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Portfolio credit risk based on the Gaussian copula factor model is generally evaluated through Monte

Carlo Integration. Glasserman and Li purposed a 2 level importance sampling scheme to improve the

accuracy of this numerical approximation. However their result is limited to the binary credit state

model. Zhe Wang developed a novel importance sampling technique for the outer level based on the

work of Meng Han. While this method shows significant variance reduction, it introduces a bias away

from the true answer. In this research paper we remove the bias from the outer level of Wang’s method

and extend the inner level of Glasserman and Li’s method to the multi-credit-state model, combining

them into a single powerful technique.

ii



Acknowledgements

First I would like to thank my supervisor Dr. Ken Jackson for his guidance, which was invaluable

whenever I became mired in some misunderstanding or just needed someone to bounce ideas off of.

Similarly Meng Han and Zhe Wang were gracious enough to donate their time on more than one occasion

to review my work and offer suggestions, for which I am thankful. Lastly Dr. Alex Kreinin has my

gratitude for contributing their time as a second reviewer of this research paper.

iii



Contents

1 Introduction 1

1.1 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Credit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Gaussian Copula Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Naive Two Level Monte Carlo 4

2.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Bernoulli Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Glasserman and Li Importance Sampling 7

3.1 Overview of Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Exponential Twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Glasserman and Li Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.1 Constrained Optimization for Bi-level Optimization Problems . . . . . . . . . . . . 9

3.3.2 Gradients in Bi-level Optimization Problems . . . . . . . . . . . . . . . . . . . . . 9

4 Outer Level Importance Sampling 11

4.1 Normal Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Z Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Zero Variance Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.2 Approximating the Zero Variance Importance Sampler . . . . . . . . . . . . . . . . 13

5 Inner Level Importance Sampling 15

5.1 Discrete Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Inner Level Exponential Twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Final Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Numerical Results 19

6.1 Binary Credit State Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.1 Missing Glasserman and Li Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.2 Model Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1.4 S,` Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1.5 π∗ Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



6.1.6 Central Limit Theorem Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Full Credit State Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusion 48

8 Future Work 49

8.1 Fix Glasserman and Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2 Improve E Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendices 51

A Approximate Importance Sampler for Unbiased Estimator 52

B Likelihood Ratio for Exponential Twisting 55

C Convex Bound on Second Moment for Inner Level Importance Sampler 56

Bibliography 57

v



List of Figures

6.1 S = 5 ` = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 S = 5 ` = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 S = 5 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.4 S = 5 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.5 S = 5 ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.6 S = 5 ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.7 S = 10 ` = 0.3. We did not include 2LvlMC or a line indicating the true answer for the

reasons explained in the Analysis subsection on page 39. . . . . . . . . . . . . . . . . . . . 27

6.8 S = 10 ` = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.9 S = 10 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.10 S = 10 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.11 S = 10 ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.12 S = 10 ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.13 S = 20 ` = 0.3. We did not include 2LvlMC or a line indicating the true answer for the

reasons explained in the Analysis subsection on page 39. . . . . . . . . . . . . . . . . . . 33

6.14 S = 20 ` = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.15 S = 20 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.16 S = 20 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.17 S = 20 ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.18 S = 20 ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.19 Variance as a function of S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.20 S = 20 ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.21 S = 20 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.22 S = 5 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.23 S = 10 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.24 S = 10 ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



List of Tables

1.1 Credit Migration Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

6.1 Error and variance for S = 5, ` = 0.3. True value of P (LN (Z, E) ≥ `) is approximately

7.02e−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Variance reduction for S = 5, ` = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 Error and variance for S = 5, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately

8.74e−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.4 Variance reduction for S = 5, ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.5 Error and variance for S = 5, ` = 0.1. True value of P (LN (Z, E) ≥ `) is approximately

1.15e−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.6 Variance reduction for S = 5, ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.7 Error and variance for S = 10, ` = 0.3. True value of P (LN (Z, E) ≥ `) is not known

in this case as our overnight run of 2LvlMC did not converge. See the discussion in the

Analysis subsection on page 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.8 Variance reduction for S = 10, ` = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.9 Error and variance for S = 10, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately

1.20e−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.10 Variance reduction for S = 10, ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.11 Error and variance for S = 10, ` = 0.1. True value of P (LN (Z, E) ≥ `) is approximately

8.17e−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.12 Variance reduction for S = 10, ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.13 Error and variance for S = 20, ` = 0.3. True value of P (LN (Z, E) ≥ `) is not known

in this case as our overnight run of 2LvlMC did not converge. See the discussion in the

Analysis subsection on page 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.14 Variance reduction for S = 20, ` = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.15 Error and variance for S = 20, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately

5.41e−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.16 Variance reduction for S = 20, ` = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.17 Error and variance for S = 20, ` = 0.1. True value of P (LN (Z, E) ≥ `) is approximately

5.05e−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.18 Variance reduction for S = 20, ` = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.19 Variance reduction for S = 20, ` = 0.1 as a function of number of samples used to train π∗ 41

6.20 Variance reduction for S = 20, ` = 0.2 as a function of number of samples used to train π∗ 42

6.21 Variance reduction for S = 5, ` = 0.2 as a function of number of samples used to train π∗ 43

vii



6.22 Error and variance for S = 10, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately

1.08e−3. The CLT approximation is approximately 1.04e−3 . . . . . . . . . . . . . . . . . 45

6.23 Error and variance for S = 10, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately

1.08e−3. The CLT approximation is approximately 1.04e−3 . . . . . . . . . . . . . . . . . 46

viii



List of Algorithms

2.1 2 level naive Monte Carlo integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 2 level naive Monte Carlo integration with Bernoulli indicator sampling . . . . . . . . . 5

4.1 1 level Monte Carlo integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 1 level Monte Carlo integration with Z importance sampling . . . . . . . . . . . . . . . 13

4.3 2 level Monte Carlo integration with Z importance sampling . . . . . . . . . . . . . . . 14

5.1 2 level Monte Carlo integration with E importance sampling . . . . . . . . . . . . . . . 17

5.2 2 level Monte Carlo integration with 2 level importance sampling . . . . . . . . . . . . 17

ix

https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/TwoLvlMC_Y
https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/TwoLvlMC
https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/OneLvlMC
https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/OneLvlISCLT
https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/ISZ
https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/ISE
https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/TwoLvlIS


Chapter 1

Introduction

1.1 Credit Risk

Credit risk refers to the risk that a given creditor may fail to repay their loan, either its principal or

the accrued interest. When this happens the entity that owns the loan suffers a loss. It is therefore a

natural question to ask what is the probability that a given portfolio of creditors will result in a loss

greater than a specified amount.

1.1.1 Credit States

A credit rating is a measure of how likely someone is to repay their loans. Therefore in practice portfolio

loss due to credit risk is measured by drops in the credit rating of one or more creditors.

A credit migration matrix defines the baseline probability that any creditor will transition from one

credit state to another, without taking into account any of the specifics about the individual. Table 1.1

shows an example of such a matrix. Each cell contains the probability that a creditor in the credit state

associated with the row will transition to the credit state associated with the column. In the provided

example once someone defaults (credit state D) they will remain in credit state D with 100% probability.

1.1.2 Gaussian Copula Factor Model

A few models have been developed to measure credit risk; the most widely used is the Gaussian copula

factor model. In this framework creditors’ risks are modeled by a set of underlying risk factors known

as systemic and idiosyncratic risk factors. Throughout this paper we follow the notation introduced by

Han [7] with a few additions.

D(1) C(2) B(3) A(4)
D(1) 1.0000 0.0000 0.0000 0.0000
C(2) 0.2550 0.6801 0.0649 0.0000
B(3) 0.0270 0.0125 0.9397 0.0208
A(4) 0.0002 0.0000 0.0202 0.9796

Table 1.1: Credit Migration Matrix

1



Chapter 1. Introduction 2

N = Number of creditors

C = Number of credit states 1,...,C

S = Dimension of systematic risk factor

LN = The percentage loss of the portfolio

1
c
n = Indicator function. 1 if creditor n is in credit state c, 0 otherwise

EADn = Exposure at default. The value lost if creditor n defaults

LGCcn = Percentage loss/gain if creditor n moves to credit state c

c(n) = Current credit state of creditor n

Ep[X] = Expected value of a random variable X distributed according to a pdf p

d(x ∼ p) =
Used in integrals when the integration variable is distributed according p.

Analytically equivalent to writing p(x)dx

In Merton’s default model [8] a credit transition is modeled as

1
c
n = 1{Hc−1

c(n)
≤yn≤Hcc(n)

} (1.1)

Hc
c(n) = Φ−1

∑
γ≤c

P γc(n)

 (1.2)

In the above equation yn is the creditworthness index for the nth creditor. Hc
c(n) can be thought of as

the threshold for the nth creditor to migrate from credit state c(n) to credit state c. It is defined as the

inverse cumulative normal distribution function applied to the sum of the probability values P γc(n). These

probabilities are read off from the credit migration matrix as the probability of creditor n migrating from

credit state c(n) to credit state γ

As alluded to above we decompose yn into a systematic risk factor Z ∼ N (0, IS) and an idiosyncratic

risk factor ε ∼ N (0, IN ). Here Im refers to the m×m identity matrix.

yn = βTnZ +
√

1− βTn βnεn

βn ∈ RS represents the nth creditor’s sensitivity to the systematic credit risk Z
Under this decomposition (1.1) can be rewritten

1
c
n = 1{

H
c−1
c(n)
−βTnZ√

1−βTn βn
≤εn≤

Hc
c(n)
−βTnZ√

1−βTn βn

} (1.3)

With this in hand we can write down the model equation for the percentage loss LN :

LN (Z, E) =

N∑
n=1

(
EADn

C∑
c=1

LGCcn1
c
n

)
N∑
n=1

EADn

=

N∑
n=1

(
ωn

C∑
c=1

LGCcn1
c
n

)

=

N∑
n=1

C∑
c=1

ωcn1
{
H
c−1
c(n)
−βTnZ√

1−βTn βn
≤εn≤

Hc
c(n)
−βTnZ√

1−βTn βn

}

(1.4)
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Where

ωn =
EADn

N∑
n=1

EADn

(1.5)

ωcn = ωnLGC
c
n (1.6)

The probability that the percentage loss is greater than some tail value ` is

P (LN (Z, E) ≥ `) = EφS [P (LN (Z, E) ≥ `|Z = z)]

=

∫
RS

P (LN (Z, E) ≥ `|Z = z)d(z ∼ φS)

=

∫
RS

EφN [1{LN (Z,E)≥`|Z=z,E=ε}]d(z ∼ φS)

=

∫
RS

∫
RN

1{LN (Z,E)≥`|Z=z,E=ε}d(ε ∼ φN )d(z ∼ φS)

(1.7)

φS and φN being the standard multivariate normal probability density function for RS and RN respec-

tively.

Written in this manner it is clear that one way to numerically approximate P (LN (Z, E) ≥ `) is to

sample Z and E from their corresponding normal distributions and perform Monte Carlo Integration.

1.2 An Overview of the Thesis

Chapter 2 is dedicated to explaining a simple Monte Carlo Integration scheme that serves as our baseline

method.

Chapter 3 briefly reviews the techniques of importance sampling and exponential twisting. We then

elaborate on how they are used by Glasserman and Li [5] to evalutate (1.7). A limition of their method,

as it is described in [5], is that it is can only be applied to the binary credit state model. This limitation

is removed by us in chapter 5. A discussion follows of how to get around some of the convergence issues

faced by Wang [10] in their implementation of Glasserman and Li.

Chapter 4 discusses a normal approximation proposed by Han [7] in which the double integral in

(1.7) is replaced by a single integral. This approximation was used by Wang [10] to build an importance

sampling technique but it unfortunately suffered from a bias due to the underlying normal approximation.

After introducing these results we proceed to offer a simple modification to Wang’s technique that

removes the bias.

Chapter 5 takes the exponential twisting technique used by Glassermand and Li [5] for the binary

credit state model and extends it to the multi-credit-state model.

Chapter 6 contains numerical simulations showing the effectiveness of our new algorithms.

Chapter 7 concludes and summarizes our work.

Chapter 8 discusses possibilities of future work that might further improve our new methods.



Chapter 2

Naive Two Level Monte Carlo

2.1 Monte Carlo Integration

In chapter 1 we said that (1.7) begged for a Monte Carlo (MC) approach [1]. What we meant was the

following algorithm.

Algorithm 2.1: 2 level naive Monte Carlo integration

1 Inputs : NZ , NE , {EADn}Nn=1 ,{LGCcn}
N,C
n=1,c=1 , β , H , `

2 Sample {zi}NZi=1 from N (0, IS)

3 FOR i = 1 : NZ

4 Sample {εj}NEj=1 from N (0, IN )

5 FOR j = 1 : NE

6 Compute {1cn}
N,C
n=1,c=1 from zi and εj

7 Compute Lij =
N∑
n=1

C∑
c=1

ωcn1
c
n

8 Store aij = 1{Lij>`}

9 Return mean(aij )

We wish to call attention to the icon in the algorithm title. This is a link to a github repo containing

a Matlab implementation of the algorithm. All algorithms presented in this paper have such a link.

This algorithm produces an estimate for P (LN (Z, E) ≥ `). We refer to this method as “naive”

because it does not contain any techniques to improve the estimate. In later chapters we develop better

algorithms. Although this is a perfectly viable way to formulate the MC integration we have found there

is another way that lends itself better to theoretical discussion and subsequent improvement. In order

to get to that point first we have to do some analysis of the Gaussian copula factor model.

2.2 Bernoulli Indicators

Conditional on Z = z

1
c
n = 1{

H
c−1
c(n)
−βTn z√

1−βTn βn
≤εn≤

Hc
c(n)
−βTn z√

1−βTn βn

}

4
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In this form 1
c
n can be thought of as a Bernoulli random variable

1
c
n =

1 pcn(z)

0 1− pcn(z)
(2.1)

where

pcn(z) = Φ

(
Hc
n − βTn z√
1− βTn βn

)
− Φ

(
Hc−1
n − βTn z√
1− βTn βn

)
(2.2)

because εn ∼ N(0, 1)

Hence another way to perform MC integration under this model is sample all {1cn(z)}N,Cn=1,c=1 ac-

cording to {pcn(z)}N,Cn=1,c=1 with the constraint that for any given m {1cm(z)}Cc=1 contains exactly one 1

(meaning the rest of the indicators would be 0). Sampling {1cn(z)}N,Cn=1,c=1 would be tricky in general

but for the fact that the correlation matrix for E is the identity matrix. This implies

p(11
1, · · · ,1C1 ,11

2, · · · ,1C2 , · · · ,11
N , · · · ,1CN ) =

N∏
n=1

pn(11
n, · · · ,1Cn ) (2.3)

Meaning we can sample the indicator functions for each creditor separately. However further decompo-

sition is impossible since there is a clear negative correlation between 1
c
m and 1

d
m, as only one can be

active at a time.

Put another way we need to sample discrete random variables {Wn(z)}Nn=1

Wn(z) =



ω1
n, p1

n(z)

ω2
n, p2

n(z)
...

ωCn , pCn (z)

(2.4)

and the percentage loss can be written

LN (z) =

N∑
n=1

Wn(z) (2.5)

This discrete distribution can be sampled by first computing the cdf P cn(z) from the discrete pdf:

P cn(z) =

c∑
k=1

pkn(z)

From there sampling a standard uniform random variable u and selecting the first ωcn for which P cn(z) > u

gives one the sampled value for Wn(z).

This way of looking at the problem is fruitful later on. Utilizing these insights we can recast Algorithm

2.1 in the following manner.

Algorithm 2.2: 2 level naive Monte Carlo integration with Bernoulli indicator sampling

1 Inputs : NZ , NE , {EADn}Nn=1 ,{LGCcn}
N,C
n=1,c=1 , β , H , `

2 Sample {zi}NZi=1 from N (0, IS)

https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/TwoLvlMC


Chapter 2. Naive Two Level Monte Carlo 6

3 FOR i = 1 : NZ

4 Compute {pcn(zi)}N,Cn=1,c=1

5 FOR j = 1 : NE

6 Sample {1cn}
N,C
n=1,c=1 accord ing to {pcn(zi)}N,Cn=1,c=1

7 Compute Lij =
N∑
n=1

C∑
c=1

ωcn1
c
n

8 Store aij = 1{Lij>`}

9 Return mean(aij )

This algorithm serves as the baseline method against which we compare the more sophisticated methods

that are developed in later chapters.



Chapter 3

Glasserman and Li Importance

Sampling

3.1 Overview of Importance Sampling

The goal of importance sampling [3] is, given a function of a random variable f(z), where Z has a pdf

p(z), to find a pdf π(z) such that Vπ[ f(Z)p(Z)
π(Z) ] < Vp[f(Z)]. This switch maintains the expectation as

can been seen below.

Ep[f(Z)] =

∫
R

f(z)d(z ∼ p)

=

∫
R

f(z)p(z)dz

=

∫
R

f(z)
p(z)

π(z)
π(z)dz

=

∫
R

f(z)
p(z)

π(z)
d(z ∼ π)

= Eπ
[
f(Z)p(Z)

π(Z)

]
So if our goal is to estimate the expected value of f(z) we can instead estimate the expected value of this

new random variable f(z)p(z)
π(z) and take advantage of its lower variance to get smaller confidence intervals.

Or alternatively one can use fewer samples to achieve the same confidence intervals.

3.2 Exponential Twisting

When performing an exponential twist on a (possibly discrete) probability distribution p(x) we define a

new probability distribution

q(x, θ) =
eθxp(x)

Ep[eθX ]
(3.1)

7
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where θ ∈ R is known as the twisting parameter. Note that when θ = 0 we recover p(x) (i.e. no twisting

is performed).

3.3 Glasserman and Li Importance Sampling

In this section we give a very brief overview of the algorithm described in Glasserman and Li as well

as some details regarding how to implement it in practice. For more details regarding their method see

either Glasserman and Li [5] or Wang [10].

For the outer Z level they attempt to find a vector ~µ to shift the mean of the Z distribution from

N (~0, I) to N (~µ, I). Their goal is to perform importance sampling by finding a ~µ that reduces variance.

~µ is selected by solving an optimization problem:

~µ = arg max
z
{min

θ
{−θ(z)`+ ψ(z, θ(z))} − 1

2
zT z} (3.2)

where

ψ(z, θ) =

N∑
n=1

ln

(
C∑
c=1

pcn(z)eθω
c
n

)

Note that for the purposes of generality of the results in sections 3.3.1 and 3.3.2 we present ψ(z, θ) in it’s

multi-credit-state form. The expression used by Glasserman and Li can be recovered by setting C = 2,

ω2
n = 0, and noting that p2

n(z) = 1− p1
n(z).

For the inner E level they use exponential twisting to find a θ(z) value that minimizes variance. This

involves solving

θ(z) = argmin
θ
{−θ`+ ψ(z, θ)}

for each z you have sampled. Once found the default indicators {11
n(z)}Nn=1 are sampled from the twisted

probability distribution

q1
n(θ) =

p1
n(z)eθω

1
n

1 + p1
n(z)(eθω

1
n − 1)

For more details on how this exponential twisting is performed see chapter 5 where we extend it to the

multi-credit-state model.

Wang [10] found that the numerical method they used to solve (3.2) frequently failed to converge.

We also initially encountered this issue and believe it is likely due to using divided differences in the

optimization method used to solve (3.2) numerically. The rest of this chapter is dedicated to finding

analytical expressions for the derivatives associated with (3.2). This allows us to stabilize and speed up

solving this nested optimization problem.
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3.3.1 Constrained Optimization for Bi-level Optimization Problems

First we introduce some notation

fU (z, θ) = −θ`+ ψ(z, θ)− 1

2
zT z

fL(z, θ) = −θ`+ ψ(z, θ)

Then (3.2) can be written as

~µ = arg max
z

fU (z, θ) (3.3)

subject to θ = argmin
θ′

fL(z, θ′) (3.4)

This in turn can be written as a constrained optimization problem

~µ = arg max
z

fU (z, θ) (3.5)

subject to
∂fL(z, θ)

∂θ
= 0 (3.6)

We can use a standard constrained optimization method, such as fmincon in matlab, to solve (3.5)-(3.6).

3.3.2 Gradients in Bi-level Optimization Problems

While casting (3.2) as a constrained optimization problem provides an effective approach to solve (3.2),

speed became a concern. To provide a speed up we provided analytic gradients of both the objective

function and constraint.
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∇zfU = ∇zψ(z, θ)− z
∂fU

∂θ
= `− ∂ψ

∂θ

∇z
∂fL

∂θ
= ∇z

∂ψ

∂θ
∂2fL

∂θ2
=
∂2ψ

∂θ2

∇zψ(z, θ) =

N∑
n=1

C∑
c=1
∇zpcn(z)eθω

c
n

C∑
c=1

pcn(z)eθω
c
n

∂ψ

∂θ
=

N∑
n=1

C∑
c=1

pcn(z)ωcne
θωcn

C∑
c=1

pcn(z)eθω
c
n

∇z
∂ψ

∂θ
=

N∑
n=1

(
C∑
c=1
∇zpcn(z)ωcne

θωcn

)(
C∑
c=1

pcn(z)eθω
c
n

)
(

C∑
c=1

pcn(z)eθω
c
n

)2 −
N∑
n=1

(
C∑
c=1
∇zpcn(z)eθω

c
n

)(
C∑
c=1

pcn(z)ωcne
θωcn

)
(

C∑
c=1

pcn(z)eθω
c
n

)2

∂2ψ

∂θ2
=

N∑
n=1

(
C∑
c=1

pcn(z)(ωcn)2eθω
c
n

)(
C∑
c=1

pcn(z)eθω
c
n

)
(

C∑
c=1

pcn(z)eθω
c
n

)2 −
N∑
n=1

(
C∑
c=1

pcn(z)ωcne
θωcn

)2

(
C∑
c=1

pcn(z)eθω
c
n

)2

∇zpcn(z) =
−1√
2π

exp

−1

2

(
Hc
c(n) − β

T
n z√

1− βTn βn

)2
− exp

−1

2

(
Hc−1
c(n) − β

T
n z√

1− βTn βn

)2
 ~βn√

1− ~βTn
~βn

Gould et al. [6] explain how to solve these kinds of bi-level optimization problems using gradient ascent.

Using the above gradients the update rule is

z ← z + η

(
∇zfU +

∂fU

∂θ
∇zθ

)
where

∇zθ = −
∇z ∂f

L

∂θ
∂2fL

∂θ2

and η is a user specified step size parameter. We found that computing ~µ in this manner was a useful

way to check our constrained optimization approach.



Chapter 4

Outer Level Importance Sampling

4.1 Normal Approximation

Based on the work on Han [7] we have the following convergence result.

Theorem 1 Conditional on Z = z if the following conditions hold

1. ∃δ > 0 such that sup{|ωn|} = O(N−
1
2−δ)

2. ∃M ∈ [0,∞) such that z ∈ DS = [−M,M ]× · · · [−M,M ]

then the normalized conditional portfolio loss converges in distribution to a standard normal random

variable

L(z, E)− µ(z)

σ(z)

d−→ N (0, 1)

as N →∞, where µ(z) = EφN [L(z, E)] and σ2(z) = VφN [L(z, E)]

Both these assumptions are easily satisfied for our model. By taking the expectation and variance of

(1.4) Han [7] arrives at closed form expressions for µ(z) and σ(z)

µ(z) = EφN [L(z, E)]

=

N∑
n=1

C∑
c=1

ωcnEφN

1{
H
c−1
c(n)
−βTnZ√

1−βTn βn
≤εn≤

H
c−1
c(n)
−βTnZ√

1−βTn βn

}


=

N∑
n=1

C∑
c=1

ωcn

(
Φ

(
Hc
c(n) − β

T
nZ√

1− βTn βn

)
− Φ

(
Hc−1
c(n) − β

T
nZ√

1− βTn βn

))

=

N∑
n=1

C∑
c=1

ωcnp
c
n(z)

(4.1)

11
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Similarly

σ2(z) = VφN [L(z, E)]

=

N∑
n=1

ω2
n

(
1

2

C∑
a=1

C∑
b=1

(LGCan − LGCbn)2pan(z)pbn(z)

)

=

N∑
n=1

ω2
n

(
C∑
a>b

(LGCan − LGCbn)2pan(z)pbn(z)

) (4.2)

Under this approximation

P (LN (Z, E) ≥ `|Z = z) ≈ 1− Φ

(
`− µ(z)

σ(z)

)
(4.3)

so

P (LN (Z, E) ≥ `) ≈
∫
RS

(
1− Φ

(
`− µ(z)

σ(z)

))
d(z ∼ φS) (4.4)

This leads the the following MC integration scheme

Algorithm 4.1: 1 level Monte Carlo integration

1 Inputs : NZ , {EADn}Nn=1 ,{LGCcn}
N,C
n=1,c=1 , β , H , `

2 Sample {zi}NZi=1 from N (0, IS)

3 FOR i = 1 : NZ

4 Compute µ(zi) and σ(zi)

5 Store ai = 1− Φ
(
`−µ(zi)
σ(zi)

)
6 Return mean(ai )

This method has the advantage of completely removing any need to sample E . However unlike the

other estimators we have introduced a bias towards this standard normal random variable, which is only

an approximation of LN for finite N . Regardless, in practice we have found for large N (N ≈ 2500) this

result is close to the correct answer.

In the coming sections we build on this result to improve Algorithm 2.2, thereby removing the bias.

4.2 Z Importance Sampling

4.2.1 Zero Variance Importance Sampling

Continuing with the notation from section 3.1, assuming ∀z, f(z) ≥ 0 the optimal importance sampler

would be πo(z) = cf(z)p(z). This would reduce the variance to 0 so we naturally refer to it as the zero

variance importance sampler.

Vπo

[
f(Z)p(Z)

πo(Z)

]
= Vπo

[
1

c

]
= 0

In our case πo(z) = cP (LN (z, E) ≥ `)φS(z).

However finding the appropriate normalization constant c is often as difficult as solving the problem

we are tasked with. Instead we build a different importance sampler π∗(z) ≈ πo(z).

https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/OneLvlMC
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4.2.2 Approximating the Zero Variance Importance Sampler

Recall that under the normal approximation of section 4.1 the probability the normalized loss is greater

than ` is

P (LN (Z, E) ≥ `) ≈
∫
RS

(
1− Φ

(
`− µ(z)

σ(z)

))
d(z ∼ φS)

=

∫
RS

(
1− Φ

(
`− µ(z)

σ(z)

))
φS(z)dz

= EφS

[
1− Φ

(
`− µ(Z)

σ(Z)

)]
Therefore the zero variance importance sampler for the biased estimator is

π(z) = c

(
1− Φ

(
`− µ(z)

σ(z)

))
φS(z) (4.5)

Following the work of Wang[10] we make an important observation. Although we do not know

the constant c that makes π(z) a normalized pdf that does not prevent us from sampling from π(z).

Markov Chain Monte Carlo (MCMC) methods [2] often only require the un-normalized pdf π̂(z) =(
1− Φ

(
`−µ(z)
σ(z)

))
φS(z) to draw samples from. So after selecting ones preferred MCMC technique one

can sample the zero variance important sampler.

Our goal now is to train an approximator for π(z). Again, as in Wang[10] we use a Gaussian Mixture

Model (also sometimes refereed to as a Mixture of Gaussians).

π∗(z) =

K∑
k=1

rk
1√
|2πΣk|

exp(−1

2
(z − µk)TΣ−1

k (z − µk)) (4.6)

A Gaussian Mixture Model (GMM) is a weighted sum of (multivariate) Gaussian pdfs. Each one has its

own mean µk and covariance matrix Σk. The weights rk ensure that the resulting sum is a normalized

pdf. That is rk ≥ 0 and
K∑
k=1

rk = 1. The number of Gaussians K is a hyperparemeter for the model that

must be hand selected.

With this definition of π∗(z) and our samples from π(z) we can train π∗(z) to approximate π(z)

using Expectation Maximization [10].

This suggests the following algorithm

Algorithm 4.2: 1 level Monte Carlo integration with Z importance sampling

1 Inputs : NZ , NZ∗ {EADn}Nn=1 ,{LGCcn}
N,C
n=1,c=1 , β , H , ` , K

2 Def ine π̂(z) =
(

1− Φ
(
`−µ(z)
σ(z)

))
φS(z)

3 Sample {zi}NZi=1 from π̂(z) us ing MCMC

4 Def ine π∗(z) =
K∑
k=1

rk
1√
|2πΣk|

exp(− 1
2 (z − µk)TΣ−1

k (z − µk))

5 Train π∗(z) on {zi}NZi=1 us ing Expectat ion Maximization

6 Sample {z∗i }NZ
∗

i=1 from π∗

7 FOR i = 1 : NZ∗

https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/OneLvlISCLT
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8 Compute µ(z∗i ) and σ(z∗i )

9 Store ai =
(

1− Φ
(
`−µ(z∗i )
σ(z∗i )

))
φS(z∗i )
π∗(z∗i )

10 Return mean(ai )

Algorithm 4.2 is the Z importance sampler from Wang [10]. It is an improvement over Algorithm

4.1 however it still suffers from the bias introduced by the normal approximation. For more details on

this bias see [10].

Given theorem 4.1 it should not be very surprising that for large N if π∗(z) is a good approximation

to π(z) then it is also a good approximation to πo(z). Motivation for this statement is contained in

Appendix A. Thus we can merge Algorithm 4.2 with Algorithm 2.2 to produce a new algorithm that

uses the normal approximation to perform importance sampling, but converges to the correct answer.

Algorithm 4.3: 2 level Monte Carlo integration with Z importance sampling

1 Inputs : NZ , NZ∗ , NE , {EADn}Nn=1 ,{LGCcn}
N,C
n=1,c=1 , β , H , ` , K

2 Def ine π̂(z) =
(

1− Φ
(
`−µ(z)
σ(z)

))
φS(z)

3 Sample {zi}NZi=1 from π̂(z) us ing MCMC

4 Def ine π∗(z) =
K∑
k=1

rk
1√
|2πΣk|

exp(− 1
2 (z − µk)TΣ−1

k (z − µk))

5 Train π∗(z) on {zi}NZ
∗

i=1 us ing Expectat ion Maximization

6 Sample {z∗i }NZ
∗

i=1 from π∗

7 FOR i = 1 : NZ∗

8 Compute {pcn(z∗i )}N,Cn=1,c=1

9 FOR j = 1 : NE

10 Sample {1cn}
N,C
n=1,c=1 accord ing to {pcn(z∗i )}N,Cn=1,c=1

11 Compute Lij =
N∑
n=1

C∑
c=1

ωcn1
c
n

12 Store aij = 1{Lij>`}
φS(z∗i )
π∗(z∗i )

13 Return mean(aij )

In summary we’ve introduced the following new functions

πo(z) True zero variance importance sampler

π(z) Approximation to πo(z) under the normal approximation of theorem 1

π̂(z) Unnormalized version of π(z)

π∗(z) Gaussian Mixture Model trained on samples from π̂(z) to approximate π(z)

https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/ISZ


Chapter 5

Inner Level Importance Sampling

5.1 Discrete Importance Sampling

In the inner layer, conditional on Z = z, we want to sample {1cn}
N,C
n=1,c=1 from

p(11
1, · · · ,1C1 ,11

2, · · · ,1C2 , · · · ,11
N , · · · ,1CN ). Recalling (2.3) we know that we can break this large pdf

into a product of smaller pdfs:

p(11
1, · · · ,1C1 ,11

2, · · · ,1C2 , · · · ,11
N , · · · ,1CN ) =

N∏
n=1

pn(11
n, · · · ,1Cn )

In order to perform importance sampling we seek a series of probability distributions qn(11
n, · · · ,1Cn ) to

sample {1cn}
N,C
n=1,c=1 from that reduce the variance of our samples. Given these qn we compute

Ep[1{LN>l}] = Eq

[
N∏
n=1

pn(11
n, · · · ,1Cn )

qn(11
n, · · · ,1Cn )

1{LN>l}

]

Since we are dealing with discrete random variables, pn(11
n, · · · ,1Cn ) is really shorthand for the set

of real numbers

pn(1, 0, 0, · · · , 0) = p1
n(z) (5.1)

pn(0, 1, 0, · · · , 0) = p2
n(z) (5.2)

... (5.3)

pn(0, 0, 0, · · · , 1) = pCn (z) (5.4)

where pcn(z) is defined in (2.2).

15
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Similarly qn(11
n, · · · ,1Cn ) is really shorthand for a set of real numbers

qn(1, 0, 0, · · · , 0) = q1
n(z) (5.5)

qn(0, 1, 0, · · · , 0) = q2
n(z) (5.6)

... (5.7)

qn(0, 0, 0, · · · , 1) = qCn (z) (5.8)

In the context of Monte Carlo Integration this means that if we sample such that 1
k
n = 1 (and

therefore 1c6=kn = 0) then
pn(11

n, · · · ,1Cn )

qn(11
n, · · · ,1Cn )

=
pkn
qkn

. This can be compactly written as

N∏
n=1

pn(11
n, · · · ,1Cn )

qn(11
n, · · · ,1Cn )

=

N∏
n=1

C∏
c=1

(
pcn
qcn

)1cn

5.2 Inner Level Exponential Twisting

Based on the work of Glasserman and Li [5] we consider an approach based on Exponential Twisting

[9]. Recall from section 3.2 that when performing an exponential twist one is generating a new pdf q(x)

from an existing pdf p(x) like so

q(x, θ) =
eθxp(x)

Ep[eθX ]

In our case this becomes

qcn(z, θ) =
pcn(z)eθω

c
n

C∑
k=1

pkn(z)eθω
k
n

(5.9)

where our random variables are the Wn from (2.4). The likelihood ratio becomes

N∏
n=1

C∏
c=1

(
pcn(z)

qcn(z, θ)

)1cn
= e−θL+ψ(z,θ) (5.10)

ψ(z, θ) =

N∑
n=1

ln

(
C∑
c=1

pcn(z)eθω
c
n

)
(5.11)

For more details on this calculation see Appendix B. Our new unbiased random variable is therefore

1{L>`}e
−θL+ψ(z,θ)

The second moment of this new random variable is

Eq[1{L>`}e
−2θL+2ψ(z,θ)] ≤ e−2θ`+2ψ(z,θ)
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Where the bound holds for θ ≥ 0. The left hand side is hard to minimize directly, although recent work

has been done along those lines [4]. The upper bound however is easy to minimize. Note, for fixed z

−θ`+ψ(z, θ) is a convex function of θ that passes through the origin. In fact, for any reasonable selection

of model parameters it is strictly convex. A proof of this exists in Appendix C. Hence our optimal θ

value is

θ∗ =

the unique solution to∂ψ∂θ = ` ` > ∂ψ
∂θ

∣∣∣
θ=0

0 ` ≤ ∂ψ
∂θ

∣∣∣
θ=0

Using this technique we arrive at a new importance sampling algorithm

Algorithm 5.1: 2 level Monte Carlo integration with E importance sampling

1 Inputs : NZ , NE , {EADn}Nn=1 ,{LGCcn}
N,C
n=1,c=1 , β , H , `

2 Sample {zi}NZi=1 from N (0, IS)

3 Compute {pcn(zi)}N,Cn=1,c=1

4 Def ine ψ(θ, z) =
N∑
n=1

ln

(
C∑
c=1

pcn(z)eθω
c
n

)
5 FOR i = 1 : NZ :

6 IF
N∑
n=1

C∑
c=1

ωcnp
c
n(zi) > `

7 Set θ = argmin
θ
{−θ`+ ψ(θ, zi)}

8 ELSE

9 Set θ = 0

10 Compute qcn(zi, θ) =
pcn(zi)e

θωcn

C∑
k=1

pkn(zi)e
θωkn

f o r n = 1 , . . . ,N and c = 1 , . . . ,C

11 FOR j = 1 : NE :

12 Sample {1cn}
N,C
n=1,c=1 accord ing to qcn(zi, θ)

13 Compute Lij =
N∑
n=1

C∑
c=1

ωcn1
c
n

14 Store aij = 1{Lij>`}e
−θLij+ψ(θ,zi)

15 Return Mean(aij )

5.2.1 Final Algorithm

Combining Algorithm 5.1 with Algorithm 4.3 we arrive at the final algorithm

Algorithm 5.2: 2 level Monte Carlo integration with 2 level importance sampling

1 Inputs : NZ , NZ∗ , NE , {EADn}Nn=1 ,{LGCcn}
N,C
n=1,c=1 , β , H , ` , K

2 Def ine π̂(z) =
(

1− Φ
(
l−µ(z)
σ(z)

))
φS(z)

3 Sample {zi}NZi=1 from π̂(z) us ing MCMC

4 Def ine π∗(z) =
K∑
k=1

rk
1√
|2πΣk|

exp(− 1
2 (z − µk)TΣ−1

k (z − µk))

5 Train π∗(z) on {zi}NZi=1 us ing Expectat ion Maximization

6 Sample {z∗i }NZ
∗

i=1 from π∗

7 Compute {pcn(z∗i )}N,Cn=1,c=1

https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/ISE
https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/TwoLvlIS
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8 Def ine ψ(θ, z) =
N∑
n=1

ln

(
C∑
c=1

pcn(z)eθω
c
n

)
9 FOR i = 1 : NZ∗ :

10 IF
N∑
n=1

C∑
c=1

ωcnp
c
n(z∗i ) > `

11 Set θ = argmin
θ
{−θ`+ ψ(θ, z∗i )}

12 ELSE

13 Set θ = 0

14 Compute qcn(z∗i , θ) =
pcn(z∗i )eθω

c
n

C∑
k=1

pkn(z∗i )eθω
k
n

f o r n = 1 , . . . ,N and c = 1 , . . . ,C

15 FOR j = 1 : NE :

16 Sample {1cn}
N,C
n=1,c=1 accord ing to qcn(z∗i , θ)

17 Compute Lij =
N∑
n=1

C∑
c=1

ωcn1
c
n

18 Store aij = 1{Lij>`}
φS(z∗i )
π∗(z∗i ) e

−θLij+ψ(θ,z∗i )

19 Return Mean(aij )



Chapter 6

Numerical Results

Here we put the various algorithms discussed so far to the test. The following notation is used throughout

this chapter:

2LvlMC(nZ,nE) = Algorithm 2.2 with nZ Z samples and nE E samples per Z sample

1LvlISCLT(nZ) = Algorithm 4.2 with nZ Z samples

1LvlISZ(nZ,nE) = Algorithm 4.3 with nZ Z samples and nE E samples per Z sample

1LvlISE(nZ,nE) = Algorithm 5.1 with nZ Z samples and nE E samples per Z sample

2LvlIS(nZ,nE) = Algorithm 5.2 with nZ Z samples and nE E samples per Z sample

For 1LvlISZ(nZ,nE) and 2LvlIS(nZ,nE) 600 samples were used to train π∗

6.1 Binary Credit State Experiments

In order to compare our methods against established literature [10][5] we first run experiments in the

binary credit state model. In this model there are 2 credit states, default and not-default. All creditors

start in the not-default state and have an individual probability of defaulting. Note that this is a slight

deviation from the multi credit state model where the transition probabilities between credit states does

not vary between creditors, as seen in Table 1.1. If a creditor remains in the not-default state then no

loss/gain is induced.

6.1.1 Missing Glasserman and Li Data

Unfortunately although we managed to improve on the implementation of the Glassermand and Li

importance sampler used by Wang [10] we still suffer from the same issue as they did. Namely that the

answer seems to be biased downward. We had hoped that the reason Wang saw this was because their

implementation frequently failed to converge. However that does not appear to be the case as we still

observe it after resolving the convergence issue. We do find it quite strange that this is continuing to

happen, as the theory of importance sampling forbids a bias. Moreover numerical simulations report

that the variance is being reduced as we would expect, so the method appears to be working. Since we

could not determine the cause of this anomaly we have elected to exclude our version of the Glasserman

and Li technique from our numerical report. Our implementation can be found online here.

19

https://github.com/AdamSturge/FullCreditProblem/tree/master/RecreatingBinaryCreditProblem/GlassermanIS
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6.1.2 Model Parameter Settings

The formulae used to generate the model parameters are the following

pn = 0.01

(
1 + sin

(
16πn

N

))
n = 1, · · · , N

βnj ∼ Unif

(
− 1√

S
,

1√
S

)
n = 1, · · · , N j = 1, · · · , S

LGCDn =

⌊
5k

N

⌋2

n = 1, · · · , N

EADn ∼ Unif(0.5, 1.5) n = 1, · · · , N

The exact values drawn for β and EADk are included in the code repositories as param.m files.

6.1.3 Experiment Setup

In the following experiments the true answer was obtained by running Algorithm 2.2 with 10, 000 E
samples for the inner layer, and the outer Z layer being allowed to run overnight for approximately 12

hours.

Each method being examined was run 5 times to help reduce outlier induced errors.

Except where otherwise noted all graphs use the same range for the vertical axis. To facilitate this

the data is transformed by applying log base 10. Dot plots are values for individual runs and solid

continuous lines are values averaged across all 5 runs. Dashed lines delineate the value being compared

against, the meaning of which varies from section to section.

Tables contain values that are averaged over all 5 runs. The variance ratio column refers to the vari-

ance of the method in question divided by the variance from the corresponding runs of 2LvlMC(nZ,nE).

So the variance ratio of 1LvlIS(300,300) is the average variance of 1LvlIS(300,300) divided by the average

variance of 2LvlMC(300,300). Similarly for 1LvlIS(400,400) and so on.

6.1.4 S,` Dependency

In this subsection we explore the dependency of our methods on S and `. Here the dashed lines represent

an approximation to the true answer obtained by running 2LvlMC overnight.
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Figure 6.1: S = 5 ` = 0.3

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 28 1.00e-3 1.42
2LvlMC(400,400) 64 4.63e-4 6.60e-1
2LvlMC(500,500) 118 1.02e-3 1.45

1LvlISZ(300,300) 51 8.89e-5 1.26e-1
1LvlISZ(400,400) 84 4.45e-5 6.34e-2
1LvlISZ(500,500) 135 6.56e-5 9.34e-2

1LvlISE(300,300) 35 1.03e-3 1.47
1LvlISE(400,400) 69 6.15e-4 8.76e-1
1LvlISE(500,500) 129 7.16e-4 1.02

2LvlIS(300,300) 73 5.11e-5 7.28e-2
2LvlIS(400,400) 111 5.49e-5 7.82e-2
2LvlIS(500,500) 163 4.15e-5 5.92e-2

Table 6.1: Error and variance for S = 5, ` = 0.3. True value of P (LN (Z, E) ≥ `) is approximately
7.02e−4
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Figure 6.2: S = 5 ` = 0.3

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 28 7.42e-4 100% 5.44e-5
2LvlMC(400,400) 64 4.17e-4 100% 4.08e-5
2LvlMC(500,500) 118 1.18e-3 100% 6.87e-5

1LvlISZ(300,300) 51 8.12e-6 1.09% 5.69e-6
1LvlISZ(400,400) 84 8.27e-6 1.98% 5.75e-6
1LvlISZ(500,500) 135 7.64e-6 0.64% 5.53e-6

1LvlISE(300,300) 35 8.94e-4 120.53% 5.98e-5
1LvlISE(400,400) 69 8.93e-6 2.14% 5.97e-6
1LvlISE(500,500) 129 5.06e-4 42.88% 4.5e-5

2LvlIS(300,300) 73 3.13e-6 0.42% 3.54e-6
2LvlIS(400,400) 111 3.73e-6 0.89% 3.86e-6
2LvlIS(500,500) 163 3.83e-6 0.32% 3.91e-6

Table 6.2: Variance reduction for S = 5, ` = 0.3
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Figure 6.3: S = 5 ` = 0.2

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 38 3.94e-3 4.51e-1
2LvlMC(400,400) 85 2.39e-3 2.73e-1
2LvlMC(500,500) 222 2.31e-3 2.64e-1

1LvlISZ(300,300) 56 8.07e-4 9.23e-2
1LvlISZ(400,400) 70 5.27e-4 6.02e-2
1LvlISZ(500,500) 134 5.03e-4 5.75e-2

1LvlISE(300,300) 34 2.97e-3 3.40e-1
1LvlISE(400,400) 103 2.02e-3 2.31e-1
1LvlISE(500,500) 240 2.67e-3 3.05e-1

2LvlIS(300,300) 87 1.05e-3 1.20e-1
2LvlIS(400,400) 126 5.84e-4 6.68e-2
2LvlIS(500,500) 248 4.97e-4 5.68e-2

Table 6.3: Error and variance for S = 5, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately
8.74e−3



Chapter 6. Numerical Results 24

Figure 6.4: S = 5 ` = 0.2

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 38 9.93e-3 100% 1.99e-4
2LvlMC(400,400) 85 7.98e-3 100% 1.78e-4
2LvlMC(500,500) 222 7.55e-3 100% 1.73e-4

1LvlISZ(300,300) 56 7.85e-4 7.90% 5.60e-5
1LvlISZ(400,400) 103 6.67e-4 8.36% 5.16e-5
1LvlISZ(500,500) 240 7.36e-4 9.74% 5.42e-5

1LvlISE(300,300) 34 8.02e-3 80.75% 1.79e-4
1LvlISE(400,400) 70 7.59e-3 95.09% 1.74e-4
1LvlISE(500,500) 134 8.11e-3 107.46% 1.80e-4

2LvlIS(300,300) 87 4.66e-4 4.69% 4.32e-5
2LvlIS(400,400) 126 4.34e-4 5.44% 4.16e-5
2LvlIS(500,500) 248 3.74e-4 4.96% 3.87e-5

Table 6.4: Variance reduction for S = 5, ` = 0.2
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Figure 6.5: S = 5 ` = 0.1

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 39 1.23e-2 1.06e-1
2LvlMC(400,400) 80 1.18e-2 1.01e-1
2LvlMC(500,500) 249 9.33e-3 8.05e-2

1LvlISZ(300,300) 59 5.56e-3 4.80e-2
1LvlISZ(400,400) 104 5.88e-3 5.07e-2
1LvlISZ(500,500) 251 4.85e-3 4.18e-2

1LvlISE(300,300) 32 1.26e-2 1.09e-1
1LvlISE(400,400) 69 1.35e-2 1.16e-1
1LvlISE(500,500) 134 1.47e-2 1.26e-1

2LvlIS(300,300) 91 7.59e-3 6.54e-2
2LvlIS(400,400) 132 6.07e-3 5.23e-2
2LvlIS(500,500) 294 4.20e-3 3.62e-2

Table 6.5: Error and variance for S = 5, ` = 0.1. True value of P (LN (Z, E) ≥ `) is approximately
1.15e−1
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Figure 6.6: S = 5 ` = 0.1

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 39 1.08e-1 100% 6.59e-4
2LvlMC(400,400) 80 1.08e-1 100% 6.58e-4
2LvlMC(500,500) 249 1.06e-1 100% 6.53e-4

1LvlISZ(300,300) 59 4.43e-2 40.75% 4.21e-4
1LvlISZ(400,400) 104 4.41e-2 40.73% 4.20e-4
1LvlISZ(500,500) 251 4.57e-2 42.84% 4.27e-4

1LvlISE(300,300) 32 9.55e-2 87.86% 6.18e-4
1LvlISE(400,400) 69 9.33e-2 86.14% 6.10e-4
1LvlISE(500,500) 134 9.25e-2 86.70% 6.08e-4

2LvlIS(300,300) 91 3.04e-2 27.98% 3.48e-4
2LvlIS(400,400) 132 2.85e-2 26.36% 3.38e-4
2LvlIS(500,500) 294 3.06e-2 28.75% 3.50e-4

Table 6.6: Variance reduction for S = 5, ` = 0.1
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Figure 6.7: S = 10 ` = 0.3. We did not include 2LvlMC or a line indicating the true answer for the
reasons explained in the Analysis subsection on page 39.

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 33 N/A N/A
2LvlMC(400,400) 64 N/A N/A
2LvlMC(500,500) 133 N/A N/A

1LvlISZ(300,300) 54 N/A N/A
1LvlISZ(400,400) 86 N/A N/A
1LvlISZ(500,500) 146 N/A N/A

1LvlISE(300,300) 34 N/A N/A
1LvlISE(400,400) 69 N/A N/A
1LvlISE(500,500) 124 N/A N/A

2LvlIS(300,300) 94 N/A N/A
2LvlIS(400,400) 130 N/A N/A
2LvlIS(500,500) 184 N/A N/A

Table 6.7: Error and variance for S = 10, ` = 0.3. True value of P (LN (Z, E) ≥ `) is not known in this
case as our overnight run of 2LvlMC did not converge. See the discussion in the Analysis subsection on
page 39.
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Figure 6.8: S = 10 ` = 0.3

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 33 0.0 100% 0
2LvlMC(400,400) 64 0.0 100% 0
2LvlMC(500,500) 133 1.59e-6 100% 2.52e-6

1LvlISZ(300,300) 54 1.85e-8 N/A 2.72e-7
1LvlISZ(400,400) 86 1.62e-8 N/A 2.55e-7
1LvlISZ(500,500) 146 3.57e-8 N/A 3.78e-7

1LvlISE(300,300) 34 1.10e-12 N/A 2.09e-9
1LvlISE(400,400) 69 3.93e-9 N/A 1.25e-7
1LvlISE(500,500) 124 4.49e-8 N/A 4.24e-7

2LvlIS(300,300) 94 3.21e-9 N/A 1.13e-7
2LvlIS(400,400) 130 2.94e-9 N/A 1.08e-7
2LvlIS(500,500) 184 3.19e-9 N/A 1.13e-7

Table 6.8: Variance reduction for S = 10, ` = 0.3
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Figure 6.9: S = 10 ` = 0.2

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 36 6.32e-4 5.85e-1
2LvlMC(400,400) 94 7.77e-4 7.19-1
2LvlMC(500,500) 220 7.69e-4 7.12e-1

1LvlISZ(300,300) 61 1.29e-4 1.20e-1
1LvlISZ(400,400) 106 7.69e-5 7.12e-2
1LvlISZ(500,500) 230 1.02e-4 9.48e-2

1LvlISE(300,300) 34 6.43-3 7.87e-2
1LvlISE(400,400) 72 4.93e-3 6.03e-2
1LvlISE(500,500) 123 3.48e-3 4.25e-2

2LvlIS(300,300) 93 1.34e-4 1.24e-1
2LvlIS(400,400) 132 7.97e-5 7.38e-2
2LvlIS(500,500) 304 7.54e-5 6.98e-2

Table 6.9: Error and variance for S = 10, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately
1.20e−3
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Figure 6.10: S = 10 ` = 0.2

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 36 6.41e-4 100% 5.06e-5
2LvlMC(400,400) 94 3.02e-4 100% 3.47e-5
2LvlMC(500,500) 220 1.57e-3 100% 7.94e-5

1LvlISZ(300,300) 61 3.79e-5 5.91% 1.23e-5
1LvlISZ(400,400) 106 4.72e-5 15.62% 1.37e-5
1LvlISZ(500,500) 230 5.98e-5 3.79% 1.54e-5

1LvlISE(300,300) 34 4.83e-4 75.32% 4.39e-5
1LvlISE(400,400) 72 5.14e-4 170.05% 4.53e-5
1LvlISE(500,500) 123 6.41e-5 4.06% 1.60e-5

2LvlIS(300,300) 93 1.30e-5 2.03% 7.22e-6
2LvlIS(400,400) 132 1.10e-5 3.66% 6.65e-6
2LvlIS(500,500) 333 1.50e-5 0.95% 7.74e-6

Table 6.10: Variance reduction for S = 10, ` = 0.2
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Figure 6.11: S = 10 ` = 0.1

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 38 7.43e-3 9.09e-2
2LvlMC(400,400) 77 3.62e-3 4.43e-2
2LvlMC(500,500) 222 5.21e-3 6.38e-2

1LvlISZ(300,300) 62 6.43e-3 7.87e-2
1LvlISZ(400,400) 98 4.93e-3 6.03e-2
1LvlISZ(500,500) 223 3.48e-3 4.25e-2

1LvlISE(300,300) 36 1.17e-2 1.44e-1
1LvlISE(400,400) 68 5.46e-3 6.68e-2
1LvlISE(500,500) 136 9.37e-3 1.14e-1

2LvlIS(300,300) 90 4.85e-3 5.93e-2
2LvlIS(400,400) 135 5.67e-3 6.93e-2
2LvlIS(500,500) 257 4.42e-3 5.41e-2

Table 6.11: Error and variance for S = 10, ` = 0.1. True value of P (LN (Z, E) ≥ `) is approximately
8.17e−2
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Figure 6.12: S = 10 ` = 0.1

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 38 7.81e-2 100% 5.59e-4
2LvlMC(400,400) 77 7.42e-2 100% 5.44e-4
2LvlMC(500,500) 222 7.34e-2 100% 5.42e-4

1LvlISZ(300,300) 62 4.71e-2 60.29% 4.34e-4
1LvlISZ(400,400) 98 4.27e-2 57.62% 4.13e-4
1LvlISZ(500,500) 223 4.42e-2 60.25% 4.20e-4

1LvlISE(300,300) 36 5.03e-2 64.37% 4.48e-4
1LvlISE(400,400) 68 5.52e-2 74.41% 4.70e-4
1LvlISE(500,500) 136 5.13e-2 69.86% 4.53e-4

2LvlIS(300,300) 90 1.93e-2 24.80% 2.78e-4
2LvlIS(400,400) 135 2.69e-2 36.25% 3.28e-4
2LvlIS(500,500) 257 2.62e-2 35.74% 3.24e-4

Table 6.12: Variance reduction for S = 10, ` = 0.1
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Figure 6.13: S = 20 ` = 0.3. We did not include 2LvlMC or a line indicating the true answer for the
reasons explained in the Analysis subsection on page 39.

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 29 N/A N/A
2LvlMC(400,400) 65 N/A N/A
2LvlMC(500,500) 131 N/A N/A

1LvlISZ(300,300) 57 N/A N/A
1LvlISZ(400,400) 72 N/A N/A
1LvlISZ(500,500) 143 N/A N/A

1LvlISE(300,300) 35 N/A N/A
1LvlISE(400,400) 71 N/A N/A
1LvlISE(500,500) 129 N/A N/A

2LvlIS(300,300) 93 N/A N/A
2LvlIS(400,400) 78 N/A N/A
2LvlIS(500,500) 132 N/A N/A

Table 6.13: Error and variance for S = 20, ` = 0.3. True value of P (LN (Z, E) ≥ `) is not known in this
case as our overnight run of 2LvlMC did not converge. See the discussion in the Analysis subsection on
page 39.
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Figure 6.14: S = 20 ` = 0.3

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 29 0.0 100% 0
2LvlMC(400,400) 65 0.0 100% 0
2LvlMC(500,500) 131 0.0 100% 0

1LvlISZ(300,300) 57 1.39e-12 N/A 2.36e-9
1LvlISZ(400,400) 72 4.42e-12 N/A 4.20e-9
1LvlISZ(500,500) 143 2.38e-11 N/A 9.77e-9

1LvlISE(300,300) 35 1.55e-16 N/A 2.49e-11
1LvlISE(400,400) 71 6.91e-20 N/A 5.26e-13
1LvlISE(500,500) 129 9.62e-20 N/A 6.20e-13

2LvlIS(300,300) 93 2.67e-13 N/A 1.03e-9
2LvlIS(400,400) 78 6.17e-13 N/A 1.57e-9
2LvlIS(500,500) 132 1.01e-14 N/A 2.01e-10

Table 6.14: Variance reduction for S = 20, ` = 0.3
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Figure 6.15: S = 20 ` = 0.2

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 38 4.52e-5 8.35e-1
2LvlMC(400,400) 93 3.99e-5 7.38e-1
2LvlMC(500,500) 234 1.11e-4 2.06

1LvlISZ(300,300) 67 2.61e-5 4.82e-1
1LvlISZ(400,400) 108 5.37e-5 9.93e-1
1LvlISZ(500,500) 133 2.42e-5 4.47e-1

1LvlISE(300,300) 32 3.72e-5 6.17
1LvlISE(400,400) 69 6.82e-5 21.57
1LvlISE(500,500) 245 5.29e-5 4.77

2LvlIS(300,300) 112 9.39e-6 1.73e-1
2LvlIS(400,400) 149 1.93e-5 3.57e-1
2LvlIS(500,500) 277 1.32e-5 2.45e-1

Table 6.15: Error and variance for S = 20, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately
5.41e−5



Chapter 6. Numerical Results 36

Figure 6.16: S = 20 ` = 0.2

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 38 1.01e-4 100% 5.96e-6
2LvlMC(400,400) 93 1.99e-5 100% 8.94e-6
2LvlMC(500,500) 234 8.88e-6 100% 2.01e-5

1LvlISZ(300,300) 67 3.89e-6 43.77% 3.94e-6
1LvlISZ(400,400) 108 7.38e-6 36.94% 5.43e-6
1LvlISZ(500,500) 245 1.59e-5 15.67% 7.97e-6

1LvlISE(300,300) 67 5.48e-7 6.17% 1.48e-6
1LvlISE(400,400) 108 4.31e-6 21.57% 4.15e-6
1LvlISE(500,500) 245 4.84e-6 4.77% 4.40e-6

2LvlIS(300,300) 112 1.52e-7 1.71% 7.80e-7
2LvlIS(400,400) 149 5.50e-7 2.75% 1.48e-6
2LvlIS(500,500) 277 2.39e-7 0.23% 9.78e-7

Table 6.16: Variance reduction for S = 20, ` = 0.2
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Figure 6.17: S = 20 ` = 0.1

Method Runtime(sec) Absolute Error Relative Error

2LvlMC(300,300) 38 5.17e-3 1.02e-1
2LvlMC(400,400) 99 5.32e-3 1.05e-1
2LvlMC(500,500) 229 3.92e-3 7.77e-2

1LvlISZ(300,300) 65 1.35e-2 2.67e-1
1LvlISZ(400,400) 126 8.66e-3 1.71e-1
1LvlISZ(500,500) 259 1.01e-2 2.00e-1

1LvlISE(300,300) 35 4.01e-3 7.94e-2
1LvlISE(400,400) 65 4.39e-3 8.69e-2
1LvlISE(500,500) 129 6.62e-3 1.31e-1

2LvlIS(300,300) 119 1.23e-2 2.43e-1
2LvlIS(400,400) 179 5.16e-3 1.02e-1
2LvlIS(500,500) 258 1.72e-2 3.42e-1

Table 6.17: Error and variance for S = 20, ` = 0.1. True value of P (LN (Z, E) ≥ `) is approximately
5.05e−2
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Figure 6.18: S = 20 ` = 0.1

Method Runtime(sec) Variance Variance Ratio Standard Error

2LvlMC(300,300) 38 5.21e-2 100% 4.56e-4
2LvlMC(400,400) 99 4.73e-2 100% 4.35e-4
2LvlMC(500,500) 229 4.74e-2 100% 4.35e-4

1LvlISZ(300,300) 65 2.25e-1 432.06% 9.49e-4
1LvlISZ(400,400) 126 1.69e-1 357.11% 8.22e-4
1LvlISZ(500,500) 391 5.13e-1 1082.35% 1.43e-3

1LvlISE(300,300) 35 2.95e-2 56.75% 3.44e-4
1LvlISE(400,400) 65 2.77e-2 58.48% 3.32e-4
1LvlISE(500,500) 129 3.09e-2 65.21% 3.51e-4

2LvlIS(300,300) 119 1.15e-1 222.12% 6.80e-4
2LvlIS(400,400) 179 2.02e-1 427.06% 8.99e-4
2LvlIS(500,500) 258 5.61e-1 1183.24% 1.49e-3

Table 6.18: Variance reduction for S = 20, ` = 0.1
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Analysis

Analysis of the data from this run of experiments shows a number of interesting trends.

First is that as ` decreases the variance reduction of our new methods also decreases. This is not

unexpected. Importance sampling is primarily used in rare event simulation, so it is not unreasonable

to expect it to perform better as the events you are considering get more rare.

Second is that as S increases our new methods experience a similar decrease in performance as when

` increases. Our intuition for this is that higher dimensional spaces simply permit greater variance in

the simulated data.

Third is that our methods actually under-perform naive 2 level MC integration in the case where

S = 20 and ` = 0.1. Our intuition here is that as S increases one must be careful to ensure that we

adequately train π∗(z) : RS → R. If an inadequate number of samples is used to train π∗(z) then it will

only learn a small subspace of RS represented by those samples. As a result, it may fail to generalize

to an appropriate approximation of π(z) on the whole space. This intuition is explored and verified in

subsection 6.1.5.

Fourth is that the E importance sampler that Glasserman and Li developed [5], and which we

generalized to the multi-credit-state model, is not as effective as the Z importance sampler. We believe

that there are two reasons for this. The first is that we set N = 2500. Hence we are in a regime

where the normal approximation from theorem 1 is actually quite good. Thus, if π∗ is trained well,

it does closely approximate the zero variance importance sampler for the true probability, not just the

approximation. Second is that the importance sampler for E does not minimize the variance directly

but instead minimizes a loose upper bound on the second moment. Chapter 8 briefly explores a possible

avenue for obtaining a better minimization problem in order to fix the second issue. However it is worth

noting that the usefulness of the E importance sampler increases as S increases. Looking at ` = 0.2 we

see that it barely helps in the S = 5 regime. However by the time we get up to S = 20 it reduces the

variance by a factor of 10. Figure 6.19 highlights this trend. It is possible that this is due to a poorly

trained π∗ leaving behind more variance to be reduced by the exponential twisting. This hypothesis is

also explored in the next section.

Fifth is that in the case of extremely rare events (` = 0.3) 2LvlMC completely failed to produce a

non-zero answer for S = 10 and S = 20. In this regime one is unlikely to sample any Z or E that result

in the indicator functions being 1 without making use of a technique like importance sampling. In such

cases the variance reduction and error are reported as N/A as we do not have a valid baseline to compare

against.

6.1.5 π∗ Training

In this subsection we validate the hypothesis that as S increases a larger number of samples are needed

to effectively train π∗. Here the dashed lines represent the average variance of 2LvlMC when ran with

the same number of Z and E samples as the methods being studied.
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Figure 6.19: Variance as a function of S
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Figure 6.20: S = 20 ` = 0.1

Method Sample No. Variance Variance Ratio Standard Error

1LvlISZ(400,400) 600 1.69e-1 357.11% 8.22e-4
1LvlISZ(400,400) 1200 6.29e-2 132.94% 5.01e-4
1LvlISZ(400,400) 1800 4.92e-2 104.00% 4.43e-4
1LvlISZ(400,400) 2400 4.32e-2 91.23% 4.15e-4
1LvlISZ(400,400) 3000 3.89e-2 82.18% 3.94e-4
1LvlISZ(400,400) 3600 3.54e-2 74.91% 3.76e-4
1LvlISZ(400,400) 4200 3.13e-2 66.23% 3.54e-4

2LvlIS(400,400) 600 2.02e-1 427.06% 8.99e-4
2LvlIS(400,400) 1200 4.22e-2 89.18% 4.11e-4
2LvlIS(400,400) 1800 3.13e-2 66.23% 3.54e-4
2LvlIS(400,400) 2400 1.26e-2 26.79% 2.25e-4
2LvlIS(400,400) 3000 1.38e-2 29.28% 2.35e-4
2LvlIS(400,400) 3600 1.02e-2 21.72% 2.028e-4
2LvlIS(400,400) 4200 1.03e-2 21.80% 2.03e-4

Table 6.19: Variance reduction for S = 20, ` = 0.1 as a function of number of samples used to train π∗
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Figure 6.21: S = 20 ` = 0.2

Method Sample No. Variance Variance Ratio Standard Error

1LvlISZ(400,400) 600 7.38e-6 7.27% 5.43e-6
1LvlISZ(400,400) 1200 1.10e-6 1.08% 2.10e-6
1LvlISZ(400,400) 1800 8.57e-7 0.84% 1.85e-6
1LvlISZ(400,400) 2400 6.57e-7 0.64% 1.62e-6
1LvlISZ(400,400) 3000 9.48e-7 0.93% 1.94e-6
1LvlISZ(400,400) 3600 7.68e-7 0.75% 1.75e-6
1LvlISZ(400,400) 4200 7.73e-7 0.76% 1.75e-6

2LvlIS(400,400) 600 5.50e-7 0.54% 1.48e-6
2LvlIS(400,400) 1200 6.68e-8 0.065% 5.17e-7
2LvlIS(400,400) 1800 3.83e-8 0.037% 3.91e-7
2LvlIS(400,400) 2400 4.67e-8 0.045% 4.32e-7
2LvlIS(400,400) 3000 2.83e-8 0.027% 3.37e-7
2LvlIS(400,400) 3600 2.79e-8 0.027% 3.34e-7
2LvlIS(400,400) 4200 2.36e-8 0.023% 3.07e-7

Table 6.20: Variance reduction for S = 20, ` = 0.2 as a function of number of samples used to train π∗
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Figure 6.22: S = 5 ` = 0.2

Method Sample No. Variance Variance Ratio Standard Error

1LvlISZ(400,400) 600 6.67e-4 8.36% 5.16e-5
1LvlISZ(400,400) 1200 6.25e-4 7.82% 5.00e-5
1LvlISZ(400,400) 1800 6.01e-4 7.53% 4.90e-5
1LvlISZ(400,400) 2400 5.95e-4 7.46% 4.88e-5
1LvlISZ(400,400) 3000 5.45e-4 6.83% 4.67e-5
1LvlISZ(400,400) 3600 5.52e-4 6.92% 4.70e-5
1LvlISZ(400,400) 4200 6.19e-4 7.75% 4.97e-5

2LvlIS(400,400) 600 4.34e-4 5.44% 4.16e-5
2LvlIS(400,400) 1200 4.10e-4 5.14% 4.05e-5
2LvlIS(400,400) 1800 3.16e-4 3.96% 3.56e-5
2LvlIS(400,400) 2400 3.44e-4 4.31% 3.71e-5
2LvlIS(400,400) 3000 3.41e-4 4.28% 3.69e-5
2LvlIS(400,400) 3600 3.23e-4 4.04% 3.59e-5
2LvlIS(400,400) 4200 3.38e-4 4.23% 3.67e-5

Table 6.21: Variance reduction for S = 5, ` = 0.2 as a function of number of samples used to train π∗
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Analysis

Figure 6.20 and Table 6.19 support our claim that better training π∗ removes the anomaly where 2LvlMC

outperforms 1LvlISZ and 2LvlIS.

The fact that 2LvlIS continues to show a noticeably better variance reduction over 1LvlISZ invali-

dates the notion that the increased performance of the E importance sampler came from the reduced

effectiveness of the Z importance sampler due to a poorly trained π∗.

In order to see if a better trained π∗ might further reduce the variance in our lower dimension

experiments we created Figure 6.22 and Table 6.21. These showed only minor improvements and we

generally consider them not worth the extra run time they incur.

6.1.6 Central Limit Theorem Bias

When we refer to the bias introduced by the normal approximation of Theorem 1 we mean the following:

If you were to simply use Algorithm 4.2 the MC integration would converge quite rapidly. However since

this CLT based result is exact only in the limit of N = ∞ the answer that it converges to is not the

true answer, but one which is biased towards the normal approximation. The following experiments are

meant to elucidate this matter. Here the dashed lines represent an approximation to the true answer for

each algorithm obtained by running them overnight. The red line was obtained using 2LvlMC and the

purple line was obtained using Algorithm 4.1
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Figure 6.23: S = 10 ` = 0.2

Method Runtime(sec) Absolute Error Relative Error Variance

1LvlISZCLT(20000) 57 1.89e-5 1.75e-2 7.90e-6
1LvlISZCLT(40000) 92 3.01e-5 2.78e-2 6.42e-6
1LvlISZCLT(60000) 125 2.71e-5 2.51e-2 5.20e-6

2LvlIS(300,300) 93 1.34e-4 1.24e-1 1.30e-5
2LvlIS(400,400) 132 7.97e-5 7.38e-2 1.10e-5
2LvlIS(500,500) 304 7.54e-5 6.98e-2 1.50e-5

Table 6.22: Error and variance for S = 10, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately
1.08e−3. The CLT approximation is approximately 1.04e−3
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Figure 6.24: S = 10 ` = 0.2

Method Runtime(sec) Absolute Error Relative Error Variance

1LvlISZCLT(1400000) 3935 3.08e-5 2.85e-2 7.90e-6

2LvlIS(10000,10000) 33222 3.08e-6 2.85e-3 1.30e-5

Table 6.23: Error and variance for S = 10, ` = 0.2. True value of P (LN (Z, E) ≥ `) is approximately
1.08e−3. The CLT approximation is approximately 1.04e−3

Analysis

First note that the axis scales here have been changed compared to those in the previous sections to

highlight the differences between the normal approximation and the true answer.

Making direct use of the CLT approximation removes E from the problem entirely. As such, this

one level algorithm is much faster than its two level counterparts. Thus more samples can be taken

per time interval, and convergence is therefore faster. However as mentioned in the introduction to this

section the convergence is to a biased answer. Analyzing Figures 6.23 and 6.24 it becomes clear that in

the short runtime regime the CLT approximation provides a more reliable estimate of the true answer,

but if the runtime is allowed to be lengthened then our two level importance sampling scheme, 2LvlIS,

outperforms it.

6.2 Full Credit State Experiments

One of the key achievements in this paper is extending Glasserman and Li’s [5] inner importance sampler

to from a binary-credit-state model to a multi-credit-state model. In order to test this method we used
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the following model parameters.

pcn =
0.01

3

(
1 + sin

(
16πn

N

))
n = 1, · · · , N c = 1, 3, 4

p2
n = 1− (p1

n + p3
n + p4

n) n = 1, · · · , N

βnj ∼ Unif

(
− 1√

S
,

1√
S

)
n = 1, · · · , N j = 1, · · · , S

LGCcn =

⌊
5k

N

⌋2

n = 1, · · · , N c = 1, 3, 4

EADn ∼ Unif(0.5, 1.5) n = 1, · · · , N

By using these settings for pcn and LGCcn and copying the randomly generated parameters from the

binary case we can recreate the binary-credit-state experiments in the multi-credit-state case. Having

performed these calculations we have found the answers agree within reason. That being the case we

have elected not to include these results here, but the data can be found online here for those who are

interested.

https://github.com/AdamSturge/FullCreditProblem/tree/master/Numerical%20Experiments/Full


Chapter 7

Conclusion

In this research paper we removed previously existing limitations from the works of Wang [10] and

Glasserman and Li [5]. That is, we removed the bias from the Z importance sampler introduced by Wang,

and we extended the E exponential twisting approach of Glasserman and Li to the multi-credit state

model. We ran numerical experiments to probe the effectiveness of these improvements and discovered

several interesting facts. First, for low dimensions (S < 10), the E importance sampling was not very

useful. However in higher dimensions it becomes more important. In general, though, it is not as

powerful as the Z importance sampler. A potential means of improving this technique is discussed in

chapter 8. The importance of properly training π∗ was also shown, as a poorly trained π∗ may actually

increase the variance. Also a fast but biased CLT based method was compared against our unbiased

method showing the trade off between run time and accuracy in the large N regime.
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Chapter 8

Future Work

8.1 Fix Glasserman and Li

The most obvious future work is to remove the downward bias that we have been experiencing from

our implementation of the Glasserman and Li importance sampler. Then we can directly compare our

methods against Glasserman and Li’s as opposed to just the naive two level MC method.

8.2 Improve E Importance Sampling

Our E importance sampler works by minimizing an upper bound on the second moment.

Eq[1{L>`}e−2θL+2ψ(z,θ)] ≤ e−2θ`+2ψ(z,θ)

for θ ≥ 0. This upper bound does not apply for all θ and where it does it is not particularly tight. One

idea we consider to be a potentially fruitful avenue of approach is to apply the normal approximation

that has served us so well for the outer layer to the inner layer as well. Conditional on Z = z we have

Vq[1{L>`}eθL+ψ(z,θ)] = Eq[1{L>`}e−2θL+2ψ(z,θ)]− Eq[1{L>`}e−θL+ψ(z,θ)]2

= Eq[1{L>`}e−2θL]e2ψ(z,θ) − Eq[1{L>`}e−θL]2e2ψ(z,θ)

=
(
Eq[1{L>`}]Eq[e−2θL] + Cov[1{L>`}, e

−2θL]
)
e2ψ(z,θ)

−
(
Eq[1{L>`}]Eq[e−θL] + Cov[1{L>`}, e

−θL]
)2
e2ψ(z,θ)

=
(
P (LN (Z, E) ≥ `|Z = z)Eq[e−2θL] + Cov[1{L>`}, e

−2θL]
)
e2ψ(z,θ)

−
(
P (LN (Z, E) ≥ `|Z = z)Eq[e−θL] + Cov[1{L>`}, e

−θL]
)2
e2ψ(z,θ)

The moment generating function for a normal random variable X is

M(t) = E[etX ] = eµt+
1
2σ

2t2 (8.1)
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Therefore approximating L as a normal random variable we get

Eq[e−θL] ≈ e−µ(z,θ)θ+ 1
2σ(z,θ)2θ2 (8.2)

P (LN (Z, E) ≥ `|Z = z) ≈ 1− Φ

(
`− µ(z, θ)

σ(z, θ)

)
(8.3)

Where, recalling that 1cn(z) ∼ qcn(z, θ) under Exponential Twisting

µ(z, θ) = Eq[L(z, E)] =

N∑
n=1

C∑
c=1

ωcnEq [1cn(z)] =

N∑
n=1

C∑
c=1

ωcnq
c
n(z, θ) (8.4)

and

σ(z, θ)2 = Vq[L(z, E)]

=
N∑
n=1

ω2
n

(
1

2

C∑
a=1

C∑
b=1

(LGCan − LGCbn)2qan(z, θ)qbn(z, θ)

)

=

N∑
n=1

ω2
n

(
C∑
a>b

(LGCan − LGCbn)2qan(z, θ)qbn(z, θ)

) (8.5)

Plugging these results into our equation for Vq[1{L>`}eθL+ψ(z,θ)] we get((
1− Φ

(
`− µ(z, θ)

σ(z, θ)

))
e−2µ(z,θ)θ+2σ(z,θ)2θ2 + Cov

[
1{L>`}, e

−2θL]) e2ψ(z,θ)−((
1− Φ

(
`− µ(z, θ)

σ(z, θ)

))
e−µ(z,θ)θ+ 1

2σ(z,θ)2θ2 + Cov
[
1{L>`}, e

−θL])2

e2ψ(z,θ)

The roadblock here is the covariance terms, which we have no easy way to evaluate or bound. One

option is to ignore them altogether in the hopes that their influence is small. We found this option did not

provide significant improvement over our existing approach, although we did not explore it thoroughly.
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Appendix A

Approximate Importance Sampler

for Unbiased Estimator

Theorem 1 implies that P (LN (z, E) > `|Z = z) → 1 − Φ
(
l−µ(z)
σ(z)

)
as N → ∞. The question is:

given that π∗ is a good importance sampler for 1− Φ
(
l−µ(z)
σ(z)

)
is it also a good importance sampler for

P (LN (z, E) > `|Z = z)? To answer this question, we introduce some notation

fN (z) = P (LN (z, E) > `|Z = z)

f(z) = 1− Φ

(
l − µ(z)

σ(z)

)
Note that we have pointwise convergence of fN to f . That is for any z

lim
N→∞

fN (z) = f(z)

For fixed z ∈ RS , π∗(z) and φ(z) are non-zero constants so we also have

lim
N→∞

fN (z)φ(z)

π∗(z)
=
f(z)φ(z)

π∗(z)

V[] is an integral operation so we need something stronger than pointwise convergence for the next step

of our argument. First we show that
(
fN (z) φ(z)

π∗(z)

)2

→
(
f(z) φ(z)

π∗(z)

)2

pointwise.

Given any η > 0 we want to show ∃M s.t. ∀N ≥ M ,

∣∣∣∣(fN (z) φ(z)
π∗(z)

)2

−
(
f(z) φ(z)

π∗(z)

)2
∣∣∣∣ ≤ η. A proof

of this follows:∣∣∣∣∣
(
fN (z)

φ(z)

π∗(z)

)2

−
(
f(z)

φ(z)

π∗(z)

)2
∣∣∣∣∣

=

∣∣∣∣((fN (z)
φ(z)

π∗(z)

)
−
(
f(z)

φ(z)

π∗(z)

))((
fN (z)

φ(z)

π∗(z)

)
+

(
f(z)

φ(z)

π∗(z)

))∣∣∣∣
We know ∀δ > 0 ∃Nδ s.t.

∣∣∣(fN (z) φ(z)
π∗(z)

)
−
(
f(z) φ(z)

π∗(z)

)∣∣∣ ≤ δ for N ≥ Nδ. Under this assumption we
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have ∣∣∣∣((fN (z)
φ(z)

π∗(z)

)
−
(
f(z)

φ(z)

π∗(z)

))((
fN (z)

φ(z)

π∗(z)

)
+

(
f(z)

φ(z)

π∗(z)

))∣∣∣∣
≤ δ

∣∣∣∣(fN (z)
φ(z)

π∗(z)

)
+

(
f(z)

φ(z)

π∗(z)

)∣∣∣∣
= δ

∣∣∣∣(fN (z)
φ(z)

π∗(z)

)
−
(
f(z)

φ(z)

π∗(z)

)
+

(
f(z)

φ(z)

π∗(z)

)
+

(
f(z)

φ(z)

π∗(z)

)∣∣∣∣
≤ δ

(∣∣∣∣(fN (z)
φ(z)

π∗(z)

)
−
(
f(z)

φ(z)

π∗(z)

)∣∣∣∣+

∣∣∣∣(f(z)
φ(z)

π∗(z)

)
+

(
f(z)

φ(z)

π∗(z)

)∣∣∣∣)
≤ δ

(
δ + 2

∣∣∣∣(f(z)
φ(z)

π∗(z)

)∣∣∣∣)
= δ

(
δ + 2f(z)

φ(z)

π∗(z)

)

Now we merely need to show that η = δ
(
δ + 2f(z) φ(z)

π∗(z)

)
always has a (real positive) solution. This

follows from the quadratic formula.

In fact through the dominated convergence theorem we see that the convergence is uniform because

fN (z) φ(z)
π∗(z) ≤

φ(z)
π∗(z) . Since all the terms involved are positive this bound can be squared to arrive at a

bound for f2
N as well. These facts together show that

lim
N→∞

Vπ∗
[
fN (z)φ(z)

π∗(z)

]
= lim
N→∞

∫
R

(
fN (z)

φ(z)

π∗(z)

)2

dz −

∫
R

fN (z)
φ(z)

π∗(z)
dz

2


= lim
N→∞

∫
R

(
fN (z)

φ(z)

π∗(z)

)2

dz − lim
N→∞

∫
R

fN (z)
φ(z)

π∗(z)
dz

2

= lim
N→∞

∫
R

(
fN (z)

φ(z)

π∗(z)

)2

dz −

 lim
N→∞

∫
R

fN (z)
φ(z)

π∗(z)
dz

2

=

∫
R

lim
N→∞

(
fN (z)

φ(z)

π∗(z)

)2

dz −

∫
R

lim
N→∞

fN (z)
φ(z)

π∗(z)
dz

2

=

∫
R

(
f(z)

φ(z)

π∗(z)

)2

dz −

∫
R

f(z)
φ(z)

π∗(z)
dz

2

= Vπ∗
[
f(z)φ(z)

π∗(z)

]
All of these arguments apply equally well to Vφ[].
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In summary we have

lim
N→∞

Vφ[fN (z)] = Vφ[f(z)] (A.1)

lim
N→∞

Vπ∗
[
fN (z)

φ(z)

π∗(z)

]
= Vπ∗

[
f(z)

φ(z)

π∗(z)

]
(A.2)

Vπ∗
[
f(z)

φ(z)

π∗(z)

]
< Vφ[f(z)] (A.3)

Where the last equation comes from π∗ being an importance sampler for the normal approximation.

We now want to show ∃M(z) ∈ N s.t. ∀N > M(z) Vπ∗
[
fN (z)φ(z)
π∗(z)

]
< Vφ[fN (z)]. This is simply

saying that if aN → a, bN → b, and b < a then there exists some cutoff point M such that bj < aj for

j ≥ M . The proof of this statement follows: From the convergence of aN → a we know there exists

some Ma s.t ∀N ≥ Ma we have |aN − a| ≤ a−b
3 ⇐⇒ −a−b3 ≤ aN − a ≤ a−b

3 . This likewise holds true

for bN . Choosing M = max(Ma,Mb) we have for all N ≥M

bN ≤ b+
a− b

3

≤ b− a+ a+
a− b

3

= a− (a− b) +
a− b

3

= a− 2(a− b)
3

< a− (a− b)
3

≤ aN

Therefore for N large enough π∗(z) is a good importance sampler for P (LN (z, E) > `|Z = z).
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Likelihood Ratio for Exponential

Twisting

N∏
n=1

C∏
c=1

(
pcn
qcn

)1cn
= exp

(
ln

(
N∏
n=1

C∏
c=1

(
pcn
qcn

)1cn))

= exp

(
N∑
n=1

C∑
c=1

ln

((
pcn
qcn

)1cn))

= exp

(
N∑
n=1

C∑
c=1

1
c
n ln

(
pcn
qcn

))

= exp


N∑
n=1

C∑
c=1

1
c
n ln


C∑
k=1

pkne
θωkn

eθω
c
n




= exp

(
N∑
n=1

C∑
c=1

1
c
n

[
ln

(
C∑
k=1

pkne
θωkn

)
− ln

(
eθω

c
n

)])

= exp

(
N∑
n=1

C∑
c=1

1
c
n ln

(
C∑
k=1

pkne
θωkn

)
−

N∑
n=1

C∑
c=1

1
c
nθω

c
n

)

= exp

(
N∑
n=1

ln

(
C∑
k=1

pkne
θωkn

)
C∑
c=1

1
c
n − θL

)

= exp

(
N∑
n=1

ln

(
C∑
k=1

pkne
θωkn

)
− θL

)
= exp (ψ(θ)− θL)
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Appendix C

Convex Bound on Second Moment

for Inner Level Importance Sampler

ψ(θ) =

N∑
n=1

ln

(
C∑
c=1

pcne
θωcn

)
=

N∑
n=1

ψn(θ)

To show that ψ(θ) is convex it is enough to show that each ψn(θ) is convex. In order to show this

we will prove that ψ
′′

n(θ) ≥ 0

ψ
′′

n(θ) =

C∑
c=1

pcn(ωcn)2eθω
c
n

C∑
c=1

pcne
θωcn

−

(
C∑
c=1

pcnω
c
ne
θωcn

)2

(
C∑
c=1

pcne
θωcn

)2 ≥ 0

⇐⇒

(
C∑
c=1

pcne
θωcn

)(
C∑
c=1

pcn(ωcn)2eθω
c
n

)
−

(
C∑
c=1

pcnω
c
ne
θωcn

)2

≥ 0

⇐⇒

(
C∑
c=1

pcnω
c
ne
θωcn

)2

≤

(
C∑
c=1

pcne
θωcn

)(
C∑
c=1

pcn(ωcn)2eθω
c
n

)

Let ~xn, ~yn ∈ RC , xcn =
√
pcne

θωcn , ycn = ωcnx
c
n. Then the inequality becomes

(
C∑
c=1

xcny
c
n

)2

≤

(
C∑
c=1

(xcn)2

)(
C∑
c=1

(ycn)2

)
(C.1)

This is the Cauchy-Schwarz inequality. To prove strict convexity we note that Cauch-Schwarz is

equality iff ~yn = λ~xn, λ ∈ R or one of ~xn or ~yn is ~0. While this is possible mathematically it is not likely

in the credit model case. Moreover if at least one ψn(θ) is strictly convex then ψ(θ) is strictly convex.

Therefore the inequality in equation (C.1) is strict in almost all cases.

The fact that ψ(0) = 0 follows immediately from
C∑
c=1

pcn = 1.
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