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Nonsmooth payoff functions are common in financial contracts and pose difficulties in
obtaining high-order solutions of the contract prices. In this work, we consider convection-
diffusion equations with initial conditions involving various types of nonsmoothness. We
apply a fourth-order finite difference (FD) discretization on a uniform grid in space, and
BDF4 time stepping initialized with two steps of an explicit third-order Runge-Kutta (RK3)
method and one step of BDF3. From the Fourier analysis of the discrete system, we prove
that the low-order errors generated by RK3 for nonsmooth data in the high-frequency
domain get damped away by BDF steps, while low-order errors in the low-frequency domain
come from the low-order initial condition discretization. To achieve globally high-order
convergence, we apply fourth-order smoothing to the initial conditions, and provide explicit
formulas of the discretization. By combining initial condition smoothing with the proposed
time-stepping scheme, we mathematically prove and numerically verify that fourth-order
convergence is obtained. Numerical examples on the model PDE and various option pricing
problems are also given to demonstrate the fourth-order convergence of our method.
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1 Introduction

The Black-Scholes partial differential equation (PDE) and its variants are classical models in mathematical
finance. The Black-Scholes PDE

∂U

∂t
= −σ2S2

2

∂2U

∂S2
− (r − q)S

∂U

∂S
+ rU (1)

solves the option price U(t, S) backwards in time from a given payoff function G(S) = U(T, S) at
the expiry time t = T . This formulation assumes constant continuous dividend rate q, risk-free rate r,
and volatility σ. Analytical solutions exist in this case. The payoff functions G(S) in finance are often
nonsmooth, such as in butterfly spread, digital call options, call/put options, and so on.

The pricing of several financial derivatives requires the solution of more complicated variants of the
simple Black-Scholes equation given by (1). For such equations, there are no known analytical solutions
and numerical methods are used. There is a considerable literature on the numerical methods for solving
generalized Black-Scholes PDEs. However, most of the existing methods are of low order. One of the
difficulties in obtaining high-order methods comes from the fact that the payoff functions in financial
contracts are often nonsmooth. Such payoffs can cause a degenerated accuracy of numerical schemes
as well as spurious oscillations in the approximate first and second derivatives [16, 7]. In [12], the
authors investigated the convergence rate behavior of PDE methods for pricing problems with nonsmooth
payoffs, and proposed various smoothing procedures (averaging the initial data, shifting the grid and a
projection method) combined with a special time-stepping method suggested by Rannacher [13] to restore
the expected quadratic convergence. In [12], it is shown that both the Rannacher startup procedure preceding
Crank-Nicolson method, and some kind of smoothing for the initial data are necessary in order to obtain
second-order convergence. In fact, with Crank-Nicolson time stepping (and the diagonal Padé schemes in
general), the nonsmoothness in the initial condition causes two sources of errors: the low-order error in the
high-frequency Fourier domain, and the quantization error due to the placement of the nonsmooth point on
the numerical grid. The convergence behavior of Crank-Nicolson and Rannacher time-marching methods is
studied in detail in [7], where the authors applied Fourier analysis to show that several implicit backward
Euler steps preceding Crank-Nicolson time stepping, with suitable grid alignment of the nonsmooth point,
can act as a damping device and restore the global second-order convergence. To understand the quantization
error, Christara and Leung [2] analyzed the effect of the placement of the nonsmooth point relative to the
grid, and of various types of smoothings of the initial conditions on the accuracy and stable second-order of
convergence of the numerical methods used for solving a model convection-diffusion equation.

Higher order methods in both time and space for solving parabolic problems with nonsmooth initial data
are not well investigated in the literature. Most existing studies apply grid stretching schemes combined
with high-order discretization to obtain high-accuracy solutions. With either grid stretching or locally
refined meshes, the grid sizes around the singularity are much smaller than on the smooth region. This
provides a heuristic for improving the solution accuracy around the singularity. In [11], the authors apply
a standard fourth-order FD in space with a smoothly stretched grid around the strike, and BDF4 in time.
To initialize BDF4, they employ the combination of two Crank-Nicolson and one BDF3 step. With an
appropriately chosen grid stretching parameter, their numerical results empirically demonstrate fourth-order
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convergence in the option prices of a European vanilla call, while the convergence orders of the calculated ∆

and Γ are degenerated and inconsistent. Furthermore, no theoretical guarantees of convergence and stability
are provided. Indeed, the authors in [15] observe that only third-order convergence is obtained with the
reference method in [11] when initializing BDF4 with two Crank-Nicolson and one BDF3 step, on a uniform
space grid discretized with standard fourth-order FD, and fourth-order convergence can be restored only
when initializing BDF4 with the exact solutions, which is consistent with our convergence analysis in this
paper. To avoid wide stencils of standard high-order FD methods, methods that apply high-order compact
(HOC) schemes, usually on uniform grids, are also commonly applied, see e.g. [15, 4, 5, 6]. In [4, 5, 6],
the authors construct HOC schemes on a uniform grid to price more complicated models with stochastic
volatility and jumps in multiple dimensions. To match the fourth-order accuracy in space discretization, a
fourth-order smoothing operator [8] is applied to the nonsmooth payoff functions. Compared to the standard
FD methods, the construction of the HOC coefficients can be restrictive and quite tedious. Moreover, these
methods are typically only second-order accurate in time. To obtain highly accurate time-stepping schemes,
the authors in [3] apply an exact in time exponential time integration method, combined with a high-order
FD scheme on a locally refined mesh in space, though it is relatively inefficient to approximate the matrix
exponential and vector product. Other lines of work based on the weighted essentially non-oscillatory
(WENO) discretization schemes are also proposed to solve option pricing problems with nonsmoothness in
the solutions or terminal conditions [14, 10]. These schemes are known to be of a high accuracy in smooth
solution regimes, while in regions with discontinuities or large gradients, there is an automatic switch to a
one-sided high-order reconstruction, which prevents the creation of spurious oscillations.

In this paper, we propose a simple to implement fourth-order method to solve parabolic PDEs with
nonsmooth initial conditions. Our method applies BDF4 time stepping initialized with two steps of an
explicit third-order Runge-Kutta (RK3) and one step of BDF3 schemes (we can also initialize with three
steps of RK3). We prove that RK3 generates low-order errors for nonsmooth data in the high-frequency
domain that can be damped away by BDF4, while low-order errors in the low-frequency domain are due
to the propagation of low-order initial condition discretization. To deal with the quantization errors due
to low-order, nonsmooth initial conditions, we derive explicit formulas for fourth-order smoothing of the
Dirac delta, Heaviside and ramp initial conditions, from the smoothing operators suggested in [8], and
use these to eliminate the low-order errors of the initial condition discretization in the Fourier domain.
Given a high-order initial condition discretization, the time-stepping scheme combining RK3 in the first
two time steps, BDF3 in the third time step, and BDF4 afterwards is guaranteed to be globally fourth-order
in time. Our analysis can be easily generalized to even higher order time-stepping schemes in the BDF and
Runge-Kutta families of methods.

This paper is organized as follows: In Section 2, we set out the model convection-diffusion equation
and various nonsmooth initial conditions that our convergence analysis is based on. In Section 3, we
introduce the high-order discretization schemes we use. In Section 4, we write the error of BDF4 in the
Fourier domain as the sum of two terms, namely the high- and low-frequency components, and study their
convergence. In Section 5, we analyze the error of RK3 in the Fourier domain, and show that it has a
nonconvergent high-frequency component, which, when RK3 is followed by BDF4 (or other BDF method),
is damped exponentially. In Section 6, we derive explicit expressions for the smoothed discretization of the
initial conditions. In Section 7, we bring back all errors to the time domain and demonstrate fourth-order
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convergence of our method. Finally, in Section 8, we present numerical experiments on both the model
PDE and the European digital call, call and butterfly spread options that verify our theoretical conclusions.

2 Preliminaries

We investigate the convection-diffusion equation

∂v

∂t
= ϵ

∂2v

∂x2
− a

∂v

∂x
(2)

over −∞ < x < ∞ and 0 < t < T , under the initial conditions

v(0, x) = δ(x), (3)

v(0, x) = H(x) ≡

1, x ≥ 0,

0, x < 0,
(4)

v(0, x) = max(x, 0), (5)

which correspond to the Dirac delta, Heaviside and ramp initial conditions, respectively. The exact solutions
corresponding to the three initial conditions (3), (4) and (5) are, respectively,

vδ(t, x) ≡
1√
4πϵt

exp

(
−(x− at)2

4ϵt

)
=

(
√
2ζ)−1

2
i−1 erfc

(
−x− at√

2ζ

)
, (6)

vH(t, x) ≡
∫ x

−∞

1√
4πϵt

exp

(
−(y − at)2

4ϵt

)
dy =

(
√
2ζ)0

2
i0 erfc

(
−x− at√

2ζ

)
, (7)

vC(t, x) ≡
∫ x

−∞

∫ z

−∞

1√
4πϵt

exp

(
−(y − at)2

4ϵt

)
dydz =

(
√
2ζ)1

2
i1 erfc

(
−x− at√

2ζ

)
, (8)

where ζ =
√
2ϵt, i−1 erfc(x) = 2√

π
e−x2 , i0 erfc(x) = erfc(x), i1 erfc(x) =

∫∞
x

erfc(z)dz, and i =
√
−1.

The first and second derivatives of (6) are

dvδ
dx

= − x− at

(
√
2ζ)3

i−1 erfc

(
−x− at√

2ζ

)
,

d2vδ
dx2

=

(
2(x− at)2

(
√
2ζ)5

− 1

(
√
2ζ)3

)
i−1 erfc

(
−x− at√

2ζ

)
,

(9)

and the first and second derivatives of (7) and (8) are, respectively,

dvH
dx

= vδ,
d2vH
dx2

=
dvδ
dx

, (10)

dvC
dx

= vH ,
d2vC
dx2

=
dvH
dx

. (11)

We take ϵ = 1 in this paper. We are interested in approximating the solution and its derivatives to a
high-order accuracy. Note that these three types of singularities form the basis of many other nonsmooth
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functions. For example, the bump (a type of butterfly spread) function can be constructed from a linear
combination of ramp functions, as

v(0, x) = max(x− B, 0)− 2max(x, 0) + max(x+ B, 0), (12)

where B > 0 is a constant. A shifted version of the bump function is often seen in finance as the payoff
function of a butterfly spread. The exact solution of (2) with the bump initial condition can be calculated
from the same linear combination of the solutions of (2) with the corresponding ramp functions as the
initial conditions.

We define the Fourier transform pair of a generic function v(t, x) as

v̂(t, ω) ≡
∫ ∞

−∞
v(t, x)e−iωxdx, v(t, x) ≡ 1

2π

∫ ∞

−∞
v̂(t, ω)eiωxdω.

The Fourier transformed model problem (2) in the frequency domain becomes v̂t = −(ω2 + iaω)v̂, and has
the exact solution

v̂(t, ω) = e−(ω2+iaω)tv̂(0, ω), (13)

where v̂(0, ω) is the Fourier transform of any of the initial conditions defined in (3) to (5). When it is clear
from context, we drop ω in the frequency notation and simply write v̂(t) for convenience.

When numerically computing the solution on a grid {xj}, for j = . . . ,−1, 0, 1, . . ., the nonsmooth
point does not necessarily lie exactly on a grid point. To accommodate this, we introduce a parameter
α ∈ (0, 1] and denote xj = (j + (1− α))h as the grid points, where h is the uniform spatial stepsize. The
nonsmooth point is fixed at x = 0. For general α, the delta initial condition is typically discretized as [7, 2]

δα(xj) ≡


1−α
h
, j = −1,

α
h
, j = 0,

0, else,

(14)

which is equivalent to second order smoothing in [8]. The discretization of (4), (5) and (12) can be simply
sampled from the continuous respective function so that

Hα(xj) ≡

1, j ≥ 0,

0, else,
(15)

Cα(xj) ≡ max(xj, 0), (16)

Bα(xj) ≡ max(xj + B)− 2max(xj, 0) + max(xj − B, 0). (17)

However, it turns out that the naive discretization of initial conditions given above may lead to deterioration
of the convergence rate of a high-order method, due to their low-order representation in the frequency
domain. Moreover, the alignment of the nonsmooth point on the grid also plays a role in the convergence
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order. In the following, we relate the discretization of the initial conditions and their convergence orders
from the perspective of Fourier analysis, and propose alternative discretization schemes for the Dirac delta,
Heaviside, and ramp initial conditions, in order to solve (2) with high-order methods. Since the bump
function is a simple linear combination of the Heaviside functions, we mostly focus our discussion on the
three basic initial conditions: the Dirac delta, Heaviside and ramp functions.

3 Discretization

Consider a discretized domain x0 < x1 < · · · < xM where x0 and xM represent the left and right boundary
respectively. Let V n

j ≈ v(tn, xj) be the FD approximation to the true solution V (tn, xj), where tn = nk is
the n-th time step, and k = T

N
is the time step size with a total of N time steps. We drop the superscript n

when time is irrelevant. On a uniform grid with stepsize h, the fourth-order FD approximation to ∂2V
∂S2 (t, xj)

is given by the operator

D2
4Vj ≡

1

12h2
(−Vj−2 + 16Vj−1 − 30Vj + 16Vj+1 − Vj+2),

for 2 ≤ j ≤ M − 2. At the boundaries, we only need to apply second-order discretization to maintain
fourth-order accuracy [1],

D2
4V1 ≡

1

h2
(V0 − 2V1 + V2),

for j = 1, and similarly for j = M − 1. Note that when we need to shift the grid, the boundary stepsizes
become nonuniform (not equal to h), we need to apply fourth-order discretization at the boundary too, e.g.

D2
4V1 ≡

1

12h2
(10V0 − 15V1 − 4V2 + 14V3 − 6V4 + V5).

The fourth-order FD approximation to ∂V
∂S

(t, xj) is given by the operator

D4Vj ≡
1

12h
(Vj−2 − 8Vj−1 + 8Vj+1 − Vj+2),

for 2 ≤ j ≤ M − 2, and

D4V1 ≡
1

h
(−V0 + V2).

for j = 1, and similarly for j = M − 1. Again, when we need to shift the grid, a fourth-order discretization
is used, e.g.

D4V1 ≡
1

12h
(−3V0 − 10V1 + 18V2 − 6V3 + V4).

December 16, 2023



High-order time-stepping methods 7

For convenience of later discussion, we denote Dh to be Dh ≡ D2
4 − aD4, so that

DhVj =
−Vj−2 + 16Vj−1 − 30Vj + 16Vj+1 − Vj+2

12h2
− a

Vj−2 − 8Vj−1 + 8Vj+1 − Vj+2

12h
.

for 2 ≤ j ≤ M − 2, while slightly different relations hold for j = 1 and j = M − 1. Hence, with the space
discretization of (2), we obtain an ordinary differential equation (ODE) system

dVj

dt
= DhVj, 1 ≤ j ≤ M − 1.

When using BDF4 time-stepping, with time step size k, we have, for the (l + 4)-th time step,

25
12
V

(l+4)
j − 4V

(l+3)
j + 3V

(l+2)
j − 4

3
V

(l+1)
j + 1

4
V

(l)
j

k
= DhV

(l+4)
j , (18)

for 2 ≤ j ≤ M − 2. For later convenience, define

α4 =
25

12
, α3 = −4, α2 = 3, α1 = −4

3
, α0 =

1

4
. (19)

Hence, (18) becomes

4∑
n=0

αnV
(l+n)
j = kDhV

(l+4)
j . (20)

4 Fourier analysis of the discrete system arising from BDF4

In this section, we investigate the Fourier transform of the discretized PDE. In the following analysis, we
employ the Fourier transform pair [17] to study the convergence behavior of the discretization. With the
alignment α = 1 and with θ ≡ ωh, the semi-discrete Fourier transform pair is

V̂ (ωh) = V̂ (θ) = h
∞∑

j=−∞

Vje
−iωxj = h

∞∑
j=−∞

Vje
−ijθ, (21)

Vj =
1

2π

∫ π
h

−π
h

V̂ (ωh)eiωxjdω =
1

2πh

∫ π

−π

V̂ (θ)eijθdθ, (22)

Note that the direct application of the semi-discrete Fourier transform is only valid for the case of Dirac
delta initial condition, because the summation in (21) of the semi-discrete Fourier transform of the solutions
VH and VC corresponding to the Heaviside and the ramp initial conditions, respectively, is divergent. For
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this reason, the Fourier transform pair for the Heaviside and ramp initial conditions we use here is

V̂ (ωh) = V̂ (θ) = h
∞∑

j=−∞

(e−ηjhVj)e
−iωxj = h

∞∑
j=−∞

(e−ηjhVj)e
−ijθ,

e−ηjhVj =
1

2π

∫ π
h

−π
h

V̂ (ωh)eiωxjdω =
1

2πh

∫ π

−π

V̂ (θ)eijθdθ,

which requires to multiply both sides of (18) by e−ηjh, for η > 0, before the semi-discrete inverse Fourier
transform can be applied. As a result, V̂ is not the direct Fourier transform of the solutions in the cases
of the Heaviside and the ramp initial conditions. However, for notational simplicity, we do not explicitly
differentiate the two situations. Readers should understand the meaning of V̂ from its context.

With this clarification in mind, from (20), we use (22) to get

4∑
n=0

αnV̂
(l+n)(θ) = µV̂ (l+4)(θ), (23)

where α4, α3, α2, α1, α0 are the BDF4 coefficients as defined in (19), and

µ = − d̄

12
(2 cos(2θ)− 32 cos θ + 30))− i

ad

12
(16 sin θ − 2 sin(2θ))

= − d̄

3
(1− cos θ)(7− cos θ)− i

ad

3
sin θ(4− cos θ),

(24)

where d = k
h

and d̄ = k
h2 . Note that a is fixed for a given problem, and k = dh for some constant d. By

re-arranging the terms, we can write (23) as

4∑
n=0

α̂nV̂
(l+n)(θ) = 0, (25)

with the coefficients

α̂4 =
25

12
+

d̄

3
(1− cos θ)(7− cos θ) + i

ad

3
sin θ(4− cos θ) = α4 − µ,

α̂3 = α3 = −4, α̂2 = α2 = 3, α̂1 = α1 = −4

3
, α̂0 = α0 =

1

4
.

(26)

The corresponding characteristic polynomial of the difference equation (25) is

4∑
n=0

α̂nξ
n = ρ(ξ)− µξ4, where ρ(ξ) =

4∑
n=0

αnξ
n. (27)

Considering the recurrence relation

V̂ (l+4) = −α3V̂
(l+3) + α2V̂

(l+2) + α1V̂
(l+1) + α0V̂

(l)

α̂4

, (28)
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we find the generic expression of V̂ (l+4) given the four starting values V̂ (l+n) for n = 0, 1, 2, 3. To study
the convergence behavior, we write the BDF4 iteration as a one-step method by

V̄ (l+1) ≡


V̂ (l+4)

V̂ (l+3)

V̂ (l+2)

V̂ (l+1)

 =


−α3

α̂4
−α2

α̂4
−α1

α̂4
−α0

α̂4

1 0 0 0

0 1 0 0

0 0 1 0



V̂ (l+3)

V̂ (l+2)

V̂ (l+1)

V̂ (l)

 ≡ RV̄ (l), (29)

where R = R(µ) is a function of µ denoting the iteration matrix. The spectral radius of R indicates the
convergence behavior of the iteration. Note that there is one-to-one correspondence between the roots of
the characteristic polynomial ρ(ξ)− µξ4 and the eigenvalues of the companion matrix R.
Let Ê(l) ≡ v̂(tl)− V̂ (l) for l ≥ 0, and the truncation error

ε(l) ≡ 1

α̂4

4∑
n=0

α̂nv̂(tl+n) (30)

Define Ē(l) ≡ [Ê(l+3), Ê(l+2), Ê(l+1), Ê(l)]T , and ε̄(l) ≡ [ε(l), 0, 0, 0]T . Then, we can see from the iterative
scheme (29) that

Ē(l+1) = RĒ(l) + ε̄(l),

and therefore,

Ē(l+1) = Rl+1Ē(0) +
l∑

j=0

Rj ε̄(l−j),

given an initial approximate V̄ (0) and the corresponding Ē(0).
Note that V̂ , Ê, Ē, V̄ and R are (vector-)functions of ω and h. For the convenience of later discussion,

for any fixed h ∈ (0, 1), when ω ̸= 0, we define

β ≡ log |ω|
log(1/h)

, (31)

so that ω and h are related by |ω| = h−β. Since ω ∈ [−π/h, π/h], we get that β ≤ 1 + log π
log(1/h)

≡ βmax.
The exact solution v̂(tN) at tN ≡ T = Nk is

v̂(tN) = e−(ω2+iaω)Nkv̂(0) = e−(ω2+iaω)T v̂(0).

For later discussion, we define z ≡ (ω2 + iaω)k. We see that, as h → 0, we have v̂(tN) → e−∞ = 0

exponentially in the frequency range |ω| = h−β with β > 0. In general, the exact solution for all tn
decays exponentially to zero when β > 1

2
. The goal is to study the stability and convergence of the BDF4

solution by investigating the behavior of V̂ (N) obtained from the recurrence relation (28). In the following
discussion, we consider the frequencies |ω| = h−β with β < 1

2
, and the frequency ω = 0 as being in the
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low-frequency regime, and the frequencies |ω| = h−β with 1
2
≤ β ≤ βmax as being in the high-frequency

regime, as shown in Figure 1. We show later that the convergence performance of the approximate V̂ (n)

behaves differently in the high and low-frequency domain.

Figure 1: High- and low-frequency regions arising in BDF4. Note that |ω| = h−β .

The following lemmas are useful to prove our main theorem.

Lemma 4.1. Let β be defined by (31), and µ be given by (24). As h → 0, we have |µ| → ∞ when
1
2
< β ≤ βmax; and |µ| → 0 when β < 1

2
.

Proof. When 1 ≤ β ≤ βmax, we have ωh ̸→ 0 as h → 0. Hence, the real part Re(µ) = − d
3h
(1 −

cos(θ))(7 − cos(θ)) → −∞, and the imaginary part |Im(µ)| =
∣∣−ad

3
sin θ(4− cos θ)

∣∣ is bounded above
by a finite number. It is obvious that |µ| → ∞.

When β < 1, we have ωh → 0. In this case, Im(µ) → 0. Moreover,

lim
h→0

Re(µ) = lim
h→0

[
− d

3h
(1− cos(θ))(7− cos(θ))

]
= −d

3
lim
h→0

(1− cosh1−β)(7− cosh1−β)

h

= −d

3
lim
h→0

(1− β)h−β sinh1−β(8− 2 cosh1−β)

1

= −2(1− β)d lim
h→0

sinh1−β

hβ

= −2(1− β)d lim
h→0

h1−2β.

We see that if 1
2
< β < 1, we have limh→0 Re(µ) = −∞. Hence, µ → −∞, which is on the infinite

negative real axis of the complex plane. If β < 1
2
, we have limh→0 Re(µ) = 0. Hence, we get µ → 0.
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Lemma 4.2. Suppose that a linear multistep method (ρ, σ) is strongly A(θ)-stable (0 ≤ θ ≤ π/2). Then
there exist positive constants r, γ, C, such that ∀µ ∈ Sθ ≡ {z ∈ C̄|z = 0 or z = ∞ or − θ1 ≤ Arg z ≤
θ1, 0 ≤ θ1 < θ}, we have

∥R(µ)n∥ ≤ Ce−γn, if |µ| ≥ r;

∥R(µ)n∥ ≤ CeγnRe(µ), if |µ| ≤ r.

Proof. See Lemma 3 in [9].

Combining Lemmas 4.1 and 4.2, we see that when 1
2
< β ≤ βmax, we have ∥R(µ)n∥ ≤ Ce−γn; and when

β < 1
2
, we have ∥R(µ)n∥ ≤ CeγnRe(µ). For the case when β = 1

2
, we can see from the proof of Lemma 4.1

that Re(µ) → −d and |µ| → d as h → 0. Thus, if |µ| ≥ r, we have ∥R(µ)n∥ ≤ Ce−γn, and, if |µ| ≤ r, we
have ||R(µ)n|| ≤ Ce−γnd, which decays exponentially as well.

Lemma 4.3. Let ε(l) be defined by (30), β as in (31), and µ as in (24). We have

|ε(l)| ≤ 12

25

(
20

3
|z|5 + |µ+ z||e−4z|

)
|v̂(tl)|.

Proof. For notation convenience, we look at ε(l−4). We first note that

α̂4ε
(l−4) =

4∑
j=0

α̂4−j v̂(tl−j)

=
4∑

j=0

α4−j v̂(tl−j) + zv̂(tl)− (µ+ z)v̂(tl)

=
4∑

j=0

α4−j v̂(tl−j)− kV̂t(tl)− (µ+ z)v̂(tl).

Applying Taylor expansion to v̂(tl−j) and get

v̂(tl−j) = v̂(tl)− jkV̂t(tl) +
j2k2

2
V̂tt(tl)−

j3k3

6
V̂ttt(tl) +

j4k4

24
V̂tttt(tl) +

∫ tl−j

tl

(tl−j − t)4

24
V̂ttttt(t)dt.

From the properties of BDF4 coefficients and the fact that V̂ (t) = e−(ω2+iaω)t is infinitely smooth, we have

4∑
j=0

α4−j v̂(tl−j)− kV̂t(tl) =
−(ω2 + iaω)5

24

4∑
j=1

α4−j

∫ tl−j

tl

(tl−j − t)4e−(ω2+iaω)tdt,
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and

|ε(l−4)| =

∣∣∣∣∣ 1

α4 − µ

(
−(ω2 + iaω)5

24

4∑
j=1

α4−j

∫ tl−j

tl

(tl−j − t)4e−(ω2+iaω)tdt− (µ+ z)v̂(tl)

)∣∣∣∣∣
≤ 1

α4

(
|ω2 + iaω|5

24

∣∣∣∣∣
4∑

j=1

α4−j

∫ tl

tl−j

(t− tl−j)
4e−(ω2+iaω)tdt

∣∣∣∣∣+ |µ+ z||v̂(tl)|

)

≤ 1

α4

(
|ω2 + iaω|5

24

∑
j=2,4

α4−j

∣∣∣∣∣
∫ tl

tl−j

(t− tl−j)
4e−(ω2+iaω)tdt

∣∣∣∣∣+ |µ+ z||v̂(tl)|

)

≤ 1

α4

(
|ω2 + iaω|5k4

24

∑
j=2,4

α4−jj
4

∣∣∣∣∣
∫ tl

tl−j

e−(ω2+iaω)tdt

∣∣∣∣∣+ |µ+ z||v̂(tl)|

)

≤ 1

α4

(
|ω2 + iaω|5k4

24

∑
j=2,4

α4−jj
4 · jk |v̂(tl−j)|+ |µ+ z||e−(ω2+iaω)4kv̂(tl−4)|

)

≤ 1

α4

(
|ω2 + iaω|5k5

24

∑
j=2,4

α4−jj
5 + |µ+ z||e−(ω2+iaω)4k|

)
|v̂(tl−4)|

=
12

25

(
20

3
|z|5 + |µ+ z||e−(ω2+iaω)4k|

)
|v̂(tl−4)|.

Theorem 4.4. For the iteration scheme (23), there exist some positive constants γ, C1, C2, C3 such that

|Ê(n)| ≤ C1e
−γn max

0≤j≤3
|V̂ (0)|1{ 1

2
≤β≤βmax}

+

(
C2e

γnRe(µ) max
0≤j≤3

|Ê(j)|+ C3h
4|ω|χ|ν|γ̄(n−1)|v̂(0)|

)
1{β< 1

2
,ω=0},

(32)

for n ≥ 4, where ν = e−(ω2+iaω)k, γ̄ = max(γ, 1), and χ = 5(1 +H(β)).

Proof. When 1
2
≤ β ≤ βmax, the exact solution v̂(tn) = e−nzv̂(0) converges to 0 exponentially. Hence,

from Lemma 4.2, we have

|Ê(n)| ≤ ∥Ē(n)∥ ≈ ∥RnV̄ (0)∥ ≤ ∥Rn∥ · ∥V̄ (0)∥ ≤ C1e
−γn max

0≤j≤3
|V̂ (0)|.

When β < 1
2
, we note that

Re(µ) = −ω2k +
d

90
ω6h5 +O(ω8h7),

and ∣∣∣∣ d90ω6h5 +O(ω8h7)

∣∣∣∣ = ∣∣∣∣ d90h5−6β +O(h7−8β)

∣∣∣∣ ≤ Ch2
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High-order time-stepping methods 13

for some positive constant C. Hence, with 0 ≤ j ≤ n− 1 ≤ T
k

, we have

eγjRe(µ) ≤ e−γjω2k · eγj|
d
90

ω6h5+O(ω8h7)|

≤ e−γjω2k · eγjCh2

≤ e−γjω2k(1 + Cjh2)

= |ν|γj(1 + Cjh2).

Here and in the following, the constants C at each step are not necessarily the same. Moreover, recalling
that z = (ω2 + iaω)k, we have

|z| ≤

Cω2h, β ≥ 0,

C|ω|h, β < 0,
and |µ+ z| ≤

Cω6h5, β ≥ 0,

C|ω|5h5, β < 0.

From Lemmas 4.2 and 4.3, we have

|Ê(n)| ≤ ∥Ē(n)∥ = ∥RnĒ(0) +
n−1∑
j=0

Rj ε̄(n−1−j)∥

≤ ∥Rn∥ · ∥Ē(0)∥+
n−1∑
j=0

∥Rj∥ · |ε(n−1−j)|

≤ CeγnRe(µ)∥Ē(0)∥+ C
12

25

(
20

3
|z|5 + |µ+ z||e−4z|

)
|v̂(0)|

n−1∑
j=0

eγjRe(µ)|ν|n−1−j

≤ CeγnRe(µ)∥Ē(0)∥+ C

(
20

3
|z|5 + |µ+ z|

)
|v̂(0)|

n−1∑
j=0

|ν|γj+n−1−j(1 + Cjh2)

≤ CeγnRe(µ)∥Ē(0)∥+ C|ω|χh5|v̂(0)||ν|γ̄(n−1)

n−1∑
j=0

(1 + Cjh2)

≤ CeγnRe(µ)∥Ē(0)∥+ C|ω|χh5|v̂(0)||ν|γ̄(n−1)n

≤ CeγnRe(µ) max
0≤j≤3

|Ê(j)|+ C|ω|χh5|v̂(0)| |ν|
γ̄(n−1)

h

= C2e
γnRe(µ) max

0≤j≤3
|Ê(j)|+ C3h

4|ω|χ|ν|γ̄(n−1)|v̂(0)|.

Remark 4.1. Theorem 4.4 shows that the high-frequency error of BDF4 decays exponentially, while the
low-frequency error involves the error from the three steps of initialization, and a fourth-order component.

Remark 4.2. From the proof of Theorem 4.4, we see that, for l ≥ 4, assuming Ê(l−j) = 0 for j = 4, 3, 2, 1,
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the error of BDF4 satisfies

|Ê(l)| ≤ C1e
−γ max

0≤j≤3
|V̂ (0)|1{ 1

2
≤β≤βmax}

+

(
C2e

γRe(µ) max
0≤j≤3

|Ê(j)|+ C3h
5|ω|χ|v̂(0)|

)
1{β< 1

2
,ω=0},

(33)

which is what we would expect for the local error.

Remark 4.3. We study the convergence behavior with BDF4 time stepping in particular, but it is easy to see
that the proof process does not rely on the order of the BDF method, and the conclusions can be similarly
extended to other methods in the BDF family. For example, the frequency error applying BDF3 converges
exponentially in the same high-frequency domain as BDF4, while it converges as O(h3|ω|χ|v̂(0)|) globally,
and as O(h4|ω|χ|v̂(0)|) locally in the same low-frequency domain.

5 Initializing BDF4

Third order methods are sufficient to initialize the first three time steps in order to obtain global fourth-order
convergence with BDF4. For all the three different initial conditions, we carry the analysis of a classic
third-order explicit Runge-Kutta method (RK3) to solve the first and second time steps, and a third order
backward differential formula to solve the third time step. BDF3 for solving the third time step follows the
update rule

11
6
V

(3)
j − 3V

(2)
j + 3

2
V

(1)
j − 1

3
V

(0)
j

k
= DhV

(3)
j . (34)

We have already studies the convergence behavior of BDF methods.
The RK3 used in the first two steps is given by the Butcher tableau

0 0 0 0

1/2 1/2 0 0

1 −1 2 0

1/6 2/3 1/6

We study its convergence in the following subsection.
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High-order time-stepping methods 15

5.1 Fourier analysis of RK3 applied to nonsmooth data

Recall that the semi-discrete ODE system we are solving is dVj

dt
= DhVj . Without loss of generality, we

consider applying RK3 to the first time step and compute the solution at xj by computing

f1 = DhV
(0)
j ,

f2 = Dh

(
V

(0)
j +

k

2
f1

)
f3 = Dh(V

(0)
j − kf1 + 2kf2),

and

V
(1)
j = V

(0)
j +

k

6
(f1 + 4f2 + f3) = V

(0)
j + kDhV

(0)
j +

k2

2
D2

hV
(0)
j +

k3

6
D3

hV
(0)
j .

Defining the operator

Kk,h ≡ 1 + kDh +
k2

2
D2

h +
k3

6
D3

h,

one step of RK3 is simply

V
(1)
j = Kk,hV

(0)
j . (35)

We see that Kk,hV
(0)
j is similar to a truncated Taylor expansion of v(k, xj) around t = 0 with the time

derivatives v̇(0, xj), v̈(0, xj) and ...
v (0, xj) being replaced by DhV

(0)
j , D2

hV
(0)
j and D3

hV
(0)
j , respectively. If

the initial data V (0) were smooth enough in space, since ∂v
∂t

= ∂2v
∂x2 − a ∂v

∂x
, then DhV

(0)
j , D2

hV
(0)
j and D3

hV
(0)
j

would simply be the fourth-order FD approximations of v̇(0, xj), v̈(0, xj) and ...
v (0, xj), respectively. Hence,

V
(1)
j = Kk,hV

(0)
j would be a fourth-order approximation of first time step solution v(k, xj).

For nonsmooth initial conditions, the convergence order analysis is more involved. We study this
through the analysis of the Fourier transform of Kk,h. The Fourier transform of Dh is

F [Dh](ω) = F [Dh](θ/π) = −cos(2θ)− 16 cos θ + 15

6h2
− ia

8 sin θ − sin(2θ)

6h
.

To derive F(D2
h) and F(D3

h), we note that Dh = D2
4 − aD4, D2

h = D4
4 − aD2

4D4− aD4D
2
4 + a2D4D4, and

D3
h = D6

4 − a(D4
4D4 +D2

4D4D
2
4 +D4D

4
4) + a2(D2

4D4D4 +D4D
2
4D4 +D4D4D

2
4)− a3D4D4D4, which

give

D2
hVj =

(
1

h4
D(2,0) − a

1

h3
D(2,1) + a2

1

h2
D(2,2)

)T

Vj−4:j+4,

and

D3
hVj =

(
1

h6
D(3,0) − a

1

h5
D(3,1) + a2

1

h4
D(3,2) − a3

1

h3
D(3,3)

)T

Vj−6:j+6,
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where D(i,j) are column vectors with entries given in the tables

D(2,0) 1
144

−32
144

316
144

−992
144

1414
144

−992
144

316
144

−32
144

1
144

D(2,1) −1
72

24
72

−158
72

248
72

0 −248
72

158
72

−24
72

1
72

D(2,2) 1
144

−16
144

64
144

16
144

−130
144

16
144

64
144

−16
144

1
144

and

D(3,0) −1
1728

48
1728

−858
1728

7024
1728

−27279
1728

58464
1728

−74796
1728

58464
1728

−27292
1728

7024
1728

−858
1728

48
1728

−1
1728

D(3,1) 1
576

−40
576

572
576

−3512
576

9093
576

−9744
576

0 9744
576

−9093
576

3512
576

−572
576

40
576

−1
576

D(3,2) −1
576

32
576

−350
576

1504
576

−1791
576

−1536
576

4284
576

−1536
576

−1791
576

1504
576

−350
576

32
576

−1
576

D(3,3) 1
1728

−24
1728

192
1728

−488
1728

−387
1728

1584
1728

0 −1584
1728

387
1728

499
1728

−192
1728

24
1728

−1
1728

and the notation Vj1:j2 is borrowed from Matlab. Therefore, we get (including F [Dh](ω) derived before)

F [Dh](ω) =− cos(2θ)− 16 cos θ + 15

6h2
− ia

8 sin θ − sin(2θ)

6h
,

F [D2
h](ω) =

707 + cos(4θ)− 32 cos(3θ) + 316 cos(2θ)− 992 cos θ

72h4

+a2
−65 + cos(4θ)− 16 cos(3θ) + 64 cos(2θ) + 16 cos θ

72h2

−ia
sin(4θ)− 24 sin(3θ) + 158 sin(2θ)− 248 sin θ

36h3
,

F [D3
h](ω) =

−37398−cos(6θ)+48 cos(5θ)−858 cos(4θ)+7024 cos(3θ)−27279 cos(2θ)+58464 cos θ

864h6

+a2
2142−cos(6θ)+32 cos(5θ)−350 cos(4θ)+1504 cos(3θ)−1791 cos(2θ)−1536 cos θ

288h4

−ia
− sin(6θ) + 40 sin(5θ)− 572 sin(4θ) + 3512 sin(3θ)− 9093 sin(2θ) + 9744 sin θ

288h5

−ia3
− sin(6θ) + 24 sin(5θ)− 192 sin(4θ) + 488 sin(3θ) + 387 sin(2θ)− 1584 sin θ

864h3
,

where we recall θ = ωh. The RK3 iteration for the first time step in the frequency domain is

V̂ (1)(ω) =

(
1 + kF [Dh](ω) +

k2

2
F [D2

h](ω) +
k3

6
F [D3

h](ω)

)
V̂ (0)(ω).

Similar to the discussion in the previous section, we study the convergence of one RK3 iteration for different
magnitudes of ω with respect to h. Applying Maclaurin series expansion to F [Dh](ω), F [D2

h](ω) and
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F [D3
h](ω), we have

F [Dh](ω) = −(ω2 + iaω) +
1

90
(ω6 + i3aω5)h4 + · · · ,

F [D2
h](ω) = (ω4 − 1

45
ω8h4 + · · · )− a2(ω2 − 1

15
ω6h4 + · · · )− ia(−2ω3 +

4

45
ω7h4 + · · · )

= (ω2 + iaω)2 +
1

45
(−ω8 + 3a2ω6 − i4aω7)h4 + · · · ,

F [D3
h](ω) = (−ω6 +

1

30
ω10h4 + · · · ) + a2(3ω4 − 7

30
ω8h4 + · · · )

− ia(3ω5 − 1

6
ω9h4 + · · · ) + ia3(ω3 − 1

10
ω7h4 + · · · )

= −(ω2 + iaw)3 +
1

30
(ω10 − 7a2ω8 + i5aω9 − i3a3ω7)h4 + · · · .

The results match our expectation by noticing that the exact frequency satisfies

∂n

∂tn
v̂(t, ω) = (−1)n(ω2 + iaω)nv̂(t, ω),

and

v̂(t1, ω) =e−(ω2+iaω)kV̂ (t0, ω)

=

(
1− (ω2 + iaω)k +

k2

2
(ω2 + iaω)2 − k3

6
(ω2 + iaω)3 + . . .

)
v̂(t0, ω).

Given V̂ (0)(ω) = v̂(t0, ω) + Ê(0)(ω), where Ê(0) is the frequency error at the initial time step, which is
intrinsic to the initial condition discretization, we see that the error in V̂ (1) from one RK3 iteration is simply

Ê(1) = V̂ (1) − v̂(t1)

=

(
1 + kF [Dh](ω) +

k2

2
F [D2

h](ω) +
k3

6
F [D3

h](ω)

)
Ê(0) + (−1)j+1

∞∑
j=4

(ω2k + iaωk)j

j!
v̂(t0)

+

{
1

90

(
(ω6 + i3aω5)k + (−ω8 + 3a2ω6 − i4aω7)k2 +

1

2
(ω10 − 7a2ω8 + i5aω9 − i3a3ω7)k3

)
h4 + · · ·

}
v̂(t0).

(36)

The error behaves differently in the high- and low-frequency regimes. We discuss this below. Recall that
k = dh ∼ h.

1. First consider the case ω = h−β with β < 1
2
, i.e. ω2h → 0 as h → 0. We see from (36) that the error

Ê(1) from one step of RK3 is comprised of Ê(0) multiplied by a constant order coefficient, plus the
remaining O(z4) terms. Therefore, we have

|V̂ (1) − v̂(t1)| ≤ C ′
1|Ê(0)|+ C ′

2|z|4|v̂(t0)|, (37)
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where C ′
i and C ′

2 are some positive constants. Since Ê(0) is multiplied by a constant order coefficient,
it cannot be reduced by RK3 time stepping. This explains why smoothing is necessary so that Ê(0) is
of high order as well.

2. Consider ω = h−β with 1
2
≤ β ≤ βmax, i.e. ω2h ̸→ 0 as h → 0. Hence, we see from (36) that

the error V̂ (1) − v̂(t1) ̸→ 0 as h → 0. Therefore, RK3 time stepping is not convergent in the
high-frequency region ω = h−β with 1

2
≤ β ≤ βmax, which lies exactly in the high-frequency

exponential damping region of BDF4 scheme starting from the fourth time step, see Equation (32).
As a result, even though RK3 is not convergent in a single time step in the high-frequency domain, the
combination of RK3 as the initialization scheme and BDF4 for the general steps gives the expected
O(z4) order of convergence.

Therefore, in summary, RK3 time stepping gives

|Ê(n)| ≤ (nonconvergent error) · 1{ 1
2
≤β≤βmax} +

(
C ′

1|Ê(n−1)|+ C ′
2|z|4|v̂(tn−1)|

)
1{β< 1

2
,ω=0}. (38)

Remark 5.1. Relation (38) shows that the high-frequency error of RK3 is not convergent, while the low-
frequency error involves the error from the previous step and a fourth-order component. Combining RK3
and BDF4 (or any BDF method), the nonconvergent error of RK3 in the high-frequency domain is damped
exponentially by BDF.

In the low-frequency region, given Ê(0), with two steps of RK3 initialization scheme, we have

|Ê(1)| ≤ C ′
1|Ê(0)|+ C ′

2|z|4|v̂(t0)|,
|Ê(2)| ≤ C ′

1|Ê(1)|+ C ′
2|z|4|v̂(t1)| ≤ C ′

3|Ê(0)|+ |z|4(C ′
4|v̂(t0)|+ C ′

5|v̂(t1)|),

where C ′
i for i = 1, . . . , 5 are positive constants. Note that the final convergence behavior is determined by

the accuracy of Ê(0), which also needs to be of high order. We discuss this in the next section.

6 High-order smoothing of the initial conditions

Due to the nonsmoothness in the Dirac delta, Heaviside and ramp initial conditions, to achieve global
fourth-order convergence, we still need to make sure that the initial condition is discretized to a high-order
in the frequency domain. In this paper, we perform initial condition smoothing using the smoothing
operator suggested in [8]. In particular, a fourth-order smoothing operator Φ4 is given by the inverse Fourier
transform of

Φ̂4(ω) =

(
sin(ω/2)

ω/2)

)4 [
1 +

2

3
sin2(ω/2)

]
.

The smoothed initial condition is then computed from

ṽ
(0)
Kreiss(x) =

1

h

∫ 3h

−3h

Φ4(s/h)v(t0, x− s)ds. (39)
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V
(0)
j Dirac delta Heaviside Ramp

j < −3 0 0 0

j = −3 (α−1)3

36h
− (α−1)4

144
(α−1)5h

720

j = −2 − (11α3−30α2+24α−4)
36h

(11α4−40α3+48α2−16−4)
144

(−11α5+50α4−80α3+40α2+20α−20)h
720

j = −1 (14α3−27α2+15)
18h

(−7α4+18α3−30α+18)
36

(14α5−45α4+150α2−180α+51)h
360

j = 0 (−14α3+15α2+12α+2)
18h

(7α4−10α3−12α2−4α+37)
36

− (14α5−25α4−40α3−20α2+370α−350)h
360

j = 1 − (−11α3+3α2+3α+1)
36h

(−11α4+4α3+6α2+4α+145)
144

− (−11α5+5α4+10α3+10α2+725α−1439)h
720

j = 2 − α3

36h
α4+144

144
− (α5+720α−2160)h

720

j > 2 0 1 (j + 1− α)h

Table 1: Fourth-order smoothed discrete Dirac delta, Heaviside and ramp initial conditions

We calculated explicit formulas for the fourth-order discrete Dirac delta, Heaviside and ramp initial
conditions arising after applying the smoothing operator (39), and present them in Table 1. Using the
smoothed initial condition discretizations given in Table 1, we guarantee that the initial conditions are
fourth-order accurate in the frequency domain, and hence, Ê(0) = O(|ω|ph4) for some positive constant
p. Note that an appropriate linear combination of the smoothed ramp functions gives us the smoothed
discretization of the bump function.

7 Solution error analysis

Now that we have analyzed the solution behavior in the Fourier frequency domain, we can perform inverse
Fourier transform to recover the actual solution error. For the Dirac delta initial condition, we have
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E(n)(xj) =
1

2π

∫ π
h

−π
h

Ê(n)(ω)eiωxjdω

≤ 1

2π

∫ π
h

−π
h

C1e
−γn max

0≤j≤3
|V̂ (0)|1{ 1

2
≤β≤βmax}e

iωxjdω

+
1

2π

∫ π
h

−π
h

(
C2e
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1
h

−
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1
h

−
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−γn max
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|V̂ (0)|+
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|ω|peγnRe(µ)eiωxjdω + C3|V̂ (0)|

∫ ∞
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)
h4

≤C1e
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0≤j≤3
|V̂ (0)|+ (C2 + C3|V̂ (0)|)h4,

where the constants Cj with the same index are not necessarily equal. From the derivation, we see that
fourth-order convergence is obtained if the discretized initial condition is smoothed to fourth-order. For the
Heaviside and ramp initial conditions, a minor difference is that inverse Fourier transform does not directly
give the solution. Instead, we have

e−ηxjE(n)(xj) =
1

2π

∫ π
h

−π
h

Ê(n)(ω)eiωxjdω,

which gives

E(n)(xj) ≤ eηxjC1e
−γn max

0≤j≤3
|V̂ (0)|+ eηxj(C2 + C3|V̂ (0)|)h4.

8 Numerical results

8.1 Solving the model PDE

In this section, we provide numerical results to demonstrate the fourth-order convergence of our methods
for solving the model problem (2) with nonsmooth initial conditions (3), (4), (5), and (12). We consider a
truncated space domain on x ∈ [−4, 4], with exact Dirichlet boundary conditions. Although our convergence
study relies on Fourier analysis which assumes x ∈ (−∞,∞), it turns out the conclusions we obtained still
hold on the truncated domain with exact boundary conditions.

In practice, it may be inconvenient to maintain the grid alignment value α to a fixed number. For this
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reason, we consider cases where the grid alignment changes for each refinement, by slightly shifting the
nonsmooth point to x = 0.123 while keeping the space domain x ∈ [−4, 4] unchanged. We apply the
fourth-order smoothed initial condition discretizations given in Table 1, for the Dirac delta, Heaviside and
ramp initial conditions, respectively, with a = 2, T = 1. To also verify the correctness of our convergence
analysis on the effect of smoothed and unsmoothed initial data, we show convergence results both with and
without the smoothing of initial conditions. Tables 2, 3 and 4 show that directly applying the discrete initial
conditions (14), (15) and (16) leads to low-order and inconsistent convergence, while with the smoothing
modifications, we restore stable fourth-order convergence. We have also listed in the tables the convergence
results of the solution derivatives. The results clearly show stable fourth-order accuracy.

To demonstrate the intrinsic high-frequency damping properties of BDF time stepping, we solve the
model convection-diffusion Equation (2) under the delta and Heaviside initial conditions with our RK3-
BDF3-BDF4 method and with the Crank-Nicolson (CN) method, respectively, and compare the solutions.
We apply the same fourth-order FD discretization in space, and the original initial condition discretizations
given by (14), (15) without any smoothing modifications to make sure we are only looking at the effect
of different time-stepping schemes. Figure 2 shows comparisons between the numerical solutions to the
model problem with a = 2 and T = 0.1. We choose h = 0.0211, d = k

h
= 0.1185 for solving the PDE

with delta initial condition, and h = 0.0123, d = k
h
= 0.2033 for the Heaviside initial condition. As seen

in Figure 2, CN time stepping by itself fails to converge in L∞, and generates oscillatory solutions. After
replacing the first two steps of CN approximation by four half-timestep backward Euler time marching
(CN-Rannacher), the oscillations disappear [7]. On the other hand, due to the high-frequency damping
property of BDF4, we observe that no spurious oscillations occur in the solutions and solution derivatives
with the RK3-BDF3-BDF4 method.

Finally, to show that our method can be applied to solve PDEs with more complicated nonsmooth initial
conditions constructed from the three basic nonsmooth functions, in Table 5, we present convergence results
for solving the model PDE with the bump initial condition (12). In this table, we list the maximum error
across all gridpoints (as an approximation to the ∞-norm of the error). The results clearly demonstrate
fourth-order convergence of the solution, with slight degeneration in the solution derivatives.

8.2 Application to option pricing

In this section, we apply our algorithm to compute the Black-Scholes PDE (1) for option pricing problems.
Although one can convert (1) to constant-coefficients PDE, we apply our methods to the original Black-
Scholes PDE (1). As will be seen, the numerical results agree with our analysis shown for the model PDE
(2). We consider three types of European options: digital call, call and a butterfly spread, corresponding to
the Heaviside, ramp and bump initial conditions we discussed for the model PDE. The payoff function for a
digital call with strike K is the shifted Heaviside function

GD(T ) = H(S −K).

The payoff function for a call option with strike K is the shifted ramp function

GC(T ) = max(S −K, 0).
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Figure 2: Comparison of numerical solutions and the calculated derivatives around the nonsmooth point
from solving the model PDE (2) with a = 2 using CN, CN-Rannacher and RK3-BDF3-BDF4 time stepping.

A butterfly spread is a combination of four options: two long position calls struck at K1 = K − B and
K3 = K + B, and two short position calls struck at K2 = K, where B > 0 is given. The payoff function is
a linear combination of the ramp functions

GB(T ) = max(S −K1, 0)− 2max(S −K2, 0) + max(S −K3, 0).
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N α
v v′ v′′

value error conv error conv error conv
w/o smoothing

20 0.3075 0.1045846 8.12e-04 - 3.27e-04 - 1.37e-03 -
40 0.6150 0.1040104 2.33e-04 1.80 2.30e-04 0.50 5.67e-04 1.27
80 0.2300 0.1038231 4.62e-05 2.33 4.23e-05 2.45 1.11e-04 2.35
160 0.4600 0.1037930 1.61e-05 1.52 1.60e-05 1.41 4.01e-05 1.47
320 0.9200 0.1037781 1.18e-06 3.77 1.21e-06 3.72 2.98e-06 3.75

w smoothing
20 0.3075 0.103747622 8.13e-05 - 4.28e-04 - 9.05e-04 -
40 0.6150 0.103775024 1.36e-06 5.90 2.67e-05 4.00 3.47e-05 4.70
80 0.2300 0.103776728 1.53e-07 3.15 1.69e-06 3.98 2.19e-06 3.99
160 0.4600 0.103776867 9.42e-09 4.02 1.06e-07 3.99 1.34e-07 4.03
320 0.9200 0.103776874 7.06e-10 3.74 6.60e-09 4.01 8.66e-09 3.96

Table 2: Convergence results at the nonsmooth point x = 0.123, T = 1, for solving the model problem (2)
with the Dirac delta initial condition, taking a = 2. The grid alignment value α is different on each grid
refinement level as given in the table, and the number of space intervals M = N .

N α
v v′ v′′

value error conv error conv error conv
w/o smoothing

20 0.3075 0.0700980 8.56e-03 - 8.26e-03 - 3.46e-03 -
40 0.6150 0.0808755 2.23e-03 1.94 2.31e-03 1.84 1.30e-03 1.41
80 0.2300 0.0758418 2.81e-03 -0.34 2.81e-03 -0.28 1.40e-03 -0.11

160 0.4600 0.0784314 2.18e-04 3.69 2.13e-04 3.72 9.84e-05 3.83
320 0.9200 0.0797423 1.09e-03 -2.32 1.09e-03 -2.36 5.43e-04 -2.47

w smoothing
20 0.3075 0.078481631 1.73e-04 - 5.83e-05 - 4.11e-04 -
40 0.6150 0.078638802 1.10e-05 3.98 3.94e-06 3.89 2.59e-05 3.99
80 0.2300 0.078648921 6.90e-07 3.99 2.70e-07 3.87 1.63e-06 3.99

160 0.4600 0.078649561 4.33e-08 4.00 1.68e-08 4.01 1.02e-07 4.00
320 0.9200 0.078649601 2.71e-09 4.00 1.05e-09 4.00 6.40e-09 4.00

Table 3: Convergence results at the nonsmooth point x = 0.123, T = 1, for solving the model problem (2)
with the Heaviside initial condition, taking a = 2. The grid alignment value α is different on each grid
refinement level as given in the table, and the number of space intervals M = N

The parameters we use in the numerical experiments are: strike K = 100, B = 19.75, expiry time T = 0.5,
interest rate r = 2%, zero dividend. The volatility σ is either 0.2 or 0.8 as given in the tables and figures.
The semi-infinite spatial domain is truncated to (0, Sb) with Sb = 6K, and exact Dirichlet conditions are
applied.

Tables 6, 7 and 8 show the results of solving digital call, call and butterfly spread options, respectively,
with variable α. We also list the convergence of the options’ ∆ and Γ at the single strike K for the
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N α
v v′ v′′

value error conv error conv error conv
w/o smoothing

20 0.3075 0.0504901 2.38e-04 - 1.74e-04 - 1.50e-04 -
40 0.6150 0.0504040 1.50e-04 0.67 1.39e-04 0.33 6.34e-05 1.24
80 0.2300 0.0502581 3.56e-06 5.39 3.92e-06 5.15 3.13e-06 4.34

160 0.4600 0.0502651 1.05e-05 -1.57 1.05e-05 -1.43 5.30e-06 -0.76
320 0.9200 0.0502515 3.00e-06 1.81 3.01e-06 1.81 1.52e-06 1.80

w smoothing
20 0.3075 0.050162772 9.04e-05 - 1.28e-04 - 5.99e-05 -
40 0.6150 0.050248754 5.58e-06 4.02 8.18e-06 3.96 1.56e-06 5.26
80 0.2300 0.050254186 3.49e-07 4.00 5.18e-07 3.98 4.87e-08 5.00

160 0.4600 0.050254519 2.18e-08 4.00 3.24e-08 4.00 1.85e-09 4.72
320 0.9200 0.050254540 1.36e-09 4.00 2.03e-09 4.00 6.76e-11 4.77

Table 4: Convergence results at the nonsmooth point x = 0.123, T = 1, for solving the model problem
(2) with the ramp initial condition, taking a = 2. The grid alignment value α is different on each grid
refinement level as given in the table, and the number of space intervals M = N .

N α
v v′ v′′

max error conv max error conv max error conv
w/o smoothing

20 0.3075 4.10e-03 - 1.78e-03 - 3.24e-03 -
40 0.6150 1.48e-03 1.47 7.31e-04 1.28 5.21e-04 2.64
80 0.2300 2.03e-04 2.87 1.27e-04 2.52 2.78e-04 0.91

160 0.4600 1.02e-04 0.99 1.32e-04 -0.06 2.51e-04 0.15
320 0.9200 1.30e-05 2.97 2.41e-05 2.46 4.73e-05 2.41

w smoothing
20 0.3075 1.35e-03 - 9.93e-04 - 2.16e-03 -
40 0.6150 8.81e-05 3.93 1.06e-04 3.23 3.06e-04 2.81
80 0.2300 5.48e-06 4.01 9.70e-06 3.45 2.57e-05 3.58

160 0.4600 3.41e-07 4.01 8.12e-07 3.58 1.97e-06 3.70
320 0.9200 2.18e-08 3.96 6.94e-08 3.55 1.58e-07 3.64

Table 5: Convergence results for maximum error and first and second derivatives, when solving the model
problem (2) with the bump initial condition of spread B, taking a = 2, T = 1. There are three nonsmooth
points at K − B, K, and K + B, with K = 0.123,B = 1.321. The grid alignment value α is different on
each grid refinement level as given in the table, and the number of space intervals M = N .

digital call and call options, and at all the three kink points of the butterfly spread payoff function. In all
experiments, fourth-order convergence is obtained for the option prices and calculated ∆ and Γ applying
our time-stepping scheme with smoothed initial conditions.

Again, we compare the solutions for solving the digital call, call options using RK3-BDF3-BDF4
and CN time-stepping methods. Like before, we use fourth-order FD discretization in space, and no
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smoothing modifications are applied to the initial conditions. We choose h = 0.5 and d = k
h
= 0.01 for

both examples. The results are plotted in Figure 3. We see that no spurious oscillation occur in the solutions
with RK3-BDF3-BDF4 time stepping as expected, due to the high-frequency damping properties of BDF
methods.
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Figure 3: Comparison of numerical solutions and the calculated ∆, Γ of the European digital call and call
options, with volatility σ = 0.2, with CN, CN-Rannacher and RK3-BDF3-BDF4 methods.
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(M,N) α
V ∆ Γ

value error conv error conv error conv
w/o smoothing

(40,20) 0.6667 0.568113749 7.43e-02 - 5.35e-04 - 4.21e-04 -
(80,40) 0.3333 0.459075097 3.58e-02 1.05 3.72e-04 0.53 1.91e-04 1.14
(160,80) 0.6667 0.512425925 1.74e-02 1.04 7.59e-05 2.29 8.83e-05 1.11

(320,160) 0.3333 0.486264480 8.76e-03 0.99 1.89e-05 2.01 4.37e-05 1.01
(640,320) 0.6667 0.499382679 4.36e-03 1.01 4.71e-06 2.00 2.18e-05 1.00

w smoothing
(40,20) 0.6667 0.500060559 4.55e-03 - 1.23e-03 - 6.22e-05 -
(80,40) 0.3333 0.495628236 6.93e-04 2.71 1.73e-04 2.83 6.17e-06 3.33
(160,80) 0.6667 0.495075147 5.29e-05 3.71 1.08e-05 4.00 6.79e-07 3.18

(320,160) 0.3333 0.495028135 3.46e-06 3.94 6.89e-07 3.98 4.50e-08 3.91
(640,320) 0.6667 0.495025124 2.20e-07 3.98 4.32e-08 4.00 2.90e-09 3.96

Table 6: Convergence results for the price V and its ∆ and Γ at the strike K = 100, for solving the
European digital option, taking σ = 0.2. The grid alignment value α varies on each grid refinement level as
given in the table.

(M,N) α
V ∆ Γ

value error conv error conv error conv
w/o smoothing

(40,20) 0.6667 22.706368799 4.61e-02 - 4.66e-05 - 1.45e-05 -
(80,40) 0.3333 22.670339162 1.00e-02 2.20 5.39e-05 -0.21 3.33e-06 2.12

(160,80) 0.6667 22.663038447 2.70e-03 1.89 1.10e-05 2.29 9.06e-07 1.88
(320,160) 0.3333 22.660991961 6.50e-04 2.05 3.20e-06 1.78 2.19e-07 2.05
(640,320) 0.6667 22.660507365 1.66e-04 1.97 7.54e-07 2.09 5.58e-08 1.97

w smoothing
(40,20) 0.6667 22.659843234 5.96e-04 - 4.44e-05 - 1.59e-06 -
(80,40) 0.3333 22.660297803 3.78e-05 3.98 3.00e-06 3.89 3.67e-08 5.44

(160,80) 0.6667 22.660338994 2.61e-06 3.85 2.02e-07 3.90 2.76e-09 3.73
(320,160) 0.3333 22.660341607 1.67e-07 3.97 1.26e-08 4.00 1.86e-10 3.89
(640,320) 0.6667 22.660341776 1.05e-08 3.99 7.87e-10 4.00 1.14e-11 4.02

Table 7: Convergence results for the price V and its ∆ and Γ at the strike K = 100, for solving the
European call option, taking σ = 0.8. The grid alignment value α varies on each grid refinement level as
given in the table.

9 Conclusions

In this paper, we have developed and analyzed a fourth-order method to solve parabolic PDEs with
nonsmooth initial conditions. We applied Fourier analysis to a model convection-diffusion PDE and proved
that the exponential damping of high-frequency error components using BDF4 makes it a good combination
with RK3 as the starting scheme for nonsmooth data, and guarantees fourth-order convergence and stability,
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(M,N) α
V ∆ Γ

value error conv error conv error conv
K1 = 80.25 (w/o smoothing)

(40,20) 0.35000 4.108437670 7.78e-02 - 2.81e-02 - 3.21e-03 -
(80,40) 0.70000 4.173066559 5.38e-03 3.85 8.85e-03 1.67 2.44e-04 3.72

(160,80) 0.40000 4.169334971 8.57e-03 -0.67 1.36e-03 2.70 1.76e-04 0.48
(320,160) 0.80000 4.158899648 1.96e-03 2.13 2.70e-04 2.33 1.18e-05 3.89
(640,320) 0.60000 4.161549262 6.98e-04 1.49 5.92e-05 2.19 1.20e-05 -0.02

K1 = 80.25 (w smoothing)
(40,20) 0.35000 4.376718594 1.30e-01 - 2.08e-02 - 4.65e-03 -
(80,40) 0.70000 4.176683715 1.22e-02 3.42 4.26e-03 2.29 3.03e-04 3.94

(160,80) 0.40000 4.161766412 7.92e-04 3.94 3.65e-04 3.55 1.79e-05 4.08
(320,160) 0.80000 4.160905971 5.05e-05 3.97 2.25e-05 4.02 1.15e-06 3.96
(640,320) 0.60000 4.160854034 3.18e-06 3.99 1.41e-06 3.99 7.23e-08 3.99

K2 = 100 (w/o smoothing)
(40,20) 0.66667 9.096127563 2.38e-01 - 3.50e-02 - 4.30e-04 -
(80,40) 0.33333 9.338618860 9.71e-02 1.29 3.85e-03 3.19 1.65e-04 1.38

(160,80) 0.66667 9.415269963 2.22e-02 2.13 9.68e-04 1.99 1.13e-04 0.54
(320,160) 0.33333 9.431223427 6.43e-03 1.79 7.37e-05 3.72 2.29e-05 2.31
(640,320) 0.66667 9.436768375 8.96e-04 2.84 2.05e-05 1.85 9.74e-06 1.23

K2 = 100 (w smoothing)
(40,20) 0.66667 9.174877799 1.71e-01 - 5.18e-02 - 2.02e-03 -
(80,40) 0.33333 9.425482368 8.49e-03 4.33 5.34e-04 6.60 2.71e-04 2.90

(160,80) 0.66667 9.436777317 6.97e-04 3.61 6.86e-05 2.96 1.91e-05 3.83
(320,160) 0.33333 9.437610473 4.71e-05 3.89 4.96e-06 3.79 1.25e-06 3.94
(640,320) 0.66667 9.437661793 2.97e-06 3.99 3.12e-07 3.99 7.89e-08 3.98

K3 = 119.75 (w/o smoothing)
(40,20) 0.98333 4.246070790 6.30e-01 - 6.19e-03 - 2.36e-03 -
(80,40) 0.96667 4.725424517 1.49e-01 2.08 3.03e-03 1.03 3.76e-04 2.65

(160,80) 0.93333 4.849020081 2.58e-02 2.53 5.97e-04 2.34 4.26e-05 3.14
(320,160) 0.86667 4.870124235 4.73e-03 2.45 1.82e-04 1.72 1.38e-06 4.95
(640,320) 0.73333 4.874586104 2.70e-04 4.13 4.08e-05 2.16 2.30e-06 -0.74

K3 = 119.75 (w smoothing)
(40,20) 0.98333 4.813475069 6.06e-02 - 1.73e-02 - 1.09e-03 -
(80,40) 0.96667 4.868931521 5.80e-03 3.39 1.58e-03 3.46 9.69e-05 3.49

(160,80) 0.93333 4.874470837 3.92e-04 3.89 1.06e-04 3.90 6.82e-06 3.83
(320,160) 0.86667 4.874832706 2.46e-05 3.99 6.73e-06 3.97 4.58e-07 3.90
(640,320) 0.73333 4.874854735 1.53e-06 4.01 4.22e-07 3.99 2.89e-08 3.98

Table 8: Convergence results for the price V and its ∆ and Γ at the strikes K1 = 80.25, K2 = 100,
K3 = 119.75, for solving the butterfly spread option, taking σ = 0.2. The grid alignment values α vary for
all three singular points on each grid refinement level as given in the table.

assuming the nonsmooth initial conditions are discretized to a high-order. Our analysis can be easily
extended to even higher order methods in the BDF family. Moreover, we have provided simple explicit

December 16, 2023



28 Dawei Wang, Christina Christara, Kirill Serkh

formulas for the discretization of the Dirac delta, Heaviside and ramp initial conditions as a high-order
smoothing mechanism, so that the discrete initial conditions are fourth-order accurate in the frequency
domain. The numerical results on convection-diffusion PDEs, and European digital call, call and butterfly
options show stable fourth-order convergence, and verify the correctness of our analysis. Furthermore,
the calculated solution derivatives exhibit fourth-order accuracy. Though this work is developed with
Black-Scholes PDE in mind, we note that the contribution of this paper is not only applicable to option
pricing problems, but also to more general parabolic PDEs with nonsmooth initial data.
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