.6-7 1.3-8 8.1-10
est.err. 4.4-5 2.1-6 2.9-7 2.5-8 1.5-9

Table 5: Grid sizesN , estimated errors, and actual errors for CSC and HPCC of COLSYS, with the
indicated tolerances on the indicated problems.

15



TOL 1.0-04 1.0-05 1.0-06 1.0-07 1.0-08
QSC -AdaptSolve1
Probl N 128 256 512 1024 1664

1 act.err. 7.1-5 2.4-6 1.4-7 9.5-9 1.7-9
est.err. 8.3-5 4.3-6 2.8-7 2.1-8 3.9-9

Probl N 128 256 512 1536 2976
2 act.err. 1.6-4 1.1-5 8.2-7 1.8-8 3.9-9

est.err. 6.8-5 8.4-6 8.0-7 2.6-8 4.4-9
Probl N 128 512 1024 2048 8192

3 act.err. 1.0-5 1.1-6 2.0-7 6.2-8 4.3-9
est.err. 1.2-5 1.4-6 2.3-7 6.7-8 4.7-9

Probl N 144 256 1024 1024 2048
4 act.err. 8.1-6 3.9-7 1.2-7 5.1-8 8.5-9

est.err. 1.2-5 9.6-6 1.3-7 9.5-8 8.7-9
Probl N 128 432 1184 4096 8192

5 act.err. 1.7-5 7.2-6 2.1-7 2.0-8 2.5-9
est.err. 5.9-5 8.8-6 2.2-7 2.2-8 2.6-9

QSC -AdaptSolve2
Probl N 128 256 512 1024 1664

1 act.err. 6.6-5 2.0-6 1.2-7 7.7-9 1.0-9
est.err. 3.9-5 2.0-6 1.3-7 9.3-9 1.4-9

Probl N 128 256 512 1536 1488
2 act.err. 8.4-5 5.8-6 4.4-7 7.2-9 8.8-9

est.err. 1.0-4 4.3-6 4.0-7 7.2-9 8.7-9
Probl N 64 128 1024 2048 4096

3 act.err. 4.4-5 2.7-6 1.2-7 1.2-7 1.1-8
est.err. 5.0-5 4.9-6 9.7-8 7.5-8 7.8-9

Probl N 144 256 1024 1024 2048
4 act.err. 5.1-6 2.3-6 1.3-8 3.0-8 4.3-9

est.err. 2.1-5 9.8-6 2.5-8 2.2-8 3.0-9
Probl N 128 216 592 4096 8192

5 act.err. 1.2-5 7.5-6 9.4-7 1.5-8 1.1-8
est.err. 2.8-5 6.9-6 7.6-7 1.1-8 6.6-9

Table 6: Grid sizesN , estimated errors, and actual errors for QSC with algorithms AdaptSolve1 and
AdaptSolve2, with the indicated tolerances on the indicated problems.
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TOL 1.0-4 1.0-5 1.0-6 1.0-7 1.0-8
QSC -AdaptSolve3
Probl ^

N;N 32, 81 64, 128 112, 224 200, 400 128, 820
1 act.err. 4.52-5 7.17-6 7.83-7 7.78-8 9.72-9

est.err. 5.36-5 7.22-6 8.39-7 8.86-8 5.19-9
Probl ^

N;N 32, 115 46, 220 104, 480 128, 910 156,2080
2 act.err. 6.46-5 1.25-6 4.56-7 6.59-8 7.36-9

est.err. 4.83-5 4.97-6 4.63-7 4.18-8 3.94-9
Probl ^

N;N 32, 64 40, 261 64, 518 128, 807 128,1434
3 act.err. 6.79-5 8.25-6 3.74-7 1.60-7 6.92-9

est.err. 9.10-5 1.63-6 2.32-7 2.66-8 2.81-9
Probl ^

N;N 58, 116 46, 114 70, 241 70, 428 70, 761
4 act.err. 2.28-6 9.79-7 6.18-7 7.12-8 1.00-8

est.err. 5.48-6 1.45-5 3.38-7 3.58-8 3.60-9
Probl ^

N;N 90, 180 146, 292 134, 805 128,1200 128,2134
5 act.err. 2.24-5 5.32-6 3.26-7 1.11-7 1.30-8

est.err. 3.61-5 9.66-6 1.86-7 2.56-8 2.53-9
CSC -AdaptSolve3
Probl ^

N;N 32, 106 64, 185 64, 329 64, 584 64, 1039
1 act.err. 4.37-5 4.71-6 4.70-7 4.73-8 4.72-9

est.err. 4.44-5 4.73-6 4.72-7 4.76-8 4.75-9
Probl ^

N;N 64, 128 64, 264 64, 469 78, 834 96, 1481
2 act.err. 8.59-5 4.73-6 4.74-7 4.75-8 4.71-9

est.err. 8.69-5 4.75-6 4.77-7 4.77-8 4.80-9
Probl ^

N;N 32, 64 64, 128 64, 196 64, 347 64, 618
3 act.err. 5.42-5 3.10-6 5.71-7 5.86-8 5.84-9

est.err. 4.36-5 2.60-6 5.63-7 5.71-8 5.68-9
Probl ^

N;N 132, 264 132, 264 132, 264 214, 428 214, 515
4 act.err. 2.21-7 2.21-7 2.21-7 9.26-9 4.61-9

est.err. 3.68-7 3.68-7 3.68-7 1.01-8 4.51-9
Probl ^

N;N 128, 256 118, 236 124, 248 124, 386 146, 696
5 act.err. 2.18-7 2.68-7 2.38-7 4.07-8 3.61-9

est.err. 4.91-7 2.98-7 2.81-7 4.01-8 3.60-9

Table 7: Grid sizes^N (for which the mapping is computed) andN (for which the final solution is com-
puted), estimated errors, and actual errors onN for QSC and CSC with algorithmAdaptSolve3, with the
indicated tolerances on the indicated problems.
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5 Outlook and Future Work

In this paper, we focused the discussion to the one-dimensional BVP but some of the ideas and methods
considered are useful for higher order and multi-dimensional BVPs. In [11], adaptive spline collocation
methods for two-dimensional BVPs are presented using two approaches, one that uses skipped rectangular
grids (grids that refine the discretization in a tree-like hierarchical manner), and another one that uses
moving mesh partial differential equations as in [10].

A discussion on comparing the efficiency of CSC and HPCC is a bit premature at this point, since
efficiency issues become more critical when solving multi-dimensional problems, than when solving one-
dimensional ones. However, we think it is worth making a few points. In most cases, HPCC of COLSYS
requires fewer grid points than CSC to reach a certain error,but it has to collocate on2N points, which
results in a double size linear system to solve. Thus, it turns out that in most cases, HPCC requires more
collocation points to reach the required tolerance. Moreover, the two-step CSC matrix is tridiagonal, while
the HPCC matrix has 4 non-zero entries per row. Note that the two-step CSC matrix is solved twice, and if
that is done by Gauss elimination, the LU factorization is performed once only. The one-step CSC matrix
is pentadiagonal and again half-size as the HPCC matrix.

If we consider two-dimensional problems, the HPCC matrix isfour times as large as the two-step CSC
matrix, it has about twice the bandwidth of two-step CSC, and16 nonzero entries per row, while two-step
CSC has 9. The one-step CSC matrix has about the same bandwidth as HPCC, but is one quarter size.
Moreover, the HPCC matrix requires pivoting, while the CSC matrix (as well as the QSC matrix) in most
cases do not. Taking into account these facts, we expect thatthe asymptotic rate of computation time
versus error of CSC will be better than that of HPCC.

Comparing QSC and CSC, the main advantage of CSC is that it requires only the (non-uniform) grid
points, while QSC requires both the grid points and the midpoints. Thus CSC does not require the compu-
tation of a mapping function. This allows the efficient application of the adaptive techniqueAdaptSolve1
of Section 3 which applies redistributions of the points at the large grids. However, the adaptive technique
AdaptSolve3, which applies redistributions of the points at relativelysmall (or medium) grid sizes, seems
to be a competitive alternative with both CSC and QSC. Moreover, as mentioned in [7], QSC may be
advantageous for certain problems, since it does not apply the differential operator on the boundary (or
any other grid) points, thus avoiding potential singularities.
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