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Portfolio credit risk based on the Gaussian Copula model has been widely studied and generally evalu-

ated through Monte Carlo simulations. The two-level structure, namely systematic factors and individual

factors, complicates the problem in a way that traditional variance reduction techniques become very

hard to apply. Glasserman and Li proposed a two-level importance sampling approach to tackle a sim-

plified binary credit states problem. The inner level was approximated through a conditional importance

sampling approach using an exponential twisting technique. In this research project, we propose an al-

ternative importance sampling approach which uses the Central Limit Theorem for the inner level. Our

approach can be easily generalized to multi-credit states. Based on this approximation, we then propose

two novel approaches motivated from research in machine learning. Instead of finding the importance

sampler through an optimization problem, the first approach approximates the zero variance function

by learning from the samples which are generated from Markov Chain Monte Carlo. The second ap-

proach treats the problem as a Bayesian inference problem and evaluates the tail probability through

Bayesian Monte Carlo. Compared to Glasserman and Li’s method, numerical results show that these

two new approaches have advantages in both accuracy and speed and are also more easily adapted to

other applications.
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Chapter 1

Introduction

1.1 Gaussian Copula Factor Model

Credit risk is one of the crucial risks financial institutes need to manage. This was dramatically un-

derscored during the sub-prime mortgage crisis. Credit risk refers to the possible loss due to default or

credit rating downgrades of debtors associated with a portfolio (sometimes the debtors are also called

obligors). One characteristic of credit risk is the so called “black swan event”, which rarely occurs but

causes significant loss to investors if it happens.

A few models have been developed to measure credit risk; the most widely used one is the Gaussian

Copula Factor Model. In this framework, obligors’ risks are modeled by a set of underlying risk factors

known as systemic and idiosyncratic risk factors. In this section, we review this approach, following the

notation in Han’s research proposal [5]. The notation below is used throughout this paper:

N = number of obligors

C = number of credit states, numbered {0, . . . , C − 1}

S = dimension of system risk factor

L = the percentage loss of the portfolio

1
c
n = indicator function: 1 if obligor n is in credit state c and 0 otherwise

EADn = exposure-at-default, i.e., the value that is lost if obligor n defaults

LGCcn = percentage loss/gain if obligor n moves to credit state c

Yn = creditworthiness index of obligor n

P γη = the probability of moving from credit state η to credit state γ

c(n) = the initial credit state for obligor n

The percentage loss of the total portfolio can be expressed as

L =

∑N
n=1EADn(

∑C−1
c=0 LGCcn1

c
n)∑N

n=1EADn

=

N∑
n=1

ωn

(
C−1∑
c=0

LGCcn1
c
n

)
=

N∑
n=1

ωnLn (1.1)

where ωn = EADn∑N
n=1 EADn

is the exposure weight of obligor n and Ln =
∑C−1
c=0 LGCcn1

c
n is the loss rate of

1



Chapter 1. Introduction 2

obligor n. Therefore L can be expressed as an affine combination of Ln. Note that L can be positive,

negative or zero, where a negative loss is a gain.

c1/c2 A(3) B(2) C(1) D(0)

A(3) 0.9796 0.0202 0.0000 0.0002
B(2) 0.0208 0.9398 0.0125 0.0270
C(1) 0.0000 0.0649 0.6801 0.2550
D(0) 0.0000 0.0000 0.0000 1.0000

Table 1.1: Credit Migration Matrix with 4 states. State A is numbered 3 and the default state, D, is
numbered 0. Each cell gives the probability of moving from the credit state associated with its row to
the credit state associated with its column. This table is from Han’s Research Proposal [5].

In Merton’s default model[7], a credit event is modeled as

1
c
n = 1{Hc−1

c(n)
≤Yn≤Hcc(n)

} and Hc
c(n) = Φ−1

∑
γ≤c

P γc(n)

 (1.2)

where Φ(·) is the standard normal cumulative distribution function and P γη is the probability that the

credit state migrates from state η to state γ. As an illustration, values for P γη are given in Table 1.1.

In the above equation, Hc
c(n) can be regarded as the threshold for the creditworthiness index if the

credit rating of obligor n migrates from the initial state c(n) to state c. Typically this creditworthiness

index Yn is further decomposed into two parts, systemic and non-systemic (also called idiosyncratic)

risk, such that

Yn = βTnZ +
√

1− βTn βnεn (1.3)

where Z = (Z1, . . . , ZS)T is the independent systemic risk factor with dimension S, βn = (β1n, . . . , βSn)T

for which each component βin represents obligor n’s sensitivity to the ith component of the systemic risk

factor, and E = (ε1, . . . , εN ) is the independent individual idiosyncratic risk. In this paper, we assume

that Z follows the normal distribution N(0, IS) and E follows the normal distribution N(0, IN ) and Z
and E are independent. With creditworthiness defined in equation (1.3), one can rewrite the credit event

indicator (1.2) as

1
c
n = 1{

H
c−1
c(n)
−βTnZ√

1−βTn βn
≤εn<

Hc
c(n)
−βTnZ√

1−βTn βn

} (1.4)

Therefore with a specific systemic risk factor Z and individual risks E given, the total percentage loss

can be calculated under this scenario:

L = LN (Z, E) =

N∑
n=1

ωnLn =

N∑
n=1

ωn

(
C−1∑
c=0

LGCcn1
c
n

)

=

N∑
n=1

ωn

C−1∑
c=0

LGCcn1
{
H
c−1
c(n)
−βTnZ√

1−βTn βn
≤εn<

Hc
c(n)
−βTnZ√

1−βTn βn

}
 (1.5)

The loss probability of a portfolio given a quantile l is given by

P{LN (Z, E) > l} = E[P{LN (Z, E) > l|Z = z}] =

∫
RS

P{LN (z, E) > l}dΦS(z) (1.6)
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1.2 A Review of Related Work

The Gaussian Copula risk factor model gives a way to measure the loss probability stated in equation

(1.6). There are several ways to evaluate the integral. The naive approach is to use a 2-level crude

Monte Carlo (MC): in an outer loop, one samples the systemic risk factor Z first; then conditional on

this particular sample z, in an inner loop, one samples E and evaluates equation (1.5) repeatedly. The

accuracy of this two-level MC simulation heavily depends on the number of samples. That is to say,

this approach becomes extremely time consuming if we want to achieve an accurate result. We review

two related pieces of work. The first one, proposed by Han [5], replaces the inner level of the 2-level

MC simulation by an analytic approximation thereby reducing the 2-level MC simulation to a 1-level

MC simulation, thus achieving a significant speed-up. The second approach, proposed by Glasserman

and Li [3], uses importance sampling to speed up the 2-level MC simulation. We postpone reviewing the

Glasserman and Li approach to Chapter 4 and use it as a benchmark for our new algorithms described

in Chapters 2 and 3.

1.2.1 Central Limit Theorem

Gordy suggested an asymptotic approximation of P{LN (Z, E) > l} based on the law of large numbers

(LLN) [4]. Conditioning on Z = z, the loss converges to its expectation as N increases:

LN (z, E)
a.s.−−→ E[LN (z, E)], as N →∞ (1.7)

Hence denoting E[LN (z, E)] by µN (z), the conditional loss probability is

P{LN (z, E) > l} ≈ 1{µN (z)>l} (1.8)

This approximation saves a significant amount of computational work by replacing the inner MC sim-

ulation by an asymptotic approximation. Furthermore, the assumption that N is large is reasonable

in practice for financial institutions, as most of the portfolios they hold contain enough obligors to

achieve risk diversification. However, for coarse-grained or heterogeneous portfolios, this approach may

be inaccurate [6].

Based on Gordy’s work, Han [5] proposed a better approximation based on the central limit theorem

(CLT). The following theorem is a key result in his paper.

Theorem 1.1. Conditional on Z = z, if the following conditions hold

1. ∃δ > 0 such that supn{|ωn|} = O(N−(1/2+δ)),

2. ∃M ∈ [0,+∞) such that z ∈ DS = [−M,M ]× · · · × [−M,M ],

then the normalized conditional portfolio loss converges in distribution to a standard normal random

variable:
LN (z, E)− µN (z)

σN (z)

d−→ N (0, 1)

as N →∞, where µN (z) = E[LN (z, E)] and σ2
N (z) = V[LN (z, E)].

Condition 1 in the above theorem guarantees that as N → ∞, the largest weight in the portfolio

decays at a rate of O(N−(1/2+δ)). Condition 2 ensures that the systemic risk factor region is compact.
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By taking expectation on both sides of equation (1.5), one obtains

µN (z) = E[LN (Z, E)|Z = z]

=

N∑
n=1

ωn

C−1∑
c=0

LGCcnE

1{
H
c−1
c(n)
−βTnZ√

1−βTn βn
≤εn<

Hc
c(n)
−βTnZ√

1−βTn βn

}



=

N∑
n=1

ωn

(
C−1∑
c=0

LGCcn

(
Φ

(
Hc
c(n) − β

T
n z√

1− βTn βn

)
− Φ

(
Hc−1
c(n) − β

T
n z√

1− βTn βn

)))

=

N∑
n=1

ωn

(
C−1∑
c=0

LGCcnp
c
n(z)

)
(1.9)

where

pcn(z) = Φ

(
Hc
c(n) − β

T
n z√

1− βTn βn

)
− Φ

(
Hc−1
c(n) − β

T
n z√

1− βTn βn

)
∈ [0, 1] (1.10)

and

σ2
N (z) = V[LN (z, E)]

=

N∑
n=1

ω2
n

(
1

2

C−1∑
a=0

C−1∑
b=0

(LGCan − LGCbn)2pan(z)pbn(z)

)

=

N∑
n=1

ω2
n

(∑
a>b

(LGCan − LGCbn)2pan(z)pbn(z)

)
(1.11)

Note that pcn(z) is the conditional probability that obligor n moves from its current credit state to credit

state c. In particular, when c = 0, 10
n(z) is the conditional default indicator for obligor n and p0

n(z) =

E[10
n(z)] is therefore the conditional default probability. We introduce the notation 1

D
n (z) ≡ 1

0
n(z) and

pDn (z) ≡ p0
n(z) that these are the default indicators and default probabilities, respectively. Interested

readers are referred to Han [5] for a detailed proof of Theorem 1.1. With the mean and variance defined

above, the conditional loss probability is given by

P{LN (Z, E) > l|Z = z} ≈ 1− Φ

(
l − µN (z)

σN (z)

)
(1.12)

and the total portfolio loss is

P{LN (Z, E) > l} ≈
∫
RS

(
1− Φ

(
l − µN (z)

σN (z)

))
dΦS(z) (1.13)

The goal of this paper is to approximate the total portfolio loss by developing an effective scheme

to approximate the integral on the right side of equation (1.13). If S is small, we can approximate

this integral by quadrature. However, in many applications, S is in the range 10 to 30. For such S,

quadrature is not a viable option. In this paper, we explore variance reduction methods for Monte Carlo

approximation of this integration.
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1.2.2 Binary Credit States CLT

If we look at just one industry, it is reasonable to assume that credit ratings of obligors in that industry

transit following a credit migration matrix such as the one in Table 1.1. If obligors come from different

industries, it may be more realistic to augment the credit migration matrix so that different transition

probabilities are allowed for different industries.

We first look at a simplified case - binary credit states. That is, C = 1 and there are only two

credit states 0 and 1 where 0 is the default state D. Suppose obligors in the portfolio come from

different industries. Let pDn be the probability that obligor n migrates to the default state D. The credit

migration matrix can be altered by assuming that obligor n is in the non default credit state c(n) = 1.

The obligor’s credit state either remains unchanged, wth probability 1 − pDn , or jumps to the default

state, with probability pDn . Table 1.2 provides an example of a credit migration matrix for this model.

In this case, equation (1.2) simplifies to

HD
c(n) = Φ−1(1− pDn ).

The conditional default probability in equation (1.10) is thus

pDn (z) = 1− Φ

(
Φ−1(1− pDn )− βTn z√

1− βTn βn

)
= Φ

(
Φ−1(pDn ) + βTn z√

1− βTn βn

)

As a result, the conditional mean and variance of the loss are

µN (z) =

N∑
n=1

hnp
D
n (z), σ2

N (z) =

N∑
n=1

h2
np
D
n (z)(1− pDn (z))

where hn = ωnLGC
D
n , the weighted loss percentage at default for obligor n.

c1/c2 c(1) c(2) · · · c(N) D

c(1) 1− pD1 0 · · · 0 pD1
c(2) 0 1− pD2 · · · 0 pD2

...
...

...
...

...
...

c(N) 0 0 · · · 1− pDN pDN
D 0 0 0 0 1

Table 1.2: Credit Migration Matrix for which each credit state is associated with a particular obligor.
Obligor n’s credit rating either remains unchanged, with probability 1 − pDn , or jumps to the default
state, with probability pDn .

The binary-credit-state simplification removes many intermediate credit states that are in the multi-

credit-state model. Under a multi-credit-state framework, a credit event may trigger a minor credit

state migration in Table 1.1 and a small portfolio loss. However, in the simplified binary-credit-state

framework, the same credit event may either cause a significant loss, or not change the portfolio loss

level at all. Thus, the risk factor surface is less smooth for the binary-credit-state model than for the

multi-credit-states model.

To incorporate multi-credit-states into a cross industry framework, one can replace each nonzero cell

in Table 1.2 with a sub-matrix similar to Table 1.1 and merge default states from all the industries into
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the last state.

1.3 An Outline of the Thesis

We proposed two approaches to approximate the portfolio loss function P{LN (Z, E) > l}. The first

approach is based on importance sampling and approximates the zero-variance function (explained in

Chapter 2) by a Gaussian Mixture Model. The other approach treats the integration (1.13) as a Bayesian

inference problem, where a Gaussian Process and a Bayesian quadrature would be adopted.

The first approach is investigated in Chapter 2. This chapter is further subdivided into two parts.

Firstly, we focus on the zero variance function sampling. Such an idea comes from an improved cross

entropy method. The Markov Chain Monte Carlo (MCMC) sampling techniques are used and two

common modified versions (Variable-At-A-Time MCMC and Parallel Tempered MCMC) in high di-

mension sampling are investigated. We conclude MCMC sampling by looking at another technique,

called slice sampling, which overcomes the flaws from both Variable-At-A-Time and Parallel Tempered

MCMC. Samples from MCMC are assumed to be from Gaussian Mixture Models (GMM). In the second

part of Chapter 2, we explore GMM and estimate the zero-variance function through the Expectation-

Maximization (EM) algorithm. However, a disadvantage of GMM is that it uses a predetermined number

of Gaussian components, which must be determined a priori. In Chapter 3, we look at an entirely dif-

ferent approach to evaluate the integral in equation (1.13), called Bayesian Monte Carlo (BMC). This

sampling method requires the knowledge of Gaussian process modeling, which we review in Chapter 3.

In Chapter 4, we give a brief review of Glasserman and Li’s [3] two-step important sampling approach.

In Chapter 5, we compare numerical results for three methods: Glasserman and Li’s two level importance

sampling, MCMC with the Gaussian Mixture Model, and the Bayesian Monte Carlo method. In Chapter

6, we summarize the results and discuss future work.



Chapter 2

Zero Variance Function Estimation

2.1 Zero Variance Function

As explained in section 1.2.1, using the Central Limit Theorem, we are able to remove one level of

sampling and look for some unconditional sampling techniques to evaluate

P{LN (Z, E) > l} ≈
∫
RS

(
1− Φ

(
l − µn(z)

σN (z)

))
dΦS(z) (2.1)

where Φ is the cdf of a standard normal random variable and µn(z) and σN (z) are given by (1.9) and

(1.11), respectively. Consider importance sampling

I ≡ Ef [h(Y )] =

∫
h(y)f(y)dy =

∫
h(x)

f(x)

π(x)
π(x)dx = Eπ

[
h(X)

f(X)

π(X)

]
(2.2)

where π is equivalent to f . Generally speaking, the above technique is adopted for two purposes. Firstly,

to evaluate the expectation of some function h(Y ), if Y is hard to sample from density f , one could

alternatively rewrite the integral as an expectation of some function of X whose density π is easy to

sample. In our example, it is easy to sample from f(x) = ΦS(z). The second purpose is to reduce the

variance. We want to choose π to make the estimator’s variance as small as possible. Now consider the

following density function

π(z) = c

(
1− Φ

(
l − µN (z)

σN (z)

))
φ(z) = cg(z) (2.3)

where φ is the probability density function (pdf) of the multivariate Gaussian and c is a normalizing

constant such that π(z) is a proper pdf. It’s easy to see from equation (1.13) that, if we are able to

sample the Z from π(z), then

P{LN (Z, E) > l} = Eπ


(

1− Φ
(
l−µN (Z)
σN (Z)

))
φ(Z)

π(Z)

 = Eπ
[

1

c

]
=

1

c
(2.4)

Thus, finding the scaling constant c, that makes π(z) a pdf is essentially as hard as approximating the

integral on the right hand side of (2.1). However, by choosing such a density function, we have reduced

7
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the variance to zero. Therefore we call π(z) the zero variance function and our goal is to find an easy-to-

sample density function π∗(z) which approximates the zero variance density function, π(z), and reduces

the variance, i.e.

P{LN (Z, E) > l} = Eπ∗


(

1− Φ
(
l−µN (Z)
σN (Z)

))
φ(Z)

π∗(Z)

 , where π∗(z) ≈ π(z) (2.5)

We give an indication of what this zero variance function looks like. From equation (2.3), π(z) is a

product of a Gaussian pdf and a Gaussian cdf. Figures 2.1 and 2.2 depict such a function generated

from the configuration and settings in Chapter 5.

Figure 2.1 shows the shape of the zero variance function π(z) in the univariate case. When the loss

is small, as in Figure 2.1a, a wide range of systematic risk factors will give such a loss level, while this

range shrinks as loss percentage increases. One interesting characteristic for the 1D model is that the

shape of the zero variance function matches that of the Gaussian Mixture Model with two components.

As the loss percentage increases, these two humps separate and move in different directions. At some

level, one component disappears and the zero variance function looks like a univariate Gaussian.

When the risk factor is bivariate, the zero variance function is pictured in Figure 2.2. Unlike the

univariate case where π(z) could be modeled as a Gaussian Mixture with 2 components, the zero variance

function forms a volcano shape. All three figures on the right side give a bird’s eye view of the density.

As l increases, the edges expand outwards slightly and decay at different speeds. In Figure 2.2f, the

extreme value of l concentrates the risk factor plane to a tiny dark red region corresponding to a “black

swan event”. Most of the points on the risk factor plane do not cause huge losses. However, if this black

swan event is triggered, the portfolio holder will suffer significant losses. Hence, naturally, sampling from

π(z) is equivalent, in a sense, to rare event simulation.

2.2 Cross Entropy

The cross-entropy (CE) method is an efficient and simple approach in rare-event simulation based on

an iterative importance sampling procedure. The method uses the Kullback-Leibler (KL) distance

(also known as cross entropy) that gives a “distance” between two probability measures. Consider the

estimation of the probability

q = P(S(X ) > l) = E[1{S(X )>l}] =

∫
1{S(x)>l}f(x; u)dx

where S is a real-valued function, l is a threshold and X follows some probability density function f(·; u)

parametrized by u. Rather than sampling directly from f , one natural way we have seen already is to

use importance sampling based on another pdf g such that

q =

∫
1{S(x)>l}f(x; u)

g(x)
g(x)dx = E

[
1{S(X )>l}f(X ; u)

g(X )

]
, X ∼ g.

Note that here the zero-variance function is g∗(x) = q−1
1{S(x)>l}f(x; u)

Let f and g be two probability distribution functions associated with a vector x. The KL distance
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(a) zero variance for l = 0.0700 (b) zero variance for l = 0.0800

(c) zero variance for l = 0.1357 (d) zero variance for l = 0.2155

Figure 2.1: 1D zero variance function for various loss levels

is defined as

D(f, g) =

∫
f(x) log

f(x)

g(x)
dx.

The CE method looks for a density function g such that D(g∗, g) is minimized from the parametric

family F = {f(x; v)}. The optimal parameter vector v∗ satisfies

v∗ = arg min
v

D(g∗, f(·; v))

= arg min
v

{∫
g∗(x) log g∗(x)dx− q−1

∫
f(x; u)1{S(x)>l} log f(x; v)dx

}
= arg max

v

∫
f(x; u)1{S(x)>l} log f(x; v)dx (2.6)

= arg max
v

∫
1{S(x)>l} log f(x; v)

f(x; u)

f(x; w)
f(x; w)dx (2.7)

Several points are worth mentioning about the equations above. Instead of directly finding the optimal

parameter vector v in equation (2.6), in practice, we would change the integral to a sum of Monte Carlo
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(a) zero variance for l = 0.0867 (b) zero variance for l = 0.0867

(c) zero variance for l = 0.1254 (d) zero variance for l = 0.1254

(e) zero variance for l = 0.1981 (f) zero variance for l = 0.1981

Figure 2.2: 2D zero variance function for various loss levels

samples as

v∗ = arg max
v

∫
f(x; u)1{S(x)>l} log f(x; v)dx

≈ arg max
v

1

N

N∑
i=1

1{S(Xi)>l} log f(Xi; v) Xi ∼ f(·; u) (2.8)
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and then solve (2.8).

Moreover since S(X ) > l is a rare event, most of the samples will result in 1{S(Xi)>l} being 0. To

overcome this problem, CE finds the optimal parameter v∗ through a sequence v0,v1, . . . and in each

iteration, an importance sampling technique is adopted and the threshold l is adaptively selected. More

specifically, in the tth iteration, w in the following discretization from equation (2.8) is set to be vt−1 to

achieve importance sampling.

v∗ = arg max
v

∫
1{S(x)>l} log f(x; v)

f(x; u)

f(x; w)
f(x; w)dx

≈ arg max
v

1

N

N∑
i=1

1{S(Xi)>l} log f(Xi; v)
f(Xi; u)

f(Xi; w)
Xi ∼ f(·; w) (2.9)

For all sampled values, we then choose lt from the top quantile so that we have enough non zero

evaluations of the indicator function. Lastly v is maximized for the tth iteration. We expect to see that

the sequence v0,v1, . . . converges to v∗ and l0, l1, . . . converges to l. This approach is outlined in the

multi-level algorithm [16] below:

Algorithm 1 CE Algorithm for Rare-Event Estimation

Input: sample size N and the parameter ρ ∈ (0, 1)
1: Set initial parameters v0. Let Ne = dρNe. Set t = 1
2: Generate X1, . . . ,XN ∼iid f(·; vt−1). Calculate Si = S(Xi) for all i and order these from smallest

to largest: S(1) 6 · · · 6 S(N). Let lt be the sample (1 − ρ)-quantile of performances; that is
lt = S(N−Ne+1). if lt > l, reset lt to l.

3: Use the same sample X1, . . . ,XN to solve equation (2.9) with w = vt−1. Denote the solution by vt.
4: If lt < l, set t = t+ 1 and reiterate from Step 2; otherwise proceed with step 5.
5: let T = t be the final iteration counter. Generate X1, . . . ,XN ∼iid f(·; vT ) and estimate q via

importance sampling.

To apply the CE approach to our problem, recall the zero variance function π(z) = cg(z) in equation

(2.3). Hence our goal is to look for π∗(z) such that the KL distance D(cg(z), π∗(z)) is minimized. Further

to simplify the log optimization in equation (2.9), we assume π∗(z) belongs to the natural exponential

family. More specifically, π∗(z) = φ(z;µ,Σ) where φ is the multivariate Gaussian pdf. As a result,

v = {µ,Σ} and

vt = arg min
v

D(cg(z), φ(z; v))

≈ arg max
v

1

N

N∑
i=1

g(Xi) log φ(Xi; v)

≈ arg max
v

1

N

N∑
i=1

g(Xi)

φ(Xi; vt−1)
log φ(Xi; v) Xi ∼ φ(·; vt−1) (2.10)

It’s worth pointing out that, during the iteration, vt may be trapped in local optima. Rubinstein and

Kroese [17] propose the use of dynamic smoothing to overcome this issue. On the other hand, Chan and

Kroese point out that, for high dimensional problems, this multi-level CE approach becomes unstable

and may not give a desirable solution [2].
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One-level CE

So far, we have assumed that l is a threshold such that S(X ) > l is a rare event. Recall that the zero-

variance function is g∗(x) = q−1
1{S(x)>l}f(x; u) and it is hard to sample from this function. However,

if random samples X1, . . . ,XN could be directly drawn from g∗(x), we could reduce the multi-level cross

entropy method to a one-level CE method, as equation (2.9) becomes

v∗ ≈ arg max
v

1

N

N∑
i=1

1{S(Xi)>l} log f(Xi; v)
f(Xi; u)

f(Xi; w)
Xi ∼ f(·; w)

≈ arg max
v

1

N

N∑
i=1

log f(Xi; v) Xi ∼ g∗ (2.11)

As a result, in this case, equation (2.11) is nothing but maximizing the log likelihood. The improvement

is two folds. On the one hand, the CE instability is overcome and, on the other hand, more importantly,

we approximately solve the optimization problem in one iteration only, which is much faster than the

standard CE algorithm.

Loosely speaking, in our problem, if the iterative CE algorithm works, φ(·; vt) must be close to the

target zero variance function π(z) = cg(z) as t → ∞. Furthermore, since π(z) = cg(z), where g(z) is a

product of a cdf and a pdf, we can reduce the complexity from a multi-level CE algorithm to a one-level

CE algorithm by directly drawing samples X1, . . . ,XN from π(z) through Markov Chain Monte Carlo.

Equation (2.10) hence becomes

v∗ ≈ arg max
v

1

N

N∑
i=1

log φ(Xi; v) Xi ∼ π (2.12)

Note that φ(·; vt) is no longer limited to the exponential family, unless the argument optimization is too

difficult to solve. In the following subsections, we first outline Markov Chain Monte Carlo, followed by

a review of the Gaussian Mixture Model.

2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a sampling method based on constructing a Markov Chain whose

equilibrium distribution is the probability distribution we want to sample from. In other words, given

a complicated density π = cg, where c is a constant, we aim to construct a Markov chain X0, X1, . . .

such that Xn ∼ π for large n. A key point for a good MCMC is the proposal move, which is the

transition from state Xn−1 to state Xn. We start with a review of the random walk proposal, namely

the Metropolis Sampling Algorithm. Then some other techniques are investigated.

2.3.1 Metropolis Sampler

Let x and y be two states in the state space E . Let q(x, y) be the probability of transiting from state x

to state y. This q(x, y) is also called the proposal distribution at state x. Further define the acceptance
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probability α(x, y) to be

α(x, y) =

{
min

{
π(y)
π(x)

q(y,x)
q(x,y) , 1

}
if π(x)q(x, y) 6= 0

1 if π(x)q(x, y) = 0
(2.13)

The probability for a successful jump from state x to state y is q(x, y)α(x, y). A chain is reversible,

if ∀x, y ∈ E , π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x). One can show that, with α(x, y) defined in

equation (2.13), the chain is reversible. Further, if q(x, y) is chosen to be multivariate normal, where

y ∼MVN(x, σ2I), then it is obvious that q(x, y) = q(y, x). This symmetry simplifies α(x, y) to

α(x, y) =

{
min

{
π(y)
π(x) , 1

}
if π(x)q(x, y) 6= 0

1 if π(x)q(x, y) = 0
(2.14)

The Metropolis-Hasting Sampling based on random walks and symmetric proposal moves is presented

in algorithm 2.

Algorithm 2 Metropolis-Hasting Algorithm

1: Choose some initial value X0

2: for n = 1, . . . ,M do
3: choose a proposal move Y ∼MVN(Xn−1, σ

2I)
4: Let A = π(Y )/π(Xn−1) = g(Y )/g(Xn−1), and Un ∼ Uniform[0, 1]
5: if Un < A then
6: accept the proposal move by setting Xn = Y
7: else
8: reject the proposal by setting Xn = Xn−1

9: end if
10: end for
11: return XB+1, . . . , XM where B (“burn-in”) is large enough that XB ∼ π (approximately).

There are a few criteria used to evaluate the performance of a MCMC algorithm. One intu-

itive standard is the acceptance rate. Generally speaking, if σ is large in the proposal distribution

MVN(Xn−1, σ
2I), then the proposed sample is usually rejected. This makes the chain stuck at one

state and it does not move much. On the other hand, if σ is too small, proposed samples are close to the

current state and this results in acceptance most of the time. This is not desirable either, since the whole

space is not sufficiently explored. Hence scaling (i.e., σ) must be chosen carefully and the acceptance

rate plays a key role in optimization. Roberts et al. [1] and Roberts and Rosenthal [14] show that in a

certain idealized high-dimensional limit, the optimal acceptance rate is 0.234. Therefore we can adapt

the MCMC method by tuning σ along the chain, in order for the acceptance rate to approximate this

magic number.

2.3.2 Variable-At-A-Time and Parallel Tempering MCMC

The Metropolis sampler provides an effective way to sample from a complicated density. Steps in the

algorithm are intuitive and easy to implement. One goal for a good proposal distribution is to make the

sample Xn have a density approximately equal to π in relatively few steps. The naive MCMC method

described in Algorithm 2 takes a long time to explore the whole space, especially if the regime is a high-

dimensional space or the density π has some “traps”. In this section, we review two MCMC methods



Chapter 2. Zero Variance Function Estimation 14

which overcome these issues.

Variable-At-A-Time MCMC When states are multidimensional (Xn ∈ Rd), it is often hard for the

sampler to move a step if all dimensions are changed simultaneously. Consequently rather than changing

all coordinates at once, the sampler could make a step by changing one coordinate at a time while holding

all the other coordinates unchanged. The changing coordinate can be selected randomly from 1, . . . , d

or each component can be changed in order. Algorithm 3 gives an outline for this Variable-At-A-Time

MCMC, where Xn−1,j stands for the jth component in the sample Xn−1 and Xn−1,−j stands for all the

components in the sample Xn−1 with the jth component excluded.

Algorithm 3 Variable-At-A-Time MCMC

1: Choose some initial value X0

2: for n = 1, . . . , N do
3: for j = 1, . . . , d do
4: Let Y−j = Xn−1,−j and choose a proposal move Yj ∼ N(Xn−1,j , σ

2
j )

5: Let A = π(Y )/π(Xn−1) = g(Y )/g(Xn−1), and Un ∼ Uniform[0, 1]
6: if Un < A then
7: accept the proposal move by setting Xn = Y
8: else
9: reject the proposal by setting Xn = Xn−1

10: end if
11: end for
12: end for
13: return XB+1, . . . , XN where B (”burn-in”) is large enough that XB ∼ π (approximately).

Parallel Tempering MCMC As we have seen in section 2.1, the zero variance function is bimodal

in the univariate risk factor space. In the multivariate case, the 2D example in Figure 2.2f gives two

separated regions, where the dark red one is the more significant region while the yellow one is a decayed

portion. Such bimodal distributions often trap plain MCMC near one mode and it fails to explore the

whole space.

One observation for the sampling distribution is that the flatter the density is, the easier for the

MCMC sampler to travel. For example, π1 = 1
2N(0, 1) + 1

2N(20, 1) and π2 = 1
2N(0, 102) + 1

2N(20, 102)

each have two significant humps far away from each other. However, π2 is flatter and easier for plain

MCMC to handle than π1. Parallel Tempering MCMC aims to overcome the problem of being trapped by

introducing a few paralleled Markov chains, each of which is associated with a different “temperature”.

The “coldest” temperature is associated with the original density; increasing the temperature makes the

distribution flatter. The key idea is to have the chain with highest temperature explore the whole space.

The coldest one, on the other hand, explores some hump for a few steps and gets driven to other humps

by the “hottest” parallel chains.

A common trick to create a density at a high temperature τ is to set πτ (x) = cτ (π(x))1/τ , where cτ is a

normalizing constant. Instead of treating each chain separately, parallel tempering MCMC with m chains

has the stationary distribution Π = π1×π2×· · ·×πm as a joint density. Now sampling can be broken down

into two step. Within each chain, a new value Yn,τ is proposed from some symmetric distribution, such

as Yn,τ ∼ N(Xn−1,τ , στ I). This new value is accepted with the probability min
(

1,
πτ (Yn,τ )

πτ (Xn−1,τ )

)
. There is

a random swap among two chains τ and τ ′ with the acceptance probability min
(

1,
πτ (Xn,τ′ )πτ′ (Xn,τ )

πτ (Xn,τ )πτ′ (Xn,τ′ )

)
,
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which further simplifies to

min

(
1,
cτπ(Xn,τ ′)

1/τ cτ ′π(Xn,τ )1/τ ′

cτπ(Xn,τ )1/τ cτ ′π(Xn,τ ′)1/τ ′

)
= min

(
1,
π(Xn,τ ′)

1/τπ(Xn,τ )1/τ ′

π(Xn,τ )1/τπ(Xn,τ ′)1/τ ′

)
(2.15)

The “coldest” chain gives the samples with target distribution π. Algorithm 4 gives the Parallel Tem-

pering MCMC in detail. For a discussion of the ergodicity and correctness of this algorithm, see Neal

[9] and Rosenthal [15].

Algorithm 4 Parallel Tempering MCMC

1: Choose some initial value X0,j for the jth chain for j = 1, 2, . . . ,m.
2: for n = 1, . . . , N do
3: for j = 1, . . . ,m do
4: Choose a proposal move Y ∼ N(Xn−1,j , σ

2
j I)

5: Let A = πj(Y )/πj(Xn−1) = (π(Y )/π(Xn−1,j))
1/j , and Un ∼ Uniform[0, 1]

6: if Un < An then
7: accept the proposal move by setting Xn,j = Y
8: else
9: reject the proposal by setting Xn,j = Xn−1,j

10: end if
11: end for
12: Randomly choose τ and τ ′ from 1, . . . ,m
13: Switch Xn,τ and Xn,τ ′ with probability defined in equation (2.15)
14: end for
15: return XB+1, . . . , XN where B (”burn-in”) is large enough that XB ∼ π (approximately).

2.3.3 Slice Sampling

Both methods in the previous section are often better samplers than the simple Random Walk Metropolis.

Variable-At-A-Time makes a movement easier in high dimensions while Parallel Tempering can sample

more effectively from a multimodal distribution. Nevertheless, these methods share a common potential

inefficiency: an appropriate “proposal” distribution is required. Enlightened by sampling uniformly from

the region beneath the pdf curve in a univariate distribution, Neal [10] introduced a new Markov Chain

Monte Carlo method called slice sampling, which avoids the proposal distribution and can adaptively

change the scale size. We now provide a brief review of this sampling method.

Firstly slice sampling is based on auxilary sampling. Suppose π(x) = cg(x) and one aims to sample

from π(x). Note that, if (X,Y ) ∼ Uniform{(x, y) ∈ R2 : 0 ≤ y ≤ g(x)}, i.e., (X,Y ) is chosen uniformly

from the region bounded by g, then X ∼ π. This is because the joint density for (X,Y ) is

p(x, y) =

{
1/Z if 0 < y < g(x)

0 otherwise

where Z =
∫
g(x)dx = 1/c. The marginal density for x is then

p(x) =

∫ g(x)

0

(1/Z)dy = g(x)/Z = cg(x) = π(x) (2.16)

Hence, to sample for x, one can sample jointly for (x, y) and then ignore y. However sampling directly
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from the region below g is hard. Neal proposed a two-stage sampling technique. Firstly, given the

current x, y is sampled uniformly from the interval (0, g(x)). Then given the newly generated y, x is

sampled over the region S = {x : y < g(x)}, which is a slice defined by y. The algorithm proceeds by

alternatively sampling x and y.

One difficulty that arises in slice sampling is how to sample over the region S = {x : y < f(x)}.
In the univariate case, one solution is to expand S to an interval [a, b] that contains S. Then, in the

sampling phase, sample x from [a, b], but reject x and try again if x /∈ S. In the multivariate case,

one idea is to replace the interval in the univariate case by a hyperrectangle, where each dimension of

the hyperrectangle contains the slice in that dimension. More advanced slice sampling approaches are

discussed in [10].

2.4 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a linear combination of regular Gaussians. Generally speaking, a

non-Bayesian GMM probability density function is of the form

K∑
k=1

αkφ(x;µk,Σk) subject to

K∑
k=1

αk = 1, αk ≥ 0 (2.17)

where K is the number of components. In this research project, GMM is selected to model the sampling

data mainly for three reasons. Firstly, a GMM is easy to sample. Given all parameters, the sampling

proceeds in two stages. Firstly i is sampled from a multinomial distribution MULTNOM(α1, . . . , αK).

Then Z ∼ φ(0, I) is sampled and X = µi + LiZ, where Li is the Cholesky decomposition of Σi. This

X follows the GMM distribution (2.17). The second reason why GMM is considered comes from section

2.1, as the multi-modal shape of the risk-factor surface suggests GMM is a good candidate. Last, but

not least, the Expectation-Maximization clustering algorithm performs quite well for a GMM. Our zero

variance function can be approximated by a GMM, whose coefficients are determined by an optimization

process that uses the training samples generated by the Markov Chain Monte Carlo method we reviewed

in the previous section.

2.4.1 Expectation-Maximization

Expectation-Maximization (EM) is a common learning algorithm for Gaussian Mixture Models. It can

also be applied to many other parametric models. Here we briefly review a generalization of EM. Suppose

x is the observed data, θ is the model parameter and z is a latent variable. Our aim is to find the θ

that maximizes the likelihood P (x|θ) =
∫
P (x, z|θ)dz. Instead of solving this optimization directly, the

EM algorithm starts by maximizing a lower bound of the log likelihood:

log

∫
P (x, z|θ)dz = log

∫
P (x, z|θ)

Q(z)
Q(z)dz = logEQ

[
P (x, z|θ)

Q(z)

]
> EQ

[
log

P (x, z|θ)

Q(z)

]
(2.18)

where the last inequality in (2.18) follows from the Jensen’s inequality.
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Now let the function F of Q and θ be the last term in equation (2.18):

F (Q,θ) = EQ
[
log

P (x, z|θ)

Q(z)

]
= EQ[logP (x, z|θ)]− EQ[logQ(z)] (2.19)

= logP (x|θ) + EQ[logP (z|x,θ)]− EQ[logQ(z)]

= logP (x|θ)− EQ[log(Q(z)/P (z|x,θ))] (2.20)

The last term in equation (2.20) is the KL distance between Q(z) and P (z|x,θ). In fact, we will see

below that we can set Q(z) = P (z|x,θ), making the KL distance equal to 0. The generalization of EM

is:

• E Step - Use the current value of θ and the observations of x to find the distribution Q for the

latent variable z, i.e., Q(z) = P (z|x,θ)

• M step - Maximize the expected value of logP (x, z|θ) with respect to θ, using the distribution

Q found in the E step, i.e., θ = arg maxθ EQ[logP (x, z|θ)]

Intuitively, the EM algorithm uses a two step process to maximize the lower bound EQ
[
log P (x,z|θ)

Q(z)

]
=

F (Q,θ) of (2.18). The E step maximizes F (Q,θ), with respect to Q, by minimizing the KL distance

between Q(z) and P (z|x,θ) (i.e., the last term in (2.20)) by setting Q(z) = P (z|x,θ). The M step

maximizes F (Q,θ), with respect to θ, by finding θ to maximize EQ[logP (x, z|θ)] (i.e., the first term in

((2.19))).

EM for Gaussian Mixture Models Specifically for d-dimensional Gaussian Mixture Models, θ =

{αk,µk,Σk}k=1,...,K and the latent variable zik = 1 if the ith observation comes from the kth component

and 0 otherwise. Following the generalized framework above, in the E step, we find the distribution Q

of zik given the ith observation and the parameters. By applying Bayes’ Rule,

rik = P (zik = 1|xi,θ) =
αkφ(Xi|µk,Σk)∑K

k′=1 αk′φ(Xi|µk′ ,Σk′)
(2.21)

for i = 1, . . . ,M and k = 1, . . . ,K, where rik is understood as the “responsibility” of component k,

Xi ∼ Π, i = 1, . . . ,M , generated by MCMC (the slice sampler, in our case), and φ(Xi|µk,Σk) is a

d-dimension normal pdf with mean µk and covariance matrix Σk. Since we know P (z|x,θ), we can set

Q(z) = P (z|x,θ)

Since the Gaussian distribution belongs to the exponential family, we can maximize the expected

value of the log likelihood in step M easily. In fact, for the ith observation, the log probability is given

as

log

[
K∏
k=1

(
αk(2π)−

d
2 |Σk|−

1
2 exp(−1

2
(Xi − µk)TΣ−1

k (Xi − µk)

)zik]
(2.22)
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Further taking expectation under the measure Q, i.e., the distribution of zi,k, we have

EQ

{
log

[
K∏
k=1

(
αk(2π)−

d
2 |Σk|−

1
2 exp(−1

2
(Xi − µk)TΣ−1

k (Xi − µk)

)zik]}

= EQ

{
K∑
k=1

zik

(
log(αk)− d

2
log(2π)− 1

2
log(|Σk|)−

1

2
(Xi − µk)TΣ−1

k (Xi − µk)

)}

=

K∑
k=1

rik

(
log(αk)− d

2
log(2π)− 1

2
log(|Σk|)−

1

2
(Xi − µk)TΣ−1

k (Xi − µk)

)
(2.23)

where rik = EQ(zik). To maximize the sum (2.23) for all M samples, we simply maximize

M∑
i=1

K∑
k=1

rik log(αk)

with respect to α,

−1

2

M∑
i=1

K∑
k=1

rik(Xi − µk)TΣ−1
k (Xi − µk)

with respect to µk, and

−1

2

M∑
i=1

K∑
k=1

rik
(
log |Σk|+ (Xi − µk)TΣ−1

k (Xi − µk)
)

with respect to Σk. After some algebraic simplification, the M step can be described as the parameter

re-estimation, with weights rik given from the E step:

αk =
1

M

M∑
i=1

rik, µk =

∑M
i=1 rikXi∑M
i=1 rik

, Σ2
k =

∑M
i=1 rik(Xi − µk)T (Xi − µk)∑M

i=1 rik
(2.24)

Started with some random guess for the parameter θ0, the above two steps are iterated until θ converges.

2.4.2 Drawbacks of EM

EM is a straightforward algorithm for data clustering and, for a Gaussian Mixture Model, it is simple

to implement. However a few drawbacks are worth mentioning.

Firstly, EM requires a predetermined number of Gaussian components. As shown in Figure 2.1,

we can assume two components are enough in the univariate case to characterize the zero variance

function. However, for higher dimensions, although the ring shaped density in Figure 2.2 can still be

approximated by a Gaussian Mixture Model, it is not obvious how to choose the number of Gaussian

components needed for a good approximation. Moreover, over-fitting happens if too many components

are selected.

Secondly, both the convergence speed and the quality of the approximation may be issues. Consider

the case where one component of a Gaussian Mixture Model has mean µk equal to some data observation

Xi and covariance matrix 0. If the component weight αk is not 0, this will give an infinite value and

lead to a global maximum. That’s to say, we want EM to converge to some local optimum, rather than a

global optimum. This singularity of the covariance matrix should be avoided, but can’t be guaranteed.
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Bayesian Monte Carlo

3.1 Bayesian Linear Model

A Gaussian Process is used to define distributions over functions. It derives from a Bayesian linear basis

function model in which the number of basis functions goes to infinity. Before looking at the Gaussian

Process Model, we begin with a basic model which has only a finite number of basis functions:

y = φ(x)Tβ + ε, ε ∼ N(0, σ2)

where φ(x) is a column vector of basis functions valued at a training case x, β = [b1, · · · , bn]T is the

vector of regression coefficients and ε is Gaussian noise with mean 0 and variance σ2.

With n training cases in the set and observations y = [y1, . . . , yn]T , we get that

y ∼ N(ΦTβ, σ2I)

where Φ = [φ1, · · · , φn] with φk = φ(xk). Assume that the prior probability for β is N(0, S0). Then the

prior probability for y will also be Gaussian because y is a linear function of β. From Bayes’ rule,

p(β|Φ,y) =
p(y|Φ, β)p(β)

p(y|Φ)

∝ exp

(
− 1

2σ2
(y − ΦTβ)T (y − ΦTβ)

)
exp

(
−1

2
βTS−1

0 β

)
∝ exp

(
−1

2
(σ−2yTy + βTΣβ − σ−2yTΦTβ − σ−2βTΦy)

)
where Σ = σ−2ΦΦT + S−1

0 is symmetric. In fact, we can do more algebraic simplification and find that

σ−2yTy + βTΣβ − σ−2(yTΦTβ + βTΦy)

=βTΣβ − σ−2(yTΦTΣ−1Σβ + βTΣΣ−1Φy) + σ−2yTy

=(β − β̄)TΣ(β − β̄) + (σ−2yTy − β̄TΣβ̄)

where β̄ = σ−2Σ−1Φy and the last term is some constant. Thus, p(β|Φ,y) ∝ exp
(
− 1

2 (β − β̄)TΣ(β − β̄)
)
,

i.e., the posterior probability of β is Gaussian with mean β̄ and covariance matrix Σ−1, where Σ =

19
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σ−2ΦΦT + S−1
0 :

p(β|Φ,y) ∼ N(
1

σ2
Σ−1Φy,Σ−1).

Now given a test case x∗, denote the vector of basis functions valued at x∗ by φ∗ = φ(x∗). Our

purpose is to infer y∗ from observations y without reference to β. One approach is to marginalize β

by computing the posterior probability of β and probability of y∗ conditioned on β. This is called the

posterior predictive distribution:

p(y∗|x∗,Φ,y) =

∫
p(y∗|x∗, β)p(β|Φ,y)dβ ∼ N

(
1

σ2
φT∗ Σ−1Φy, φT∗ Σ−1φ∗

)
(3.1)

Notice that both p(y∗|x∗, β) and p(β|Φ,y) are Gaussians and the mean of y∗ is affine in β. Hence the

posterior predictive distribution is also Gaussian [12]. We use this technique again later.

Consider now the right side of equation (3.1). First note that the covariance matrix of the observations

in the training set is C = σ2I + ΦTS0Φ. The covariance of y∗ itself is v = φT∗ S0φ∗. Similarly the

covariance of y∗ and y is k = ΦTS0φ∗. It is straightforward to show that

kTC−1y = φT∗ S0Φ(σ2I + ΦTS0Φ)−1y

=
1

σ2
φT∗ (S0Φ(I +

1

σ2
ΦTS0Φ)−1Φ−1)Φy

=
1

σ2
φT∗ (S−1

0 + σ−2ΦΦT )−1Φy

=
1

σ2
φT∗ Σ−1Φy

and

v − kTC−1k = φT∗ S0φ∗ − φT∗ S0Φ(σ2I + ΦTS0Φ)−1ΦTS0φ∗

= φT∗ S0φ∗ − φT∗ S0(S0 + σ2Φ−TΦ−1)−1S0φ∗

= φT∗ [S0 − (S−1
0 + σ2S−1

0 Φ−TΦ−1S−1
0 )−1]φ∗

= φT∗ [S0(σ2S−1
0 Φ−TΦ−1S−1

0 )(S−1
0 + σ2S−1

0 Φ−TΦ−1S−1
0 )−1]φ∗

= φT∗ (S−1
0 + σ−2ΦΦT )−1φ∗

= φT∗ Σ−1φ∗

This shows that the posterior Gaussian can be fully characterized by the mean and variance given above,

i.e.,

E(y∗|y) = kTC−1y, V(y∗|y) = v − kTC−1k. (3.2)

Both the mean and variance have an intuitive explanation. The mean, y∗, should be implied from

observations y and correlations between y∗ and y. Given observations y, one is able to reduce the

uncertainty from v to v−kTC−1k. More specifically kTC−1k is the information gained through training

cases.
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3.2 Gaussian Process Model

A Gaussian Process (GP) is a generalization of a Gaussian distribution. A Gaussian distribution, whose

mean is a vector and covariance is a matrix, is used to describe probabilities over a vector. A Gaussian

Process, on the other hand, works on functions instead. This process is defined as a collection of random

variables, any finite number of which have a joint Gaussian distribution [12]. For a random function

f(x), define its mean function m(x) and its variance function k(x, x′) to be

m(x) = E[f(x)], k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (3.3)

Then f(x) is modeled as a GP with mean function m(x) and covariance function k(x, x′) and denoted

as

f(x) ∼ GP(m(x), k(x, x′)).

Needless to say, the covariance function should be chosen such that the covariance matrix is positive

semi-definite. For x ∈ RD, a typical category of valid covariance functions, called Gaussian kernels or

squared exponentials, has the form

k(x, x′;w0, . . . , wD) = w0 exp

(
−1

2

D∑
d=1

(xd − x′d)2

w2
d

)
.

Such k satisfy stationarity and translational invariance, i.e., k(x, x′) = k(x−x′). The Euclidean distance

describes the correlation between a pair of points. Moreover, the Gaussian kernel is parametrized by

hyperparameters θ = {w0, w1 . . . , wD}. Essentially the parameters w1, . . . , wD are interpreted as the

length scale on each input dimension [18]. A large wd indicates almost independence in dimension d. In

our problem, the systematic risk factor is unit free in each dimension, i.e., w2
1 = · · · = w2

D = λ2. On the

other hand, w0 measures the overall correlation and is thus called the magnitude scale. We denote the

covariance function parametrized by θ = {w0, λ} as

k(x, x′; θ) = w0 exp

(
− 1

2λ2

D∑
d=1

(xd − x′d)2

)
(3.4)

We review the estimation of θ later. In this section, we take θ to be a given constant.

Now assume the prior for f follows a GP. Let f be the known function values of the training cases

x and f∗ be the corresponding function values of the testing cases x∗. Because of the joint Gaussian

property for any collection of finite points, one can simply formulate the joint training and testing prior

as [
f

f∗

]
∼ N

([
µ

µ∗

]
,

[
Σ Σ∗

ΣT∗ Σ∗∗

])
(3.5)

where µ is the training set mean, µ∗ is the testing set mean, Σ is the training set covariance, Σ∗ is the

training-testing set covariance and Σ∗∗ is the testing set covariance.

In some cases, f is a nuisance function, i.e., f(x) is a hidden state and cannot be observed directly.

Instead y(x) is obtained. The posterior predictive distribution is thus calculated by marginalizing the

latent function f as

p(f∗|x,y,x∗) =

∫
p(f∗|x, f ,x∗)p(f |x,y)df .
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Note that the last term is a functional integration, where the domain of the integration is a space

of functions and p(f |x,y) is a probability distribution over the function space. If y = f is directly

observable, p(f |x,y) degenerates to the delta function and therefore p(f∗|x,y,x∗) = p(f∗|f). Needless

to say, by looking at the conditional distribution over a multivariate normal, given the training set f ,

the conditional distribution of f∗ is expressed as

f∗|f ∼ N (µ∗ + ΣT∗ Σ−1(f − µ),Σ∗∗ − ΣT∗ Σ−1Σ∗) (3.6)

and the posterior process for the test case is still a Gaussian Process:

f |D ∼ GP(mD, kD) (3.7)

with posterior mean and variance

mD(x) = m(x) + Σ(x,x)Σ−1(f − µ) (3.8)

kD(x, x′) = k(x, x′)− Σ(x,x)Σ−1Σ(x′,x)T (3.9)

where Σ is the training set covariance given in equation (3.5), Σ(x,x) is the covariance between a

particular testing point x and the training set x, and similarly for Σ(x′,x). This posterior Gaussian

Process has a smaller variance than the prior, due to the positiveness of the second term in equation

(3.9). It is instructive to observe the similarity between the posterior mean and variance in the Gaussian

Process Model and the Bayesian linear basis function model in equation (3.2).

Type-II maximum likelihood

So far we have assumed that θ is a given constant. Before a GP is used for prediction, one important

step is to fit the GP model by determining the hyperparameter θ = {w0, λ} through training samples.

By marginalizing over the latent variable θ, the posterior predictive distribution is

p(f∗|f) =

∫
p(f∗|f , θ)p(θ|f)dθ. (3.10)

Needless to say, here we assume f is no longer a nuisance function.

Now the question arises as to whether equation (3.10) is analytically tractable. One approximation

method adopts the approach used for point estimation θ̂ and then this simplifies the case where θ is

a given constant. A good estimate for θ can be obtained by maximizing the posterior distribution

p(θ|f) ∝ p(f |θ)p(θ). A common trick is to maximize the log function, i.e.,

θ̂ = arg max
θ
{log p(f |θ) + log p(θ)}

Since the prior probability for f given θ is Gaussian with mean µ and variance Σ,

f |θ ∼ N(µ,Σ),
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the log marginal likelihood is

L = log p(f |θ) = −1

2
log |Σ| − 1

2
(f − µ)TΣ−1(f − µ)− n

2
log(2π)

Note that µ and Σ may be functions of θ. On the other hand, since we have no particular probability

density for the prior of f , p(θ) can be dropped from the maximization. Hence one approach, suggested by

Rasmussen[12], is to choose the hyperparameters to maximize the log marginal likelihood L = log p(f |θ).
Thus we choose θ to set the following derivatives to zero:

∂L

∂θm
= (f − µ)TΣ−1 ∂µ

∂θm
(3.11)

∂L

∂θk
= −1

2
trace(Σ−1 ∂Σ

∂θk
) +

1

2
(f − µ)TΣ−1 ∂Σ

∂θk
Σ−1(f − µ) (3.12)

where θm is the set of hyperparameters used in the mean function and θk is the set of hyperparameters

used in the variance function. Given N observations, µ is an N -dimension vector where each component

µi = m(Xi; θm) and Σ is an N × N matrix where Σi,j = k(Xi, Xj ; θk). In our problem, since no

hyperparameters are involved in the mean function, equation (3.11) is vacuous. The hyperparameters in

the covariance function θk = θ = {w0, λ} are computed by setting equation (3.12) to zero. Rasmussen

further proposed a conjugate gradient method as a good approach to solve this optimization problem.

3.3 Bayesian Monte Carlo

Consider again the integral

Z =

∫
f(x)p(x)dx (3.13)

where, in our problem, p(x) is the density for the systematic risk factor and f(x) is the loss level given

the certain systematic risk factor x. We have seen in Chapter 2, that, by using importance sampling,

Z =

∫
f(x)p(x)

q(x)
q(x)dx ≈ 1

N

∑
n

f(x(n))p(x(n))

q(x(n))

where the x(n) are random variables with probability density q.

O’Hagan [11], on the other hand, tackles this problem from a Bayesian point of view by treating

the integral in equation (3.13) as a Bayesian inference problem. He assumes that Z is a function of f

whose prior satisfies the Gaussian Process GP(m, k). By gradually obtaining observations of f(x), the

posterior is still a Gaussian Process, but with new mean mD and variance kD. The distribution over Z

can therefore be implied from this posterior GP.

To make this idea more clear, suppose D = {(x(i), f(x(i)))|i = 1, . . . , n} is the set of observations.

For a finite number of function values f(x(1)), f(x(2)), . . . f(x(n)), the joint distribution is Gaussian:

f = (f(x(1)), f(x(2)), . . . f(x(n)))T ∼ N (m(·), k(·, ·)) (3.14)
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Since f has a GP prior, the posterior f |D is a GP as well. Since Z is a function of f(x), we have

Ef |D[Z] =

∫
Zp(f |D)df

=

∫ (∫
f(x)p(x)dx

)
p(f |D)df

=

∫ (∫
f(x)p(f |D)df

)
p(x)dx =

∫
f̄D(x)p(x)dx, (3.15)

where f̄D is the posterior mean function. From equation (3.8), the posterior mean is given by

f̄D(x) = m(x) + k(x,x)Σ−1(f − µ) (3.16)

Using a similar approach, the variance is

Vf |D[Z] =

∫
(Z − Ef |D[Z])2p(f |D)df

=

∫ [∫
f(x)p(x)dx−

∫
f̄D(x′)p(x′)dx′

]2

p(f |D)df

=

∫ ∫ ∫
[f(x)− f̄D(x)][f(x′)− f̄D(x′)]p(f |D)dfp(x)p(x′)dxdx′

=

∫ ∫
CovD(f(x), f(x′))p(x)p(x′)dxdx′ (3.17)

where CovD(f(x), f(x′)) is the posterior covariance and can be computed from equation (3.9) as

CovD(f(x), f(x′)) = k(x, x′)− k(x,x)Σ−1k(x, x′) (3.18)

Rasmussen and Ghahramani [13] further show that if the following conditions are assumed

1. Mean function m(x) ≡ 0

2. Density p(x) is Gaussian: p(x) = N (b, B)

3. The kernel K is Gaussian: K = N (ai = x(i), A = diag(w2
1, . . . , w

2
D))

then equations (3.15) and (3.17) can be simplified to

Ef |D[Z] = zTΣ−1f (3.19)

Vf |D[Z] = w0|2A−1B + I|−1/2 − zTΣ−1z (3.20)

z = w0|A−1B + I|−1/2 exp

(
−1

2
(a− b)T (A+B)−1(a− b)

)
(3.21)

Specifically, in our problem, p(x) is the standard Gaussian, i.e., b = 0 and B = I. The kernel matrix A

is further assumed to be λ2I, as we stated before. Hence z can be further simplified as

z = w0|λ−2I · I + I|−1/2 exp

(
−1

2
aT (λ2I + I)−1a

)
= w0(1 + λ−2)−D/2 exp

(
− 1

2(1 + λ2)
||a||22

)
(3.22)
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O’Hagan [11] proposed the Bayesian quadrature for the observation set D such that the variance can

be minimized through a set of fixed optimal points. On the other hand, Rasmussen and Ghahramani

[13] choose the optimal importance sampler to minimize the variance. Not surprisingly, to evaluate∫
f(x)p(x)dx, the optimal sampling distribution is q∗(x) = cf(x)p(x), as we have seen in equation (2.3).

We now summarize the Bayesian Monte Carlo method as follows:

1. Sample an observation set D from the optimal importance sampling distribution using MCMC

2. GP model training and hyperparameter θ = {w0, λ} optimization via equation (3.12)

3. Return the estimator (3.19) using the same points in D

3.4 Drawback of BMC

Figure 3.1: A toy example for BMC in 1D. The left panel uses 10 samples; the right panel increases the
total number of samples to 40.

BMC, as formulated in the previous section, has a serious drawback. As an illustration of this

drawback, consider Figure 3.1. In this toy example, f(x) = max(min(1, 0.2x2− 0.5), 10−100) and p(x) is

the pdf of N(0, 1). Thus f(x)p(x) has a two-hump shape. We use the slice sampler to sample the zero

variance function q∗(x) = f(x)p(x). The samples are shown as blue circles in Figure 3.1. It is evident

that we have better knowledge about the function in regions where the humps occur, whilst the center

area is poorly sampled. As a result, f is approximated badly in the center area. Notice that increasing

the number of samples doesn’t significantly improve the approximation in the center area. Therefore, a

major drawback is that Bayesian Monte Carlo cannot guarantee positiveness and negative values make

no sense at all in this context.

This drawback of BMC can lead to very poor results. If we are dealing with an extreme loss level,

samples from MCMC will locate in the tail. We would therefore have a large uncertainty around the

origin where the probability density is large. If, as a result, the posterior of the function is negative in

the uncertain region, the approximation to the loss probability may be negative.

Several ways are proposed to overcome this issue. To start with, one could model the Gaussian

Process on a nonnegative space rather than the function itself. Such an approach, suggested by Osborne

et al. [8], is called Active Learning Using Bayesian Quadrature. We implemented this method, but,

unfortunately, for our problem, the results are not as good as what we expected. One possible reason for
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this is that, in this sophisticated method, one needs to train three Gaussian processes, which increases

the running time significantly. On the other hand, and more importantly, at the very extreme cases,

such as a 99.99% VaR calculation, negative values may still occur. Thus non-negativeness cannot be

guaranteed.

Another possible approach is more practical. We extend the BMC method by choosing D to be a

mixture of samples from the zero variance function and a standard Gaussian, to cover the hole in the

middle. We would use more samples from the standard Gaussian when the dimension of the problem is

higher. This approach is illustrated in Figure 3.2.

Figure 3.2: A toy example for BMC in 1D with better estimation. The left panel uses 10 samples,
where 2 samples are from MCMC and 8 samples are from the standard normal N(0, 1); the right panel
increases the total number of samples to 50, where 10 samples are from MCMC and 40 are from N(0, 1).

3.5 Hybrid BMC

We now proposed a hybrid Bayesian Monte Carlo that overcomes the drawback discussed in the previous

section. According to the three-sigma rule, i.e., in a normal distribution, P (µ − 3σ ≤ x ≤ µ + 3σ) ≈
0.9973, where µ is the mean and σ is the standard deviation, we have to guarantee that the posterior of

f is a good approximation of f within the 3σ interval. Let’s consider a new toy example. The left panel

in Figure 3.3 shows the zero variance function at a high loss level as we have seen in Figure 2.1c while

the right panel shows f(x)p(x), where f(x) = max(min(1, 0.2(x− 0.5)2− 1), 10−100) and p(x) is the pdf

of N(0, 1).

The hybrid BMC combines the key ideas from Chapter 2 and this Chapter by using the approximation

to the zero variance function developed in Chapter 2 with the Bayesian Monte Carlo approach. Since

the squared exponential covariance function is infinitely differentiable, the Gaussian Process must be

very smooth [12]. However, in our problem, f itself is not very smooth. Since modeling f directly as a

Gaussian Process gives a poor result, we apply the importance sampling technique∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx =

∫
h(x)q(x)dx (3.23)

where p(x) is the pdf of N(0, 1) and q(x) is the pdf of N(µ, σ). Then, h, rather than f , is modeled as

a Gaussian Process. Note that h(x) has the following two important properties. Firstly h(x) is smooth
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Figure 3.3: A toy example for a high loss level in 1D. The left panel shows a sampled zero variance
function, while the right panel shows f(x)p(x), where f = max(min(1, 0.2(x − 0.5)2 − 1), 10−100) and
p(x) is the pdf of N(0, 1).

enough that a Gaussian Process with a squared exponential covariance function is a good model. More

importantly, within the 3σ interval µ±3σ, h(x) is bounded away from zero, assuming µ and σ are chosen

appropriately. Hence, it is much easier to preserve non-negativity with h than f .

In this toy example, µ = −2.3711 and σ = 0.1234 are obtained through maximizing the log likelihood

of the data sampled from the slice sampler. In Figure 3.4, h(x) is plotted as the solid blue line and the

dashed green line is the pdf of N(µ, σ) over the range µ± 3σ. The posterior of h comes from sampling

from N(µ, σ) and is represented by the yellow line. With just 10 samples, the left panel shows that this

transformation gives a better posterior than modeling f directly in Figure 3.1. By adding more samples,

the posterior gives a much more accurate estimation.

Figure 3.4: A toy example for the hybrid BMC in 1D. The importance sampler is N(−2.3711, 0.1234).
The left figure shows the posterior of the transformed integrand with 10 observations, while the right
one uses 20 observations.

Note that this approach becomes effective when the loss level is high enough that a normal distribution

N(µ, σ) is successfully learned and can approximate the zero variance function well. In a bad case, such

that the importance sampler parameters are not successfully learned (e.g., µ = −1.7678 and σ = 3.5648),



Chapter 3. Bayesian Monte Carlo 28

the importance sampling technique doesn’t help transform the difficult-to-model integrand into the one

we see in Figure 3.4. We show two bad modeling cases below in Figure 3.5.

Figure 3.5: A toy example showing the effects of a poor importance sampler. The importance sampler
is N(1.7678, 3.5648).

In such a circumstance, we resort to the Gaussian Mixture Model again. Assume the total number of

components K is predetermined and q(x) =
∑K
k=1 αkφ(x;µk,Σk) subject to αk ≥ 0 and

∑K
k=1 αk = 1.

The rightmost term in equation (3.23) becomes

∫
h(x)q(x)dx =

∫
h(x)

K∑
k=1

αkφ(x;µk,Σk)dx =

K∑
k=1

αk

∫
h(x)φ(x;µk,Σk)dx (3.24)

where the last term is nothing but the weighted summation of posterior integrals. For each component,

h(x) is expected to be smooth and locally modeled well through a Gaussian Process. In Figure 3.6, we

use 15 training samples from a slice sampler for each component and obtain the mixture model shown

by the green dashed line. The posterior of h and its confidence intervals are also shown.

Figure 3.6: A toy example illustrating a 2 mode importance sampler
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Two Step Importance Sampling

Importance sampling (IS) is a common technique used in sampling theory. Rather than sampling directly

from the original distribution, one could sample from another distribution which is absolutely continuous

with respect to the original one. Then one must correct the MC estimation by multiplying each MC

sample by the associated likelihood function. For this particular problem with the appearance of two

risk factors Z and E , this sampling technique becomes fairly tricky.

Glasserman and Li [3] suggest a two-step IS procedure for the digital credit state model. In the

previous section, the conditional default probability for obligor n is denoted as pDn (z) and default indicator

is 1Dn (z). In the Gaussian Coupula model, obligors are independent of each other conditional on z. The

joint probability mass function of the default indicator is therefore

f
1
D
1 (z),...,1DN (z)(x1, . . . , xN ) =

N∏
n=1

pDn (z)xn(1− pDn (z))1−xn (4.1)

where each xn is either 0 or 1. The conditional total loss is

LN (z, E) =

N∑
n=1

hn1
D
n (z)

For importance sampling, we find qn(z) absolutely continuous with respect to the original default prob-

abilities pDn (z) for n = 1, 2, . . . , N . Then

P{LN (Z, E) > l} = E[P(LN (Z, E) > l|Z = z)]

= E[E[1LN (Z,E)>l|Z = z]] (4.2)

= E

[
Ẽ

[
1LN (Z,E)>l

N∏
n=1

(
pDn (Z)

qn(Z)

)1Dn (Z) (
1− pDn (Z)

1− qn(Z)

)1−1Dn (Z)
∣∣∣∣∣Z = z

]]
(4.3)

where E[·|Z = z] in equation (4.2) is the expectation with respect to the original default probabilities

pD1 (z), . . . , pDN (z), Ẽ[·|Z = z] in equaton (4.3) is the expectation using the new default probabilities

q1(z), . . . , qN (z) and the default indicators 1Dn (z)’s are sampled from this new probability density.

29
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4.1 Conditional Importance Sampling

Glasserman and Li [3] suggested using the following exponential twisting to compute the qn(z):

qn(z) = pn,θ(z) =
pDn (z)eθ(z)hn

1 + pDn (z)(eθ(z)hn − 1)
(4.4)

where θ(z) is a parameter to be chosen to reduce the variance. Note that pDn (z) and pn,θ(z) are equivalent

in the sense that pDn (z) = 0 if and only if pn,θ(z) = 0. Moreover, if θ(z) = 0, then pn,θ(z) = pDn (z), i.e.

no twist is performed. In addition, the likelihood ratio is

N∏
n=1

(
pDn (z)

pn,θ(z)

)1Dn (z)(
1− pDn (z)

1− pn,θ(z)

)1−1Dn (z)

= exp(−θ(z)LN (z, E) + ψ(θ(z))) (4.5)

where

ψ(θ(z)) =

N∑
n=1

log
(

1 + pDn (z)(eθ(z)hn − 1)
)
.

Therefore the inner expectation satisfies

E[1LN (z,E)>l] = Ẽ[e−θ(z)LN (z,E)+ψ(θ(z))
1LN (z,E)>l]

and the second moment associated with the expectation on the right is

M2(θ(z)) = Ẽ[e−2θ(z)LN (z,E)+2ψ(θ(z))
1LN (z,E)>l] ≤ exp(−2θ(z)l + 2ψ(θ(z))) (4.6)

Note that the probability density twisting happens only when LN (z, E) > l. To find the better impor-

tance sampling probability, the consequential optimization is derived by minimizing the upper bound.

The inner level computation algorithm is given by:

1. Calculate the conditional default probabilities pDn (z), n = 1, . . . , N .

2. Set θ(z) = 0 if

LN (z, E) ≡
N∑
n=1

pDn (z)hn ≤ l

otherwise, set θ(z) equal to the unique solution of the following problem:

θ(z) = arg min
θ
{−2θl + 2ψ(θ)} where ψ(θ) =

N∑
n=1

log
(
1 + pDn (z)(eθhn − 1)

)
(4.7)

3. Generate multiple samples of default indicators 1
D
1 (z), . . . ,1DN (z) from the twisted conditional

default probabilities

pn,θ(z) =
pDn (z)eθ(z)hn

1 + pDn (z)(eθ(z)hn − 1)
, n = 1, . . . , N.

and compute the loss LN (z, E) = h11
D
1 (z) + · · ·+ hN1

D
N (z) for each sample
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4. Return the inner level estimator of P(LN (Z, E) > l|Z = z) by averaging

exp{−θ(z)LN (z, E) + ψ(θ(z))}1LN (z,E)>l.

4.2 Outer level Importance Sampling

The importance sampling technique is also applied to the outer level. Rather than sampling the systemic

risk factor Z from N(0, I), one can sample from a mean shifted normal N(µ, I). Generally speaking,

the mode µ should be selected such that the probability density achieves its largest value, i.e. µ should

be the solution to the optimization problem:

µ = arg max
z

P(LN (Z, E) > l|Z = z)e−z
T z/2.

Several approaches are discussed in Glasserman and Li[3], among which the tail bound approximation

is used in their paper. Therefore we also adopt this approximation in our numerical experiments. This

method resorts to an approach similar to that used in equation (4.6), namely

P(LN (Z, E) > l|Z = z) = Ẽ[e−θ(z)LN (z,E)+ψ(θ(z))
1LN (z,E)>l] ≤ e−θ((z)l+ψ(θ((z)) (4.8)

To minimize the upper bound on the right side of (4.6), we solve the optimization problem

µ = arg max
z
{−θ(z)l + ψ(θ(z))− 1

2
zT z}

= arg max
z
{ min
θ(z)∈Θ

{−θ(z)l + ψ(θ(z))} − 1

2
zT z} (4.9)

Notice that this maximization actually involves a nested optimization, as θ is determined through a

conditional minimization in equation (4.7). We list the overall steps in Algorithm 5.

Algorithm 5 Two level Importance Sampling

1: Select a new mean µ for Z by solving arg maxz P{LN (Z, E) > l|Z = z}e−zT z/2 in equation (4.9)
2: Sample systemic risk z’s from N(µ, I)
3: for each systemic risk z do
4: Compute conditional default probability pDn (z)
5: Compute the twist factor θ(z) in equation (4.7) if possible
6: Compute the twisted conditional default probability pn,θ(z)

7: Compute the inner level conditional estimator P(LN (Z, E) > l|Z = z) by sampling conditional
default indicators 1D1 (z), . . . ,1DN (z)

8: end for
9: return Estimator P(LN (Z, E) > l) by averaging each inner level conditional estimator

This method has several drawbacks. First, the optimization problem (4.9) is hard to solve. Second,

the tail bound approximation proposed doesn’t reduce the complexity a lot due to a nested optimization

structure. Third, for each systemic factor z sampled, there is an associated optimization problem of

finding the twisted parameter θ. As a result, when the algorithm is implemented, it is not as fast as we

initially expected. Furthermore, the risk model we used here is a simple one with digital credit states

only, i.e. an obligor is either in default or not. Due to the fact that equation (4.3) takes advantage
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of independent binomial distributions, it is not clear how this approach could be extended to multiple

credit states. The multiple credit states problem could be so complicated that the exponential twisting

technique is no longer applicable.



Chapter 5

Numerical Experiments

In this chapter, we compare all the methods we have discussed so far: the two-step Importance Sampling

(IS) method proposed by Glasserman and Li [3] and reviewed in Chapter 4 (GLM), the zero variance

function estimation approach developed in Chapter 2 which we refer to as SGk, where k is the number

of terms in the Gaussian Mixture Model probability density function (2.17), the hybrid Bayesian Monte

Carlo method developed in Chapter 3 (BMC), as well as the two crude Monte Carlo approaches outlined

in Section 1.2, a two level simple crude Monte Carlo (2LvlMC) and a one level crude Monte Carlo

(CrudeCLT) to evaluate equation (1.13) based on CLT. For SGk, we focus on the cases k = 1 and k = 2.

To generate samples from the zero variance function used in SG1, SG2 and BMC, we choose the slice

sampler implemented in the MATLAB built-in function slicesample. Two input arguments of slicesample

are worth discussing. Thin level h is a positive integer; the slice sampler discards every h − 1 samples

and returns the next. Burn-in b is a nonnegative integer, indicating the number of initial samples to

discard; the samples that are actually used start at sample (b + 1). Since GLM uses an exponential

twisting based on the digital-credit-state model, we conduct our experiment under the credit migration

matrix shown in Section 1.2.2 in order to be compatible with the setting used in Glasserman and Li [3].

The MATLAB built-in function fminunc is used to solve equation (4.9).

5.1 Configurations

In some applications, we need to compute P{LN (Z, E) > l} just once, however, in others, we need to

compute P{LN (Z, E) > l} for several l’s that are close together. For example, to compute value-at-risk

(VaR), we could use bisection to find the value l = V aR such that P{LN (Z, E) > V aR} = 1 − δ,

where δ is the desired level associated with VaR (e.g., δ = 99.9%). Note that the overall speed of

such a VaR calculation does not only depend on the number of samples used, but also on the overhead

calculations (i.e., associated preliminary calculations) such as optimization, slice sampling and data

clustering. However, it’s not necessary to repeat the overhead in each bisection iteration. For example,

for the method discussed in Chapter 2, the zero variance function estimation for SGk could be computed

once for all the bisection iterations. This zero variance function estimation step could be counted as

overhead in the numerical results. Needless to say, after several iterations, one could redo the zero

variance function estimation procedure and use an updated importance sampler for better accuracy. In

GLM, the overhead refers to solving the nested optimization problem to find the shifted mean. Therefore,

33
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in the numerical results that we report in this chapter, we list an overhead for a method as well as the

cost to compute P{LN (Z, E) > l} once, excluding the overhead.

Two sets of experiments are conducted in this chapter. The first set computes P{LN (Z, E) > l},
where l is set to be the 99.9% VaR. The second one mimics applying bisection to solve for VaR, by working

out the tail probabilities for a set of l’s corresponding to 90%, 95%, 99%, 99.5%, 99.9%, 99.95%, 99.99%

VaRs. This test is performed for S = 5, 10, 20, 30. For both sets of numerical experiments, in the first

stage, we use a two-level crude Monte Carlo (2LvlMC) method to compute an accurate approximation to

the solution of these test cases to use in the computation of the error associated with the methods tested

in this chapter. In this two-level MC method, we use 5000 S-dimension systemic factor samples and

2500 N -dimension individual idiosyncratic factor samples, or equivalently 5000(S+ 2500N) individual 1

dimensional normal samples. Furthermore, we sample 400,000 S-dimension systemic factors to accurately

evaluate equation (1.13). There is a difference between these two ‘true’ values that represents a bias

incurred by our new methods, SGk and BMC, as well as CrudeCLT, as they are designed to approximate

the solution of (1.13). We use the benchmark 2LvlMC method to compute VaRs associated with our

test portfolio described below. In the second stage, we examine all the techniques listed in the opening

paragraph of this chapter, by setting the loss level l to the values of VaR computed in the first stage

and comparing the loss probability P{LN (Z, E) > l} for each VaR.

Binary Credit States

As noted above, to be consistent with Glasserman and Li [3], in our test results, we use a synthetic

portfolio based on digital credit states (i.e., the credit state is either default or no default). The marginal

default probability and the loss at default of the kth obligor are

pk = 0.01 · (1 + sin(16πk/N)), k = 1, . . . , N

LGCDk = (d5k/Ne)2, k = 1, . . . , N.

The correlation of the jth risk factor component for the kth obligor, βkj , is generated independently and

uniformly from (−1/
√
S, 1/

√
S), where S is the dimension of the systematic risk factor. Moreover, the

exposure-at-default and the corresponding exposure weight of obligor k are

EADk ∼ Unif(0.5, 1.5), ωk =
EADk∑N
n=1EADn

.

5.2 99.9% VaR Computation

For the first comparison of all the methods considered in this paper, we use each method listed in the

opening paragraph of this chapter to compute the 99.9% VaR with dimension S = 20 and N = 2500

obligors. This example is quite relevant for many financial institutions.

We use SGk(m,n) to indicate the dataset size in the numerical experiments for SGk, where m is the

number of training MCMC samples (thin level is 3 and the first 10% of the samples are burned in) and

n is the number of testing samples from the GMM importance sampler; BMC(m,n), where m is the

number of samples from the slice sampler for the zero variance function estimation and n is the number

of training samples for the Gaussian Process; GLM(m,n), where m is the number of samples in the outer

level and n is the number of samples in the inner level; 2LvlMC(m,n), where m and n are the number of
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samples for the outer and inner levels, respectively; and CrudeCLT(m), where m MC samples are applied

to equation (1.13). The benchmark 2LvlMC(5000, 2500) is used to compute an accurate approximation

to P{LN (Z, E) > l} and CrudeCLT(400,000) is used to compute an accurate approximation to equation

(1.13). Of course, we use much smaller m and n in the numerical experiments comparing 2LvlMC(m,n)

and CrudeCLT(m) to SGk, BMC and GLM.

We first compare the following six methods: SG1(300, 600), SG2(300, 600), GLM(90, 100), BMC(150, 200),

2LvlMC(300, 200) and CrudeCLT(20000). To reduce the randomness in our numerical results, we repeat

the test for each method 10 times and average the results from 10 iterations. We also check if the vari-

ance is reduced effectively by looking at the variance of the 10 iterations. We run a similar second round

of tests with SG1(600, 2000), SG2(600, 2000), GLM(300, 100), BMC(150, 400), 2LvlMC(400, 250) and

CrudeCLT(40000). Lastly we run a similar third round of tests with SG1(800, 4000), SG2(800, 4000),

GLM(550, 100), BMC(150, 600), 2LvlMC(500, 300) and CrudeCLT(60000). It’s worth mentioning that

we picked the number of samples for the six methods tested carefully, as will become clear from the

discussion of the test results below.

The average running time for each iteration of 2LvlMC(300, 200) and CrudeCLT(20000) is about 5

seconds. For 2LvlMC(400, 250) and CrudeCLT(40000), it’s about 8 to 10 seconds and, for 2LvlMC(500, 300)

and CrudeCLT(60000), it is about 13 to 16 seconds. The exact statistics for these two crude Monte Carlo

methods are listed in Table 5.1. The total running time in the fourth column in Table 5.1 is the total

computational time for the overhead and all 10 iterations. Comparing the crude two-level MC method

and crude CLT method for each round, we see that the mean of CrudeCLT is much closer to the true

value1 (i.e., 0.1%), than is the mean 2LvlMC in two of the three tests. This also can be seen from the

relative error percentage. Moreover, the variance from 10 iterations is reduced by utilizing CLT. For

roughly the same amount of time, the variance of 2LvlMC(500, 300) for 10 iterations is about 4 times

larger than that of CrudeCLT(60000). However, transforming a two-level problem into a one-level one

by adopting CLT has some disadvantages. Consider the 95% confidence interval for CrudeCLT(60000).

The lower point is µ − 1.96 σ√
n
≈ 8.38E-04 and the upper point is µ + 1.96 σ√

n
≈ 9.13E-04. That is,

there is a bias in the results of CrudeCLT that arise from the approximation associated with the use

of Central Limit Theorem, as noted earlier in this chapter. The value from CrudeCLT with 400,000

samples is about 8.894E-04, which gives a relative error of about 10% for all the new methods based on

CLT. Note that Han [5] derived a confidence interval and error analysis for the CLT approximation. The

10% relative error here is larger than we would have expected from his results. This may be because we

are working with a binary credit states model. As a result, the credit state transition is not smooth and

so the systemic risk factor surface is not smooth either.

Next, we look at the numerical results for GLM. For all the three runs, GLM(90, 100), GLM(300, 100)

and GLM(550, 100), GLM takes a long time and its performance is poor. When the problem dimen-

sion is large (S = 20) and we focus on the tail probability (99.9% VaR), the optimization problem in

equation (4.9) is hard to solve. As a result, fminunc may fail to return an optimum (or even a local

optimum) depending on the initial problem configuration and the loss level. When fminunc fails, the

importance sampler associated with GLM is not very effective. With this poor importance sampler, we

do not get accurate results with the number of samples we have chosen to use. In other words, without

identifying black swan events successfully, the integral is undervalued, or, financially speaking, the VaR

1True value is the probability P{LN (Z, E) > l} = 0.001 where l is the loss level associated with the VaR at the 99.9%
level and VaR was calculated by the accurate benchmark two-level crude MC method.



Chapter 5. Numerical Experiments 36

is undervalued, as we can see from Table 5.1, where the mean for GLM is much smaller than the true

value. What’s more, in each iteration, the same optimization problem in equation (4.9) is repeatedly

solved.

avg. overhead
(in sec)

avg. iter.
time (in sec)

total time
(in sec)

mean variance Rel Err

2LvlMC(300, 200) - 5.0578 50.5781 6.600E-04 5.453E-04 34.00%
CrudeCLT(20000) - 5.3213 53.2127 8.694E-04 9.989E-05 13.06%

GLM(90, 100) - 18.7848 187.8483 6.949E-05 9.023E-06 93.05%
GLM*(90, 100) 10.9045 2.2486 33.3905 2.524E-04 1.630E-04 74.76%
SG1(300, 600) 4.0786 0.3667 7.7456 9.814E-04 3.281E-04 1.86%
SG2(300, 600) 4.3483 0.4564 8.9123 5.069E-04 2.111E-04 49.31%
BMC(150, 200) 2.5590 0.5750 8.3091 1.663E-03 2.271E-03 66.28%

2LvlMC(400, 250) - 8.4933 84.9328 1.057E-04 9.871E-04 5.70%
CrudeCLT(40000) - 10.6003 106.0028 8.821E-04 6.444E-05 11.79%

GLM(300, 100) - 22.1172 221.1718 5.927E-05 3.074E-04 94.07%
GLM*(300, 100) 10.9045 4.5013 55.9175 1.838E-04 9.597E-05 81.62%
SG1(600, 2000) 6.9483 1.2219 19.1673 8.475E-04 4.402E-05 15.25%
SG2(600, 2000) 7.4900 1.3435 20.9253 8.762E-04 2.054E-04 12.38%
BMC(150, 400) 2.5590 1.8711 21.2704 1.061E-03 9.185E-04 6.13%

2LvlMC(500, 300) - 12.7530 127.5302 6.960E-04 2.787E-04 30.40%
CrudeCLT(60000) - 15.8709 158.7093 8.756E-04 6.092E-05 12.44%

GLM(550, 100) - 26.2088 262.0876 8.169E-05 4.004E-05 91.83%
GLM*(550, 100) 10.9045 6.7281 78.1855 3.256E-04 3.056E-04 67.44%
SG1(800, 4000) 10.0590 2.4045 34.1042 8.770E-04 3.486E-05 12.30%
SG2(800, 4000) 10.2165 2.7216 37.4325 8.490E-04 9.244E-05 15.10%
BMC(150, 600) 2.5590 3.8148 40.7068 7.686E-04 5.138E-04 23.14%

Table 5.1: 99.9% VaR comparison: computing time, mean of P{LN (Z, E) > l}, variance and relative
error for the methods tested for S = 20 and N = 2500. The computation is broken into two stages:
overhead and importance sampling. The true value of P{LN (Z, E) > l} is about 1.00E-03. The true
value of the integral in equation (1.13) is about 8.894E-04.

One might say that it is not a fair comparison for GLM if the shifted mean for GLM is not successfully

found. Therefore, we ran a second comparison for GLM, in which GLM first uses a lower loss level (say

90% VaR) for which the two-level optimization problem in equation (4.9) associated with GLM is always

solved. Then we reuse the GLM parameters that we find for the lower loss level for the runs with the

higher loss level. That is, in each iteration, we avoid the overhead of recomputing the GLM parameters,

but focus on the exponential twisting and re-sampling. We denote this method as GLM*(m,n).

Similarly for SG1, SG2 and BMC, the zero variance function estimation step (i.e., the overhead) is

done just once and then the parameters are reused without re-computation in 10 MC iterations, each

of which computes P{LN (Z, E) > l}. However, SG1, SG2 and BMC have robust zero variance function

estimations for all the loss levels we tested. In our tests, the GLM* overhead is calculated at a lower

loss level while overheads in our new methods are calculated at the higher loss level, i.e., l is associated

with the VaR at the 99.9% level. As stated earlier in this chapter, the valuation iteration is repeated

several times in the bisection method to compute VaR. Hence, we focus more on the total running time

listed in column four in Tables 5.1 and 5.2, which is the overhead cost for one run (in column two) plus

10 times the cost of one MC iteration (listed in column three).

Results for the four methods, GLM*, SG1, SG2 and BMC, are summarized in Table 5.1. Note that
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avg. overhead
(in sec)

avg. iter.
time (in sec)

total time
time (in sec)

mean variance Rel Err

2LvlMC(300, 200) - 6.0668 60.6682 9.650E-04 7.583E-05 3.50%
CrudeCLT(20000) - 5.7883 57.8827 8.400E-04 1.054E-04 16.00%

GLM(90, 100) - 16.1508 161.5075 6.415E-05 6.664E-05 93.58%
GLM*(90, 100) 11.3869 2.2491 33.8779 3.814E-04 4.279E-04 61.86%
SG1(300, 600) 4.3332 0.3684 8.0172 8.552E-04 4.756E-04 14.48%
SG2(300, 600) 4.4749 0.3962 8.4369 3.247E-04 2.621E-04 67.53%
BMC(150, 200) 2.7381 0.6301 9.0391 9.040E-04 8.498E-04 9.60%

2LvlMC(400, 250) - 10.1933 101.9330 7.290E-04 7.211E-05 27.10%
CrudeCLT(40000) - 11.5781 115.7812 8.682E-04 5.114E-05 13.18%

GLM(300, 100) - 19.6860 196.8603 1.888E-03 5.594E-03 88.85%
GLM*(300, 100) 11.3869 4.4247 55.6339 1.753E-04 8.608E-05 82.47%
SG1(600, 2000) 8.2106 1.2607 20.8176 8.560E-04 8.637E-05 14.40%
SG2(600, 2000) 8.6756 1.3586 22.2616 8.640E-04 1.804E-04 13.60%
BMC(150, 400) 2.7381 1.7113 19.8511 6.445E-04 6.176E-04 35.55%

2LvlMC(500, 300) - 15.1958 151.9579 8.527E-04 5.716E-04 14.73%
CrudeCLT(60000) - 17.4669 174.6687 8.547E-04 4.334E-05 14.53%

GLM(550, 100) - 23.8920 238.9204 3.275E-04 7.244E-04 67.25%
GLM*(550, 100) 11.3869 6.5112 76.4989 3.150E-04 2.459E-04 68.50%
SG1(800, 4000) 11.7201 2.4094 35.8141 8.573E-04 4.434E-05 14.27%
SG2(800, 4000) 11.9419 2.7211 39.1529 8.796E-04 1.422E-04 12.04%
BMC(150, 600) 2.7381 3.9077 41.8151 7.634E-04 4.996E-04 23.66%

Table 5.2: 99.9% VaR comparison: running time, mean of P{LN (Z, E) > l}, variance and relative error
for the four methods tested for S = 30 and N = 2500. Computation is broken into two stages: overhead
and importance sampling. The true value of P{LN (Z, E) > l} is about 1.00E-03. The true value of the
integral in equation (1.13) is about 8.515E-04.

we break the running time into the overheads and iteration time, both of which are in seconds. The

fourth column lists the total time, which is the sum of overheads (in the second column) and the time

for 10 MC iterations (i.e., 10 times of the third column). For SG1(m,n) and SG2(m,n), time consumed

in learning m samples is in the second column while time consumed in n samples from the importance

sampler is in the third column. GLM*(m,n), on the other hand, has the same overhead for all the

three choices of m,n due to the one-time optimization we used. Needless to say, the average iteration

time for GLM(m,n) is larger than the sum of the average overhead time and average iteration time for

GLM*(m,n). This is because, for GLM(m,n), the loss level associated with the optimization problem is

high and the maximum number of steps is reached, without the optimum successfully computed; while

for GLM*(m,n), the optimization problem is solved within the time allocated for this step. Lastly,

we use the hybrid BMC as discussed in Section 3.5. Because there’s no need to solve the importance

sampler accurately, as is needed for SG1 and SG2, BMC(m,n) uses a small m that is unchanged for

the three different n. We choose m and n for SGk(m,n), BMC(m,n) and GLM*(m,n) such that, if we

solve the tail probability just once, i.e., the number of iterations is 1, the total running time would be

no larger than for the two crude Monte Carlo approaches. For the four methods SG1(m,n), SG2(m,n),

BMC(m,n) and GLM*(m,n), we plot in Figure 5.1 the execution time for one MC iteration, excluding

overhead (column two of Table 5.1) versus the error for the computed value.

From the relative errors in Table 5.1, we see that the revised version of GLM, GLM*, performs

better than GLM, but it still has a large relative error. The zero variance function estimation approach



Chapter 5. Numerical Experiments 38

F
ig

u
re

5
.1

:
9
9.

9
%

V
a
R

co
m

p
a
ri

so
n

fo
r
S

=
2
0

a
n

d
N

=
2
5
0
0
.



Chapter 5. Numerical Experiments 39

described in Chapter 2 (both SG1 and SG2) gives an accurate approximation in a short amount of

time. We can also visually tell that these two methods reduce variance equally effectively. Although

the variance is successfully reduced, note that the blue and green circles in Figure 5.1 are clustered at

a level lower than the true value. In fact, they are clustered around the line associated with the true

value of the integral on the right side of equation (1.13). The error of SG1 and SG2 is good with respect

to equation (1.13), but not so good with respect to P{LN (Z, E) > l}. Note that BMC is also based on

equation (1.13) and thus it is biased as well. For BMC(150, 400), two errors, one from the CLT and

the other from the BMC itself, offset each other and give a relatively small total error. However, the

errors for BMC(150, 200) and BMC(150, 600) are not nearly as small as the error for BMC(150, 400).

Moreover, as we increase the training samples, BMC doesn’t achieve good variance reduction. This can

also be seen from Figure 5.1, where the cyan circles, indicating the BMC results, don’t cluster as well

as the corresponding circles for SG1 and SG2 do. For the mean of 7.686E-04 and standard deviation

of 5.138E-04, for BMC(150, 600) in Table 5.1, the 95% confidence interval (i.e., µ+ 1.96 σ√
n
≈1.087E-03

and µ− 1.96 σ√
n
≈4.501E-04) is too wide for practical purposes.

We also computed numerical results for S = 30. First, note that the overhead for GLM* consists

of solving the same optimization problem for all three examples. Thus, we see in Table 5.2 that it

is a constant through all the rounds. This is the same for BMC, since we can use the same rough

approximation q(x) for all the rounds, as we described in Section 3.5. However we increase the training

samples for both SG1 and SG2 from 300 to 600, and finally to 800. Therefore, the overhead for both

SG1 and SG2 increases. Secondly, GLM* seeks an exponential twisting parameter for each outer sample,

while, for SG1 and SG2, each iteration simply generates samples from a multivariate Gaussian as an

importance sampler. Therefore significant computational savings can be seen per iteration for SG1 and

SG2 compared to GLM*. More importantly, the numerical results reported in Table 5.2 show that,

SG1 and SG2 enjoy a significant decrease in variance as the number of training samples as well as the

number of samples from the importance sampler are increased. This conclusion is also supported by the

results in Figure 5.2 where we see the blue and green circles, representing SG1 and SG2, respectively,

are clustered much closer to the dashed line compared to the red circles, representing GLM*, indicating

a better variance reduction for SG1 and SG2 than for GLM*. BMC, on the other hand, shows a similar

result as in the previous test for S = 20: the circles scatter around. Although the mean is close to

the true value and the relative error is therefore small, the variance remains large when we increase the

number of training samples.

Note that the two crude Monte Carlo approaches, 2LvlMC and CrudeCLT are not on Figures 5.1

and 5.2, but numerical results for these methods are presented in Tables 5.1 and 5.2. The reason for

this is two fold. Firstly, the x-axis of the figures is the average iteration time for each method. If we

look at the third column of Tables 5.1 and 5.2, GLM*, SG1, SG2 and BMC are in a similar range, while

2LvlMC and CrudeCLT have much larger average iteration time. More importantly, we focus more on

the performance when each approach is applied in the bisection solver. Therefore, we exclude 2LvlMC

and CrudeMC from the figures.

5.3 Tail probability calculation

For the numerical results reported in this section, the test problem uses the same digital-credit-states

configuration described in Section 5.1. We focus on the tail probability calculation from a less stressed
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situation at 90% VaR to a very stressed situation at 99.99% VaR. We also test the calculation for

problems under various dimensions S.

For all the numerical methods, we use the same notation as in the previous numerical experiment.

We fix m,n and examine different loss levels. Among the three sets we have seen (i.e., SGk(300, 600),

SGk(600, 2000) and SGk(800, 4000)), SGk(600, 2000) has already shown a significant variance reduction,

as the circles are clustered well enough in Figures 5.1 and 5.2. Hence, we choose m = 600 as the number

of training MCMC samples. On the other hand, we choose n = 1000, simply for the reason that, based

on a good importance sampler, we can make the SGk approach more competitive from the speed point

of view. Thus, we use SG1(600, 1000) and SG2(600, 1000) in this experiment. Having chosen these

two methods, we choose GLM*(200, 100), BMC(300, 500), 2LvlMC(250, 150) an CrudeCLT(5000) as

representatives of the other methods, since either their computing time or their accuracy is comparable

and therefore, we can make comparisons easily between the methods.

Figure 5.3 shows the tail probability for several loss levels for dimension S = 5. Points on the graph

correspond to loss level l = V aR for the VaR computed by our accurate benchmark two-level MC method

at the 90%, 95%, 99%, 99.5%, 99.9%, 99.95%, 99.99% levels. The true value (computed by our accurate

benchmark two-level crude MC method 2LvlMC(5000, 2500)) is plotted as a solid blue line, while the

results for all the other methods are plotted as dashed lines. Note that SG1 is under the blue curves,

hence it may not be easily observed in the figure. We also plot the tail probability for the other three

different S tested in Figures 5.4 to 5.6.

The mean and variance of the 10 iterations for this test, together with the relative error percentages,

are listed in Table 5.3. Firstly, we see that, compared to the crude Monte Carlo approaches, 2LvlMC(250,

150) and CrudeCLT(5000), all the other four approaches indeed achieve a variance reduction. Moreover,

in most cases, our new approaches SG1, SG2 and BMC produce results which are much closer to the

true value than the results produced by GLM*. This is true for all the four dimensions S = 5, S = 10,

S = 20 and S = 30 we tested. When we look at SG1, SG2 and BMC for all four values of S tested, SG1

and SG2 reduce the variance significantly more than BMC does, particularly for larger S. Moreover,

SG1, in general, performs better in this respect than SG2 does. This may be due to model over-fitting,

as at high loss levels, the risk factor shape looks like a Gaussian with a single mode, as explained in

Glasserman and Li [3].

We also compare the running time of all the methods. Running times are included in Table 5.4 for

S = 5, Table 5.6 for S = 10, Table 5.8 for S = 20 and Table 5.10 for S = 30. Similar to the previous

testing, the total time is the sum of the overhead for the zero variance function estimation and computing

time for 10 iterations. Throughout the four testing dimensions, we see that all methods except GLM*

are very stable in terms of running times. Again, this is because our new methods SG1, SG2 and

BMC, together with the crude Monte Carlo simulations, are time insensitive to the dimension, while

GLM* must exploit the systemic risk surface by solving an optimization problem. We intentionally

choose BMC(300, 500) and CrudeCLT(5000) so that the running time of these methods is similar to

that of SG1(600, 1000) and SG2(600, 1000), and therefore, the advantage for SGk is obvious: SGk has

the least relative error percentage with the smallest variance. BMC, on the other hand, requires further

improvement, as its variance is not reduced as much as expected for the large dimension cases, compared

to SGk running in a similar amount of time.
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Figure 5.3: tail probability given the loss level lk for dimension S = 5

Figure 5.4: tail probability given the loss level lk for dimension S = 10



Chapter 5. Numerical Experiments 43

Figure 5.5: tail probability given the loss level lk for dimension S = 20

Figure 5.6: tail probability given the loss level lk for dimension S = 30
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SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.975E-02 9.529E-02 2.407E-05 4.47% 9.404E-02 7.698E-06 5.73% 5.231E-02 7.835E-04 47.56%
4.981E-02 4.492E-02 4.745E-06 9.80% 4.479E-02 2.177E-06 10.06% 3.040E-02 6.414E-04 38.97%
9.985E-03 9.085E-03 9.790E-08 9.02% 8.641E-03 7.948E-08 13.46% 4.760E-03 1.832E-05 52.33%
4.976E-03 4.714E-03 9.835E-08 5.27% 4.735E-03 4.921E-08 4.84% 2.145E-03 1.161E-06 56.90%
9.993E-04 7.990E-04 1.388E-09 20.04% 7.861E-04 7.072E-10 21.34% 3.600E-04 1.527E-07 63.98%
4.999E-04 3.312E-04 3.184E-10 33.75% 3.335E-04 3.842E-10 33.28% 1.509E-04 6.751E-08 69.81%
9.952E-05 8.703E-05 3.632E-11 12.55% 8.831E-05 5.833E-11 11.26% 1.969E-05 3.218E-10 80.22%

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.975E-02 9.665E-02 4.186E-05 3.11% 1.001E-01 1.531E-04 0.36% 9.445E-02 4.327E-06 5.32%
4.981E-02 4.354E-02 1.273E-05 12.58% 4.601E-02 7.322E-05 7.62% 4.406E-02 6.635E-06 11.55%
9.985E-03 7.945E-03 3.729E-07 20.43% 9.832E-03 2.648E-05 1.53% 9.244E-03 3.773E-06 7.42%
4.976E-03 3.811E-03 3.727E-07 23.42% 3.331E-03 7.694E-06 33.07% 4.613E-03 5.018E-07 7.29%
9.993E-04 6.063E-04 1.582E-08 39.32% 1.760E-04 7.731E-08 82.39% 8.694E-04 7.040E-08 13.00%
4.999E-04 2.451E-04 6.389E-10 50.98% 4.053E-04 1.526E-06 18.92% 3.036E-04 2.979E-08 39.28%
9.952E-05 5.923E-05 1.164E-10 40.48% 1.067E-05 1.138E-09 89.28% 1.130E-04 1.661E-08 13.52%

Table 5.3: Comparison of the numerical results for S = 5

SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 7.3206 0.6505 13.8253 7.5238 0.7244 14.7674 4.2382 3.2108 36.3462
95% VaR 7.3122 0.6546 13.8584 7.5269 0.7199 14.7264 4.2382 3.8245 42.4833
99% VaR 7.3086 0.6531 13.8399 7.4927 0.7165 14.6579 4.2382 4.6320 50.5587
99.5% VaR 7.3054 0.6502 13.8070 7.4999 0.7234 14.7337 4.2382 5.1148 55.3864
99.9% VaR 7.3067 0.6536 13.8426 7.5574 0.7206 14.7631 4.2382 5.5627 59.8652
99.95% VaR 7.3064 0.5897 13.2037 7.4913 0.7197 14.6885 4.2382 5.6217 60.4550
99.99% VaR 7.3050 0.6485 13.7905 7.4745 0.7200 14.6750 4.2382 5.0858 55.0965

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 3.1615 1.6516 19.6776 0.0000 3.0492 30.4921 0.0000 1.5727 15.7271
95% VaR 3.1445 1.6490 19.6343 0.0000 3.0467 30.4668 0.0000 1.5642 15.6421
99% VaR 3.1608 1.5997 19.1576 0.0000 3.0425 30.4250 0.0000 1.5700 15.7000
99.5% VaR 3.2170 1.7954 21.1707 0.0000 3.0398 30.3981 0.0000 1.5710 15.7102
99.9% VaR 3.1908 1.6623 19.8140 0.0000 3.0419 30.4195 0.0000 1.5729 15.7287
99.95% VaR 3.1407 1.5372 18.5126 0.0000 3.0442 30.4415 0.0000 1.5723 15.7226
99.99% VaR 3.1489 1.5334 18.4832 0.0000 3.0433 30.4329 0.0000 1.5704 15.7037

Table 5.4: Running time of the methods tested for S = 5. The total time is the sum of the overhead
and running 10 iterations. All these times are in seconds.
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SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.998E-02 1.004E-01 2.624E-05 0.38% 1.004E-01 1.929E-05 0.38% 1.203E-01 2.599E-02 20.34%
5.000E-02 5.117E-02 2.893E-06 2.35% 4.960E-02 4.354E-06 0.79% 5.038E-02 2.389E-03 0.75%
9.997E-03 1.018E-02 1.380E-07 1.82% 1.012E-02 1.592E-07 1.26% 5.614E-03 1.205E-06 43.84%
4.979E-03 5.035E-03 1.422E-08 1.12% 5.261E-03 6.817E-08 5.65% 2.988E-03 4.236E-06 39.99%
9.930E-04 1.170E-03 2.961E-09 17.84% 1.061E-03 3.711E-09 6.86% 5.596E-04 4.053E-08 43.65%
4.974E-04 6.404E-04 4.167E-10 28.73% 6.384E-04 8.253E-10 28.33% 2.996E-04 1.352E-07 39.76%
9.960E-05 1.614E-04 8.487E-11 62.04% 1.622E-04 1.401E-10 62.85% 4.973E-05 4.423E-09 50.07%

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.998E-02 9.113E-02 2.952E-05 8.85% 1.023E-01 8.358E-05 2.32% 1.025E-01 2.319E-06 2.51%
5.000E-02 5.003E-02 7.655E-05 0.06% 5.321E-02 6.431E-05 6.42% 4.960E-02 1.445E-06 0.80%
9.997E-03 1.115E-02 1.285E-05 11.56% 1.100E-02 9.805E-06 10.04% 9.965E-03 7.065E-07 0.32%
4.979E-03 4.358E-03 1.146E-06 12.47% 3.493E-03 1.365E-06 29.84% 5.200E-03 2.345E-07 4.44%
9.930E-04 1.656E-03 9.300E-07 66.81% 8.773E-04 5.490E-07 11.65% 1.171E-03 4.044E-08 17.92%
4.974E-04 4.516E-04 2.680E-07 9.22% 3.947E-04 1.235E-07 20.66% 6.166E-04 2.021E-08 23.95%
9.960E-05 1.528E-04 2.953E-08 53.45% 8.267E-05 1.129E-08 17.00% 1.636E-04 1.016E-09 64.24%

Table 5.5: Comparison of the numerical results for S = 10

SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 7.3206 0.6505 13.8253 7.5238 0.7244 14.7674 4.2382 3.2108 36.3462
95% VaR 7.3122 0.6546 13.8584 7.5269 0.7199 14.7264 4.2382 3.8245 42.4833
99% VaR 7.3086 0.6531 13.8399 7.4927 0.7165 14.6579 4.2382 4.6320 50.5587
99.5% VaR 7.3054 0.6502 13.8070 7.4999 0.7234 14.7337 4.2382 5.1148 55.3864
99.9% VaR 7.3067 0.6536 13.8426 7.5574 0.7206 14.7631 4.2382 5.5627 59.8652
99.95% VaR 7.3064 0.5897 13.2037 7.4913 0.7197 14.6885 4.2382 5.6217 60.4550
99.99% VaR 7.3050 0.6485 13.7905 7.4745 0.7200 14.6750 4.2382 5.0858 55.0965

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 3.1615 1.6516 19.6776 0.0000 3.0492 30.4921 0.0000 1.5727 15.7271
95% VaR 3.1445 1.6490 19.6343 0.0000 3.0467 30.4668 0.0000 1.5642 15.6421
99% VaR 3.1608 1.5997 19.1576 0.0000 3.0425 30.4250 0.0000 1.5700 15.7000
99.5% VaR 3.2170 1.7954 21.1707 0.0000 3.0398 30.3981 0.0000 1.5710 15.7102
99.9% VaR 3.1908 1.6623 19.8140 0.0000 3.0419 30.4195 0.0000 1.5729 15.7287
99.95% VaR 3.1407 1.5372 18.5126 0.0000 3.0442 30.4415 0.0000 1.5723 15.7226
99.99% VaR 3.1489 1.5334 18.4832 0.0000 3.0433 30.4329 0.0000 1.5704 15.7037

Table 5.6: Running time of the methods tested for S = 10. The total time is the sum of the overhead
and running 10 iterations. All these times are in seconds.
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SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.957E-02 9.952E-02 1.675E-04 0.05% 9.158E-02 5.859E-04 8.02% 4.486E-02 5.061E-04 54.94%
4.986E-02 4.950E-02 3.833E-05 0.70% 4.944E-02 2.387E-04 0.83% 1.488E-02 6.520E-05 70.15%
9.901E-03 1.020E-02 1.273E-06 3.04% 9.946E-03 6.689E-06 0.45% 1.046E-02 3.049E-04 5.66%
4.964E-03 5.005E-03 8.781E-07 0.83% 4.718E-03 7.956E-07 4.96% 1.307E-03 6.669E-07 73.66%
9.998E-04 8.484E-04 2.777E-09 15.14% 9.629E-04 1.687E-07 3.69% 2.106E-04 1.735E-08 78.93%
4.949E-04 4.052E-04 4.943E-09 18.13% 3.488E-04 5.958E-09 29.51% 2.580E-04 2.295E-07 47.87%
9.928E-05 5.464E-05 1.020E-10 44.97% 4.876E-05 2.058E-10 50.89% 9.728E-06 5.231E-11 90.20%

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.957E-02 9.612E-02 8.262E-05 3.47% 1.021E-01 9.275E-05 2.56% 1.002E-01 5.083E-06 0.66%
4.986E-02 4.460E-02 1.986E-05 10.55% 5.084E-02 7.434E-05 1.97% 4.926E-02 4.160E-06 1.20%
9.901E-03 1.098E-02 5.511E-06 10.94% 8.280E-03 1.068E-05 16.38% 9.615E-03 1.766E-07 2.90%
4.964E-03 4.928E-03 2.170E-06 0.73% 3.856E-03 2.298E-06 22.32% 4.584E-03 1.905E-07 7.65%
9.998E-04 7.423E-04 4.980E-07 25.76% 1.085E-03 1.023E-06 8.55% 8.146E-04 1.973E-08 18.53%
4.949E-04 3.332E-04 8.414E-08 32.66% 2.453E-04 9.241E-08 50.43% 4.346E-04 6.365E-09 12.18%
9.928E-05 5.152E-05 8.718E-09 48.11% 5.333E-06 2.844E-10 94.63% 4.423E-05 3.003E-10 55.45%

Table 5.7: Comparison of the numerical results for S = 20

SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 8.8459 0.6348 15.1938 8.9725 0.7051 16.0237 12.4543 3.0033 42.4876
95% VaR 8.8879 0.6093 14.9813 8.7715 0.6965 15.7367 12.4543 3.4515 46.9693
99% VaR 8.9044 0.6025 14.9299 8.7727 0.6937 15.7101 12.4543 4.4081 56.5351
99.5% VaR 8.7832 0.6151 14.9346 8.7824 0.6891 15.6737 12.4543 4.5372 57.8262
99.9% VaR 8.8997 0.6124 15.0232 8.7654 0.6945 15.7107 12.4543 5.1190 63.6439
99.95% VaR 8.7522 0.6124 14.8761 8.8302 0.6940 15.7699 12.4543 5.1898 64.3527
99.99% VaR 8.9072 0.6065 14.9719 8.7633 0.7011 15.7744 12.4543 5.3851 66.3055

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 4.3463 1.7428 21.7744 0.0000 3.1480 31.4803 0.0000 1.5464 15.4643
95% VaR 4.3628 1.5837 20.2001 0.0000 3.1410 31.4103 0.0000 1.5457 15.4566
99% VaR 4.1747 1.5794 19.9689 0.0000 3.1475 31.4753 0.0000 1.5467 15.4672
99.5% VaR 4.3871 1.5703 20.0896 0.0000 3.1397 31.3970 0.0000 1.5568 15.5675
99.9% VaR 4.1557 1.5695 19.8506 0.0000 3.1420 31.4202 0.0000 1.5485 15.4853
99.95% VaR 4.3107 1.5695 20.0055 0.0000 3.1378 31.3777 0.0000 1.5486 15.4858
99.99% VaR 4.3638 1.5889 20.2529 0.0000 3.1416 31.4163 0.0000 1.5477 15.4773

Table 5.8: Running time of the methods tested for S = 20. The total time is the sum of the overhead
and running 10 iterations. All these times are in seconds.
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SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.926E-02 1.027E-01 4.316E-04 3.50% 9.917E-02 7.977E-04 0.09% 3.328E-02 1.882E-04 66.47%
4.976E-02 5.258E-02 3.316E-05 5.66% 5.615E-02 3.932E-04 12.84% 1.731E-02 4.995E-05 65.22%
9.955E-03 9.042E-03 4.741E-07 9.17% 9.663E-03 9.730E-06 2.93% 4.306E-03 6.912E-06 56.74%
4.984E-03 4.537E-03 3.983E-07 8.98% 7.988E-03 1.129E-04 60.25% 4.801E-03 2.235E-05 3.67%
9.899E-04 8.429E-04 1.516E-08 14.85% 7.176E-04 2.699E-07 27.51% 6.255E-04 1.135E-06 36.82%
4.954E-04 4.307E-04 9.367E-09 13.08% 2.564E-04 7.328E-09 48.25% 1.532E-04 2.390E-08 69.08%
9.912E-05 1.078E-04 1.968E-10 8.71% 5.244E-05 1.023E-09 47.10% 2.414E-05 3.013E-10 75.65%

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
True Val mean variance Rel Err mean variance Rel Err mean variance Rel Err

9.926E-02 9.299E-02 1.151E-04 6.32% 9.777E-02 8.411E-05 1.50% 9.887E-02 7.562E-06 0.40%
4.976E-02 4.741E-02 1.028E-04 4.72% 4.887E-02 2.884E-05 1.78% 4.959E-02 1.231E-06 0.34%
9.955E-03 1.004E-02 6.833E-06 0.88% 8.736E-03 9.850E-06 12.24% 9.651E-03 1.608E-07 3.05%
4.984E-03 5.489E-03 5.635E-06 10.13% 5.085E-03 7.909E-06 2.02% 4.502E-03 1.229E-07 9.68%
9.899E-04 1.092E-03 5.293E-07 10.26% 8.987E-04 6.269E-07 9.22% 7.903E-04 1.400E-08 20.17%
4.954E-04 1.847E-04 1.056E-07 62.73% 4.213E-04 1.264E-07 14.96% 3.667E-04 7.682E-09 25.99%
9.912E-05 5.176E-05 1.033E-08 47.78% 6.667E-05 1.110E-08 32.74% 8.717E-05 3.015E-09 12.06%

Table 5.9: Comparison of the numerical results for S = 30

SG1(600, 1000) SG2(600, 1000) GLM*(200, 100)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 9.5168 0.6155 15.6714 9.3428 0.6840 16.1827 23.3733 3.5252 58.6256
95% VaR 9.3080 0.6051 15.3588 9.3752 0.6878 16.2532 23.3733 3.8672 62.0458
99% VaR 9.4624 0.5905 15.3675 9.5073 0.6876 16.3836 23.3733 4.6442 69.8158
99.5% VaR 9.2975 0.5961 15.2588 9.3924 0.6860 16.2521 23.3733 4.9409 72.7823
99.9% VaR 9.3197 0.6052 15.3713 9.5709 0.6829 16.3994 23.3733 5.3062 76.4349
99.95% VaR 9.4685 0.6041 15.5092 9.3032 0.6863 16.1658 23.3733 5.4054 77.4275
99.99% VaR 9.4267 0.6060 15.4870 9.4830 0.6859 16.3420 23.3733 5.5266 78.6395

BMC(300, 500) 2LvlMC(250, 150) CrudeCLT(5000)
overhead avg. iter total overhead avg. iter total overhead avg. iter total

90% VaR 4.7210 1.6487 21.2084 0.0000 3.0888 30.8875 0.0000 1.5788 15.7876
95% VaR 4.8641 1.5923 20.7874 0.0000 3.0924 30.9241 0.0000 1.5796 15.7959
99% VaR 4.6649 1.6043 20.7076 0.0000 3.0873 30.8726 0.0000 1.5840 15.8403
99.5% VaR 4.7078 1.5705 20.4132 0.0000 3.0913 30.9132 0.0000 1.5770 15.7705
99.9% VaR 4.6592 1.6393 21.0525 0.0000 3.1137 31.1368 0.0000 1.5786 15.7863
99.95% VaR 4.8684 1.6448 21.3163 0.0000 3.0961 30.9607 0.0000 1.5787 15.7870
99.99% VaR 4.7544 1.6223 20.9772 0.0000 3.0959 30.9587 0.0000 1.5807 15.8071

Table 5.10: Running time of the methods tested for S = 30. The total time is the sum of the overhead
and running 10 iterations. All these times are in seconds.



Chapter 6

Conclusion

In this research paper, we used the Central Limit Theorem to approximate portfolio credit risk and

then presented two novel approaches motivated from machine learning to evaluate the approximation.

The first method adopts an importance sampling technique based on an estimate of the zero variance

function computed using Markov Chain Monte Carlo and a Gaussian Mixture Model. The second

method makes use of the Bayesian Monte Carlo approach to model the integrand as a Gaussian Process

and treats the integral as a Bayesian inference problem. We compare our two new methods to GLM, a

method proposed by Glasserman and Li [3]. Numerical results show that our two new approaches achieve

significant improvement compared to GLM. However, our current implementation of the first approach is

more effective at reducing the variance than our current implementation of the second approach. Future

work will focus on improving the Bayesian Monte Carlo method by exploring better ways to model the

integrand function.
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