
A Modified Simplex Method for Solving Ax = b, x ≥ 0, for Very Large
Matrices A Arising from a Calibration Problem

by

Zoë A. MacDonald

A research paper submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c© Copyright 2020 by Zoë A. MacDonald

Abstract

A Modified Simplex Method for Solving Ax = b, x ≥ 0, for Very Large Matrices A Arising from a

Calibration Problem

Zoë A. MacDonald

Master of Science

Graduate Department of Computer Science

University of Toronto

2020

In the area of correlated multivariate discrete distributions, including, in particular, multivariate Poisson

distributions, the calibration problem is the problem of finding a multidimensional discrete probability

distribution with given marginals and a desired correlation matrix. This can be done by taking a convex

combination of a set of “extreme” multivariate discrete distributions, each with the given marginals and

an “extreme” correlation matrix. The problem of determining the coefficients for this convex combination

can be solved by finding a solution to an underdetermined system of linear equations Ax = b, with the

constraint x ≥ 0.

At smaller dimensions, a solution to this underdetermined system of linear equations Ax = b, with

the constraint x ≥ 0, can be computed using phase 1 of the simplex method. However, the number of

extreme distributions involved in such a problem increases exponentially as the dimensionality of the

desired correlation matrix increases. Since each extreme distribution is associated with a column of the

matrix A, the number of columns in the matrix A also increases exponentially as the dimensionality of

the desired correlation matrix increases. This paper describes a variant of the simplex method for use on

this specific problem, the cost of which, in most cases that we have tested, grows polynomially with the

dimensionality of the desired correlation matrix (and polylogarithmically with the number of extreme

distributions). This allows for solutions to be calculated with correlation matrices up to size 52× 52 in

a reasonable amount of time (approximately 20 minutes on a home desktop computer). This was the

largest problem tested with this method, due to precision limits, but in principle there is no reason it

would not work on even larger problems.

ii

Contents

1 Introduction 1

2 Glossary and Terms 7

3 Review of Full Tableau Simplex Method 9

3.1 The Initial Tableau . 9

3.2 Simplex Iterations . 10

3.3 The Final Tableau . 11

4 Truncated Tableau Simplex Method 12

4.1 Overview of the Truncated Tableau Simplex Method . 12

4.2 Truncated Simplex Tableau Initialization . 13

4.2.1 Removing Negative b-Values . 14

4.3 Bringing an Inactive Vector Into the Tableau . 14

4.4 Truncated Simplex Tableau Iterations . 16

4.4.1 Anti-cycling . 16

4.4.2 Interpreting the Final Tableau . 16

4.5 Example Problem with Truncated Tableau . 17

5 “Flipping” Algorithm 21

5.1 Advanced Flipping Algorithm . 28

6 Cost Analysis 30

6.1 Analysis of Constant Costs . 30

6.2 Counting Iterations . 31

6.2.1 Flipping Algorithm Costs . 33

6.2.2 Advanced Flipping Algorithm Costs . 33

6.2.3 Flipping Algorithm Variant Comparisons . 35

6.2.4 Total Costs and Empirical Comparison . 36

6.2.5 Full Tableau Cost Estimations And Comparisons 36

6.2.6 Revised Simplex Cost Comparison . 37

6.2.7 Truncated Tableau Time Extrapolation . 37

6.2.8 Space Costs . 37

6.3 An Exact, Polynomial-time Flipping Algorithm . 38

iii

7 Conclusion 39

8 Index: Code 40

Bibliography 40

iv

Chapter 1

Introduction

In the area of correlated multivariate discrete distributions, including, in particular, multivariate Poisson

distributions, the calibration problem is the problem of finding a multidimensional discrete probability

distribution with given marginals distributions and a desired correlation matrix.

To be more specific, let X1, X2, . . . , Xd be d ≥ 2 correlated random variables and let

Pi1,i2,...,id = P(X1 = i1, X2 = i2, . . . , Xd = id)

where, for k ∈ {1, 2, . . . , d}, ik ∈ {0, 1, 2, . . . }. That is, P is the joint d-dimensional discrete probability

distribution associated with the random variables X1, X2, . . . , Xd.

For k ∈ {1, 2, . . . , d}, the kth marginal distribution associated with the d-dimensional discrete prob-

ability distribution P is Q(k), where

Q
(k)
ik

= P(Xk = ik) =
∑
j∈Ik

∞∑
ij=0

Pi1,...,ik−1,ik,ik+1,...,id

for ik ∈ {0, 1, 2, . . . } and

Ik = {j : j ∈ {1, 2, . . . , d} but j 6= k}

For k and l ∈ {1, 2, . . . , d}, the correlation associated with the random variables Xk and Xl (and

hence also associated with the d-dimensional discrete probability distribution P) is

Ck,l = corr(Xk, Xl) =
E[XkXl]− E[Xk]E[Xl]

σ(Xk)σ(Xl)

where E is the expectation operator and σ is the standard deviation operator.

We can assemble the correlations Ck,l, for k and l ∈ {1, 2, . . . , d}, into a d× d correlation matrix C,

where Ck,l is the element in row k and column l of the matrix C. Note that C is the d × d correlation

matrix associated with the d-dimensional discrete probability distribution P .

Note that, if the marginal distributions Q(k) and Q(l) of P are given, then E[Xk] and σ(Xk) are

completely determined by Q(k) and E[Xl] and σ(Xl) are completely determined by Q(l), but E[XkXl] is

1

Chapter 1. Introduction 2

not completely determined by the marginals of P . To be more specific,

E[XkXl] =

∞∑
ik=0

∞∑
il=0

ikilP
(k,l)
ik,il

where

P
(k,l)
ik,il

= P(Xk = ik, Xl = il) =
∑

j∈Ik,l

∞∑
ij=0

Pi1,...,ik−1,ik,ik+1,...,il−1,il,il+1,...,id

for ik and il ∈ {0, 1, 2, . . . }, where

Ik,l = {j : j ∈ {1, 2, . . . , d} but j 6= k and j 6= l}

The calibration problem is to find a d-dimensional discrete probability distribution P with given

marginal distributions Q(k), for k = 1, 2, . . . , d, and a given correlation matrix C.

Chiu et al. [3, Section 4] provide a method for solving the calibration problem described above. We

briefly summarize their approach here. For further details, see [3].

To begin, define the “monotonicity structure”

e(j) = (e
(j)
1 , e

(j)
2 , . . . , e

(j)
d)

by setting e
(j)
1 = 0 and

e
(j)
i =

{
0 if X1 and Xi are to be maximally correlated

1 if X1 and Xi are to be minimally correlated

for i = 2, . . . , d. Note that, for i = 2, . . . , d, there are two choices for the ith component of each e(j).

Hence, there are n = 2d−1 distinct monotonicity structures e(1), e(2), . . . , e(n).

For j = 1, 2, . . . , n, we associate with each monotonicity structure e(j) an “extreme” d-dimensional

discrete probability distribution P (j) having the same marginal distributions Q(k), for k = 1, 2, . . . , d,

as the desired d-dimensional discrete probability distribution P , but having an “extreme” correlation

matrix C(j) with the property that

C
(j)
k,l =

{
is the maximal possible value for corr(Xk, Xl) if e

(j)
k = e

(j)
l

is the minimal possible value for corr(Xk, Xl) if e
(j)
k 6= e

(j)
l

How to compute the C
(j)
k,l , for k and l ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . , n}, and the associated d-

dimensional discrete probability distribution P (j) are described in [3, Section 4].

In passing, note that, since C
(j)
k,l is a correlation, C

(j)
k,l ∈ [−1, 1]. However, even though we maximize

C
(j)
k,l if e

(j)
k = e

(j)
l or minimize C

(j)
k,l if e

(j)
k 6= e

(j)
l , it often happens that the maximal possible value for

C
(j)
k,l < 1 and/or the minimal possible value for C

(j)
k,l > −1.

As noted in [3, Section 4], we can now reduce the calibration problem described in the beginning of

Chapter 1. Introduction 3

this chapter to finding a set of coefficients ω1, ω2, . . . , ωn satisfying

n∑
j=1

ωjC
(j) = C

n∑
j=1

ωj = 1

ωj ≥ 0

(1.1)

and then setting

P =

n∑
j=1

ωjP
(j) (1.2)

Since each P (j), for j = 1, 2, . . . , n, is a d-dimensional discrete probability distribution, it follows easily

from (1.2) and the second and third lines of (1.1) that P is also a d-dimensional discrete probability

distribution. Moreover, since each P (j), for j = 1, 2, . . . , n, has the same marginal distributions Q(k), for

k = 1, 2, . . . , d, it again follows easily from (1.2) and the second and third lines of (1.1) that P also has

the required marginal distributions Q(k), for k = 1, 2, . . . , d. Furthermore, it follows easily from (1.1)

and (1.2) that P has correlation matrix C.

Therefore, if we can find a set of coefficients ω1, ω2, . . . , ωn satisfying (1.1), then the d-dimensional

discrete probability distribution P given by (1.2) satisfies the calibration problem described in the

beginning of this chapter. That is, P has the specified marginal distributions Q(k), for k = 1, 2, . . . , d,

and the required correlation matrix C.

On the other hand, if there are no coefficients ω1, ω2, . . . , ωn satisfying (1.1), then there is no d-

dimensional discrete probability distribution P with marginal distributions Q(k), for k = 1, 2, . . . , d, and

correlation matrix C.

Note in passing that we can view the problem (1.1) as finding a convex combination of the extreme

correlation matrices C(j) that is equal to the desired correlation matrix C. Also, we can view (1.2)

as writing the desired d-dimensional discrete probability distribution as a convex combination of the

extreme d-dimensional discrete probability distributions P (j), where each P (j) has correlation matrix

C(j).

To find a set of coefficients ω1, ω2, . . . , ωn satisfying (1.1) or to show that no such set of coefficients

exists, we re-formulate the conditions (1.1) as a constrained system of linear equations. To this end,

note that each matrix C(j) is symmetric with 1’s on its diagonal. This is also true for C. Therefore,

each matrix C(j) is completely determined by the elements in its strictly upper-triangular part. Again,

this is also true for C. Hence, we can “vectorize” each matrix C(j) by putting the elements C
(j)
1,l , for

l = 2, . . . , d, in the first row of the strictly upper-triangular part of C(j) in the first d− 1 elements of a

column vector Â(j). Then putting the elements C
(j)
2,l , for l = 3, . . . , d, in the second row of the strictly

upper-triangular part of C(j) in the next d− 2 elements of Â(j). And so on. That is, we set

Â
(j)
(2d−k)(k−1)/2+l−k = C

(j)
k,l

for k = 1, 2, . . . , d− 1 and l = k + 1, . . . , d. Note that Â(j) is a column vector of length m̂ = d(d− 1)/2.

Chapter 1. Introduction 4

Similarly, we can vectorize C by setting

b̂(2d−k)(k−1)/2+l−k = Ck,l

Note that b̂ is also a column vector of length m̂ = d(d − 1)/2. Now let Â(j) be the jth column of the

m̂× n matrix Â. That is,

Â = [Â(1) Â(2) . . . Â(n)]

Then the conditions (1.1) can be rewritten as

Âω = b̂

1Tω = 1

ωj ≥ 0 for j = 1, 2, . . . , n

(1.3)

where ω = (ω1, ω2, . . . , ωn)T and 1 = (1, 1, . . . , 1)T ∈ Rn.

Note in passing that we can view the problem (1.3) as finding a convex combination of the vectors Â(j)

(representing the extreme correlation matrices C(j)) that is equal to the desired vector b̂ (representing

the desired correlation matrix C).

We now transform (1.3) into a more standard form. First, replace ω by x, since x is more commonly

used than ω as the vector of unknowns in linear algebra problems. Second, if b̂i < 0, multiply b̂i by −1

and also multiply each element in the ith row of Â by −1. After this is done, all b̂i ≥ 0. Third, add a

row of 1’s to the bottom of the matrix Â and call the new matrix A; also add a 1 to the bottom of the

vector b̂ and call the new vector b. This incorporates the constraint 1Tω = 1 in (1.3) into the system

for linear equations Ax = b. Note that A is an m× n matrix, x ∈ Rn and b ∈ Rm, where

m = m̂+ 1 =
d(d− 1)

2
+ 1

n = 2d−1

After these transformations are performed, we can rewrite (1.3) as

Ax = b

x ≥ 0
(1.4)

where x ≥ 0 means xj ≥ 0 for all j = 1, 2, . . . , n.

The system (1.4) is in the form of the constraints that appear in many Linear Programming Problems

(LPPs):

min
Ax=b
x≥0

c̄Tx (1.5)

To start the simplex method to solve (1.5), we need a “feasible solution” to (1.4). Below, we adapt the

method presented in [4, Section 13.5] for finding a solution to (1.4).

Chapter 1. Introduction 5

First we augment the system (1.4) as follows.

[A I]

(
x

y

)
= b

(
x

y

)
≥ 0

(1.6)

where I is the m×m identity matrix and y ∈ Rm. Clearly, x = 0 and y = b is a solution to (1.6), since

the second transformation described above ensures that y = b ≥ 0. Moreover, if we can find a solution

(xT yT)T to (1.6) with y = 0, then the associated x satisfies (1.4). So, let

Ã = [A I] z =

(
x

y

)
c̄ =



0

0
...

0

1

1
...

1


where Ã is an m × (m + n) matrix, z ∈ Rm+n and c ∈ Rm+n with c̄i = 0 for i = 1, 2, . . . , n and c̄i = 1

for i = n+ 1, n+ 2, . . . , n+m. Now consider the LPP

min
Ãz=b
z≥0

c̄T z (1.7)

As noted above, an initial feasible solution to (1.7) is z = (xT yT)T with x = 0 and y = b. So, we have

an initial feasible solution to start the simplex method to solve (1.7). Given the constraint in (1.7) that

z ≥ 0, which implies that y ≥ 0, we have

c̄T z = (0 0 · · · 0 1 1 · · · 1)

(
x

y

)
= (0 0 · · · 0)x+ (1 1 · · · 1) y =

m∑
i=1

yi ≥ 0 (1.8)

Suppose we solve the LPP (1.7) and we find that the minimizer z∗ = ((x∗)T (y∗)T)T of (1.7) satisfies

c̄T z∗ = 0. Then, from (1.8), it follows that y∗ = 0. Hence, as noted above, the associated x∗ satisfies

(1.4).

On the other hand, suppose we solve the LPP (1.7) and we find that the minimizer z∗ = ((x∗)T (y∗)T)T

of (1.7) satisfies c̄T z∗ > 0. Then there is no solution to (1.4), since, if there were a solution x̂ to (1.4),

we could let ẑ = (x̂T ŷT)T with ŷ = 0 and note that Ãẑ = b, ẑ ≥ 0 and c̄T ẑ = 0, contradicting the

assumption that the minimizer z∗ of (1.7) satisfies c̄T z∗ > 0.

So, for small problems (e.g., d ≤ 10), we can solve the LPP (1.7) to either find a solution x to (1.4)

or show that there is no solution to (1.4).

However, for medium to large sized problems (e.g., d ≈ 51), the major difficulty arises that A has

n = 2d−1 = 250 ≈ 1015 columns. So, it would take an unacceptably large amount of time just to

Chapter 1. Introduction 6

construct the matrix A (assuming we could store it). (Note that A is not usually sparse.)

The focus of this research paper is to use the structure of the calibration problem described at the

beginning of this chapter to develop a modified version of the simplex method that solves the LPP (1.7)

without ever generating all the columns of A or Ã.

The outline of this research paper is as follows. In Chapter 2, we provide a glossary of several terms

used in this paper, for ease of reference. In Chapter 3, we review the simplex method using the “full

tableau” approach. In Chapter 4, we propose a modified simplex method and compare it to the simplex

method outlined in Chapter 3. In Chapter 5 we detail the algorithm for pivot column selection in this

modified simplex method. In Chapter 6 we analyze the time and space complexity of our modified

simplex method, and of some alternatives that were explored. Chapter 7 concludes the paper.

Finally, we note that, if there is a solution to (1.4), it usually is not unique. However, in this research

paper, we are content to find any solution to (1.4). We leave to future work the interesting question of

whether there is a “best” solution to (1.4) and how to find it.

Chapter 2

Glossary and Terms

Terms used throughout the paper are collected here as a quick reference. Some have been mentioned

already, and others are explained in greater detail in later chapters.

Correlation Matrix. A d × d matrix, C, from which the problem derives. d is the primary

parameter for categorizing the sizes of these problems (“a problem of size d” refers to one based on an

d×d correlation matrix, C), and that terminology is used frequently in this thesis. For a problem of size

d, the number of elements in the strictly upper-triangular part of the associated correlation matrix C is

m̂ = d(d−1)
2 Additionally, as a shorthand, we define m = m̂+ 1, as these figures both arise frequently.

Generating Vectors. The source of the resultant vectors, these have the form of a 1, followed by a

pattern of 1s and 0s. The set of generating vectors contains all possible such vectors of 1s and 0s. For a

problem of size d, the number of generating vectors is n = 2d−1, and the length of the generating vectors

is d. Each generating vector is associated with one extreme measure.

Resultant Vectors. The resultant vectors are the vectorized forms of the extreme correlation

matrices C(j) used in the calibration (1.1). They can be calculated from the generating vectors by

taking every pair of generating vector elements in top-down order, and where the pair is equal the

resultant vector element is the maximal correlation of that pair, and where they are not it is the minimal

correlation of that pair. The number of resultant vectors is n = 2d−1 (one generated by each generating

vector), and the size of each resultant vector is m̂ = d(d−1)
2 . The resultant vectors (plus the convexity

constraint) form the columns of the A matrix.

Target Vector. A vector specific to the flipping algorithm, for which we want to find a resultant

vector to give a negative dot product of near maximal magnitude.

Objective Vector. The objective vector, b̂ is defined to be a vectorized version of the desired

correlation matrix C, as detailed in Chapter 1. In the tableau, the top m̂ elements of b are initialized to

b̂, with the remaining mth element being 1 for the convexity constraint.

Rowops matrix. The “rowops” (short for “row operations”) matrix, also called G, is the product

of all tableau updates, such that multiplying G by a column of Â provides an up-to-date version of that

column and its current reduced cost, as if it had been in the tableau since its initalization.

Algorithm Names:

• The “Full Tableau Simplex method” is a version of the standard simplex algorithm which is similar

in tableau arrangement to our truncated tableau simplex method. Unlike the truncated tableau

simplex method, the full tableau contains the entire A-matrix, which means it also can choose the

7

Chapter 2. Glossary and Terms 8

exact column of A to minimize the reduced cost at each simplex iteration.

• The “Truncated Tableau Simplex method” is our algorithm. It stores only the active columns of

A in memory, and can dynamically calculate other columns when they need to be accessed. Its

version of the tableau is called the truncated tableau.

• The “Flipping Algorithm” is a part of the truncated tableau simplex method that finds a resultant

vector with a low reduced cost value in logarithmic-in-n time in the average case. It is so named

because it operates by testing “flips” of the signs of elements of generating vectors to search for

resultant vectors to introduce to the active set.

A, b, c, E, i. In the context of the simplex tableau, these refer to its five parts. A and E form

the main section of the tableau. At initialization, A = A, E = I (the identity matrix), and b =

b, of Ax + Ez = b, after pre-processing to fit Simplex method constraints (requiring b to be entirely

non-negative). c is the reduced cost vector. In the truncated simplex tableau, only a subset of [A|E]

is included in the tableau at any given time, but the term A always refers to the entire set of resultant

vectors. For reasons that are detailed later, for each column j, cj is initially −
∑m

i=1 ai,j . Finally, i is a

row added to the bottom of the truncated tableau: ij is the index of the column in A associated with the

column j in the truncated tableau. All columns of E have ij = 0, as this index-tracking is not necessary

for those columns.

Â, b̂, m̂ . These “hat” symbols represent the value before being pre-processed for the truncated

tableau simplex method. The symbols Â and b̂ represent A and b without the added convexity constraint.

Additionally, m̂ = m− 1 represents the sizes of these original columns and vectors.

O(g(n)),Ω(g(n)),Θ(g(n)). These symbols represent classes of functions, in terms of how their

value increases as their input n increases. If some function f(n) is O(g(n)), then f(n) grows at most as

fast as cg(n) as n approaches infinity, for some constant c. Likewise, if f(n) is Ω(g(n)), then f(n) grows

at least as fast as cg(n) as n approaches infinity, for some positive constant c. If f(n) is Θ(g(n)), then

f(n) is both O(g(n)) and Ω(g(n)).

c̄. The original cost vector defining the cost function of a given minimization problem. For all the

problems tackled in this research paper, c̄ = (0, 0, . . . , 0, 1, 1, . . . 1)T , so this is not discussed at length.

This is usually referred to with the symbol c in LPPs, but that is also used to refer to the c-vector of a

simplex tableau, so we use c̄ for the cost vector to distinguish them.

Chapter 3

Review of Full Tableau Simplex

Method

This implementation is based on Nasser M. Abbasi’s free-for-use Matlab Simplex code, specifically its

first phase [1]. There are many small details in a simplex tableau which may change from implementation

to implemention, so we explain it in this chapter in a way that is consistent with the truncated tableau

method, introduced in the following chapter.

3.1 The Initial Tableau

The tableau initialization function accepts the arguments A and b. Using these it constructs a simplex

tableau. For our purposes, A is a matrix that contains all our resultant vectors, as columns, with a row

of “1”s added as the bottom row, as the convexity constraint. b is initialized from the objective vector

with a 1 added to the bottom of the vector, again for the convexity constraint.

This version largely follows the description of the first phase of the simplex method in [2, Chapter 3].

That book also contains some example problems.

The vector c denotes the opportunity cost (or “reduced cost”) of bringing a column of A into the

basis.

In the tableau, c is a row vector underneath A, such that column j of A, A∗,j , has a corresponding

cj-value. This cj is initialized to the negative sum of each element in the column A∗,j : cj = −(a1,j +

a2,j + · · ·+am,j), though this equality is not guaranteed to hold as the simplex method progresses. This

does not apply to the columns of E, which are prevented from re-entering the basis, so we do not need

to consider their reduced cost and count every column of E’s reduced cost as 0. This is not typical of

the “standard” simplex method, but makes some things simpler later on. Though the standard simplex

method might sometimes reintroduce a column of E into the basis, setting the costs associated with

columns of E to 0 stops it from doing so in our variant of the full tableau method. Note that this never

prevents our method from finding a solution (this is discussed further in Section 4.5).

In a pre-processing step (explained in detail in Section 4.2.1), the tableau is altered such that bi ≥ 0

for all i ∈ [1, m̂]. This allows us to initialize the auxiliary matrix E to an identity matrix.

Compositing A, b, c, and the auxiliary matrix E creates the initial (m+ 1)× (n+m+ 1) tableau, T0:

9

Chapter 3. Review of Full Tableau Simplex Method 10

T0 =

a1,1 . . . a1,n e1,1 . . . e1,m b1

a2,1 . . . a2,n e2,1
. . . e2,m b2

...
. . .

...
...

...
...

am,1 . . . am,n em,1 . . . em,m bm

c1 . . . cn 0 0 0 0

When it is initialized, the E section of the tableau is in the form of an m×m identity matrix, and

forms the initial basis of the tableau. Basis columns of [A|E] are associated with variables xi > 0 and

yj > 0 in the solution of Ax + Ey = b, x ≥ 0 and y ≥ 0. After initialization, the columns of E are

not distinguished from columns of A, so for the sake of brevity we uniformly represent generic tableau

elements with a.

3.2 Simplex Iterations

At each iteration, the following steps are taken by the algorithm:

First: identify the most negative c-value in the tableau Ti shown below. In the truncated tableau

simplex method this is not a trivial operation, but for this version all columns are accessible in the

tableau, so it is simply a call to the “min” function. We’ll call this minimal c-value “cj”. This jth

column is called the pivot column.

Second: we need to identify the pivot element, and thus the pivot row. The pivot is an element,

ap,j in the pivot row p and pivot column j, for which some positive bp divided by ap,j is minimal.

That is, p = index(minimum((1
a1,j

, . . . , 1
am,j

) } (b1, . . . , bm))), for bp > 0 where } denotes elementwise

multiplication.

Third: once the pivot row is known, that row of the tableau is normalized by dividing all elements

in row p by ap,j . This makes the pivot element ap,j = 1 (see tableau Ti+1).

Ti =

ai1,1 ai1,2 . . . ai1,j . . . ai1,n bi1

ai2,1 ai2,2 . . . ai2,j . . . ai2,n bi2
...

...
...

...
...

aip,1 aip,2 . . . aip,j . . . aip,n bip
...

...
...

...
...

aim,1 aim,2 . . . aim,j . . . aim,n bim

ci1 ci2 . . . cij . . . cin 0

Ti+1 =

ai1,1 ai1,2 . . . ai1,j . . . ai1,n bi1

ai2,1 ai2,2 . . . ai2,j . . . ai2,n bi2
...

...
...

...
...

aip,1/a
i
p,j aip,2/a

i
p,j . . . aip,j/a

i
p,j . . . aip,n/a

i
p,j bip/a

i
p,j

...
...

...
...

...

aim,1 aim,2 . . . aim,j . . . aim,n bim

ci1 ci2 . . . cij . . . cin 0

Chapter 3. Review of Full Tableau Simplex Method 11

Then, for all k except k = p, element ak,j is reduced to zero by multiplying the pivot row by ak,j and

subtracting it from row k, as seen in tableau Ti+2. For the sake of legibility, we define the shorthand

sx,y = ai+1
x,j a

i+1
p,y . Note that, since ai+1

p,j = 1, this has the effect of making each element in the jth column

equal 0, except for ap,j , which remains equal to 1. This pivot column becomes a new basis column,

replacing the basis column which previously had a 1 in the pivot row. By this process of replacement,

the tableau always has m basis columns, which form columns of an identity matrix.

Ti+2 =

ai1,1 − s1,1 ai1,2 − s1,2 . . . ai1,j − s1,j . . . ai1,n − s1,n bi1 − ai1,jbi+1
p

ai2,1 − s2,1 ai2,2 − s2,2 . . . ai2,j − s2,j . . . ai2,n − s2,n bi2 − ai2,jbi+1
p

...
...

...
...

...

ai+1
p,1 ai+1

p,2 . . . 1 . . . ai+1
p,n bi+1

p

...
...

...
...

...

aim,1 − sm,1 aim,2 − sm,2 . . . aim,j − sm,j . . . aim,n − sm,n bim − aim,jb
i+1
p

ci1 − cija
i+1
p,1 ci2 − cija

i+1
p,2 . . . cij − cij . . . cin − cijai+1

p,n 0

These iterations repeat until the vector of reduced costs c ≥ 0, at which point an optimal solution

has been found [2, Section 3.1]. This algorithm always terminates [2, Section 3.4].

3.3 The Final Tableau

When the algorithm terminates, the final tableau is of this form:

Tf =

a1,1 . . . a1,n e1,1 . . . e1,m b1

a2,1 . . . a2,n e2,1
. . . e2,m b2

...
. . .

...
...

...
...

am,1 . . . am,n em,1 . . . em,m bm

c1 . . . cn 0 0 0 0

If all the basis vectors are associated with columns of A, then all auxiliary variables, yi, are 0 and

we have found a solution to Ax = b, x ≥ 0. If some basis vectors are columns of E, then some auxiliary

variables are positive, and there is no solution to Ax = b, x ≥ 0. See the discussion following equation

(1.8) for a more detailed explanation of this important point.

From this final tableau we can recover x in the typical manner for the simplex method: set xi = 0 if

column A∗,i is not in the final basis, and set xj = bk if column A∗,j is in the final basis, where Ak,j = 1.

(because of the form of the basis columns, this matches each xj to a unique bk). This x is a solution to

Ax = b, x ≥ 0.

The description above of the full tableau simplex method is quite brief. However, this algorithm is

described in detail in many books. See, for example, [4, Chapter 13].

Chapter 4

Truncated Tableau Simplex Method

4.1 Overview of the Truncated Tableau Simplex Method

To solve the correlation problem described in Chapter 1, it would be simple to solve the associated LPP,

as discussed in Chapter 3. However, because the problems we want to tackle are so large (with d = 52,

there are 251 ≈ 2.25×1015 columns of A, far too many to store in memory or perform calculations on), we

need a way to run the simplex method where time and space costs are not dependent upon n, the number

of columns of A. A revised simplex method is described in [2, Section 3.3] which purports to operate in

O(m2) memory and O(m2) best-case time, however it notes that this is only true of the space-complexity

because in “most large-scale problems that arise, A is very sparse and can be stored compactly.” Our A

matrix is certainly not sparse, so this method is not useful for our purposes. Additionally, its method for

providing O(m2) best-case time gives no method for providing “effective” reduced cost values — simply

calculating them one at a time, at random, and proceeding when a negative one is found. Though this

does seem to provide polynomial-time performance in the cases we tested, it still leaves much room

for improvement (a more detailed cost comparison between this “revised simplex” and our truncated

tableau simplex method is given in Section 6.2.6.)

To accomplish a true reduction in time- and space-complexity, we need a way to dynamically calculate

the information which the simplex method would otherwise read from the tableau. Namely, updated

columns of A, and their reduced costs.

In the previously-described implementation of the simplex method, the tableau contains all the data

associated with the minimization problem. In our truncated tableau simplex method, we use instead

a truncated tableau, which explicitly stores only the current basis from the full tableau described in

Chapter 3 alongside the b-column, with a new row, i, added to the bottom of the tableau, to store each

A-column’s index in Â.

To account for the information we’ve removed from the tableau, we need to introduce additional

functions to make the algorithm work without having direct access to every value in A and c. The first

key to solving this issue comes from the fact that we change the tableau exclusively by elementary row

operations. We can “save” these row operations in a “rowops” matrix, G, which is initialized to the

identity matrix and updated on each iteration to incorporate all row operations done on the tableau.

Then, to replace a column in A with one that is not currently in the tableau, we can simply multiply it

by G to apply all previous row operations to it. The details of this procedure are given in Section 4.3.

12

Chapter 4. Truncated Tableau Simplex Method 13

By this method, we can avoid storing and performing row operations on the large quantity of inactive

columns of A until we need them. When a column enters the basis, we can multiply it by the rowops

matrix, G, and insert it into the tableau, as if it had been there all along.

The second challenge arising from the truncated tableau is in using the c-row to find negative cost

coefficients. Without storing the entire c-row (which contains either n = 2d−1 elements or n+m elements,

depending on how you implement the method), we cannot simply search it to find the most negative cost

coefficient at each step (and even if we could, it would be a prohibitively expensive Ω(2d−1) operation).

Calculating which A-column has the minimum c-value (given the information available to the truncated

tableau) is likely an NP-complete problem (see Section 6.3 for details). Fortunately, the most negative

coefficient is not required for each iteration to make progress. A “sign-flipping” approximation algorithm

which usually runs in polynomial time in d is detailed in Chapter 5. Using this algorithm, each iteration

can efficiently identify a column of A with a negative c-value to use as the pivot.

Though it is difficult to say precisely how this negative c-value compares to the minimum possible

c-value, experimental analysis reveals that the number of iterations required by the truncated tableau

method is usually approximately d2.5 ≈ m1.25 (for d < 52, at least). Since there are m basis vectors,

the best case scenario would require m iterations. Thus, the flipping algorithm’s imprecision adds

approximately at most m1.25−m iterations, a small price to pay for replacing a Ω(2d−1) operation with

the cost of finding and updating the newly introduced column of A, which is a O(d4) operation.

When the basis is composed entirely of columns of A, the algorithm terminates and we can extract

a solution to our initial problem.

4.2 Truncated Simplex Tableau Initialization

The construction of this initial truncated tableau, T0, is fairly straightforward. The bulk of the tableau

is made up of m columns of E, the auxiliary matrix. As before, the column vector b is the rightmost

column of the tableau.

The row vector c, representing each column’s reduced cost, is placed in the row below A. This is

somewhat of an abstraction, as the columns of the tableau are always the basis columns, and thus have

a reduced cost of 0, but it is trivial to include as a double-check that nothing has gone awry, and to

maintain some of the form of the standard tableau.

The row vector i is added below c. These values are initialized to 0 as well (as they represent each

column’s index in Â, and does not apply to columns of E), but as columns of A are brought into the

basis, the i-row tracks each column’s index so that the final tableau can be properly interpreted.

T0 =

e1,1 e1,2 . . . e1,m b1

e2,1 e2,2 . . . e2,m b2
...

...
. . .

...
...

em,1 em,2 . . . em,m bm

c1 c2 . . . cm 0

i1 i2 . . . im 0

=

1 0 . . . 0 b1

0 1 . . . 0 b2
...

...
. . .

...
...

0 0 . . . 1 bm

0 0 . . . 0 0

0 0 . . . 0 0

Chapter 4. Truncated Tableau Simplex Method 14

4.2.1 Removing Negative b-Values

Our implementation of the simplex method requires that the linear programming problem it solves be

in a form such that there are no negative values in b. For the standard simplex algorithm, this is

easily arranged as follows. If bi < 0, then multiply bi and each element in row i of A by −1. However

each swap in the sign of b also changes the predictable structure of Â that arises from the monotonicity

structures as described in Chapter 1. This poses a challenge, because the flipping algorithm only works by

exploiting our knowledge of this structure. So it is necessary to carefully “cheat” the flipping algorithm,

transforming columns of A back to the unaltered values of Â for certain calculations and then reversing

that transformation without invaliding those calculations.

First, a global variable is defined to be a vector of size m, flipped rows = (1, 1, 1, . . . , 1, 1, 1)T . This

is used to keep track of which rows have flipped signs.

During the creation of the inital tableau, when a negative bi is found and bi and each element in row

i of A are multiplied by −1, we also set flipped rowsi = −1. Going forward, we can elementwise-multiply

any column of the tableau with flipped rows to swap it between this “canonical simplex form” (with no

negative b-values) and “original Â form” (with possible negative b-values and the predictable pattern

structure).

Specifically for the flipping algorithm, the target vector is elementwise-multiplied by flipped rows,

putting it in original Â form, and then the column of Â calculated by the flipping algorithm is put

in canonical simplex form before being introduced to the tableau. Empirical tests have validated the

accuracy of this method, and the algorithm works equally well with b-vectors which do or do not have

negative initial values.

4.3 Bringing an Inactive Vector Into the Tableau

Since we have truncated a majority of the tableau’s columns, and do not update them between simplex

iterations, we need some way to update those columns when they enter the active set so that they have

the value that they would have had if they had been in the tableau all along. A column j of the tableau

consists of a column of A, which we call A∗,j , its reduced cost cj , and its index ij . The index is not

affected by the updating process, so it can be ignored for now.

We could simply store and repeat each individual row operation that had been done in the tableau

up to that point, but the tableau operations themselves make up a majority of the algorithm’s cost,

and this could further increase it. As enumerated in Section 3.2, updating a column of the tableau by

one step in this way requires m multiplications and additions, and one division. This makes it a Θ(d2)

operation.

Each simplex iteration would increase the number of sequential column updates by 1, making each

“new” column cost more than the previous one. Thus, if there are I iterations, then the total cost of all

column updates would be Θ((1 + 2 + · · ·+ I)d2) = Θ(I2d2).

As noted in Section 6.2, I is well approximated by a Θ(d2.5) function in the average case, which

would give Θ(d7) average-case cost. The average-case cost incurred by all other parts of the algorithm

is well approximated by a Θ(d6.5) function, so this is quite undesireable. Additionally, the number of

iterations varies based on the specific problem, so even if I did have a “good” growth rate in the average

case, this implementation would exacerbate worst-case performance.

Chapter 4. Truncated Tableau Simplex Method 15

Fortunately, linear algebra gives us a simple way to implement a more efficient update procedure with

a cost-per-iteration that remains constant no matter how many iterations have occured. This is because

all changes made to the tableau during simplex iterations are made with elementary row operations.

Each elementary row operation can be represented by matrix multiplication, so we can characterize

every change to the tableau T as having been made by some update matrix U , such that the ith tableau

update can be represented as UiTi−1 = Ti. Since the section of T being updated has columns with a

height of m+ 1, all U matrices are (m+ 1)× (m+ 1).

Additionally, the properties of matrix multiplication mean that we can chain these updates to form

a single matrix UiUi−1 · · ·U2U1 = Gi (and update it step by step, such that Gi = UiGi−1) such that

we could take the original tableau and update it to Ti with a single matrix multiplication GiT0 = Ti.

Equivalently, we can take any column of A and update it to its ith version in the tableau, as if it had

been part of the tableau the entire time. We call the (m+ 1)× (m+ 1) matrix Gi the “row ops” matrix

for iteration i of the truncated tableau simplex method.

Each simplex iteration involves two sequential updates to the tableau: normalizing the pivot row,

and then eliminating the pivot column. For the ith iteration, with some pivot pj,k in row j and column

k, the corresponding update matrix Di to normalize the pivot row is the identity matrix with the 1 at

element (k, k) replaced with 1/pj,k, and Vi, which eliminates the pivot column, is as follows, where each

ax,j is the element in the xth row of the pivot column of the current tableau:

Vi =

1 0 · · · −a1,j · · · 0 0

0 1 −a2,j 0
...

. . .
...

...

1
...

...
. . .

...

0 −am,j 1 0

0 0 · · · −cj · · · 0 1

Now let Ui = ViDi.

This method gives another additional small bonus: we can also characterize the calculation of reduced

costs c as an elementary row operation, and make that the first update to the tableau, U0:

U0 =

1 0 · · · 0 0

0 1 0
...

. . .
...

0 1 0

−1 −1 · · · −1 1

So we can skip having to perform that step separately with each new column and we can simply

include it in Gi = UiUi−1 · · ·U2U1U0.

Much of this matrix multiplication process is somewhat theoretical, however. The replacement scheme

of the tableau means that the [A|E] section of the truncated tableau only contains the basis, which is

always in the form of an identity matrix, so the tableau updates are only necessary to update the b

section. Updating G is also necessary to determine the target vector which is passed to the flipping

algorithm to minimize the reduced cost, as discussed in Chapter 5.

Chapter 4. Truncated Tableau Simplex Method 16

This process dominates the cost of the truncated tableau simplex algorithm. Each iteration’s compu-

tation of Gi = UiGi−1 requires Θ(m2) = Θ(d4) additions and multiplications, (assuming we don’t take

advantage of Gi being sparse for small i). For further details, see the full cost analysis in Section 6.1.

4.4 Truncated Simplex Tableau Iterations

In each iteration, the bit flipping algorithm is used to find a negative cost coefficient (see Chapter 5 for

the details on that process). Once this negative cost coefficient is found, the column of A associated

with it has its convexity constraint added to it and is multiplied by the rowops matrix G to update it in

accordance with the current tableau. It then replaces a column in the truncated tableau (and, thus, in

the basis). The choice of which column to replace is made by calculating the pivot row of the entering

column and removing the column in the old basis with a 1 in that row. Because of this method of

replacement, the column exiting the truncated tableau is also the one exiting the basis. Thus, at every

step the truncated tableau contains only the basis.

Because the tableau only ever contains the basis, the only changes made by the “row operations”

involved in a tableau update are to the pivot column and b-vector, which is a very efficient calculation.

The majority of the calculation time of a simplex iteration is spent updating G (as described in the

previous section), by repeating the row operations described in Section 3.2.

4.4.1 Anti-cycling

For certain problems, it is possible for the simplex algorithm to encounter a phenomenon known as

cycling [4, Section 13.5], where the algorithm takes degenerate steps which do not reduce the objective

function c̄Tx, and eventually returns to an earlier basis. From there the method repeats the steps it took

when it was first at the earlier basis, causing the tableau to loop through the same set of basis vectors,

never making further progress.

Cycling is considered to be rare outside of relaxations of integer programming problems [4, Section

13.5] and we never encountered a problem where cycling occurred. So, in this test version of our method,

we have not included an anti-cycling strategy, but we believe one could easily be added to a “production”

version of our method.

4.4.2 Interpreting the Final Tableau

Tf =

1 0 . . . 0 b1

0 1 . . . 0 b2
...

...
...

...

0 0 . . . 1 bm

0 0 . . . 0 0

i1 i2 . . . im 0

This process is nearly unchanged from the full tableau simplex method. If the algorithm terminates

with each basis vector associated with a column of A, then we can recover x as follows. Set xi = 0 for

all A-columns A∗,i which are not in the final basis, and set xj = bk for all A-columns A∗,j which are in

the final basis, where Ak,j = 1 in the basis vector A∗,j (because of the form of the basis columns, this

Chapter 4. Truncated Tableau Simplex Method 17

matches each xj to a unique bk). Then
∑n

j=1A∗,jxj = b. Thus, x satisfies our constrained system of

linear equations Ax = b, x ≥ 0.

4.5 Example Problem with Truncated Tableau

This example combines the features of this algorithm into one cohesive example in order to walk through

a small problem in the way that it would actually be solved by the truncated tableau simplex method.

The only aspect lacking from this example is that we use the actual values of the reduced costs to

determine a pivot column, rather than finding one via the flipping algorithm defined in the next chapter.

First, let’s establish the problem. For this example, we use A and b for which the convexity constraint

has already been added to the bottom row, and the second row of A has had its signs flipped (since the

original b-vector’s second value is -0.3):

A =


1 1 1 1 −1 −1 −1 −1

−1 −1 1 1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 1 1 1 1

 b =


0.15

0.3

0.2

1

 (4.1)

This particular example does not precisely match the shape of an A matrix which would actually arise

from the callibration problem described in Chapter 1, but is illustrative of a typical constrained linear

problem having more columns than rows, while not being too large for a simple illustrative example.

The details of the LPP that is solved in this example are discussed in Chapter 1, starting from

equation (1.4). In particular, we show the process for finding a solution to the LPP (1.7) for the given

A and b.

The initial tableau is segmented as such:

Initial Tableau segments:

E A b

cE cA 0

iE iA 0

The second block column, the block column in black, is comprised of columns not stored in memory.

These are called “inactive” or “the inactive set”, while the parts of the tableau in memory are called

“active” or “the active set”. While in this example the inactive set is relatively small, in actual problems

this section makes up nearly all of the tableau, as the inactive set has n = 2d−1 columns and the active

set has m = d(d− 1)/2 + 1 columns. What is shown in this example are the values which are generated

if an inactive column is brought into the active set. These are the same values that they would have if

they had remained loaded in the tableau since the first iteration and updated on every iteration of the

full tableau simplex method described in Chapter 3. This updating process in the truncated tableau

simplex method that is performed when an inactive column is brought into the active set is described

in Section 4.3.

The initial tableau begins only having loaded E, which is initially the identity matrix, and b, which

remains loaded throughout. To fit the format of the tableau, the matrix E has a row of c-values and

a row of i-values below it, but these are always initalized to zero. The c-values of the E-columns are

effectively always zero because they are initialized as zero, and there is no method by which a column of

Chapter 4. Truncated Tableau Simplex Method 18

E can be re-introduced to the basis once it has been removed (the flipping algorithm, which decides what

column in the inactive set enters the basis, does not consider columns of E). They could be considered to

have non-zero c-values when in the inactive set, but it would be more accurate to imagine them simply

discarded entirely when they leave the active set in the first place.

Since re-introducing a column of E is never necessary to reach a solution in the phase one simplex

method, the algorithm is simply not given the tools to do so. To see why this is the case, consider that

every time a column of E exits the basis the simplex method could be “restarted” with the current

tableau. That is, imagine a new simplex tableau initialized to be equal to the “old” tableau: its initial

feasible basis would be the basis of the previous tableau, and thus consist of both columns of E and

columns of A. The simplex method never requires creating new artificial variables after initialization, so

all the columns of E that exited the basis in previous tableaus would be gone forever. In that way, we

can see “reintroducing columns of E to the basis” as being equivalent to “creating new artificial variables

after initialization”, in that neither are strictly necessary to reach a solution.

The i-values of E-columns are also all set to 0, as these values represent the index of the column in

Â, a value which does not apply to columns of E.

Recall that the cA-values represent their reduced cost — the amount by which they would change

the cost function by being introduced to the basis. The initial calculation of this value is explained in

Section 3.1. The iA-values represent the index of each column in the Â matrix, and “track” the columns

as they get shuffled between the active and inactive sets.

As the algorithm progresses, a column’s location can change by being brought into and out of the

active set. Notice, however, that the loaded part of the active set is always in the form of an identity

matrix. This is because of the active-set replacement algorithm. When a new column enters the active

set, one must exit. This exiting column is always chosen to be the one with the same pivot row as the

entering column. Therefore, the row updates of each simplex iteration do not change anything in the

truncated tableau except for the pivot column and b, as all other values in the pivot row of the truncated

tableau are zero.

This means we could eliminate most of the truncated tableau, keeping just the i-vector and b-vector.

We’ve opted not to do this, as it would not reduce the calculation cost by much (since the bulk of

the truncated tableau does not need any updates), and the tableau remains a good abstraction for

understanding and organizing the algorithm.

For the LPP considered in this example, the initial tableau is T0, shown below. As the method

progresses, follow the i-values between each iteration to see which columns are added to or removed

from the basis.

T0 =

1 0 0 0 1 1 1 1 -1 -1 -1 -1 0.15

0 1 0 0 -1 -1 1 1 -1 -1 1 1 0.3

0 0 1 0 1 -1 1 -1 1 -1 1 -1 0.2

0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 -2 0 -4 -2 0 2 -2 0 0

0 0 0 0 1 2 3 4 5 6 7 8 0

For the first iteration, we spell out the mathematical operations in detail; for later iterations, we just

give the final result after each iteration. Note that only the sections of the tableau in blue are actually

loaded into the computer memory. The arithmetic done in the black section simply represents the new

Chapter 4. Truncated Tableau Simplex Method 19

values those columns would take if they were updated to the current tableau. In the truncated tableau

simplex method, these updates are not actually performed until an inactive column is selected to be

added to the active set. However, we perform the updates of the inactive columns on each iteration here

so that the reader can more easily follow the performance of the algorithm.

T0.5 =

1 0 0 0 1 1 1 1 -1 -1 -1 -1 0.15

1 - 1 1 0 0 -1 - 1 -1 - 1 0 - 1 1 - 1 -1 + 1 -1 + 1 1 + 1 1 + 1 0.3 - 0.15

1 - 1 0 1 0 1 - 1 -1 - 1 0 - 1 -1 -1 1 + 1 -1 + 1 1 + 1 -1 + 1 0.2 - 0.15

1 - 1 0 0 1 1 - 1 1 - 1 0 - 1 1 - 1 1 + 1 1 + 1 1 + 1 1 + 1 1 - 0.15

-4 + 4 0 0 0 -2 + 4 0 + 4 0 -2 + 4 0 - 4 2 - 4 -2 - 4 0 - 4 0

3 0 0 0 1 2 0 4 5 6 7 8 0

For this half-update, column 3 of A is the pivot column, and the top row is the pivot row.

T1 =

1 0 0 0 1 1 1 1 -1 -1 -1 -1 0.15

0 1 0 0 -2 -2 -1 0 0 0 2 2 0.15

0 0 1 0 0 -2 -1 -2 2 0 2 0 0.05

0 0 0 1 0 0 -1 0 2 2 2 2 0.85

0 0 0 0 2 4 0 2 -4 -2 -6 -4 0

3 0 0 0 1 2 0 4 5 6 7 8 0

T2 =

1 0 0 0 1 0 0.5 0 0 -1 0.5 -1 0.175

0 1 0 0 -2 0 0 2 -2 0 -1 2 0.1

0 0 1 0 0 -1 -0.5 -1 1 0 0.5 0 0.025

0 0 0 1 0 2 0 2 0 2 -1 2 0.8

0 0 0 0 2 -2 0 -4 2 -2 0 -4 0

3 0 7 0 1 2 0 4 5 6 0 8 0

T3 =

1 0 0 0 1 0 0.5 0 0 -1 0.5 -1 0.175

0 1 0 0 -1 0 0 0.5 -1 0 -0.5 1 0.05

0 0 1 0 -1 -1 -0.5 0.5 0 0 0 1 0.075

0 0 0 1 2 2 0 -1 2 2 0 0 0.7

0 0 0 0 -2 -2 0 0 -2 -2 0 0 0

3 4 7 0 1 2 0 0 5 6 0 8 0

T4 =

1 0 0 0 1 0 0.5 0 0 -1 0.5 -1 0.175

0 1 0 0 1 0 0.5 0.5 -1 -1 0 0 0.225

0 0 1 0 1 -1 0 0.5 0 -1 0.5 0 0.25

0 0 0 1 -2 2 -1 -1 2 4 -1 2 0.35

0 0 0 0 2 -2 0 0 -2 -4 0 -2 0

1 4 7 0 3 2 0 0 5 6 0 8 0

Chapter 4. Truncated Tableau Simplex Method 20

T5 =

1 0 0 0 0.5 0.5 0.25 -0.25 0.5 0.25 0.25 -0.5 0.2625

0 1 0 0 0.5 0.5 0.25 0.25 -0.5 0.25 -0.25 0.5 0.3125

0 0 1 0 0.5 -0.5 -0.25 0.25 0.5 0.25 0.25 0.5 0.3375

0 0 0 1 -0.5 0.5 -0.25 -0.25 0.5 0.25 -0.25 0.5 0.0875

0 0 0 0 0 0 0 0 0 0 0 0 0

1 4 7 6 3 2 0 0 5 0 0 8 0

We know that T5 is the final tableau, as all E-columns have been removed from the basis.

From the final tableau, we can determine the convex combination of the columns of Â that equal b̂.

It is well-known from the Simplex Method that

m∑
j=1

bjÂ∗,ij = b̂

where bj is the jth element in the b vector on the right side of T5, ij is the jth element in the i vector at

the bottom of T5 and Â∗,ij is the column ij in the matrix Â.

In our example, we can see that the i-values of the active set are 1, 4, 7, and 6 in that order. Thus,

our final convex combination is as follows:

b1Â∗,1 + b2Â∗,4 + b3Â∗,7 + b4Â∗,6 = b̂

That is,

0.2625

 1

−1

1

+ 0.3125

 1

1

−1

+ 0.3375

−1

1

1

+ 0.0875

−1

−1

−1

 =

0.15

0.3

0.2


Thus, constructing b̂ as a convex combination of columns of Â.

Chapter 5

“Flipping” Algorithm

When using a version of the simplex method that includes a full tableau, the pivot column of each

iteration is simply chosen to be the one with the most negative reduced cost, which can be determined

with a call to the min function. However, since the non-basis columns of A are not loaded in the

tableau, we need some other way to identify columns with low reduced costs. This is where the “flipping”

algorithm described in this chapter comes in.

This algorithm uses the patterns between the generating vectors and their resultant vectors to search

the resultant vectors efficiently. Rather than exhaustively searching through the entire set of resultant

vectors, we establish simple rules that allow an algorithm to “generate” a resultant vector having a low

reduced cost, while guaranteeing that the vector being calculated corresponds to an actual column of

Â. The flipping algorithm makes use of columns of Â rather than A, as the convexity constraint that

distinguishes them is the same for all columns, so does not affect the choice of pivot column.

Specifically, we use the fact that for a column of Â in a problem of size d (thus, a column of size m̂),

the first d−1 elements of that column can be any combination of “high” and “low” values. Additionally,

each such combination appears in exactly one column of Â, and thus uniquely defines a column.

Our first concern is how the reduced cost of a column of Â is calculated. As described in Section 4.3,

we know that when a column of Â enters the tableau it must be updated by being multiplied by the

current rowops matrix Gj . This update includes the calculation of the reduced cost. A column of Â is

first augmented by adding a 1 as the bottom element (the convexity constraint) to put it in the form of

a column of A, and then further augmented by adding to the bottom of that column of A an additional

element that represents the initial reduced cost of that column of A. Since G is initalized to include this

calculation of the reduced cost (as described in Section 4.3), we initalize the reduced cost to 0. We call

this fully augmented but not yet updated column (T0)∗,i.

Then, for a given tableau column (Tj)∗,i = Gj(T0)∗,i, the bottom element of (Tj)∗,i gives its reduced

cost. From the rules of matrix multiplication, we know that this bottom element must equal (Gj)m+1,∗ ·
(T0)∗,i, where (Gj)m+1,∗ denotes the bottom row of Gj . Thus, we do not need to update an entire

column to check its reduced cost: we can simply calculate this dot product.

We could use this method to check randomly selected columns of Â until we find one with a negative

reduced cost, and have that column enter the basis. This is very similar to an algorithm described

in [2, Section 3.3], an analysis of which is done in Section 6.2.6. The flipping algorithm makes use of

information specific to the calibration problem described in Chapter 1 to achieve a reduced time-cost

21

Chapter 5. “Flipping” Algorithm 22

compared to this random selection.

While the dot product method can be done with the actual “high” and “low” values found in the

columns of Â, the flipping algorithm makes use of an efficiency shortcut that requires these values be

“rounded” to 1 and -1 respectively. No other kinds of rounding are involved in this algorithm, so going

forward, when we refer to a “rounded” ~a-vector, this is the particular method of rounding being referred

to. The loss in accuracy made by this rounding is quite low in practice, and the trade-off of a faster,

but slightly less accurate calculation goes in favour of this rounding (see the flipping algorithm’s cost

analysis in Section 6.2.1 for details).

The flipping algorithm also makes use of the bottom row of G. However, the bottom row of G is

longer than a column of Â. Fortunately, since the bottom two values of every column of T0 associated

with a column of Â are identical to each other (specifically, the bottom two elements are 1 and 0), we

do not need to consider them when comparing columns of Â. (See the discussion around the equation

for U0 in Section 4.3 for a more detailed discussion of this.) Thus, we can truncate the two rightmost

elements of the bottom row of G. We refer to the vector that results from this as the target vector,

~t ∈ Rm̂, where m̂ = d(d − 1)/2. From here, we aim to find a column of Â (let’s call such a column

~a ∈ Rm̂) such that ~t · ~a is minimized.

While these two values truncated from ~t do not affect the relative value of ~t · ~a when comparing

between different ~a-vectors, they do affect the absolute value. For each index j, the true reduced cost is

cj = ~t · ~aj + s, where s is constant for a given Gi.

Because of this, it is possible for the flipping algorithm to select some index j for which ~t · ~aj < 0,

but for which ~t · ~aj + s ≥ 0. Or the opposite could occur: the flipping algorithm may find that the

smallest ~t · ~aj that it has found is positive, but the true reduced cost cj = ~t · ~aj + s < 0. To address

these and similar errors introduced by the rounding method mentioned earlier, the flipping algorithm

double-checks its final result by recalculating the reduced cost of the column it selects. If this reduced

cost is nonnegative for whatever reason, a more exact (but less efficient) algorithm called the advanced

flipping algorithm is used. That algorithm is detailed in Section 5.1.

For the purposes of this algorithm, ~t is rearranged into an upper-triangular square matrix. We call

this matrix the “gameboard” because this algorithm plays out somewhat like a board game (such as

Reversi) where players aim to flip tiles to their colour, but do not have precise control over the flips which

are done. In our case, we want to flip the signs of elements in the gameboard to make the gameboard

sum as low as possible, but we can only flip entire rows and columns at once.

For a problem of size d, the way to initialize this (d− 1)× (d− 1) gameboard matrix is to take the

first d− 1 entries of ~t and place them into the main diagonal of the gameboard (with the first entry in

the (1,1) position, second in the (2,2) position, etc). After that, each subsequent entry of the vector

is added to the upper triangle of the matrix, left to right, proceeding from the top row to the bottom

row. The lower triangle of the matrix is not used: it is just left as 0. Consider this example for a d = 5

problem:

Chapter 5. “Flipping” Algorithm 23

~t =



1

2

3

4

5

6

7

8

9

10



−→


1 5 6 7

0 2 8 9

0 0 3 10

0 0 0 4



This is essentially reversing the vectorization process of the columns of Â described in Chapter 1, and

this is why we can benefit by rounding ~a to 1s and -1s. With this rounding, we do not need to reference

the values of elements of any particular ~a. We can swap between different ~as simply by changing the

first d − 1 elements which, in this rounding scheme, determine the values of all remaining elements, as

illustrated in the following example.

~a =



a

b

c

d

e

f

g

h

i

j



=



a

b

c

d

ab

ac

ad

bc

bd

cd



−→


a ab ac ad

0 b bc bd

0 0 c cd

0 0 0 d



That is, each element in the strictly upper triangular part of the gameboard is the product of some

unique pair of the first d − 1 elements. This is due to how the correlation matrices are generated from

the monotonicity structures, also explained in Chapter 1. Each pair corresponds to exactly one such

element. This is elegantly represented in the gameboard form, as each main-diagonal element shares its

variable with every element on its row and its column, and each strictly upper-triangular element shares

one variable with the main diagonal element on its row, and its other variable with the main diagonal

element on its column. Thus, when we flip the sign of a main diagonal variable, we flip the sign of all

elements on its row and column.

Therefore, we can calculate ~t · ~a as follows.

Chapter 5. “Flipping” Algorithm 24

~t · ~a =



1

2

3

4

5

6

7

8

9

10



·



a

b

c

d

e

f

g

h

i

j



= sum


1a 5ab 6ac 7ad

0 2b 8bc 9bd

0 0 3c 10cd

0 0 0 4d



where sum is the sum of all the elements in the gameboard and each of a, b, c, d is either +1 or −1.

Now we have our gameboard. If we were to take its sum right now with each a, b, c, d equal to +1,

that would be the dot product of ~t with the ~a vector of all 1s (for every d-value, the Â-column of index

n is always ~an = (1, 1, . . . , 1, 1), so we know we are starting from a legitimate ~a).

From this construction, we can see what changes we can make to the gameboard while keeping ~a a

valid column of A: any variable along the main diagonal can be flipped (a, b, c, or d in this example),

which flips all values on its row and column, as these elements (and only these elements) are the ones

which share that variable.

Consider again this example gameboard:


1 5 6 7

0 2 8 9

0 0 3 10

0 0 0 4


In the first step of the flipping algorithm, the following candidate flips would be calculated:


−1 −5 −6 −7

0 2 8 9

0 0 3 10

0 0 0 4

 = 17,


1 −5 6 7

0 −2 −8 −9

0 0 3 10

0 0 0 4

 = 7,


1 5 −6 7

0 2 −8 9

0 0 −3 −10

0 0 0 4

 = 1,


1 5 6 −7

0 2 8 −9

0 0 3 −10

0 0 0 −4

 = −5

In this instance, the flip on the (4, 4) element would be selected due to it resulting in the minimum

gameboard sum, the matrix generated by that flip would become the new gameboard, and the flipping

algorithm would proceed from there.

With these tools in hand, the algorithm works like this:

1. Establish a starting vector. While the vector of all 1s is a legitimate starting vector, as previously

mentioned, there is a quick shortcut we can take for a small increase in efficiency. Since the first

d−1 elements of ~a can be flipped arbitrarily, we can simply flip them such that all elements on the

main diagonal of the gameboard are negative. This gives a small but measureable increase over

Chapter 5. “Flipping” Algorithm 25

starting näıvely from the vector of all 1s.

2. Calculate the results of potentially swapping each main-diagonal element, in terms of the change

to the gameboard sum.

3. Compare each of these results. Whichever one lowers the gameboard sum the most is applied to the

gameboard, repeat step 2 from the updated gameboard. If no potential flips lower the gameboard

sum, proceed to step 4.

4. The current gameboard is considered the “final gameboard” and the flipping algorithm terminates.

The column of Â associated with the final gameboard is then determined based on which flips have

been done (this calculation is discussed after the example problem below).

After step 4, the true reduced cost of the column of Â associated with the final gameboard is

calculated to be ci = (Gj)m+1,∗ · (T0)∗,i, where (Gj)m+1,∗ denotes the bottom row of Gj and (T0)∗,i

denotes the augmented tableau column associated with the ith column of Â. If this true reduced cost is

nonnegative, we proceed to the advanced flipping algorithm, which is described in the next section. If

this true reduced cost is negative, the index of the ~a determined by the current gameboard is identified,

and that ~a is updated with G, and inserted into the tableau.

Let’s see a complete example of the flipping algorithm in action. For this example, each flipped

element is shown in red, and the matrix selected in step 3 has its sum shown in green.

The original target vector and associated gameboard for this example associated with a problem of

size d = 6 is shown below. This particular problem was selected to take a few flipping iterations to solve

(for problems of size d = 6, usually only two flips are needed) to properly show the flipping algorithm

in action. For this reason, we skip the shortcut mentioned in step 1, and instead show all flips starting

from ~a = (1, 1, . . . , 1, 1)T .

~t =



8

6

10

5

10

2

−11

1

4

7

−13

4

4

1

6



=


8 2 −11 1 4

0 6 7 −13 4

0 0 10 4 1

0 0 0 5 6

0 0 0 0 10



Note that the “flip” function shown in this example shows the difference between the given matrix

and the original matrix it was “flipped” from, rather than the full sum of that matrix. Though comparing

Chapter 5. “Flipping” Algorithm 26

total sums does bring us through the same series of flips, this comparison means we can easily distinguish

between increases and decreases in our total sum, and terminate when every possible flip fails to decrease

the sum.

Chapter 5. “Flipping” Algorithm 27

First flip:

flip(


−8 −2 11 −1 −4

0 6 7 −13 4

0 0 10 4 1

0 0 0 5 6

0 0 0 0 10

) = −8

flip(


8 −2 −11 1 4

0 −6 −7 13 −4

0 0 10 4 1

0 0 0 5 6

0 0 0 0 10

) = −12

flip(


8 2 11 1 4

0 6 −7 −13 4

0 0 −10 −4 −1

0 0 0 5 6

0 0 0 0 10

) = −22

flip(


8 2 −11 −1 4

0 6 7 13 4

0 0 10 −4 1

0 0 0 −5 −6

0 0 0 0 10

) = −6

flip(


8 2 −11 1 −4

0 6 7 −13 −4

0 0 10 4 −1

0 0 0 5 −6

0 0 0 0 −10

) = −50

Second flip:

flip(


−8 −2 11 −1 4

0 6 7 −13 −4

0 0 10 4 −1

0 0 0 5 −6

0 0 0 0 −10

) = 8

flip(


8 −2 −11 1 −4

0 −6 −7 13 4

0 0 10 4 −1

0 0 0 5 −6

0 0 0 0 −10

) = 4

flip(


8 2 11 1 −4

0 6 −7 −13 −4

0 0 −10 −4 1

0 0 0 5 −6

0 0 0 0 −10

) = −18

flip(


8 2 −11 −1 −4

0 6 7 13 −4

0 0 10 −4 −1

0 0 0 −5 6

0 0 0 0 −10

) = 18

flip(


8 2 −11 1 4

0 6 7 −13 4

0 0 10 4 1

0 0 0 5 6

0 0 0 0 10

) = 50

Third flip:

flip(


−8 −2 −11 −1 4

0 6 −7 −13 −4

0 0 −10 −4 1

0 0 0 5 −6

0 0 0 0 −10

) = −36

flip(


8 −2 11 1 −4

0 −6 7 13 4

0 0 −10 −4 1

0 0 0 5 −6

0 0 0 0 −10

) = 32

flip(


8 2 −11 1 −4

0 6 7 −13 −4

0 0 10 4 −1

0 0 0 5 −6

0 0 0 0 −10

) = 18

flip(


8 2 11 −1 −4

0 6 −7 13 −4

0 0 −10 4 1

0 0 0 −5 6

0 0 0 0 −10

) = 34

flip(


8 2 11 1 4

0 6 −7 −13 4

0 0 −10 −4 −1

0 0 0 5 6

0 0 0 0 10

) = 46

Fourth flip:

flip(


8 2 11 1 −4

0 6 −7 −13 −4

0 0 −10 −4 1

0 0 0 5 −6

0 0 0 0 −10

) = 36

flip(


−8 2 −11 −1 4

0 −6 7 13 4

0 0 −10 −4 1

0 0 0 5 −6

0 0 0 0 −10

) = 40

flip(


−8 −2 11 −1 4

0 6 7 −13 −4

0 0 10 4 −1

0 0 0 5 −6

0 0 0 0 −10

) = 62

flip(


−8 −2 −11 1 4

0 6 −7 13 −4

0 0 −10 4 1

0 0 0 −5 6

0 0 0 0 −10

) = 38

flip(


−8 −2 −11 −1 −4

0 6 −7 −13 4

0 0 −10 −4 −1

0 0 0 5 6

0 0 0 0 10

) = 30

Chapter 5. “Flipping” Algorithm 28

This gives a final matrix, and thus

sum(


−8 −2 −11 −1 4

0 6 −7 −13 −4

0 0 −10 −4 1

0 0 0 5 −6

0 0 0 0 −10

) = −60

For this particular problem, this happens to be the optimal solution.

Once the flipping algorithm terminates, we need to determine the index of the column of Â that

the final gameboard corresponds to. Because of the way the Â-columns are arranged, there is a simple

algorithm to convert a set of flips to the index. For this example, the first, third, and fifth elements

on the main diagonal were flipped, so the corresponding elements of ~a must be flipped from its original

state (of all 1s): [−1, 1,−1, 1,−1]T . If we treat the -1s as 0s and read it as a binary number, we get

an index of 10. We can do this because the arrangement of Â’s columns is arbitrary, so any consistent

bijection between indices and columns is valid. This method creates a bijection because for any value

of d, in the associated Â matrix there exists exactly one column of Â for each combination of high and

low values for the first d− 1 elements.

After the index is determined, the associated column of the tableau is updated with G to calculate

its true reduced cost. As mentioned earlier, if the true reduced cost is negative, then the associated

column of A is selected to be inserted into the basis. If the true reduced cost is nonnegative, then the

result is not used and the advanced flipping algorithm attempts to find a column of Â with negative

reduced cost.

5.1 Advanced Flipping Algorithm

In rare cases, the flipping algorithm does not find a column of Â with negative reduced cost. This can

occur for various reasons discussed in the previous section. When this happens, the flipping algorithm’s

result is thrown out and the advanced flipping algorithm (AFA) is used instead. The AFA is a re-

placement of the flipping algorithm which works on a similar principle, but does away with the flipping

algorithm’s shortcuts. Because of this, it runs slightly slower in the average case, and has exponential-

time worst case performance. However, the advanced flipping algorithm is guaranteed to find a solution

if one exists. It is known that the simplex algorithm, while usually efficient, has poor worst-case per-

formance, and the AFA is where that inevitable risk of poor performance resurfaces in the truncated

tableau simplex method.

In the worst case scenario, the AFA requires Ω(2d−1) arithmetic operations, essentially searching

through each column of Â one by one for a negative reduced cost. Thankfully, our experience and tests

suggest that the circumstances for exponential-time performance are extremely rare. In all the tests run

in the course of developing this algorithm and testing its time-costs on randomized problems, this did

not occur even once.

Conceptually, the AFA works similarly to the original flipping algorithm: both compare all ~a-vectors

Chapter 5. “Flipping” Algorithm 29

“adjacent” to a candidate vector, make the one with the greatest reduction to the reduced cost the new

candidate vector, and repeat until no more improvements can be found. The differences between the

two are in which “adjacent” vectors are compared, and how reduced costs are calculated.

The AFA does away with the flipping algorithm’s 1/-1 approximation to each element of the resultant

vectors. Instead of using a gameboard, each dot product is calculated individually. This ensures that

no effective candidates are being lost by the rounding. This calculation also includes the second-to-

last element of the bottom row of G which is truncated in the flipping algorithm, so the reduced costs

calculated by the AFA are the true values (the last element would only be multiplied by 0 in the dot

product for every ~a, so can still be safely truncated).

Aside from these changes, the AFA proceeds similarly to the flipping algorithm until it finds a

candidate vector for which no adjacent vector will reduce the reduced cost. If that candidate vector’s

reduced cost is negative, the AFA terminates and that vector is selected to be inserted into the basis.

However, if that candidate vector’s reduced cost is nonnegative, the AFA considers all vectors which are

two flips away from the current candidate vector. If this fails, it considers three simultaneous flips, and

so, until a reduction is found. Once that reduction is found, the AFA proceeds with single flips as before.

Putting those differences together, we can describe the advanced flipping algorithm step-by-step.

Before beginning, we initialize an “adjacency value” f = 1, which is referenced in step 2 and defines

which vectors should be compared at that step. Since the first d − 1 elements of a resultant vector

correspond to the main diagonal of the flipping algorithm gameboard, step 2 is very similar to the

flipping algorithm when f = 1.

1. Establish a starting vector. As in the flipping algorithm, the vector of all 1s is a legitimate starting

vector, but the same shortcut mentioned there can also be used here.

2. Calculate the reduced cost of all resultant vectors which have the sign of all but f of their first

d− 1 elements in common.

3. Compare each of these results. Whichever adjacent vector lowers the reduced cost the most is

applied to the gameboard, and then step 2 is repeated from the updated board and f is set to 1.

If no adjacent vectors reduce the reduced cost, proceed to step 4.

4. If the reduced cost of the current candidate vector is nonnegative, increment f and repeat step 2.

Otherwise, update the candidate vector and select it to be inserted into the basis.

Since the AFA works directly with the true values of columns of Â and their indices, the algorithm

will already know the true reduced cost and the index, and the flipping algorithm’s recalculation of these

values is not necessary.

Considering all possible trios of flips, or potentially even larger sets, is an expensive calculation.

For a problem of size d, calculating the reduced cost of all vectors which are f flips “away” from the

candidate vector requires evaluating
(
d−1
f

)
dot products. Fortunately, our empirical results indicate that

more than two simultaneous flips are only necessary so rarely that the possibility cannot be effectively

analyzed from our numerical results, and it is even rarer that it requires so many simultaneous flips as

to provide a nontrivial increase in the truncated tableau simplex method’s total runtime. Regardless of

the low risk, these potential costs of the advanced flipping algorithm are analyzed in Sections 6.2.2 and

6.2.4.

Chapter 6

Cost Analysis

All tests were done on a desktop computer with an Intel i7-6700k CPU running at 4GHz. The Scilab

timer() function was used, which measures time by counting CPU cycles used by the program, rather

than real time, making it more consistent for measuring tests (for instance, a software update running

in the background does not affect results). This means that all results are consistent relative to each

other, but may not be consistent with real time.

6.1 Analysis of Constant Costs

The precise amount of time and iterations required by the program varies depending on the problem

being tackled. However, in each iteration the updating of the tableau and rowops matrix is constant for

a given d.

Recall that the truncated tableau is comprised of an m ×m square matrix, which is a subset of A

and E, as well as vectors b and c, each of length m, and that rowops (the matrix which is the product

of our elementary row operations) is an (m+ 1)× (m+ 1) matrix. In each iteration, the tableau update

requires normalizing the pivot row (this requires one division operation, to update the b-value on the

pivot row), then subtracting a dynamic product from all-but-one element of both the b-column and the

pivot column. However, all operations on the pivot column can be skipped, because they necessarily

result in a column of the form [0, 0, . . . , 1, . . . , 0, 0]T . This gives a total cost of m̂ subtractions and m̂+ 1

multiplications/divisions. There is no cost to “updating” the active set section of the truncated tableau,

as it begins and ends each iteration in the form of an identity matrix.

The update to the rowops matrix is far more costly. In each iteration, this costs m division operations:

one for each element in the pivot row of rowops. However, the majority of the calculation time comes

from the multiplications in the following step. Every element of rowops requires that a new product be

calculated and then subtracted from it — except for the pivot row (which has already been adjusted)

and the pivot column (since the subtraction would be multiplied by the pivot of 1, that multiplication is

skipped). Thus, the rowops update requires m2 multiplications, which dwarfs all previously mentioned

calculation costs. This gives a time complexity of Θ(m2) = Θ(d4) per iteration. In terms of n, the

width of Â, the growth is polylogarithmic: Θ(log2(n)4). Each of these multiplications accompanies a

subtraction, in addition to the subtractions involved in updating the pivot column, so there are also

Θ(d4) addition/subtraction operations.

30

Chapter 6. Cost Analysis 31

To update the full tableau would normally have a time complexity of Θ(mn) = Θ(d2 × 2d), so the

truncated tableau simplex method provdes a great time-cost reduction over the full tableau simplex

method.

Thus, the lower bound cost of this algorithm is Ω(d4) operations per iteration. To find the true

cost per iteration, it is necessary to determine if calculations from the flipping algorithm or advanced

flipping algorithm could exceed an O(d4) time complexity. We find that this excessive cost may occur

in the worst case with the advanced flipping algorithm, but, in all the tests we ran, the average time

complexity is indeed Θ(d4) per simplex iteration. Later in this chapter we examine the details of these

other potential costs. The other factor in the total cost will be the number of simplex iterations, which

we determine empirically in the next section.

6.2 Counting Iterations

The following table gives the average of the results of ten problems for each d-value from d = 10 to

d = 52. While the number of iterations required is obviously an integer value for a given problem, the

iterations and flips are noted to one decimal place as they represent the average of ten test problems.

For these test problems, maximum correlation values are chosen as random uniform values in [0.9,1) and

minimum correlation values are chosen as uniform random values in the range (-1,-0.9]. Smaller tests

with other ranges (with uniform random numbers in ranges as wide as (-1,-0.7] and [0.7,1) as stand-

ins for maximum and minimum correlations, which is a wider range than would be expected in actual

data) have produced very similar results. Therefore the results of this sort of test can be reasonably

extrapolated to these types of problems as well.

Chapter 6. Cost Analysis 32

d time Iterations time/iter flips flips/iter

10 0.56 64.4 0.0087 229.1 3.56

11 0.72 82.3 0.0087 322.1 3.91

12 0.92 103.1 0.0089 436.6 4.23

13 1.15 128.2 0.0090 597.5 4.66

14 1.45 154.1 0.0094 773.4 5.02

15 1.95 181.7 0.0107 974.0 5.36

16 2.36 224.1 0.0105 1271.3 5.67

17 2.58 245.6 0.0105 1478.7 6.02

18 3.69 275.8 0.0134 1730.7 6.28

19 4.13 328.2 0.0126 2206.5 6.72

20 4.59 358.5 0.0128 2507.8 7.00

21 5.62 418.2 0.0134 3065.7 7.33

22 6.57 460.7 0.0143 3584.6 7.78

23 8.41 520.0 0.0162 4125.1 7.93

24 8.81 579.8 0.0152 4859.7 8.38

25 10.07 627.3 0.0160 5469.9 8.72

26 12.66 700.5 0.0181 6329.7 9.04

27 14.83 793.4 0.0187 7498.3 9.45

28 17.47 866.3 0.0202 8428.0 9.73

29 19.63 926.3 0.0212 9381.1 10.13

30 24.25 1023.7 0.0237 10718.7 10.47

31 26.30 1090.4 0.0241 11749.5 10.78

32 30.17 1194.7 0.0253 13223.4 11.07

33 34.24 1265.3 0.0271 14622.4 11.56

34 42.59 1439.2 0.0296 17032 11.83

35 47.61 1514.8 0.0314 18493.8 12.21

36 50.29 1622.1 0.0310 20335.4 12.54

37 58.95 1759.1 0.0335 22692.8 12.90

38 67.31 1829.1 0.0368 24079.9 13.16

39 79.12 1989.9 0.0398 27028.5 13.58

40 91.27 2122.4 0.0430 29654.0 13.97

41 101.24 2280.6 0.0444 32694.6 14.34

42 123.35 2394.9 0.0515 35268.2 14.73

43 142.14 2519.3 0.0564 37870.1 15.03

44 149.53 2650.7 0.0564 40863.7 15.42

45 180.98 2823.5 0.0641 44462.7 15.75

46 213.54 3022.0 0.0707 48592.6 16.08

47 265.62 3127.0 0.0849 51612.9 16.51

48 287.54 3338.9 0.0861 56190.8 16.83

49 348.91 3518.8 0.0992 60552.8 17.21

50 386.07 3715.6 0.1039 65091.1 17.52

51 397.99 3934.7 0.1011 70735.8 17.98

52 467.91 4124.5 0.1134 75801.9 18.38

Chapter 6. Cost Analysis 33

From these numbers, the function that best predicts the number of simplex iterations is iter ≈
d2.5/4.8, giving Θ(d2.5) iterations (see Figure 6.1 (b)). Though the times for smaller d-values are a little

erratic (likely due to minor constant costs dominating the total calculation time), as d increases the total

times approach the predicted value t ≈ d6.5/(2.95× 108) CPU-seconds, giving a total cost which grows

polynomially in d and polylogarithmically in n: Θ(d6.5) = Θ(log2(n)6.5) (see Figure 6.1 (a)).

The “flips” and “flips/iter” headers refer to the number of “flipping iterations” (where one flipping

iteration includes the calculation of the value of each potential flip from the current ~a, and taking the

most negative value as the new candidate ~a), as opposed to the actual number of candidate flips that

were checked (each flipping iteration considers d − 1 candidate flips, so the total number of candidate

flips is flips×(d− 1)).

The number of flipping iterations per simplex iteration clearly grows linearly with d, as flips/iter ≈
0.35 ∗ d is a strong approximation for all values in that column (see Figure 6.1 (c)). Since each flipping

iteration represents d − 1 candidate flips we can estimate that, out of n-columns of A, each call to

the flipping algorithm checks approximately 0.35d2 ≈ 0.35(log2 n)2 columns of A (with some potential

duplicates).

6.2.1 Flipping Algorithm Costs

In each flipping iteration, d − 1 possible flips are explored. Calculating the results of each possible

flip requires d additions, followed by d comparisons to find the most negative option. One such flip is

implemented per iteration and each implemented flip requires d additional sign-flips. Thus, each iteration

of the flipping algorithm requires Θ(d2) additions and Θ(d) sign-flips. Since it runs ≈ 0.35 ∗ d times per

simplex iteration (see Figure 6.1 (c)), the cost per simplex iteration of the flipping algorithm is O(d3)

additions and O(d2) sign-flips. This cost is dwarfed by the Θ(d4) cost of the rowops update at each

iteration, and indeed in the empirical data we see that the total time spent in the flipping algorithm is

relatively small. It’s likely the algorithm could be further optimized, but as it is already so cheap this

would provide only a minor overall improvement to the truncated tableau simplex method.

6.2.2 Advanced Flipping Algorithm Costs

The advanced flipping algorithm is rarely used, so it is difficult to gather data about its performance, or

make specific claims about how often it is needed. For instance, 500 random test problems (at sizes d =

10, 30, 50 were run, and the advanced flipping algorithm was not required to solve even one of them.

Because of this, the cost analysis should be seen as being worst-case, rather than significiantly impacting

the average case.

The cost of each use of the advanced flipping algorithm iteration depends on the greatest number of

simultaneous flips that are needed. Each dot product costs m multiplications and m̂ additions, and is

thus a Θ(d2) operation. For an iteration calculating f simultaneous flips, the number of dot products

calculated is d-choose-f , equivalent to Θ(df) for f ≤ d/2, giving a total cost for the advanced flipping

algorithm of Θ(df+2), where f is the greatest number of simultaneous flips explored. The further

implications of this are explored in Section 6.2.4.

Chapter 6. Cost Analysis 34

(a) Time

(b) Simplex iterations

(c) Flips per simplex iteration

Figure 6.1: plots of cost estimation functions (green) compared to the actual data (blue).

Chapter 6. Cost Analysis 35

6.2.3 Flipping Algorithm Variant Comparisons

This table shows the results of a test which compared the total number of simplex iterations required to

solve five randomly generated problems (for each given d-value) using the rounded flipping algorithm,

the exact-value flipping algorithm, and the random selection algorithm given in the description of the

revised simplex method in [2, Section 3.3].

d flip (rounded) flip (exact) random

3 5.2 5.0 5.0

4 8.4 8.4 12.4

5 13.0 12.4 15.6

6 20.2 19.8 41.0

7 28.0 29.6 62.8

8 37.6 38.0 83.4

9 52.8 51.8 139.8

10 62.0 65.4 188.2

11 84.4 79.6 274.6

12 101.0 106.6 368.6

13 125.0 123.2 424.8

14 152.6 154.2 568.6

15 165.6 195.2 713.8

16 195.6 213.8 950.6

17 231.2 263.6 1091.0

18 288.6 285.0 1300.2

19 323.4 332.8 1434.2

20 374.2 365.2 1683.8

21 412.0 412.6 2174.2

22 469.8 454.0 2392.2

23 515.6 531.2 2835.0

24 556.0 586.2 3071.0

25 646.8 647.6 3581.0

26 723.8 723.6 4120.0

27 781.0 781.2 4626.8

28 858.6 854.0 5072.8

29 963.8 980.8 5904.4

30 1001.8 1055.4 6137.6

We can see here that the rounding done by the flipping algorithm has a negligible effect on the

number of simplex iterations required compared to using the exact values, sometimes even showing

superior performance. Conversely, the random-selection algorithm is clearly inferior to both versions of

the flipping algorithm.

The rounded flipping algorithm is used because it requires slightly less computation and is simpler

to implement.

Chapter 6. Cost Analysis 36

6.2.4 Total Costs and Empirical Comparison

Clearly, in the average case the dominating factor is the updating of the rowops matrix, with Θ(d4)

multiplications per simplex iteration, and Θ(d2.5) simplex iterations, for a total of Θ(d6.5) operations.

This aligns with the empirical data of the average runtimes, and in terms of n, the number of columns in

the Â matrix, this is Θ(log(n)6.5). Since the simplex algorithm’s average case performance is normally

polynomial-in-n, this is a big improvement.

In the worst-case, the running time of the algorithm can deteriorate significantly because of the

excessive run time potentially required by the advanced flipping algorithm. If a single iteration requires

a search through all resultant vectors in the space of four simultaneous flips, this would cost Θ(d6)

multiplications, and if more than four simultaneous flips are required, this would increase further and

push the total cost to Ω(d7) or higher.

The absolute worst case scenario (being that the only resultant vector with a more negative cost

than the current candidate vector requires all of the d − 1 possible flips to identify) would require a

dot product calculation for every single resultant vector, meaning d2 × 2d−1 total multiplications —

an obviously unfeasible quantity, except for small values of d. However, nothing near these worst-case

scenarios has ever occured in testing for problems which have solutions. Though, if there is no x such

that Ax = b, x ≥ 0, then this can occur. Depending on the specific implementation and what problems

are being solved, it may be necessary to implement safety measures to ensure only problems which have

valid solutions are attempted or to abort the computation if a resultant vector with a negative reduced

cost cannot be found in a reasonable amount of time.

6.2.5 Full Tableau Cost Estimations And Comparisons

How much of an improvement is the truncated tableau simplex method over the full tableau simplex

method? The relevant differences are that in the full tableau simplex method the full tableau is kept in

memory and updated on each iteration as described in Chapter 3, the flipping method is replaced with

a (linear time) call to the function min(), and the size of the tableau is (m+ 1)× (m+ n+ 1).

Since each element in the A section of the tableau is changed by a multiplication in each simplex

iteration, there are Θ(mn) multiplications per iteration. Since there are m rows and no more than one

A-column can enter the basis per iteration, there must be at least m simplex iterations. Thus, the total

number of multiplications is at least m2n ≈ d4/4× 2d−1 = d4 × 2d−3.

Based on our table of empirical results, the calculation time of the truncated tableau simplex method

is dominated by the multiplications. With the average of d2.5/4.8 simplex iterations, the number of

multiplications for the rowops matrix is ≈ d4/4 × d2.5/4.8 ≈ d6.5/20 and the total calculation time is

approximately ≈ d6.5/(2.95× 108) seconds. Based on this, we can extrapolate that (on the test system,

a desktop computer with a 4GHz Intel i7-6700k processor) each multiplication costs approximately

5× 10−10 seconds.

Thus, the time to complete a problem of size d using the full tableau simplex method can be approx-

imated as t ≈ d4 × 2d−3 × 5× 10−10 seconds. We can then estimate that, with the full tableau simplex

method, this type of problem would take over an hour at d = 27, over a day at d = 31, and over a year

at d = 38. At just d = 67, it would take longer than 14 billion years, the age of the universe.

Chapter 6. Cost Analysis 37

6.2.6 Revised Simplex Cost Comparison

The revised simplex method and its time and space complexity are described in [2, Section 3.3]. It claims

to have O(m2) space complexity and (best-case) O(m2) time complexity per iteration. If this were true,

it would make our method quite redundant. However, these figures rely on some assumptions which do

not bear out in practice for our particular problem.

Firstly, it bases its O(m2) space complexity on the assumption of a very sparse A-matrix, as that is

typical for many large linear programming problems. Though some other sort of compression might be

possible (as the A matrix has only d(d−1) distinct values, from the maximum and minimum correlations),

our A matrix typically has no 0-entries, and so is obviously not sparse.

If we implement space-complexity saving methods of the truncated tableau simplex method alongside

the other parts of the revised simplex algorithm (for the sake of testing them), we find that the polynomial

best-case time complexity does bear out — though it exhibits worse performance than our method. This

is mainly because it lacks a method for finding an “effective” reduced cost coefficient, instead choosing

at random until finding a negative one. While this is usually slightly more time-efficient per simplex

iteration than the flipping method, the flipping method’s cost is already a very small part of the overall

costs, and the random method increases the number of simplex iterations from ≈ d2.5/4.8 to ≈ d3/4. For

instance, this formula and our empirical results indicate that this change results in an 8-fold time-cost

increase at d = 50, increasing further as d increases.

6.2.7 Truncated Tableau Time Extrapolation

Past d = 52, we reach the limits of integer precision on Scilab’s default settings, which limits us from

being able to uniquely index the 2d−1 columns of A in a straightforward way (as well as approaching

sizes at which it’s unfeasible to run a large number of tests to analyse in a short span of time), but aside

from that impediment we see no reason why this algorithm would have disproportionate trouble with

greater values of d. From the empirical data, we know that for an average-case d-size problem, the time

to solve it is given by the function t ≈ d6.5/(2.95× 108), in CPU-seconds on the test system.

Extrapolating this, problems would take over an hour at d = 71, over a day at d = 115, and over a

year at d = 285, on hardware equivalent to the test system.

6.2.8 Space Costs

Even in the worst case, the space required by the truncated tableau simplex algorithm is Θ(d4), most of

which is required by the (m+ 1)× (m+ 1) rowops matrix and the (m+ 2)× (m+ 1) active part of the

tableau. The identity matrix representing the basis vectors of the active part of the tableau is m ×m.

If space were at a premium, the identity matrix could stored in a sparse format or removed altogether

and just used implicitly, cutting total space requirements approximately in half.

All other necessary storage is also of static size, and much smaller than Θ(d4): the gameboard is a

d − 1 × d − 1 matrix, a few m-length vectors are stored long term (such as flipped rows), and no more

than a few temporary ones are in use simultaneously.

In its current state the program has some functions that collect diagnostic information, which do

grow in space-cost at a constant rate as the algorithm progresses, but none of these are required for the

program to function, and if space is a concern they can be easily disabled.

Chapter 6. Cost Analysis 38

6.3 An Exact, Polynomial-time Flipping Algorithm

The flipping algorithm that we propose in Chapter 5 is very effective and runs in polynomial time in

d, but it is not guaranteed to find the A-column with most-negative reduced cost. This might lead one

to wonder if it is possible to precisely determine the most negative reduced cost in a time polynomial

in d. If it is, it would be possible to precisely replicate the steps of the standard simplex algorithm in

logarithmic-in-n time.

To investigate this, let’s define the problem faced: given a vector ~v = {v1, v2, . . . , vm} ∈ Rm, we must

choose a vector x = {x1, x2, . . . , xd−1}, where each xi ∈ {−1, 1} such that the following expression is

maximized:

x1v1 + x2v2 + · · ·+ xd−1vd−1 + (x1x2)vd + (x1x3)vd+1 + · · ·+ (xd−2xd−1)vm (6.1)

This ignores the additional complication of the true values of the Â-columns not being 1/-1, but for

now we investigate this simpler case.

This can be seen as a specific version of the satisfiability problem, one which would be called “weighted

monotone MAX-2-XOR-SAT”. That is, a satisfiability problem where a conjunction of clauses is given,

and each clause has some weight and at most two literals (which cannot be negations) linked by an XOR

operation, and the objective is to maximize the value of the weights (where a true clause adds its weight

to the sum and a false clause does not).

The investigation of this problem is beyond the scope of this thesis, and there has not been much

literature on this very specific instance of the satisfiability problem, but one comment on StackExchange

[5] gives a reduction of MAX-CUT to (unweighted, non-monotone) MAX-2-XOR-SAT. Since MAX-CUT

is NP-hard, if this reduction is correct, then MAX-2-XOR-SAT is NP-hard, and therefore the (strictly

more difficult) weighted MAX-2-XOR-SAT, is also NP-hard.

Additionally, we are not aware of any NP-hard satisfiability problems where the addition of a mono-

tonicity constraint renders the problem solvable in polynomial time. Thus, while it is beyond the scope

of this research paper to prove it, it seems very likely that the problem faced by the flipping algorithm

is NP-hard, and a polynomial approximation is most fitting for our purposes.

Chapter 7

Conclusion

The algorithm presented in this paper provides great time- and space-complexity improvements over the

full tableau simplex method for solving the constrained linear problem Ax = b, x ≥ 0, that arises from

the calibration problem described in Chapter 1, reducing it from exponential complexity to polynomial

time in d for all the test problems we have run. This is accomplished by exploiting patterns in the way

correlation matrices are generated.

Further improvements in running time may be possible, as both the rowops matrix update and

flipping algorithm are highly parallelizable.

This greatly expands the size of calibration problems which can be solved in reasonable timeframes,

and improves the speed at which smaller problems that were already solvable can be solved, allowing

for analysis of far more complex correlation matrices.

39

Chapter 8

Index: Code

Code for the Scilab implementation of this algorithm is accessible here: https://github.com/zoeada/

correlation_calibration/blob/master/correlation.sci

40

Bibliography

[1] Nasser M. Abbasi. Basic Matlab implementation of the simplex matrix algorithm. https://www.

12000.org/my_notes/simplex/index.htm, May 2017.

[2] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,

1997.

[3] Chiu, M., K. Jackson, and A. Kreinin. Backward simulation of correlated multivariate mixed Poisson

processes. https://arxiv.org/pdf/2007.07976.pdf, July 2020.

[4] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, 2nd edition,

2006.

[5] rotia. MIN-2-XOR-SAT and MAX-2-XOR-SAT: are they NP-hard? https://cs.stackexchange.

com/q/38300, Feb 2015.

41

