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A credit derivative is a financial instrument whose value depends on the credit risk of an

underlying asset or assets. Credit risk is the possibility that the obligor fails to honor

any payment obligation. This thesis proposes four new computational methods for the

valuation of credit derivatives.

Compared with synthetic collateralized debt obligations (CDOs) or basket default

swaps (BDS), the value of which depends on the defaults of a prescribed underlying

portfolio, a forward-starting CDO or BDS has a random underlying portfolio, as some

“names” may default before the CDO or BDS starts. We develop an approach to convert

a forward product to an equivalent standard one. Therefore, we avoid having to consider

the default combinations in the period between the start of the forward contract and the

start of the associated CDO or BDS. In addition, we propose a hybrid method combining

Monte Carlo simulation with an analytical method to obtain an effective method for

pricing forward-starting BDS.

Current factor copula models are static and fail to calibrate consistently against mar-

ket quotes. To overcome this deficiency, we develop a novel chaining technique to build a

multi-period factor copula model from several one-period factor copula models. This

allows the default correlations to be time-dependent, thereby allowing the model to

fit market quotes consistently. Previously developed multi-period factor copula mod-

els require multi-dimensional integration, usually computed by Monte Carlo simulation,
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which makes the calibration extremely time consuming. Our chaining method, on the

other hand, possesses the Markov property. This allows us to compute the portfolio loss

distribution of a completely homogeneous pool analytically.

The multi-period factor copula is a discrete-time dynamic model. As a first step

towards developing a continuous-time dynamic model, we model the default of an un-

derlying by the first hitting time of a Wiener process, which starts from a random initial

state. We find an explicit relation between the default distribution and the initial state

distribution of the Wiener process. Furthermore, conditions on the existence of such a

relation are discussed. This approach allows us to match market quotes consistently.
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Chapter 1

Introduction

A credit derivative is a financial instrument whose value depends on the credit risk of

an underlying asset or assets. Credit risk is the possibility that the obligor fails to

honor any payment obligation [47]. Credit derivatives are one of the most important

financial innovations of the last two decades. According to the survey by ISDA [22], the

outstanding notional of credit derivatives grew from $0.63 Trillion at the beginning of

2001 to $62 Trillion by the end of 2007. Meanwhile, credit derivatives are among the most

complex and risky products, often criticized as contributing to the recent credit crisis.

Much of the blame for the current credit crisis is being attributed to the mathematical

models and quantitative methods associated with credit derivatives. Developing better

computational methods for the valuation of credit derivatives is the main focus of this

thesis.

Based on the number of underlying assets, credit derivatives are divided into two

categories: single-name and multi-name credit derivatives. The default payments for

single-name products are based on the default risk of a single reference asset. Such

products include credit default swaps (CDS), total return swaps and CDS options. The

default payments for multi-name credit derivatives are based on the default combinations

of the underlying portfolio. Such derivatives include basket default swaps (BDS), col-
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Chapter 1. Introduction 2

lateralized debt obligations (CDOs) and more exotic time-dependent products, such as

forward-starting CDOs (FCDOs), forward-starting BDS (FBDS) and options on tranches.

In this thesis, we develop a reduction method for pricing FCDOs, a hybrid method for

pricing FBDS, a chaining technique to build a dynamic correlation model for multi-name

credit derivatives and a randomization method in the first hitting time approach for

modeling the default of a single-name credit derivative1.

1.1 Mechanics of credit derivatives

In this section, we give a brief review of the credit derivatives covered in this thesis. A

more detailed description can be found in the book by Banks, Glantz and Siegel [5] or

the product guides by Merrill Lynch [32].

A credit default swap (CDS) is a bilateral contract, in which the seller agrees to

provide protection to the buyer against the underlying asset’s default in exchange for a

series of fixed payments. For example, the seller might provide protection to the buyer

against the default of $100 million worth of General Motors (GM) bonds for the next

5 years. If the GM bonds default before the end of the fifth year, the seller pays the

loss associated with the GM bonds to the buyer; otherwise, the contract terminates at

the end of the fifth year. In return for the protection, the buyer pays a specified rate

(known as the premium or spread) to the seller at set dates (e.g., at the end of every

three months). Figure 1.1 illustrates a typical CDS structure.

A collateralized debt obligation (CDO) is an agreement to redistribute the credit risk

of the collateral pool to priority ordered tranches. Generally, there are five tranches:

super-senior, senior, mezzanine, junior and equity, with priority decreasing in that order.

All cash collections are distributed to the tranches from super-senior to equity, sequen-

tially; portfolio losses are allocated first to the equity tranche, and then upwards through

1The presentation order of these methods is based on their mathematical difficulty of the approaches
instead of the complexity of the derivatives.
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Figure 1.2: CDO structure

the tranches in reverse priority order. Each tranche is specified by an attachment point

a and a detachment point b. The buyer of one or more of these tranches sells partial pro-

tection to the pool owner by absorbing the pool losses specified by the tranche structure.

That is, if the pool losses are less than the tranche attachment point a, the protection

seller does not suffer any loss; otherwise, the seller absorbs the losses up to the tranche

size S = b−a. In return for the protection, the pool owner pays premia to the protection

seller at set dates. A CDO is called a synthetic CDO if the risky assets in the underlying

pool are CDS. Figure 1.2 depicts a typical synthetic CDO structure2.

In an mth-to-default basket default swap (BDS), the protection buyer pays premia

2In this figure, we have included three tranches only for convenience in drawing the figure, rather
than the usual five tranches.
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| |

T T1 T2 Tn = T ∗Tn−1

CDO starts

0
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Figure 1.3: Cash flows for a single tranche in a FCDO

on a specified notional principal at set dates until the mth default occurs among the

reference entities or until the maturity of the contract. If the mth default happens before

the maturity of the BDS, the protection seller pays the losses caused by the mth default

only to the protection buyer.

A forward-starting collateralized debt obligation (FCDO) is a forward contract3 obli-

gating the holder to buy or sell protection on a specified CDO tranche for a specified

spread at a specified future time. For example, a FCDO might obligate the holder to

buy protection on a CDO tranche with attachment point a and detachment point b over

a future period [T, T ∗] for a predetermined spread s. At time T , the contract turns into

a single tranche CDO over [T, T ∗] with attachment point (a+LT ) and detachment point

(b+LT ), where LT is the aggregate pool losses before T . Figure 1.3 illustrates cash flows

for a single tranche in a FCDO. In the figure, the premium dates are Ti, for i = 1, . . . , n.

The dotted arrows before T denote the pool losses LT before the associated CDO starts.

Like other forward contracts, the parties associated with FCDOs do not suffer from any

loss before T , which makes the contract popular in a volatile market which is expected

to stabilize after a short time.

A forward-starting basket default swap (FBDS) is a forward contract obligating the

holder to buy or sell a BDS at a specified future time. Figure 1.4 illustrates possible

scenarios for an mth-to-default FBDS. In the figure, we denote the maturity date of the

3A forward contract is an agreement between two parties to buy or sell an asset at a predetermined
future time [17].
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Figure 1.4: Cash flows for an mth-to-default FBDS

forward contract, or equivalently the starting date of the BDS, by T ; the maturity date

of the BDS by T ∗; and the premium dates by Ti, i = 1, . . . , n, where T = T0 < T1 < . . . <

Tn = T ∗. Whether the BDS starts or not is determined by the number of entities left in

the basket at T : if less than m names survive till T , the contract terminates without any

payments, as shown in case (a); if at least m entities survive till T , the BDS starts, and

the cash flows are the same as those in a BDS starting at T , as shown in cases (b) and

(c).

1.2 Brief literature review

Credit risk, the risk of an obligor failing any payment obligation, is the cornerstone of

credit derivatives. There are two kinds of models for credit risk: structural models and
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reduced-form models. In structural models, as pioneered by Merton [43], the default risk

is associated with economically meaningful variables. For example, when the asset value

of a firm falls below its debt value, the firm defaults. Although appealing, structural

models have difficulty fitting market data. Often they can not generate high enough

spreads for the short term. Consequently, reduced-form models were developed with the

ability to match market data. Here, the default is modeled by a stochastic process not

necessarily having a clear economic justification, as describe by Jarrow and Turnbull [31]

and Duffie and Singleton [10]. In addition to the calibration advantage, reduced-form

models are mathematically simpler than structural models.

Once we have a credit risk model, the valuation of single-name credit derivatives such

as CDS becomes straightforward. However for multi-name derivatives such as CDOs,

we have to incorporate the default correlations of the underlying portfolio. Due to its

computational efficiency, the Gaussian factor copula model [41] has become the market

standard model for pricing multi-name credit derivatives. In factor copula models, the

default of an obligor is associated with a credit-healthiness variable for the obligor falling

below its default boundary. To make the analysis tractable, the credit-healthiness variable

is decomposed into a common factor and an idiosyncratic factor, which are assumed to be

independent. Then, the default correlation is introduced through the correlation between

the credit-healthiness variable and the common factor. Conditional on the common

factor, the default of each obligor is independent. Consequently, we can compute or

approximate the portfolio loss with efficient numerical methods. This approach is also

known as the conditional independence framework [38].

However, the Gaussian factor copula model cannot match market quotes consistently

without violating the model assumptions [20]. For example, it has to use different cor-

relation coefficients for different tranches based on the same underlying portfolio. To

better match the observable spreads, several modifications have been proposed based on

the conditional independence framework. See, for example, [2], [6] and [21]. Most of these
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approaches are static one-period models generating a portfolio loss distribution at a fixed

maturity. They may not be flexible enough to match market quotes or applicable for new

products with strong time-dependent features [1]. To partially overcome this deficiency,

Andersen [1] and Sidenius [49] introduced several chaining techniques to build multi-

period factor copula models from one-period factor copula models. As these models have

to integrate over all the common factors, they require a multi-dimensional integration,

which is usually computed by Monte Carlo simulation. This makes the model calibration

extremely time consuming. Except for some special cases, for example where the factors

are the same for all periods, existing chaining methods cannot avoid multi-dimensional

integration. Therefore, current multi-period models are hard to generalize to more than

two periods.

Another approach for multi-name credit derivatives is the top-down approach, which

models the portfolio loss directly. For example, Bennani [7], Schönbucher [48], and Side-

nius, Piterbarg and Andersen [50] propose similar frameworks to model the dynamics of

the aggregate portfolio losses by modeling the forward loss rates. With these pool loss dy-

namics, the pricing of credit derivatives becomes straightforward. However, these models

require a large amount of data to calibrate and are currently somewhat speculative [1].

1.3 Main contributions

The purpose of this thesis is to develop dynamic models for multi-name credit derivatives,

which are able to calibrate against the market quotes consistently and are applicable

to exotic time-dependent credit derivatives, like FCDOs or options on tranches. As

computational efficiency is an important concern for practitioners, we employ factor

copula models to handle default correlations for multi-name credit derivatives.

Compared with standard credit derivatives, forward-starting products have a random

starting portfolio due to defaults that may occur before the maturity of the forward con-
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tract (i.e., before T in Figure 1.3). One obvious method is to consider all the possible

combinations of the starting pool, then to price the forward-starting products as standard

ones [4]. However, as the pool size is often very large, this method may be very compu-

tationally expensive because of the associated large combinatorial problem. We propose

a reduction method that converts a forward-starting credit derivative to an equivalent

standard one, thereby allowing us to use the valuation methods for standard products.

In addition to the reduction method, the valuation of FBDS requires the computation of

the expectation of the product of two random variables. We use Monte Carlo simulation

to estimate the correlation between these two random variables, thereby allowing us to

approximate the expectation of the product. We combine this Monte Carlo simulation

with an analytical method similar to that described above for FCDOs to obtain an effec-

tive hybrid method for the valuation of FBDS. This hybrid method is a novel technique

which can be viewed either as a means to accelerate the convergence of Monte Carlo

simulation or as a way to estimate parameters in an analytical method that are difficult

to compute directly.

Using the method described above, we are able to price FCDOs and FBDS. However,

these factor copula models are static models, that are not applicable to more sophisti-

cated time-dependent derivatives. To remedy this deficiency, we develop a novel chaining

technique that enables us to build a multi-period factor copula model from several one-

period factor copula models. This allows the default correlations to be time-dependent,

thereby generating sufficient degrees of freedom to fit market quotes consistently. As

discussed above, multi-period factor copula models usually require a multi-dimensional

integration, which makes calibration extremely time consuming. However, for our chain-

ing method, the portfolio loss of a completely homogeneous pool possesses the Markov

property. Thus, we can compute the portfolio loss distribution analytically without the

curse of dimensionality.

The multi-period factor copula model is a discrete-time dynamic model. As a first
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step toward a continuous-time dynamic model, we develop a dynamic model for single-

name credit derivatives, such as CDS. We develop a first hitting time model, that uses

a random initial state. The explicit relation between the default distribution and the

initial state distribution is found and the existence conditions of such a relation are also

discovered. Extending the single-name model to a multi-name model requires a novel

correlation structure to ensure the dynamic, analytical and easy-to-calibrate properties

of such a model. We leave this important and challenging problem as future work.

1.4 Outline of thesis

In this thesis, we develop four computational methods for different credit derivatives: a

reduction method for FCDOs, a hybrid method for FBDS, a chaining technique to build

a dynamic factor copula model for CDOs and a randomization method in the first hitting

time setting for CDS.

In Chapter 2, which is based largely on our results in [30], we develop a generic

method for pricing a FCDO by converting it to an equivalent synthetic CDO. Then, the

value of the FCDO is computed by the well developed methods for pricing the equivalent

synthetic one. Numerical results demonstrate that our method is much more accurate

and efficient than Monte Carlo simulation, the only other effective numerical method for

pricing FCDOs.

In Chapter 3, which is based largely on our results in [27], we propose a fast hybrid

method for pricing FBDS. In addition to converting a FBDS to an equivalent BDS,

the method combines Monte Carlo simulation with an analytic approach to achieve an

effective numerical method. Sensitivity of the hybrid method is also discussed. Numerical

results demonstrate the accuracy and efficiency of our proposed hybrid method.

In Chapter 4, which is based largely on our results in [28], we develop a dynamic

multi-period factor copula model to overcome the calibration deficiency of factor copula
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models by allowing the correlation to be time-dependent. Usually, multi-period factor

copula models require multi-dimensional integration. In our model, the portfolio loss of

a completely homogeneous pool possesses the Markov property, thus we can compute its

distribution across time by a recursive method instead of by Monte Carlo simulation.

Numerical results demonstrate the efficiency and flexibility of our model in calibrating

against market quotes.

In Chapter 5, which is based largely on our results in [29], we develop a dynamic,

analytical and easy-to-calibrate model for CDS based on the first hitting time model. We

solve the inverse problem for the first hitting time distribution by randomizing the initial

state of the Wiener process. For a wide classes of default distributions, the initial state

distribution is available in analytical form. Calibration is also discussed, and numerical

results are reported.

Chapter 6 concludes the thesis and discusses future work.



Chapter 2

Reduction method for

forward-starting CDOs

The most common approach for pricing FCDOs uses the factor copula model together

with Monte Carlo simulation. Such methods are flexible, but are computationally ex-

pensive. Therefore, Baheti, Mashal, and Naldi [4] developed a method that considers all

the possible pool losses LT before the maturity of the forward contract. Conditional on

a particular LT , they price single tranches using methods developed for synthetic CDOs.

Although their approach is analytical, it is also inefficient due to the large number of

default combinations for LT . For the valuation of FCDOs, we made a fairly simple, but

very useful, observation that allows us to convert the FCDO to an equivalent synthetic

CDO and then to price the equivalent synthetic CDO by factor copula models. Therefore,

our approach avoids having to consider all possible pool losses before T .

In this chapter, we develop our reduction method for FCDOs. Section 2.1 describes

the pricing equations for FCDOs. Section 2.2 derives a method to convert a FCDO

to an equivalent synthetic CDO. Section 2.3 reviews the Gaussian factor copula model.

Section 2.4 introduces a valuation method for synthetic CDOs. Section 2.5 presents two

numerical examples.

11



Chapter 2. Reduction method for FCDOs 12

2.1 Pricing equations

In a FCDO, the protection seller absorbs the pool loss specified by the tranche structure.

That is, if the pool loss over [T, T ∗] is less than the tranche attachment point a, the

seller does not suffer any loss; otherwise, the seller absorbs the loss up to the tranche

size S = b − a. In return for the protection, the buyer pays periodic premia at specified

times T1 < T2 < . . . < Tn = T ∗, where T = T0 < T1.

We consider a FCDO containing K instruments with loss-given-default Nk for name

k in the original pool. Assume that the recovery rates are constant. Let Di denote the

risk-free discount factors at time Ti, and di denote the expected value of Di in a risk-

neutral measure. Denote the original pool loss up to time Ti by Li, then the effective pool

loss over [T, Ti] is L̂i = Li − LT . Therefore, the loss absorbed by the specified tranche is

Li = min(S, (L̂i − a)+), where x+ = max(x, 0) (2.1)

We make the standard assumption that the Di’s and Li’s are independent, then Di and

Li are also independent.

In general, valuation of a FCDO tranche balances the expectation of the present values

of the premium payments (premium leg) against the effective tranche losses (default leg),

such that

E

[ n∑

i=1

s(S − Li)(Ti − Ti−1)Di

]
= E

[ n∑

i=1

(Li − Li−1)Di

]
(2.2)

Throughout the thesis, E denotes the risk-neutral expectation with respect to the risk-

neutral probability P. Therefore, the fair spread s is given by

s =
E
[∑n

i=1(Li − Li−1)Di

]

E
[∑n

i=1(S − Li)(Ti − Ti−1)Di

] =

∑n
i=1(ELi − ELi−1)di∑n

i=1(S − ELi)(Ti − Ti−1)di
(2.3)

In the last equality of (2.3), we use the fact that Di and Li (Li−1) are independent1.

Therefore, the problem is reduced to the computation of the mean tranche losses, ELi. To

compute this expectation, we have to compute the effective portfolio loss L̂i’s distribution.

1Based on the standard assumption of independence between Di’s and Li’s, the stochastic effect of
Di is lost immediately. Therefore, we use di directly in the rest of the thesis.
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2.2 Reduction method

From (2.1), we know that the expectation of the tranche losses ELi is determined by the

distribution of the effective pool losses L̂i. If we denote the default time of name k by τk

and define the indicator function 1{τk≤t} by

1{τk≤t} =





1, τk ≤ t

0, otherwise

then we have

L̂i = Li − LT =

K∑

k=1

Nk1{τk≤Ti} −
K∑

k=1

Nk1{τk≤T} =

K∑

k=1

Nk1{T<τk≤Ti} (2.4)

This simple, but very useful, observation is key to our approach. The rightmost sum in

(2.4) is the expression of the pool losses in a synthetic CDO starting at time T . Therefore,

the pool loss in our FCDO is equivalent to the pool loss in this synthetic CDO. The

distributions of the effective pool losses L̂i are determined by whether the underlying

names default in [T, Ti], and they can be computed through the equivalent synthetic

CDO with modified default probabilities. That is, instead of using the probability that

name k defaults before Ti in the synthetic CDO, we use the probability that name k

defaults during the period [T, Ti] in the equivalent synthetic CDO.

Remark. According to the argument above, a synthetic CDO can be treated as a special

case of a FCDO with T = 0.

2.3 Gaussian factor copula model

In this section, we review the market-standard Gaussian factor copula model for pricing

synthetic CDOs. However, it is important to note here that our approach is quite general

in the sense that any other method based on the conditional independence framework

for pricing synthetic CDOs could be used in place of the Gaussian factor copula model

in our approach to pricing FCDOs.
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Due to their tractability, Gaussian factor copula models are widely used to specify a

joint distribution for default times consistent with their marginal distribution. A one-

factor model was first introduced by Vasicek [51] to evaluate the loan loss distribution,

and the Gaussian copula was first applied to multi-name credit derivatives by Li [41].

After that, the model was generalized by Andersen, Sidenius, and Basu [3], Hull and

White [19], and Laurent and Gregory [38], to name just a few. In this section, we

review the one-factor Gaussian copula model to illustrate the conditional independence

framework and introduce the modified conditional default probability.

2.3.1 One factor copula model

Assume the risk-neutral (cumulative) default probabilities

πk(t) = P(τk ≤ t), k = 1, 2, . . . , K

are known. To generate the dependence structure of default times, we introduce random

variables Uk, such that

Uk = βkX + σkεk, for k = 1, 2, . . . , K (2.5)

where X is the systematic risk factor reflecting the health of the macroeconomic en-

vironment; εk are idiosyncratic risk factors, which are independent of each other and

also independent of X; the constants βk and σk, satisfying β2
k + σ2

k = 1, are assumed

known. The random variables X and εk follow zero-mean unit-variance distributions, so

the correlation between Ui and Uj is βiβj.

The default times τk and the random variables Uk are connected by a percentile-to-

percentile transformation, such that

πk(t) = P(τk ≤ t) = P(Uk ≤ bk(t))

where each bk(t) can be viewed as a default barrier. Thus the dependence among default

times is captured by the common factor X.
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Models satisfying the assumptions above are said to be based on the conditional inde-

pendence framework. If we also assume X and εk follow standard normal distributions,

we get a Gaussian factor copula model. In this case, each Uk also follows a standard

normal distribution. Hence we have

bk(t) = Φ−1(πk(t)). (2.6)

where Φ is the standard normal cumulative distribution function.

Conditional on a particular value x of X, the risk-neutral default probabilities are

defined as

πk(t, x) ≡ P(τk ≤ t | X = x) = P(Uk ≤ bk(t) | X = x) (2.7)

Substituting (2.5) and (2.6) into (2.7), we have

πk(t, x) = P
[
βkx + σkεk ≤ Φ−1(πk(t))

]
= Φ

[
Φ−1(πk(t)) − βkx

σk

]
(2.8)

In this framework, the default events of the names are assumed to be condition-

ally independent. Thus, the problem of correlated names is reduced to the problem of

independent names. The distribution of the effective pool loss L̂i satisfies

P(L̂i = l) =

∫ ∞

−∞

Px[L̂i = l]dΦ(x) (2.9)

where Px[L̂i = l] is the probability of L̂i = l, conditional on a specified value x of X; and

L̂i =
∑K

k=1 Nk1{bk(T )<Uk≤bk(Ti)}, where 1{bk(T )<Uk≤bk(Ti)} are mutually independent, condi-

tional on X = x. Therefore, if we know the conditional distributions of 1{bk(T )<Uk≤bk(Ti)},

the conditional distributions of L̂i can be computed easily, as can ELi in (2.3). To ap-

proximate the integral (2.9) we use a quadrature rule such as the Gaussian-Legendre rule.

Thus, the integral (2.9) reduces to

P(L̂i = l) ≈
M∑

m=1

wmPxm
[L̂i = l]

where the wm and xm are the quadrature weights and nodes, respectively. Therefore, the

main challenge in CDO pricing lies in the evaluation of the distribution of L̂i, conditional

on a given value x of X.
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2.3.2 Modified conditional default probability

Conditional on a given x, to compute the distribution of L̂i we need to specify the distri-

bution of 1{T<τk≤Ti}, which is equal to the conditional distribution of 1{bk(T )<Uk≤bk(Ti)}.

To this end, we introduce modified conditional default probabilities,

π̂k(t, x) = πk(t, x) − πk(T, x), for t ≥ T (2.10)

so that the conditional distribution of 1{T<τk≤Ti} satisfies

Px(1{T<τk≤Ti} = 1) = π̂k(Ti, x)

Px(1{T<τk≤Ti} = 0) = 1 − π̂k(Ti, x)

where Px is the probability conditional on X = x. Armed with the modified conditional

default probabilities, the conditional distribution of L̂i for a FCDO can be computed

using the methods developed for synthetic CDOs.

2.4 Evaluation of pool loss distribution

Based on the conditionally independent framework, researchers have developed many

methods to evaluate the conditional loss distribution for synthetic CDOs. There are

generally two kinds of approaches: the first one computes the conditional loss distribution

exactly by a recursive relationship or the convolution technique, e.g., Andersen, Sidenius,

and Basu [3], Hull and White [19], Laurent and Gregory [38], Jackson, Kreinin, and

Ma [26]; the second approach computes the conditional loss distribution approximately

by, for example, the normal power or compound Poisson approximations, e.g., De Prisco,

Iscoe, and Kreinin [46] and Jackson, Kreinin, and Ma [26]. Here we review one of the

exact methods – JKM proposed by Jackson, Kreinin, and Ma [26] – and employ it to

solve our numerical examples in the next section. Other methods for pricing synthetic

CDOs are equally applicable.
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A homogeneous pool has identical loss-given-default, denoted by N1, but different

default probabilities and correlation factors. Hence, conditional on a specified common

factor x, the pool losses satisfy

L̂i =

K∑

k=1

Nk1{T<τk≤Ti} = N1

K∑

k=1

1{T<τk≤Ti}

Therefore, we can compute the conditional distribution of L̂i through computing the

conditional distribution of the number of defaults
∑K

k=1 1{T<τk≤Ti}.

Suppose the conditional distribution of the number of defaults over a specified time

horizon [T, Ti] in a homogeneous pool with k names is already known. Denote it by

Vk = (pk,k, pk,k−1, . . . , pk,0)
T , where pk,j = Px(

∑k
l=1 1{T<τl≤Ti} = j). The conditional

distribution of the number of defaults in a homogeneous pool containing these first k

names plus the (k + 1)st name with modified conditional default probability Qk+1 =

π̂k+1(Ti, x) satisfies

Vk+1 =




pk+1,k+1

pk+1,k

...

pk+1,1

pk+1,0




(k+2)×1

=




Vk 0

0 Vk




(k+2)×2




Qk+1

1 − Qk+1




2×1

Using this relationship, VK can be computed after K − 1 iterations with initial value

V1 = (p1,1, p1,0)
T = (Q1, 1 − Q1)

T . The method has been proved numerically stable by

Jackson, Kreinin, and Ma [26].

An inhomogeneous pool, which has different loss-given-default, different default prob-

abilities, and different correlation factors, can be divided into I small homogeneous pools

with notionals N1, N2, . . . , NI . The conditional loss distribution for the ith group can

be computed using the above method. We denote it by (pi,0, . . . , pi,di
), where di is the

maximum number of defaults in group i. Suppose the conditional loss distribution of the

first i groups is available. Denote it by (p
(i)
0 , . . . , p

(i)
Si

), where p
(i)
s is the probability that s
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units of the pool default out of the first i groups, for s = 0, 1, . . . , Si =
∑i

j=1 djNj . The

conditional loss distribution of the pool containing these first i groups plus the (i + 1)st

group satisfies

p(i+1)
s =

∑

l ∈ {0, . . . , Si}
(s − l)/Ni+1 ∈ {0, . . . , di+1}

p
(i)
l ·pi+1,(s−l)/Ni+1

, for s = 0, 1, . . . , Si+1 = Si+di+1Ni+1

To start the iteration, we need to initialize the conditional loss distribution of the first

group (p
(1)
0 , p

(1)
1 , . . . , p

(1)
d1N1

) by setting possible loss amounts with certain probabilities and

impossible loss amounts with probability 0, such that

p(1)
s =





p1,s/N1, s/N1 ∈ {0, 1, . . . , d1}

0, otherwise

2.5 Numerical results I

Based on the methods described above, we propose the following steps for pricing FCDOs:

1. Convert πk(Ti) to conditional default probabilities πk(Ti, x) using (2.8) and compute

modified conditional default probabilities π̂k(Ti, x) by (2.10);

2. Compute the conditional distribution of L̂i by the JKM method described in Section

2.4;

3. Approximate P(L̂i = l) using a quadrature rule (2.9);

4. Evaluate E[Li] using (2.1);

5. Complete the computation using (2.3).

We compare the results generated by the Monte Carlo method to those obtained by

our method. The numerical experiments are based on two FCDOs: one is a homogeneous

pool; the other is an inhomogeneous pool. The contracts are 5-year CDOs starting one
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Tranche Attachment Detachment

Super-senior 12.1% 100%

Senior 6.1% 12.1%

Mezzanine 4% 6.1%

Junior 3% 4%

Equity 0% 3%

Table 2.1: CDO tranche structures

Credit Time

rating 1Y 2Y 3Y 4Y 5Y 6Y

Baa2 0.0007 0.0030 0.0068 0.0119 0.0182 0.0223

Baa3 0.0044 0.0102 0.0175 0.0266 0.0372 0.0485

Table 2.2: Risk-neutral cumulative default probabilities

year later with annual premium payments, i.e., T = T0 = 1, T1 = 2, . . ., T5 = 6 = T ∗.

The CDO tranche structures are described in Table 2.1. The continuously compounded

interest rates are 4%. The recovery rate of the instruments in the pool is 40%. The

risk-neutral cumulative default probabilities for two credit ratings are listed in Table

2.2. The pool structure of the inhomogeneous CDO is defined in Table 2.3, while the

homogeneous pool has the same structure except that the notional values are 30 for all

names.

We employ Latin hypercube sampling to accelerate the Monte Carlo simulation. Latin

hypercube sampling is one of the variance reduction techniques used in high dimensional

Monte Carlo simulation. It generates multiple dimensional random variables evenly over

the sample space without increasing the sample size. More details can be found in

Glasserman [15].

Each experiment consists of 100,000 trials, and 100 runs (with different seeds) of

each experiment are made. Based on the results of these 100 experiments, we calculate
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Notional Credit Rating βk Quantity

10 Baa2 0.5 5

10 Baa3 0.5 2

10 Baa2 0.6 5

10 Baa3 0.6 5

10 Baa3 0.7 4

10 Baa3 0.8 4

20 Baa3 0.5 7

20 Baa2 0.6 10

20 Baa3 0.6 8

30 Baa2 0.5 15

30 Baa3 0.5 10

60 Baa2 0.4 10

60 Baa2 0.4 8

60 Baa3 0.5 7

Table 2.3: Inhomogeneous pool structure
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Pool Tranche Monte Carlo 95% CI Our method

Equity 1158.19 [1155.11, 1162.18] 1158.25

Junior 388.83 [386.44, 391.65] 388.80

Homogeneous Mezzanine 238.37 [236.83, 240.29] 238.27

Senior 82.88 [81.87, 83.73] 82.89

Super-Senior 1.29 [1.23, 1.33] 1.29

Equity 1216.41 [1212.70, 1221.00] 1216.35

Junior 415.54 [412.36, 418.73] 415.46

Inhomogeneous Mezzanine 235.04 [232.99, 237.43] 234.89

Senior 70.26 [69.36, 71.27] 70.21

Super-Senior 0.80 [0.75, 0.84] 0.79

Table 2.4: Tranche premia (bps)

the mean and the 95% non-parametric confidence interval. Table 2.4 presents the risk

premia for these two FCDOs. The results demonstrate that our method is accurate for

the valuation of FCDOs.

For the homogeneous FCDO, the running time of one Monte Carlo experiment with

100,000 trials is about 14 times that used by our method; for the inhomogeneous FCDO,

the Monte Carlo method uses about 6 times the CPU time used by our method. These

comparisons demonstrate that our method is much more efficient than the Monte Carlo

method. In addition, it is worth noting that the main reason for this difference in speed-

ups between the Monte Carlo method and our method is that our method must compute

the actual pool loss notional for the inhomogeneous pool, instead of just the number of

defaults for the homogeneous pool. Consequently, for our method, the computation for

the inhomogeneous pool is more time consuming than for the homogeneous pool.



Chapter 3

Hybrid method for forward-starting

basket default swaps

Another application of the reduction method described in the previous chapter is to price

forward-starting basket default swaps (FBDS). FBDS and FCDOs are similar products.

However an important difference between them is that the notional of FCDOs at time

T equals the tranche size, which is deterministic, while the notional of FBDS at time

T depends on the pool losses before T , which is random. This difference makes the

valuation of FBDS more complicated. Similar to FCDOs, Monte Carlo simulation and

the conditional squared method [52] (which considers all possible combinations of LT and

prices each of them using a standard method) are the only methods previously available

for FBDS. Both of these approaches are computationally expensive.

We develop a fast approximation method for the valuation of FBDS. The method

converts the FBDS valuation problem to an equivalent BDS valuation problem using the

reduction method described in the previous chapter, thereby avoiding the large number

of possible default combinations. To complete the pricing, our method combines Monte

Carlo simulation with the analytical approach to obtain an accurate and efficient hybrid

method. The Monte Carlo method generates a coarse approximation for an important

22
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parameter required by the analytical method. This parameter cannot easily be computed

directly. Alternatively, the analytical method can be viewed as a means to accelerate the

convergence of Monte Carlo simulation.

This chapter is structured as follows. Section 3.1 derives the pricing equations for

FBDS. Section 3.2 describes our hybrid method. Section 3.3 revisits the Gaussian factor

copula models. Section 3.4 introduces a valuation method for BDS. Section 3.5 presents

two numerical examples. Section 3.6 discusses method sensitivity with respect to the

parameters approximated by Monte Carlo simulation.

3.1 Pricing equations

Similar to the assumptions for FCDOs, the underlying pool in a FBDS contains K

instruments with loss-given-default Nk for name k. The recovery rates are constant, and

the interest rate process is independent of the default process of the basket. Let di denote

the expected value of the risk-free discount factor corresponding to Ti. Without loss of

generality, we assume that the default payment happens at the nearest premium date

following (or equal to) the terminal default time, if it occurs before the contract maturity;

and no accrued interest is paid out at the terminal default time.

The terminal default time τ , which triggers the default payment, can be expressed as

a function of individual default times τk. We denote the loss of the FBDS at the terminal

default time by

L =





g(Nk), τ = τk ∈ (T, T ∗]

0, otherwise

where g(·) is a payoff function.

Let BT denote the set of names left in the basket at T . We also denote the number

of names in BT by |BT | and the probability distribution of BT ’s composition by P(BT ).

The event m ≤ |BT | ≤ K is the event that the BDS associated with the FBDS actually
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starts.

In general, the valuation of a FBDS balances the expectation of the present values

of the premium payments against the default payments, such that EVprem = EVdef . To

compute the expectation numerically, we introduce the terminal default probability

Π
(k)
i = P(τ = τk ∈ (T, Ti])

We also define the survival indicator function by 1̄i = 1{τ>Ti, m≤|BT |≤K}. Its probability

distribution satisfies

Π̄i = P(1̄i = 1) = P
(
m ≤ |BT | ≤ K

)
−

K∑

k=1

Π
(k)
i (3.1)

Under the assumptions above, the value of the default leg satisfies

EVdef =
K∑

k=1

g(Nk)
n∑

i=1

di

(
Π

(k)
i − Π

(k)
i−1

)
=

n∑

i=1

di

K∑

k=1

g(Nk)
(
Π

(k)
i − Π

(k)
i−1

)
(3.2)

Similarly, the value of the premium leg satisfies

EVprem = E

[
sNT 1̄i

i∑

j=1

∆Tj · dj

]
= s

n∑

i=1

∆Ti · di · E
[
NT 1̄i

]
(3.3)

where NT is the sum of the notional values of all names in BT , and ∆Ti = Ti − Ti−1.

Therefore, the fair spread can be computed by

s =
EVdef

DV01
=

∑n
i=1 di

∑K
k=1 g(Nk)

(
Π

(k)
i − Π

(k)
i−1

)
∑n

i=1 ∆Ti · di · E
[
NT 1̄i

] (3.4)

where DV01 ≡
∑n

i=1 ∆Ti ·di ·E
[
NT 1̄i

]
is the dollar value change in the premium leg with

respect to 1 bps change in spread.

3.2 Hybrid method

Since Π
(k)
i is defined in the same form as a similar probability used to value BDS in [24]

and [37] with T = 0, we can employ the method for BDS to compute the key probability

Π
(k)
i using the reduction method in Chapter 2. That is, instead of using the probability of
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name k defaulting before time t, we use the probability of name k defaulting in (T, t]. The

starting pool of the BDS associated with the FBDS is random in the original formulation

of the problem; in our new formulation, after the reduction, the starting pool in the

equivalent BDS contains all K names with certainty. Therefore, we avoid the large

combinatorial problem due to the consideration of all the possible starting pools in the

original formulation of the problem.

Once Π
(k)
i is known, the computation of EVdef is straightforward following (3.2). To

compute EVprem or DV01, we need to compute the expectation E
[
NT 1̄i

]
. Suppose we

know the correlation ρi between NT and 1̄i, then E
[
NT 1̄i

]
can be computed from

ρi =
E
[
NT 1̄i

]
− E

[
NT

]
E
[
1̄i

]
√

var
(
NT

)
var
(
1̄i

) (3.5)

where E
[
1̄i

]
= Π̄i and var

(
1̄i

)
= Π̄i

(
1− Π̄i

)
. Once Π

(k)
i is known, the computation of Π̄i

defined in (3.1) is straightforward, since the term P
(
m ≤ |BT | ≤ K

)
can be computed

by the pool loss distribution methods for CDOs, e.g., [3], [38], [19] and [26]. Similarly,

the terms E
[
NT

]
and var

(
NT

)
are easy to compute with known pool loss distribution.

Therefore, E
[
NT 1̄i

]
can be computed by

E
[
NT 1̄i

]
= E

[
NT

]
Π̄i + ρi

√
var
(
NT

)
Π̄i

(
1 − Π̄i

)
(3.6)

Hence, we can compute the premium leg value and complete the valuation.

The only unknown variable in (3.6) is the correlation coefficient ρi. We propose to use

Monte Carlo simulation to approximate ρi. As we show later, the spread is not sensitive

to the value of the correlation coefficients. Therefore, only a rough approximation to the

ρi is needed. This is an important property of this application which contributes to the

effectiveness of our hybrid method.
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3.3 Gaussian factor copula model revisited

To compute the value of Π
(k)
i for FBDS, we need to compute the joint distribution of K

correlated random variables 1{T<τk≤Ti}. Using the conditional independence framework,

we explain in Section 2.3 how the problem of correlated names is reduced to the problem

of independent names. By (3.2) and (3.3), the mean values of the default leg and premium

leg for a FBDS can be evaluated as

EVdef =

∫ ∞

−∞

Ex[Vdef ]dΦ(x) =

∫ ∞

−∞

n∑

i=1

di

( K∑

k=1

g(Nk)
(
Π

(k)
i (x) − Π

(k)
i−1(x)

))
dΦ(x) (3.7)

EVprem = s
n∑

i=1

∆Ti · di

(
E
[
NT

]
Π̄i + ρi

√
var
(
NT

)
Π̄i

(
1 − Π̄i

))

= s

n∑

i=1

∆Ti · di

(∫ ∞

−∞

Ex

[
NT

]
Π̄i(x) dΦ(x) + ρi

∫ ∞

−∞

√
varx(NT )Π̄i(x)

(
1 − Π̄i(x)

)
dΦ(x)

)

=

∫ ∞

−∞

s
n∑

i=1

∆Ti · di

(
Ex

[
NT

]
Π̄i(x) + ρi

√
varx(NT )Π̄i(x)

(
1 − Π̄i(x)

))
dΦ(x) (3.8)

=

∫ ∞

−∞

Ex[Vprem]dΦ(x)

For simplicity, we denote the integrand of (3.8) by Ex[Vprem]. However, it is essential

for computational efficiency that we use the unconditional ρi in (3.8), rather than the

conditional ρi(x), as might be expected from the notation of Ex[Vprem].

As for FCDOs, we use a quadrature rule to approximate the integrals (3.7) and (3.8).

Thus, for example, the integral (3.7) is approximated by

EVdef ≈
M∑

m=1

wmExm
[Vdef ] (3.9)

Therefore, the main challenge in pricing a FBDS lies in computing Px(|BT |), Px(NT ),

Π
(k)
i (x) and Π̄i(x), conditional on a given value x of X.

3.3.1 Modified conditional default intensity

Armed with the conditional default probabilities πk(T, x) defined in (2.7), the conditional

distribution of NT and |BT | can also be computed using the methods for CDOs or by brute
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force to explore all the possible combinations. Besides the modified conditional default

probabilities π̂k(t, x), to compute the conditional probability Π̂
(k)
i (x) by the methods

for BDS, we need to introduce the modified conditional default intensities. Assume the

modified conditional default distribution that name k defaults in (T, t] follows the Cox

process

Px(T < τk ≤ t) = 1 − exp (−Λk(t, x)) (3.10)

where

Λk(t, x) =

∫ t

T

λk(u, x)du (3.11)

and λk(·) is the modified conditional default intensity of the kth name. We know

Px(T < τk ≤ t) = π̂k(t, x) (3.12)

where π̂k(t, x) is given by (2.10). If we assume Λk(t, x) is linear between premium dates

Ti, then (3.11) implies that λk(t, x) is a piecewise constant function, satisfying

λk(t, x) = λk(Ti, x), for t ∈ (Ti−1, Ti]

Combining this result with (3.11), we have

Λk(Ti, x) = Λk(Ti−1, x) + λk(Ti, x) · ∆Ti

from which we obtain

λk(Ti, x) =
1

∆Ti

(
Λk(Ti, x) − Λk(Ti−1, x)

)
(3.13)

From (3.10) and (3.12), we know

Λk(Ti−1, x) = − ln
(
1 − π̂k(Ti−1, x)

)

Λk(Ti, x) = − ln
(
1 − π̂k(Ti, x)

)

Substituting these last two expressions above for Λk(Ti−1, x) and Λk(Ti, x) into (3.13),

we obtain

λk(Ti, x) =
1

∆Ti
ln
(1 − π̂k(Ti−1, x)

1 − π̂k(Ti, x)

)
, for i = 1, 2, . . . , n (3.14)



Chapter 3. Hybrid method for FBDS 28

3.4 Computation of terminal default probability

Available methods for BDS include the convolution technique by Laurent and Gre-

gory [38] and the recursive method based on the order statistics of individual default

times by Iscoe and Kreinin [24]. Here we review the recursive method in [24] and use it

in our numerical examples.

In a first-to-default BDS, the conditional probabilities ∆Π
(k)
i (x) = Px(τ = τk ∈

(Ti−1, Ti]) satisfy

∆Π
(k)
i (x) = Π

(k)
i (x) − Π

(k)
i−1(x) =

λk(Ti, x)
∑K

k=1 λk(Ti, x)

(
Π̄i−1(x) − Π̄i(x)

)
(3.15)

where λk(·) is the modified conditional default intensities defined in (3.14); and Π̄i(x) =

∏K
k=1

(
1 − π̂k(Ti, x)

)
.

For the mth-to-default BDS, Iscoe and Kreinin [24] derive the recursive relation be-

tween the mth-to-default and the (m − 1)st-to-default contracts:

(m − 1)Pm(B) =
∑

j 6=k

Pm−1(B[j]) − (K − m + 1)Pm−1(B)

where Pm(B) = P(τ = τk ∈ (Ti−1, Ti]) for the mth-to-default BDS; and B[j] is the set of

names obtained by excluding name j from B. Iscoe and Kreinin [24] also derive an explicit

expression that reduces the mth-to-default case to a set of first-to-default contracts:

Pm(B) =

m−1∑

v=0

(−1)m−v−1

(
K − v − 1

m − v − 1

) ∑

J⊂B:|J |=v

P1(B[J ])

where J is a subset of B and B[J ] is the set of names obtained by excluding those names

belonging to J from B. Here, for simplicity, we give the recursion for the unconditional

probabilities, but a similar recursion is also valid for the conditional probabilities.

3.5 Numerical results II

Based on the methods described above, we propose the following steps for pricing FBDS:
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1. Convert πk(Ti) to conditional default probabilities πk(Ti, x) using (2.8) and then

compute the modified conditional default probabilities π̂k(Ti, x) using (2.10);

2. Compute the conditional distribution Π
(k)
i (x) by the recursive method in Section

3.4 and Px(m ≤ |BT | ≤ K) and Px(NT ) by the methods for CDOs in Section 2.4

as well as Π̄i(x) using (3.1), Ex

[
NT

]
and varx(NT ) from Px(NT );

3. Run a Monte Carlo simulation to approximate the ρi in (3.5);

4. Evaluate Ex[Vdef ] and Ex[Vprem] by (3.7) and (3.8), respectively;

5. Approximate EVdef and EVprem using a quadrature rule (see (3.9));

6. Complete the computation using the pricing equations (3.4).

The numerical experiments are based on two FBDS: one is a homogeneous pool; the

other is an inhomogeneous pool. The contracts are 5-year BDS starting one year later

with quarterly premium payments, i.e., T = T0 = 1, Ti = 1 + 0.25i, for i = 1, . . . , 20.

The continuously compounded interest rates are 4% for each Ti. The recovery rate of

the instruments in the pool is 15%. The pool structure of the inhomogeneous FBDS

is defined in Table 3.1; the homogeneous pool has the same structure except that the

notional values are 100 for all names. The risk-neutral cumulative default probabilities

for different credit ratings are listed in Table 3.2.

Table 3.3 lists the premia for the mth-to-default FBDS (m = 1, . . . , 4) computed

by the conditional squared method of Zhang [52] (“Analytic” column), and our fast

approximation method described above (“Approximation” column) with 103 trials in the

Monte Carlo simulation to approximate the correlation coefficients ρi. The table also lists

the 95% confidence interval of the spread computed by a Monte Carlo method (“95%

CI” column). The 95% confidence interval is computed as follows: each Monte Carlo

experiment consists of 106 trials; we repeat each Monte Carlo experiment 500 times;

then, we compute the 95% confidence interval from the empirical distribution of those
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Name Notional Credit Rating βk

1 190 C4 0.5

2 80 C6 0.6

3 70 C1 0.9

4 360 C5 0.6

5 100 C2 0.5

6 200 C5 0.4

7 150 C5 0.7

8 123 C2 0.64

9 95 C5 0.55

10 107 C8 0.22

Table 3.1: Inhomogeneous FBDS pool

500 samples. The last column of Table 3.3 lists the relative errors of the spreads computed

by our fast approximation method, using the spreads computed by the analytic method

for the exact solution. Table 3.4 compares the 95% confidence interval computed by

106 trials of Monte Carlo simulation (“95% CI” row) with those computed by our fast

approximation method with 100, 1,000 and 10,000 trials (“100”, “1,000” and “10,000”

rows, respectively). These tables demonstrate that our fast approximation method is

accurate for the valuation of FBDS.

For the homogeneous FBDS, the running time of the Monte Carlo simulation with

106 trials is about 400 times slower than our fast approximation method; for the inhomo-

geneous FBDS, the running time of the Monte Carlo simulation is about 20 times slower

than our fast approximation method. The main reason for this difference in speed-ups

between the Monte Carlo method and our method is that our method must compute

the actual pool loss notional for the inhomogeneous pool, instead of just the number of

defaults for the homogeneous pool. Consequently, for our method, the computation for
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Time

Rating 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

C1 0.000247 0.001578 0.003022 0.004535 0.006115 0.007709 0.009422 0.011203 0.013051 0.014923 0.016902 0.018947

C2 0.000278 0.001776 0.003400 0.005102 0.006880 0.008672 0.010600 0.012604 0.014682 0.016788 0.019015 0.021315

C3 0.000370 0.002368 0.004534 0.006802 0.009173 0.011563 0.014134 0.016805 0.019577 0.022385 0.025353 0.028420

C4 0.000494 0.003156 0.006042 0.009063 0.012219 0.015400 0.018818 0.022369 0.026051 0.029779 0.033718 0.037786

C5 0.000529 0.003381 0.006471 0.009704 0.013080 0.016480 0.020134 0.023926 0.027857 0.031835 0.036035 0.040369

C6 0.000593 0.003787 0.007250 0.010876 0.014663 0.018480 0.022582 0.026843 0.031261 0.035735 0.040462 0.045343

C7 0.000741 0.004733 0.009059 0.013586 0.018312 0.023073 0.028187 0.033497 0.039000 0.044568 0.050449 0.056517

C8 0.000741 0.004734 0.009063 0.013595 0.018329 0.023099 0.028227 0.033553 0.039076 0.044669 0.050577 0.056679

Time

Rating 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

C1 0.021024 0.022951 0.024979 0.027044 0.029147 0.031217 0.033393 0.035605 0.037475 0.040136 0.042934 0.045778

C2 0.023653 0.025819 0.028101 0.030425 0.032791 0.035119 0.037567 0.040056 0.044012 0.047159 0.050472 0.053843

C3 0.031537 0.034426 0.037468 0.040567 0.043721 0.046826 0.050089 0.053408 0.058039 0.062140 0.066449 0.070828

C4 0.041916 0.045742 0.049769 0.053868 0.058039 0.062140 0.066449 0.070828 0.072230 0.077310 0.082643 0.088059

C5 0.044768 0.048840 0.053124 0.057481 0.061911 0.066266 0.070837 0.075479 0.078343 0.085471 0.092967 0.100592

C6 0.050299 0.054891 0.059723 0.064642 0.069646 0.074568 0.079739 0.084993 0.086675 0.092772 0.099172 0.105671

C7 0.062675 0.068377 0.074373 0.080473 0.086675 0.092772 0.099172 0.105671 0.108344 0.115965 0.123965 0.132089

C8 0.062874 0.068614 0.074654 0.080802 0.087058 0.093210 0.099674 0.106241 0.113961 0.123955 0.134122 0.144459

Table 3.2: Risk-neutral cumulative default probabilities
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Pool m 95% CI Analytic Approximation Rel Err

1 [104.66, 105.35] 105.00 105.07 6.98 × 10−4

Homogeneous 2 [35.70, 36.08] 35.90 35.92 7.00 × 10−4

Pool 3 [14.80, 15.08] 14.94 14.94 3.16 × 10−4

4 [6.29, 6.46] 6.38 6.38 2.81 × 10−5

1 [108.79, 109.75] 109.27 109.24 2.50 × 10−4

Inhomogeneous 2 [37.23, 37.72] 37.45 37.45 1.38 × 10−4

Pool 3 [15.18, 15.46] 15.32 15.32 7.52 × 10−5

4 [6.35, 6.57] 6.46 6.47 3.65 × 10−4

Table 3.3: FBDS premia (bps)

Pool Method m = 1 m = 2 m = 3 m = 4

95% CI [104.66, 105.35] [35.70, 36.08] [14.80, 15.08] [6.29, 6.46]

Homogeneous 100 [104.64, 105.42] [35.82, 35.99] [14.92, 14.96] [6.37, 6.38]

Pool 1,000 [104.88, 105.11] [35.87, 35.93] [14.93, 14.95] [6.38, 6.38]

10,000 [104.96, 105.03] [35.89, 35.91] [14.94, 14.94] [6.38, 6.38]

95% CI [108.79, 109.75] [37.23, 37.72] [15.18, 15.46] [6.35, 6.57]

Inhomogeneous 100 [108.89, 109.69] [37.35, 37.55] [15.29, 15.34] [6.46, 6.47]

Pool 1,000 [109.14, 109.42] [37.42, 37.49] [15.31, 15.33] [6.46, 6.47]

10,000 [109.23, 109.31] [37.44, 37.47] [15.32, 15.33] [6.46, 6.47]

Table 3.4: 95% confidence interval comparison
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the inhomogeneous pool is more time consuming than for the homogeneous pool. Our

fast approximation method is also faster than the analytic method. For example, for the

first-to-default homogeneous FBDS, the running time of the analytic method is about 40

times slower than our fast approximation method. These comparisons demonstrate that

our fast approximation method for FBDS outperforms both the Monte Carlo method

and the analytic method.

3.6 Sensitivity analysis

Since we use a Monte Carlo method to approximate the correlation coefficients ρi, the ρi

are usually not exact. Therefore, a natural question to ask is: how sensitive is the FBDS

spread to small changes in the ρi? If the sensitivity is weak, then our approximation

method can obtain accurate results with a modest amount of work. Weak sensitivity is a

key requirement to ensure that this kind of hybrid method is an effective computational

approach.

The sensitivity of the spread with respect to small changes in the ρi is determined by

∂s

∂ρi
=

∂s

∂DV01

∂DV01

∂ρi

=
∂(E[Vdef ]/DV01)

∂DV01
∆Ti · di

√
var(NT )Π̄i(1 − Π̄i)

= −s
∆Ti · di

√
var(NT )Π̄i(1 − Π̄i)∑n

j=1 ∆Tj · dj(E[NT ]Π̄j + ρj

√
var(NT )Π̄j(1 − Π̄j))

(3.16)

The term var(NT ) in (3.16) is usually much smaller than E[NT ], as the underlying

names usually have credit qualities above the investment grade and the difference in

default probabilities between the investment grade level and the best credit level is small.

For example, in our numerical experiments,
√

var(NT )/E[NT ] ≈ 4%. Because of the good

credit qualities, Π̄i > 0.5. Therefore,
√

Π̄i(1 − Π̄i) < Π̄i. To obtain an intuitive feeling

for the size of ∂s/∂ρi, we omit the relatively small terms in the denominator and the
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Pool ρi Spreads (bps) Rel Err (%)

-1 [107.37, 36.31, 15.03, 6.40] [2.26, 1.14, 0.63, 0.35]

Homogeneous 0 [105.36, 35.97, 14.96, 6.38] [0.34, 0.21, 0.11, 0.05]

1 [103.42, 35.65, 14.88, 6.36] [1.50, 0.70, 0.41, 0.25]

-1 [112.03, 37.93, 15.43, 6.49] [2.56, 1.26, 0.70, 0.39]

Inhomogeneous 0 [109.66, 37.53, 15.34, 6.47] [0.36, 0.21, 0.11, 0.05]

1 [107.39, 37.15, 15.25, 6.45] [1.72, 0.81, 0.47, 0.29]

Table 3.5: Sensitivity result

minor effects of Π̄i and ∆Ti · di, and approximate (3.16) by

∂s

∂ρi
≈ −s

∆Ti · di

√
var(NT )

√
Π̄i(1 − Π̄i)∑n

j=1 ∆Tj · djE[NT ]Π̄j

≈ −s

√
var(NT )

nE[NT ]

Therefore, the relative error in the spread due to the error in ρi is

|∆s|
s

≈ |∆ρi|
√

var(NT )

nE[NT ]
≤ 2

√
var(NT )

nE[NT ]

as |∆ρi| ≤ 2. Furthermore, the relative error due to the errors in all ρi is bounded by

n∑

i=1

2
√

var(NT )

nE[NT ]
=

2
√

var(NT )

E[NT ]
(3.17)

To further illustrate the weak dependence of the spread s on the correlation coef-

ficients ρi, we compute the spreads with all ρi set to −1, 0 or 1, respectively. The

results are listed in Table 3.5, where the values inside each parenthesis correspond to

the spreads and relative errors for m = 1, 2, 3, 4, respectively, for the homogeneous and

inhomogeneous mth-to-default FBDS considered above. From the table, we see that the

maximum relative error for both FBDS is smaller than 3%, which is less than the bound

given by (3.17). Moreover, note that taking all the ρi to be 0 gives a fairly good rough

approximation to the spread for these two examples.
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Dynamic factor copula model

The methods for FCDOs and FBDS discussed in the previous chapters are applicable

to any factor copula model based on the conditional independence framework: they

are generic methods. However, using the methods based on the Gaussian factor copula

model needs considerable care. Hull and White [21] pointed out that the Gaussian factor

copula model is static, as the normally distributed common factor determines the default

environment for the whole life of the model. A more serious drawback of the factor

copula models is the correlation smile problem, by which we mean that the model fails

to calibrate to the market spreads for tranches associated with the same underlying pool

using the same correlation coefficients. Therefore, we need a dynamic model for both

calibration and pricing exotic derivatives with strong time-dependent features.

Most of the existing dynamic models are based on the top-down approach, which are

data demanding and currently somewhat speculative [1]. Given this, it is tempting to

consider whether we could introduce dynamics into factor copula models to combine their

computational efficiency with the ability to calibrate more accurately against market

quotes. Extending the idea of chaining one-period factor copula models to obtain a

multi-period factor copula model in [1] and [49], we develop a novel chaining technique

that avoids the multi-dimensional integration which is usually required in multi-period

35
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factor copula models. In our model, the portfolio loss of a completely homogeneous

pool possesses the Markov property, thus we can compute the portfolio loss distribution

analytically while avoiding the curse of dimensionality.

The rest of the chapter is organized as follows. Section 4.1 reviews existing chaining

methods before introducing our new multi-period model. Section 4.2 discusses calibra-

tion. Section 4.3 presents numerical results. Section 4.4 discusses the application of the

model for new exotic products.

4.1 Multi-period factor copula models

The pricing equations for synthetic CDOs are a special case of those for FCDOs with

T = 0, as discussed in Section 2.1. Therefore, the fair spread s of a synthetic CDO is

given by

s =

∑n
i=1(ELi − ELi−1)di∑n

i=1(S − ELi)(Ti − Ti−1)di

where the tranche loss Li = min(S, (Li − a)+). Therefore, the problem is reduced to the

computation of the mean tranche losses, ELi.

To compute ELi, we have to compute the portfolio loss Li’s distribution. Based on

the one factor copula model in Section 2.3, the pool loss Li satisfies

P(Li = l) =

∫ ∞

−∞

Px(Li = l)dΦ(x)

where Li =
∑K

k=1 Nk1{Uk≤bk(Ti)}, and 1{Uk≤bk(Ti)} are mutually independent, conditional

on X = x. Since we know the conditional distributions of 1{Uk≤bk(Ti)}, the conditional

distributions of Li can be computed easily, as can ELi.

4.1.1 Drawback of one factor copula model

A significant drawback of the one factor copula model is that it does not allow the βk’s

to be time-dependent, which is often required to calibrate the model effectively. If βk is
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a function of time, πk(t, x) defined by (2.7) may be a decreasing function of time, which

may lead to an arbitrage opportunity, as explained in the next section. More specifically,

for 0 < T1 < T2, to guarantee

πk(T1, x) ≤ πk(T2, x)

or equivalently,

Φ

(
bk(T1) − βk(T1)x√

1 − βk(T1)2

)
≤ Φ

(
bk(T2) − βk(T2)x√

1 − βk(T2)2

)

we need

bk(T1) − βk(T1)x√
1 − βk(T1)2

≤ bk(T2) − βk(T2)x√
1 − βk(T2)2

As x may be any real value for any fixed βk(T1) 6= βk(T2), it is easy to find an x to

violate this inequality. For example, if bk(T1) = −2, bk(T2) = −1.4, βk(T1) = 0.6 and

βk(T2) = 0.8, then

πk(T1, 2) = P(τk ≤ T1 | X = 2) = Φ(−4)

πk(T2, 2) = P(τk ≤ T2 | X = 2) = Φ(−5)

4.1.2 Existing chaining methods

To overcome this deficiency Andersen [1] and Sidenius [49] pioneered the technique of

chaining a series of one-period factor copula models to produce a multi-period factor cop-

ula model. However, their approaches must integrate over the multi-dimensional common

factors to evaluate the portfolio loss distribution over time, requiring the evaluation of

a high-dimensional integral, usually computed by Monte Carlo simulation. Therefore,

their models are hard to generalize to more than two periods, except for some special

but possibly unrealistic cases such as the common factors remaining the same for all

periods. In this section we first review the approaches of Andersen [1] and Sidenius [49].

Then we present our new model, which, for completely homogeneous pools, avoids multi-

dimensional integration.
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In general the conditional independence framework, including one-period and multi-

period factor copula models, has to satisfy two properties: consistency and no arbitrage.

By consistency, we mean that the model has to match the marginal default probabilities

of the underlyings, i.e.,

P(τk ≤ t) =

∫

D

P(τk ≤ t | X(t) = x)dF (x) (4.1)

Here X(t) represents the common factors up to time t (it may be a multiple dimensional

random variable in the discrete case or a stochastic process in the continuous case); D

is the domain of X(t); and F (·) is the cumulative distribution function of X(t). By no

arbitrage, we mean that the cumulative pool loss distribution is a non-decreasing function

of time, i.e.,

P(Li = l) ≤ P(Lj = l), for Ti ≤ Tj (4.2)

To satisfy this constraint in practice, we usually require a stronger condition: the condi-

tional default probability of a single name is non-decreasing over time, i.e.,

P(τk ≤ T1 | X(T1) = x) ≤ P(τk ≤ T2 | X(T2) = y), for T1 ≤ T2 and x(t) = y(t), for t ≤ T1

(4.3)

where x(t) means the value of x at time t. Obviously, if we satisfy condition (4.3), then

the cumulative pool loss (4.2) is non-decreasing, which implies no arbitrage. Generally,

the consistency property is easy to satisfy, but the no arbitrage property is not, as shown

in the previous section.

In this chapter, we extend the factor copula model to a discrete-time dynamic model.

For each period (Ti−1, Ti] and each name k, we associate a latent random variable

Yk,i = βk,iXi +
√

1 − β2
k,iǫk,i (4.4)

where Xi is a random variable associated with the common factors for period (Ti−1, Ti]

and ǫk,i are mutually independent random variables associated with idiosyncratic factors

for name k and period (Ti−1, Ti]. To guarantee the no arbitrage property, Andersen [1]
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employed a discrete version of the first hitting time model to construct the conditional

default probabilities. More specifically, he connected the default time τk and the latent

random variables by

P(τk < t) = P(Yk,1 ≤ bk(T1)), t ≤ T1

P(Ti−1 < τk ≤ t) = P(Yk,1 > bk(T1), . . . , Yk,i−1 > bk(Ti−1), Yk,i ≤ bk(Ti)), t ∈ (Ti−1, Ti]

Then the conditional default probability for t ≤ T1 is the same as that in the one-factor

copula model. For t ∈ (Ti−1, Ti], the conditional default probability satisfies

P(Ti−1 < τk ≤ t | X(i) = x(i)) = P(Yk,1 > bk(T1), . . . , Yk,i−1 > bk(Ti−1), Yk,i ≤ bk(Ti) | X(i) = x(i))

Here, X(i) is associated with the common factors for the periods up to Ti, or equivalently,

X(i) = {X1, X2, . . . , Xi}.

Similar to the one-factor copula model, we must compute the boundary bk(Ti) satis-

fying the consistency property (4.1). For t ≤ T1, the computation is the same as that

for the one factor copula model. However, for t ∈ (Ti−1, Ti], it appears that we must

integrate the common factors up to Ti. The complexity of this multi-dimensional in-

tegration depends on the assumptions associated with the Xi’s. Andersen [1] showed

two special cases: (1) Xi are all same and (2) a two-period model, where X is a two-

dimensional random variable. In addition to the computation of the default boundary,

the multi-dimensional integration also arises when computing the unconditional portfolio

loss distribution from the conditional loss distributions.

Sidenius [49] attacked the no arbitrage problem by introducing conditional forward

survival probabilities

P(τk > t | τk > Ti−1, X
(i) = x(i)) =

P(τk > t | X(i) = x(i))

P(τk > Ti−1 | X(i) = x(i))
, t ∈ (Ti−1, Ti]

Using this, he expressed the conditional survival probability for t ∈ (Ti−1, Ti] as

P(τk > t | X(i) = x(i)) = P(τk > t | τk > Ti−1, X
(i) = x(i))P (τk > Ti−1 | X(i−1) = x(i−1))
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For t ≤ T1, the conditional survival probability is the same as that in the one factor

copula model.

The model allows a conditional forward survival probability for each time period

(Ti−1, Ti] to be associated with each correlation factor, i.e., P(τk > t | τk > Ti−1, X
(i) =

x(i)) = P(τk > t | τk > Ti−1, Xi = xi). For example, if the Xi’s associated with the latent

random variables Yk,i in (4.4) are independent, then the conditional forward survival

probability can be computed by

P(τk > t | τk > Ti−1, X
(i) = x(i)) =

P

(
βk,iXi +

√
1 − β2

k,iǫk,i > bk(Ti) | Xi = xi

)

P

(
βk,iXi +

√
1 − β2

k,iǫk,i > bk(Ti−1) | Xi = xi

)

Using the consistency property (4.1), we can calibrate the bk(Ti) recursively. However,

it is impossible to preserve any tractability for general cases. Similarly, the multi-

dimensional integration problem cannot be avoided except in some special cases such

as all Xi being the same.

Besides the multi-dimensional integration difficulty, another drawback of these two

approaches is their lack of economic meaning. For example, in [1], the latent random

variables Yk, which reflect the healthiness of name k, are reset back to zero at the be-

ginning of each period. Therefore, the process forgets its previous position. It is hard to

find any economic justification for the approach in [49].

4.1.3 New chaining method

To overcome the high-dimensional integration problem as well as some of the other de-

ficiencies of the methods described above, we use a similar approach based on the same

latent random variables (4.4), but we connect Yk,i and τk by the forward default proba-

bility

P(Yk,i ≤ bk(Ti)) = P(τk ∈ (Ti−1, Ti] | τk > Ti−1) =
P(τk ≤ Ti) − P(τk ≤ Ti−1)

1 − P(τk ≤ Ti−1)
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If Xi and ǫk,i follow standard normal distributions, then each Yk,i also follows a standard

normal distribution. Therefore, we can compute the conditional default boundary bk(Ti)

by

bk(Ti) = Φ−1
(
P(τk ∈ (Ti−1, Ti] | τk > Ti−1)

)

We can also compute each conditional forward default probability by

P
(
τk ∈ (Ti−1, Ti] | τk > Ti−1, Xi = xi

)
= Φ


bk(Ti) − βk,ixi√

1 − β2
k,i




To compute the conditional pool loss distribution, we need to construct P(τk ≤ Ti |

X1 = x1, . . . , Xi = xi) from P
(
τk ∈ (Ti−1, Ti] | τk > Ti−1, Xi = xi

)
. Based on the

definitions of these terms, we have

P(τk ≤ Ti | X1 = x1, . . . , Xi = xi)

= P(τk ≤ Ti−1 | X1 = x1, . . . , Xi−1 = xi−1) + P(τk ∈ (Ti−1, Ti] | X1 = x1, . . . , Xi = xi)

= P(τk ≤ Ti−1 | X1 = x1, . . . , Xi−1 = xi−1)

+ P(τk > Ti−1 | X1 = x1, . . . , Xi−1 = xi−1) · P
(
τk ∈ (Ti−1, Ti] | τk > Ti−1, Xi = xi

)

For the rest of the chapter, we denote P (τk ≤ Ti−1 | X1 = x1, . . . , Xi−1 = xi−1) by qk,i−1

and P
(
τk ∈ (Ti−1, Ti] | τk > Ti−1, Xi = xi

)
by pk,i for simplicity. If qk,i and pk,i are the

same for all k = 1, . . . , K, we denote them by qi and pi, respectively.

Using the conditional default probabilities qk,i, we can efficiently compute the con-

ditional distribution of the pool loss for a completely homogeneous pool, where βk,i,

πk(t) and Nk are the same for k = 1, . . . , K. In this special but important case, the

distribution of Li can be computed from the distribution of number of defaults li, as

Li = N1

∑K
k=1 1{τk≤Ti} = N1li. Therefore, the conditional pool loss distribution of a
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completely homogeneous pool satisfies

P
(
Li = rN1 | X1 = x1, . . . , Xi = xi

)
= P

(
li = r | X1 = x1, . . . , Xi = xi

)

=

(
K

r

)(
qi−1 + (1 − qi−1)pi

)r(
(1 − qi−1)(1 − pi)

)K−r

=

(
K

r

)( r∑

m=0

(
r

m

)
qm
i−1(1 − qi−1)

r−mpr−m
i

)
(1 − qi−1)

K−r(1 − pi)
K−r

=
r∑

m=0

(
K

m

)
qm
i−1(1 − qi−1)

K−m ·
(

K − m

r − m

)
pr−m

i (1 − pi)
K−m−(r−m)

=

r∑

m=0

P
(
li−1 = m | X1 = x1, . . . , Xi−1 = Xi−1

)
P
(
l̂K−m
(i−1,i] = r − m | Xi = xi

)
(4.5)

where l̂K−m
(i−1,i] is the number of defaults during (Ti−1, Ti] with the pool size K −m, and its

distribution is computed using the conditional forward default probability pi.

To compute the tranche loss, we need to compute the unconditional pool loss dis-

tribution from the conditional ones, i.e., we need to integrate over the common factors

Xi. Generally, this requires a multi-dimensional integration, for which Monte Carlo sim-

ulation is usually used. However, we can avoid the multi-dimensional integration in this

special case by exploiting the independence of the Xi’s:

P
(
li = r) =

∫ ∞

−∞

. . .

∫ ∞

−∞

r∑

m=0

P
(
li−1 = m | X1 = x1, . . . , Xi−1 = Xi−1

)

· P
(
l̂K−m
(i−1,i] = r − m | Xi = xi

)
dΦ(X1) . . . dΦ(Xi)

=

r∑

m=0

∫ ∞

−∞

. . .

∫ ∞

−∞

P
(
li−1 = m | X1 = x1, . . . , Xi−1 = Xi−1

)
dΦ(X1) . . . dΦ(Xi−1)

·
∫ ∞

−∞

P
(
l̂K−m
(i−1,i] = r − m | Xi = xi

)
dΦ(Xi)

=

r∑

m=0

P
(
li−1 = m

)
P
(
l̂K−m
(i−1,i] = r − m

)
(4.6)

Therefore, the unconditional pool loss distribution possesses the Markov property and

can be computed recursively.

Compared with the approach by Andersen [1], the latent process of our model is also

reset to zero at the beginning of each period. However, in our model it describes the
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healthiness of the forward default probability. The process for the default probability

actually remembers its position at the end of the previous period: how the process evolves

for the new period depends on the latent process of the forward default probability.

Therefore, our model is meaningful from the economical perspective.

For a more general pool, it still holds that the event that r defaults occur before Ti

is equivalent to the event that m defaults occur before Ti−1 and r − m defaults occur

during (Ti−1, Ti], for m = 0, . . . r. That is,

P(li = r) =
r∑

m=0

P(li−1 = m, l(i−1,i] = r−m) =
r∑

m=0

P (li−1 = m)·P(l(i−1,i] = r−m | li−1 = m)

Moreover, this relationship extends to the conditional probabilities:

P(li = r | X1 = x1, . . . , Xi = xi) =

r∑

m=0

P(li−1 = m | X1 = x1, . . . , Xi−1 = xi−1)

·P(l(i−1,i] = r − m | li−1 = m, X1 = x1, . . . , Xi = xi)

Under the assumptions of our model, we can simplify the above expression using

P(l(i−1,i] = r−m | li−1 = m, X1 = x1, . . . , Xi = xi) = P(l(i−1,i] = r−m | li−1 = m, Xi = xi)

Therefore,

P(li = r | X1 = x1, . . . , Xi = xi) =

r∑

m=0

P(li−1 = m | X1 = x1, . . . , Xi−1 = xi−1)

· P(l(i−1,i] = r − m | li−1 = m, Xi = xi)

To obtain the unconditional pool loss distribution, we need to integrate over the common

factors, as we did in (4.6). Therefore, in our model, the Markov property holds for a

general pool:

P
(
li = r) =

r∑

m=0

P
(
li−1 = m

)
· P
(
lK−m
(i−1,i] = r − m | li−1 = m

)

However, as the default probability of each name may be different in a general pool, we

end up with another combinatorial problem: we need to consider all possible combinations

of li−1 = m defaults.
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Obviously, the completely homogeneous pool is a special case. However, it is of con-

siderable practical importance, since such pools often arise in practice. Moreover, the

pool loss of a general pool is generally approximated by the pool loss of a completely ho-

mogeneous one for computational efficiency in calibration and in the valuation of bespoke

contracts.

Remark. For simplicity, we used the Gaussian factor copula model to illustrate our new

discrete dynamical multi-period factor copula model. However, it is important to note

that our approach can be applied to build a multi-period factor copula model from any

one factor copula model based on the conditional independence framework.

4.2 Calibration

Our goal is to calibrate our model against the market tranche quotes on the same under-

lying pool. To illustrate our approach, we use the tranche quotes of the credit indexes,

CDX and ITRAXX. As our model allows the correlation factor loadings to be time-

dependent, we can introduce dynamics into the model by letting the correlation factor

loadings follow particular dynamic processes. This added flexibility gives our dynamic

model enough degrees of freedom to calibrate consistently against market quotes.

We obtain the spread quotes for the indexes and tranches on CDX and ITRAXX

from the Thomson Datastream. We approximate the default probabilities of a single

name using the index spreads, which are the average spreads of the 125 names in CDX

or ITRAXX. Due to the data availability and popularity, we calibrate our model against

the four mezzanine tranches with maturities 5 years, 7 years and 10 years. Therefore, we

have to fit 12 market tranche quotes on the same underlying pool.

To fit these 12 tranche quotes, we must incorporate sufficient degrees of freedom

into our model. As the correlation factor loadings are time-dependent in our model,

they can be any dynamic process within the range [0, 1]. Therefore, we can obtain
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t0 3.3 6.7 10

ρ0

ρ2

ρ1

ρ6

ρ5

ρ4

ρ3

p0

1 - p0

1 − p2

p2

1 − p1

p1

Figure 4.1: A dynamic tree structure

sufficient degrees of freedom by building a suitable dynamic process for the correlation

factor loadings. To illustrate our approach, we employ a binomial tree structure for the

correlation factor loadings in our numerical examples. We assume that the correlation

factor loading process is a piecewise constant function over time and each branch of the

tree describes one possible path of the factor loading process. To compute the tranche

prices, we only need to take the expectation of the tranche prices on each branch. Figure

4.1 illustrates an equally-spaced three-period1 tree, where ρj is the value of the correlation

factor loading and pj is the probability of the process taking the upper branch. With

this tree structure, the correlation factor loading process has four possible paths for a

10-year maturity contract. For example, for an annual payment tranche contract, one

possible path for the βk,i’s is (ρ0, ρ0, ρ0, ρ1, ρ1, ρ1, ρ3, ρ3, ρ3, ρ3) with probability p0p1. We

can increase or decrease the degrees of freedom of the tree by adjusting the number of

periods or the tree structure, e.g., constraining the general tree to be a binomial tree.

1As illustrated in this example, the number of periods for the tree may be different from the number
of periods of our model, which equals the number of premium payments.
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Time 1Y 2Y 3Y 4Y 5Y

Probability 0.0041 0.0052 0.0069 0.0217 0.0288

Table 4.1: Risk-neutral cumulative default probabilities

4.3 Numerical results III

We begin by comparing the results generated by the Monte Carlo method to those ob-

tained by the recursion (4.6) on an example with arbitrarily chosen parameters. The

numerical experiments are based on 5-year CDOs with 100 underlying names and annual

premium payments. The tranche structure is the same as those of CDX, i.e., six tranches

with attachment and detachment points, 0%–3%, 3%–7%, 7%–10%, 10%–15%, 15%–30%

and 30%–100%. We assume a constant interest rate of 4% and a constant recovery rate

of 40%. For simplicity, we assume that all βk,i = 0.6. The risk-neutral cumulative default

probabilities are listed in the Table 4.1.

Each Monte Carlo simulation consists of 100,000 trials, and 100 runs (with different

seeds) for each experiment are made. Based on the results of these 100 experiments, we

calculate the mean and the 95% non-parametric confidence interval. Table 4.2 presents

the risk premia for the CDOs. For our example, the running time of one Monte Carlo

experiment with 100,000 trials is about 14 times that used by our recursive method.

These results demonstrate that the recursive relationship (4.6) is accurate and efficient.

To calibrate against the market quotes, we employ the tree structure for the correla-

tion factor loadings discussed in the previous section. In particular, we use an equally-

spaced four-period tree. However, we add constraints by using the same growth rate µj

and probability pj for period j, as shown in the tree in Figure 4.2. To guarantee that

βk,i ∈ [0, 1], we constrain ρ0 > 0, µk > 0 and βk,i = min(1, ρJ(i)), where J(i) is the index

of ρ associated with βk,i. Therefore, we have 7 parameters in total to calibrate against

12 tranche quotes. We compute the parameters by solving an associated optimization

problem. For the objective function of the optimization problem, we could use either the
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Tranche Monte Carlo 95% CI Recursion

0% – 3% 953.40 [946.71, 960.62] 951.60

3% – 7% 182.09 [179.51, 184.81] 181.59

7% – 10% 58.95 [57.26, 60.33] 58.77

10% – 15% 22.21 [21.01, 23.39] 22.09

15% – 30% 3.47 [3.03, 3.78] 3.44

30% – 100% 0.07 [0.03, 0.09] 0.07

Table 4.2: Tranche premia (bps)

t0 2.5 5 7.5 10

ρ0

ρ2 = ρ0/µ0

ρ1 = ρ0 ∗ µ0

ρ6 = ρ2/µ1

ρ5 = ρ2 ∗ µ1

ρ4 = ρ1/µ1

ρ3 = ρ1 ∗ µ1

ρ14 = ρ6/µ2

ρ13 = ρ6 ∗ µ2

ρ12 = ρ5/µ2

ρ11 = ρ5 ∗ µ2

ρ10 = ρ4/µ2

ρ9 = ρ4 ∗ µ2

ρ8 = ρ3/µ2

ρ7 = ρ3 ∗ µ2

p0

1 - p0

1 − p1

p1

1 − p1

p1

1 − p2

1 − p2

p2

p2

Figure 4.2: A particular dynamic tree example
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absolute error in the spreads

fabs =
∑

(mi − si)
2, for i = 1, . . . , 12

or the relative error in the spreads

frel =
∑

(mi − si)
2/m2

i , for i = 1, . . . , 12

where mi is the market spread quote for tranche i and si is the model spread for tranche

i.

Table 4.3 lists the calibration result for the tranche quotes of CDX series 8 on April 4,

2007. The upper half of the table uses the absolute spread error as the objective function,

while the lower half of the table uses the relative spread error as the objective function.

In both cases, the rows “Parameter” display the values of the parameters in our model,

in the order ρ0, µ0, p0, µ1, p1, µ2, p2.

Table 4.4 lists the calibration results for the same data using the Gaussian factor

copula model and the normal inverse Gaussian factor copula model [34]. In the table,

“NIG(1)” means the normal inverse Gaussian factor copula model with one extra pa-

rameter for fat-tailness, and “NIG(2)” means the normal inverse Gaussian factor copula

model with two extra parameters for skewness and fat-tailedness. Our results in Table

4.3 are far superior to the results of the three models in Table 4.4.

In additional to the market data on a single day, we calibrate our model against

market spreads of CDX series 8 on each Wednesday from March 23, 2007 to July 4,

2007. Figure 4.3 plots the absolute errors and relative errors of the 12 tranches using

the four-period tree structure with 7 parameters. The unit of the absolute error is basis

points and the unit of the relative error is percentage. For market data before the credit

crunch (July, 2007), our model is able to match the data quite well with 7 parameters.

For market data after the credit crunch, the calibration error increases dramatically. We

believe this is because the market quotes exhibit arbitrage due to the large demand and
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Maturity 5 yr 7 yr 10 yr

Tranche Market Model Abs Err Market Model Abs Err Market Model Abs Err

3 – 7 111.81 110.13 1.68 251.44 254.65 3.21 528.31 528.37 0.06

7 – 10 22.31 20.90 1.41 54.69 59.51 4.82 134.00 134.21 0.21

10 – 15 10.42 7.99 2.43 26.47 28.45 1.98 63.30 61.38 1.92

15 – 30 4.34 1.97 2.37 9.50 12.08 2.58 20.46 23.36 2.90

Parameter 0.73 0.43 0.98 0.32 0.57 0.11 0.63 fabs = 8.52

Tranche Market Model Rel Err Market Model Rel Err Market Model Rel Err

3 – 7 111.81 109.88 1.73% 251.44 300.00 19.31% 528.31 560.57 6.11%

7 – 10 22.31 21.37 4.23% 54.69 54.00 1.26% 134.00 141.36 5.49%

10 – 15 10.42 10.79 3.57% 26.47 25.01 5.52% 63.30 60.20 4.90%

15 – 30 4.34 4.36 0.37% 9.50 9.86 3.79% 20.46 22.30 8.99%

Parameter 0.55 0.65 0.80 0.42 0.71 0.15 0.57 frel = 25.01%

Table 4.3: Calibration result of CDX 8 on April 4, 2007
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Maturity 5 yr 7 yr 10 yr

Tranche Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2)

3 – 7 111.81 149.77 84.48 92.12 251.44 379.65 240.59 240.36 528.31 653.48 537.32 536.43

7 – 10 22.31 14.61 32.42 33.21 54.69 80.52 62.03 64.61 134.00 248.90 154.68 148.07

10 – 15 10.42 1.51 21.42 19.71 26.47 14.80 36.18 35.30 63.30 77.84 66.95 65.44

15 – 30 4.34 0.02 12.28 9.36 9.50 0.49 19.02 16.18 20.46 5.49 29.00 26.38

Abs err 39.98 32.14 24.86 131.62 18.88 18.54 171.19 24.39 17.42

Parameter Gaussian: 0.30 NIG(1): 0.46, 0.37 NIG(2): 0.44, 0.99, -0.61

Tranche Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2)

3 – 7 111.81 164.22 89.70 86.76 251.44 383.20 289.34 265.15 528.31 635.06 642.09 616.51

7 – 10 22.31 21.07 23.40 24.17 54.69 94.04 53.01 53.28 134.00 255.83 173.08 151.31

10 – 15 10.42 2.88 12.52 12.50 26.47 20.92 24.02 25.14 63.30 89.10 54.25 53.37

15 – 30 4.34 0.07 4.96 4.46 9.50 0.98 8.77 9.23 20.46 8.06 15.40 16.95

Rel err 130.96% 31.95% 31.26% 128.06% 19.53% 8.35% 118.37% 46.17% 31.39%

Parameter Gaussian: 0.33 NIG(1): 0.34, 0.44 NIG(2): 0.35, 0.99, -0.63

Table 4.4: Comparison of calibration results by different models
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Figure 4.3: Weekly calibration result of CDX 8

supply gap. As the financial crisis developed, traders tried to sell the credit derivatives

they were holding, but no one wanted to buy them.

In addition to our approaches, Eckner [12] calibrated against market tranche quotes

successfully using an affine-type reduced form model and based on the conditional inde-

pendence framework. Metzler [44] proposed a different approach to introduce correlations

into a multi-name first hitting time model, as explained in the next chapter. He also suc-

cessfully calibrated against market quotes using his approach. Both of them achieved

almost the same results as our model2.

4.4 Application to forward products

After calibrating against market quotes consistently, our multi-period factor copula model

can be applied to price exotic time-dependent credit derivatives such as FCDOs. By the

2Note that Eckner [12], Metzler [44] and our model use different data sets.



Chapter 4. Dynamic factor copula model 52

reduction method in Chapter 2, we need to compute the conditional distribution of the

effective pool losses L̂i using the modified conditional default probability

P(T < τk ≤ Ti | X(i)) = P(τk ≤ Ti | X(i)) − P(τk ≤ T | X(0))

where X(0) means the common factor before T . In our multi-period factor copula model,

the modified conditional default probability satisfies

P(T < τk ≤ Ti | X(i))

=P(T < τk ≤ Ti−1 | X(i−1)) + P(τk > Ti−1 | X(i−1)) · P(τk ∈ (Ti−1, Ti] | τk > Ti−1, Xi)

For i = 1, we have

P(T < τk ≤ T1 | X(1)) =
(
1 − P(τk ≤ T | X(0))

)
· P(τk ∈ (T, T1] | τk > T, X1)

This term is used to compute the distribution of the effective pool loss over (T , T1]. Even

though the distribution of number of defaults li in the effective pool still follows

P(li = r | X(i)) =
r∑

m=0

P(li−1 = m | X(i−1)) · P(l(i−1,i] = r − m | li−1 = m, X(i))

we cannot omit the common factors before T , as they occur in the base case of the

recursion, i.e., the distribution of l1. That makes our dynamic factor copula model

computationally inefficient for pricing FCDOs, as we need to integrate all the possible

scenarios of the common factors before T .

We plan to continue to work on developing a fast dynamic factor copula model,

but, for now, we suggest to price these time-dependent products using Monte Carlo

simulation and based on models that calibrate consistently against market quotes, such

as our dynamic factor copula models. An effective method for forward starting products

and options based on such models is an interesting and challenging future research topic.



Chapter 5

Randomized first hitting time model

The multi-period factor copula model described in the previous chapter is a discrete-time

dynamic model. To develop a continuous-time dynamic model based on the conditional

independence framework, we need a continuous-time credit risk model for a single name,

as such a model is the fundamental building block for a multi-name model. As structural

models are employed in factor copula models, we concentrate in this chapter on first

hitting time models, one particular class of structural models.

Structural models were introduced by Merton [43] to model credit risk. In his original

model, the default time of a firm is set to its debt maturity, if the firm’s asset value falls

below its debt value at maturity. It is well known that credit spreads for short maturities

generated by Merton’s model are too low [14]. Therefore, Black and Cox [8] employed

a first hitting time model, in which the firm’s default time is set to the first time when

its asset value falls below its debt value. However the Black and Cox model and its

extensions such as [42], [39] and [13], cannot generate high enough short spreads, either.

Duffie and Lando [37] introduced an incomplete information approach, which adds

random noise into the asset process1 to better match the observed market spreads. Sim-

ilarly, Giesekce [14] assumed a stochastic default barrier in the first hitting time model.

1Equivalently, the underlying asset process starts from a random initial position.

53
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Both approaches assume a particular distribution for the noise, e.g., a normal distribu-

tion, then calibrate the distribution parameters against market data.

In this chapter, we develop a randomized first hitting model to better fit the market

data. Our approach introduces extra degrees of freedom by randomizing the initial state

of the Wiener process in the first hitting time setting. In our approach, we do not assume

a particular distribution function, such as a normal distribution, for the noise. That is,

instead of calibrating parameters in a pre-assumed distribution function, we directly

calibrate the distribution function itself. Therefore, our approach is a generalization of

the incomplete information approach.

The rest of this chapter is organized as follows. Section 5.1 presents the mathematical

derivation of our approach and studies several important properties of the model. Section

5.2 describes calibration. Section 5.3 presents calibration results. Section 5.4 discusses

the difficulty of extending our single-name model to a multi-name one.

5.1 Randomization in the first hitting time problem

Let Xt be an arbitrary stochastic process with continuous sample paths and let b(t) be a

continuous absorbing boundary, satisfying the relation X0 ≥ b(0). The random variable

τ =





inf{t ≥ 0 : Xt < b(t)}, if there exists t such that Xt < b(t)

∞, otherwise

is called the first hitting time for the process Xt.

If Xt is a diffusion process, the problem of finding the distribution of τ is a classical

one; it was solved by Khintchine [36] in 1933 for sufficiently smooth boundaries. Since

then many books and research papers have been published in this area. Lerche [40] sum-

marized known analytical results obtained by the mid-1980s, Karatzas and Shreve [35]

considered the link between analytical methods and the martingale approach, Durbin [11]
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discussed computational aspects of the problem, and Hobson, Williams, and Wood [16]

analyzed Taylor expansions of the probability distribution of τ .

Calibration of the default model in the credit risk context leads to the following inverse

problem:

Given a stochastic process Xt and a distribution F (t),

find a boundary b(t) such that P (τ ≤ t) = F (t).

This problem was considered in [25] for the case in which Xt is a Brownian random walk2.

A detailed analysis of the inverse problem in the discrete time setting is given in [23] as

well as a solution based on the Monte Carlo method.

Existence of the solution to the continuous-time inverse problem is analyzed in [9].

In [45], an integral equation for the boundary is derived when Xt is a Wiener process.

Unfortunately, this problem appears to be very difficult: an analytical solution is known

in a few cases only.

In this chapter, we consider a modified inverse problem. Let Xt = a + Wt with a

random initial position, X0 = a, where a is a non-negative random variable, and Wt is a

standard Wiener process. We fix the boundary b(t) = µt, where µ ≥ 0 is a fixed constant.

For a fixed µ, let the first hitting time for Xt and b(t) = µt be denoted by τ (µ). The

modified inverse problem is formulated as follows:

Given a stochastic process Xt and a distribution F (t),

find a distribution of the random variable a such that P
(
τ (µ) ≤ t

)
= F (t). (5.1)

An equivalent form of this first hitting time problem that we often use in this chapter is

to let Xt = Wt − µt and b(t) = −a.

The randomization of the initial state of the process Xt allows us to find an analytically

tractable solution for a large class of distributions F (t), without changing the covariance

2Xt is a discrete time process with Gaussian increments.
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structure of the process. We begin by considering the inverse problem (5.1) for F (t)

restricted to the class of Gamma distributions with the probability density function

pγ(t) = λ · (λt)γ−1

Γ(γ)
· exp(−λt), γ > 0, λ > 0

The idea behind our solution is as follows: given X0 = a, the conditional density

function fa(t) of τ (µ) and the conditional distribution function

Fa(t) = P(τ ≤ t |X0 = a)

are available in closed form. Let g(a) be the density function of the initial state X0 = a.

Then, the distribution function of the first hitting time satisfies

F (t) =

∫ ∞

0

Fa(t)g(a) da. (5.2)

Therefore, the random variable τ (µ) is the mixture of the random variables τ
(µ)
a , repre-

senting the first hitting time for the process Xt = Wt − µt and the constant boundary

b(t) = −a. The density function of τ
(µ)
a has a simple analytical form. From (5.2), we

find the Laplace transform ĝ(s) of the density function g, and derive conditions on the

parameter µ providing existence of the solution.

The rest of this section is organized as follows. Subsection 5.1.1 reviews some of the

existing results on the first hitting time distribution of a Wiener process. Subsection

5.1.2 presents our solution to Problem (5.1). Subsection 5.1.3 discusses existence of the

density function of the initial state.

5.1.1 First hitting time for a Wiener process

We start with a brief review of the properties of the first hitting time of a Wiener process

Wt with constant and linear boundaries [35]. Consider the constant boundary b(t) = −a,

a > 0. In this case, µ = 0. Using the reflection principle, we have

P{τ (0)
a ≤ t} = 2P{Wt ≤ −a} = 2Φ

(−a√
t

)
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where Φ(x) is the standard normal cumulative distribution function. The probability

density function of the first hitting time satisfies the relation

fa(t) =
a√
2πt3

exp

(
−a2

2t

)
(5.3)

In the case of a constant boundary (i.e., µ = 0), the random variable τ
(0)
a is finite almost

surely but Eτ
(0)
a = ∞. If we take a mixture of random variables τ

(0)
a with a mixing

density g, the resulting random variable τ (0) will also have infinite expectation. In this

case it is not possible to match a class of distributions F (t) with a finite first moment.

Subsection 5.1.3 provides the existence condition of g for this case.

Now consider the first hitting time τ
(µ)
a of a Wiener process with drift Xt = Wt − µt

and a constant boundary b(t) = −a. Obviously, the first hitting time for Xt coincides

with the first hitting time of Wt and the boundary bµ(t) = µt − a. Using the Girsanov

theorem, we find3

P
(
τ (µ)
a ≤ t

)
=

∫ t

0

a√
2πs3

exp

(
−(a − µs)2

2s

)
ds (5.4)

Therefore, given a value of a, the conditional density function fa(t) for the first hitting

time of Xt = Wt − µt with the boundary b(t) = −a and the associated conditional

distribution function Fa(t) are given by

fa(t) =
a√
2πt3

exp

(
−(a − µt)2

2t

)
(5.5)

Fa(t) = Φ

(−a + µt√
t

)
+ e2µaΦ

(−a − µt√
t

)
(5.6)

From (5.6), it follows that

P
(
τ (µ)
a < ∞

)
=





1, if µ ≥ 0

e2µa, otherwise

(5.7)

3The details of the derivation can be found in [35].
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Thus, if µ > 0, then the first hitting time in our problem is finite almost surely. The

moment generating function, Ga(s) = E[esτ
(µ)
a ], is

Ga(s) =

∫ ∞

0

estfa(t) dt = exp [(µ −
√

µ2 − 2s)a] (5.8)

If µ > 0, the expected value of the first hitting time τ
(µ)
a is finite:

E[τ (µ)
a ] =

a

µ

Therefore

E[τ (µ)] =
E[a]

µ

5.1.2 Density function of the initial state

Now we can find the relation between the distribution function F (t) and the density

function g(·) of the initial distribution X0 = a of the process Xt = Wt + a.

Proposition 1. Suppose that the random variable τ (µ) has an absolutely continuous

distribution function F (t) with the density function f(t). Denote the Laplace transform

of f by

f̂(s) =

∫ ∞

0

e−stf(t) dt, s ≥ 0

If a density function g(t) of the initial state X0 = a exists, then its Laplace transform

ĝ(s) =

∫ ∞

0

e−stg(t) dt

satisfies the equation

ĝ(s) = f̂

(
s(s + 2µ)

2

)
(5.9)

Remark. The function ĝ(s) defined by (5.9) may not be a Laplace transform of a density

function of a random variable. In this case, a solution to Problem (5.1) does not exist.

For this reason, we formulate Proposition 1 in a conditional form.
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Proof. The density function f(t) of the random variable τ (µ) satisfies the equation

f(t) =

∫ ∞

0

fa(t) · g(a) da

Applying the Laplace transform to this equation, we find

f̂(s) =

∫ ∞

0

Ga(−s)g(a) da (5.10)

where Ga(s) is the moment generation function (5.8) for the first hitting time problem.

Since Ga(−s) = exp
(
aµ − a

√
µ2 + 2s

)
, we obtain

f̂(s) = ĝ
(√

µ2 + 2s − µ
)

which is equivalent to (5.9).

Let us now find the density g(a) of the initial distribution X0 = a of the process

Xt = Wt + a, if the first hitting time distribution is the Gamma distribution. In this

case, f(t) = pγ(t), for some γ > 0. Then we have

f̂(s) =
λγ

(λ + s)γ

From (5.9), we obtain

ĝ(s) =
(2λ)γ

((s + µ)2 − (µ2 − 2λ))γ (5.11)

Rearranging (5.11), we find

ĝ(s) =
(µ +

√
µ2 − 2λ)γ

(
s + µ +

√
µ2 − 2λ

)γ · (µ −
√

µ2 − 2λ)γ

(
s + µ −

√
µ2 − 2λ

)γ (5.12)

The latter representation of the Laplace transform ĝ(s) corresponds to the sum of two

independent random variables ξ1 +ξ2 having Gamma distributions with a common shape

parameter γ: ξ1 ∼ Γ(γ, λ1) and ξ2 ∼ Γ(γ, λ2), where

λ1 = µ −
√

µ2 − 2λ, λ2 = µ +
√

µ2 − 2λ

From (5.11) it follows that µ must satisfy the inequality

µ ≥
√

2λ (5.13)
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Otherwise, the solution of Problem (5.1) does not exist. Indeed, if µ <
√

2λ, the function

g(a), corresponding to ĝ(s), takes negative values. Thus, we proved

Proposition 2. Consider the first hitting time of the process Xt = a+Wt and the linear

boundary b(t) = µt. If the distribution F (t) belongs to the class of Gamma distributions

with the rate parameter λ satisfying (5.13), then Problem (5.1) has a solution and the

Laplace transform of the distribution of the initial state X0 = a is given by (5.11). If

(5.13) is not satisfied, then the solution does not exist.

5.1.3 Existence of a solution

In the previous section, we reduced the inverse problem to the solution of the integral

equation for the density function g(·),

f̂(s) =

∫ ∞

0

Ga(−s) · g(a) da, s > 0 (5.14)

where Ga(s) is defined by (5.8) and f̂(s) is the Laplace transform of a given density

function f(t). In the case f(t) = pγ(t), we found the solution to the problem defined by

(5.1), if the parameter µ satisfies (5.13).

Now we would like to find general conditions on the Laplace transform f̂(s) provid-

ing existence of the density function g(a), satisfying the integral equation (5.14). The

following proposition gives a sufficient condition for existence of the density g(a).

Proposition 3. Fix the boundary b(t) = µt. Consider a non-negative random variable

τ . Let R denote the class of functions f̂(s) = E[e−sτ ] of the argument s represented in

the form

f̂(s) =
K∑

k=1

αk

(s + λk)lk
, lk ∈ R+, λk, αk > 0 (5.15)

Then there exists µ∗ > 0 such that for all µ ≥ µ∗ the integral equation (5.14) has a

solution g(a) satisfying the conditions

g(a) ≥ 0,

∫ ∞

0

g(a) da = 1
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Proof. We start the proof of Proposition 3 with the following remark.

Let ~p = (p1, p2, . . . , pK) be a finite probability distribution. Therefore

K∑

k=1

pk = 1, pk ≥ 0 for k = 1, 2, . . . , K

If each density function gk(a) solves Problem (5.1) for each associated density fk(t) and

the linear boundary b(t) = µt, then the convex combination

g(a) =

K∑

k=1

pkgk(a)

solves Problem (5.1) for the density

f(t) =

K∑

k=1

pkfk(t)

Now consider a density function f(t) such that f̂(s) ∈ R. Since f̂(0) = 1 and αk > 0,

λk > 0, we obtain
K∑

k=1

αk

λlk
k

= 1 (5.16)

Let pk = αk

λ
lk
k

. Obviously, pk > 0 and
∑K

k=1 pk = 1. Then the function f̂(s) defined by

(5.15) can be represented as a convex combination

f̂(s) =

K∑

k=1

pkf̂k(s)

where

f̂k(s) =
λlk

k

(s + λk)lk

The Laplace transform f̂k(s) corresponds to a random variable τk ∼ Γ(lk, λk) with a

Gamma distribution. Let

µ∗ = max
1≤k≤K

√
2λk.

Then, by Proposition 2, for µ ≥ µ∗ and for each k = 1, 2, . . . , K, there exists gk(a) solving

Problem (5.1) for the density fk(t). Consequently, the density

g(a) =
K∑

k=1

pkgk(a)
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solves Problem (5.1) for the probability density function

f(t) =
K∑

k=1

pkλk exp(−λkt)
(λkt)

lk

Γ(lk)

Thus, the Proposition is proved.

Consider now the class of hyper-Erlang distributions, HE , that contains all non-

negative random variables ξ satisfying the following relation for the Laplace transform:

ξ ∈ HE ⇔ E[e−sξ] =

k∑

j=1

pj

λ
nj

j

(λj + s)nj

where
∑k

j=1 pj = 1, pj > 0, λj > 0 and nj are positive integers.

It is very well known that the class of hyper-Erlang distributions, HE , is dense in the

space of all non-negative random variables [33]. That is, for any random variable η ≥ 0,

there exists a sequence of random variables ξn ∈ HE , such that

ξn
w

=⇒η

where
w

=⇒ denotes the weak convergence of the corresponding probability measures.

Then

lim
n→∞

E[exp(−sξn)] = E[exp(−sη)], ∀s ≥ 0

and E[exp(−sξn)] ∈ R. However, this property does not allow us to conclude that

Problem (5.1) can be solved for an arbitrary distribution F (t) using our randomization

construction. For instance, consider the degenerate random variable τ , such that P(τ =

c) = 1, where c > 0 is a constant. In this case

E[exp(−sτ)] = e−sc

Let λk = k · c−1 and lk = k. Consider a sequence of random variables τk with Gamma

distributions, i.e., τk ∼ Γ(λk, lk). Then we have

E[exp (−sτk)] =
λlk

k

(λk + s)lk
=

1
(
1 + sc

k

)k
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and

lim
k→∞

E[exp(−sτk)] = e−sc, s ≥ 0

but there is no finite µ, satisfying the inequality µ ≥
√

2λk for all k. Thus Problem (5.1)

does not have a solution for any µ in this case.

For the same reason, there is no solution to Problem (5.1) if the function F (t) is

discontinuous. If we impose the condition: there exists λ∗ > 0 such that

λk ≤ λ∗, for all k = 1, 2, . . . (5.17)

Then for any µ ≥
√

2λ∗, there exists a solution gk(a) of Problem (5.1), given the density

fk(t) and the mixture

g(a) =
∑

k≥0

pkgk(a)

solves Problem (5.1) for

f(t) =
∑

k≥0

pkfk(t)

The class of distributions satisfying condition (5.17) has a positive density f(t) for all

t > 0.

Proposition 3 defines a class R for which a density g(a) exists for µ > 0. As mentioned

above, if µ = 0, it is impossible to match a class of distributions with a finite first moment,

such as the class R. The following proposition gives a sufficient condition for the existence

of the density for the case µ = 0.

Proposition 4. Fix the boundary b(t) = 0. Consider a non-negative random variable τ .

Let R0 denote the class of functions f̂(s) = E[e−sτ ] of the argument s represented in the

form

f̂(s) =

K∑

k=1

αk

(
√

2s + λk)lk
, lk ∈ R+, λk, αk > 0 (5.18)

Then the integral equation (5.14) has a solution g(a) satisfying the conditions

g(a) ≥ 0,

∫ ∞

0

g(a) da = 1
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Proof. Similar to the proof of Proposition 3, the function f̂(s) defined in (5.18) can be

represented as a convex combination

f̂(s) =
K∑

k=1

pkf̂k(s)

where

pk =
αk

λlk
k

and f̂k(s) =
λlk

k

(
√

2s + λk)lk

From (5.9) of Proposition 1, we have

ĝk(s) = f̂k

(
s2

2

)
=

λlk
k

(s + λk)lk

which corresponds to the Gamma distribution

gk(a) = λk exp(−λka)
(λka)lk

Γ(lk)

Then the density

g(a) =

K∑

k=1

pkgk(a)

solves the Problem (5.1) with µ = 0 for the density function f(t) with Laplace transform

f̂(s) ∈ R0.

5.2 Calibration

The randomized first hitting time model has analytical solutions for a large class of default

distributions. To calibrate our model against market CDS spreads, we need to assume one

particular default distribution, e.g., linear combination of gamma distributions4. Given

the default distribution, the CDS spreads are computed as follows.

Suppose the protection buyer pays premia at t1 < . . . < tn = T , where 0 = t0 < t1

and T is the contract maturity. We consider a constant recovery rate R. If the underlying

4As shown in the calibration results, one gamma distribution with two parameters usually matches
10 market spreads quite well.
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defaults during (ti−1, ti], the protection seller pays the loss to the buyer at ti. Then, the

fair spread of the CDS satisfies

s =

∑n
i=1(1 − R)

(
P(τ ≤ ti) − P(τ ≤ ti−1)

)
di∑n

i=1

(
1 − P(τ ≤ ti)

)
di

where di is the expected value of discount factor for ti in a risk-neutral measure.

Generally, the market CDS spreads are available at several maturities for a particular

underlying asset. Therefore, we have to calibrate all of these spreads consistently using

the same default distribution. As we model the default using our randomized first hitting

time model, we have to find the distribution of the initial state. To obtain it, we need

only to employ the relation between initial state and default distribution in Subsection

5.1.2.

5.3 Numerical results IV

For simplicity, we assume that the default time follows a gamma distribution with pa-

rameters γ and λ. In addition, we assume µ =
√

2λ. Then by (5.12), the Laplace

transformation of the initial state X0 = a for the process Xt = Wt + a satisfies

ĝ(s) =
(
√

2λ)2γ

(
s +

√
2λ
)2γ .

Therefore, the initial state a follows a gamma distribution with parameters 2γ and
√

2λ.

To verify that a single gamma distribution suffices to match market quotes, we collect

daily quotes for eight CDS with ratings from AAA to BBB−. The market quotes of each

CDS contain 392 daily spreads from 2 January, 2006 to 29 June, 2007.

Figure 5.1 plots representative calibrated results. The left panel plots the parameter

values versus time for a CDS rating A−; the right panel is the spread calibration results.

In the left panel, the “Alpha” curve plots the value of 10γ, and the “Beta” curve plots the

value of 1/λ. In the right panel, two curves marked with N and • represent the average
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spread fit; the other two curves represent the worst fit out of these 392 days. Figure 5.2

plots the calibrated default probabilities and the initial state distributions for different

ratings. From these plots, we can conclude that the gamma distribution captures the

default distribution fairly well and that the parameters of our randomized first hitting

time model are relatively stable over time.
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Figure 5.2: Default probability and initial state distributions

5.4 Challenges in extending to multi-name models

A natural way to extend our single-name model to a multi-name model is by decomposing

the Wiener process of the first hitting time model into two parts, such that

W (t) = ρWX(t) +
√

1 − ρ2W̃ (t)
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where WX(t) represents the common factor; W̃ (t) represents the idiosyncratic factor

associated with the particular name only; and ρ is the correlation coefficient between the

name and common factor. A similar approach has been employed by Hull, Predescu and

White [18] and Iscoe, Kreinin and Rosen [25]. This approach is intuitive, but it ends

up either the same as the Gaussian factor copula model [18], which is unable to match

market quotes effectively, or computationally inefficient without any analytical or semi-

analytical solution [25]. Therefore, it is an important, but challenging, problem to extend

the single-name model to a multi-name model while keeping the dynamic, analytical and

easy-to-calibrate properties of the single-name model in the continuous-time setting.

A different and novel correlation structure is required to extend our single-name model

to a multi-name first-hitting time model. Recently, a new correlation framework for first

hitting time models has been introduced by Metzler [44]. The approach introduces the

correlation of defaults by decomposing the drift and diffusion coefficients of a diffusion

process in the first hitting time setting. Further study of such approaches and how to

apply them to our single-name model deserves more study in the future.
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Conclusions and future work

In this thesis, we have studied four computational methods for the valuation of credit

derivatives. First, we developed a generic method for FCDOs based on the conditional

independence framework. We avoided the large combinatorial problem associated with

pricing FCDOs by transforming the computation of the effective pool loss distribution of

a FCDO to the computation of the pool loss distribution of an equivalent CDO. We also

extended the reduction method to the valuation of FBDS. In particular, we proposed a

hybrid method combining Monte Carlo simulation with an analytic approach to achieve

an effective method.

Furthermore, we proposed a dynamic multi-period factor copula model, which can be

calibrated fairly easily and matches the market quotes quite well. Using the independence

of the common factors and the conditional forward default probability, we showed that

the loss of a completely homogeneous pool possesses the Markov property. Therefore,

we avoided the computationally expensive multi-dimensional integration that must be

computed in previously proposed multi-period factor copula models.

Finally, we introduced a randomized first hitting time model for credit risk. We

obtained extra degrees of freedom by randomizing the initial state of a standard Wiener

process in the first hitting time setting. This initial state was traditionally a deterministic

68
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variable in most credit risk models. For models requiring many degrees of freedom to

match market quotes, randomizing the deterministic parameters may generate enough

freedom to provide an elegant solution.

In the future, we would like to apply the reduction technique and the hybrid method

to other forward-starting credit derivatives or more general credit options. For the multi-

period factor model, we have developed an efficient method for completely homogenous

pools only using an independent latent process across time. Therefore, key open questions

include how to extend the model to a general pool and a general latent process. We would

also like to study promising correlation structures to achieve a multi-name first hitting

time model, which is dynamic, analytical and easy-to-calibrate.
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