Adaptive techniques for spline collocation

Christina C. Christara and Kit Sun Ng
Department of Computer Science
University of Toronto
Toronto, Ontario M5S 3G4, Canada
{ccc, ngkit }@s. utoronto. ca

July 18, 2005

Abstract

We integrate optimal quadratic and cubic spline collocatizethods for second-order two-point
boundary value problems with adaptive grid techniques, gnidi size and error estimators. Some
adaptive grid techniques are based on the construction ad@pimg function that maps uniform to
non-uniform points, placed appropriately to minimize aaiernorm of the error. One adaptive grid
technique for cubic spline collocation is mapping-free eagbmbles the technique used in COLSYS
(COLNEW) [2, 4]. Numerical results on a variety of problenm;luding problems with boundary or
interior layers, and singular perturbation problems iaticthat, for most problems, the cubic spline
collocation method requires less computational efforttfe same error tolerance, and has equally
reliable error estimators, when compared to Hermite piezaubic collocation. Comparison results
with quadratic spline collocation are also presented.

AMS Subject Classificationt 65L10, 65L20, 65L50, 65L60, 65L70, 65D05, 65D07.

Key words: spline collocation, second-order two-point boundaryugabroblem, error bounds,
optimal order of convergence, adaptive grid, grid sizenestbr, error estimator, spline interpolation.

1 Introduction

Optimal Quadratic Spline Collocation (QSC) and Cubic Spl@ollocation (CSC) methods on non-
uniform partitions have been recently developed [7] forgbkition of linear two-point Boundary Value
Problems (BVPs). The development and analysis of the metho[¥] are based on a functian, that
maps uniform partition points to non-uniform ones. It waswh that, for a certain grid siz&, when the
mapping function is such that more points are placed in regad large variation of the solution to the
BVP and fewer in other regions, the observed errors are mmettier than when the same total number
of equidistant points are used.

Under realistic situations, an appropriate mapping funmctor a given BVP is not known or given.
In this paper, we present adaptive techniques for the amigin of an appropriate mapping function for

1

a given BVP. We then introduce grid size and error estimdtmrSC and CSC, and present adaptive
techniques for solving a BVP within a certain error tolemanc

The outline of this paper is as follows. In Section 2, we diégcan algorithm (PlaceMap), that, given
a certain grid sizevV and a BVP, computes the best placement of the grid pointsrionize a certain norm
of the error. This algorithm can be integrated with QSC or CB& also describe a way to compute an
(approximation to an) appropriate mapping function frorfarnm to non-uniform partitions, for the given
problem. In Section 3, we present an algorithm (AdaptSql¥vel CSC, that, given a certain tolerance
and a BVP, computes an approximation to the minimum grid izend a respective CSC approximation
to the BVP solution, so that the error in a certain norm is Wwetlee given tolerance. This technique is
mapping-free and resembles the one in COLSYS (COLNEW) [2with a few differences which we
elaborate. In the same section, we also present two aliegredaptive techniques for solving a BVP
by QSC or CSC within a certain tolerance, that are based oodhstruction of a mapping function. In
Section 4, we present numerical results that demonstratbehaviour of the adaptive QSC and CSC
methods on a variety of problems, including problems witlurimtary or interior layers, and singular
perturbation problems. We compare the results from CSC ramal Hermite piecewise cubic collocation
(which we refer to as HPCC) as implemented in COLSYS.

Throughout this paper, we adopt the notation of [7]. et (0,1) be the domain of the BVP and
u(z) be the exact solution. Letalsh = {z; = 0 < z; < ... < xy = 1} be a uniform partition of2
with stepsizer = 1 /N andT = {1y =z, 7; = (v; + x-1)/2;i=1,...,N,7n11 = xy } be a set of data
points. LetA,, = {s;,i = 0,..., N} be the partition of2 with respect to which the splines are defined,
and7, = {w;,i =0,...,N + 1} be the set of QSC points. The CSC points coincide with thetpd@mn
A,,. The relation between the pointsii) and those if" andA,, is discussed in Section 2. Adopt also the
notationh; = wi,, —w;,i=1,..., N=1,h¢=s;—w;,i=1,...,N,hl = w1 —8;,i=0,...,N—1,
H;=siy1 —s;,1=0,...,N —1,andH = max{max;—; _y{h¢}, max,—o__ny_1{h!}}.

2 Construction of Mapping Function using Adaptive Techniques

In [7], we assumed that = w(z;),i =0,..., N, andw; = w(r;),i =0,..., N + 1, for some predefined
smooth enough and strictly monotone increasing bijectiapmmng functionw. In this section, we relax
the assumption that is predefined, and discuss the use of adaptive techniquesnierage mapping
functions appropriate for the problem considered. We descthe techniques for QSC, but they can be
easily adjusted for CSC.

The primary idea is to first construct a non-uniform gejdi = 0, ..., IV, using adaptive techniques,
then construct a monotone Hermite piecewise cubic intargel such thatv(sq) = s, w(sy) = sy and
w(r;) = (Si—1+8:)/2,i=1,...,N.

We use the adaptive techniques and the ideguafing functions presented in [5] to construct the non-
uniform grid. According to these techniques, the partipp@mts are distributed so that the error in some
chosen norm (or semi-norm) is equidistributed among thenservals of the partition. Depending on the
norm chosen, a different grading function arises, basedtohathe partition points are constructed. A
grading function is of the forn§(z) = [adx/ [, tudx, for some appropriateonitor function. The
value¢(z) of the grading function at denotes the portion of the approximate error from the ledfpemt

up to pointz. All monitor functions involve high derivatives af, which, under realistic situations, are
not known. Therefore, the spline approximatiog is substituted in place af, to obtain the respective
approximate grading functions.

According to [5], withu being a piecewise polynomial of degree 2, and the chosen hemg the
H' semi-norm, the grading functionds; (v) = [i (u®)?/°dx/ [, (u®)?/>dx, while, if the chosen norm is
the H norm, the grading function & (z) = ' (u®)?/7dxz/ [, (u®)?7dz. De Boor [8] suggests that, for
a method with error proportional (%, a good grading function i§’ |u(?|'/?dz/ [} |u(®)|"/Pdz. For
QSC we take = 3 (as the error formula for the interpolant suggests)ard3 (the global order), result-
ing in the grading functiods(z) = [(u®)?%dx/ [, (u®)?%dz. An alternative is to equidistribute the
arc length, as [1] suggests, resulting in the grading fongj, () = Ji \/1 + (v/)2dz/ [y /1 + (u')2dz.

The grading functions we considered for CSC@yér) = [(u™)?/dx/ [} (u)*"dr andé,y(z) =
[Eu™2Pd/ [} (u®)??dx (equidistributing thell! semi-norm and théZ® norm of the error according
to [5]), &us(@) = JF(u®)?8dx/ [} (u™)?/8dx (as [8] suggests) angly () = & ().

The following algorithm is taken from [5] and adjusted foetSC method. Given a grading function
¢(z) and a number of subinterval§, the algorithm computes points, i = 0,..., N, with £(sy) =
£€(0) = 0 and{(sy) = £(1) = 1, such that(s;) — &(s;—1) ~ 1/N, i = 1,..., N, or equivalently
£(s;) ~ i/N.

The algorithm works iteratively, with a stopping criterismggested in [5]. Thatis, at each iteration, we
calculate the “drift'max;{ [;**" adx} — Jy adz/N from the target placement of the points. The stopping
criterion is thendrift < tol, wheretol is a user chosen tolerance. During the experiments, weetbtic
that sometimes the drift oscillates as the iterations dceesulting in the partition points vibrating with
small amplitude. However, we noticed that the partitiomp®ivere already distributed reasonably well.
This phenomenon was also noticed in [5]. It may result in thegodive algorithm ending without reaching
the stopping criterion and leaving us with the last set ohfmieven if those were not the points of the
smallest drift. To get the “most” from the adaptive methadeach iteration we save the set of partition
points that gives the smallest drift, and use these to coapetinterpolant.

Once we have the non-uniform grid, we use the algorithm fonobane piecewise cubic interpolation
from [9] to generate the mapping functian In this way, the mapping function is i@*, that is, it does
not satisfy the assumptions of the theorems in [7]. Howet/kas worked well in all experiments, as will
be shown in Section 4. It is worth noting that a piecewisedir®® interpolant did not give satisfactory
results.

For the approximation of all integrals arising in the al¢fum we use the midpoint rule, since for QSC
the midpoints are points of high accuracy and no discortigsii Note that the approximation td is
given directly by the derivative of the standard (first st®9C approximation, while the approximation
to u(® is computed as shown in Section 2.2 of [7].

The outline of the algorithm, which we refer to BlceMap is as follows:

Pick N (usually N = 32) and initial meshs;, i = 0, ..., N (usually uniform)
Pick grading functiorg ()
Foritadpt = 1, ..., maxstep do
Use the first step of QSC on meshi =0, ..., N, with7; = (s, 1 +s;)/2,i=1,..., N,
to approximate:

Approximate the appropriate derivativeswétr;,: =1,..., N
Compute new points;, i =0, ..., N, redistributed according
Calculate drift
If drift smaller than all previous iterations, savgi =0,..., N
If drift < tol then exit loop
End
Uses;, i =0,..., N, to construct monotone Hermite interpolant
OutputN, s;,7 =0,..., N, w, and approximation ta

In the case that the data of the problem are given only oningptaints, and we do not have a way to
evaluate the source terms and the coefficient functionsegbtbblem at the points chosen by the adaptive
technique, the QSC method is still applicable. Given a setanfits7,, = {wy = 0 < w; < ... <
wyy1 = 1}, we can construct a monotone Hermite piecewise cubic iatenpw such thatw(r;) =

w;, 1 = 0,...,N + 1. Once we have the mapping functian we can define the nodes = w(z;),

1 =0,..., N, of the partition, then setup the collocation equations;esiall stepsizes we need are now
defined.

It is important to note that the algorithRlaceMapis usually applied to a relatively small grid size
N, usually N = 32. Oncew has been constructed, this sames used to generate the nodes and the
collocation points for other grid sizes, by mapping pointg aniform partition of any grid size to the
respective points of a non-uniform partition. There are saiternatives to this procedure, which we
briefly discuss.

(a) We can apply the adaptive algorithm for any chademnd construct a mapping function based on
the computed grid points. Thus the mapping function may fierént for eachV. This procedure is more
costly, since both the adaptive and the interpolation &@lgms are applied for large¥N’s. We tested this
procedure numerically for some problems, but since ther eesults were compatible with those using
the same mapping computed with a snll we present only the latter in the next section. It is worth
pointing out that, if the mapping function is to be consteacbnly once, the size of the grid on which it
is constructed is crucial for the success of the method. e, the appropriate grid size is not known
apriori, thus, in most realistic situations, the mappingdsto be constructed for any, or for a large
enough/V, determined based on the problem.

(b) We can get rid of the mapping completely, by applying ttapive algorithm for any chosen,
then computing the position of the non-uniform midpointsTaylor expansions based at the grid points.
More specifically, once the grid points are computed, we lf&dye = 0,..., N — 1, and from these the
stepsize?,i=1,...,N,andh?,i =0,..., N — 1, can be computed using the expansions of Lemma 1
in [7] and similar expansions fd;, i = 0,..., N — 1. We developed (h?) andO(h*) approximations
of h¢ andh!? and tested them numerically on some problems. The ordermfecgence obtained was
about 3 or a bit above 3, but below the optimal 4. Thereforedwaot present these results. From the
above discussion, it becomes clear that it is difficult to rggebf the mapping function in non-uniform
QSC, since the method requires both the non-uniform “miagdiw;, and the grid points;. However,
as mentioned in [7], the implementation of CSC is essegtralpping-free.

3 Adaptive Mesh Generation

For practical purposes, a user needs to solve a problemmvétbértain error tolerance. The above proce-
dure of adaptive placement of grid points and mapping fenatomputation can be useful in this context,
if itis combined with grid size and error estimators. Extlgtion through two runs, one of double size as
the other can be used to estimate the error and the grid sexkeddo reach a given tolerance. However,
for the grid size estimator to be reliable, a procedure isleddo gradually advance the grid size, until
enough points are taken so that the solution behaviour [ggpipcaptured.

Given the above, we have implemented an adaptive mesh dg@mnetechnique similar to the one in
COLSYS, with a few differences. This technique can be uséld @SC or QSC. It is important to note,
though, that the CSC method only requires the grid pointd (et both the midpoints and grid points),
therefore, it does not necessarily need the computationmépping function. We also note that the
computation of the mapping function for large grid sizes@ases the computational cost of the method.
We present here an overview of the adaptive technique in @L&hd elaborate on the differences we
applied for CSC.

We first select a grading functiaf{z). For anmth order BVP, the grading function arising from the
monitor function chosen in COLSYS &;(z) = [(uktm) Y/ Etm) gy / (1 (uk+m))t/Gtm) gy which, for
Hermite piecewise cubic polynomials & 2) and second-order BVPsy(= 2), is the same a§s.

We now introduce grid size and error estimators. In the Yailhg discussion, for convenience, the
subscript§ N| and[2N] denote number of subintervals used to compute piecewiga@uaiial or spline
approximations (andot values of functions at the respective collocation points).

The grid size estimation in each iteration of the adaptiweedure in COLSYS is done according to
a formula developed by theory. The erﬁ%] () = u[GN} (x) — u(x) in the Gaussian spline collocation
approximationuS,, with grid size NV is proportional ton**u(*™) and toh** and satisfies|e(}|| <
C(L)Hm(1 + O(h)) + O(h*), wheref = [[uk+™)|/E+m) gy andC is a constant that depends on
m andk [3]. For Hermite piecewise cubic polynomials and secordkoBVPs,C' = 1/384. Given
a tolerancel'OL, COLSYS estimates that it will require a grid of si2&stC' = [6(757)*+™)] to
obtain a spline approximatiazfjﬂ such that the error satisfi¢|s[Gm ()|l < TOL. However, for many
problems the above grid size estimator often underestsrtage required number of points, especially
whend is calculated by composite quadrature based on a small murhpeints.

The problem is partly overcome by toughening the user chtmderance by a factor of 10, a fact that
we observed in the code of COLSYS. However, even with thelieutplerance, the number of points
is usually underestimated, and it takes several iteratbtise adaptive procedure until a reasonable grid
size estimation is made. That is, COLSYS gradually advatieesnesh, and recomputésnd NestC'.
Each time the grid size changes and new points are selelsgadletv points are checked for sufficient error
equidistribution. Each time the grid size increases anetjugdistribution of error improves, the grid size
estimator becomes more reliable. The error estimationf@décision for termination of computation in
COLSYS are done by extrapolation through two runs, one obbiogrid size as the other. Onagv] and
Ul)

ugN] have been computed, the error for allyis estimated by, ~ S

(23)7, wherep = k +m

By~

is the expected order of convergence@?}. Thus,egN] ~ 5T
We have incorporated similar techniques for grid size amdregstimators in our code. Le?N} =

5

v’ (z) — u(z) be the error in the CSC approximatiof with grid sizeN. If we follow COLSYS, the grid

size estimator predicts that

C

NestC = (Q(T—OL)I/ZI—I (1)

subintervals are needed, to hay€y, |l < TOL, whered ~ |, [ul?|'/*dz. Note that we do not
have a theoretical derivation for the value@ffor CSC, but we calculated it experimentally based on
the following arguments. We assume that the error behave%,]a&: Ch*u+ higher order terms.
Consider the simple BVR" = 1222, with «(0) = 0 andu(1) = 1. This has the solution = z*, with
u™® = 24, which implies that the error behavesds ~ 24Ch'. By applying CSC on this problem we
found thatC' = 1/384. (By similar tests, for QSC, the midpoint error was foundéhéve ag*u*) /128.)
However, as in COLSYS, we found that, for many probleiisstC' often underestimates the required
number of points. (We did not use a factor of 10 to toughendlerdance.) For the error estimation we
use extrapolation as in COLSYS.

The outline of the algorithm, which we refer to AdaptSolvel, is as follows:

PickN (usuallyN = 32) and initial meshs;, i = 0, ..., N (usually uniform)
Pick grading functiorg(x) and toleranc& O L
Foritadpt = 1, ..., maxstep do
Use CSC onmesk, i = 0,..., N, to computeuy,
Approximate the required derivativesobns;, i =0,..., N
Calculatedrift = max;{ [+ adz}/(fy Gdz/N)
If just_doubled, applyerr_est, if err_est < TOL, exit loop, end, end
Decide whether to redistribute, double, half, or start over
End
If TOL/4 < err_est < TOL anddrift > 2, redistribute once, end
Outputh, s;,© = 0,..., N, uy; anderr_est

It is important to note that algorithrAdaptSolvel includes the construction of the adaptive mesh and
the approximate solution to the problem within toleraiieL. It does not compute a mapping function.
(A mapping function may be implicitly defined by the compulechation of the grid points, but it is never
explicitly computed or used.) Notice also that the drifthistalgorithm is calculated in a relative way, as
in COLSYS, and not in an absolute way, as in [5] &idceMap

The decision whether to redistribute, double, half, ortstaer with a new set of grid points is taken
according to similar criteria as in COLSYS, with the followjidifferences:

(a) COLSYS doubles the grid size if the sadvehas been used 3 consecutive times, Qv 2, N
have been used alternatively 3 consecutive times, @riift < 2. We also do the same, but we allow
one more (fourth) redistribution of the points for the samdefore doubling ifl.1 < drift < 2 and
err_estl/err_est > err_est/TOL, whereerr_estl is the first error estimateyr_est the current error
estimate. The reason for this difference from COLSYS is thedugh our experiments we noticed that
having a better point distribution helps when we are closh¢odesired tolerance, while it may worsen
the results if we are far from the desired tolerance. Beimdréan the desired tolerance is usually due
to the fact that the grid size is too small, so a proper poistrithution cannot occur. Notice that the
relationerr_estl/err_est > err_est/TOL can be interpreted as being less than half-way away from the

6

desired error tolerance. Thus, we allow a fourth redistrdouif the mesh is fairly well but not very well
distributed, and if we are “close” to the desired tolerance.

(b) COLSYS computes the error estimate only when the gridoisbted. We compute the error
estimate when the grid is doubled, as well as when a redisioito has taken place as long as the data for
the half grid size have been computed. Thus we have a moreagpelaior estimate. In addition, COLSYS
uses a factor of 10 to toughen the tolerance whertC' is computed. We do not use a factor of 10 to
toughen the tolerance, but we do one more redistributi@fL /4 < err_est < TOL anddrift > 2.
Through our experiments we found that the (updated) ertomete is in general reliable, except if the
points are not well distributed.

(c) COLSYS starts over (i.e. picks a completely new grid size= NestC'/2 and a uniform grid) if
N < NestC < 2N. We start over itV < NestC < 2N/1.1. The reason for the.1 factor is that when
NestC is too close t@ N, starting over wastes all the information already computed the distribution
of points), while at the same time the choi¥e= NestC'/2 will only save a very small number of points.

As mentioned above, algorithAdaptSolvel does not compute a mapping. Doubling the grid size
means making the current midpoints and grid points new gndtp and settingy = 2V, justas COLSYS
does. A variation of the algorithm implements doubling bynpuiting a mapping function for each new
mesh, then computing a double size mesh by mapping the omdlouble size mesh to a non-uniform
one. We refer to this variation asdaptSolve2 Thus,AdaptSolve2 for CSC computes a mapping for
each new mesh except the last (largest) one. We implemdmnsamlgorithm for CSC, but, since the results
were very similar to the results éfdaptSolvel, and sinceAdaptSolve2 involves extra computation, we
do not present them.

It is worth mentioning that algorithrAdaptSolvel can be easily adjusted for QSC, if we also take
into consideration that, for QSC, the location of the calban points (“midpoints”) needs to be computed
for each new mesh. ThusdaptSolvel for QSC computes a mapping function each time a new mesh
(including the last one) is computed either by redistritmitor by doubling or by choosing a new mesh
size. Moreover, since, in the QSC case, the computationeofrtapping function is not avoided, the
implementation ofAdaptSolve2 does not involve extra computation, comparedttaptSolvel We
have implemented both algorithms for QSC and present sosuétsdor comparison.

3.1 An alternative adaptive mesh generation algorithm

Algorithm AdaptSolvel (or its variationAdaptSolve2) can be used in a more indirect context. More
specifically, the algorithm as presented above is used ¢atsalgrid size and an appropriate placement of
the points, so that the solution computed for that grid rea@hcertain tolerance. But, the same algorithm
can be used to select an appropriate grid size, on which actie# mapping function is computed. Then,
the mapping function and extrapolation can be used to cagrtpatfinal grid size and placement of points,
on which the solution is computed so that it reaches a cetdé@nance. This procedure gives rise to an
alternative adaptive mesh generation algorithm, whichpaes an approximation towithin tolerance
TOL. We refer to it aAdaptSolve3 and summarize it as follows:

Apply algorithmAdaptSolvel with tolerancey/TOL
Let NV be the mesh size selected AglaptSolvel

Apply algorithmPlaceMapwith N = N

Lets;, i =0, ..., N, be the grid pointsy the mapping function
anduy, the solution comeuted biflaceMap

Generate points;, i = 0, ..., 2N, by the mapping functiow

Computeu,) ons;, i =0, 2N)

Use extrapolation betweel and2/V to obtainerr_est

If err_est < TOL, exit algorithm, end

Use extrapolation betwee¥ and2N to predictV so thatuy, reacheS"OL

Generate points;, i = 0, ..., N, by the mapping function

Computeuy;ons;, : =0,..., N

Use extrapolation betweexV and N to obtainerr_est

Outputh, s;, @ = 0,..., N, u;y anderr_est

Note thatAdaptSolve3 generates a mapping at a relatively small, but problem dedatiace depen-
dent grid sizeV. The choice of tolerance TOL (when runningAdaptSolvel in order to calculatéV)
is supported by our experiments and the following argumésgeng tolerance/TOL, we try to balance
the trade-off between using too few points to calculate th@pmng (as in the case of using = 32 for
all problems and tolerances) and using too many points (Hseicase oAdaptSolve2 where redistri-
butions are applied to all but the last grid). When too fewnpoare used to calculate the mapping the
behaviour of the solution may not be captured, while whesnddbpoints are used, the cost increases, and,
in addition, our experiments indicate that more points doneaessarily improve the effectiveness of the
mapping function, but sometimes degrade it, possibly dued@ased computational errors.

Algorithm AdaptSolve3 can be implemented for CSC and QSC. We present results frisnaltio-
rithm in the next section. Here we note that, such an algorithparticularly effective with QSC, since it
avoids the computation of mapping functions for large grids

4 Numerical Results

In this section, we first present numerical results to denmatesthe convergence of the QSC and CSC
methods for BVPs with non-uniform grids, using the adapyiw®mputed mapping functions with the
procedurePlaceMap. We then present results to demonstrate the effectiverfese adaptive mesh
generation algorithms presented in Section 3, with CSC &@.Q

All computations in this section were carried out in doubtegsion. The QSC and CSC methods
were programmed in MATLAB by us. The linear systems arisimgersolved by Gauss elimination using
the backslash operator or thefunction in MATLAB. We used the MATLAB functiongchip andppval
to construct and evaluate a monotone Hermite piecewise autigrpolant.

In our implementation, as basis functions for the quadgilme spacé&,,, we choose the functions

¢i(x),i=0,...,N +1, where

(x—s5i—2)2

(Si*5i72)85i71*5i72) fors;» <@ < sy

(x—si—2)(si—2) (sit1—2)(x—Si—1) , ,
¢i(z) = (Si*Si(—2)(5i*)52i—1) - (sit1—8i—1)(8i—si—1) for s, <w < s (2)
Si+1—C . ,
(Si+1—8i—1)(8it1—35i) fors; <z < Sit1
0 elsewhere.

Note thatp;(x) and¢;(x) are well-defined at the nodes. Whenever we ng#d;), we define it by right
(without loss of generality) continuity for;,: = 0,..., N — 1, and by left continuity for .

As basis functions for the cubic spline spete we choose the functions}(z),i = 0,..., N + 2,
where

(z—8;_2)3 . .
e AN | o) eSSt
T—8;—-2 T—8;—2)(S;—T Si+1—T)(T—Si—1 . .
(si41—5i—2) \(si—si—2)(si—si—1) + (5i+1_5i—1)(5i_5i—1)) fors;, <z <s;
Sit2—T)(T—Si—1)
(5i+2_5i—1)(5i+1_Si—)lg(si_si—l)

3 = (x—=si—2)(Si+1—%) ,
t (x) - (si41—8i—2)(Si+1—5i—1)(5i41—51) for $i ST S Sit (3)
(sit2—2) (—si—1)(siy1—3) (sit2—)(z—si))
(5i+2*5i—(1) (Si)+1*5i71)(5i+175i) (si+2—5i)(Si41—5s)
Si4+2—T . .
(si42—si—1)(si+2—5i)(Si+2—Si+1) for sis1 < @ < sity
0 elsewhere.

\

In all tables, the notation.y + » means.y x 10*. The observed errors of QSC and CSC are denoted
by ¢ ande?, respectively. The uniform normh- ||, is approximated by the maximum absolute value on a
constant grid of 2001 evaluation points, independenthhefdiscretization grid.

We present results from experiments with the mapping fonestconstructed by the adaptive technique
PlaceMapon the following three Problems.

PROBLEM 1 {T+nz)u'} =0 in (0,1), u(0)=0, u(l)=1.
The solution of this problem ig(z) = lffé(lli"nﬁ), and has a boundary layer at= 0, the sharpness of

which is controlled by the magnitude 9f Problem 1 was taken from [6] and was also used in [7].

PROBLEM 2 u'+u —u=g in (0,1), u(0)=0, u(l)=0.
The functiong is chosen so that(z) = 1°g(”$1:’))gl(‘ﬁ£717;(1*’”)") is the solution to the problem. This function

has boundary layers at both ends, and their sharpness elbetiby the magnitude of.

PROBLEM 3 — (1/v+v(z — p)*)u" — 2v(z — p))u' =g in (0,1), u(0)=0, u(l)=0.

The functiong is chosen so that the exact solution to this problem(ig = (1 — z) (arctan(v(z — p)) +
arctan(vpu)), which for larger has an interior layer near. Problem 3 was taken from [5].

In PlaceMap we usedtol = 1072, maxstep = 20 and a grid size ofV = 32 to constructw, for
each problem, independently of the size of the discretimagrid used to solve the problem. We test the
performance of QSC on Problem 1 with mapping functiepsandw,;, respectively, and compare it with
the performance when the mapping functiomwigz) = ((1+7)* —1) /5, which is the inverse of the exact

9

N | error|ordef error ordef error |ordef error |ordef error|ordef error [orde
QSC W, Wy Wq7

le(@)lloo | le(wy)] le(@)lloo | le(ws)] le(@)lloo | [e(ws)]
32 |1.62-3 1.64-3 1.70-3 1.69-3 6.32-3 6.32-3
64 |1.14-4 3.8 |1.10-4 3.9 |1.27-4 3.7 |1.24-4 3.8 |4.87-4 3.7 |4.76-4 3.7
128|7.43-6 3.9 |6.93-5 4.0 |8.32-6 3.9 |7.82-§ 4.0|3.86-5 3.7 |3.91-5 3.6
256|5.12-7 3.8 |4.34-7) 4.0 |5.45-1 3.9 |4.92-7] 4.0 |3.18-6 3.6 |3.01-6 3.7
CS We Wes Wey
@)oo [1) [1@ oo | 1) [1€ @)oo | 1€¥ (5]
32 |3.14-3 2.21+1 3.07-3 2.13+1 9.94-3 7.03+1
64 |12.10-4 3.9 [1.43+0 3.9 |2.04-4 3.9 (1.39+(0 3.9 |5.67-4 4.1 |4.45+0 4.0
128|1.34-6 4.0 |19.39-2 3.9 |1.30-5 4.0 9.32-2 3.9 |3.53-5 4.0 |3.57-1] 3.6
256/8.49-7 4.0 |6.12-3 3.9|8.27-1 4.0 |6.17-3 3.9 |2.22-6 4.0 |2.56-2 3.8

Table 1: Observed errors and respective orders of conveegeorresponding to Problem 1 with=
10, 000, solved by QSC and mapping functions, w,s, andw,7, and by CSC and mapping functioas,
Weg, aNdw,g.

solutionu, and which, for this problem, is expected to produce gooult®sThe adaptive method far,
andw,; reached the tolerance in 7 and 6 iterations, respectivalyleTl shows that the approximate QSC
solutions arising fromw,, w,7 andw, have optimal global and local convergence for the pointEated.
Similar results are shown for CSC and the mapping functiesw., andw,. The adaptive method for
w.s andw.y reached the tolerance in 6 and 7 iterations, respectivelshduld be noted that, for QSC,
w, produces errors very close to thoseugf, and, for CSCw, produces errors very close to those of
weg. Certainly, under realistic situations, it is not alwaysgible to construct an analytic formula for a
mapping function such as.. It should also be noted that the errors from the CSC methmdrageneral,
slightly lower than those from the QSC method, somethingctviis expected. In a few cases (see, for
example, some errors in Table 1), the QSC errors are smaller.

We next present results from QSC and CSC applied to Probleih@.adaptive methoBlaceMap
applied to QSC with eithew,; or wy required 9 iterations to reach the tolerance, while wherieghpo
CSC with eitherw.; or w.g required 7 iterations to reach the tolerance. Table 2 sheadts from the
application of QSC and CSC to this problem. In the table,= w(d;;), j = 1,2, =1,..., N, where
0ij = xi — Ajhy j = 1,2,i =1,...,N,and\; = (3 —+/3)/6 and\, = (3 +/3)/6. Notice that the
approximate QSC solution arising from; has less derivative error than the one arising frog while
the opposite is true if we look at the function error. Alse tpproximate CSC solution arising fram,
has less derivative error than the one arising ftog) while the opposite is true if we look at the function
error. This is expected from the definitionswfs, wye, wer andw,s.

We next consider Problem 3 and present the results in Tabl&h& adaptive metho&laceMap
applied to QSC with mapping functions,; andw,s did not reach the tolerance in 20 iterations, but the
minimum drift was obtained in 5 and 11 iterations, respetyivThe adaptive method applieddg; and
wye required 5 and 11 iterations, respectively to reach thedoke.PlaceMapapplied to CSC witho,7,

10

N | error | order| error | order| error | order| error | order
QSC Was Wes

le(w;)] €' (03)] le(wi)] €' (04)]
32 | 6.13-2 1.50-0 4.28-3 1.22+1
64 | 4.38-3|] 3.8 | 3.50-1| 2.1 |4.61-4) 3.2 | 490+0| 1.3
128 | 2.74-4| 40 | 4.39-2| 3.0 | 3.71-5| 3.6 | 9.80-1| 2.3
256 | 1.79-5| 3.9 | 5.97-3| 2.9 | 2.88-6| 3.7 | 1.82-1| 2.4
CSsC Wer Weg
€% (s4)] €% (s3)] €% (s4)] €% (s4)]
32 | 1.68-2 1.16+1 8.37-3 5.27+1
64 | 8.34-4| 4.3 | 6.01-1| 4.3 | 5644 3.9 | 451-0| 3.6
128 | 6.05-5| 3.8 | 2.07-2| 49 |4.00-5| 3.8 | 3.27-1| 3.8
256 | 3.92-6| 3.9 | 1.15-3| 3.9 | 2.67-6| 3.9 | 2.60-2| 3.7

Table 2: Observed errors and respective orders of conveggeorresponding to Problem 2 with=
10, 000, solved by QSC and mapping functiong andw,, and by CSC and mapping functions; and

We8 -

wes, Wey aNdw,o required 19, 19, 6 and 6 iterations, respectively, to rehetidlerance.

We now present numerical results from (the mapping-fre€} @&grated with the adaptive procedure
AdaptSolvel of Section 3 and from HPCC as implemented in COLSYS on Probler and 3, as well as
two singular perturbation problems taken from [3]. Resaitsnore problems are found in [11]. Problems
4 and 5 have a sharp interior layer wheis close to zero. In the experiments, weset 10~

PROBLEM 4 eu"+2zu' =g in (—1,1), u(-1)=-1, u(l) =1
The exact solution to this problemigz) = erf(z/\/2).
PROBLEM 5 eu"+au' =g in (—1,1), u(—1)=-2, u(l)=0.

The exact solution to this problemigz) = cos(mz) + erf(x/v/2¢) Jerf(1/1/2¢).

For both CSC and HPCC (COLSYS), the tolerance is first sét®d. = 10-%, the grading function
is &5, and the initial grid has 32 uniform subintervals. Table dvgsthe CSC and HPCC sequences of
grid sizes the adaptive algorithms generated. When thesgredremains the same, the method attempts
to improve error equidistribution. Note that the errormstior in COLSYS is applied only when the grid
is doubled, while in CSC, it is also applied when a new rettiistion takes place after doubling.

For all problems and methods the tolerance is successfedlghed, and the actual error obtained
by CSC and HPCC are about compatible. Taking into accoubhHR&C uses two Gaussian points per
subinterval, on Problems 3 and 4 CSC requires the same nwhb@iocation points as HPCC, and gives
about the same error as HPCC; on Problems 2 and 5 CSC regesesdllocation points than HPCC,
for about the same error; and on Problem 1 CSC requires mdlceation points. Overall, CSC is a
competitive method with respect to both the number of calfion points and the reliability of the error
estimator.

11

N error | order| error | order| error | order| error | order
QSC Wys W W7 W2

32 | 2.43-3 7.14-4 1.19-3 1.27-1

64 | 2.84-4) 3.1 |4.82-5| 3.9 | 1.12-4| 3.4 | 5.78-3| 4.5
128 | 1.77-5| 4.0 | 3.03-6| 4.0 | 7.09-6| 4.0 | 4.63-4| 3.6
256 | 1.12-6| 4.0 |1.91-7| 4.0 |4.43-7| 4.0 | 3.08-5| 3.9
CSC Wer Weg Weo Wy

32 | 1.79-3 1.12-3 5.23-4 2.23-1

64 | 6.37-5| 4.8 | 2.87-5| 5.1 |4.09-5| 3.7 | 7.49-3| 4.9
128 | 3.12-6| 4.4 | 1.28-6| 4.5 | 2.21-6| 4.2 | 4.63-4| 4.0
256 | 1.75-7| 4.2 | 7.06-8| 4.2 |1.24-7| 4.2 | 2.80-5| 4.0

Table 3: Observed grid point errors and respective ordero¥ergence corresponding to Problem 3
with ;. = .5 andv = 100, solved by QSC and mapping functiong;, w,s, w,; andw,,, and by CSC and
mapping functionsu.;, w.s, wey aNdw,s.

In Figure 1, we plot the exact solution and the non-uniformdgygenerated by CSC and HPCC for
Problems 2, 4 and 5. The non-uniform grid pointscpordinates) are plotted versus the respective uniform
grid points (-coordinates). This type of plot, gives a visualizationtod thappingsw generated by each
of the two methods. (We emphasize that the computation ofrtéyepings is not required by CSC and
AdaptSolvel, but we only compute them in order to visualize them by the.plm regions where the
graph ofw is flat, the non-uniform grid points are very dense (i.e. thigaum points span a large region,
and the non-uniform points a small one), while wherises sharply, the non-uniform grid points are very
sparse. We note that in some regions of the domains the nggppfrthe two methods may differ in a
visible way, but in the layer regions, the differences avésible. In the same figure, we show the location
of selected CSC and HPCC grid points. Because the numbeirdsps large, we select to show one grid
point for every two of them. It is worth pointing out that, whehe solution to some problem exhibits
certain symmetry (e.g. Problems 2, 4), we expect the map(aind the distribution of points) to reflect
that symmetry to some extent. It turns out that COLSYS desiaisibly from the symmetric mapping in
Problem 2 and even more visibly in Problem 4. We believe thigtrhay be attributed partly to the too
few redistributions that COLSYS applies.

In Table 5, we present brief results on Problems 1 to 5 for makges of the tolerancEO L. The final
grid sizesN to reach the estimated errors and the respective actuas éoaroCSC and HPCC are shown.
For CSC, there is one case where the tolerance is missed tile §froblem 3, tolerance)—?), and for
HPCC, there are two such cases (Problem 4, toleraricésand10~7). There are also few discrepancies
in both methods, in that the grid obtained for a tougher tnlee may be coarser than for a less tough
tolerance. However, both methods perform reasonably Welkkre are about five cases where CSC uses
fewer collocation points than HPCC and about four casesevHEXCC uses fewer collocation points.

In Table 6, we present results from QSC integrated with élgms AdaptSolvel andAdaptSolve2
We emphasize that both algorithms, when implemented witG ,@&quire the construction of a mapping
function for each new mesh, including the last (largest) diee difference between the two algorithms is

12

0.2¢ J —u

;) |--- wcsc |
w HPCC :
OFSMMHHH T E -0. . L

Figure 1: Exact solutiong and non-uniform grids by CSC and HPCC (COLSYS) for Problensand
5 (from left to right). The location of every second CSC andddPgrid point is shown by along the
bottom and top axes, respectively.

L

that, inAdaptSolvel the mapping is used to find only the location of the collogapoints (“midpoints”),
while in AdaptSolve2 the mapping is used to find the location of the collocatiomtmias well as the
location of the grid points and midpoints of the double sizsmwhen doubling. From the experiments,
it seems thaAdaptSolve2 for QSC is slightly preferable tddaptSolvel, in that it requires a smaller
grid size to reach the tolerance, for some of the cases cnesid(A similar comparison gfdaptSolvel
andAdaptSolve2 for CSC did not reveal any significant differences.) Botloalkiyms miss the tolerance
by a little bit in few cases, but both algorithms perform satttorily. Comparing QSC and CSC, CSC
requires a smaller grid size than QSC for several casesdiedgdor tough tolerances), while there are
few cases among those considered where the opposite happens

In Table 7, we present results from QSC and CSC integratddalgorithmAdaptSolve3 This al-
gorithm turns out to be very effective for the cases considlerin several cases, both QSC and CSC
with AdaptSolve3 require smaller grid sizes than the respective methodsAwdtptSolvel or Adapt-
Solve2 We emphasize thatdaptSolve3 generates a mapping at a relatively small, but problem and
tolerance dependent grid si2é This extra computation is not substantial compared todtad, tthere-
fore AdaptSolve3 is a competitive alternative tAdaptSolvel or AdaptSolve2 However, we note that
AdaptSolve3 relies heavily on extrapolation, which, in turn, relies ohether the computed mapping
function properly captured the behaviour of the solutiokea@ly, there is no theory that guarantees that
this is always the case, but, similarly, no theory guarantbatAdaptSolvel always computes a solu-
tion within the given tolerance. In general, all methodssidered performed satisfactorily for the cases
considered.

13

CSC -AdaptSolvel
Prob N and est. error act. error
1 32| 32| 32| 64| 36| 72| 36| 72
2.8-3 1.0-2 6.8-3
36 | 72| 144 72| 144| 144| 288
2.7-2 3.4-2 1.6-5 1.6-5 8.5-7 2.8-7
2 32| 32| 32| 64| 62| 124| 109| 218
2.4-2 1.3+1 4.1+(
109| 218| 109| 218| 218| 436
3.7-3 1.1-5 1.0-5 6.9-7 2.3-7
3 32| 32| 32| 64| 128| 128| 256
7.1-5 4.2-6 5.8-6 2.8-7 6.1-7
4 32| 64| 128| 256| 128| 256| 128| 256
6.2-2 3.8-2 7.3-3 1.1-2 5.1-3
512| 256| 512
3.9 1.8-7 5.6-8
5 32| 64| 128| 128| 64 | 128| 128| 64
5.4-2 2.0-2 1.9-2 2.5-2 2.2-2
128| 256| 128| 256| 128| 256
3.0-2 1.4-2 8.7-4 2.7-7 5.5-7

HPCC-COLSYS

Prob N and est. error act. error
1 32| 32| 32| 64| 51| 102 51| 102
9.54 2.0-6 1.5-7 1.8-7
2 32| 32| 32| 64| 64| 64 | 128 256
2.3-3 5.8- 5.0-77 1.1-7
3 32| 32| 32| 64| 128
8.1-G 6.1-7 5.3-7
4 32| 64| 64| 64| 128| 64 | 128
8.6-2 1.2-5 2.5-6
64 | 128| 256
1.4-5 1.8-7 1.3-7
5 32| 32| 32| 64| 62| 124| 248
8.0-4 3.7-6| 2.9-7 2.6-7

Table 4: Sequences of grid sizd5 estimated errors, and actual errors for CSC and HPCC (C@)SY
with a tolerance of0~% on the indicated problems. The estimated error is givendridimz.y & ~ below
the respective grid size. For some problems, the sequergrédafizes continues over in a second line.

14

| TOL | 1.0-4] 1.0-5[1.0-6| 1.0-7| 1.0-8

CSC -AdaptSolvel
Probl N 128 | 256 | 288 | 512 | 1024
1 act.err.| 7.3-6| 4.6-7| 2.8-7| 8.1-8| 5.1-9
est.err.| 2.2-5| 1.4-6| 8.5-7| 8.1-8| 5.1-9
Probl N 128 | 256 | 436 | 864 | 2048
2 act.err.| 8.6-5| 5.4-6| 2.3-7| 4.1-8| 6.6-10
est.err.| 6.9-5| 5.4-6| 6.9-7| 4.1-8| 1.4-9
Probl N 64 | 128 | 256 | 512 | 512
3 act.err.| 3.5-5| 2.9-6| 6.1-7| 1.5-8| 1.2-8
est.err.| 6.7-5| 3.2-6| 2.8-7| 1.3-8| 1.0-8
Probl N 256 | 512 | 512 | 394 | 1024
4 act.err.| 1.2-6| 9.4-8| 5.6-8| 2.9-8| 3.0-10
est.err.| 7.1-7| 3.9-8| 1.8-7| 4.1-8| 3.3-10
Probl N 146 | 256 | 256 | 500 | 1024
5 act.err.| 2.4-6| 3.4-7| 5.5-7| 2.1-8| 1.2-9
esterr.| 1.1-4| 6.8-7| 2.7-7| 1.3-8| 8.7-10
HPCC-COLSYS
Probl N 64 | 116 | 102 | 176 | 256
1 act.err.| 1.8-6| 1.9-7| 1.8-7| 1.9-8| 4.1-9
est.err.| 9.2-6| 1.2-6| 1.5-7| 1.7-8| 3.8-9
Probl N 108 | 100 | 256 | 512 | 564
2 act.err.| 1.3-5| 5.3-6| 1.1-7| 7.2-9| 4.2-9
est.err.| 2.7-5| 6.6-6 | 5.0-7| 3.5-8| 6.0-9
Probl N 36 64 128 | 256 | 512
3 act.err.| 5.9-5| 24-6| 5.3-7| 2.7-8| 2.1-9
est.err.| 5.6-5| 3.9-6| 6.1-7| 4.1-8| 2.7-9
Probl N 118 | 116 | 256 | 348 | 544
4 acterr.| 2.4-7| 1.3-5| 1.3-7| 2.9-7| 2.7-9
esterr.| 1.1-6| 3.8-6| 1.8-7| 7.8-8| 1.4-8
Probl N 64 | 140 | 248 | 512 | 1024
5 act.err.| 2.6-5| 1.9-6| 2.6-7| 1.3-8| 8.1-10
est.err.| 4.4-5| 2.1-6| 2.9-7| 2.5-8| 1.5-9

Table 5: Grid sizesV, estimated errors, and actual errors for CSC and HPCC of MSl_%vith the
indicated tolerances on the indicated problems.

15

| TOL |1.0-04] 1.0-05] 1.0-06| 1.0-07] 1.0-08

QSC -AdaptSolvel
Probl N 128 256 512 | 1024 | 1664
1 acterr.| 7.1-5| 24-6 | 1.4-7 | 959 | 1.7-9
esterr.| 83-5| 43-6 | 28-7 | 2.1-8 | 3.9-9
Probl N 128 256 512 | 1536 | 2976
2 acterr.| 1.6-4 | 1.1-5| 8.2-7| 1.8-8 | 3.9-9
esterr.| 6.8-5| 8.4-6 | 8.0-7 | 2.6-8 | 4.4-9
Probl N 128 512 | 1024 | 2048 | 8192
3 acterr.| 1.0-5| 1.1-6 | 20-7 | 6.2-8 | 4.3-9
esterr.| 1.2-5| 1.4-6 | 2.3-7 | 6.7-8 | 4.7-9
Probl N 144 256 | 1024 | 1024 | 2048
4 acterr.| 8.1-6 | 3.9-7 | 1.2-7 | 5.1-8 | 8.5-9
esterr.| 1.2-5| 9.6-6 | 1.3-7 | 9.5-8 | 8.7-9
Probl N 128 432 | 1184 | 4096 | 8192
5 acterr.| 1.7-5| 7.2-6 | 2.1-7 | 2.0-8 | 2.5-9
esterr.| 59-5| 8.8-6 | 2.2-7 | 2.2-8 | 2.6-9
QSC -AdaptSolve2
Probl N 128 256 512 | 1024 | 1664
1 acterr.| 6.6-5| 2.0-6 | 1.2-7 | 7.7-9 | 1.0-9
esterr.] 39-5| 206 | 1.3-7 | 9.3-9 | 1.4-9
Probl N 128 256 512 | 1536 | 1488
2 acterr.| 84-5| 58-6 | 4.4-7| 7.2-9 | 8.8-9
esterr.| 1.0-4 | 43-6 | 40-7 | 7.2-9 | 8.7-9
Probl N 64 128 | 1024 | 2048 | 4096
3 acterr.| 44-5| 2.7-6 | 1.2-7 | 1.2-7 | 1.1-8
esterr.l 50-5| 496 | 9.7-8 | 7.5-8 | 7.8-9
Probl N 144 256 | 1024 | 1024 | 2048
4 acterr.| 51-6 | 2.3-6 | 1.3-8 | 3.0-8 | 4.3-9
esterr.| 2.1-5| 9.8-6 | 25-8 | 2.2-8 | 3.0-9
Probl N 128 216 592 | 4096 | 8192
5 acterr.| 1.2-5| 75-6 | 94-7 | 1.5-8 | 1.1-8
esterr.| 28-5| 6.9-6 | 7.6-7 | 1.1-8 | 6.6-9

Table 6: Grid sizesV, estimated errors, and actual errors for QSC with algostaaptSolvel and
AdaptSolve2 with the indicated tolerances on the indicated problems.

16

| 70L | 104 | 105 | 106 | 107 | 1.0-8
QSC -AdaptSolve3
Probl| N,N | 32,81 | 64,128 | 112, 224| 200, 400| 128, 820
1 act.err.| 4.52-5 7.17-6 7.83-7 7.78-8 9.72-9
esteerr| 5.36-5 | 7.22-6 | 8.39-7 8.86-8 5.19-9
Probl| N,N | 32,115 | 46,220 | 104, 480| 128, 910| 156,2080
2 act.err.| 6.46-5 | 1.25-6 | 4.56-7 6.59-8 7.36-9
esteerr| 4.83-5 | 4.97-6 | 4.63-7 4.18-8 3.94-9
Probl| N,N | 32,64 | 40,261 | 64,518 | 128,807 128,1434
3 act.err.| 6.79-5 | 8.25-6 | 3.74-7 1.60-7 6.92-9
esterr| 9.10-5 | 1.63-6 | 2.32-7 2.66-8 2.81-9
Probl| N,N | 58,116 | 46,114 | 70,241 | 70,428 | 70,761
4 | acterr.| 2.28-6 | 9.79-7 | 6.18-7 7.12-8 1.00-8
esterr| 5.48-6 | 1.45-5 | 3.38-7 3.58-8 3.60-9
Probl| N,N | 90,180 | 146, 292| 134, 805| 128,1200| 128,2134
5 act.err.| 2.24-5 | 5.32-6 | 3.26-7 1.11-7 1.30-8
esteerr| 3.61-5 | 9.66-6 | 1.86-7 2.56-8 2.53-9
CSC -AdaptSolve3
Probl| N,N | 32,106 | 64,185 | 64,329 | 64,584 | 64,1039
1 act.err.| 4.37-5 | 4.71-6 | 4.70-7 4.73-8 4.72-9
est.err.| 4.44-5 | 4.73-6 | 4.72-7 4.76-8 4.75-9
Probl| N, N | 64,128 | 64,264 | 64,469 | 78,834 | 96, 1481
2 act.err.| 859-5 | 4.73-6 | 4.74-7 4.75-8 4.71-9
est.err.| 8.69-5 | 4.75-6 | 4.77-7 4.77-8 4.80-9
Probl| NN | 32,64 | 64,128 | 64,196 | 64,347 | 64,618
3 acterr.| 5.42-5 | 3.10-6 | 5.71-7 5.86-8 5.84-9
esterr.| 4.36-5 | 2.60-6 | 5.63-7 5.71-8 5.68-9
Probl| N, N | 132,264| 132, 264| 132, 264| 214, 428| 214,515
4 act.err.| 2.21-7 | 2.21-7 | 2.21-7 9.26-9 4.61-9
est.err.|] 3.68-7 | 3.68-7 | 3.68-7 1.01-8 4.51-9
Probl| N,N | 128, 256| 118, 236| 124, 248| 124, 386| 146, 696
5 act.err.| 2.18-7 | 2.68-7 | 2.38-7 4.07-8 3.61-9
esteerr| 4.91-7 | 2.98-7 | 2.81-7 4.01-8 3.60-9

Table 7: Grid sizesV (for which the mapping is computed) aid (for which the final solution is com-
puted), estimated errors, and actual errord\ofor QSC and CSC with algorithiAdaptSolve3 with the

indicated tolerances on the indicated problems.

17

5 Outlook and Future Work

In this paper, we focused the discussion to the one-dimeakBVP but some of the ideas and methods
considered are useful for higher order and multi-dimerdi@&VPs. In [11], adaptive spline collocation
methods for two-dimensional BVPs are presented using twooaghes, one that uses skipped rectangular
grids (grids that refine the discretization in a tree-likerhrchical manner), and another one that uses
moving mesh partial differential equations as in [10].

A discussion on comparing the efficiency of CSC and HPCC ig aremature at this point, since
efficiency issues become more critical when solving muhiehsional problems, than when solving one-
dimensional ones. However, we think it is worth making a feings. In most cases, HPCC of COLSYS
requires fewer grid points than CSC to reach a certain dorgrit has to collocate oRN points, which
results in a double size linear system to solve. Thus, itstout that in most cases, HPCC requires more
collocation points to reach the required tolerance. Moegdhe two-step CSC matrix is tridiagonal, while
the HPCC matrix has 4 non-zero entries per row. Note thatthestep CSC matrix is solved twice, and if
that is done by Gauss elimination, the LU factorization idgrened once only. The one-step CSC matrix
is pentadiagonal and again half-size as the HPCC matrix.

If we consider two-dimensional problems, the HPCC matrivis times as large as the two-step CSC
matrix, it has about twice the bandwidth of two-step CSC, Bhidonzero entries per row, while two-step
CSC has 9. The one-step CSC matrix has about the same bah@sittPCC, but is one quarter size.
Moreover, the HPCC matrix requires pivoting, while the CSatmx (as well as the QSC matrix) in most
cases do not. Taking into account these facts, we expecthasymptotic rate of computation time
versus error of CSC will be better than that of HPCC.

Comparing QSC and CSC, the main advantage of CSC is thatuirescpnly the (non-uniform) grid
points, while QSC requires both the grid points and the mimgoThus CSC does not require the compu-
tation of a mapping function. This allows the efficient apation of the adaptive techniqéelaptSolvel
of Section 3 which applies redistributions of the pointdatlarge grids. However, the adaptive technique
AdaptSolve3 which applies redistributions of the points at relativetyall (or medium) grid sizes, seems
to be a competitive alternative with both CSC and QSC. Mageoas mentioned in [7], QSC may be
advantageous for certain problems, since it does not applylifferential operator on the boundary (or
any other grid) points, thus avoiding potential singuilasit

Acknowledgements

The authors wish to thank the referees for the thorough mgaafithe paper and their helpful suggestions.
This research was supported by NSERC (National Science magid&ering Research Council of Canada)
and OGS (Ontario Graduate Scholarship).

18

References

[1] Jr. A. B. White. On selection of equidistributing mestes two-point boundary-value problems.
SAM J. Numer. Anal., 16(3):472-502, 1979.

[2] U. Ascher, J. Christiansen, and R. D. Russell. A collmrasolver for mixed order systems of
boundary value problem&4ath. Comp., 33(146):659-679, 1979.

[3] U. M. Ascher, R. M. Mattheij, and R. D. RusseMumerical Solution of Boundary Value Problems
for Ordinary Differential Equations. SIAM, 1995.

[4] G.Bader and U. Ascher. A new basis implementation for gemiorder boundary value ODE solver.
SAM J. i. Sat. Comp., 8(4):483-500, 1987.

[5] G. F. Carey and H. T. Dinh. Grading functions and meshgteidbution. SAM J. Numer. Anal.,
22(5):1028-1040, 1985.

[6] M. A. Celia and W. G. GrayNumerical Methods for Differential Equations. Prentice Hall, 1992.

[7] C. C. Christara and K. S. Ng. Optimal quadratic and cuplme collocation on non-uniform parti-
tions. To appear iComputing, 2005.

[8] C. de Boor. Good approximation by splines with variabtets Il. Lecture notes in Mathematics,
363:12-20, 1973. Conference on Numerical Solution of Deffial Equations.

[9] F. N. Fritsch and R. E. Carlson. Monotone piecewise citierpolation. SAM J. Numer. Anal.,
17(2):238-246, 1980.

[10] W. Huang and R. D. Russell. Moving mesh strategy based gradient flow equation for two-
dimensional problemsS AM J. Sci. Comput., 20:998-1015, 1999.

[11] K. S. Ng. Spline Collocation on Adaptive Grids and Non-Rectangular Regions. PhD the-
sis, Department of Computer Science, University of Torpftronto, Ontario, Canada, 2005.
http://www.cs.toronto.edu/pub/reports/na/ccc/n@l&tphd.ps.gz.

19

