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This paper presents a high-order deferred correction algorithm combined with penalty iter-

ation for solving free and moving boundary problems, using a fourth-order finite difference

method. Typically, when free boundary problems are solved on a fixed computational grid,

the order of the solution is low due to the discontinuity in the solution at the free boundary,

even if a high-order method is used. Using a detailed error analysis, we observe that the or-

der of convergence of the solution can be increased to fourth-order by solving successively

corrected finite difference systems, where the corrections are derived from the previously

computed lower order solutions. The corrections are applied solely to the right-hand side,

and leave the finite difference matrix unchanged. The penalty iterations converge quickly

given a good initial guess. We demonstrate the accuracy and efficiency of our algorithm

using several examples. Numerical results show that our algorithm gives fourth-order con-

vergence for both the solution and the free boundary location. We also test our algorithm

on the challenging American put option pricing problem. Our algorithm gives the expected

high-order convergence.
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1 Introduction

Free boundary problems, in which both the solution to a partial differential equation (PDE) and the domain

on which it is defined are unknowns to be solved for, arise in numerous applications of practical impor-

tance. Many free boundary problems, both with boundaries that move over time (called moving boundary

problems) and boundaries that are invariant with time, can be reformulated as linear complementarity

problems (LCPs) (see, for example, §8.5 of [7]), a few well-known examples being the elliptic obstacle

problem (see, for example, [24]) and the American option pricing problem (see, for example, [27]).

Two important categories for solving free boundary problems are the front tracking methods and the

fixed domain methods. Front tracking methods directly compute an approximation to the free boundary,

either at each time step in time-dependent problems, or iteratively in time-independent problems (as in,

for example, [26]). While the free boundary can be tracked parametrically or as an indicator function of

some set, the most common approaches are the level set method (see, for example, [25] for a survey),

in which the free boundary is represented as the zero level-set of a function which obeys an evolution

equation, and the phase-field method, in which the free boundary is approximated by a finite-width region

where a phase-field function smoothly changes sign across the region (see, for example, [1] for a survey).

The front-fixing method, in which the free boundary PDE is transformed into a nonlinear PDE with a

fixed boundary, is also considered to be a front tracking method (see, for example, [31]). Whatever the

particular method used, front tracking requires the construction of a separate algorithm for approximating

the front, derived from the underlying equations and constraints of the free boundary problem.

In contrast, fixed domain methods reformulate the problem over the whole of a fixed domain, and solve

the new equations in such a way that the position of the free boundary is returned simultaneously with the

solution to the PDE, and appears a posteriori as part of the solution process. Such methods have a repu-

tation for being robust and relatively straightforward to implement. The most widely-used fixed-domain

method is the penalty method, which incorporates the inequality constraint of the LCP into the PDE by

adding a nonlinear penalty term (see, for example, Ch. 1, §8 of [14]). The resulting penalized equation

can be solved by successive over-relaxation (SOR), which can be fairly expensive (see, for example, [8]);

this process can be accelerated by the multigrid method (see, for example, [6]). Remarkably, under certain

conditions, when Newton’s method is applied to the penalized PDE, the solution converges monotonically

and exhibits the rapid convergence characteristic of Newton’s method. However, while the discretized

equation is solved to high accuracy, the approximation of the discrete solution to the true solution of the

LCP is of low order, due to the disagreement between the free boundary and the fixed computational grid.

The problem of reconciling a nonconforming boundary with a fixed computational grid has been stud-

ied extensively, particularly in the context of front tracking methods for fluids and PDEs with smooth,

fixed boundaries. One of the earliest such methods is the immersed boundary method (IBM) of Peskin, in

which the boundary exerts an effect on a fluid, represented on a rectangular mesh, using approximations

to delta functions located on the nonconforming smooth boundary (see [23]). This method was extended

by Leveque and Li to the immersed interface method (IIM), which modifies the finite difference stencil

in the vicinity of the boundary to correct for error terms derived from the underlying Taylor expansions

(see [18]). In the explicit jump immersed interface method (EJIIM) proposed by Wiegmann and Bube,

the corrections of the IIM are applied directly in terms of the jumps in the solution and its derivatives.
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Importantly, when the jumps are known a priori, the corrections are applied to the right-hand side of the

discretized system of equations; when they are unknown, they are simultaneously solved for and used to

correct the solution in the same spirit as the IIM (see [28]). We note that the idea of applying corrections

to the right-hand side of the system was also suggested earlier by Fornberg and Meyer-Spasche in [12], in

which they proposed a method for eliminating the first term in the expansion of the error near the noncon-

forming boundary. The ghost cell method (GSM) proposed by Gibou, Fedkiw, and others [16], based on

the ghost fluid method (GFM) [10], is an alternative way of applying the jump corrections, in which ghost

points are defined near the boundary, and equations for their values are adjoined to the discretized system.

In [16], the authors observe that a second-order scheme can be constructed in which the discretized system

is symmetric, however, they also observe that the resulting finite difference matrices becomes nonsymmet-

ric for orders higher than two (see, for example, [15]). All of the aforementioned methods assume that the

jumps at the nonconforming interface are either known beforehand, or are determined by augmenting the

finite difference system with additional equations.

We present a method that does not augment or alter the finite difference matrix, and does not assume

that the jumps are known in advance. We describe a high order deferred correction type algorithm for

computing both the solution and the free boundary of an LCP. The idea is to derive the correction from

the solution itself, after it has already been computed without any correction, or with a correction of a

lower order. The correction is then applied to the right-hand side, and the problem is re-solved with the

same matrix to one order of accuracy higher than before. Two key ideas which we use to rigorously

justify this procedure are the smoothness of the error away from the free boundary, which justifies the

numerical differentiation and extrapolation of the solution to obtain the jumps, and the fact that the Green’s

function describing the error near the free boundary decreases like O(h) as the gridsize h goes to zero,

which is needed to show that the jump corrections are computed to a sufficiently high order. Since the

corrections are computed separately and are applied exclusively to the right hand side, the matrix of the

system to be solved is identical to the original finite difference matrix at each correction stage. In fact,

since the solution at the previous correction stage can be used as an initial guess to penalty iteration at

the subsequent stage, only one or two iterations are required for all correction stages after the first. The

jump corrections are computed to high order by one-sided finite differences and extrapolation, and the

location of the free boundary is determined, also to high order, from the solution by a combination of

Lagrange interpolation and Newton’s method. The deferred correction procedure can, at least in principle,

be continued to indefinitely high orders, although we only apply it to fourth-order. We also note that the

principles behind our deferred correction method are completely general, in the sense that they could be

applied to essentially any free boundary problem formulated as an LCP. We demonstrate the effectiveness

of the method on several examples with a one-dimensional space component, with and without a time

component. We also apply our method to the well-known problem of pricing American put options.
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2 Preliminaries

2.1 The LCP formulation of free and moving boundary problems

One form of the variational inequality representation of a free boundary problem in one dimension is















∂tV̂ − LV̂ − g ≥ 0,

V̂ − V ∗ ≥ 0,

(∂tV̂ −LV̂ − g) · (V̂ − V ∗) = 0,

(1)

see, for example [14], where L is a second-order differential operator

L = p(t, S)
∂2

∂S2
+ w(t, S)

∂

∂S
+ z(t, S), (2)

V ∗(t, S) is a given function, sometimes called the obstacle function or the payoff function, and p, w, z

and g = g(t, S) are also given functions. Problem (1) is also called a linear complementarity problem.

Note that all three relations in (1) need to be satisfied. The solution of (1) is separated into two parts by

a moving boundary Sf(t). The goal is to find the solution V̂ = V̂ (t, S) such that either V̂ − V ∗ > 0 and

∂tV̂ −LV̂ −g = 0, on what we call the PDE region of the solution, or ∂tV̂ −LV̂ −g ≥ 0 and V̂ −V ∗ = 0,

on what we call the penalty region of the solution.

In elliptic obstacle problems, the ∂t term disappears in the above formulation, and L is an elliptic

operator. That is, the problem becomes















−LV̂ − g ≥ 0,

V̂ − V ∗ ≥ 0,

(−LV̂ − g) · (V̂ − V ∗) = 0,

(3)

In the American option pricing problems, ∂t−L is the famous Black-Scholes operator with L = LBS and

LBS ≡ σ2S2

2
∂SS + (r − d)S∂S − r, (4)

where S is the underlying asset price, r is the risk-free rate, d is the dividend rate of the underlying asset,

σ is the volatility, and t is the backward time from expiry. Typical payoff functions are

V ∗(S) = max{S −K, 0} or V ∗(S) = max{K − S, 0}

for the American call and put options, respectively. Note that for American put and call options, the

obstacle function is not time dependent. It can be shown that the solution is only piecewise smooth, and

the value matching and smooth pasting conditions

V̂ (t, Sf (t)) = V ∗(Sf(t)),
∂V̂

∂S
(t, Sf(t)) =

∂V ∗

∂S
(Sf (t)), (5)
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hold at the moving boundary (see, for example [29]), while the second derivative is discontinuous at Sf(t).

We see that the solution is only C1 in space.

There has been much work that tries to achieve high-order convergence for solving the American op-

tion pricing problems. Nonuniform-mesh techniques have been proposed to deal with the nonsmoothness

in the solution at the undetermined exercise boundary [22, 9]. In the work by Oosterlee and Leentvaar [22],

the authors propose to use fourth-order finite differences in space and BDF4 in time, together with time-

dependent grid-stretching in a predictor-corrector type scheme to achieve fourth-order accuracy. However,

the authors of [22] did not provide numerical results on the convergence order for American options. In

this paper, we develop a general deferred correction algorithm using fourth-order finite difference method

in space and BDF4 in time for solving free and moving boundary problems.

2.2 Penalty method for solving the LCP

In this paper, we solve the LCP using the penalty method as discussed in [13]. We approximate (1) by the

penalized nonlinear PDE

∂tV = LV + g + ρmax{V ∗ − V, 0}, (6)

for moving boundary problems, and

LV + g + ρmax{V ∗ − V, 0} = 0, (7)

for free boundary problems, where ρ is a large positive penalty parameter, L is defined in (4), and V ∗

is the payoff function, as defined in Section 2.1, which also serves as the initial condition for PDE in

(6). When ρ → ∞, either V − V ∗ ≥ 0 or V ∗ = V + ǫ for 0 < ǫ ≪ 1, where ǫ = O(ρ−1) and

ρmax{V ∗ − V, 0} is bounded, see [14]. Using a finite volume discretization and applying the generalized

Newton’s iteration, also referred to as discrete penalty iteration, to the discretized PDE, the authors of [13]

are able to prove monotonic convergence and finite termination of the algorithm under certain conditions.

Moreover, second-order convergence can be obtained with an adaptive time step selector.

3 Discretization, jump corrections and error analysis

3.1 Discretization of the penalized equation

In this section, we describe the discretization of (7) and (6), which will later lead to the formulation of a

penalty iteration method for solving (7) and (6), similar to the second-order penalty method introduced in

[13]. Unlike [13], we use fourth-order finite difference space discretization and BDF4 time-stepping in

order to obtain high-order accuracy.

Consider a discretized domain S0 < S1 < · · · < SM+1 where S0 and SM+1 represent the left and

right boundary respectively. Let Ṽ n
j ≈ V (tn, Sj) be the finite difference approximation to the true solution

V (t, S) of (6) at time tn, and space point Sj . We drop the superscript n when time is irrelevant. On a

uniform grid with grid size h, the fourth-order finite difference approximation to ∂2V
∂S2 (t, Sj) is given by the
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operator

D2
4Vj ≡

1

12h2
(−Vj−2 + 16Vj−1 − 30Vj + 16Vj+1 − Vj+2),

for 2 ≤ j ≤ M − 1, and

D2
4V1 ≡

1

12h2
(10V0 − 15V1 − 4V2 + 14V3 − 6V4 + V5),

for j = 1, and similarly for j = M . On a nonuniform grid, the finite difference weights can be obtained by

the method of undetermined coefficients in a stable way (see, for example, [11]). We denote the generic

fourth-order finite difference approximation to ∂2V
∂S2 at point Sj to be

D2
4Vj ≡ c−2Vj−2 + c−1Vj−1 + c0Vj + c1Vj+1 + c2Vj+2,

where we abuse notation here and denote the finite difference coefficients at the points xj−2, xj−1, xj ,

xj+1, xj+2 by c−2, c−1, c0, c1, c2, respectively, for the finite difference approximation at xj . Fourth-

order finite difference discretization of the first derivative ∂V
∂S

(t, Sj) can be obtained similarly using a

five-point stencil, which we omit for brevity.

Let S denote the vector of the interior grid points, i.e. S = [S1, . . . , SM ]T . Assuming Dirichlet

boundary conditions, the fourth-order finite differences above give us the space discretization of ∂SSV

and ∂SV

∂V

∂S
(t,S) ≈ L̄1Ṽaug,

∂2V

∂S2
(t,S) ≈ L̄2Ṽaug,

where Ṽaug ≡ [Ṽ0, Ṽ1, . . . , ṼM+1]
T is the finite difference solution vector, L̄1 and L̄2 are M × (M + 2)

matrices with the coefficients of the corresponding finite difference stencil on each row. Let L be an

M ×M matrix defined by

L ≡ PL2 +WL1 + Z, (8)

where L2 and L1 are M × M matrices from the interior columns of L̄2 and L̄1, respectively, and P, W,

and Z are diagonal matrices with diagonal entries [P]jj = p(t, Sj), [W]jj = w(t, Sj), and [Z]jj = z(t, Sj)

for j = 1, . . . ,M . Then the discretization of LV + g becomes

LV (t,S) + g(t,S) ≈ LṼ + b,

where Ṽ ≡ [Ṽ1, Ṽ2, . . . , ṼM ]T , and

b =p(t, S0)V (t, S0)L̄2[:, 1] + w(t, S0)V (t, S0)L̄1[:, 1]

+ p(t, SM+1)V (t, SM+1)L̄2[:,M + 2] + w(t, SM+1)V (t, SM+1)L̄1[:,M + 2] + g(t,S),

which is a vector that incorporates the boundary conditions, where L̄1[:, j] and L̄2[:, j] denote the j-th
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columns of L̄1 and L̄2, respectively. The penalty term in (6) and (7) can be discretized by

q(Ṽ) ≡ ρI
Ṽ
(V∗ − Ṽ) (9)

where V∗ = [V ∗
1 , V

∗
2 , . . . , V ∗

M ]T is the vector of the payoff function values on the grid points S1 to SM ,

and I
Ṽ

is a diagonal matrix whose diagonal entries are

[I
Ṽ
]i,i =







1, V ∗
i > Ṽi,

0, else.
(10)

Therefore, we obtain the discretization of the right-hand side of (6),

LV (t,S) + g(t,S) + ρmax{V ∗(S)− V (t,S), 0} ≈ LṼ + b+ q(Ṽ). (11)

Assuming BDF4 uniform time discretization, and defining

A ≡ 25

12
I− kL, (12)

the complete discretization of (6) including time stepping follows the rule

AṼn+4 = 4Ṽn+3 − 3Ṽn+2 +
4

3
Ṽn+1 − 1

4
Ṽn + kbn+4 + kq(Ṽn+4), (13)

where k is time step size, I is the identity matrix of size M × M , and the superscript n means the n-th

time step. We also obtain the discretization of (7) as

LṼ + b+ q(Ṽ) = 0. (14)

Systems (13) and (14) are nonlinear systems due to the presence of the penalty term, and we solve them

using the penalty iteration described in [13].

We note that, at this point, we do not specify the choice of ρ in the terms q(Ṽn+4) and q(Ṽ) in (13)

and (14), respectively. This will be discussed in Subsection 4.2.

3.2 Finite difference approximation on a nonsmooth but piecewise smooth function

As has been mentioned in the previous section, the solution of the LCP has a discontinuous second deriva-

tive at the free boundary at all times. This is a major factor that causes the degeneracy of convergence

rate when using the finite difference method on uniform grids. Since the finite difference approximation

is based upon Taylor expansions, a certain level of smoothness has to be assumed in order to obtain the

corresponding accuracy. When this smoothness requirement is not satisfied even at a single point, the

truncation error will be contaminated by an additional error, and propagated to other points in the solution

through the Green’s function, as we will see later. The analysis of this section is similar to the analysis of

Li [20], and Wiegmann and Bube [28], except that it is applied to our particular high-order finite difference
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operator.

To analyze the impact of piecewise smoothness on the finite difference approximation, consider a

piecewise smooth function

f(x) =







v(x), x+ δ > 0,

u(x), x+ δ ≤ 0,
(15)

such that u(−δ) = v(−δ) and u′(−δ) = v′(−δ), where δ is a positive constant. In addition, suppose that

u(x) and v(x) admit smooth extensions, i.e., u(x) is well defined and can be smoothly extended to the

domain x > −δ, and similarly v(x) can be smoothly extended to x < −δ. Let {xj} be a grid with xi < xj

for i < j, and with x−1 < −δ < x0 = 0. An example graph of function f(x) with grid points x−2 to

x2 is shown in Figure 1. We want to approximate the second derivative of f(x) at grid points around the

nonsmooth position x = −δ.

(a) f(x) (b) f ′(x) (c) f ′′(x)

Figure 1: An example graph of a nonsmooth function with a point of discontinuity of the second derivative

at x = −δ

3.2.1 Second-order finite difference scheme

For notational convenience, we give a detailed derivation only for the second-order method. Derivations

for the fourth-order method follow similarly. We pick the grid and location of the nonsmooth point only

for the ease of demonstration. The following derivation is generalizable to any other function of the same

form, irrespectively of where the nonsmooth point is located. When using a second-order finite difference

method to approximate the second derivative of f(x) at point x = x0 = 0, we are actually computing

D2f0 =
1

h̄0

[

1

h0
u−1 −

(

1

h0
+

1

h1

)

v0 +
1

h1
v1

]

, (16)

where uj , vj denote u(xj), v(xj) respectively, D2 represents the standard centered three-point finite-

difference operator, hj = xj − xj−1, and h̄j = (hj + hj+1)/2. Note that the value of u(x−1) instead

of v(x−1) is used for the left-most stencil point in (16). This is because the finite difference operator
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is applied to f(x), which is equal to u(x−1) at point x−1. However, the correct (in the sense that it is

second-order accurate) approximation to the second derivative at the point x0 should be

D2v0 =
1

h̄0

[

1

h0
v−1 −

(

1

h0
+

1

h1

)

v0 +
1

h1
v1

]

, (17)

where we recall the assumption that v(s) has smooth extension for x < −δ. Note that u−1 in the formula

D2f0 is replaced by v−1 in the formula D2v0. The other problematic point is at x = x−1 = −h0, where

we approximate the derivative by

D2f−1 =
1

h̄−1

[

1

h−1
u−2 −

(

1

h−1
+

1

h0

)

u−1 +
1

h0
v0

]

,

rather than the second-order accurate finite difference

D2u−1 =
1

h̄−1

[

1

h−1
u−2 −

(

1

h−1
+

1

h0

)

u−1 +
1

h0
u0

]

.

The points x−1 and x0 are the only problematic points for a second-order method. The degeneracy of the

finite difference approximation accuracy comes from the inconsistency between the formulas for D2f0
and D2v0, and between D2f−1 and D2v−1.

The following theorem describes the relationship between D2f0, D2f−1 and D2v0, D2u−1, respec-

tively, in terms of the jumps of u(x) and v(x) at point x = −δ, and quantifies the degeneration of accuracy.

Theorem 3.1. Suppose f(x) is given by (15), where f(x) = v(x) for x > −δ and f(x) = u(x) for

x ≤ −δ, with u(−δ) = v(−δ) and u′(−δ) = v′(−δ), where u(x) and v(x) admit smooth extensions.

Consider the functions on a grid {xj} with xi < xj for i < j, and with x−1 < −δ < x0 = 0. Then,

D2f0, D
2f−1 and D2v0, D

2u−1 satisfy the relations

D2v0 = D2f0 −
(h0 − δ)2

h0(h0 + h1)
(u′′

δ − v′′δ ) +
(h0 − δ)3

3h0(h0 + h1)
(u′′′

δ − v′′′δ )

− (h0 − δ)4

12h0(h0 + h1)
(u′′′′

δ − v′′′′δ ) +O(h3),

(18)

and

D2u−1 = D2f−1 +
δ2

h0(h−1 + h0)
(u′′

δ − v′′δ ) +
δ3

3h0(h−1 + h0)
(u′′′

δ − v′′′δ )

+
δ4

12h0(h−1 + h0)
(u′′′′

δ − v′′′′δ ) +O(h3),

(19)

where h = max{h0, h1}, and the subscript δ denotes the quantities at the nonsmooth point x = −δ, e.g.

u′′
δ = u′′(−δ).
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Proof. Subtracting (16) from (17), we get

D2f0 = D2v0 +
2

h0(h0 + h1)
(u−1 − v−1). (20)

Applying Taylor expansions for functions u(x) and v(x) around x = −δ, we have

u−1 = uδ − (h0 − δ)u′
δ +

(h0 − δ)2

2
u′′
δ −

(h0 − δ)3

6
u′′′
δ +

(h0 − δ)4

24
u′′′′
δ +O((h0 − δ)5),

v−1 = vδ − (h0 − δ)v′δ +
(h0 − δ)2

2
v′′δ −

(h0 − δ)3

6
v′′′δ +

(h0 − δ)4

24
v′′′′δ +O((h0 − δ)5),

which gives

u−1 − v−1 =
(h0 − δ)2

2
(u′′

δ − v′′δ )−
(h0 − δ)3

6
(u′′′

δ − v′′′δ )

+
(h0 − δ)4

24
(u′′′′

δ − v′′′′δ ) +O((h0 − δ)5),

(21)

using the assumptions that uδ = vδ and u′
δ = v′δ. Substituting (21) into (20), we get (18). Following a

similar derivation, we get (19).

3.2.2 Fourth-order finite difference scheme

In the previous section, we use the second-order approximation as a convenient way to demonstrate the

essential relations that lead to our method. In this paper, we focus on high-order methods. Following

exactly the same derivation procedure, we can arrive at similar formulas for fourth-order methods. The

main difference between the second-order and fourth-order FDs is that in the fourth-order FDs there are

four problematic points, namely x−2, x−1, x0, x1, instead of just two. Let the finite difference coefficients

at the points xj−2, xj−1, xj , xj+1, xj+2 be denoted by c−2, c−1, c0, c1, c2, respectively, for the finite

difference approximation at xj . We give the following theorem for fourth-order discretization.

Theorem 3.2. Under the same assumptions as in Theorem 3.1, we have that D2
4u−2, D

2
4u−1, D

2
4v0, D

2
4v1
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satisfy the relations

D2
4u−2 = D2

4f−2 + c2
δ2

2
(u′′

δ − v′′δ ) + c2
δ3

6
(u′′′

δ − v′′′δ ) + c2
δ4

24
(u′′′′

δ − v′′′′δ ) +O(h3), (22)

D2
4u−1 = D2

4f−1 +

(

c1
δ2

2
+ c2

(h1 + δ)2

2

)

(u′′
δ − v′′δ ) (23)

+

(

c1
δ3

6
+ c2

(h1 + δ)3

6

)

(u′′′
δ − v′′′δ )

+

(

c1
δ4

24
+ c2

(h1 + δ)4

24

)

(u′′′′
δ − v′′′′δ ) +O(h3),

D2
4v0 = D2

4f0 −
(

c−2
(h−1 + h0 − δ)2

2
+ c−1

(h0 − δ)2

2

)

(u′′
δ − v′′δ ) (24)

+

(

c−2
(h−1 + h0 − δ)3

6
+ c−1

(h0 − δ)3

6

)

(u′′′
δ − v′′′δ )

−
(

c−2
(h−1 + h0 − δ)4

24
+ c−1

(h0 − δ)4

24

)

(u′′′′
δ − v′′′′δ ) +O(h3),

D2
4v1 = D2

4f1 − c−2
(h0 − δ)2

2
(u′′

δ − v′′δ ) + c−2
(h0 − δ)3

6
(u′′′

δ − v′′′δ ) (25)

− c−2
(h0 − δ)4

24
(u′′′′

δ − v′′′′δ ) +O(h3),

where h = max{h−1, h0, h1}.

Proof. From the approximation equations, we easily see that

D2
4f−2 = D2

4u−2 + c2(v0 − u0),

D2
4f−1 = D2

4u−1 + c1(v0 − u0) + c2(v1 − u1),

D2
4f0 = D2

4v0 + c−2(u−2 − v−2) + c−1(u−1 − v−1),

D2
4f1 = D2

4v1 + c−2(u−1 − v−1).

Then, expressing the quantities u−2 − v−2, u−1 − v−1, v0 − u0, v1 − u1, by applying Taylor expansions

to u−2, v−2, u−1, v−1, v0, u0, v1, u1 about the point x = −δ, exactly as in the proof of Theorem 3.1, we get

the desired relations.

From Theorems 3.1 and 3.2, we see that, since cj = O(1/h2) and δ = O(h), dominant O(1) terms

appear in the truncation errors. Therefore, the second derivative approximations have degenerated orders

of accuracy, regardless of the order of discretization. In order to achieve the desired order of accuracy,

we have to eliminate the remainder terms. This can be done by adding corrections. We call the right-

hand side terms of Equations (22)–(25) that are added to D2
4fj the correction terms to the finite difference

approximation of the second derivatives at x−2 to x1. For example, we call c2
δ2

2
(u′′

δ − v′′δ ) + c2
δ3

6
(u′′′

δ −
v′′′δ ) + c2

δ4

24
(u′′′′

δ − v′′′′δ ) the correction terms to D2
4f−2 at x−2. We will also refer to u′′

δ − v′′δ , u′′′
δ − v′′′δ and

u′′′′
δ − v′′′′δ as derivative jumps.
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3.2.3 Modifying the finite differences with approximate corrections

The order of the FDs at the problematic points x−2 to x1 is determined by the dominant error term in

the corrections. If we were able to apply the exact corrections using Equations (22)–(25), we would

fully recover the fourth-order convergence of the FDs at the four problematic points x−2 to x1. However,

in this work, we assume that the exact free boundary location and the derivative jumps are not known

a priori. They are instead approximated using a previously computed O(hℓ) solution, as we describe

later. Therefore, we replace the exact free boundary and derivative jumps in the correction terms by the

approximated ones. The accuracies of the corrected FDs depend on the accuracy of the approximate free

boundary and derivative jumps.

To see how the order of accuracy of the free boundary and derivative jumps affect the correction,

suppose that the free boundary is known exactly. Then, it is obvious that O(hℓ) derivative jumps will give

rise to O(hℓ) corrections. On the other hand, suppose that the derivative jumps are known exactly, but we

are given an approximate free boundary equal to δ +O(hℓ) with 1 ≤ ℓ ≤ 3. It is important to notice that

the approximate free boundary introduces an extra source of error in the correction terms. To see this, we

take one point, x−2, for example. The finite difference scheme with approximate correction terms becomes

D2
4f−2 + c2

(δ +O(hℓ))2

2
(u′′

δ − v′′δ ) + c2
(δ +O(hℓ))3

6
(u′′′

δ − v′′′δ )

+ c2
(δ +O(hℓ))4

24
(u′′′′

δ − v′′′′δ )

=D2
4f−2 +

(

c2
δ2

2
+O(hℓ−1)

)

(u′′
δ − v′′δ ) +

(

c2
δ3

6
+O(hℓ)

)

(u′′′
δ − v′′′δ )

+

(

c2
δ4

24
+O(hℓ+1)

)

(u′′′′
δ − v′′′′δ )

=D2
4f−2 + c2

δ2

2
(u′′

δ − v′′δ ) + c2
δ3

6
(u′′′

δ − v′′′δ ) + c2
δ4

24
(u′′′′

δ − v′′′′δ )

+O(hℓ−1)(u′′
δ − v′′δ ) +O(hℓ)(u′′′

δ − v′′′δ ) +O(hℓ+1)(u′′′′
δ − v′′′′δ )

=D2
4u−2 +O(hℓ−1)(u′′

δ − v′′δ ) +O(hℓ)(u′′′
δ − v′′′δ ) +O(hℓ+1)(u′′′′

δ − v′′′′δ ) +O(h3).

(26)

Equation (26) implies that, when applying corrections using an approximate free boundary, the correction

terms produce additional errors that are one order lower than the accuracy of the approximate free bound-

ary. In order to improve the order of accuracy of the finite difference scheme by adding back the correction

terms, we see that ℓ has to satisfy ℓ ≥ 2, because if ℓ = 1, the leading order term of the corrections on the

right-and side of (26) is still of constant order O(hℓ−1) = O(1). Therefore, we require the approximate

derivative jumps and the free boundary location to be of at least O(h) and O(h2), respectively, in order to

increase the order of accuracy of the corrected finite differences to first-order, O(h2) and O(h3) to increase

the order of accuracy to second-order, and so on.
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3.3 Convergence of the fourth-order finite difference space discretization and its error propagation

through the Green’s function

3.3.1 Boundary value problems

In the previous section, we derived the correction terms for the finite difference approximations of deriva-

tives of a nonsmooth but piecewise smooth function. Unless the values of u′′
δ − v′′δ , u′′′

δ − v′′′δ , u′′′′
δ − v′′′′δ

are known, we cannot make use of these formulas directly to obtain fourth-order convergence. To solve

this problem, we use a deferred correction approach, and successively compute the approximate deriva-

tives from the lower-order solutions that are already known, and make sure to match up the orders of

solutions and orders of corrections. In order to decide how much accuracy is required for the derivative

approximation to result in corrections of the required order, we need to understand the error behaviour.

We consider boundary value problems that are time-independent, i.e., we consider (3) so that we can

leave the complexity of time evolution for later discussion. To analyze the error behavior of the space

discretization scheme, we consider the finite difference approximation of the PDE in (7) given by (14).

The theorem below describes the error behaviour of the fourth-order finite difference scheme applied

to (7), and how the nonsmoothness at the free boundary causes the convergence order of the fourth-order

difference scheme to degenerate.

Proposition 3.1. Consider the penalized PDE (7) with V (S) being its exact solution, and the original LCP

(3) with V̂ (S) being its exact solution. Suppose that the first m+1 points V̂ (S0), V̂ (S1), . . . , V̂ (Sm) lie on

the penalty region, i.e. V̂ (Sj) = V ∗(Sj) = V (Sj)±ǫ for 0 ≤ j ≤ m, with 0 < ǫ ≪ 1 being approximately

the size of the stopping tolerance set in the penalty iteration, and V̂ (Sj) > V ∗(Sj), V (Sj)± ǫ > V ∗(Sj),

for m + 1 ≤ j ≤ M + 1. Assume also that the approximate solution Ṽ of the penalty iteration exactly

recovers I
V̂

, i.e., I
Ṽ
= I

V̂
. Then, the error, e = [V̂ (S1)− Ṽ1, V̂ (S2)− Ṽ2, . . . , V̂ (SM)− ṼM ]T , of the

fourth-order finite difference scheme in (14) for solving the penalized PDE (7) satisfies

(L− ρI
V̂
)e = γ+

m+2
∑

j=m−1

O(1)1j +

M
∑

j=1

O(h4)1j ≡ r, (27)

when the grid point Sm is not exactly on the free boundary, i.e. Sm < Sf , where 1j is the j-th column of

an M × M identity matrix, and [γ]j = (LV̂ (Sj) + g(Sj))11≤j≤m, for j = 1, . . . ,M , where 11≤j≤m is

the indicator function, which is one when 1 ≤ j ≤ m and zero otherwise. When Sm is exactly on the free

boundary, i.e., Sm = Sf , the sum in the second summation term is taken from j = m− 1 to m+ 1.

Proof. Since S0, S1, . . . , Sm lie on the penalty region and we assume Dirichlet boundary conditions, I
V̂

is an M ×M diagonal matrix with the diagonal elements (I
V̂
)
i,i

= 1 for i = 1, . . . , m and (I
V̂
)
i,i

= 0

for i = m+ 1, . . . ,M . Hence, from the assumption that I
Ṽ
= I

V̂
, we have

q(Ṽ) = ρ[V ∗(S1)− Ṽ1, . . . , V
∗(Sm)− Ṽm, 0, . . . , 0]

T

= ρ[V̂ (S1)− Ṽ1, . . . , V̂ (Sm)− Ṽm, 0, . . . , 0]
T

= ρI
Ṽ
e,

(28)
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Assume Sm < Sf , i.e. the grid point Sm is not exactly on the free boundary. The proof for the case when

Sm = Sf is similar.

From Theorem 3.2 for fourth-order discretization, we apply the discrete L operator to the true solution

V̂ ≡ V̂ (S) to get

LV̂ + b =

M
∑

j=1

(

LV̂ (Sj) + g(Sj) +O(h4)
)

1j +

m+2
∑

j=m−1

O(1)1j ≡ LV̂ (S) + g(S) + θ,

θ ≡
m+2
∑

j=m−1

O(1)1j +

M
∑

j=1

O(h4)1j .

(29)

Since LV̂ + g = 0 for Sm+1 ≤ S ≤ SM , and using (29), we have

LV̂ + b = LV̂ (S) + g(S) + θ = γ+ θ. (30)

Subtracting (14) from (30) and applying (28), we get

L(V̂ − Ṽ)− q(Ṽ)− γ− θ = (L− ρI
V̂
)e− γ− θ = 0.

Therefore, the error satisfies

(L− ρI
V̂
)e = γ+

m+2
∑

j=m−1

O(1)1j +
M
∑

j=1

O(h4)1j.

Proposition 3.1 identifies the error equation e = (L − ρI
Ṽ
)−1r. The following proposition tells us

how the operator (L− ρI
Ṽ
)−1 behaves.

Proposition 3.2. Consider the partitioning of the matrix L representing the discretization of (2) and de-

fined in (8) as

L =

[

L11 L12

L21 L22

]

, (31)

where the submatrices L11, L12, L21, L22 are of sizes m × m, m × (M − m), (M − m) × m and

(M − m) × (M − m) respectively, and m is such that Sm ≤ Sf . Assume L11 and L22 are nonsingular,

and ρ is a positive number such that ρ ≫ maxij{|Li,j|}. Assume also that maxj{|[L−1
22 ]1,j|} = O(h2),

maxj{|[L−1
22 ]2,j |} = O(h2), maxi{|[L−1

22 ]i,1|} = O(h2), and maxi{|[L−1
22 ]i,2|} = O(h2). Let I be a

diagonal matrix such that (I)i,i = 1 for i = 1, . . . , m, (I)i,i = 0 for i = m+1, . . . ,M . Then (L− ρI)−1

has the approximation

(L− ρI)−1 ≈
[

0 0

0 L−1
22

]

. (32)
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Remark 3.1. We denote (L22)
−1 by L−1

22 for notation simplicity.

Proof. Since L11, L22 are nonsingular, the exact inverse matrix of L− ρI is

(L− ρI)−1 =

[

B −BL12L
−1
22

−L−1
22 L21B L−1

22 + L−1
22 L21BL12L

−1
22

]

,

where B = (L11 − ρI− L12L
−1
22 L21)

−1, and I is the identity matrix of size m×m. Note that L12 and L21

have only three nonzero entries in the lower-left and upper-right corners, respectively, and all these entries

are O(1/h2). The assumptions of the proposition together with the special form of L12 and L21 lead to

L12L
−1
22 L21 have only four nonzero entries in the lower-right 2 × 2 corner and these entries be O(1/h2).

Since ρ ≫ maxij{|Li,j|} = O(1/h2), we have B ≈ −1
ρ
I. Therefore,

(L− ρI)−1 ≈
[

−1
ρ
I 1

ρ
L12L

−1
22

1
ρ
L−1

22 L21 L−1
22 − 1

ρ
L−1

22 L21L12L
−1
22

]

≈
[

0 0

0 L−1
22

]

,

where we have also taken into account that, due to the special form of L21 and L12, each entry of

L−1
22 L21L12L

−1
22 is composed as the sum of two terms of O(1).

Remark 3.2. Note that L22 behaves as the fourth-order finite difference discretization of L on the grid

Sm+1, Sm+2, . . . , SM with Sm and SM+1 as the boundary points. As such, the assumptions in the

proposition that maxj{|[L−1
22 ]1,j|} = O(h2), maxj{|[L−1

22 ]2,j|} = O(h2), maxi{|[L−1
22 ]i,1|} = O(h2), and

maxi{|[L−1
22 ]i,2|} = O(h2) are typically true, under some conditions for the coefficients p, w, z and the

grid spacing. See, for example, Proposition 3.3 below.

Let r be defined as in Proposition 3.1 and rm+1:M denote the subvector of r starting from entry m + 1 to

M . We then have the following theorem.

Theorem 3.3. Under the same assumptions as in Proposition 3.2 and the assumption that I
Ṽ

= I
V̂

,

when using the fourth-order finite difference scheme in (14) to solve the penalized PDE (7), the error

satisfies

e ≈
[

0

L−1
22 rm+1:M

]

.

Proof. The theorem is easily obtained from Propositions 3.1 and 3.2.

Theorem 3.3 shows that the penalty method obtains the exact solution within a pre-specified tolerance

O(1/ρ) on the penalty region, while, on the PDE region, where the solution satisfies the PDE (7), the

error is given by L−1
22 rm+1:M . Note also that, on a uniform grid with step size h, L−1

22 can be thought of

as the finite difference analogue of the continuous Green’s function of L on the PDE region, scaled by h
2
.

Therefore, we have

e ≈
M
∑

j=m+1

rj

[

0

[L−1
22 ]:,j

]

≈
M
∑

j=m+1

rj
h

2

[

0

G(S2, Sj)

]

, (33)
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where G(S2, Sj) is a column vector of Green’s function values G(S, Sj) at points S2 ≡ {Sm+1, . . . , SM}.

To visualize the size of entries of L−1
22 and its relation to the continuous Green’s function, Figure 2

gives the first three columns of −L−1
22 and the corresponding −h

2
G(S, Sm+j), for j = 1, 2 and 3, for the

operator LBS given by Equation (4), on an example nonuniform grid where the free boundary is located

at Sm < Sf = 89.748 < Sm+1. We can see that [L−1
22 ]:,j and h

2
G(S, Sm+j) behave similarly.

100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

-L
22

-1
[:,1]

-L
22

-1
[:,2]

-L
22

-1
[:,3]

100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

(a) The first 3 columns of −L−1
22 (b) The continuous Green’s function −h

2
G(S, Sj)

Figure 2: (a) The first three columns of −L−1
22 on an example uniform grid of size h = 1.25; (b) The scaled

continuous Green’s function −h
2
G(S, Sj) for the operator LBS at Sm+1, Sm+2, Sm+3 and for S ≥ Sm+1.

The free boundary location is Sf = 89.748.

In order to analyze the error behavior, we turn to understanding the properties of the Green’s function

G(S, Sj), which is easier to investigate than its discrete analogue L−1
22 . The following proposition gives

the exact expression of the Green’s function to a general operator.

Proposition 3.3. Suppose that Tu(x) = 0 is a constant-coefficient, second-order homogeneous differen-

tial equation defined on the domain [a, b]. Let u(x) = c1e
ξ1x + c2e

ξ2x denote the general solution to this

equation. Suppose further that ξ1 and ξ2 are real and ξ1 6= ξ2. Then, the Green’s function for the operator

T is

G(x, x̄) =















e(ξ2−ξ1)b − e(ξ2−ξ1)x̄

(ξ2 − ξ1)eξ2x̄ (e(ξ2−ξ1)b − e(ξ2−ξ1)a)

(

eξ2x − e(ξ2−ξ1)a+ξ1x
)

, a ≤ x < x̄,

e(ξ2−ξ1)a − e(ξ2−ξ1)x̄

(ξ2 − ξ1)eξ2x̄ (e(ξ2−ξ1)b − e(ξ2−ξ1)a)

(

eξ2x − e(ξ2−ξ1)b+ξ1x
)

, x̄ ≤ x ≤ b.

(34)

Moreover, for any x ∈ [a, b], we have

G(x, x̄) = O(x̄− a), as x̄ → a.

Proof. The computation of the Green’s function follows the standard procedure and we omit it. When

x̄ ≤ x ≤ b, we have

e(ξ2−ξ1)a − e(ξ2−ξ1)x̄ = e(ξ2−ξ1)a
(

1− e(ξ2−ξ1)(x̄−a)
)

≈ (ξ1 − ξ2)(x̄− a)e(ξ2−ξ1)a = O(x̄− a),
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as x̄ → a. When a ≤ x ≤ x̄, we have

eξ2x−e(ξ2−ξ1)a+ξ1x = eξ2a
(

eξ2(x−a)−eξ1(x−a)
)

≈ eξ2a(ξ2−ξ1)(x−a) ≤ eξ2a(ξ2−ξ1)(x̄−a) = O(x̄−a),

as x̄ → a. Therefore, we see that G(x, x̄) = O(x̄− a) as x̄ → a for all a ≤ x ≤ b.

From Proposition 3.3, with a = Sf , and x̄ = Sm+1 or x̄ = Sm+2, we have, for S > Sf , G(S, Sm+1) =

O(Sm+1−Sf ) = O(h), and G(S, Sm+2) = O(Sm+2−Sf ) = O(h) as h → 0. For a visual demonstration

of property, Figure 3 gives an illustration of Green’s function for a hypothetical second-order differential

equation on two successive grid refinements.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

Figure 3: Illustration of Green’s functions on two successive grid refinements S(1),S(2), for the second-

order differential operator −u′′ + u in [0.1, 1], with Sf = 0.123.

The following theorem is a key point in the success of the method presented in Section 4.

Theorem 3.4. Under the same assumptions as in Theorem 3.3, we have that the error ei at Si, for i ≥ m+1,

is

ei ≈ O(h)G(Si, Sm+1) +O(h)G(Si, Sm+2) = O(h2), (35)

and it is smooth for i ≥ m+ 2.

Proof. We first note that rm+1 = O(1), rm+2 = O(1), and rj = O(h4), for j ≥ m + 3. Therefore, from

relation (33), we have

e ≈ O(h)

[

0

G(S2, Sm+1)

]

+O(h)

[

0

G(S2, Sm+2)

]

+

M
∑

j=m+3

O(h5)

[

0

G(S2, Sj)

]

. (36)

Since the summation terms in (36) are negligible compared to the O(h)-coefficient terms, and since

G(S2, Sj) = O(h) for j ≥ m+1, as shown in Proposition 3.3, relation (35) is proved. Further, from Propo-
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sition 3.3, it is clear that the Green’s functions G(S, Sj) are piecewise smooth with first-derivative jumps

at points Sj , and smooth for S ≥ Sm+2. This proves the smoothness of the error ei for i ≥ m+ 2.

Remark 3.3. The matrix L in (8) representing the discretization of (2) by a high-order method does not

satisfy the M-property, and it is not diagonally dominant. However, by numerical experiments for the

cases of coefficient functions in (2) and grid spacings considered in this paper, we noticed that each of

−L and −L + ρI have non-negative inverses, i.e. they are monotone. While we do not derive conditions

under which the matrices are monotone, we note that a high-order method does not preclude monotonicity

[2, 5]. Notice also that Figure 2, that plots the first three columns of −L−1
22 , which is the dominant part

of (−L + ρI)−1, supports the conjecture that −L + ρI is monotone. We also note that, while the M-

property and diagonal dominance of the matrix are common arguments used in the convergence study of

the penalty iteration [13, 4], in both these references, it is argued that such conditions are only sufficient

and not necessary.

3.3.2 Initial value problems

When the time variable is included, the analysis becomes more involved. However, the conclusions are

similar to the ones for boundary value problems. In this section, we study the single step error behavior

when we solve (6) using fourth-order finite difference discretization and BDF4 time-stepping. While the

stability analysis is important, we observed empirically that our time-stepping scheme is generally stable

in practice. Hence, we leave the stability analysis of the time-stepping scheme for future research, and

only focus on single step error behavior.

Consider the original LCP given by (1), and the corresponding penalty equation (6). As in Proposition

3.1 we have relation (30), it is easy to see that, in the case of time-dependent problems, we have

∂tV̂ = LV̂ + b+ γ+ θ, with [γ(t)]j ≡
(

(∂t − L)V̂ (t, Sj)− g(t, Sj)
)

11≤j≤m(t), (37)

where m(t) is the node index at time t such that Sm(t) ≤ Sf(t) < Sm(t)+1.

Consider the BDF4 discretization applied to Equations (37) starting at the fourth time step. We have,

for the exact LCP solution,

AV̂n+4 = 4V̂n+3 − 3V̂n+2 +
4

3
V̂n+1 − 1

4
V̂n + kbn+4 + k(γ+ θ+ β), (38)

where β is the truncation error of the BDF4 time-stepping scheme applied to (37). Note that the fully

discrete system that we are actually solving is Equation (13). The following proposition gives the relation-

ship between the solution V̂ of the exact LCP and the solution Ṽn+4 of the fully discrete system (13). To

simplify the notation, in the proposition as well as the theorem following, we drop the superscript n + 4

from the computed solution Ṽn+4. Note that we have also dropped the superscript from γ,θ and β for

simplicity.

Proposition 3.4. Let V̂ be the solution to the exact LCP (1), and V be the solution to the continuous

penalty equation (6). Assume that the penalty terms in the fully discrete equations reflect the correct
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behavior, i.e., I
Ṽ
= I

V̂
at each time step. Then, we have

(

25

12k
I− L + ρI

V̂

)

en+4 =
1

k

(

4en+3 − 3en+2 +
4

3
en+1 − 1

4
en
)

+ (γ+ θ+ β), (39)

where e = V̂ − Ṽ is error in the solution.

Proof. First, notice that ρI
Ṽ
(V∗ − Ṽ) = ρI

V̂
(V̂ − Ṽ), since

ρI
Ṽ
(V∗−Ṽ) = ρI

Ṽ
(V∗−V̂+V̂−Ṽ) = ρI

V̂
(V∗−V̂)+ρI

Ṽ
(V̂−Ṽ) = ρI

Ṽ
(V̂−Ṽ) = ρI

V̂
(V̂−Ṽ).

Using this identity, we subtract Equation (13) from (38) and rearrange to get Equation (39).

Corresponding to Proposition 3.1 in the previous section which describes the error equation for time-

independent free boundary problems, Proposition 3.4 gives an expression of the error evolution for solving

time-dependent free boundary problems using a fourth-order finite difference scheme and BDF4. For

convenience of discussion, define

Lk ≡ 25

12k
I− L, and rn+3

k ≡ 1

k

(

4en+3 − 3en+2 +
4

3
en+1 − 1

4
en
)

+ (γ+ θ+ β). (40)

In addition, assume that, at the (n+4)-th time step, the free boundary is located in between Sm and Sm+1,

i.e., Sm ≤ Sf (tn+4) < Sm+1, on the space grid {S0, S1, . . . , Sm, . . . SM}. Similar to the discussion for

boundary value problems, we divide the matrix Lk into four block submatrices

Lk =

[

[Lk]11 [Lk]12
[Lk]21 [Lk]22

]

where the block matrices [Lk]11, [Lk]12, [Lk]21, [Lk]22 are of sizes m×m, m× (M −m), (M −m)×m

and (M −m) × (M − m), respectively. Corresponding to Theorem 3.3 for time-independent problems,

the error decomposition for time-dependent problems is given by Theorem 3.5.

Theorem 3.5. Assume that [Lk]11 and [Lk]22 are nonsingular, and ρ is a positive number such that

ρ ≫ maxij{|[Lk]i,j|}. Assume also that maxj{|[[Lk]
−1
22 ]1,j |} = O(h2), maxj{|[[Lk]

−1
22 ]2,j |} = O(h2),

maxi{|[[Lk]
−1
22 ]i,1|} = O(h2), and maxi{|[[Lk]

−1
22 ]i,2|} = O(h2). Further, assume that I

Ṽ
= I

V̂
at each

time step. When using BDF4 time-stepping and the fourth-order finite difference scheme to solve the

penalized PDE (6), the solution error at the (n+ 4)-th time step satisfies

en+4 ≈
[

O

([Lk]22)
−1 [rn+3

k ]m+1:M

]

.

Remark 3.4. We denote ([Lk]22)
−1 by [Lk]

−1
22 for notation simplicity.

Proof. From Proposition 3.4, we know that the error is the solution to

(Lk + ρI
Ṽ
)en+4 = rn+3

k .
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Therefore, we get

en+4 = (Lk + ρI
Ṽ
)−1rn+3

k .

Then by making use of Proposition 3.2 applied to Lk, the theorem is proved.

Remark 3.5. Note that similar to Proposition 3.2, the assumptions on [Lk]
−1
22 are typically true in practice.

Theorem 3.5 shows that the errors in the approximate solutions of moving boundary problems behave

in a similar way to the solution of free boundary problems. The solution on the penalty region is computed

exactly within a tolerance, while on the PDE region, in addition to the truncation errors, the solution errors

from previous time steps also contribute to the solution error at the current time step. The error propagation

is governed by [Lk]
−1
22 , which depends on both the time stepping and space discretization schemes. Similar

to the discussion of boundary value problems, it can be treated as the discrete analogue of the Green’s

function to the continuous operator on the PDE region.

In the following, we consider a concrete example of the Black-Scholes operator, i.e., let L = LBS .

Instead of studying Lk, which is hard to analyze, we investigate the Green’s function for the continuous

operator Lk =
25
12k

−L on the PDE region for a fixed time step size k. In Figure 4, we show the comparison

of the graphs of G(S2, Sj) on the PDE region and [Lk]
−1
22 for the first three Green’s functions on an example

grid, where the free boundary is located at Sf = 89.748. Again, we see that they have the same shape

with similar magnitudes. By performing the usual variable transformation S = Kex to Lk, we can get a

transformed operator Lk,x = −∂xx− (κ−1)∂x +(κ+ 25
6kσ2 ), whose Green’s function is given by Equation

(34) in Proposition 3.3, with ξ1 =
−(κ−1)+

√
(κ+1)2+4λ

2
, ξ2 =

−(κ−1)−
√

(κ+1)2+4λ

2
, where λ = 25

6kσ2 , and

κ = 2r
σ2 . Let xm+1 = log(Sm+1/K) and xf = log(Sf/K). When xm+1 − xf is small enough, we have that

G(x, xm+1) = O(xm+1 − xf ) by Proposition 3.3. Since

xm+1 − xf = log(Sm+1/K)− log(Sf/K) = log

(

1 +
Sm+1 − Sf

Sf

)

≈ Sm+1 − Sf

Sf

= O(h),

when Sm+1 → Sf > 0, the Green’s function G(S, Sm+1) = O(h). Using the same argument as in Section

3.3.1, we claim that the error in the solution of Equation (13) is of order O(h2) and smooth for S ≥ Sm+2.

Therefore, we have the following theorem.

Theorem 3.6. Under the same assumptions as in Theorem 3.5, we have that the error at Si, at the (n+4)-

th time step, is en+4
i ≈ O(h2), and it is smooth for i ≥ m+ 2.

3.4 Grid crossing

With BDF4 time-stepping, the time derivative of the solution at some point is computed by a linear com-

bination of the solutions at the four points directly prior to the current point. However, one of more of the

prior points may not lie on the same side of the moving boundary.

To see this, we can look at an example grid shown in Figure 5. The black hollow points, for example

p1, are problematic points for the BDF4 time-stepping scheme, because their computation depends on one
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(a) The first 3 columns of [Lk]
−1
22 (b) The continuous Green’s function

hj

2
G(S, Sj)

Figure 4: (a) The first three columns of [Lk]
−1
22 on an example nonuniform grid; (b) The scaled continuous

Green’s function
hj

2
G(S, Sj) for the operator LBS at Sm+1, Sm+2 and Sm+3. The free boundary location

is Sf = 89.748. Note that the zero value on the left of the free boundary is not included.

or more points on the other side of the moving boundary. Therefore, the BDF4 scheme at the black hollow

points may exhibit degenerated accuracy.

On the other hand, for the black solid points, such as p2, the time derivative of the solution with the

BDF4 scheme uses only points on the same side of the moving boundary. Hence, the BDF4 scheme at

the black solid points is fourth-order accurate. In general, we can see that the number of problematic

points depends on how quickly the moving boundary moves relative to the grid spacing. On a fixed grid,

a slow-moving free boundary will have a smaller number of black hollow points.

At minimum, we require the time discretization to be accurate enough so as not to affect the conver-

gence order in space. Despite the complicated behavior of the time derivative discretization, we do not

explicitly deal with the loss of accuracy in the time derivative in our algorithm. Instead, we apply a time

variable transformation to change the shape of the free boundary and try to reduce the number of problem-

atic points in the time stepping. This time transformation together with appropriate space stretching turn

out to be good enough to maintain high-order accuracy.

3.5 Extrapolating the numerical solution

In this section, we discuss how to approximate the derivative jumps and the free boundary location using

a given numerical solution, and analyze some related technical details.

3.5.1 Approximation of the solution derivatives and associated derivative jumps

In this subsection, we discuss how to approximate the derivative jumps ∆V ′′
Sf

≡ V ′′
Sf ,− − V ′′

Sf ,+
, ∆V ′′′

Sf
≡

V ′′′
Sf ,− − V ′′′

Sf ,+
, and ∆V ′′′′

Sf
≡ V ′′′′

Sf ,− − V ′′′′
Sf ,+

, where the “−” and the “+” in the subscripts denote values in

the penalty and the PDE regions, respectively.
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Figure 5: An example layout of grid points in the time and space domain. The dashed line is the free

boundary. The red points to the left of the free boundary are on the penalty region, and the points to the

right of the free boundary are on the PDE region. Unlike at the solid black points, BDF4 has degenerated

accuracy at the hollow black points because it involves solution points that lie on different sides of the free

boundary.

In the penalty region, since we are given the obstacle function V ∗, and we know that V = V ∗, we can

evaluate V ′′
Sf ,−, V ′′′

Sf ,− and V ′′′′
Sf ,− exactly.

We now turn to the PDE region and discuss the approximation of V ′′
Sf ,+

, V ′′′
Sf ,+

and V ′′′′
Sf ,+

. Recall

that Sm ≤ Sf < Sm+1, as shown on an example uniform grid in Figure 6. From Theorem 3.4, we

know that ei ≈ O(h2) and ei is smooth, for i ≥ m + 2. Therefore, by having O(h2) accurate val-

ues Ṽm+2, Ṽm+3, Ṽm+4, we construct O(h2) accurate second derivative values Ṽ ′′
m+2, Ṽ

′′
m+3, Ṽ

′′
m+4. To ap-

proximate the second derivative of the solution at the free boundary Sf < Sm+1 to O(h2) accuracy, we

extrapolate the solution derivative at Sf using the computed Ṽ ′′
m+2, Ṽ

′′
m+3, Ṽ

′′
m+4 by

Ṽ ′′(S) =

4
∑

i=2

(

Ṽ ′′
m+i

4
∏

j=2,j 6=i

S − Sm+j

Sm+i − Sm+j

)

,

i.e., by using a quadratic Lagrange polynomial. The obtained approximate derivative at Sf is of O(h2)

accuracy. Higher-order derivatives are computed in the same way. Hence, from the analysis in Section

3.2.3, we see that the correction terms computed using the approximate derivative jumps will be of O(h2)

accurate, which is more than the required O(h) accuracy to increase the order of the corrected finite

differences. Similarly, we use Ṽm+2, Ṽm+3, Ṽm+4, Ṽm+5 and a cubic polynomial for the third-order approx-

imation, and Ṽm+2, Ṽm+3, Ṽm+4, Ṽm+5, Ṽm+6 and a quartic polynomial for the fourth-order approximation

of the solution derivatives at the free boundary.

We stress here that the choice of the interpolation points starting from Sm+2 (skipping Sm+1) to main-

tain the convergence order is guided by our analysis of the error behavior in the solution given by Equation

(36). Similar interpolation scheme can be found in [21], where the authors are only able to justify their
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Figure 6: An example grid on which a free boundary problem is defined. Point Sf is the free boundary

location.

results empirically from numerical experiments. Note that we could have used one degree less Lagrange

interpolation in each case, but our choice is dictated by the fact that we want the extrapolation error to be

of even lower order than the solution error. We also note that, while extrapolation may introduce additional

errors, it is used to avoid areas where the error is non-smooth and of order incompatible to the solution.

Further, we emphasize that we extrapolate less than 2h away from the smooth data points.

3.5.2 Approximation of the free boundary location

To approximate the free boundary location, we apply the smooth pasting condition of the derivative at the

free boundary in Equation (5), which we repeat here for convenience:

∂V

∂S
(t, Sf(t)) =

∂V ∗

∂S
(Sf(t)). (41)

Assume that we have already calculated the approximate derivatives Ṽ ′
m+2, Ṽ

′
m+3, Ṽ ′

m+4, Ṽ ′
m+5 and Ṽ ′

m+6

at Sm+2, Sm+3, Sm+4, Sm+5, Sm+6, respectively, with certain accuracy, using solution values starting from

Sm+2 and on. We then apply the quartic Lagrange polynomial to fit the derivative by

Ṽ ′(S) =
6
∑

i=2

(

Ṽ ′
m+i

6
∏

j=2,j 6=i

S − Sm+j

Sm+i − Sm+j

)

.

Then, the approximate free boundary is obtained by Newton’s root finding algorithm such that

Ṽ ′(S)− ∂V ∗

∂S
(S) ≈ 0.

The approximate free boundary obtained in this way is expected to be of the same order as the numerical

solution. Hence, from the analysis in Section 3.2.3, by using O(h2) accurate solution, the approximate

free boundary is O(h2), and the correction terms computed are O(h), as is required to increase the order of

the corrected finite differences. Similarly, using O(h3) accurate solution, the correction terms computed

are O(h2), and so on. Note that we decided to use the smoothing pasting condition (41) to locate the free

boundary instead of the value matching condition V (t, Sf(t)) = V ∗(Sf (t)). The reason for this is that the

value matching equation has a zero derivative at the root, resulting in a double root. Therefore, Newton’s
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root-finding method is slow, if value matching is used. However, we note that, for problems where the

value matching equation holds, while the smoothing pasting condition does not hold, e.g. cases of variance

gamma, jump diffusion, American options, we do not rule out that solving the value matching equation

may work well. We leave this for further research.

4 Algorithm

4.1 A fourth-order deferred correction algorithm for solving free boundary problems

We are now ready to present a fourth-order deferred correction finite difference algorithm for solving

free and moving boundary problems. To start, we first present the algorithm for solving free boundary

problems where no time variable is involved. Recall that the penalized equation for solving free boundary

problems is given by Equation (7), and the respective discrete equations are given by the nonlinear system

(14), solved by a generalized Newton’s iteration as described in [13], which is also referred to as discrete

penalty iteration.

The main idea of our algorithm is to use a deferred correction technique to eliminate the lower-order

errors in the finite difference approximation introduced by piecewise smoothness in the solution. We

illustrate our correction scheme by considering only the leading order terms of the corrections in Equations

(22)–(25), that is, those associated with the jump in the second derivative. The other terms are corrected

in the same manner and we omit the discussion.

Recall that the fourth-order FD discretization of ∂2V
∂S2 and ∂V

∂S
is L̄2Ṽaug and L̄1Ṽaug, respectively, at the

interior nodes of a grid S0 < S1 < . . . < SM+1, where L̄2 and L̄1 are M × (M + 2) second- and first-

derivative, respectively, FD coefficient matrices, and Ṽaug = [Ṽ0, Ṽ1, . . . , ṼM+1]
T , as defined in Section 3.1.

Suppose that Sm ≤ Sf < Sm+1, as shown in Figure 6. The second derivative jump at the free boundary

is pre-computed to be ∆V ′′
Sf

(either approximate or exact). From Theorem 3.2, making δ = Sm+1 − Sf ,

and picking appropriate FD coefficients, we see that the correction terms corresponding to the second

derivative jumps at nodes Sm−1, Sm, Sm+1 and Sm+2, are computed by

C ′′
1,0 =

(Sm+1 − Sf)
2

2
L̄2(m− 1, m+ 2)∆V ′′

Sf
, (42)

C ′′
2,0 =

(

(Sm+1 − Sf)
2

2
L̄2(m,m+ 2) +

(Sm+2 − Sf )
2

2
L̄2(m,m+ 3)

)

∆V ′′
Sf
, (43)

C ′′
3,0 = −

(

(Sf − Sm−1)
2

2
L̄2(m+ 1, m) +

(Sf − Sm)
2

2
L2(m+ 1, m+ 1)

)

∆V ′′
Sf
, (44)

C ′′
4,0 = −(Sf − Sm)

2

2
L̄2(m+ 2, m+ 1)∆V ′′

Sf
, (45)

where L̄2(i, j) denotes the (i, j) entry of the coefficient matrix L̄2. Note that C ′′
j,0, j = 1, . . . , 4, correspond

to O(1) error terms in (22)-(25). The correction terms corresponding to the third and fourth derivative

jumps are computed similarly, giving rise to C ′′
j,1, j = 1, . . . , 4 (corresponding to O(h) error terms in

(22)-(25)) and C ′′
j,2, j = 1, . . . , 4 (corresponding to O(h2) error terms in (22)-(25)), respectively. Then,

the total correction terms for the FD approximation of the second derivative at nodes Sm−1, Sm, Sm+1
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and Sm+2 are

C ′′
1 = C ′′

1,0 + C ′′
1,1 + C ′′

1,2, (46)

C ′′
2 = C ′′

2,0 + C ′′
2,1 + C ′′

2,2, (47)

C ′′
3 = C ′′

3,0 + C ′′
3,1 + C ′′

3,2, (48)

C ′′
4 = C ′′

4,0 + C ′′
4,1 + C ′′

4,2. (49)

By replacing the L̄2 entries with the corresponding L̄1 entries, we can similarly calculate the correction

terms C ′
j to the first derivative approximations, for j = 1, 2, 3, 4, at nodes Sm−1, Sm, Sm+1 and Sm+2,

respectively.

With these correction entries in hand, instead of solving Equation (14), we solve a modified system

LṼ + b+ ρI
Ṽ
(V∗ − Ṽ) + a2 + a1 = 0, (50)

with correction terms a2 and a1, where

a2 = [0, . . . , 0, p(Sm−1)C
′′
1 , p(Sm)C

′′
2 , p(Sm+1)C

′′
3 , p(Sm+2)C

′′
4 , 0, . . . , 0]

T , (51)

a1 = [0, . . . , 0, w(Sm−1)C
′
1, w(Sm)C

′
2, w(Sm+1)C

′
3, w(Sm+2)C

′
4, 0, . . . , 0]

T . (52)

Ideally, we would know the exact derivative jumps and apply them to correct the FDs when discretizing

the PDE. However, these jumps are not known a priori in the setting of this work. Therefore, we make

use of the approximate solution derivatives and free boundary location that we get, as described in Section

3.5, to compute the approximate correction terms. Applying these correction terms increases the order

of the finite difference approximation. As a result, it also increases the order of the new approximate so-

lution when we solve the discrete system again with the corrected FDs. We give the details in Algorithm 1.
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Algorithm 1 A fourth-order FD algorithm for solving free boundary problems

1: Phase 1:

Solve (14) to obtain an approximate solution Ṽ(0) of O(h2) using penalty iteration.

Find Sm and Sm+1 as in Proposition 3.1.

Compute the approximate free boundary S̃
(0)
f to O(h2) accuracy, using Newton’s method with initial

guess (Sm + Sm+1)/2, as in Section 3.5.2.

Approximate V ′′(Sf ) at S̃
(0)
f to obtain Ṽ

′′(0)
Sf

= V ′′(Sf ) +O(h), as in Section 3.5.1.

2: Phase 2:

Compute the FD corrections a1, a2 using S̃
(0)
f and V ∗

Sf

′′ − Ṽ
′′(0)
Sf

.

Solve (50) to obtain an approximate solution Ṽ(1) of O(h3) using penalty iteration with initial guess

Ṽ(0).

Compute the approximate free boundary S̃
(1)
f to O(h3) accuracy, using Newton’s method with initial

guess S̃
(0)
f .

Approximate V ′′(Sf ), V
′′′(Sf) at S̃

(1)
f to obtain Ṽ

′′(1)
Sf

= V ′′(Sf) +O(h2), Ṽ
′′′(1)
Sf

= V ′′′(Sf) +O(h).
3: Phase 3:

Compute the FD corrections a1, a2 using S̃
(1)
f and V ∗

Sf

′′ − Ṽ
′′(1)
Sf

, V ∗
Sf

′′′ − Ṽ
′′′(1)
Sf

.

Solve (50) to obtain an approximate solution Ṽ(2) of O(h4) using penalty iteration with initial guess

Ṽ(1).
Compute the approximate free boundary S̃

(2)
f to O(h4) accuracy, using Newton’s method with initial

guess S̃
(1)
f .

Approximate V ′′(Sf ), V ′′′(Sf), V ′′′′(Sf ) at S̃
(2)
f to obtain Ṽ

′′(2)
Sf

= V ′′(Sf) + O(h3), Ṽ
′′′(2)
Sf

=

V ′′′(Sf ) +O(h2), Ṽ
′′′′(2)
Sf

= V ′′′′(Sf) +O(h).
4: Phase 4:

Compute the FD corrections a1, a2 using S̃
(2)
f and V ∗

Sf

′′ − Ṽ
′′(2)
Sf

, V ∗
Sf

′′′ − Ṽ
′′′(2)
Sf

, V ∗
Sf

′′′′ − Ṽ
′′′′(2)
Sf

.

Solve (50) to obtain an approximate solution Ṽ(3) using penalty iteration with initial guess Ṽ(2).

Compute the approximate free boundary S̃
(3)
f , using Newton’s method with initial guess S̃

(2)
f .

Remark 4.1. In fact, the algorithm already reaches fourth-order accuracy with two corrections. How-

ever, from numerical results presented later, it turns out the third correction improves the error noticeably.

Therefore, we present the algorithm with three corrections. One could theoretically go beyond three cor-

rections, however, the order cannot be further improved due to the order of finite differences being used.

Based on numerical experiments, we conjecture that further corrections, as long as they involve second,

third and fourth derivative jumps, would converge and may slightly improve the error (not the order), but

possibly not enough to justify the extra cost. Furthermore, we believe that iterating would converge to the

solution of the problem with the jumps incorporated into the left-hand side matrix (extrapolated problem)

and solved for simultaneously with the vector of unknowns.

We also note that, for a fourth-order discretization method, it does not make sense to generate jumps

for higher order derivatives, and proceed with more corrections.

Remark 4.2. We presented the algorithm for a fourth-order discretization method and applied three cor-

rections, but the idea can be extended to higher order methods. For a ζ−order discretization method,

we could apply ζ − 1 corrections, the first correction (Phase 2) involving the second derivative, and pro-
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ceeding so that each subsequent correction involves one additional derivative of higher order, up to the

ζ−order derivative.

4.2 A fourth-order deferred correction algorithm for solving moving boundary problems

When solving moving boundary problems, we also need to consider time discretization. In order to show

the flow of computations as the correction phases and timesteps proceed, we introduce a double index, with

n denoting the timestep and ℓ (in parentheses) the correction phase. We assume that Equation (6) has been

discretized in time by BDF4, except for the first three time steps, and in space by standard fourth-order

FDs, resulting in the nonlinear system (13).

At this point, we make a note regarding the choice of ρ in the discrete problem. As discussed in [13],

it may be appropriate to adjust the value of ρ for each refinement of the grid in a way so that the error

arising from the approximation of the LCP by the penalized nonlinear PDE reduces at the same rate as the

discretization error. However, it is more practical to set a small enough target relative error tolerance tol in

the approximation of the LCP by the penalized nonlinear PDE. Following the same arguments as in [13],

and under similar boundedness assumptions, we essentially scale ρ as k−1 in (13), or, equivalently, solve,

with a fixed ρ, the nonlinear system

AṼn+4,(ℓ) = ỹn+4,(ℓ) + ρI
Ṽn+4,(ℓ)(V∗ − Ṽn+4,(ℓ)), (53)

where

A =

(

25

12
I− kL

)

, ˜yn+4,(ℓ) = 4Ṽn+3,(ℓ) − 3Ṽn+2,(ℓ) +
4

3
Ṽn+1,(ℓ) − 1

4
Ṽn,(ℓ) + kb̃n+4. (54)

When we apply corrections to Equation (53), we solve a modified system

AṼn+4,(ℓ) = ỹn+4,(ℓ) + ρI
Ṽn+4,(ℓ)(V∗ − Ṽn+4,(ℓ)) + k(a1 + a2). (55)

with correction terms a1 and a2 computed in the same way as for free boundary problems discussed in the

previous section. Only slight modifications to Algorithm 1 are required to include BDF4 time-stepping and

solve moving boundary problems. Our high-order finite difference method for solving moving boundary

problems is given in Algorithm 2.

Remark 4.3. It is important to note that, to produce quantities for the ℓth phase at tn+4, data from the ℓth

phase of timesteps tn+3, tn+2, tn+1 and tn are used.
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Algorithm 2 A fourth-order FD algorithm for solving moving boundary problems

1: for each time step tn do

2: Phase 1 (ℓ = 0):

Solve (53) to obtain an approximate solution Ṽn,(0) of O(h2) using penalty iteration with initial

guess Ṽn−1,(0).

Find Sm, Sm+1 at tn as in Proposition 3.1.

Compute the approximate free boundary S̃
n,(0)
f to O(h2) accuracy, using Newton’s method with

initial guess (Sm + Sm+1)/2 as in Section 3.5.2.

Approximate V ′′(tn, Sf) at S̃
n,(0)
f to obtain Ṽ

′′(0)
Sf

= V ′′(tn, Sf ) +O(h), as in Section 3.5.1.

3: Phase 2 (ℓ = 1):

Compute the FD corrections a1, a2 using S̃
n,(0)
f and V ∗

Sf

′′ − Ṽ
′′n,(0)
Sf

.

Solve (55) to obtain an approximate solution Ṽn,(1) of O(h3) using penalty iteration with initial

guess Ṽn,(0).

Compute the approximate free boundary S̃
n,(1)
f to O(h3) accuracy, using Newton’s method with

initial guess S̃
n,(0)
f .

Approximate V ′′(tn, Sf), V
′′′(tn, Sf) at S̃

n,(1)
f to obtain Ṽ

′′n,(1)
Sf

= V ′′(tn, Sf) +O(h2), Ṽ
′′′n,(1)
Sf

=

V ′′′(tn, Sf) +O(h).
4: Phase 3 (ℓ = 2):

Compute the FD corrections a1, a2 using S̃
n,(1)
f and V ∗

Sf

′′ − Ṽ
′′n,(1)
Sf

, V ∗
Sf

′′′ − Ṽ
′′′n,(1)
Sf

.

Solve (55) to obtain an approximate solution Ṽn,(2) of O(h4) using penalty iteration with initial

guess Ṽn,(1).

Compute the approximate free boundary S̃
n,(2)
f to O(h4) accuracy, using Newton’s method with

initial guess S̃
n,(1)
f .

Approximate V ′′(tn, Sf), V
′′′(tn, Sf ), V

′′′′(tn, Sf ) at S̃
n,(2)
f to obtain Ṽ

′′n,(2)
Sf

= V ′′(tn, Sf)+O(h3),

Ṽ
′′′n,(2)
Sf

= V ′′′(tn, Sf ) +O(h2), Ṽ
′′′′n,(2)
Sf

= V ′′′′(tn, Sf) +O(h).
5: Phase 4 (ℓ = 3):

Compute the FD corrections a1, a2 using S̃
n,(2)
f and V ∗

Sf

′′− Ṽ
′′n,(2)
Sf

, V ∗
Sf

′′′− Ṽ
′′′n,(2)
Sf

, V ∗
Sf

′′′′− Ṽ
′′′′n,(2)
Sf

.

Solve (55) to obtain an approximate solution Ṽn,(3) using penalty iteration with initial guess Ṽn,(2).

Compute the approximate free boundary S̃
n,(3)
f , using Newton’s method with initial guess S̃

n,(2)
f .

6: end for

5 Numerical results

In this section, we demonstrate the effectiveness of our high-order deferred correction algorithm for solv-

ing free boundary problems with several examples. We begin with a simple one-dimensional elliptic

obstacle problem in Section 5.1. We then consider a time-dependent problem in Section 5.2. In this prob-

lem, the free boundary position xf (t) has first derivative singularity at t = 0, but the solution itself is

smooth everywhere. For both problems, we show that the convergence rate at each solve phase in Algo-

rithm 1 and 2, respectively, is exactly as predicted. Finally, in Section 5.3, we apply our Algorithm 2 with

some additional considerations to the American option pricing problem. For this problem, both the free

boundary and the solution itself have first derivative singularity at t = 0. The numerical results show the
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expected convergence rate at each solve phase.

5.1 Solving an elliptic obstacle problem

Consider the boundary value problem defined in the LCP form

−f ′′ + f + 1 ≥ 0,

f − f ∗ ≥ 0,

(−f ′′ + f + 1 = 0) ∨ (f − f ∗ = 0),

(56)

on the domain x ∈ [−1, 1], where f ∗(x) = x, with boundary conditions

f(−1) = −1, f(1) = e− 1.

The exact solution to this problem is the piecewise smooth function

f(x) =

{

ex − 1, 0 < x ≤ 1,

x, −1 ≤ x ≤ 0.

It is obvious that the solution is smooth on both [−1, 0] and [0, 1], separately. At the point x = 0, the

solution satisfies the value matching and smooth pasting conditions, that is,

lim
x→0−

f(x) = lim
x→0+

f(x) = f(0) = 0, and lim
x→0−

f ′(x) = lim
x→0+

f ′(x) = f ′(0) = 1.

However, the solution f(x) has a discontinuous second derivative at x = 0, which means f(x) ∈ C1\C2.

To apply Algorithm 1, we write (56) in the penalty form

−f ′′ + f + 1− ρmax(f ∗ − f, 0) = 0, (57)

with Dirichlet boundary conditions at x = −1 and 1, where ρ is a penalty constant, taken to be ρ = 1×1012

in the numerical experiments.

We use this example to demonstrate that the four solve phases with deferred corrections in Algorithm

1 improve the convergence rates as expected. In Table 1, we can see that, away from the free boundary

x = 0, the convergence orders at the first, second, third and fourth solves are 2, 3, 4 and 5, respectively. The

free boundary approximation also follows the same successive increase of convergence order, as shown in

Table 2. To demonstrate the computational efficiency of our algorithm, we have plotted the log-log graph

of the solution errors versus the computational complexity, represented by grid size in space multiplied

by the total number of penalty iterations, as shown in Figure 7. Note that in the first solve phase with no

corrections, we only use a rough initial guess of a constant function f = 1, even though a better initial

guess could be chosen. As a result, the first solve phase requires several penalty iterations to converge and

takes up the major computational cost of the algorithm. In the second to fourth solve phases, only a single

iteration is required for each solve phase, because the solution of the previous solve phase provides a good

initial guess for Newton’s method.
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Remark 5.1. Note that in both Tables 1 and 2, we see that fifth-order convergence is obtained after

applying three corrections. The reason for this is that, even though we are using a fourth-order method,

the error from the nonsmoothness of the solution at the free boundary has been reduced to O(h5). Since

this error is large compared to the O(h4) error arising from the fourth-order finite difference scheme, the

convergence appears to be fifth-order.

N

x = 0.2
1st solve (no correction) 2nd solve (one correction)

niters value error conv niters value error conv

30 7 0.221530668 1.28e-04 - 8 0.221431233 2.85e-05 -

60 12 0.221434987 3.22e-05 1.99 13 0.221396803 5.96e-06 2.26

120 23 0.221410846 8.09e-06 1.99 24 0.221401484 1.27e-06 2.22

240 44 0.221404784 2.03e-06 2.00 45 0.221402568 1.90e-07 2.75

480 86 0.221403265 5.07e-07 2.00 87 0.221402733 2.53e-08 2.91

N
3rd solve (two corrections) 4th solve (three corrections)

niters value error conv niters value error conv

30 9 0.221415708 1.29e-05 - 10 0.221400689 2.07e-06 -

60 14 0.221403511 7.53e-07 4.10 15 0.221402701 5.68e-08 5.19

120 25 0.221402801 4.30e-08 4.13 26 0.221402757 1.62e-09 5.13

240 46 0.221402760 2.29e-09 4.23 47 0.221402758 4.77e-11 5.09

480 88 0.221402758 9.83e-11 4.54 89 0.221402758 1.06e-12 5.50

Table 1: Convergence results of solutions at point x = 0.2 for each solve phase in Algorithm 1, when

solving the penalty equation (57) of a one-dimensional free boundary obstacle problem with free boundary

at x = 0. Uniform grid spacing is used. Note that “niters” for the second to fourth solve includes the total

number of iterations from all previous solve phases.

N
1st solve 2nd solve 3rd solve 4th solve

error conv error conv error conv error conv

30 1.82e-02 - 2.20e-03 - 2.20e-04 - 1.87e-05 -

60 4.69e-03 1.96 2.51e-04 3.13 1.15e-05 4.26 4.12e-07 5.50

120 1.19e-03 1.98 2.84e-05 3.15 5.85e-07 4.30 6.55e-09 5.97

240 2.97e-04 2.00 2.93e-06 3.28 2.58e-08 4.50 8.38e-11 6.29

480 7.33e-05 2.02 2.17e-07 3.75 1.02e-09 4.67 1.03e-11 3.02

Table 2: Convergence results of the free boundary approximation for each solve phase in Algorithm 1,

when solving the penalty equation (57) of a one-dimensional free boundary obstacle problem with the

exact free boundary at x = 0. Uniform grid spacing is used.
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Figure 7: Log-log plot of solution error at point x = 0.2 versus computational complexity (a), and grid

size in space (b), using results of Table 1, when solving the penalty equation (57) of a one-dimensional

free boundary obstacle problem. The computational complexity is represented by the grid size times the

total number of penalty iterations.

5.2 A simple test moving boundary problem

In this second example, we introduce the time variable and consider a time-dependent free boundary

problem. Consider the LCP

ft −
1

2
√
t
f ′′ +

1

2
√
t
≥ 0,

f − f ∗ ≥ 0,
(

ft −
1

2
√
t
f ′′ +

1

2
√
t
= 0

)

∨ (f − f ∗ = 0),

(58)

on the domain (t, x) ∈ [0, 0.5]× [−2, 2], where f ∗(t, x) = x. The solution satisfies the Dirichlet boundary

conditions

f(t,−2) = −2, f(t, 2) = e2+
√
t −

√
t− 1,

and the initial condition

f(0, x) =

{

ex − 1, 0 ≤ x ≤ 2,

x, −2 ≤ x < 0.
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The exact solution to (58) is

f(t, x) =

{

ex+
√
t −

√
t− 1, xf(t) ≤ x ≤ 2,

x, −2 ≤ x < xf(t),

where xf (t) is the moving free boundary

xf (t) = −
√
t.

The value matching and smooth pasting conditions at the free boundary x = xf (t) follow naturally. Again,

we see that f(·, x) ∈ C1\C2 on [−2, 2], but it is smooth on [−2, xf (t)] and [xf (t), 2], separately. To apply

Algorithm 2, we write (58) in penalty form

ft −
1

2
√
t
f ′′ +

1

2
√
t
− ρmax(f ∗ − f, 0) = 0, (59)

where ρ is a penalty constant, taken to be ρ = 1× 108 in the numerical experiments.

Since the free boundary xf (t) = −
√
t, its location changes rapidly near time t = 0. This will cause

a problem in the BDF4 time-stepping scheme because many grid points will cross the free boundary in

the initial time steps (see Section 3.4). Hence, BDF4 degenerates to only first-order convergence due

to piecewise smoothness in the solution across the free boundary. To avoid this situation, we perform a

time-variable transformation t = τ 2 so that the free boundary changes more slowly, and fewer points will

cross the free boundary in the initial time steps. Although this does not completely solve the problem, it

is accurate enough for the algorithm to achieve high-order convergence, as shown in the numerical results.

To start BDF4, we use the exact solutions for the first three time steps. For this problem, we simply use a

uniform grid in space.

In Table 3, we record the convergence results at x = −0.37 and at x = 0. The point x = −0.37 is

slightly to the right of the first grid point right of the final-time free boundary location on the coarsest grid

Nx = 20. The point x = 0 is the initial free boundary location. We see that the solutions at both points

gain the expected order of convergence after each correction. To demonstrate the computational efficiency

of our algorithm, we plot the log-log graph of the solution errors versus the computational complexity

represented by the grid size in space multiplied by the total number of penalty iterations, as shown in

Figure 8.

Remark 5.2. Note that the solutions after solving with corrections have larger errors on the coarsest grid

Nx = 20. This is due to large extrapolation errors of free boundary and derivatives approximations when

the space step size near the free boundary is large, which occurs on a uniform coarse grid. This can be

avoided by applying grid stretching around the free boundary.
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(Nx, Nt)
x = −0.37

1st solve (no correction) 2nd solve (one correction)

niters value error conv niters value error conv

(20,40) 43 -0.307227 1.04e-03 - 82 -0.304930 1.26e-03 -

(40,80) 87 -0.306241 8.16e-06 7.00 186 -0.306075 1.47e-04 3.10

(80,160) 174 -0.306227 9.13e-06 -0.16 386 -0.306205 1.33e-05 3.46

(160,320) 348 -0.306220 1.94e-06 2.24 786 -0.306216 1.67e-06 3.00

(320,640) 697 -0.306218 3.19e-07 2.60 1586 -0.306218 1.44e-07 3.53

(Nx, Nt)
3rd solve (two corrections) 4th solve (three corrections)

niters value error conv niters value error conv

(20,40) 121 -0.306334 1.61e-04 - 160 -0.305883 3.03e-04 -

(40,80) 265 -0.306147 7.44e-05 1.11 347 -0.306163 5.90e-05 2.36

(80,160) 545 -0.306215 3.35e-06 4.47 707 -0.306216 1.77e-06 5.06

(160,320) 1106 -0.306218 2.20e-07 3.93 1429 -0.306218 5.78e-08 4.94

(320,640) 2227 -0.306218 1.12e-08 4.29 2866 -0.306218 2.79e-09 4.37

(Nx, Nt)
x = 0

1st solve (no correction) 2nd solve (one correction)

niters value error conv niters value error conv

(20,40) 43 0.320748 2.60e-04 - 82 0.321960 9.52e-04 -

(40,80) 87 0.320934 7.43e-05 1.81 186 0.321194 1.85e-04 2.36

(80,160) 174 0.320998 1.05e-05 2.82 386 0.321022 1.37e-05 3.76

(160,320) 348 0.321007 1.66e-06 2.66 786 0.321010 1.40e-06 3.29

(320,640) 697 0.321008 2.82e-07 2.56 1586 0.321008 1.14e-07 3.62

(Nx, Nt)
3rd solve (two corrections) 4th solve (three corrections)

niters value error conv niters value error conv

(20,40) 121 0.321537 5.29e-04 - 160 0.321588 5.80e-04 -

(40,80) 265 0.321074 6.56e-05 3.01 347 0.321069 6.04e-05 3.26

(80,160) 545 0.321011 3.27e-06 4.33 707 0.321010 1.70e-06 5.15

(160,320) 1106 0.321008 1.88e-07 4.12 1429 0.321008 4.80e-08 5.15

(320,640) 2227 0.321008 1.43e-08 3.72 2866 0.321008 2.27e-09 4.41

Table 3: Convergence results of solutions at points x = −0.37 and x = 0 for each solve phase in Algorithm

2, when solving the penalty equation (59) of a moving boundary problem with the exact moving boundary

xf (t) = −
√
t. Note that “niters” for the second to fourth solve includes the total number of iterations from

all previous solve phases.
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Figure 8: Log-log plot of solution errors at point x = 0 versus computational complexity (a), and grid

size in space (b), using results of Table 3, when solving the penalty equation (59) of a moving boundary

problem with the exact moving boundary xf (t) = −
√
t. The computational complexity is represented by

the grid size times the total number of penalty iterations.

5.3 American option pricing

Finally, we use our algorithm to solve the American put option pricing problem. We repeat the penalty

equation

∂tV = LBSV + ρmax{V ∗ − V, 0},

for convenience of discussion, where V ∗(S) = max{K − S, 0} is the payoff of the American put option

struck at K. The initial condition is

V (0, S) = V ∗(S).

We truncate the right end of the domain at S = Smax and use Dirichlet boundary conditions V (t, 0) = K

and V (t, Smax) = 0. To avoid complications due to the payoff singularity of the first derivative at the

strike price of the American put options, we compute the difference between an American option and a

European option, as in [32], where this is referred to as the singularity-separating method. A European

put option value V E with the same volatility σ, bank interest r, dividend q, and strike price K satisfies

the Black-Scholes equation ∂tV
E = LBSV

E, and the initial condition V E(0, S) = max{K − S, 0}, and

has a known explicit formula. The difference of the solutions V diff = V − V E has a zero initial condition.

Therefore, instead of solving for the original American option price, we solve for V diff, which satisfies the

equation

∂tV
diff = LBSV

diff + ρmax{(V ∗ − V E)− V diff, 0},
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with a zero initial condition, and then add the European option price back to obtain the final American

option price. The penalty constant ρ is chosen to be ρ = 1× 108 in the numerical experiments.

In this problem, we do not have the exact solution. Since BDF4 requires solutions from the previous

four time steps to proceed, we need to be careful when starting BDF4. For this problem, we compute the

first time step using the classical fourth-order Runge-Kutta method [3]. For the second time step, we use

a three-level fourth-order method

(

I− k

3
L

)

Ṽn+2 = Ṽn +
k

3
L
(

4Ṽn+1 + Ṽn
)

+
k

3
(bn+2 + 4bn+1 + bn) + 2q(Ṽn+2),

see [19], and for the third time step, we simply apply BDF3. We observe that this starting scheme is

sufficient for fourth-order convergence.

We test the algorithm on two example problems with different volatilities, σ = 0.2 and σ = 0.8 as

the examples in [13]. Both examples have the other parameters the same: zero dividend payment, interest

rate r = 0.1, strike price K = 100 and expiration time T = 0.25. We truncate the infinite domain at

Smax = 10K = 1000 for the problem with smaller volatility σ = 0.2, and at Smax = 13K = 1300 for the

larger volatility σ = 0.8. As it turns out, a larger Smax is not only necessary for the accuracy of solution

with a larger volatility, it is also important for observing the convergence results of our algorithm. To

implement the algorithm, we use the time variable transformation t = τ 2 for both examples. We propose

the stretching function

ξ(S) =

(

S −
√
π

2

1− β

β
αerfc

(

S −K

α

))

C1 + C2,

to stretch the space grid, where

C1 = 1/

[

(Smax − Smin)−
√
π

2

1− β

β
α

(

erfc

(

Smax −K

α

)

− erfc

(

Smin −K

α

))]

,

C2 =

[√
π

2

1− β

β
αerfc

(

Smin −K

α

)

− Smin

]

C1.

where α and β are parameters controlling the density of the stretching, and chosen to be α = 125/6 and

β = 1/20 for σ = 0.2, and α = 65, β = 1/8 for σ = 0.8, in the numerical experiments. This function

adds additional grid points with density 1/β, on a region of width 6α centered around the point K, while

maintaining the density of 1 elsewhere. Our choice of parameters α can be understood by the fact that:

for σ = 0.2, the range of the optimal exercise boundary movement is approximately 10, starting from

S = 100 at t = 0, to S = 89.7 at expiry t = 0.25. Therefore, the moving free boundary is within 10
3α

≈ 1
6

of the length of the stretched region, away from the stretching center, during the whole time period. For

σ = 0.8, the range of the optimal exercise boundary movement is around 48, starting from S = 100 at

t = 0, to S = 51.8 at expiry t = 0.25. Therefore, the moving free boundary is within 51.8
3α

≈ 1
4

of the

length of the stretched region, away from the stretching center, during the whole time period.

In addition, since the solution of the American option price has singular derivative at the strike at

expiry, meaning that the solution is not smooth, we do not apply the correction scheme in Algorithm 2 for
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the first several time steps. In the numerical experiments, the number of time steps skipped is chosen to

be tskip = 12 for both examples. Since we apply time and space stretching near the strike at expiry, the

errors from the skipped corrections in the first few time steps are sufficiently small so as to not affect the

high-order convergence.

In Table 4, we can see clear convergence rate improvements and error reduction with corrections at

each solve phase, with the smaller volatility exhibiting even faster error reduction. The second solve phase,

corresponding to one correction, with first correction only slightly changes the error. The third- and fourth-

solve phases, corresponding to two and three corrections, respectively, reduce the error significantly. The

final results after the fourth solve phase exhibit a reduction of error by nearly 100 times compared to the

no-correction phase.

To demonstrate the computational efficiency of our algorithm, we have shown in Figures 9 and 10 the

solution accuracy versus the computational complexity represented by the grid size in space multiplied

with the total number of penalty iterations, for σ = 0.2 and σ = 0.8, respectively. We can see that the

three-correction algorithm is slightly more expensive, if high accuracy is not the goal. However, when a

high accuracy solution is desired, the three-correction algorithm is more efficient.

Remark 5.3. For this example, we see that the second solve does not improve the convergence much. This

is because we have applied enough stretching to reduce the leading-order error term due to the second-

derivative jump in the first solve, even without correction. Moreover, we observe that our algorithm for

σ = 0.2 performs better than for σ = 0.8. For a larger volatility σ = 0.8, the optimal exercise boundary

moves more quickly and ranges over a larger part of the domain within the same time span. This has

at least two negative effects: (a) We need to increase Smax to maintain good accuracy (see, for example,

[17, 30]) and (b) We need to stretch the space grid over a larger interval. These two facts, in turn, result in

(i) having larger space stepsizes all over the domain including the stretching area, (ii) the free boundary

moving farther away from the stretching center (which is the initial free boundary), and (iii) the grid-

crossing effect happening more frequently. The first two contribute to larger extrapolation errors, and

the third introduces additional errors. One way to avoid large extrapolation errors is to implement a

time-dependent grid stretching that follows the free boundary movement, see e.g. [22] where a predictor-

corrector scheme is applied. We leave this to future work.

6 Conclusions

In this paper, we presented an analysis of the error when using fourth-order finite differences and BDF4

time-stepping scheme for solving free and moving boundary problems. Based on the analysis, we pre-

sented a high-order deferred correction algorithm for solving these problems. Our algorithm utilizes the

penalty method and assumes no prior knowledge of the exact free boundary location and derivative jumps

at the free boundary. Our method does not modify the finite difference stencils and the arising matrix, but

applies the corrections to the right-hand side. The penalty iteration converges in a few iterations. From

the analysis of the error behaviors when solving free boundary problems, we showed that our deferred

correction algorithm can successively increase the solution order of convergence from O(h2) to O(h3),

and from O(h3) to O(h4) after applying each successive correction. Our numerical results validate the
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(Nx, Nt)
σ = 0.2, T = 0.25

1st solve (no correction) 2nd solve (one correction)

niters value error conv niters value error conv

(53,30) 37 3.068602382 - - 71 3.068715191 - -

(104,60) 79 3.069855016 1.25e-03 - 151 3.069931750 1.22e-03 -

(206,120) 179 3.070062874 2.08e-04 2.59 328 3.070075013 1.43e-04 3.09

(410,240) 434 3.070099140 3.63e-05 2.52 740 3.070099544 2.45e-05 2.55

(818,480) 1085 3.070105329 6.19e-06 2.55 1708 3.070105547 6.00e-06 2.03

1635,960) 2820 3.070106489 1.16e-06 2.42 4088 3.070106496 9.49e-07 2.66

(Nx, Nt)
3rd solve (two corrections) 4th solve (three corrections)

niters value error conv niters value error conv

(53,30) 104 3.069304376 - - 136 3.069574295 - -

(104,60) 217 3.070045347 7.41e-04 - 280 3.070078659 5.04e-04 -

(206,120) 457 3.070097280 5.19e-05 3.83 582 3.070103304 2.46e-05 4.36

(410,240) 997 3.070105534 8.25e-06 2.65 1244 3.070106531 3.23e-06 2.93

(818,480) 2211 3.070106647 1.11e-06 2.89 2699 3.070106725 1.94e-07 4.06

(1635,960) 5096 3.070106721 7.34e-08 3.92 6067 3.070106734 9.32e-09 4.38

(Nx, Nt)
σ = 0.8, T = 0.25

1st solve (no correction) 2nd solve (one correction)

niters value error conv niters value error conv

(50,30) 34 14.676127404 - - 64 14.675332474 - -

(98,60) 75 14.678320134 2.19e-03 - 136 14.677934361 2.60e-03 -

(195,120) 158 14.678780547 4.60e-04 2.25 284 14.678665160 7.31e-04 1.83

(388,240) 366 14.678861193 8.06e-05 2.51 633 14.678833475 1.68e-04 2.12

(775,480) 902 14.678875150 1.40e-05 2.53 1471 14.678870259 3.68e-05 2.19

(1548,960) 2258 14.678877820 2.67e-06 2.39 3453 14.678877045 6.79e-06 2.44

(Nx, Nt)
3rd solve (two corrections) 4th solve (three corrections)

niters value error conv niters value error conv

(50,30) 94 14.676507458 - - 126 14.677382768 - -

(98,60) 204 14.678429412 1.92e-03 - 269 14.678670286 1.29e-03 -

(195,120) 428 14.678821171 3.92e-04 2.29 553 14.678866522 1.96e-04 2.71

(388,240) 919 14.678870105 4.89e-05 3.00 1163 14.678877609 1.11e-05 4.15

(775,480) 2033 14.678877396 7.29e-06 2.75 2520 14.678878300 6.91e-07 4.00

(1548,960) 4536 14.678878257 8.61e-07 3.08 5505 14.678878359 5.89e-08 3.55

Table 4: Convergence results of an American put option at S = 100, T = 0.25 with K = 100, r =
0.1, q = 0, for σ = 0.2 and σ = 0.8, and for each solve phase in Algorithm 2. Note that “niters” for the

second to fourth solve includes the total number of iterations from all previous solve phases. The “error”

columns are calculated by the difference between two successive grid resolutions.
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Figure 9: Log-log plot of solution changes at the strike point K at the final time T versus computational

complexity (a), and grid size in space (b), using results of solving American option prices in Table 4 for

σ = 0.2. The computational complexity is represented by the grid size in space times the total number of

penalty iterations.

theoretical analysis. On simple test problems when the solution is not singular, results show that the be-

havior of our algorithm matches exactly with our theory. When solving the more challenging American

put option problem, our algorithm also performs well.

6.1 Generalizations and future work

We only considered problems with one space dimension in this work, however, the deferred correction idea

can be generalized to two space dimensions. One possible extension is to the elliptic obstacle problem in

two dimensions, which is still an active area of research. The major difference in the algorithm when

applied to two-dimensional problems is how the extrapolation scheme is designed. Two dimensional

extrapolation has already been extensively studied in the literature (see, for example, [15, 21, 28]). To

reduce the extrapolation error on a uniform grid, we can also refine the grid around the free boundary, the

location of which can be approximated on a coarser grid.

Since grid stretching in space is useful for reducing the extrapolation errors, another possible extension

of our work is to apply a time-dependent grid stretching scheme when solving moving boundary problems.

As noted in Section 5, our algorithm applies grid stretching only around the initial free boundary, which

can cause more extrapolation errors in later time steps when the free boundary moves out of the stretched

area. Hence, it does not achieve ideal performance, as seen in the application to the American option

pricing problem when σ = 0.8. By adapting the grid stretching so that it follows the moving boundary, the

extrapolation error can be reduced at all time steps. One possible way of doing this is to use the predictor-

corrector idea, as discussed in [22]. This scheme precomputes an approximate solution, which then gives

an approximate moving boundary, on a coarse grid. When we solve the problem on a finer grid at each
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Figure 10: Log-log plot of solution changes at the strike point K at the final time T versus computational

complexity (a), and grid size in space (b), using results of solving American option prices in Table 4 for

σ = 0.8. The computational complexity is represented by the grid size in space times the total number of

penalty iterations.

time step, we can apply grid stretching around the precomputed approximate free boundary. By doing this,

we expect our algorithm to achieve even better results.
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