
NEUMAIER’S METHOD FOR THE SOLUTION OF INITIAL VALUE

PROBLEMS FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS

by

Annie Hsiao Chen Yuk

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c� 2005 by Annie Hsiao Chen Yuk

Abstract

Neumaier’s Method For The Solution Of Initial Value Problems For Stiff Ordinary

Differential Equations

Annie Hsiao Chen Yuk

Master of Science

Graduate Department of Computer Science

University of Toronto

2005

Compared with standard numerical methods for initial value problems (IVPs) for ordinary

differential equations (ODEs), validated methods not only compute a numerical solution to a

problem, but also generate a guaranteed bound on the global error associated with the numerical

solution. There have been significant developments in the field of validated numerical methods

of IVPs over the past few decades. However, none of the validated methods developed to date

are suitable for stiff IVPs for ODEs.

This thesis investigates the potential of Neumaier’s validated method for stiff IVPs for

ODEs. We show that Neuamier’s result is a special case of Dahlquist’s result. Our findings

show that this method has promise as an effective validated method for stiff IVPs for ODEs,

for problems where there is no wrapping effect.

ii

Acknowledgements

I would like to express my special thanks to my supervisor, Professor Ken Jackson for his

patience, guidance, and support during my MSc program. I want to thank Professor Wayne

Enright for his helpful suggestions and advice. I would also like to give special thanks to

Dr. Markus Neher of University of Karlsruhe, Germany, who provided his MAPLE code for

Neumaier’s enclosure method. His valuable advice, comments and suggestions contributed

much to this research. Finally, I would like to thank Dominic for his patience, and support.

iii

Contents

1 Introduction 1

1.1 Validated Methods . 1

1.1.1 Stiff Problems . 2

1.1.2 Validated Methods for Stiff Problems 3

1.2 Neumaier’s Validated Method . 4

1.3 Thesis Outline . 5

2 Preliminaries 6

2.1 Norms . 6

2.1.1 Vector Norm . 6

2.1.2 Matrix Norm . 7

2.1.3 Logarithmic Norm . 8

2.2 Mean Value Theorem for Functions of Several Variables 8

2.3 Generation of the Taylor Expansion . 9

2.3.1 Automatic Differentiation . 9

2.3.2 Symbolic Differentiation . 10

2.4 Dahlquist’s Results . 12

2.5 Neumaier’s Results . 13

2.6 Combining Dahlquist’s and Neumaier’s Results 15

iv

3 Implementation of Neumaier’s Enclosure Method 19

3.1 Choice of ���� . 20

3.1.1 Taylor Expansion . 21

3.1.2 Pade Rational Approximation . 21

3.2 Choice of � . 22

3.3 Estimation of � . 24

3.4 Estimation of � . 25

3.5 Estimation of � . 25

3.6 A Simple Stepsize Control Strategy . 26

3.6.1 Predicting a Stepsize . 26

3.6.2 The Classical Wrapping Effect . 28

3.6.3 The Wrapping Effect in S . 30

4 Numerical Results and Discussion 31

4.1 Test Problems . 31

4.2 Numerical Results and Discussion . 33

4.2.1 Stepsize Control Strategy 1 . 40

4.2.2 Step Size Control Strategy 2 . 45

4.3 Problems Encountered . 49

4.3.1 Memory Allocation . 49

4.3.2 Output Problems . 49

4.3.3 Significant Digits of Precision . 50

5 Conclusions and Future Work 54

Bibliography 56

v

Chapter 1

Introduction

Consider the initial value problem (IVP) for an ordinary differential equation (ODE)

����� � ���� ������ ����� � ��� � � ���� 	 � (1.1)

where � � �
� and � � � � �

� � �
� . Assume that � is smooth and that there exists a unique

solution to (1.1) on ���� 	 �.

The purpose of this thesis is to investigate the potential of Neumaier’s enclosure method

[16] for the solution of the IVP (1.1) and to provide an insight into how this method behaves in

practice.

1.1 Validated Methods

Validated numerical methods (also called interval methods) for approximating the solution of

an IVP for an ODE differ from standard numerical methods which compute an approximation

to the solution of the IVP and may also attempt to keep the error associated with the approx-

imation within a user-specified tolerance. Validated methods, not only compute a numerical

solution, but also generate a guaranteed bound on the global error associated with the numerical

solution. As a side benefit, validated methods also prove that the solution to the IVP actually

exists.

1

CHAPTER 1. INTRODUCTION 2

Over the past few decades, Moore [11], Eijgenraam [2], Lohner [8] and others, have pro-

duced significant developments in the field of validated numerical methods for IVPs. Most

methods are based on Taylor series and use interval arithmetic to generate guaranteed global

error bounds. The attractiveness of Taylor series stems from the fact that the Taylor series

coefficients can be readily generated by automatic differentiation, the stepsize can be easily

changed without doing extra work in recomputing the Taylor series coefficients, the order of

the method can be changed easily by varying the number of terms in the Taylor series, and a

bound on the local error in the step can be computed easily from the Taylor series remainder

term.

However, none of the validated methods developed to date are suitable for stiff problems,

since they all suffer from a severe step size restriction on this class of problems. For further

discussions of validated methods of IVPs, see [4].

1.1.1 Stiff Problems

An IVP is considered stiff if some components of the solution decay rapidly compared to the

time-scale of the problem. To illustrate, consider a system of equations of the form (1.1), where

the behavior of its solution ���� near a particular solution
��� of the ODE � � � ���� �� can be

approximated well by a Taylor series expansion of the form

�� � ���� �����

� ���� ������ ����
���� � ����
����

� ����
������ �
���� � ����
����

� ����
������ �
���� �
���� (1.2)

where ����
��� � �����
���� is the Jacobian matrix associated with ����
����. Assume that

����
���� is slowly varying in � and can be approximated locally by a constant matrix �. If �

is diagonalizable, then the systems of equations

�� � �������
���� �
���� (1.3)

CHAPTER 1. INTRODUCTION 3

can be uncoupled giving rise to a set of IVPs

�� � ���
� � ������ � �������
����� �
�� � (1.4)

for � � �� ��� �, where �� is an eigenvalue of �. The analytical solution of (1.4) is

���� � �
�� � ������� �	
������ ���� � ������ (1.5)

If �� is large and negative, the solution
���� decays very quickly to ����� as � increases. This is

a key characteristic of a stiff problem.

A problem of the form (1.4) is stiff if at least one eigenvalue satisfies ������	 ����� �� �,

and where no other eigenvalue satisfies ������������ �� �. A nonlinear problem may be stiff

for some intervals of the independent variable, but not for others. Furthermore, it is generally

the case that a problem is not stiff in an initial transient region where the solution ���� to (1.1)

changes rapidly. For more examples and discussion of stiff problems, see [17].

1.1.2 Validated Methods for Stiff Problems

Consider the simple test problem

�� � ��� ���� � �� � ���� (1.6)

where � � �, � � � and ���� is an interval = ��
�
� ��� with �

�
� ��.

The set of intervals on the real line � is defined by

�� � ���� � ��� �� � �� � � �� � � ���

If � = �, then ��� is a thin interval; if � 	 �, then ��� is non-negative (��� 	 �); and if � � ��,

then ��� is symmetric. An interval vector is a vector with interval components and we denote the

set of �-dimensional real interval vectors by ��� . Details of the interval-arithmetic operations

involving scalar components and interval components can be found in [12].

As noted above, most validated methods are based on Taylor series and use interval arith-

metic to generate guaranteed global error bounds. The Taylor series methods are explicit and,

CHAPTER 1. INTRODUCTION 4

as is well-know, they are not suitable for stiff problems. It was observed by Nedialkov [13],

that, even if a formula such as the Hermite-Obreschkoff formula which is suitable for stiff

problems when implemented in a standard numerical method is used, a validated numerical

method based on the same formula may be unsuitable for stiff problems. This is due to a term

in the formula for the associated global error bound, which “blows up” when ���� is large,

causing severe step size restrictions. As a result, all traditional validated methods that we are

aware of are unsuitable for stiff problems. For further details and discussion on why traditional

validated methods are unsuitable for stiff problems, see [13].

1.2 Neumaier’s Validated Method

Neumier’s validated method uses a different approach when computing error bounds for the

solution to a stiff problem. We believe that this method is suitable for stiff problems in the

sense that it does not suffer from a severe step size restrictions when applied to stiff problems.

To briefly illustrate Neumaier’s method, let the grid points ���� satisfy �� � �� �

 �
�� � 	 , and denote the step size on the ��� step from ���� to �� by �� � �� � ����. Let ���� be

the true solution of (1.1) and let ���� be a piecewise smooth approximation to ����. Then the

global error associated with the piecewise smooth function ���� is

���� � ����� ����� � � ���� 	 ��

and the associated defect is

Æ��� � ������ ���� ������ � � ���� 	 ��

Let � � �
��� be invertible. Neumaier’s validated method is based on a theorem that uses

properties of the logarithmic norm (reviewed in Chapter 2) to show that, if we take �� � �

and �� � �, ����������� � �, �����Æ����� � � for all � � ��� ��, the logarithmic norm of

CHAPTER 1. INTRODUCTION 5

�������� ��� � � for all � � ��� �� and for all � in a suitable domain, then

����������� �

���
��

���� � 	
�
���� � ��� if � �� �

� � ��� if � � �

for all � � ��� ��.

One might assume that, when the differential equation (1.1) with ��� � �� satisfies the

uniform dissipation condition � � �, rigorous and realistic global error bounds of approximate

solutions for stiff systems can be obtained for all times. However, in practice, it was found that,

for our simple version of Neumaier’s method, this is not the case for some stiff problems, due

to a wrapping effect (discussed in Chapter 3).

1.3 Thesis Outline

A brief outline of this thesis follows. Chapter 2 contains the background material needed for

this thesis. In particular, we review vector norms, matrix norms, the logarithmic norm and

generation of Taylor expansions, as well as some relevant results of Dahlquist and Neumaier.

In Chapter 3, we discuss the implementation of Neumaier’s enclosure method, including the

choices that we made for various parameters in his method. Chapter 4 presents numerical

results of seven simple stiff IVPs. The results obtained as well as some shortcomings that they

reveal in our implementation are discussed. Conclusions and directions for further research are

laid out in Chapter 5.

Chapter 2

Preliminaries

This chapter reviews some mathematical background that is needed later in this thesis, includ-

ing vector norms, matrix norms, the logarithmic norm, the mean value theorem for functions

of several variables and the generation of Taylor expansions, as well as the enclosure methods

of Dahlquist and Neumaier.

2.1 Norms

2.1.1 Vector Norm

Given a n-dimensional vector
 � �
��
�����
��

 � �

� , a general vector norm is a mapping

from �
� to �
�
 � ��
 	 �� that satisfies the three conditions:

��
�� � � and ��
�� � � iff
 � �� (2.1)

���
�� � ���
 ��
��� for all � � �� (2.2)

��
� ��� � ��
��� ������ (2.3)

A frequently used class of vector norms, called the �-norms, is defined by

��
��� � �
�
�

�
�������� (2.4)

6

CHAPTER 2. PRELIMINARIES 7

and the most commonly encountered �-norms are

��
��� �
�
�

�
��� (2.5)

��
��� � �
�
�

�
������� � �

����� (2.6)

��
��� � �
	
�����

�
��� (2.7)

2.1.2 Matrix Norm

Note that we are only interested in matrix norms that are subordinate to a vector norm. The

matrix norm ����� subordinate to a vector norm is defined as

����� � ��

���

���
��
��
�� � where � � �

��� (2.8)

and it satisfies three conditions similar to (2.1), (2.2), (2.3) and condition

������ � ����������� where � and � � �
��� � (2.9)

Furthermore,

���
�� � �������
�� (2.10)

follows immediately from (2.8).

The matrix �-norms, for � = 1,2 and �, are

������ � ��

���

���
���
��
��� � �
	

�����

��
���

������ (2.11)

������ � ��

���

���
���
��
��� � �
	�

� � � is an eigenvalue of �
��� (2.12)

������ � ��

���

���
���
��
��� � �
	

�����

��
���

������ (2.13)

CHAPTER 2. PRELIMINARIES 8

2.1.3 Logarithmic Norm

The logarithmic norm (also known as the logarithmic derivative or the measure of a matrix)

was introduced by Dahlquist [1] and Lozinskij [9]. It is often used to study the growth of errors

associated with the numerical solutions to ODEs. Let A � �
��� and let ��
 �� be any matrix

norm subordinate to a vector norm, the logarithmic norm of A is defined as

���� � ���
����

��� � ���� � �

�
� (2.14)

The properties of the logarithmic norm include

���� � ���� � ����� (2.15)

������ � ���� � ���� (2.16)

����� � ������ for any real � 	 � (2.17)

������� � ������� � 	 � (2.18)

��
 ��� � ����� � �
	
�����

���� �
��

��������

������ (2.19)

��
 ��� � ����� � ��
�

�
��� �
 �� (2.20)

��
 ��� � ����� � �
	
�����

���� �

��
� �������

������ (2.21)

where A=(���) and ���� = �
	 � �: � � ���� is an eigenvalue of � � is the “spectral abscissa”

of �. These and other properties of the logaritmic norm can be found in Ström [18]. Note that

���� can be negative.

2.2 Mean Value Theorem for Functions of Several Variables

Let � � � � �
� � �

� be differentiable at every point in a convex set D. Then for any two

points
 � � and � � �

� ���� � �
� �

� �

�

� ��� � ��� �
���� �
���

� ��� �
��

CHAPTER 2. PRELIMINARIES 9

where � �
� �

�
� ��� � ��� �
���� is an “averaged” Jacobian of � .

Proof:

� �

�

� ��� � ��� �
���� �
��� � �
� �

�

�
�

��
� �� � ��� �
�����

� �� �� � ��� �
������
���

� � ���� � �
��

2.3 Generation of the Taylor Expansion

Since we need to generate the Taylor expansion of a function about ��, we briefly describe two

ways of generating such an expansion: automatic differentiation and symbolic differentiation.

2.3.1 Automatic Differentiation

Here we briefly describe the automatic generation of point (as opposed to interval) Taylor

coefficients. Denote the �th Taylor coefficient of ��� evaluated at some point �� by

� ��� �
 �������

��
�

where ��� is the �th derivative of ���. Let � ��� and �!��� be the �th Taylor coefficients of ���

and !��� at �� respectively, then it is easily shown,

� � � !��� � � ��� � �!��� (2.22)

� �!��� �
��

���

� ����!����� (2.23)

�
 �
!�

�� �
�

!�
�� ��� �

��
���

�!����
 �
!�

������ (2.24)

Consider the autonomous differential system

����� � ����� ����� � ��� (2.25)

CHAPTER 2. PRELIMINARIES 10

Introduce the following sequence of functions

� ������ � �� (2.26)

� ������ �
�

�
�
"� �����

"�
������ for � 	 �� (2.27)

Using (2.25) – (2.27), the Taylor coefficients of ���� at �� satisfy

����� � � �������� (2.28)

and

����� � � ������� �
�

�
�
"� �����

"�
������

�
�

�
����������� for � 	 �� (2.29)

where ���������� is the ��� ��st Taylor coefficient of ������� evaluated at ��. If ���� contains

the simple arithmetic operations, �, �, �, #, we can recursively evaluate ����� by using (2.22)

– (2.24) and (2.28). For a more detailed discussion of automatic differentiation, see ([12], [10],

[6]).

2.3.2 Symbolic Differentiation

MAPLE (the software package we used for our implementation of Neumaier’s enclosure method),

has a built-in function to solve an IVP or a system of IVPs symbolically, outputing the solution

in the form of a Taylor series expansion.

To compute the Taylor series expansion, MAPLE uses one of the following three methods:

� The first method is a Newton iteration described by Geddes [5]. This paper considers the

problem of computing the solution of an initial value problem for a first-order implicit differ-

ential equation

$��� ��� � �� ���� � ��� (2.30)

CHAPTER 2. PRELIMINARIES 11

where $��� ��� is a polynomial in � (scalar) and � � with coefficients which are power series in

�. The method computes the solution in the power series form

� � ���� �
��
���

���
��

by applying a Newton iteration. The Newton iteration formula for the problem (2.30) is ob-

tained by considering the bivariate Taylor series expansion of the function $��� � ��. If �� is

a Taylor power series approximation to �, then expanding $��� � �� about the “point” ���� �
�
��

gives

$��� ��� � $���� �
�
�� � �� � ���$����� �

�
�� � ��� � ����$������ �

�
�� �

 �

where $� and $�� are the partial derivatives of $ with respect to � and � � respectively. If

$��� ��� � �, then by ignoring terms beyond the first degree, we get

$����
� � ���� �$��� � ��� � �$�

where functions $, $� and $�� are evaluated at �� and ���. Thus, if the linear ODE

$���
�
� �$��� � �$

is solved for the “correction term” �� as a power series, then

���� � �� � ��

yields a new higher-order approximation ���� to �.

� The second method involves a direct substitution to generate a system of equations. The

exact details of this method are unclear from the MAPLE documentation.

� The third method is the method of Frobenius for ���-order linear differential equations. The

method of Frobenius can be used to obtain general solution in the form of series. For the

purpose of our discussion, we will assume that � � � of the ODE,

% ������ �&����� ������ � �� (2.31)

CHAPTER 2. PRELIMINARIES 12

To find the solutions of (2.31) by the method of Frobenius, assume a solution of the form

� � ��
��
���

���
� �

��
���

���
���� (2.32)

exists. Hence,

�� �
��
���

����� ���������

��� �
��
���

����� ����� � � ���������

Substitute � back into (2.31), group the coefficients by power to obtain a recursion relation for

the coefficient ��, and then write the series expansion in terms of these ��s. Equating the ��

term to 0 yields the indical equation (also known as the characteristic equation), which gives

the allowed values of � in the series expansion. For further details, see ([7], [3]).

It is unclear from the MAPLE documentation how it chooses which of these methods to

use to obtain the series expansion. This lack of clarity in the documentation is one of the

shortcomings we encounterd with MAPLE.

Symbolic differentiation, compared to the automatic differentiation, can be considerably

more expensive with respect to computing time and memory space. However, the goal of this

research is to get an idea of the potential of Neumaier’s method for stiff problems, thus the cost

of the differentiation process was not an important consideration in our choice of method.

2.4 Dahlquist’s Results

Dahlquist showed how the global error associated with the numerical solution of a stiff IVP for

an ODE can be bounded using the logarithmic norm. The following is Dahlquist’s enclosure

formula for the global error associated with an approximate solution to an IVP for a stiff ODE.

THEOREM 1 (DAHLQUIST) Let � � ��� ��� �
� � �

� and let � � ��� ��� �
� be an approxi-

mate solution of the IVP

����� � ���� ������ ���� � ��� � � ��� �� (2.33)

CHAPTER 2. PRELIMINARIES 13

in the sense that

�������� � �� (2.34)

��Æ����� � '���� for all � � ��� ��� (2.35)

where ���� � ����� ���� and Æ��� � ������ ���� �����. If

������� ����� (������ ������� � ����� for all � � ��� �� and for all (� ��� ��� (2.36)

then (2.33) has an unique solution � � ��� ��� �
� and ���� satisfies

�������� � ��
� �
�
������ � �

� �
�
������

� �

�

'�(���
� �
�
�������(� for all � � ��� ��� (2.37)

The proof of this theorem can be found in [1].

COROLLARY 1 Let � � ��� �� � �
� � �

� and let � � ��� �� � �
� be an approximate solution

of the IVP (2.33) in the sense that

�������� � �� (2.38)

��Æ����� � �� for all � � ��� ��� (2.39)

where ���� � ����� ���� and Æ��� � ������ ���� �����. If

������� ����� (������ ������� � �� for all � � ��� �� and for all (� ��� ��� (2.40)

then (2.33) has an unique solution � � ��� ��� �
� and ���� satisfies

�������� � ���� � ����
� �

�

�����(�

���
��

���� � 	
�
���� � ��� if � �� �

� � ��� if � � �
(2.41)

2.5 Neumaier’s Results

Neumaier’s enclosure formula for an approximate solution to an IVP for a stiff ODE is similar

to Dahlquist’s. He also uses the logarithmic norm to obtain global enclosures for a class of

ODEs containing those satisfying a uniform dissipation condition.

CHAPTER 2. PRELIMINARIES 14

THEOREM 2 (NEUMAIER) Let � � ��� �� � �
� � �

� . Let � � �
��� be invertible, and let

� � ��� ��� �
� be an approximate solution of the IVP

����� � ���� ������ ���� � ��� � � ��� �� (2.42)

in the sense that

����������� � �� (2.43)

�����Æ����� � �� for all � � ��� ��� (2.44)

where ���� � ����� ���� and Æ��� � ������ ���� �����. If

���������� ���� � �� for all � � ��� �� and for all � � �
� � (2.45)

then (2.42) has an unique solution � � ��� ��� �
� and ���� satisfies

����������� �)��� �� ���� � �� �	
������ for � � ��� ��� (2.46)

where

�	
��*� ��

���
��

������
�

� * �� �

�� * � �

The proof of this theorem can be found in [16].

COROLLARY 2 Let � � ��� ����
� � �

� , let � = � , and let � � ��� ��� �
� be an approximate

solution of the IVP (2.42) in the sense that

�������� � �� (2.47)

��Æ����� � �� for all � � ��� ��� (2.48)

������� ��� � �� for all � � ��� ��� for all � � �
� � (2.49)

then (2.42) has an unique solution � � ��� ��� �
� and ���� satisfies

�������� �

���
��

���� � 	
�
���� � ��� if � �� �

� � ��� if � � �
(2.50)

This result follows immediately from Corollary 1.

CHAPTER 2. PRELIMINARIES 15

2.6 Combining Dahlquist’s and Neumaier’s Results

Neumaier’s result (Theorem 2) is really a special case of Dahlquist’s result (Theorem 1). To

illustrate, we state the following generalization of Dahlquist’s theorem.

THEOREM 3 Let � � ��� ����
� � �

� . Let � � �
��� be invertible, and let � � ��� ��� �

� be

an approximate solution of the IVP

����� � ���� ������ ���� � ��� � � ��� �� (2.51)

in the sense that

����������� � �� (2.52)

�����Æ����� � '���� for all � � ��� ��� (2.53)

where ���� � ����� ���� and Æ��� � ������ ���� �����. If

���������� �����(�������������� � ����� for all � � ��� �� and for all (� ��� ��� (2.54)

then (2.51) has an unique solution � � ��� ��� �
� and ���� satisfies

����������� � ��
� �

�
������ � �

� �

�
������

� �

�

'�(���
� �

�
�������(� for all � � ��� ��� (2.55)

Neumaier results, Theorem 2, is a special use of Theorem 3. We now derive Theorem 3

from Dahlquist’s result, Theorem 1.

Since � is an invertible matrix, we may define

� � � � (2.56)

� � �����

Substituting this change of variables into (2.51) yields

� � � ���� � ��

� � � ������� � �

� � ��� �� (2.57)

CHAPTER 2. PRELIMINARIES 16

resulting in the following IVP

 � � � ��� �� ��� � ������� � ������ (2.58)

Let ���� be an approximate solution to (2.51). Then

Æ��� � ������ ���� ������

� ����� � ���� ����� � Æ����

Let

! � �����

� � � �!� (2.59)

Then

�!� � ���� �!� � Æ����

� !� � ������� �!� � ���Æ���

� � ��� !� ������ (2.60)

where ���� � ���Æ��� is the defect associated with the approximate solution !��� to the IVP

(2.58).

Now assume that

��+����� � � (2.61)

�������� � '���� for all � � ��� ��� (2.62)

������� !���� (�!���� ������ � ���� for all � � ��� �� and for all (� ��� ��� (2.63)

where +��� � !��� � ��� and ���� � !���� � � ��� !�. Then, by Theorem 1, (2.58) has an

unique solution � ��� ��� �
� satisfying

��+����� � ��
� �
�
������ � �

� �
�
������

� �

�

'�(���
� �
�
�������(� for all � � ��� ��� (2.64)

CHAPTER 2. PRELIMINARIES 17

Since

+��� � !���� ���

� ��������� �����

� ��������

and

+��� � ��������

(2.61) is equivalent to (2.52):

��+����� � �

� ����������� � �� (2.65)

Since ���� � ���Æ���, (2.62) is equivalent to (2.53):

�������� � '���� for all � � ��� ��

� �����Æ����� � '��� for all � � ��� ���

Finally, (2.63) is equivalent to (2.54):

������� !���� (�!���� ����� � ���� for all � � ��� �� and for all (� ��� ��

� ���������� �!���� (��!���� � ������ � ���� for all � � ��� �� and for all (� ��� ��

� ���������� ����� (������ �������� � ���� for all � � ��� �� and for all (� ��� ���

Hence, (2.52), (2.53), (2.54) imply that (2.51) has a unique solution � � ��� ��� �
� satisfying

����������� � ��
� �

�
������ � �

� �

�
������

� �

�

'�(���
� �

�
�������(� for all � � ��� ���

That is, Theorem 3 holds.

COROLLARY 3 Let � � ��� ��� �
� � �

� . Let � � �
��� be invertible, and let � � ��� ��� �

�

be an approximate solution of the IVP (2.51) in the sense that

����������� � �� (2.66)

CHAPTER 2. PRELIMINARIES 18

�����Æ����� � �� for all � � ��� ��� (2.67)

where ���� � ����� ���� and Æ��� � ������ ���� �����. If

���������� ����� (������ �������� � �� for all � � ��� �� and for all (� ��� ��� (2.68)

then (2.51) has an unique solution � � ��� ��� �
� and ���� satisfies

����������� �)��� �� ���� � ����
� �

�

�����(�

���
��

���� � 	
�
���� � ��� if � �� �

� � ��� if � � �
(2.69)

This result follows immediately from Theorem 3.

We use Corollary 3 in our implementation of Neumaier’s enclosure method. Note that the

difference between Corollary 3 and Neumaier’s Corollary 2 is how � is obtained. Corollary

3 considers � � ���� � (����� � ����� where (� ��� �� in (2.68), while Corollary 2 considers

all y � �
� in (2.45). Since we may be able to obtain much better bounds for � over a small

set enclosing � and �, than over all y � �
� , we use Corollary 3 in our implementation of

Neumaier’s enclosure method.

Chapter 3

Implementation of Neumaier’s Enclosure

Method

In this chapter, we discuss our implementation of Neumaier’s enclosure method (Corollary 3),

including the choices that we made for various parameters in his method, as well as a simple

stepsize control strategy. Our implementation is non-rigorous, in the sense that our methods

of estimating some of these parameters are not rigorous, as discussed in more detail below.

The purpose of the non-rigorous implementation is to investigate the potential of Neumaier’s

enclosure method for stiff problems and to provide insight into how this method behaves in

practice. A rigorous implementation would have taken considerably longer to develop. The

advantage of working in MAPLE is that it has a built-in differential equations tools package

(DEtools), and so an implementation of Neumaier’s method is easier for us to develop than

it would be if we did not have these tools available.

Consider the initial value problem (IVP) for an ordinary differential equation (ODE)

����� � ���� ������ ����� � ��� � � ���� 	 � (3.1)

where � is a system of � components, � � �
� and � � ���� 	 �� �

� � �
� . Let the grid points

���� satisfy �� � �� �

 � �� � 	 , and denote the stepsize on the �th integration timestep

from ���� to �� by �� � �� � ����. Let ���� be the true solution of (3.1) and let ���� be a

19

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 20

piecewise smooth approximation to ����. The global error associated with ���� is

���� � ����� ����� � � ���� 	 �� (3.2)

and the associated defect is

Æ��� � ������ ���� ������ � � ���� 	 �� (3.3)

where we assume that � is not one of the grid points associated with �.

Let � � �
��� be invertible. Note that � is consistant with each step ���� �����, but � may

change between steps. From Corollary 3, we take �� � �, ���� � � and assume,

����������� � �� (3.4)

�����Æ����� � �� for all � � ��� ��� (3.5)

���������� ����� (������ �������� � �� for all � � ��� �� and for all (� ��� ��� (3.6)

then

����������� �)��� ��

���
��

���� � 	
�
���� � ��� if � �� �

� � ��� if � � �
(3.7)

for all � � ��� ��. Hence, we can advance a global error bound at �� in (3.4), to a global error

bound at ���� in (3.7).

Note, in our implementation, we consider � to be implicitly re-initialized to � � � at every

integration timestep � so that we can apply the result above starting from �� (� = 0) and ending

at ���� (� = �). Note also, for the rest of this thesis, we take ��
 �� to be ��
 ���. In addition, we

assume throughout the rest of this thesis that � � �.

We now discuss how ����, �, �, � and � are computed in our implementation of Neumaier’s

method, as well as a simple stepsize control strategy based on controlling)���.

3.1 Choice of ����

The function ���� is a piecewise smooth approximation of ���� on interval ���� 	 �. Two natural

choices for this piecewise smooth approximation are a piecewise polynomial and a piecewise

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 21

rational function. We chose the latter for our implementation, since some preliminary testing

by Neher [14] suggests that this choice is better for stiff problems. More specifically, we use a

piecewise rational Pade approximation described below.

3.1.1 Taylor Expansion

To obtain a Pade rational approximation for each component of vector ���� on the interval

�� � ���� �����, we first compute the Taylor expansion of the exact local solution to the IVP

�� � ���� ��, ����� � �� for each component. This is computed symbolically in MAPLE, using

a built-in function to construct the Taylor series expansion. Since the goal of this research

is to get an idea of the potential of Neumaier’s method for stiff problems, this method of

generation is sufficient for our purpose, although it would not be recommended for an efficient

implementation.

For each component of vector ����, the output from MAPLE is a Taylor polynomial of the

form

������ �
��
���

���������� for , � �� � � � � � and � is the number of components in ����� (3.8)

where

�� �
�

-�
��������� (3.9)

The order . of the polynomial ��� is set to 20 in our implementation.

3.1.2 Pade Rational Approximation

We use MAPLE’s built-in function to convert each polynomial ������ in (3.8), where , �

�� � � � � � and � is the number of components in ����, into a Pade approximation of the form

�����

�����
� (3.10)

where

����� �
	��

���

����� ���
�

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 22

is a polynomial of degree �/ (set to 9 in our implementation), and

����� � � �
	��

���

����� ���
�

is a polynomial of degree �� (set to 10 in our implementation). Note that further investigation

is required in choosing these degrees. Also, further work is required in investigating other

approximation methods that might be more suitable.

3.2 Choice of �

Recall from (3.6) that we need to choose a non-singular � and find a bound � such that

���������� ���� � �� for all � � ��� ��� (3.11)

where � � ���� � (����� � ����� and (� ��� ��. We follow Neumaier’s [16] suggestion and

compute the eigenvectors of the Jacobian matrix

0 ��
"�

"�
��� ����� (3.12)

and use the real and imaginary parts of a full set of eigenvectors of 0 for the columns of �,

assuming that 0 has a full set of eigenvectors. If 0 does not have a full set of eigenvectors,

then it is defective. Since the 0 matrices in our examples are not defective, we did not consider

this case, as the goal of this research is to get an idea of the potential of Neumaier’s enclosure

method for stiff problems, not to develop a robust code. For complex eigenvectors, we place

the real part in one column of � and the imaginary part in the next. If � is ill-conditioned,

Neumaier [16] suggests replacing the eigenvectors by independent basis vectors of an invariant

subspace of 0 . However, we never found ill-conditioning to be a problem in our examples and

so did not implement this alternative.

Note that in (3.12) we took � � � and � � ���� instead of taking the interval ��� �� and

� � � ����� (������ ����� � (� ��� �� � in our implementation. It would require considerable

further work to extend our implementation to take � � ��� �� and � � � �����(����������� � (�

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 23

��� �� � into account. One consequence of this is that, for our simple choice (3.12), �������� ���

is block diagonal (see below) in most cases, while this may not be the case over the full range

� � ��� �� and � � � ���� � (������ ����� � (� ��� �� �. As the goal of this research, as noted

above, is to get an idea of the potential of Neumaier’s enclosure method for stiff problems, the

restriction � � � and � � ���� is sufficient for our purpose.

Since we have assumed that ����� ����� has a full set of eigenvectors, it is diagonalizable.

The advantage of diagonalization is that it results in a block-diagonal matrix 1 � ���0�

with either a real eigenvalue � on the diagonal or a �� � block of the form

�
�	 �� � �/ �

��/ � �� �

��

on the diagonal. Hence, ����

�
is a diagonal matrix with �� � on the diagonal, where � is

a complex eigenvalue of 0 , giving rise to ��1� � ��0�. Note that this is in some sense

optimal in that no matrix �1 that is similar to 0 can have �� �1� � ��1�. If ����� �� is not

diagonalizable, then � may be larger than �� �, since the entries along the superdiagonal of 1

are not all equal to 0.

An important decision in our implementation is how often we should re-evaluate �. Two

possible options, along with their advantages and disadvantages, are outlined below.

The first option is to compute � at the initial time �� and leave it fixed for all integration

timesteps. The advantages of keeping � fixed are that the implementation requires less work

and there is no wrapping effect (discussed in �3.6.2). The disadvantage is that � may not be

optimal, since it can happen that

������ 0���� � ��0���

The second option is to re-compute � at every integration timestep �. The advantage is that

the optimum � can be estimated at each integration timestep �:

������ 0���� � ��0���

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 24

assuming that 0� is diagonalizable. The disadvantage is that this can lead to a wrapping effect,

as discussed in �3.6.2.

There are many other possibilities for the choice of �� and strategies for determining how

often to re-evaluate ��. For this thesis, we chose to implement the second option in our tests.

Before we discuss the classical wrapping effect (covered in ������) and how the wrapping

effect is reflected in � (covered in ������), we first finish our discussion of how we compute �,

� and � in our implementation.

3.3 Estimation of �

To achieve rigorous and realistic error bounds, we must determine a tight upper bound �� on

the uniform dissipation condition associated with step �,

��
 � ���������� ���� � � � ���� ������ � � ������ (������ ������� (� ��� �� � � ���

In our implementation, � is re-computed at each integration timestep �, which results in the

optimum � being redefined for each integration timestep �. However, we use a non-rigorous

method to estimate �� at each integration timestep � as follows:

��� �� ������ 0����� (3.13)

where

0� � ����� �����

at integration timestep �.

As a result of this simplification, it may happen that

��� � ��
 � ���������� ���� � � � ���� ������ � � ������ (������ ������� (� ��� �� ��

As noted earlier, this is one of several reasons why our implementation is not rigorous.

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 25

3.4 Estimation of �

Recall from (3.5) that � must satisfy

������������ ���� ������� � �� for all � � ��� ���

and that we re-compute � at each integration timestep �. That is, at each integration timestep

�, �� should ideally satisfy

�� �� �
	
�����������

������ �������� ���� ���������� (3.14)

However, we use a non-rigorous method to estimate ��. In our implementation, we sample

the defect at 21 evenly spaced points in the interval �� �� ���� ����� and approximate �� by

��� �� /�
� ������ �������� �� ����� � ������ ���� � ��� � �� � -
��
��

� - � �� � � � � ����

3.5 Estimation of �

Recall from (3.4) that � must satisfy

����������� ������� � ��

and that we re-compute � at each integration timestep �. We estimate �� at each integration

timestep � as follows.

Since the initial error ������� ������ at integration timestep � � � is the error ���������
����� at the endpoint of the previous timestep �� � ��, and we know that

������������������ ����������� �)����

it follows that

������ ������� �������� � ������ ������
��
����������� �������

� ������ ������ ��������������� �������

� ������ ������)����

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 26

where)��� is defined in (3.7). Hence we estimate � by

�� �� ������ ������)���� (3.15)

at each integration timestep � � �. At � � �, � is set to zero, since we know the initial

condition ����� and we set ���� � �����. Note that ���� ���� is computationally expensive, and

thus it would not be recommended for an efficient implementation.

3.6 A Simple Stepsize Control Strategy

As noted above, we assume throughout this Chapter that � � �. Recall from (3.7) that the

global error bound) is defined as

����������� ������� �)��� �� ���� �
�

�
���� � ��� for all � � ��� 	 �

and that we re-compute � at each integration timestep �. We estimate the global error bound

)� at the endpoint of each integration timestep � by

)����� �� ���
���� �

��
��

������ � ���

where �� is the stepsize at step �.

Given a user-specified global error bound 2 , we try to control the global error by requiring

���
���� �

��
��

������ � �� � 2 (3.16)

on each step �.

The idea behind this simple stepsize control strategy is to continue the integration while the

defect is small compared to the propagated initial error in the integration timestep �.

3.6.1 Predicting a Stepsize

Suppose that the ��� ��th integration timestep is accepted. We attempt to choose a stepsize ��

at the next timestep satisfying both (3.16) and

����
���

� �� � ������� (3.17)

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 27

where 3 � �� � � � � ��. In other words, the stepsize �� at integration timestep � can increase

within bounds as long as the condition (3.16) holds.

First we try to satisfy (3.16) with 3 = 0 in (3.17). If this fails, that is if)����� � 2 , then

)����� is re-evaluated with a smaller �� = ����
���

, where 3 = 1 and this process is continued until

the condition (3.16) is satisfied. If the condition (3.16) continues to fail with increasing 3, then

the integration is considered to have failed and the computation is terminated.

As long as there is no wrapping effect (discussed in the next subsection), the integration can

always continue (in an idealized setting without roundoff error etc.) using this simple stepsize

control strategy. To illustrate, recall that we estimate �� at each integration timestep � � �

as the initial global error at step � propagated from the endpoint of global error at timestep

�� � ��. In other words, at timestep �, �� � 2 . Let �� � �
. Recall �� � �, so
 � �. Note

that

����� � ��
��

� ��
�� �4������

Using this together with �� � 2 in (3.16), we get

2���
��4������ �

����
��4������ �� � 2�

� �

�
�� 4����� � 2�
� �4������

� �

��� �

4���� � 2��� �

4�����

� �

� �

�
4��� �

2

4��� � 2�

� �

�4��� � 2�

Since � decreases to zero with �, where as
 � ��� does not, this last inequality can be

satisfied (in an idealized setting without roundoff error etc.) for �� sufficiently small and so the

integration can continue using this simple stepsize control strategy.

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 28

It was found that, for some problems, the integration failed to continue because the initial

)� exceeded 2 , though the condition (3.16) held at timestep ��� ��. This is due to a wrapping

effect, as is explained below.

3.6.2 The Classical Wrapping Effect

To illustrated the classical wrapping effect, we consider Moore’s example [12],

��� � ��� ��� � ���� (3.18)

The solution of (3.18) with an intial condition �� is given by ���� � ������, where

���� �

�
�	 ��� � ��� �

� ��� � ��� �

�� �

Let �� � ����, where interval vector1 ���� � ��
� can be viewed as a rectangle in the (��� ��)

plane. As shown in Figure 3.1, ����� maps ���� into a rectangle of the same size at �� � ��. To

enclose this rectangle in an interval vector, we have to wrap it with another rectangle with sides

parallel to the �� and �� axes. On the next step, this larger rectangle is rotated and it is enclosed

by a still larger rectangle. As a result, at each step, the enclosing rectangles become larger and

larger. However, the set ������� � �� � ����� � � ��� remains a rectangle of the original size.

It was shown by Moore that, as the stepsize approaches zero, at � � �5, the interval inclusion

is inflated by a factor of ��� � ���.

1An explaination of interval vectors can be found in �1.1.2

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 29

Figure 3.1: Wrapping of a rectangle specified by the interval vector ����� ��� ���� ����
 . The

rotated rectangle is wrapped at � � �

�, where � � �� � � � � �.

CHAPTER 3. IMPLEMENTATION OF NEUMAIER’S ENCLOSURE METHOD 30

3.6.3 The Wrapping Effect in S

To see how a wrapping effect occurs in our chosen method of computing � and as a con-

sequence, how the integration can fail to continue using this simple stepsize control strategy

outlined above, recall from (3.15) that

�� �� ������ ������)����

Let

6 � ������ ������� (3.19)

If the eigenvectors of an IVP are time independent, then in our implementation, ���� ����

is the identity matrix. This implies that 6 � � and �� is the value of) at the endpoint of the

�� � ��st integration timestep. Thus, for problems with � � � and with fixed eigenvectors,

we can always (in theory) choose �� small enough so that the integration can continue while

keeping the global error � 2 .

If the eigenvectors of an IVP are time dependent, then in our implementation, the matrix

�� is also time dependent. Because �� changes from step to step, it is possible for 6 � � and

as a result, � at integration timestep � may be greater than the value of) at the endpoint of

integration timestep �� � ��. In other words, depending on the value of 6, the initial value

of) could exceed the maximum tolerated error 2 , even if the value of) at the endpoint of

the previous integration timestep was below 2 . Thus, due to the wrapping effect in �, the

integration can fail to continue using the simple stepsize control strategy outlined above.

In Chapter 4, we present two example problems that illustrate the wrapping effect discussed

here. Alternative stepsize control strategies are also presented and discussed there.

Chapter 4

Numerical Results and Discussion

In this chapter, seven 2D initial-value problems (IVPs) are presented. The numerical results

obtained for these test problems and the shortcomings that they reveal in our implementation

of Neumaier’s enclosure method (Corollary 3) are discussed. In addition, we breifly discuss

some alternative stepsize control strategies that alleviated some of the shortcomings.

4.1 Test Problems

Listed below are the seven 2D test problems, each of the form

����� � �������� � �����

where � � ��� 	 �. These problems can be found in Neher ([15], [14]). The global error tolerance

2 is set to ����, a representative value for this parameter.

The initial condition for each test problem is
�
�	 �����

�����

�� �

�
�	 �

�

�� �

31

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 32

Problem 1: Linear ODE with constant coefficients and zero ����, � � ��� ����, �� � ��� � ��

for all �: �
�	 ������

������

�� �

�
�	 �� �

� �����

��
�
�	 �����

�����

���

�
�	 �

�

�� (4.1)

The true solution is ����� � ��� and ����� � ����
��.

Problem 2: Linear ODE with constant coefficients and constant non-zero ����, � � ��� ����,

�� � ��� � �� for all �:
�
�	 ������

������

�� �

�
�	 �� �

� �����

��
�
�	 �����

�����

���

�
�	 �

�

�� (4.2)

The true solution is ����� � � and ����� � �
���

� ���
���

����
��.

Problem 3: Linear ODE with constant coefficients and time dependant ����, � � ��� ����,

�� � ��� � �� for all �:
�
�	 ������

������

�� �

�
�	 �� �

� �����

��
�
�	 �����

�����

���

�
�	 �

�

�� (4.3)

The true solution is ����� � �� � � ���� and ����� � �
���

�� �
���

� �������
���

����
��.

Problem 4: Linear ODE with time dependant coefficients and ����, � � ��� ��5�, �� � ��� � ��

for all �:
�
�	 ������

������

�� �

�
�	 ���� � ��� ������� ���� �������

���� ������� ����� ��� �������

��
�
�	 �����

�����

���

�
�	 �

�

�� (4.4)

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 33

Problem 5: Linear ODE with time dependant coefficients and ����, � � ��� ��5�, �� and ��� �
�������� � �
�

�
� � ���������� for all �:
�
�	 ������

������

�� �

�
�	 ��� �� ������

�� ������ ���

��
�
�	 �����

�����

���

�
�	 �
 ������

�

�� (4.5)

Problem 6: Linear ODE with constant ���� and time dependent ���� having a spike at � � �,

� � ��� ��, �� � ��� � �� for all �:�
�	 ������

������

�� �

�
�	 �� �

� ��

��
�
�	 �����

�����

�� �

�
�	

�����������������
������������������

�

�� (4.6)

The true solution is ����� � ����

��������������������������
� �

�����������
��� and ����� � ���.

Problem 7: Linear ODE with time dependant coefficients and ����, � � ��� ��5�, �� � ���� ������
�
�������

�
� �

���� ������ and ��� � �� for all �:�
�	 ������

������

�� �

�
�	 �� ��� ������

�����������

� �����

��
�
�	 �����

�����

���

�
�	 �
 ������

�

�� (4.7)

4.2 Numerical Results and Discussion

The number of significant digits of precision that MAPLE uses can be set using the command

digits. In our implementation, we set digits to 15, with the exception of a couple of

example problems discussed below where setting digits to a higher value (such as 30) gave

better results compared to digits = 15. This issue as well as the shortcomings encountered

when using MAPLE are discussed at the end of this chapter.

As mentioned in �3.6, given a user-specified global error bound 2 , we choose the largest

stepsize at each timestep, �� such that

)����� �� ���
	���� �

���
���

��	���� � �� � 2 (4.8)

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 34

and
����
���

� �� � ������� for 3 � �� � � � � ���

are satisfied.

The following are the graphs obtained for problems 1, 2, 3, 4 and 6, using the above stepsize

control strategy. The stepsizes taken for problems 1, 2, 3 and 6 are presented in the Table 4.1,

4.2, 4.3 and 4.4 respectively, since the number of integration steps taken for these problems are

small. Problems 5 and 7 are discussed later.

0

10

20

30

40

50

60

20 40 60 80 100

P1, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P1, Error bound for err_max = 1.0E–6

0

2e–07

4e–07

6e–07

8e–07

20 40 60 80 100

(b) Error bound vs Time.

Figure 4.1: Problem 1: � � ��� � ��, digits = 15, integration steps taken = 6.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 35

Table 4.1: Stepsize for each integration step for Problem 1.

Integration step � initial timestep ���� final timestep �� stepsize taken at �

1 0.0 0.0125 0.0125

2 0.0125 0.06625 0.05375

3 0.06625 0.60375 0.5375

4 0.60375 5.97875 5.375

5 5.97875 33.66 27.68125

6 33.66 100.0 66.34

Table 4.2: Stepsize for each integration step for Problem 2.

Integration step � initial timestep ���� final timestep �� stepsize taken at �

1 0.0 0.0125 0.0125

2 0.0125 0.04375 0.03125

3 0.04375 0.35625 0.3125

4 0.35625 3.48125 3.125

5 3.48125 34.73125 31.25

6 34.73125 100.0 65.26875

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 36

Table 4.3: Stepsize for each integration step for Problem 3.

Integration step � initial timestep ���� final timestep �� stepsize taken at �

1 0.0 0.0125 0.0125

2 0.0125 0.040625 0.028125

3 0.040625 0.321875 0.28125

4 0.321875 2.3046875 1.9828125

5 2.3046875 3.8909375 1.58625

6 3.8909375 16.818875 12.9279375

7 16.818875 76.2873875 59.4685125

8 76.2873875 100.0 23.7126125

Table 4.4: Stepsize for each integration step for Problem 6.

Integration step � initial timestep ���� final timestep �� stepsize taken at �

1 0.0 0.1 0.1

2 0.1 1.1 1.0

3 1.1 2.0 0.9

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 37

0

10

20

30

40

50

60

20 40 60 80 100

P2, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P2, Error bound for err_max = 1.0E–6

0

2e–07

4e–07

6e–07

8e–07

1e–06

20 40 60 80 100

(b) Error bound vs Time.

Figure 4.2: Problem 2: � � ��� � ��, digits = 15, integration steps taken = 6.

0

10

20

30

40

50

60

20 40 60 80 100

P3, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P3, Error bound for err_max = 1.0E–6

0

2e–07

4e–07

6e–07

8e–07

1e–06

20 40 60 80 100

(b) Error bound vs Time.

Figure 4.3: Problem 3: � � ��� � ��, digits = 15, integration steps taken = 8.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 38

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60

P4, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P4, Error bound for err_max = 1.0E–6

2e–07

4e–07

6e–07

8e–07

1e–06

0 10 20 30 40 50 60

(b) Error bound vs Time.

Figure 4.4: Problem 4: � � ��� � ��, digits = 15, integration steps taken = 45.

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

P6, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P6, Error bound for err_max = 1.0E–6

0

1e–07

2e–07

3e–07

4e–07

5e–07

6e–07

0.5 1 1.5 2

(b) Error bound vs Time.

Figure 4.5: Problem 6: � � ��� � ��, digits = 30, integration steps taken = 3.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 39

Note that at the last integration step, the stepsize chosen can be smaller than if the function

is to be evaluated over the time interval � � ��� 	 �, where 	 � 	 . Thus, by taking a smaller

stepsize at the last integration step results in a smaller error bound at the last integration step.

As explained in �3.5, we estimate �� at each integration timestep � � � by

�� � ������ ������)����

where �� is the eigenvector matrix associated with ��. Let

6 � ������ ������� (4.9)

For problems 1, 2, 3 and 6, the matrix �� is fixed and �� � �� for all �. As was mentioned

in �3.6, this implies that 6 = 1, since �� � � for all � and so ���� ���� is the identity matrix.

Hence the value of �� for integration timestep � � � is the value of)��� at the endpoint of

integration timestep (� � �). This is true for any fixed matrix �, since 6 is always equal to

1. Thus for problems with �� � � and with fixed eigenvectors, the integration can always be

continued (in theory) while keeping the global error � 2 .

For problems 4, 5 and 7, the matrix �� is time dependent and this implies that the matrix ��

may change with �. It was noted that, although the value of)��� at the endpoint of integration

timestep (�� �) may be below the prescribed error bound, the initial value of)� at integration

timestep � may exceed the prescribed error bound. This occurs because the value of 6 may

exceed 1 on some steps, due to �� changing from step to step. As a result, the value of �� at

integration step � may exceed the final value of)��� at integration step (���). Thus, if the the

eigenvectors are changing from step to step, there is a possiblity that the integration error will

exceed the maximum tolerated error 2 . In other words, depending on the value of 6, the initial

value of)� could exceed 2 , even if the final value of)��� in the previous integration timestep

is below 2 . This occured in problems 5 and 7.

For problem 5, the following output was observed:

� At integration time step � = 1,

)����� � ������������������ �����

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 40

� At integration time step � = 2,

6 � �����������������

)������� � ����������������� �����

which is greater than the prescribed error bound.

For problem 7, the following output was observed:

� At integration time step � = 3,

)����� � ������������������ �����

� At integration time step � = 4,

6 � �����������������

)������� � ����������������� �����

which is greater than the prescribed error bound.

The value of 6 for problem 5 ranges between 0.5 and 1.5, and, for problem 7, 6 ranges

between 1 and 4.6. While the eigenvector matrix �� changes from step to step in problem 4,

�� is an orthogonal matrix for all �. Thus the matrix ���� ���� is also orthogonal. Since the

2-norm of an orthogonal matrix is 1, the value of 6 is 1. So, for problem 4, the integration can

always be continued (in theory) while keeping the global error � 2 .

4.2.1 Stepsize Control Strategy 1

When the integration fails to continue using the stepsize control strategy described in �3.6,

Neher [15] proposed an alternate condition for the stepsize control in order for the integration

to continue. This alternate condition allows the global error to exceed the prescribed tolerance

2 , but by an amount such that the global error would not grow too fast. More precisly, it allows

the global error bound at the end of the integration step � to grow by at most
 times the

damped initial error at the end of integration step �, where � �
 � � �

.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 41

That is, the integration can continue provided that

�)����� � 2� or �� ���
���

��	���� � ��� � ����
	����

�
��� (4.10)

where � is a positive integer. If � = 3, then the global error bound at the end of integration step

� is at most � �

times the damped initial error bound at integration step �.

The following graphs show the stepsize changes and the error bounds for problems 5 and

7, respectively, using this stepsize control strategy, with � = 3 in (4.10). Note that ��� and �� �
��������� �
�

�
� � ���������� in problem 5, and ��� � �� while �� � ���� ������

�
�������

�
� �

���� ������ in problem 7.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 5 10 15 20 25 30

P5, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P5, Error bound for err_max = 1.0E–6

0

2e–05

4e–05

6e–05

8e–05

0.0001

0.00012

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.6: Problem 5: c = 3, digits = 15, integration steps taken = 69.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 42

Figure 4.7: Problem 5: �� vs Time, c = 3, digits = 15, integration steps taken = 69.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

P7, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P7, Error bound for err_max = 1.0E–6

0

20

40

60

80

100

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.8: Problem 7: c = 3, digits = 30, integration steps taken = 44.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 43

If � is set to 5 instead of 3 in (4.10), the results obtained for the error bounds of problems 5

and 7 are better.

0.3

0.35

0.4

0.45

0.5

0.55

0 5 10 15 20 25 30

P5, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P5, Error bound for err_max = 1.0E–6

2e–07

4e–07

6e–07

8e–07

1e–06

1.2e–06

1.4e–06

1.6e–06

0 5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.9: Problem 5: c = 5, digits = 15, integration steps taken = 69.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 44

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

P7, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P7, Error bound for err_max = 1.0E–6

0

1

2

3

4

5

6

7

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.10: Problem 7: c = 5, digits = 15, integration steps taken = 46.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 45

4.2.2 Step Size Control Strategy 2

Recall (4.8) and drop the subscript �. Let

� � ��	���

� �
�����

��
��	�� � ���

Let ��� � � for all �. Using Neher’s proposed stepsize control strategy 1 (�4.2.1) the following

are the graphs of �, � and)��� with increasing � for problem 7, taken at integration timestep

� � �, where � = ������������������ ���� and ��� � ��.

0 0.02 0.04 0.06 0.08 0.1 0.12
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6
x 10

−7

h

al
ph

a*
ex

p(
m

u*
h)

(a) A vs h.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5

2

2.5

3
x 10

−7

h

ep
s(

h)
/m

u
*

(e
xp

(m
u*

h)
−

1)

(b) B vs h.

Figure 4.11: Problem 7 at integration step k = 2, c = 3, digits = 15.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 46

0 0.02 0.04 0.06 0.08 0.1 0.12
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
x 10

−6

h

ph
i(h

)

Figure 4.12:)��� for problem 7, c = 3, digits = 15.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 47

Note, if � is increased further in Figure 4.11(b), � will clearly blow up. This indicates that

the defect is large and suggests that replacing the Pade approximation to ���� by another choice

of approximation method could lead to more robust results.

If we assume ����� � ��� with constant � and � for simplicity, then

)��� � ��	�� �
���

��
��	�� � ���

Thus,

)���� � ����	�� �
������

��
��	�� � �� � ����	��

� ���� �
������

��
� �����	�� � ������

��
�

For � � �,)���� � ��� � �, and as � increases,)���� becomes � �. Hence, the graph of)���

is in general similar to that shown in Figure 4.12 for problem 7.

Noting the behaviour of)��� as � increases (at integration step �), we propose an alterna-

tive stepsize control strategy 2 as follows.

� If)������� � 2 (at integration step �), allow � to increase as long as condition (4.8) is satisfied

and take the maximum step size � such that (4.8) holds.

� If)������� � 2 (at integration step �), allow � to increase as long as (4.10) is satisfied and take

the step size � that minimizes)���.

Using this stepsize control strategy, the results obtained for problems 5 and 7 are better than

those presented earlier for Neher’s stepsize control strategy given in �4.2.1. The following are

the graphs obtained for problems 5 and 7, using the above stepsize control strategy. Note that

the graphs obtained for � � � and � � � for problems 5 and 7 are the same in this case.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 48

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

P5, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P5, Error bound for err_max = 1.0E–6

2e–07

4e–07

6e–07

8e–07

1e–06

0 5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.13: Problem 5: c = 3 or 5, digits = 15, integration steps taken = 74.

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

P7, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P7, Error bound for err_max = 1.0E–6

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.14: Problem 7: c = 3 or 5, digits = 15, integration steps taken = 71.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 49

4.3 Problems Encountered

The problems encountered in testing our implementation of Neumaier’s enclosure method us-

ing MAPLE version 8 are discussed below.

4.3.1 Memory Allocation

It is well-known that MAPLE sometimes requires a significant amount of memory and this

can sometimes cause the computation to abort. In order to re-execute a problem in MAPLE,

there is a restart command which clears all values and memory for re-use. However, this

command does not always free all the values and memory for re-use. This was the case for

problem 4.

In this problem, it was found that, if the “restart” command is used before re-solving the

problem, the results obtained for the first run are different than the results obtained for the

second run. However, if the problem is run once, followed by exiting MAPLE and re-opening

MAPLE, then re-executing the problem for a second run, the output is identical to the output

from the first run. This behaviour indicates that MAPLE’s memory allocation is inconsistent,

producing varying results.

4.3.2 Output Problems

When solving ODEs with MAPLE, the output of its built-in function dsolve is an unsorted

list. Similary, when calculating the eigenvalues and their corresponding eigenvectors of a ma-

trix in MAPLE, the output of its built-in function Eigenvectors would occasionally be in

a different order. However, our program requires that these lists be kept in a consistent order.

Thus, in both cases, steps were taken to correct the order of the output.

When calculating the eigenvalues and their corresponding eigenvectors of a matrix in MAPLE,

the output is always complex even if the imaginary parts of the output are zero. Steps were

taken to distinguish between real and non-real eigenvalues and eigenvectors.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 50

4.3.3 Significant Digits of Precision

As was mentioned earlier, the number of significant decimal digits of precision that MAPLE

uses can be set using the command digits. We used digits = 15 in most cases and for

these problems we found that increasing the number of digits has an insignificant effect on the

output. However, it was found that for problem 7, increasing the number of digits gave varying

results.

In problem 7, the results shown in Figure 4.8 used digits = 30, with Neher’s stepsize

control strategy, based on (4.10) with � � �. Compare this with the following results, also

using Neher’s stepsize control strategy with � � �, but using digits = 15.

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

P7, Stepsize for err_max = 1.0E-6

(a) Step size vs Time.

P7, Error bound for err_max = 1.0E–6

0

200

400

600

800

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.15: Problem 7: c = 3, digits = 15, integration steps taken = 38.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 51

Notice in Figure 4.15, the error bounds obtained with digits = 15 is at least 8 times larger

than the error bounds obtained with digits = 30, shown in Figure 4.8. Also the stepsize

changes with digits = 15 are slightly bigger than the stepsize changes with digits = 30.

The results shown in Figure 4.10 used digits = 15, with Neher’s stepsize control strategy,

that is condition (4.10) with � � �. Compare this with the following results, also using Neher’s

stepsize control strategy with � � �, but using digits = 30, 40 and 50 respectively.

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

P7, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P7, Error bound for err_max = 1.0E–6

0

2

4

6

8

10

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.16: Problem 7: c = 5, digits = 30, integration steps taken = 50.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 52

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

P7, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P7, Error bound for err_max = 1.0E–6

0

1

2

3

4

5

6

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.17: Problem 7: c = 5, digits = 40, integration steps taken = 48.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

P7, Stepsize for err_max = 1.0E-6

(a) Stepsize vs Time.

P7, Error bound for err_max = 1.0E–6

0

2

4

6

8

10

5 10 15 20 25 30

(b) Error bound vs Time.

Figure 4.18: Problem 7: c = 5, digits = 50, integration steps taken = 45.

CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION 53

Notice that, as we increase the number of digits, the results obtained for the stepsize

changes and the error bounds vary. In going from digits = 15 to 30, the stepsize changes

became smaller but the error bounds became worse. In going from digits = 30 to 40, the

stepsize changes became bigger and the error bounds became better. In going from digits =

40 to 50, the stepsize changes became bigger and the error bounds became worse.

Recall that �� oscillates between �� and ��������������
�

� ����� in problem 7. This sup-

ports our belief that this problem is ill-conditioned. This is consistent with the numerical results

discussed above.

Chapter 5

Conclusions and Future Work

Our goal in this thesis was to investigate the potential of Neumaier’s enclosure method for

stiff problems and to provide insight into how this method behaves in practice. In Chapter

2, we reviewed the logarithmic norms, the enclosure methods of Dahlquist and Neumaier, and

showed that Neumaier’s result is a special case of Dahlquist’s result. In Chapter 3, we discussed

our implementation of Neumaier’s enclosure method based on the combination of these two

results.

We believe that this method can be the basis for a validated method for stiff IVPs for ODEs,

in cases when there is no wrapping effect. However, further investigations are required to find

the best method of computing the various parameters in Neumaier’s enclosure method. In

particular, how we should calculate the invertible matrix � and how often we should evaluate

it in order to obtain a near optimal � while keeping the wrapping effect under control. Further

work is required in investigating other approximation methods and the degrees of freedom in

approximating ����, which might lead to more robust results. Improvements also need to be

made in our simple stepsize control strategy. Ideally, we would like to achieve smooth gradual

stepsize changes as well as keep the global error below the maximum tolerated error at all

times. Given that the purpose of our implementation of Neumaier’s enclosure method was to

explore the potential of the method and was non-rigorous, we would need to estimate � for all

54

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 55

� in a tube containing both the true solution � and the approximate solution �, and to estimate

the defect, �, for all � � ��� �� in order to achieve rigorous bounds for this method. We would

also need to take � � ��� �� and � � � ���� � (����� � ����� � (� ��� �� � into account when

computing the eigenvectors of the Jacobian matrix to achieve rigorous bounds for this method.

We leave these tasks for future work.

Bibliography

[1] G. Dahlquist. Stability and Error Bounds in the Numerical Integration of Ordinary Dif-

ferential Equations. Trans. Royal Inst. Tech., Stockhom, Sweden, No. 130, 1959.

[2] P. Eijgenraam. The Solution of Initial Value Problems using Interval Arithmetic. Math.

Center Tracts 144, Amsterdam, 1981.

[3] A. R. Forsyth. Theory of Differential Equations, Vol IV. New York: Dover, 1959.

[4] K. R. Jackson G. F. Corliss and N. S. Nedialkov. Validated Solutions of Initial Value

Problems for Ordinary Differential Equations. Appl. Math. Comp., No. 105:21–68, 1999.

[5] K. Geddes. Convergence Behaviour of the Newton Iteration for First Order Differential

Equations. Proceedings of EUROSAM, pages 78–79, 1979.

[6] A. Griewank and G. F. Corliss. Computational Differentiation: Theory, Implementation

and Application. SIAM, Philadelphia, Penn., 1991.

[7] E. L. Ince. Ordinary Differential Equations. New York: Dover, 1944.

[8] R. Lohner. Enclosing the Solution of Ordinary Initial- and Boundary-Value Problems.

Computer Arithmetic, Teubner, Stuttgart, pages 255–289, 1987.

[9] S. M. Loziinskij. Error Estimate for Numerical Integration of Ordinary Differential Equa-

tions. Part I. Izv. Vyss. Ucehn. Zaved. Mathematika, No. 6:52–90, 1958.

56

BIBLIOGRAPHY 57

[10] C. Bischof M. Berz and G. F. Corliss. Computational Differentiation: Techniques, Appli-

cations, and Tools. SIAM, Philadelphia, Penn., 1996.

[11] R. E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Computing.

Ph. D. Thesis, Appl. Math. Statist. Lab. Rep. 25, Standford University, 1962.

[12] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[13] N. S. Nedialkov. Computing Rigorous Bounds on the Solutions of an Initial Value Prob-

lem for an Ordinary Differential Equation. Ph. D. Thesis. Department of Computer Sci-

ence, University of Toronto, 1999.

[14] M. Neher. Private communications.

[15] M. Neher. On Neumaier’s Enclosure Method for the Solution of Dissipative ODEs. Third

Int. Workshop on Taylor Methods, Miami Beach., Dec, 2004.

[16] A. Neumaier. Global, Rigorous and Realistic Bounds for the Solution of Dissipative

Differential Equations. Part I: Theory. Computing, Volume 52, No. 4:315–336, Feb.

1994.

[17] L. F. Shampine and C. W. Gear. A User’s View of Solving Stiff Ordinary Differential

Equations. SIAM Review, Volume 21, No. 1:1–17, Feb. 1979.

[18] T. Strom.

