
A Neural Network Approach to Efficient Valuation of
Large VA Portfolios

by

Seyed Amir Hejazi

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2016 by Seyed Amir Hejazi

Abstract

A Neural Network Approach to Efficient Valuation of Large VA Portfolios

Seyed Amir Hejazi

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2016

Variable annuity (VA) products expose insurance companies to considerable risk because

of the guarantees they provide to buyers of these products. Managing and hedging the

risks associated with VA products requires intraday valuation of key risk metrics for

these products. The complex structure of VA products and computational complexity of

their accurate evaluation has compelled insurance companies to adopt Monte Carlo (MC)

simulations to value their large portfolios of VA products. Because the MC simulations

are computationally demanding, especially for intraday valuations, insurance companies

need more efficient valuation techniques.

Existing academic methodologies focus on fair valuation of a single VA contract,

exploiting ideas in option theory and regression. In most cases, the computational com-

plexity of these methods surpasses the computational requirements of MC simulations.

Recently, a framework based on Kriging has been proposed that can significantly decrease

the computational complexity of MC simulation. Kriging methods are an important class

of spatial interpolation techniques. In this thesis, we study the performance of prominent

traditional spatial interpolation techniques. Our study shows that traditional interpola-

tion techniques require the definition of a distance function that can significantly impact

their accuracy. Moreover, none of the traditional spatial interpolation techniques provide

all of the key properties of accuracy, efficiency, and granularity. Therefore, in this thesis,

we present a neural network approach for the spatial interpolation framework that affords

ii

an efficient way to find an effective distance function. The proposed approach is accurate,

efficient, and provides an accurate granular view of the input portfolio. Our numerical

experiments illustrate the superiority of the performance of the proposed neural network

approach in estimation of the delta value and also the solvency capital requirement for

large portfolios of VA products compared to the traditional spatial interpolation schemes

and MC simulations.

iii

Dedication

To my wife Narges, my parents Mahnaz and Ali, my sister Asma, and my unborn

children who will see this in the future.

iv

Acknowledgements

I want to start by expressing my sincere gratitude to my supervisor Prof. Kenneth R.

Jackson who has been a tremendous source of wisdom, guidance, kindness, and encourage-

ment throughout my PhD studies. Being his student and having the unique opportunity

of collaborating with him, I have become a better scientist.

I would like to thank the members of my PhD supervisory committee: Prof. Christina

Christara, Prof. Sheldon Lin, and Prof. Guojun Gan, for their insightful comments and

invaluable advice that enriched and strengthened this thesis. I would also like to thank

Prof. Yuying Li for accepting to be my external examiner and Prof. Tom Fairgrieve for

agreeing to be a member of my final oral committee.

I am grateful to the Computer Science department at the University of Toronto, the

Natural Science and Engineering Research Council of Canada (NSERC), the Government

of Ontario, and Greg Wolfond for financially supporting my PhD studies.

Furthermore, I wish to thank my CS family, Venkatesh Medabalimi, George Amvrosiadis,

Nosayba El-Sayed, Sahil Suneja, Daniel Fryer, Andy Hwang, Bogdan Simion, Ioan Ste-

fanovici, Larry Zhang, Patricia Thaine, Sean Robertson, Aditya Bhargava, Samir Hamdi,

Michael Chiu, and Vida Heidarpour, for their sage advice and support, and for all the

fun that we had together. They are the true colors of the Computer Science department.

I want to thank my wonderful friends, Behrooz Abiri, Saeid Rezaei, Kianoosh Hos-

seini, Amir Hassan Asgari, Aynaz Vatankhah, Milad Eftekhar, Amirali Salehi, Soheil

Hassas Yeganeh, Hossein Kaffash Bokharaei, Monia Ghobadi, Mahdi Lotfinezhad, Amin

Behnad, Amin Heidari, Hossein Kassiri, Sadegh Jalali, Seyed Hossein Seyedmehdi, Mo-

hammad Shakourifar, and my friends at the UTDisco group, for their love and support.

In particular, I am grateful to my dearest friend Afshar Ganjali who has been a tremen-

dous source of support in this hard long journey. He is the brother that I always wished

for.

v

Special thanks go to my parents, Mahnaz Tahmasebi and Seyed Aliakbar Hejazi,

my sister Asma Hejazi and her husband Salman Mohazabieh, my mother-in-law Soheila

Sartaj, my father-in-law Mohammadreza Balouchestani-asli, and my sister-in-law Negar

Balouchestani-asli, for their prayers, their sacrifices, their endless love, and for putting

their confidence in me. I am forever indebted to them.

Last but not the least, I want to extend my utmost gratitude to my lovely wife Narges

Balouchestani-asli. She is the true accomplishment of my PhD journey. She was the light

that I pursued during the most difficult time of this journey when everything else was

dark. I am able to successfully finish this long endeavor because of her never ending love

and care. Thanks darling for everything.

vi

Contents

1 Introduction 1

1.1 Main Contributions . 3

1.2 Thesis Outline . 6

2 Application of Spatial Interpolation in Estimation of Greeks 8

2.1 Portfolio Valuation Techniques . 8

2.2 Spatial Interpolation Framework . 10

2.2.1 Sampling Method . 11

2.2.2 Kriging . 12

2.2.3 Inverse Distance Weighting . 15

2.2.4 Radial Basis Functions . 16

2.3 Numerical Experiments . 18

2.3.1 Performance . 19

2.3.2 Accuracy . 22

2.3.3 Distance Function . 23

2.3.4 Variogram . 25

3 A Neural Network Approach to Estimation of Greeks 30

3.1 Neural Network Framework . 31

3.1.1 The Neural Network . 38

3.1.2 Network Training Methodology 48

vii

3.1.3 Stopping Condition . 52

3.1.4 Sampling . 56

3.2 Numerical Experiments . 57

3.2.1 Representative Contracts . 59

3.2.2 Training/Validation Portfolio . 59

3.2.3 Parameters of the Neural Network 60

3.2.4 Performance . 61

3.2.5 Sensitivity to Training/Validation Portfolio 66

3.2.6 Sensitivity to Sample Sizes . 70

3.2.7 Sensitivity to the Size of Input Portfolio 73

4 Application of Neural Network Framework in Estimation of SCR 76

4.1 Solvency Capital Requirement . 77

4.2 Nested Simulation Approach . 78

4.3 Numerical Experiments . 84

4.3.1 Network Setup . 87

4.3.2 Performance . 89

5 Sampling Method 96

5.1 Design of the Sampling Method . 97

5.2 Numerical Experiments . 107

5.2.1 Uniform Input Portfolio . 107

5.2.2 Non-Uniform Input Portfolio With Low Correlation 111

5.2.3 Sobol Sequence . 115

5.2.4 Non-Uniform Input Portfolio With High Correlation 117

6 Conclusions and Future Work 127

A How To Choose The Training Parameters 132

viii

Bibliography 137

ix

List of Tables

2.1 GMDB and GMWB attributes and their respective ranges of values. . . . 18

2.2 Attribute values from which representative contracts are generated for

experiments. 20

2.3 Relative error in estimation of the delta value via each method. 21

2.4 Simulation time for each method to estimate the delta value. All times

are in seconds. 23

2.5 Mean and standard deviation of the relative error in estimation of the

delta value via each method. 24

2.6 Relative error in the estimation of the delta value by each method. In

experiment 1, (2.10) is used with γ = 0.05, and, in experiment 2, (2.12) is

used with γ = 1. A “∗” indicates that the method cannot work with this

choice of distance function because it causes singularities in the computa-

tions. 26

2.7 Relative error in estimation of the delta value via Kriging with different

variogram models. 28

3.1 GMDB and GMWB+GMDB attributes and their respective ranges of val-

ues for the synthetic input porttfolio. 58

3.2 Attribute values from which representative contracts are generated for

experiments. 60

3.3 Attribute values from which training contracts are generated for experiments. 60

x

3.4 Relative error in estimation of the portfolio’s delta value by each method. 64

3.5 Simulation time of each method to estimate the delta value. All times are

in seconds. 65

3.6 Statistics on the running time sensitivity and accuracy sensitivity of the

training network with different sets of training and validation portfolios.

The recorded errors are relative errors as defined in (3.19). All times are

in seconds. 69

3.7 Statistics on running time sensitivity and accuracy sensitivity of training

network with portfolios of various sizes. The recorded errors are relative

errors as defined in (3.19). All times are in seconds. 71

3.8 Statistics on running time sensitivity and accuracy sensitivity of the neural

network framework on input portfolios of various sizes. The recorded errors

are relative errors as defined in (3.19). All times are in seconds. 74

4.1 GMDB and GMWB attributes and their respective ranges of values. . . . 84

4.2 Attribute values from which representative contracts are generated for

experiments. 87

4.3 Attribute values from which training contracts are generated for experiments. 88

4.4 Relative error in the estimation of the current liability value, one year

liability value, and the Solvency Capital Requirement (SCR) for the input

portfolio. 93

4.5 simulation time of each method to estimate the SCR. All times are in

seconds. 95

5.1 Correlation coefficient between pairs of attributes in the synthetic uniform

input portfolio defined in Section 3.2. 109

5.2 Randomized dependence coefficient (RDC) with k = 10 and s = 1/10 pairs

of attributes in the synthetic uniform input portfolio defined in Section 3.2.110

xi

5.3 Statistics on the running time and accuracy of the neural network frame-

work when used with the uniform sampling method of Chapter 3 and the

sampling method proposed in Section 5.1 to estimate the delta value of

a uniformly distributed input portfolio. The recorded errors are relative

errors as defined in (3.19). All times are in seconds. 110

5.4 Distribution of attributes in the input portfolio. 112

5.5 Correlation coefficient between pair of attributes in the synthetic non-

uniform input portfolio defined in the space of Table 5.4. 113

5.6 Randomized dependence coefficient (RDC) with k = 10 and s = 1/10 pair

of attributes in the synthetic non-uniform input portfolio defined in the

space of Table 5.4. 113

5.7 Statistics on the running time and accuracy of the neural network frame-

work when used with the uniform sampling method and the sampling

method proposed in Section 5.1 to estimate the delta value of a non-

uniformly distributed input portfolio. The recorded errors are relative

errors as defined in (3.19). All times are in seconds. 114

5.8 Statistics on the running time and accuracy of the neural network frame-

work when used with the sampling method proposed in Section 5.1 and

the Sobol quasi-random number generator to estimate the delta value of a

non-uniformly distributed input portfolio. The recorded errors are relative

errors as defined in (3.19). All times are in seconds. 116

5.9 Correlation coefficient between each pair of attributes in the synthetic

non-uniform input portfolio. 122

5.10 Randomized dependence coefficient (RDC) with k = 10 and s = 1/10

between each pair of attributes in the synthetic non-uniform input portfolio.123

5.11 Attribute values from which representative contracts are generated for

experiments. 123

xii

5.12 Attribute values from which training contracts are generated for experiments.124

5.13 Statistics on the running time and accuracy of the neural network frame-

work when used with the uniform sampling method and the sampling

method proposed in Section 5.1 with and without the Sobol quasi-random

number generator to estimate the delta value of a non-uniformly dis-

tributed input portfolio. The recorded errors are relative errors as defined

in (3.19). All times are in seconds. 124

xiii

List of Figures

2.1 Example of a variogram. 15

2.2 Comparing the variogram models with the empirical variogram. 27

2.3 Squared difference of delta values of Variable Annuity (VA) pairs in rep-

resentative contracts. 29

3.1 Diagram of a feed-forward neural network. Each circle represents a neuron. 38

3.2 Diagram of the proposed neural network. Each circle represents a neuron.

Each rectangle represent the set of neurons that contains input features

corresponding to a representative contract. 39

3.3 An example scenario in which having different bandwidth parameters in

different direction around a representative contract can be beneficial. . . 42

3.4 MSE of VA policies in the batch as a function of the iteration number. . 53

3.5 The Mean Squared Error (MSE) of the validation set and the trend in

the MSE as a function of the iteration number for a run of the training

algorithm. The trend is found using a moving average with a window size

of 10 and then fitting a polynomial of degree 6 to the smoothed data. . . 55

3.6 Comparing estimation of the delta values of the contracts in the input

portfolio computed by the neutral network method and the Monte Carlo

(MC) method. 67

3.7 Comparing estimation of the delta values of contracts in the input portfolio

computed by the IDW method and the MC method. 68

xiv

3.8 Comparing estimation of the delta values of contracts in the input portfolio

computed by the RBF method and the MC method. 69

4.1 Diagram of the nested simulation approach proposed by [4]. 79

4.2 Diagram of the proposed nested simulation approach. 83

4.3 Comparing estimation of one-year liability values of the input portfolio

computed by the proposed neural network framework and the MC method. 94

5.1 Approximate age distribution of Figure 2-17 in [65] and its approximation

by part of a rescaled beta-binomial distribution. 119

A.1 The MSE error graph (left) and the moving average smoothed MSE error

graph (right) of the training portfolio as a function of iteration number

and learning rate. 133

A.2 The MSE error graph (left) and the moving average smoothed MSE error

graph (right) of the training portfolio as a function of iteration number

and batch-size. 134

A.3 The MSE error graph (left) and the moving average smoothed MSE error

graph (right) of the validation portfolio as a function of iteration number

and I value. 136

A.4 The MSE error graph of the validation portfolio as a function of iteration

number and smoothing window value. 137

xv

Acronyms

AC Available Capital

AV Account Value

CDF Cumulative Distribution Function

CEIOP Committee of European Insurance and Occupational Pensions Supervisors

GD Guaranteed Death Benefit Value

GV Guarantee Value

IDW Inverse Distance Weighting

LHS Latin Hypercube Sampling

LSMC Least Squares Monte Carlo

Mat Maturity

MVA Market Value of Assets

MVL Market Value of Liabilities

MSE Mean Squared Error

MC Monte Carlo

NAG Nestrov’s Accelerated Gradient

RBF Radial Basis Function

RDC Randomized Dependence Coefficient

RSS Replicated Stratified Sampling

xvi

SCR Solvency Capital Requirement

VA Variable Annuity

WR Withdrawal Rate

xvii

Chapter 1

Introduction

Variable annuities are unit-linked products that are wrapped with a life insurance con-

tract. These products allow a policyholder to invest into pre-defined sub-accounts set up

by the insurance company. Sub-account funds are invested in bonds, the money market,

stocks and other financial products. An insurer offers different types of sub-accounts that

are tailored to the appetite of policyholders with different levels of tolerance for risk. The

investment can be made via a lump-sum payment or a series of investment purchases. In

return, the insurance company offers tax sheltered growth and guarantees that protect

the policyholder in a bear market [19].

Upon entering into a contract, the policyholder is given two accounts: the first keeps

track of the performance of investments in the sub-accounts while the second keeps track

of the amount of guarantee provided by the insurance company. The value of the first

account is called the account value and the value of second account is called the bene-

fit base. During a period called the accumulation phase, the policyholder accumulates

assets on his investments in sub-accounts and the value of his benefit base appreciates

by contractually agreed roll ups, ratchets and resets without taxation. At the end of the

accumulation phase, the benefit base is locked in and the insurer guarantees to return

at least the benefit base as a lump sum payment or as a stream of payments during a

1

Chapter 1. Introduction 2

period called the withdrawal phase.

The most prevalent of the guarantees are the Guaranteed Minimum Death Bene-

fit (GMDB), the Guaranteed Minimum Withdrawal Benefit (GMWB), the Guaranteed

Minimum Income Benefit (GMIB), and the Guaranteed Minimum Accumulation Benefit

(GMAB). The GMDB guarantees a specified lump sum payment on death regardless of

the performance of the underlying account. The most basic guarantee offered now is

the return of the benefit base adjusted for any partial withdrawals. The GMWB guar-

antees the ability to partially withdraw up to a pre-determined percentage (called the

withdrawal rate) of the benefit base for a specified number of years. The decision to

withdraw is made annually and the maximum amount of withdrawal is a function of the

age of the policyholder. The GMIB guarantees a stream of income for life contingent

on the survival of the policyholder, and the GMAB guarantees a lump sum payment

on maturity of the contract regardless of the performance of the underlying funds. For

further details, see [68].

Embedded guarantees are the key selling feature of VA products. These guarantees

have allowed insurance companies to sell trillions of dollars worth of these products

worldwide, in 2010 alone [43]. As a result, major insurance companies are now managing

large portfolios of VA contracts, each with hundreds of thousands of contracts.

Although the embedded guarantees are attractive features to the buyer of VA prod-

ucts, they expose the insurers to substantial risk (e.g., market and behavioral risk).

Because of that, major insurance companies have started risk management and hedg-

ing [9,36] programs, especially after the market crash of 2008, to reduce their exposures.

An integral part of a risk management program is finding the value of key statistical

risk indicators, e.g., the Greeks [42] and the Solvency Capital Requirement (SCR) [4], on

daily, monthly and quarterly bases.

Most of the academic research to date has focused on fair valuation of individual

VA contracts [2, 8, 13, 17, 18, 22, 24, 27, 34, 41, 46, 51, 52, 70]. Most of the methodologies

Chapter 1. Introduction 3

developed in these research papers are based on ideas from option pricing theory, and

are tailored to the type of VA studied. In addition, almost all of the proposed schemes

are computationally expensive and the results they provide for a VA contract cannot be

re-used for another VA contract, even of similar type. Each VA contract is unique in

terms of its key attributes, i.e., age, gender, account value, guaranteed value, maturity

of contract, fund type, etc. Hence, VA portfolios are non-homogeneous pools of VA

contracts, and academic methodologies cannot scale well to be used to calculate key risk

statistics of large VA portfolios.

Although the nature of the guarantees in the VA products makes them path depen-

dent, in practice, insurance companies relax the assumptions on guarantees and rely

heavily on stochastic simulations to value these products and manage their risks. In par-

ticular, nested MC simulations are the industry standard methodology in determining

key risk metrics [4,61]. A Nested simulation consists of an outer loop that spans the space

of key market variables (risk factors) and an inner loop that projects the liability of each

VA contract along many simulated risk-neutral paths [29]. As explained in Chapters 2

and 4, MC simulations are computationally demanding, forcing insurance companies to

look for ways to reduce the computational load of MC simulations.

1.1 Main Contributions

The unique structure of VA contracts does not allow one to blindly re-use the calculated

value of a risk metric for one VA contract for another VA contract. But the calculated

value for a sample VA contract can provide partial information (e.g., a value range) for

the value of the risk metric for VA contracts that have similar attributes and attribute

values as the sample VA contract.

The proposed Kriging methods in [30, 32] incorporate the partial information of a

sample portfolio of VA contracts for which the values of key risk metrics are known and

Chapter 1. Introduction 4

approximate the values of the key risk metrics for other VA contracts. As we explain in

Chapter 2, the proposed Kriging methods can be categorized under the general frame-

work of spatial interpolation. Spatial interpolation techniques improve the efficiency of

evaluation for large VA portfolios by reducing the number of VA contracts for which the

MC simulations must be performed.

In this thesis, we provide an extensive study of the spatial interpolation framework

when employed with existing interpolation schemes to approximate the Greeks for large

portfolios of VAs. Our experimental results, in Chapter 2, show that none of the existing

interpolation schemes we considered achieves all of the desired requirements of efficiency,

accuracy and granularity (per policy view of the portfolio). We explain in Chapters 2

and 3 that a major drawback of existing interpolation techniques is their reliance on a

distance function. Defining a good distance function is not straightforward and requires

input from a subject matter expert. The amount of time invested by a subject matter

expert to define the choice of distance function may be significant and hence diminish

the efficiency of the framework.

In Chapter 3, we use ideas in machine learning theory to propose the Nadaraya-

Watson estimators [54,72] as the class of spatial interpolation techniques that can provide

all of efficiency, accuracy and granularity. Finding an appropriate choice of distance

function, in this class of estimators, can be formulated as an optimization problem on

the choice of bandwidth parameters and the function that is used in these estimators to

do the Parzen density estimations. As we discuss in Chapter 3, the original definition of

Nadaraya-Watson estimators uses a universal set of bandwidth parameters. However, in

our application of interest, it is better to allow the bandwidth parameters to be dependent

on the location of Parzen density estimators. Hence, we propose a formulation of the

Nadaraya-Watson estimators that uses location dependent bandwidth parameters. This

formulation allows us to use a single layer neural network to implement our proposed

extension of the Nadaraya-Watson estimator.

Chapter 1. Introduction 5

The proposed neural network learns an appropriate distance function through a cali-

bration (training) process that finds an appropriate choice of the bandwidth parameters.

To significantly reduce manual input by a subject matter expert, we propose a design of

the calibration process that can detect when to stop the calibration process and how to

deal with the issue of overfitting. Our experiments in Chapter 3 demonstrate that the

framework provides approximate values of the key risk metrics at a micro (per policy)

level and at a macro (portfolio) level in a fast, accurate way. The proposed neural net-

work, in comparison to the existing spatial interpolation techniques has better accuracy

and comparable efficiency. The neural network, for a comparable accuracy, is faster than

a straightforward MC simulation in estimation of the delta value of a large portfolio of

100, 000 VA contracts, by a factor greater than 15.

As we discuss in Chapter 3, the training stage of the proposed neural network ap-

proach is time consuming, which may not be ideal if the neural network is used for

intraday valuations. However, a small change in market conditions usually does not af-

fect the key risk metrics of VA policies significantly. Therefore, a small change in the

parameters of the trained neural network should be sufficient to preserve the accuracy of

the estimations under the new market conditions. We build on this idea and provide a

solution in Chapter 4 that decreases the training time of the network significantly.

In Chapter 4, we use the neural network to estimate the one-year loss probability

distribution for a large portfolio of VA products, which is an important step in comput-

ing the SCR for the portfolio. To estimate the one-year loss probability distribution, we

have to compute liabilities of the input portfolio under many market conditions. A MC

approach, as suggested in [4], to compute the one-year loss probability distribution, even

with a parallel processing implementation, admits significant computational complexity.

We show in Chapter 4, how the proposed neural network approach can provide an efficient

and accurate alternative. Our numerical experiments show that a sequential implemen-

tation of the proposed neural network approach can compute the SCR for a portfolio of

Chapter 1. Introduction 6

100, 000 VA policies at a speed that is 6 times faster than a parallel implementation of

MC simulations.

We discuss in Chapter 3 that a bad choice of representative contracts can cause a

severe deterioration in the accuracy of our neural network framework. Furthermore,

our numerical experiments show that a bad choice of the representative portfolio or the

training portfolio can lead to a poor training of the network parameters and can increase

the training time of the neural network.

To ameliorate the above-mentioned problem, in Chapter 5, we propose a novel sam-

pling method that uses the distribution of the input portfolio in the space in which it is

defined to generate VAs for the representative portfolio and the training portfolio. Our

experiments in Chapter 5 show that the proposed sampling method, when used in the

neural network framework of Chapter 3, can accurately and efficiently estimate the delta

value of synthetic portfolios of VAs that are uniformly and/or non-uniformly distributed

in the space.

1.2 Thesis Outline

In Chapter 2, we review the existing methodologies used to value key risk metrics of

a large portfolio of VAs. In particular, we discuss the pitfalls of these approaches that

may prevent them from efficiently computing accurate estimates of key risk metrics. We

describe the spatial interpolation framework that can significantly decrease the compu-

tational complexity of MC simulations by reducing the number of policies that undergo

MC simulations. We study the performance of this framework when employed with

existing interpolation schemes. Our numerical results show that the existing interpola-

tion schemes can provide only a subset of performance metrics (accuracy, efficiency, and

granularity). We also discuss the importance of the choice of sampling methods and the

distance function on the performance of the spatial interpolation scheme.

Chapter 1. Introduction 7

In Chapter 3, we propose a neural network approach to estimate the key risk metrics.

The proposed neural network learns the choice of a good distance function and hence

eliminates the need for a manual input of a distance function by a subject matter expert.

Our numerical results corroborate that the neural network provides accurate estimates of

the key risk metrics at both the policy level and the portfolio level in an efficient manner.

In Chapter 4, we use the proposed neural network to compute the SCR for a large

portfolio of VAs. A bottleneck in the performance of the proposed neural network ap-

proach is the training time. We demonstrate, in Chapter 4, that small updates to the

parameters of a trained network to find optimal parameter values for a new network can

significantly reduce the training time.

In Chapter 5, we propose a sampling method that generates portfolios of sample

VA policies that have distributions in space that are similar to the distribution of the

input portfolio of VAs. The method allows for better training of the neural network and

enhances the accuracy of the neural network framework for non-uniformly distributed

input portfolios.

Finally, Chapter 6 concludes the thesis and discusses possible future directions.

Chapter 2

Application of Spatial Interpolation

in Estimation of Greeks

In this chapter1, we focus on the efficient approximation of the Greeks for large portfolios

of VA products. In particular, we provide an extensive study of a framework based on

metamodeling that can approximate the Greeks for large portfolios of VAs in a fast and

accurate way.

2.1 Portfolio Valuation Techniques

If one thinks of VAs as exotic market instruments [42], the traditional replicating portfolio

approach can be used to find the value of a portfolio of VA products. The main idea

behind this approach is to approximate the cash flow of liabilities for a portfolio of

VA contracts using well-formulated market instruments such as vanilla derivatives. The

problem is often formulated as a convex optimization problem where the objective is to

minimize the difference between the cash flows of the input portfolio and the replicating

portfolio. Depending on the norm associated with the problem, linear programming [26]

1The material of this chapter is based on our paper [39].

8

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks9

or quadratic programming [25,57] is used in the literature to find the replicating portfolio.

The replicating portfolio, in our application of interest, doesn’t provide us with an efficient

alternative to MC simulations, as one still needs to find the cash flow of the input portfolio

for each year up to maturity.

Least Squares Monte Carlo (LSMC) regresses the liability of the input portfolio

against some basis functions representing key economic factors [14, 47]. LSMC has been

proposed in the literature to reduce the number of inner loop scenarios in nested MC

simulations [15]. Depending on the type of embedded guarantees, size of investment

and characteristics of the policyholder, VA contracts have many numeric attributes, each

covering a broad range. Therefore, an accurate regression using LSMC requires incorpo-

rating many sample points in the space of key risk factors, and hence is computationally

demanding.

In [11], another regression approach that is similar to LSMC is proposed to reduce

the computational complexity associated with the calculation of risk measures associated

with the loss distribution of financial portfolios. Although this method is successful in

increasing the convergence rate of MC simulations and in reducing the number of inner

loop scenarios to as low as one, it is applicable to only a very limited number of risk

metrics that can be defined as an expectation of a function of the loss. In particular, the

method does not apply to important risk measures such as Greeks, VaR and Solvency

Capital Requirement. Furthermore, achieving the desired level of accuracy with only one

inner loop scenario for each outer loop scenario still requires many outer loop scenarios.

Recently, Replicated Stratified Sampling (RSS) [71] and Kriging based techniques

[30,32] have been proposed to reduce the number of VA contracts that must be included

in the MC simulations. Both of these methods, use the Greeks for samples of the input

portfolio to estimate the Greeks of the full input portfolio. RSS requires several iterations

of sample generation and evaluation to converge to a final result. This makes it more

computationally demanding than the Kriging based techniques of [30, 32] that require

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks10

MC simulations results for only one sample.

The Kriging based methods of [30, 32], first, select a small set of representative VA

policies, using various data clustering [33] or sampling methods, and price only these

representative policies via MC simulations. The representative contracts and their Greeks

are then fed as training samples to a machine learning algorithm [5] called Kriging [23],

which then estimates the Greeks of the whole portfolio. In the rest of the chapter, we

provide a study of the more general framework of spatial interpolation, including Kriging

methods, and provide more insights into why spatial interpolation can be much more

efficient and accurate than other approaches in the literature.

In this thesis, we use the term interpolation in the general context of estimating

the values at unknown locations using known data at a finite number of interpolation

points. In this context, an interpolation method for which the predicted values are exactly

equal to the known values at all the interpolation points is called an exact interpolator.

Interpolation methods that do no satisfy this constraint are called inexact interpolation

methods [12].

2.2 Spatial Interpolation Framework

The proposed methods in [30–32] can be categorized under the general framework of

spatial interpolation. Spatial interpolation is the procedure of estimating the value of

data at unknown locations in space given the observations at sampled locations [12]. As

the definition suggests, spatial interpolation requires a sampling method to collect infor-

mation about the surface of interest and an interpolation method that uses the collected

information to estimate the value of the surface at unknown locations. As discussed

in [30–32], the choice of sampling method and interpolation method can noticeably im-

pact the quality of the interpolation. In this chapter, we choose to focus on the latter,

and leave a discussion of the choice of an appropriate sampling method to Chapter 5.

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks11

In the functional data analysis literature, there exist two main classes of interpolation

methods [12]:

• Deterministic Interpolation: Creates surfaces from measured points on the

basis of either similarity or degree of smoothness.

• Stochastic Interpolation: Utilizes statistical properties of measured points, such

as auto-correlation amongst measured points, to create the surface.

In what follows, we study three (one stochastic, and two deterministic) of the most

prominent of these interpolation techniques— Kriging, Inverse Distance Weighting (IDW)

and Radial Basis Function (RBF)— in the context of our problem of interest. In par-

ticular, we study these interpolation techniques to estimate the delta value for a large

portfolio of VA products. Although our study focuses on estimation of the delta value, the

framework is general and can be applied to estimate other Greeks as well. We compare

the performance of these methods in terms of computational complexity and accuracy at

the micro (contract) level and at the macro (portfolio) level.

Although [30,32] provide some insights into the performance of the Kriging interpola-

tion methods, we provide further insights into the efficiency and accuracy of Kriging based

methods in comparison to other interpolation techniques. Moreover, we shed some light

on how Kriging achieves its documented performance and discuss some issues regarding

the choice of variogram model and distance function.

2.2.1 Sampling Method

In this chapter, we focus on studying synthetic portfolios that are generated uniformly

at random in the space of selected variable annuities. In [31], the Latin Hypercube

Sampling (LHS) method [50] is used to select representative contracts. LHS provides a

uniform coverage of the space including the boundary VA contracts. The results of [31]

indicate that LHS increases the accuracy of the estimation compared to other sampling

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks12

methods. In order to preserve the properties of LHS, in this chapter, we select our

representative contracts by dividing the range of each numeric attribute of a VA contract

into almost equal length subintervals, selecting the end points of resulting subintervals

and producing synthetic contracts from all combinations of these end points and choices

of categorical attributes.

2.2.2 Kriging

Kriging is a stochastic interpolator that gives the best linear unbiased estimation of

interpolated values assuming a Gaussian process model with prior covariance [45, 49].

Various Kriging methods (i.e., Simple Kriging, Ordinary Kriging, Universal Kriging,

etc.) have been developed based on assumptions about the model. In our experiments, we

didn’t find any significant advantages in choosing a particular Kriging method. Therefore,

for the sake of simplicity of analysis, and based on the results of [32], we focus on ordinary

Kriging in this thesis.

Assume Z(x) represents the delta value of a VA contract represented in space by

the point x. Let Z(x1), Z(x2), . . . , Z(xn) represent the observed delta values at locations

x1, x2, . . . , xn. Ordinary Kriging tries to find the best, in the Mean Squared Error (MSE)

sense, unbiased linear estimator Ẑ(x) =
∑n

i=1 ωiZ(xi) of Z(x) by solving the following

system of linear equations to find the wis.

γ(D(x1, x1)) γ(D(x1, x2)) . . . γ(D(x1, xn)) 1

...
...

. . .
...

...

γ(D(xn, x1)) γ(D(xn, x2)) . . . γ(D(xn, xn)) 1

1 1 . . . 1 0

w1

...

wn

λ

=

γ(D(x1, x))

. . .

γ(D(xn, x))

1

(2.1)

where λ is the Lagrange multiplier [7], γ(·) is the semi-variogram function, to be discussed

shortly, and D(·, ·) is a distance function that measures the distance between two points

in the space of VA contracts. The last row enforces the following constraint to allow an

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks13

unbiased estimation of Z(x).

n∑
i=1

wi = 1 (2.2)

Note that wi is a function of x, x1, · · · , xn, but, to simplify the notation, we write it as

wi throughout this chapter.

In this formulation of the Kriging problem, the system of linear equations (2.1) should

be solved once for each VA policy (point in space). Solving a system of linear equations,

with standard methods, takes Θ(n3)2 time. Hence, estimating the delta value for a

portfolio of N VA contracts by summing the estimated delta value of each contract

requires Θ(N × n3) time which is computationally expensive. Because of this, Kriging

methods are inefficient in finding a granular view of the portfolio. However, if we are only

interested in the Greeks of the portfolio, and not the Greeks of each individual policy,

we can follow the approach of [30–32] and use the linearity of the systems of linear

equations to sum them across the portfolio in Θ(n×N) and to solve only the resulting

system of linear equations in time proportional to n3. Hence estimating the delta of a

portfolio requires Θ(n3 + n×N) time. To sum the systems of linear equations, we sum

the corresponding weights and Lagrange multipliers on the left side of the equations and

sum the corresponding terms, i.e., γ(D(xi, x)), i = 1, 2, . . . , n, and constants, on the right

side of the equations.

Variogram

Kriging assumes the Gaussian process Z(x) is second order stationary, i.e., the covariance

of the Gaussian process in two locations is a function of the distance between the two

locations. Assuming a zero mean, the Gaussian process covariance function can be defined

in terms of a variogram function 2γ(h)

2f(x) = Θ(g(x)) means that there exists positive numbers c1, c2, and M such that ∀x > M : c1g(x) ≤
f(x) ≤ c2g(x).

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks14

CovZ(x+ h, x) =E
[
Z(x+ h)Z(x)

]
=

1

2
E
[
Z2(x+ h) + Z2(x)−

(
Z(x+ h)− Z(x)

)2]
=V ar(Z)− 1

2
(2γ(h)) (2.3)

In practice, for a set of sample points xi, 1 ≤ i ≤ n, the variogram can be estimated

as

2γ̂(h) =
1

N(h)

N(h)∑
i=1

(
Z(xi + h)− Z(xi)

)2
(2.4)

where N(h) is the number of pairs in the sample separated by a distance h from each

other. The function 2γ̂(h) is often called the empirical variogram.

Because of the noise in measurements, the estimated empirical variogram may not

represent a valid variogram function. Since methods like Kriging require valid variograms

at every distance h, empirical variograms are often approximated by model functions

ensuring the validity of the variogram [20]. Variogram models are usually described in

terms of three important variables:

• Nugget (n): The height of the discontinuity jump at the origin.

• Sill (s): The Limit of the variogram as the lag distance h approaches infinity.

• Range (r): The distance at which the difference of the variogram from the sill

becomes negligible.

Figure 2.1 shows an example of an empirical variogram and the model variogram. In

our study, we choose to focus on the following three prominent variogram models [20,23]:

• Exponential Variogram

γ(h) = (s− n)
(

1− exp
(
− h

(ra)

))
+ n1(0,∞)(h)

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks15

Figure 2.1: Example of a variogram.

• Spherical Variogram

γ(h) = (s− n)
(

(
3h

2r
− h3

2r3
)1(0,r)(h) + 1[r,∞)(h)

)
+ n1(0,∞)(h)

• Gaussian Variogram

γ(h) = (s− n)
(

1− exp
(
− h2

r2a

))
+ n1(0,∞)(h)

In Exponential and Gaussian variogram models, a is a free parameter that is chosen

so that the variogram better fits the data.

2.2.3 Inverse Distance Weighting

Inverse Distance Weighting (IDW) is a deterministic method that estimates the value at

an unknown position x as a weighted average of values at known positions x1, . . . , xn.

Assuming the delta values Z(x1), Z(x2), . . . , Z(xn) of representative VAs x1, x2, . . . , xn,

we can estimate the delta value Z(x) of a VA at a point x as

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks16

Ẑ(x) =

{∑n
i=1 wi(x)Z(xi)∑n

i=1 wi(x)
∀i : D(x, xi) 6= 0

Z(xi) ∃i : D(x, xi) = 0
(2.5)

where wi(x) = D(x, xi)
−p, and D(·, ·) is a distance function [63]. The parameter p in

wi(x) is a positive real number called the “power parameter”. The choice of power

parameter depends on the distribution of samples and the maximum distance over which

an individual sample is allowed to influence the surrounding points. Greater values of

p assign greater influence to values closest to the interpolating point. The choice of

the power parameter also influences the smoothness of the interpolator by changing the

influence radius of sample points.

In comparison to Kriging, IDW requires only Θ(n) operations to estimate the delta

value of each new VA contract using the delta values of n representative contracts. As-

suming a portfolio of N VA contracts, we can estimate the delta value of the portfolio by

summing the estimated delta value of contracts in time proportional to n×N . Hence, we

expect IDW to be faster than Kriging to estimate the delta value of the portfolio. The

difference in speed is more apparent if we want a more granular view of the portfolio. In

other words, if we are interested in the estimated delta value of each VA contract in the

portfolio, Kriging is much slower than IDW. We provide further insights into this matter

in Section 2.3.

2.2.4 Radial Basis Functions

In the RBF method, we approximate the delta value of a VA contract x as a weighted

linear combination of radial functions centered at representative contracts x1, x2, . . . , xn:

Ẑ(x) =
n∑
i=1

wiΦ(||x− xi||) (2.6)

where || · || is a norm, usually chosen to be Euclidean distance.

In RBF interpolation, the weights are chosen so that RBF is exact at the xi, 1 ≤ i ≤

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks17

n, points. In other words, given the values Z(x1), . . . , Z(xn) at points x1, . . . , xn, the

following linear set of equations is solved for wi:

Φ(||x1 − x1||) . . . Φ(||x1 − xn||)

...
. . .

...

Φ(||xn − x1||) . . . Φ(||xn − xn||)

w1

...

wn

 =

Z(x1)

...

Z(xn)

 (2.7)

In our research, we chose the following commonly used radial basis functions

• Gaussian

Φ(x) = exp(−εx2) (2.8)

• Multi-Quadratic

Φ(x) =
√

1 + (εx)2 (2.9)

These two functions represent two classes of radial basis functions: 1) the class in

which the value of the radial function increases with the distance from its center, 2) the

class in which the value of radial function decreases with the distance form its center.

Although the latter class of RBF functions, which is represented by the Gaussian radial

function in our study, seems more suitable for our application of interest, for the sake of

completeness, we chose to experiment with the former class as well in our study. In both

of the above-mentioned functions, ε is a free parameter that defines the significance of

known points on the value of their neighbor points.

Similar to IDW, RBF interpolation has a running time that is proportional to n for the

delta value estimation of each VA contract, and a running time of Θ(n×N) to estimate

the delta value of a portfolio of N VA contracts. But in addition we need extra Θ(n3)

time to solve (2.7). Hence, in total, the computational complexity of RBF interpolation

to estimate the delta value of a portfolio is Θ(n × N + n3). Similar to IDW, the RBF

interpolation can provide us more granularity in less time than the Kriging method.

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks18

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {20, 21, . . . , 60}

Account Value [1e4, 5e5]

Guarantee Value [0.5e4, 6e5]

Withdrawal Rate {0.04, 0.05, 0.06, 0.07, 0.08}

Maturity {10, 11, . . . , 25}

Table 2.1: GMDB and GMWB attributes and their respective ranges of values.

2.3 Numerical Experiments

In this section, we present numerical results on the performance of each interpolation

method in the context of the proposed framework. In all of our experiments, our goal

is to estimate the delta value of a synthetic portfolio of 100, 000 VA contracts which are

chosen uniformly at random from the space defined by attributes listed in Table 2.1. The

range of attributes are similar to the ones reported in [30,32] which allows us to compare

fairly our results with the reported findings in [30,32]. However, for the sake of generality,

we allow VA contracts, with guarantee values that are not equal to the account value.

Moreover, for VA contracts with a GMWB rider, we set the guaranteed death benefit

value to be equal to the guaranteed withdrawal benefit.

In our experiments, we use the framework of [3] to value each VA contract, and assume

the output of a MC simulation with 10, 000 inner loop scenarios as the actual value of

the contract. The reason behind our choice is that, when fewer inner loop scenarios are

used, e.g., 1000 as used in [30], we observed a noticeable difference, as big as 5%, between

the computed portfolio delta value from successive runs. However, when we used 10, 000

inner loop scenarios, the absolute maximum difference in the estimated portfolio delta

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks19

values of any two runs (in about 20 runs) of the MC simulations was at most 0.93%

of the mean value of the portfolio delta estimations. The standard deviation of these

estimations was 0.25% of the mean value of the portfolio delta estimations. Inner loop

scenarios are generated assuming a simple log-normal distribution model [42] with a risk

free rate of return of µ = 3%, and volatility of σ = 20%. Our mortality rates follow the

1996 IAM mortality tables provided by the Society of Actuaries.

In the training (calibration) stage of our proposed framework, we use MC simulations

with 10, 000 inner loop scenarios to find the delta value of our representative contracts.

2.3.1 Performance

In this set of experiments, our objective is to provide a fair comparison of accuracy

and computational efficiency of each proposed estimation method when the k-prototype

distance function of [30] is used. Since we allow the guaranteed value of VAs in the

synthetic portfolio to be different than their account value, we have modified the distance

function as follows:

D(x,y, γ) =

√∑
h∈N

(
xh − yh

maxh−minh
)2 + γ

∑
h∈C

δ(xh, yh) (2.10)

where N = {AV, GD, GW, maturity, age, withdrawal rate} is the set of numerical values

and C = {gender, rider} is the set of categorical values.

Similar to [30, 32], we choose γ = 1. Moreover, we form the set of representative

contracts, via the sampling method of Section 2.2.1, from all combinations of end points

presented in Table 2.2. Because of the constraints on the guaranteed values, some of the

entries are duplicate, which we remove to obtain a sample of size 1800.

In order to be thorough in our experiments and comprehensive in our analysis, we

present the results for all variants of the Kriging, IDW, and RBF methods. For Kriging,

we choose to experiment with all three major variogram models, i.e., spherical, expo-

nential, and Gaussian. For IDW, we choose to experiment with different choices of the

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks20

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {20, 30, 40, 50, 60}

Account Value {1e4, 1.25e5, 2.5e5, 3.75e5, 5e5}

Guarantee Value {0.5e4, 3e5, 6e5}

Withdrawal Rate {0.04, 0.08}

Maturity {10, 15, 20, 25}

Table 2.2: Attribute values from which representative contracts are generated for exper-

iments.

power parameter to see the effect of this free parameter on the accuracy of results. For

RBF, we study two of the most popular radial functions, Gaussian and multi-quadratic,

and for each type of radial function, we experimented with two choices for the free pa-

rameter ε. Although in this Chapter and Chapter 3, we report only the results of our

experiments with RBF interpolation, we did experiment with RBF regression. However,

the performance of RBF regression was close to that of RBF interpolation and, in some

cases, even worse. To improve the performance of RBF regression, we need to study the

choice of regularization parameters and the training data, which significantly adds to

the complexity of the approach. Furthermore, RBF regression, like RBF interpolation,

suffers from the problem that it requires a proper choice of distance function– for a more

detailed description and analysis of this problem, refer to Section 2.3.3. Therefore for

tractability of our analysis, in this thesis, we only choose to report the results of our

experiments with RBF interpolation.

In Table 2.3, the relative error in estimation of the delta value of the portfolio is

presented. The relative error for method m is calculated as follows.

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks21

Method Relative Error (%)

Kriging (Spherical) −0.03

Kriging (Exponential) −1.61

Kriging (Gaussian) < −500

IDW (p = 1) 9.11

IDW (p = 10) 13.12

IDW (p = 100) 11.99

RBF (Gaussian, ε = 1) −1.79

RBF (Gaussian, ε = 10) 37.89

RBF(Multi-Quad, ε = 1) −71.62

RBF(Multi-Quad, ε = 10) −10.86

Table 2.3: Relative error in estimation of the delta value via each method.

Errm =
∆m −∆MC

|∆MC |
(2.11)

where ∆MC is the estimated delta value of the portfolio computed by MC simulations and

∆m is the estimate delta value of the portfolio computed by method m. While two of the

Kriging methods provide accurate estimates, the accuracy of IDW, and multi-quadratic

RBF methods is moderate. One interesting observation is that the choice of variogram

model has substantial impact on the accuracy of the Kriging method and it confirms the

result of [30] that the spherical method provides the best accuracy. Another interesting

observation is the effect of the free parameters p and ε on the accuracy of the IDW and

RBF methods. The results suggest that the effective use of either method requires a

careful tuning of these free parameters.

Table 2.4 presents the running time of each algorithm for two scenarios: 1) estimating

the delta value of the portfolio only 2) estimating the delta value of each VA policy in the

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks22

portfolio and summing them to get the delta value of the portfolio. While the former does

not provide a granular view of the portfolio, the latter gives a more refined estimation

process and allows for deeper analysis and insights. Note that the times in Table 2.4

represent only the time that it took to estimate the values once we knew the delta values

of the representative contracts. To get the total simulation time, add 187 seconds to

these times, which is the time that it took to estimate the delta value of representative

contracts via MC simulations. The results show the superiority of the proposed spatial

interpolation framework over MC simulation (speed up > 15×) except when Kriging

is used for per policy estimation of delta. Because the IDW and RBF methods by

definition require the estimation of the delta of each policy and sum the estimations to

get the delta value of the portfolio, we can see that simulation times for these methods

are approximately equal in the two presented scenarios. Moreover, these methods are

more efficient than the Kriging method, which confirms our analysis in Section 2.2.

2.3.2 Accuracy

The accuracy results of Table 2.3 may misleadingly suggest that the Kriging method with

the Spherical variogram model is always capable of providing very accurate interpolations.

In the experiments of this section, we provide results on the accuracy of different methods

that contradict this hypothesis.

For our experiments in this section, we replicated the experiments of Section 2.3.1 with

sets of representative contracts that are produced from the set of representative contracts

in Section 2.3.1 by removing 100, 200, 400, 600 and 800 VA contracts at random. Table

2.5 presents the mean and the standard deviation of the relative error, in estimation of

the delta value of the VA portfolio, for each method in these experiments. The results

of Table 2.5 show high variance values for the accuracy of the Kriging methods, which

contradicts our hypothesis. Another interesting observation is that the IDW methods

and the RBF methods with a Gaussian kernel, in comparison to the Kriging methods,

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks23

Method Portfolio Per Policy

MC 10617 10617

Kriging (Spherical) 312 > 320000

Kriging (Exponential) 333 > 320000

Kriging (Gaussian) 383 > 320000

IDW (P = 1) 285 286

IDW (P = 10) 288 287

IDW (P = 100) 287 301

RBF (Gaussian, ε = 1) 295 306

RBF (Gaussian, ε = 10) 294 315

RBF(Multi-Quad, ε = 1) 289 289

RBF(Multi-Quad, ε = 10) 297 292

Table 2.4: Simulation time for each method to estimate the delta value. All times are in

seconds.

have a lower variance value for the relative error.

2.3.3 Distance Function

A key element in the definition of each estimation method is the choice of a distance

function. While the RBF method requires the choice of a proper distance function,

Kriging and IDW can work with any choice of distance function. A proper distance

function satisfies non-negativity, identity of indiscernibles, symmetry and the triangle

inequality [66]. We call any function that has the non-negativity property and a subset

of other aforementioned properties a distance function. In this set of experiments, we

investigate the importance of the choice of distance function on the accuracy of estimation

for each interpolation method.

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks24

Method Mean (%) STD (%)

Kriging (Spherical) 0.47 1.76

Kriging (Exponential) −0.58 2.19

Kriging (Gaussian) 1109.02 3289.81

IDW (p = 1) 9.14 1.75

IDW (p = 10) 13.14 0.42

IDW (p = 100) 12.06 0.23

RBF (Gaussian, ε = 1) −1.78 0.48

RBF (Gaussian, ε = 10) 38.87 1.42

RBF(Multi-Quad, ε = 1) −58.65 16.84

RBF(Multi-Quad, ε = 10) −9.15 3.56

Table 2.5: Mean and standard deviation of the relative error in estimation of the delta

value via each method.

To achieve this goal, we conduct two sets of experiments. In the first set of exper-

iments, we study the effect of the γ variable in (2.10) by reducing the value of γ from

1 to 0.05. γ determines the relative importance of the categorical attributes compared

to the numerical attributes, which has not been studied previously. In the second set of

experiments, we use the following distance function in our methods with γ = 1.

D(x,y, γ) =

√
f(xage, yage)gage(x,y) +

∑
h∈N

gh(x,y) + γ
∑
h∈C

δ(xh, yh)

f(xage, yage) = exp
(xage + yage

2
−M

)
gh(x,y) = (exp(−rx)xh − exp(−ry)yh)2 (2.12)

where C = {gender, rider}, N = {maturity, withdrawal rate}, r = AV
GD

and M is the

maximum age in the portfolio.

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks25

If we view the embedded guarantees in the VA contracts as options that a policyholder

can choose to exercise, the ratio r represents the moneyness of that option. If r � 1,

then the account value is enough to cover the amount of guaranteed value. However, if

r � 1, the account value is insufficient to cover the guaranteed value and the insurer has

a potential liability. Hence, in estimating the delta value for a VA contract with r � 1,

the delta value is close to zero and the choice of representative contract(s) should not

affect the outcome of the estimation as long as the selected representative contract(s)

have r � 1. The choice of function g(·, ·) in (2.12) captures the aforementioned idea.

In addition, as the age of the policyholder increases, their mortality rate also increases

(consult the data of 1996 IAM mortality table). Hence, the liability and delta value

of similar contracts which differ only in the age of the policyholder increases with age.

Because of this, more emphasis should be placed on estimating the delta value for senior

policyholders, which is the motivation behind the introduction of the function f(·, ·) in

(2.12).

Table 2.6 presents the accuracy of our estimation by each method in both experiments.

In experiment one, the choice of γ = 0.05 has improved the accuracy of most interpolation

schemes compared to the results in Table 2.5. Kriging interpolation with a Spherical

variogram, the IDW method with p = 10, and the RBF method with Gaussian kernel

and ε = 1 are the only schemes for which the accuracy deteriorated. In experiment two,

the Kriging and RBF methods encounter singularities with (2.12); however, the choice

of (2.12) has improved the accuracy of the IDW methods. In general, it seems that the

choice of distance function and free parameters plays a key role in the accuracy of the

interpolation schemes.

2.3.4 Variogram

As mentioned in Section 2.2.2, Kriging methods work with variogram models. The choice

of variogram model is dictated by its closeness to the empirical variogram. In the ex-

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks26

Relative Error (%)

Method Experiment 1 Experiment2

Kriging (Spherical) 1.94 ∗

Kriging (Exponential) −0.37 ∗

Kriging (Gaussian) < −500 ∗

IDW (p = 1) 8.97 −4.87

IDW (p = 10) 13.21 3.90

IDW (p = 100) 11.99 2.32

RBF (Gaussian, ε = 1) −2.56 ∗

RBF (Gaussian, ε = 10) 37.89 ∗

RBF(Multi-Quad, ε = 1) −35.74 ∗

RBF(Multi-Quad, ε = 10) −6.88 ∗

Table 2.6: Relative error in the estimation of the delta value by each method. In experi-

ment 1, (2.10) is used with γ = 0.05, and, in experiment 2, (2.12) is used with γ = 1. A

“∗” indicates that the method cannot work with this choice of distance function because

it causes singularities in the computations.

periments in the previous section, we showed that we can obtain better results using a

spherical variogram model; however, we haven’t provided any analysis supporting why

this variogram is a better choice. In this section, we address this subject. In particular,

we conduct experiments to explore whether we can increase the accuracy of the Krig-

ing method by choosing a variogram function that can better approximate the empirical

variogram.

To compute the empirical variogram, we partition the x-axis into 20 intervals of equal

length hmax

20
where hmax is the maximum distance between two VA policies using the

distance function (2.10) and with γ = 1. In each interval, to approximate (2.4), we use

the average of the squared difference of the delta value of all pairs of VA policies that have

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks27

Figure 2.2: Comparing the variogram models with the empirical variogram.

a distance that falls into that interval as the representative for the empirical variogram

for that interval. We call the piece-wise linear function that is formed by connecting the

representative values for each interval the empirical variogram.

To approximate the empirical variogram, we use polynomials of degree 1, 2, 3 and 4.

The polynomials are best MSE approximations of the empirical variogram in the interval

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks28

Method Relative Error (%)

Spherical −0.03

Exponential −1.61

Gaussian < −500

Deg 1 −6.00

Deg 2 −32.17

Deg 3 −2.78

Deg 4 < −500

Table 2.7: Relative error in estimation of the delta value via Kriging with different

variogram models.

between zero and the range. At any value greater than the range, the estimated value is

assumed to be the value of the polynomial at the range (Figure 2.2). This is necessary in

order to have a proper variogram model [23] without producing jumps in the variogram.

The accuracy of Kriging using each approximation of the empirical variogram is pre-

sented in Table 2.7. An interesting, yet counter intuitive, observation is that the accuracy

of Kriging is worst for the quartic MSE approximation variogram model, which is the ap-

proximate variogram model that best fits the empirical variogram. Even comparing the

graph of the exponential and spherical variogram models with the empirical variogram,

the exponential variogram model seems to fit the empirical variogram model better than

the spherical variogram model, but the accuracy of Kriging with the exponential vari-

ogram model is worse than the accuracy of Kriging with the spherical variogram model.

Because of these counter intuitive results, we took a closer look at the data from

which the empirical variogram was generated. Figure 2.3 shows a graph of the squared

differences of delta values of a pair of VA contracts versus their distance from each other.

Surprisingly, the point values do not look similar to their average, i.e., the empirical

variogram. We expected to see a graph similar to Figure 2.1 where the point values

Chapter 2. Application of Spatial Interpolation in Estimation of Greeks29

Figure 2.3: Squared difference of delta values of VA pairs in representative contracts.

are in close proximity to the empirical variogram and the variogram model. However,

the data do not suggest the existence of any pattern from which a variogram model can

be estimated. In particular, the data contradict the second-order stationary assumption

underlying the Kriging method, and hence brings into question the appropriateness of

the Kriging method for our application of interest.

Chapter 3

A Neural Network Approach to

Estimation of Greeks

In Chapter 2, we provide numerical and theoretical results supporting our belief that a

framework based on spatial interpolation [12] can successfully ameliorate the computa-

tional load of MC simulations by reducing the number of VA contracts that are subjected

to nested MC simulation. However the proposed spatial interpolation framework requires

an effective choice of distance function and a sample of VA contracts from the space in

which the input portfolio is defined to achieve an acceptable accuracy level. The ap-

propriate choice of the distance function for the given input portfolio in the proposed

framework requires careful consideration by a subject matter expert for the given input

portfolio. In this chapter1, we propose to replace the conventional spatial interpolation

techniques – Kriging, IDW and RBF [12] – in the spatial interpolation framework with

a neural network. The proposed neural network can learn a good choice of distance

function and use the given distance function to efficiently and accurately interpolate the

Greeks for the input portfolio of VA contracts. The proposed neural network only requires

knowledge of a set of parameters that can fully describe the types of VA contracts in the

1The material of this chapter is largely taken from [37]

30

Chapter 3. A Neural Network Approach to Estimation of Greeks 31

input portfolio and uses these parameters to find a good choice of distance function.

3.1 Neural Network Framework

As we discuss in Chapter 2, spatial interpolation techniques can provide efficient and ac-

curate estimation of the Greeks for a large portfolio of VA products. However, none of the

traditional spatial interpolation techniques can provide us with all of accuracy, efficiency,

and granularity. In particular, IDW and RBF methods provide better efficiency and res-

olution than Kriging methods, but they are less accurate than Kriging methods. Now,

the question is whether there is a spatial interpolation technique that can be efficient,

accurate and granular. However, before we try to answer this question, we should remind

the reader that, as we discuss in Chapter 2, the choice of the representative contracts can

significantly affect the accuracy of any interpolation scheme. In this chapter, assuming

that a good choice of representative contracts exists, we want to discuss a choice of spatial

interpolation scheme that can provide us with accuracy, efficiency, and granularity. We

return to the question of a good choice of the representative contracts in Chapter 5.

Assuming y(z1), · · · , y(zn) are the observed values of the financial quantity of interest

(e.g., a Greek) or approximations to them at locations z1, · · · , zn, a spatial interpolation

scheme provides an estimate ŷ(z) of the quantity of interest at a location z where y is

not known as a function of the values D(z, z1), D(z, z2), · · · , D(z, zn), which are measures

of similarity between the locations z1, z2, · · · , zn, and the location z, and the values

y(z1), · · · , y(zn). Given the accuracy results of our numerical experiments for the models

that we investigated in Chapter 2, we explore only the spatial interpolation schemes that

are of the form ŷ(z) =
∑n

i=1 wi(D(z, z1), · · · , D(z, zn))y(zi) or ŷ(z) =
∑n

i=1wiF (z − zi),

where F (·) is a radial function.

As we discuss in Chapter 2, IDW and RBF methods are the only methods we con-

sidered that can provide us with granularity. Unlike Kriging methods that solve an

Chapter 3. A Neural Network Approach to Estimation of Greeks 32

optimization problem for each unknown location z to find the optimal choice of weight

functions wi(·), 1 ≤ i ≤ n, RBF methods only do one optimization to find optimal choices

of weights and IDW methods assume a particular shape for the functions wi(·), 1 ≤ i ≤ n,

and hence do no optimization. Each of the optimization problems, either for the Kriging

methods or the RBF methods, requires a time proportional to n3. Such a time com-

plexity does not scale well to a large portfolio of variable annuities, if Kriging is applied

to each contract in the input portfolio, rather than the portfolio only. Therefore, if we

want our spatial interpolation scheme to be granular, it should adopt a scheme similar to

IDW methods or to RBF methods. In other words, it should either assume a particular

shape for the functions wi(·), 1 ≤ i ≤ n, as IDW methods do, or it should solve one

optimization problem, as RBF methods do, to find a global choice of weights and then

uses these weights to do the estimation.

In what follows we use the description of a model in [5] to derive a spatial interpolation

scheme with a structure similar to the structure of IDW methods that can provide all of

the accuracy, granularity and efficiency. For additional details about this model, please

refer to [5].

As we discuss in Chapter 1, VA products have complex structures and except for some

simple VAs, like GMDB, and for simple risk metrics there exist no closed-form formula

that determines the value of the key risk metrics of VA products. Therefore, no matter

what method we use to value the key risk metrics of VA contracts, we can assume that

the output of the method contains some errors. In other words, for VA contract z, we

can assume that output value y(z) can be written as

y(z) = yt(z) + ε

where yt(z) is the true value of the key risk metric of interest and ε is the error (noise or

inaccuracy) in our estimation. Because MC simulations work under the supposition that

a random process describes the evolution of the financial market and they choose a finite

Chapter 3. A Neural Network Approach to Estimation of Greeks 33

number of realizations of this random process to determine their estimation of y(z), we

can assume that ε is non-deterministic. Therefore, we introduce the joint distribution

p(z, y(z)). Now, assuming we have chosen the set of representative contracts zi, 1 ≤ i ≤ n,

we can use a Parzen density estimator to model the joint distribution p(z, y(z)) as follows.

p(z, y(z)) =
1

n

n∑
i=1

f(z − zi, y(z)− y(zi)) (3.1)

where f(·, ·) is the component density function [5]. We know that the best MSE estimate

of y∗(z) for a contract z is given by E[y(z)|z]. If we now use equation (3.1), we have

y∗(z) = E[y(z)|z] =

∫ ∞
−∞

y × p(y|z)dy =

∫
y × p(z, y)dy∫
p(z, y)dy

(3.2)

=

∑
i

∫
y × f(z − zi, y − yi)dy∑

j

∫
f(z − zj, y − yj)dy

=

∑
i

∫
(t+ yi)× f(z − zi, t)dt∑
j

∫
f(z − zj, t)dt

=

∑
i yi ×

(∫
f(z − zi, t)dt

)
+
∑

i

∫
t× f(z − zi, t)dt∑

j

∫
f(z − zj, t)dt

where yi = y(zi), 1 ≤ i ≤ n. Now, if we assume that component density functions have

zero mean2 so that

∫ ∞
−∞

y × f(z, y)dy = 0

for all values of z, then we can simplify equation (3.2) as follows.

y∗(z) =

∑n
i=1GH(z − zi)× y(zi)∑n

j=1GH(z − zj)
(3.3)

which is known as the Nadaraya-Watson model [54, 72]. This model is usually used in

kernel regression applications and hence the function GH in defined to be a kernel with

2In general, this is desired for fast convergence of an estimator to the true distribution [58]. Moreover,
we are basically assuming that we are equally likely to over-estimate or underestimate the value of y(z).

Chapter 3. A Neural Network Approach to Estimation of Greeks 34

a bandwidth of H. The bandwidth H is not necessarily a scalar. It usually is a vector

or a symmetric, positive definite matrix.

In general, for a d dimensional random vector z, as n → ∞, the Parzen density

estimator (3.1) converges to the true joint probability distribution of p(z, y(z)), if the

function f in equation (3.1) satisfies the following sufficient conditions [58].

sup
(z,y)

|f(z, y)| <∞, (3.4)∫
Rd+1

|f(z, y)|dzdy <∞∫
Rd+1

f(z, y)dzdy = 1

lim
||(z,y)||→∞

||(z, y)|| × |f(z, y)| = 0

If f satisfies (3.4) and is also a non-negative function, it is a probability distribution.

In almost all practical applications, the function f is assumed to be a non-negative

function that satisfies the conditions in (3.4). In this thesis, we also choose to make these

assumptions about f . The GH function in (3.3), is the marginal distribution of f and

hence we expect it to have similar properties as f .

The choice of the GH function and its bandwidth H implicitly define a distance

function for the Nadaraya-Watson model. For example, if we choose GH to be a Gaussian

kernel, the distance function will have the form D(z, zi) ∝ (φ(z) − φ(zi))
TH−1(φ(z) −

φ(zi)), 1 ≤ i ≤ n, in which φ(z) determines the features (such as account value, guarantee

value, age, etc.) that we use to describe the VA contract z. An example of features φ(z)

are the vectors x and y in (2.10).

Equation (3.3) is similar, in structure, to equation (2.5) for the IDW estimator. In

particular, the GH(z − zi), 1 ≤ i ≤ n, functions in equation (3.3) are comparable to the

weights w(D(z, zi)), 1 ≤ i ≤ n, in equation (2.5) of IDW. Once we know the choice of

the GH function and the H matrix, we can compute the Greeks for a large portfolio of

VA contracts of size N in time proportional to N × n by calculating the Greeks for each

Chapter 3. A Neural Network Approach to Estimation of Greeks 35

VA contract in the input portfolio and then summing the results. This preserves the

efficiency and granularity of our framework. Considering the fact that equation (3.3) is

a model for an optimal estimator (desirable for accuracy), we choose to use this model

to develop our spatial interpolation technique.

A universal (location independent) choice of bandwidth for all locations of zi, 1 ≤ i ≤

n, allows one to do conveniently the convergence analysis of Parzen density estimators.

However, it also puts restrictions on the model of equation (3.3). As we discuss in Section

2.3.3, certain characteristics of a VA contract (e.g., moneyness (r) of the VA contract)

are dependent on the location of VA contract in the space in which it is defined. These

characteristics also allow one to explain certain trends in the value of key risk metric of

interest. For example, as we discuss in Section 2.3.3, if moneyness of a contract is very

small (r � 1) or very big (r � 1), the delta value of the contract is very close to zero

and the changes in the delta value are minuscule. However, the delta value of contracts

with r ≈ 1 are significant. Therefore, to best capture the changes in the delta value

when using the Nadaraya-Watson estimator, one should choose small bandwidth values

for VAs with r ≈ 1. However, for contracts with r � 1 or r � 1, we can choose larger

bandwidth values. Motivated by this observation, in our research, we propose to use the

following extended definition of the Nadaraya-Watson estimator:

ŷ(z) =
n∑
i=1

Ghi(z − zi)× y(zi)∑n
j=1Ghj(z − zj)

(3.5)

where the subscript hi, similar to the bandwidth H of kernels, denotes the range of

influence of each y(zi) on the estimated value. Unlike the Nadaraya-Watson model, the

his are not universal free parameters, but are location dependent.

Our experiments in Chapter 2 demonstrate the significance of the choice of the dis-

tance function on the accuracy of spatial interpolation techniques. A manual approach

to find the best distance function that minimizes the estimation error for a given set of

input data requires a search in the space of all distance functions which is not straight-

Chapter 3. A Neural Network Approach to Estimation of Greeks 36

forward and hence requires investing a significant amount of time by a subject matter

expert. Therefore, a manual approach to find the best distance function diminishes the

effectiveness of the spatial interpolation techniques.

As we discuss above, once we determined the features that we will use to describe the

VA contracts in the input portfolio, the choice of the G function and the hi, 1 ≤ i ≤ n,

values dictates the distance function in equation (3.5). Therefore, the optimal choice of

distance function in a MSE sense can be defined as follows.

[G, h1, · · · , hn] = argmin
G,h1,··· ,hn

1

2N

N∑
j=1

||ŷ(zIj)− y(zIj)||2 (3.6)

in which zIj , 1 ≤ j ≤ N , are the VA contracts in the input portfolio andN is the size of the

input portfolio. In equation (3.6), we have chosen to use y(z) values instead of yt(z) values

because the latter are not known to us; hence, we have to use the former, i.e., the outputs

of the MC simulations, as the best estimates of the true values. The MSE is chosen as the

objective function of the optimization problem (3.6) to allow us to have a fair comparison

with the traditional spatial interpolation techniques discussed in [39]. The optimization

problem (3.6) is well-defined if the minimum of the objective function is attainable. If

we allow the hi, 1 ≤ i ≤ n, to assume values on closed intervals only and consider a

finite set of G functions that are non-negative and continuous on those intervals, we

can guarantee that the optimization problem (3.6) is indeed well-defined. Notice that

these assumptions, in practice, are not limiting assumptions. As we discussed earlier,

the function G represents a marginal probability distribution. Therefore, it is reasonable

to assume that it is non-negative. In practice, machines have limited precision which

bounds the values that can be attained by hi, 1 ≤ i ≤ n, values. The continuity of G

with respect to the hi, 1 ≤ i ≤ n, values and the finiteness of the set of G functions are

sufficient conditions to guarantee that the minimum in (3.6) can be attained.

Solving the optimization problem (3.6) is not straightforward, even for a different

choice of error function, and requires investing a significant amount of time. Therefore,

Chapter 3. A Neural Network Approach to Estimation of Greeks 37

we should avoid a manual approach to find the best distance function to preserve the

effectiveness of the spatial interpolation technique. We can decompose the optimization

problem in (3.6) into two optimization problems: one for the choice of the G function

and the other for the choice of the hi, 1 ≤ i ≤ n, values.

argmin
G,h1,··· ,hn

1

2N

N∑
j=1

||ŷ(zIj)− y(zIj)||2 = argmin
G

(
argmin
h1,··· ,hn

1

2N

N∑
j=1

||ŷ(zIj)− y(zIj)||2
)

(3.7)

For each choice of G function, the inner optimization problem in (3.7) can be automated

using sub-optimal 3 iterative methods. As we discuss in Section 3.1.2, if the G functions

are differentiable, an iterative method can use the gradients to substantially decrease

the time to reach a sub-optimal solution. Our numerical experiments in Section 3.2

demonstrate that the calibration time accounts for the majority of the simulation time.

Therefore, to reduce the calibration time, we propose to confine the choice of G to

differentiable functions.

Gaussian, Epanechnikov, Trianglular, Quartic (Biweight), Triweight, Tricube, Cosine,

and Sigmoid kernel functions all satisfy the constraints of (3.4), and are the most com-

monly used functions in kernel regression applications. Epanechnikov kernels are optimal

with respect to Mean Integrated Squared Error (MISE) [28]. These functions have the

common property that they are a nonlinear transformation of some polynomial function

of their input. For these types of functions, there is a natural choice of feed-forward

neural networks, described in the next section, that we can use to implement an iterative

algorithm that computes an approximation of a local optimum of the bandwidth values.

Therefore, we choose to focus on these classes of functions. Although this is an approxi-

mation to a local optimum, we demonstrate in our numerical results in this chapter that

this choice can give us sufficient accuracy.

We discuss the implementation of the feed-forward network below and demonstrate

3A sub-optimal method converges to a local minimum while an optimal method converges to the
global minimum.

Chapter 3. A Neural Network Approach to Estimation of Greeks 38

In
p
u
t

L
ay

er

Hidden Layers

O
u
tp

u
t

L
ay

er

Figure 3.1: Diagram of a feed-forward neural network. Each circle represents a neuron.

its strong performance. For a thorough study of feed-forward networks, the interested

reader is referred to [5] and the references therein. For the sake of brevity, in the rest of

this thesis, we use the word neural network to refer to this particular class of feed-forward

neural network unless explicitly said otherwise.

3.1.1 The Neural Network

A feed-forward neural network is a collection of interconnected processing units, called

neurons, which are organized in different layers (Figure 3.1). The first and the last layers

are respectively called the input layer and the output layer. Intermediate layers are called

the hidden layers. Neurons of each layer take as input the outputs of the neurons in the

previous layer. The neurons in the first layer serve only as inputs to the network. In

other words, the neurons of the input layer produce what is known as the feature vector.

Assume x1, · · · , xs are the inputs of neuron j at hidden level l. First a linear combi-

nation of input variables is constructed at each neuron:

a
(l)
j =

s∑
i=1

w
(l)
ij xi + b

(l)
j (3.8)

where parameters w
(l)
ij are referred to as weights and parameter b

(l)
j is called the bias.

The quantity a
(l)
j is known as the activation of neuron j at level l. The activation a

(l)
j is

Chapter 3. A Neural Network Approach to Estimation of Greeks 39

In
p
u
t

L
ay

er

z1

Features

z2

Features

zn

Features

Hidden Layer

O
u
tp

u
t

L
ay

er

Figure 3.2: Diagram of the proposed neural network. Each circle represents a neuron.

Each rectangle represent the set of neurons that contains input features corresponding

to a representative contract.

then transformed using a differentiable, nonlinear function to give the output of neuron

j at level l.

Let Φ(z) = (φ1(z), φ2(z), · · · , φd(z)) represent the vector of features that are used

to describe the VA contract z. Each feature φi(·), 1 ≤ i ≤ d, is a function of numeric

attributes, or categorical attributes, or both and is defined at the discretion of a subject

matter expert to explain the differences in the value of key risk metric of interest between

different contracts. If we assume the inputs of a neuron in the hidden layer have the form4∏d
i=1(φi(z)− φi(y))αi or

∏d
i=1 |(φi(z)− φi(y))|αi in which αi, 1 ≤ i ≤ d, are non-negative

integers, then we can see that the activation of this hidden layer is a polynomial of features

of contracts z and y. Assuming the weight and bias parameters represent multiples of

inverses of the bandwidths, if we use an appropriate transformation, e.g., exponential

4For example, if the Ghi functions in (3.5) are Triangular or Tricube kernels, then the inputs of a
neuron have this form.

Chapter 3. A Neural Network Approach to Estimation of Greeks 40

function for a Gaussian kernel, the output of the hidden layer can represent the value of

G(z − y) for the class of G functions that we chose to use in the optimization problem

(3.7). Therefore, we can use n of these neurons, one for each representative contract,

to represent the Ghi(z − zi), 1 ≤ i ≤ n, functions in equation (3.5). Once, we have the

outputs of this hidden layer, we can normalize these outputs in an output layer and use

them to form the estimation of equation (3.5). Because of this natural representation,

in our framework, we propose to use a neural network with only one hidden layer as in

Figure 3.2.

As discussed above, the hidden layer in the proposed neural network contains one

neuron for each Ghi , 1 ≤ i ≤ n, function in equation (3.5). Hence, the number of neurons

in the hidden layer corresponds to the number of representative contracts. The purpose of

the output layer is to normalize the outputs of the neurons in the hidden layer. Therefore,

for each neuron in the hidden layer there is a corresponding neuron in the output layer

that normalizes the outputs of the corresponding neuron in the hidden layer. In other

words, if the output of neuron i in the hidden layer represents Ghi(z − zi) in equation

(3.5), the output of the corresponding neuron in the output layer represents the term

Ghi
(z−zi)∑n

j=1Ghj
(z−zj)

.

The inputs of each neuron in the hidden layer should be polynomials of the form∏d
i=1(φi(z) − φi(y))αi or

∏d
i=1 |(φi(z)− φi(y))|αi of the features φi(·), 1 ≤ i ≤ d, used to

describe each VA contract. To achieve this, each neuron in the input layer will represent

one such polynomial. We can have as many of these polynomial forms as necessary to

get an accurate result. However, using too many of these polynomials results in data

overfitting. One can use a validation portfolio, discussed in Section 3.1.2, to detect

the data overfitting phenomena. Starting from polynomials of degree one, one can add

polynomial forms of higher degrees in hope to see a decrease in the error in estimation

of the key risk metric of interest for the validation portfolio. However after a certain

point, adding further polynomial forms either does not decrease the estimation error

Chapter 3. A Neural Network Approach to Estimation of Greeks 41

or, even worse, may increase it. It is at this point that we should stop adding further

polynomials. In our experiments, with the class of G functions that provided the best

performance results, polynomials of degree one were sufficient for good accuracy results,

refer to Section 3.2. For that class of G functions, which we discuss in more detail

below, we didn’t get significantly better accuracy results by adding polynomials of higher

degree. Therefore, to reduce the computational load, we choose to use only degree one

polynomials φk(z) − φk(y) or |φk(z)− φk(y)| where φk(·) is a feature used to describe a

VA contract in the input portfolio.

For a feature φ(·), define the positive direction around contract r as those contracts z

for which φ(z) > φ(r). We can correspondingly define the negative direction as contracts

z for which φ(z) < φ(r). Now consider the following linear combination of degree one

polynomials φ(z)− φ(r) and |φ(z)− φ(r)| of feature φ(·).

w1(φ(z)− φ(r)) + w2(|φ(z)− φ(r)|) (3.9)

If we use degree one polynomials φ(z)−φ(r) and |φ(z)−φ(r)| as inputs of a neuron in

the hidden layer that corresponds to the representative contract r, the linear combination

(3.9) becomes part of the linear combination for the activation of that neuron. The weight

parameters in equation (3.8) are the inverse of the bandwidth parameters. Thus, having

linear combinations similar to (3.9) in the activation equation causes the value of the

representative contract r to have a different range of influence in positive and negative

directions around this contract. To see this difference, consider two contracts z+ and

z− that are similar to representative contracts r except for the value of feature φ for

which φ(z+) − φ(r) = φ(r) − φ(z−). For these two contracts, the linear combination of

(3.9) can be written as (w1 +w2)|φ(z+)−φ(r)| and (w2−w1)|φ(z−)−φ(r)|, respectively.

These two linear combinations have different coefficients, unless w1 = 0, which results

in different activation values and subsequently different G values. Different G values in

(3.5), in general, change the importance of y(r) in the estimated value ŷ(z).

Chapter 3. A Neural Network Approach to Estimation of Greeks 42

Figure 3.3: An example scenario in which having different bandwidth parameters in

different direction around a representative contract can be beneficial.

There are scenarios in which having different bandwidths in different directions around

representative contracts can allow for better estimations. For example, consider the sce-

nario of Figure 3.3 in which z is a representative contract and φ is a feature. Moreover,

assume that the value of y(·) is an increasing function of the value of φ(·). For represen-

tative contract z, to prevent big underestimations in the positive direction of φ around

z, we need the bandwidth parameter of φ in the positive direction to be big. However, to

avoid big overestimations in the negative direction of φ around z, we need the bandwidth

parameter to be small in the negative direction. To allow the neural network to properly

deal with these scenarios, we propose for each representative contract and for each fea-

ture to use different bandwidth parameters in each direction around that representative

contract. The red curve in Figure 3.3 shows how this asymmetric choice of bandwidths

allows for better estimation of y values compared to the green curve in the same figure

that uses similar choices of bandwidth in both directions around z. Notice that using

Chapter 3. A Neural Network Approach to Estimation of Greeks 43

different bandwidth parameters in each direction around the representative contract is

not a limiting assumption as it still allows symmetric bandwidth parameters to be defined

for each feature. To allow the neural network to pick different bandwidth parameters for

different directions of feature φ around a representative contract r, we propose to use

max(φ(z) − φ(r), 0) and max(φ(r) − φ(z), 0) instead of the above mentioned first order

degree polynomials as inputs to the neurons in the hidden layer.

Each VA contract is defined by the terms of the contract set up by the insurance

company (such as the type of guarantee, the duration of contract etc.) and the charac-

teristics of its policyholder (such as age, gender, etc.). We can use these characteristics to

define risk indicators. For example, age itself is an indicator of the mortality risk. Also,

the account value divided by the guarantee value defines the moneyness of the contract

which is an indicator of the liability risk. Each risk metric can be defined as a function

of a subset of these risk indicators. When valuing a risk metric, these risk indicators are

what we refer to as features that describe a VA contract.

To this point, we considered features in terms of their numeric value. But some

features used to describe VA contracts are categorical attributes (e.g., gender of the pol-

icyholder). These categorical attributes cannot be ignored. For example, IAM Mortality

tables show that females have different mortality rates than males and hence their VA

contracts are associated with a different mortality risk than males. Furthermore, our

numerical experiments in Chapter 2 show that inclusion of categorical attributes can sig-

nificantly affect the accuracy of spatial interpolation techniques. Therefore, we need to

assign numeric values to these attributes so that we can incorporate them in our distance

function. It is hard to imagine that a feature used to represent the VA contracts depends

on a function of categorical attributes and numeric attributes. Therefore we propose to

use each categorical attribute as a single feature to describe the VA contracts. If we

simply assign a number to each category of a categorical attribute, we implicitly provide

a measure of similarity between two categories. For example, consider a categorical at-

Chapter 3. A Neural Network Approach to Estimation of Greeks 44

tributes with 3 categories c1, c2, c3 and assume that we have assigned numbers 1, 2, and

3 to these categories, respectively. This implicitly assumes, for most distance functions,

that c1 and c2 have more similar than c1 and c3. In categorical attributes that are often

used to describe VA contracts, i.e., gender and rider, we didn’t find any measure that

can describe similarities of categories in the data. Moreover, in the literature, there is no

discussion on the existence of such a measure. To avoid introducing non-existent simi-

larities and considering that we are only interested in the difference of these categorical

features, as we discuss above, we propose to consider the following function, known as

overlapping similarity [6], to describe the difference between categorical attributes of VA

contracts.

φc(z)− φc(y) =

0 if xc(z) = xc(y)

1 if xc(z) 6= xc(y)
(3.10)

where φc denotes a categorical attribute and xc(z) determines the category of that at-

tribute for VA contract z. In general, we can choose any value v instead of 1, because

these features are used as x values in equation (3.8). If h1 is an optimal choice of band-

width parameter for the given choice of function in (3.10), h1
v

is an optimal bandwidth

parameter for the choice of functions that uses v instead of 1 in (3.10). However, too

large values of v can produce numerical instability by causing an overflow in the floating

point variable used to store them on computers and too small values of v can slow-down

the calibration (training) of the neural network. To avoid these problems, we normalize

the features. Hence, we propose to use 1 in equation (3.10).

In the proposed neural network of Figure 3.2, the outputs of the neurons in the input

layer provide the inputs of the hidden layer. Given our earlier discussions, the output of

each neuron in the input layer represents a value in the set {F c, F−, F+}. Each φ in F c

assumes the following form

Chapter 3. A Neural Network Approach to Estimation of Greeks 45

f =

0 if xc = xci

1 if xc 6= xci

where xc represents the category of categorical attribute c for input VA policy z, and

xci represents the category of categorical attribute c for representative VA policy zi in

the sample. Each value f in F− has the form f = [φ(xni
) − φ(xn)]+/Rφ, and each

value f in F+ has the form f = [φ(xn) − φ(xni
)]+/Rφ. In both of the aforementioned

formulas, xn is the vector containing the numeric attributes of input VA policy z, xni

is the vector containing the numeric attributes of the representative VA policy zi in the

sample, φ(·) is a feature which, as we discuss earlier, determines a risk indicator using

the numeric attributes of the contract. An expert user should determine the choice of

the risk indicators that are suitable for the key risk metric of interest. The feature

φ(·) assumes a value in an interval of length Rt and [·]+ = max(·, 0). As we discuss

above, having two sets of f values, one in F− and one in F+, for each feature φ(·) of

each representative in the sample VA contract allows different bandwidths to be used

in different directions around that representative VA contract. The term Rt is added

for normalization purposes. If we don’t normalize the features, the features that are

defined on large intervals, e.g., account value, can create large weight updates (refer

to Section 3.1.2) that may cause an overflow of floating point numbers used to store

the corresponding weight parameters. Moreover, the features that are defined on small

intervals, e.g., withdrawal rate, have small weight updates that may be too small, thus

significantly increasing the training time. Therefore, to avoid these problems, we propose

to normalize the values. Introducing the normalization factor Rt does not impose any

constraints to the optimization problem of (3.7). If h+
φ and h−φ are the optimal choices

of bandwidth parameters when f+ = [φ(xn) − φ(xni
)]+ and f− = [φ(xni

) − φ(xn)]+ are

used as x values in equation (3.8), we can attain the same optimum by using f ′+ =

[φ(xn) − φ(xni
)]+/Rt and f ′− = [φ(xni

) − φ(xn)]+/Rt as the x values in equation (3.8),

Chapter 3. A Neural Network Approach to Estimation of Greeks 46

and h+
φ ×Rt and h−φ ×Rt as the corresponding bandwidth parameters.

In our proposed neural network, neuron i, 1 ≤ i ≤ n, in the hidden layer is chosen to

represent the value of the Ghi(z− zi) function. The function Ghi(z− zi) depends only on

the features defined for the representative contracts zi and input contract z. Therefore,

we only need outputs of those neurons in the input layer that correspond to the values of

f that are related to the representative VA policy i. Therefore, as shown in Figure 3.2,

we propose to group the neurons in the input layer based on the representative contract

that is used in the derivation of their outputs. Let group i, 1 ≤ i ≤ n, represent the

neurons with outputs corresponding to the representative contract i. In the proposed

neural network, the inputs of neuron i in the hidden layer are only connected to the

outputs of neurons in group i of the input layer.

As we discuss earlier, the choice of the function that we use to transform activations

in the hidden layer determines the family of kernel functions that we consider in the op-

timization problem (3.7). Our numerical experiments show that, except for exponential

transformation of activations, the other choices of transformation function (i.e., cosine,

polynomial, and sigmoid) result in gradient values that are either too small, which slows

down the training process, or too big, which creates numerical instability by causing

the floating point variables used in the implementation to overflow. Therefore, we pro-

pose that each neuron of the hidden layer transforms its activation using an exponential

function to form its output.

To summarize, our proposed neural network allows us to rewrite equation (3.5) as

ŷ(z) =
n∑
i=1

exp(wi
T f(z, zi) + bi)× y(zi)∑n

j=1 exp(wj
T f(z, zj) + bj)

(3.11)

where the vector f(z, zi) represents a vector of functions f , also called the feature vector

in machine learning, from the set {F c, F+, F−} that are related to the representative VA

policy zi, and vector wi contains the weights associated with each feature in f at neuron

i of the hidden layer. Each wi in (3.11) can be considered as the pointwise inverse of the

Chapter 3. A Neural Network Approach to Estimation of Greeks 47

bandwidth value hi in (3.5).

The condition that the integral of f equals 1 in (3.4) is a sufficient condition to

guarantee that our Parzen density estimator is not biased. If we assume that all the

weight and bias parameters in the proposed neural network are free parameters, none

of the exponential functions in equation (3.11) represent a probability distribution. For

each of the exponential functions in (3.11) to represent a probability distribution, the

bias parameters bi, 1 ≤ i ≤ n, should be functions of the weight parameters wi. This may

at first glance seem like a deficiency of the method, but the end goal of the optimization

problem (3.7) is to provide an accurate estimate of y(z). To achieve that, we only need

to provide accurate estimates of p(y(z)|z) in (3.2). The Ghi , 1 ≤ i ≤ n, functions provide

estimates of p(y, y(z)), but the
Ghi∑n

j=1Ghj
functions provide estimates of p(y(z)|z) and

these normalized functions describe a probability distribution (i.e., they sum to one at

each point). Therefore, we propose not to restrict the choice of the bias parameters and

allow them to be free parameters so that we can have a bigger search space. As we

demonstrate in our numerical results, this proposal does not introduce a significant bias

in our estimations.

We can possibly extend the class of G functions that we consider in the optimization

problem of (3.7) by adding extra hidden layers in the network. For example, the pdf of

the log-normal distribution is not in the class of G functions that we chose to consider

because it requires the natural logarithm of the features in its exponent. But a one-layer

feed-forward network is capable of approximating any continuous function on a compact

domain [40]. Therefore we can add a set of such one-layer feed-forward networks as an

extra hidden layer to the network to approximate all the logarithmic functions required

by the Ghi , 1 ≤ i ≤ n, functions and feed the outputs of this added layer as inputs to the

layer that represents Ghi , 1 ≤ i ≤ n, functions.

A major problem with multi-layer neural networks, which we also found in our nu-

merical experiments, is that, compared to 1 layer neural networks, multi-layer neural

Chapter 3. A Neural Network Approach to Estimation of Greeks 48

networks require significantly more calibration time. In the problem that we are in-

terested in, the calibration process of multi-layer neural networks requires supervised

learning. As we discuss below, the fastest calibration processes require the computation

of a gradient by a scheme called back-propagation. Back-propagation suffers from the

problem of vanishing gradient which slows down considerably the calibration process of

multi-layer neural networks [62]. Using additional layers also significantly increases the

amount of computation that is required. Moreover, use of multi-layer networks requires

us to determine the optimal number of neurons in each layer. Given the exploratory

nature of our thesis and the strong performance results that we get with our proposed

framework, we choose not to consider multi-layer neural networks in this thesis and leave

them to be explored in future work.

3.1.2 Network Training Methodology

Equation (3.11) is a parametric formulation of our proposed estimator. As we discuss

earlier, finding an analytical solution for the optimal choice of weight and bias parameters

that minimizes the MSE error as defined in equation (3.6) is difficult. Therefore, we have

to use sub-optimal iterative methods. Such iterative methods, first choose some initial

guess w(0) and b(0) for the vectors of weight and bias parameters, respectively, and then

search through the weight and bias parameters space in a succession of steps of form

[w(t+1),b(t+1)] = [w(t),b(t)] + [∆w(t),∆b(t)] (3.12)

where w(t) and b(t) denote the vectors of weights and bias parameters, respectively, at

iteration t. The difference between various iterative methods is in the choice of their

updated rule for computing the vector of updates, [∆w(t),∆b(t)], for the weight and bias

parameters. This calibration process, in neural network literature, is known as network

training.

The iterative methods can be divided into two major groups: non-gradient based

Chapter 3. A Neural Network Approach to Estimation of Greeks 49

methods and gradient based methods. Non-gradient based methods are known for their

high computational cost. The non-gradient based methods usually require more itera-

tions than gradient based methods to reach a minimum and hence are poor choices of

calibration process when efficiency is important [5]. Therefore, we choose to use gradient

based methods to train the proposed neural network.

The gradient based methods either use only the gradient information to compute

a weight/bias update vector or they also incorporate Hessian information. The gradi-

ent based methods that use Hessian information often require fewer iterations than the

methods that use only gradient information to reach a local minimum. However, Hessian

based methods normally have a higher computational cost per each iteration since they

need to compute the Hessian matrix or an approximation to it [5]. The computational

cost of Hessian based methods increases quadratically or cubicly in the length of the

weight/bias vector. As we discuss in Section 3.2, the number of weight and bias param-

eters that we need to use in the proposed neural network is big. Therefore, to reduce

the computational load of the training method, we choose to consider the methods that

use only the information of the gradient, as is standard in most neural network training

methods.

Amongst gradient based iterative methods that use only the gradient information, we

choose to consider the family of gradient descent schemes that are known to provide the

greatest rate of decrease in the error function [5]. The gradient descent scheme which is

the simplest of these methods [7] updates the weight and bias parameters as follows

[w(t+1),b(t+1)] = [w(t),b(t)]− η∇E(w(t),b(t)) (3.13)

where the parameter η > 0 in (3.13) is known as the learning rate. The general

convergence rate of gradient descent is O(1
T

), where T denotes the number of itera-

tions [67]5. In this context, the rate of convergence is defined as the rate at which the

5f(x) = O(g(x)) means that there exist positive numbers c and M such that ∀x > M : f(x) < cg(x)

Chapter 3. A Neural Network Approach to Estimation of Greeks 50

error, |f(xT)− f(x∗)|, goes to zero, where f is a smooth convex function, x∗ is the opti-

mum value (value of interest) and xT is the estimation of x∗ after iteration T . The other

methods in this family improve on the convergence rate of this method, under certain

conditions, by optimizing the choice of the learning rate at each iteration.

Gradient descent methods, at each iteration, produce a higher rate of reduction in the

directions of high-curvature than in the directions of lower-curvature. Big rate reductions

in directions of high-curvature cause zig-zag movements around a path that converges to

the local minimum and hence decrease the convergence rate [53]. However, a slower rate

of reduction in directions of low-curvature allows for a persistent movement along the

path of convergence to the local minimum. We can exploit this property by changing the

weight update policy of gradient descent to use a velocity vector that increases in value

in the direction of persistent reduction in the objective error function across iterations.

This techniques is known as the momentum method [59].

The Nestrov’s Accelerated Gradient (NAG) method [56], which can be considered as

a variant of the classical momentum method [59] for general smooth convex functions

and a deterministic gradient, achieves a global convergence rate of O(1
T 2) [67]. As we see

below, the NAG method adds only a few computations to the equation (3.13); however,

it significantly improves the convergence rate of the gradient descent method. The extra

work added in this method is far less than the computational load introduced by other

variants of the gradient descent scheme. Hence, to manage the computational load of

the training method, we choose to use the NAG method to update our weight and bias

parameters. In particular, we use a version of the NAG method described in [67] in which

the NAG updates can be written as

vt+1 = µtvt − ε∇E([w(t),b(t)] + µtvt)

[w(t+1),b(t+1)] = [w(t),b(t)] + vt+1 (3.14)

Chapter 3. A Neural Network Approach to Estimation of Greeks 51

where vt is the velocity vector, µt ∈ [0, 1] is known as the momentum coefficient and ε

is the learning rate. In this scheme, the momentum coefficient is an adaptive parameter

defined by

µt = min(1− 2−1−log2(b t
50
c+1), µmax) (3.15)

where µmax ∈ [0, 1] is a user defined constant. The proposed choice of the NAG method,

compared to the original NAG method [56], uses an adaptive momentum coefficient to

allow the method to apply to a broader class of functions.

As part of the weight updates in (3.14), we need to compute the gradient of the error

function. But the gradient of the error function as described in (3.6) is dependent on the

value of y(z) for all the contracts in the input portfolio. Knowing y(z) means that we have

to do the MC simulations for all the contracts in the input portfolio which undermines

why we are using this interpolation framework. Therefore we choose to approximate the

error function in (3.6) by the MSE estimation error of a smaller set of VA policies which

we call the training portfolio. The objective of the calibration process is then to find a

set of weights and bias parameters that minimizes the MSE in the estimation of the key

risk metric of interest (i.e., Greeks of the input portfolio in the rest of this chapter) for

the training portfolio.

E(w,b) =
1

2|B|

|B|∑
k=1

||ŷ(z̄k,w,b)− y(z̄k)||2 (3.16)

where z̄k, 1 ≤ k ≤ |B|, are the VA policies in the training portfolio.

We choose the training portfolio to be different than the set of representative VA

policies (i.e., observed points in the model (3.5)) to avoid data overfitting. Even with

this choice of the training data, one cannot avoid the issue of overfitting. We discuss in

Section 3.1.3 our solution to this problem.

Depending on the application of interest, the y(z̄i) values can be too small (too big)

resulting in too small (too big) gradient values for (3.16). Too small gradient values

Chapter 3. A Neural Network Approach to Estimation of Greeks 52

increase the training time to reach a local minimum, while too big gradient values cause

big jumps in the updates of (3.13) and hence numerical instability. Normalizing the values

of y(z̄i) in (3.16) and the choice of learning rate can help to ameliorate this problem6.

The error function (3.16) uses the whole training set to compute the error function and

subsequently the gradient of the error function in each iteration. Training techniques that

use the whole training set in each iteration are known as batch methods [5]. Because of

the redundancy in the data as well as the computational expense of evaluating gradients,

batch gradient descent is a slow algorithm for training the network. Our experiments,

further, corroborated the slowness of batch gradient descent in training our proposed

network. To speed up the training, we used a particular version of what is known as the

mini-batch training method [53]. In our training method, in each iteration, we select a

small number (≤ 20) of training VA policies at random and train the network using the

gradient of the error function for this batch. Hence, the error function in our mini-batch

training method has the form

E(w(t),b(t)) =
1

2|B(t)|
∑
k∈B(t)

||ŷ(z̄k,w
(t),b(t))− y(z̄k)||2

where B(t) is the set of indices for selected VA policies at iteration t.

3.1.3 Stopping Condition

Figure 3.4 contains a graph of the MSE for a set of training VA policies as a function of

the training iteration number for one run of our training algorithm. The graph, except

at a few points, is a decreasing function of the iteration number which means that, as

the iteration proceeds, the network is learning and steadily improving the bandwidth

parameters for the model (3.11). After the first few thousand iterations, the graph of

Figure 3.4 kneels and the rate of decrease in MSE drops dramatically. Such a significant

6Refer to the appendix for a discussion of heuristic ways to choose the free parameters described in
this section.

Chapter 3. A Neural Network Approach to Estimation of Greeks 53

Figure 3.4: MSE of VA policies in the batch as a function of the iteration number.

drop in the rate of MSE reduction is usually a sign that the network parameters are close

to their respective optimum values. If we train the network for a longer time, we expect

the MSE to continue to decrease slowly. However, the amount of improvement in the

accuracy of the network might not be worth the time that we spend in further training

the network. Hence, it might be best to stop the training.

If we select VA policies for the training portfolio very close to the representative

VA policies, training the network for a long time can cause data overfitting. Because a

perfect solution for (3.11), in this case, is achieved when the bandwidth values tend to

zero or equivalently the weight parameters become very large. However, such a network

approximates the Greeks of VA policies that are not close to the representative VA

policies by zero. To avoid over-training the network in such scenarios, we follow the

Chapter 3. A Neural Network Approach to Estimation of Greeks 54

common practice in the machine learning literature and track the MSE for a set of VA

policies which we call the validation portfolio [53]. The validation portfolio is a small set

of VA policies that are selected uniformly at random from the VA policies in the input

portfolio. The MSE of the validation set should decrease at first as the network learns

optimal parameters for the model (3.11). After reaching a minimum value, the MSE of

the validation portfolio often increases as the network starts to overfit the model (3.11)

(Figure 3.5). In our training method, we propose to evaluate the MSE of the validation

portfolio every I th iteration of training, to avoid significantly slowing down the training

process. We also propose to use a window of length W of the recorded MSE values for

the validation set to determine if the MSE of the validation set has increased in the

past W − 1 recorded values after attaining a minimum. If we find such a trend, we stop

the training to avoid overfitting. I and W are user defined (free) parameters and are

application dependent.

As shown in the graph of Figure 3.5, the actual graph of the MSE for the validation

portfolio as a function of iteration number might be volatile. However, a general u-shaped

trend still exists in the data, which illustrates an increase in the value of the MSE after

the MSE has reached a minimum. In order to find the trend graph, we use a simple

moving average with a window size of W̄ to smooth the data. We then fit, in the MSE

sense, a polynomial of degree d to the smoothed data. We examine the resulting trend

graph with windows of length W to determine the phenomenon of the MSE increase

after attaining a local minimum. The parameters W̄ and d are free parameters and are

dependent on the application of interest.

So far, we have discussed two events, which we call stopping events, that can be used

as indicators to stop the training. In both events, the network parameters are close to

optimal network parameter values. At this point, each additional iteration of the training

algorithm moves these parameters in a neighborhood of the optimal values and might

make the network parameters closer to the optimal values or farther from the optimal

Chapter 3. A Neural Network Approach to Estimation of Greeks 55

Figure 3.5: The MSE of the validation set and the trend in the MSE as a function of

the iteration number for a run of the training algorithm. The trend is found using a

moving average with a window size of 10 and then fitting a polynomial of degree 6 to the

smoothed data.

values. Intuitively, the best time to stop the training is when the network parameters

are very close to the optimal values and further training does not significantly improve

them. In our training algorithm, we propose to use the relative error in an estimation of

the mean of the Greeks of the validation portfolio as our stopping criteria. Let ¯GNN and

¯GMC denote the mean of the estimated Greeks for the validation portfolio computed by

our proposed neural network approach and by MC simulations respectively. The relative

error in estimation of the mean of the Greeks for the validation portfolio is then

Chapter 3. A Neural Network Approach to Estimation of Greeks 56

Err =
| ¯GNN − ¯GMC |
| ¯GMC |

(3.17)

If the relative error (3.17) is smaller than a user defined threshold δ, we stop the training.

The idea behind our choice of stopping criteria is that a good validation portfolio should

be a good representative of the input portfolio. Hence, a network that has, on average,

an acceptable accuracy in an estimation of the Greeks for the validation portfolio should,

intuitively, have an acceptable accuracy in an estimation of the Greeks for the input

portfolio as well. In some cases, finding stopping events and satisfying the stopping

criteria may require the training algorithm to go through too many iterations, which

can significantly increase the training time of the network and consequently decrease the

efficiency of the method. We propose to stop the training algorithm once the network

has gone through a user defined maximum number of iterations to limit the training time

in such scenarios.

3.1.4 Sampling

As we discuss in Chapter 2, the choice of an appropriate sampling method is a key factor

in obtaining an effective method within the proposed spatial interpolation framework.

However, to focus on studying the effectiveness of our neural network approach in finding

a good choice of distance function, and to keep the analysis simple, in this chapter, we

use a very simple sampling method. We postpone a detailed discussion on the choice of a

more effective sampling method to Chapter 5. However, in this section, we briefly describe

ways in which the choice of our representative VA contracts can affect the performance

of our proposed method.

Consider a realization of our proposed network with three representative contracts

x1, x
(1)
2 and x3 with similar guarantee types. The VA contracts x1 and x

(1)
2 are similar in

every attribute except for the numeric attribute an and they differ with VA contract x3 in

every attribute. Now, consider another realization of our proposed network in which we

Chapter 3. A Neural Network Approach to Estimation of Greeks 57

replace x
(1)
2 in the aforementioned realization with x

(2)
2 . We choose x

(2)
2 such that it has

similar categorical attributes as x
(1)
2 ; however, its numeric attributes assume the average

of the corresponding numeric values for x1 and x3. Assume we train both networks for a

similar number of iterations I. The gradient values of the error function depend only on

the network architecture and the choice of input values. Since the input values for the

corresponding hidden layer neurons for x1 and x
(1)
2 in the former network are almost equal

we expect the corresponding weight vectors w
(1)
1 and w

(1)
2 for these neurons to be approx-

imately equal as well. However, because of the dissimilarity of the x1 and x
(2)
2 contracts

in the second network, we expect the input values and hence the corresponding weights

w
(2)
1 and w

(2)
2 of the hidden layer neurons corresponding to these contracts to be quite

different. Consequently, the latter network can provide a better differentiation between

the x1 and x
(2)
2 contracts while the former network requires more training time to provide

the same level of accuracy in differentiating x1 and x
(1)
2 . Moreover, in approximating the

Greeks for VA contracts other than x1, x
(1)
2 , x

(2)
2 and x3, the former network, because of

the similarity in weights w
(1)
1 and w

(1)
2 , puts more emphasis on the corresponding Greeks

of the contracts x1 and x
(1)
2 . Moreover, the latter network, because of the choice of x

(2)
2 ,

can provide better accuracy for VA contracts that are quite different than both x1 and

x3. Therefore, as demonstrated by this example, a bad sample can hurt the efficiency of

the proposed method by requiring more training time. Moreover, a bad sample can hurt

the accuracy of the proposed network in estimation of the Greeks of VA contracts that

assume attribute values that are different than the representative contracts, in particular

those VA contracts that are quite distant from any representative contract.

3.2 Numerical Experiments

In this section, we provide numerical results illustrating the performance of the pro-

posed neural network framework in comparison with the traditional spatial interpolation

Chapter 3. A Neural Network Approach to Estimation of Greeks 58

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {20, 21, . . . , 60}

Account Value [1e4, 5e5]

Guarantee Value [0.5e4, 6e5]

Withdrawal Rate {0.04, 0.05, 0.06, 0.07, 0.08}

Maturity {10, 11, . . . , 25}

Table 3.1: GMDB and GMWB+GMDB attributes and their respective ranges of values

for the synthetic input porttfolio.

schemes (i.e., Kriging, IDW, and RBF) discussed in [39]. The input portfolio in all ex-

periments is a synthetic portfolio of 100, 000 VA contracts with attribute values that are

chosen uniformly at random from the space described in Table 3.1. Similar to [39], we

allow guarantee values to be different than the account values. The guaranteed death ben-

efit of contracts with a GMWB rider is set to be equal to their guaranteed withdrawal

benefit. The account values of the contracts follow a simple log-normal distribution

model [42] with a risk free rate of return of µ = 3%, and volatility of σ = 20%.

In our experiments, we use the framework described in [32] to value each VA contract.

In each MC simulation, even in the calibration stage of the interpolation schemes to value

representative contracts, we use 10, 000 scenarios. Fewer scenarios results in a noticeable

difference, as big as 5%, between the computed delta value from successive runs. In our

experiments, we use mortality rates of the 1996 IAM mortality tables provided by the

Society of Actuaries.

We implement the framework in Java and run it on machines with dual quad-core

Intel X5355 CPUs. We do not use the multiprocessing capability of our machine in these

experiments; however, in Chapter 4, we demonstrate that even the serial implementation

Chapter 3. A Neural Network Approach to Estimation of Greeks 59

of our proposed framework can provide better efficiency than parallel implementation of

MC simulations.

3.2.1 Representative Contracts

As we discuss above in Section 3.1, to make our analysis more tractable, we do not

address the issue of an effective sampling method in this chapter. Furthermore, in our

experiments, the input portfolio, similar to Section 2.3, is a synthetic portfolio that is

generated uniformly at random in the space of selected variable annuities. Hence, in

all of the experiments in this section, we use a simple uniform sampling method similar

to that in Section 2.3. The uniform sampling method generates sample portfolios that

contain no duplicates VAs, and have sample VA contracts that are well-spaced to avoid

issues discussed in Section 3.1.4. In each set of experiments, we select 300 representative

contracts from the set of all VA contracts constructed from all combinations of points

defined in Table 3.2. In a set of experiments, we select a set of representative contracts

at the beginning of the experiment, and use the same set for various spatial interpolation

methods that we examine in that experiment. This allows for a fair comparison between

all methods.

3.2.2 Training/Validation Portfolio

Unlike traditional spatial interpolation schemes, we need to introduce two more portfolios

to properly train our neural network. In each set of experiments, we select 250 VA

contracts uniformly at random from the input portfolio as our validation portfolio.

For the training portfolio, we select 200 contracts uniformly at random from the set

of VA contracts of all combinations of attributes specified in Table 3.3. The attributes of

Table 3.3 are intentionally different from the attributes of Table 3.2 to avoid unnecessary

overfitting of the data.

Chapter 3. A Neural Network Approach to Estimation of Greeks 60

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {20, 30, 40, 50, 60}

Account Value {1e4, 1e5, 2e5, 3e5, 4e5, 5e5}

Guarantee Value {0.5e4, 1e5, 2e5, 3e5, 4e5, 5e5, 6e5}

Withdrawal Rate {0.04, 0.08}

Maturity {10, 15, 20, 25}

Table 3.2: Attribute values from which representative contracts are generated for exper-

iments.

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {23, 27, 33, 37, 43, 47, 53, 57}

Account Value {0.2e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5}

Guarantee Value {0.5e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5, 5.5e5}

Withdrawal Rate {0.05, 0.06, 0.07}

Maturity {12, 13, 17, 18, 22, 23}

Table 3.3: Attribute values from which training contracts are generated for experiments.

3.2.3 Parameters of the Neural Network

In our numerical experiments, we use the following set of parameters to construct and

train our network. We choose a learning rate of 1. We set µmax in (3.15) to 0.99. We

use a batch size of 20 in our training. We fix the seed of the pseudo-random number

generator that we use to select batches of the training data so that we can reproduce

Chapter 3. A Neural Network Approach to Estimation of Greeks 61

our network for a given set of representative contracts, training portfolio, and validation

portfolio. Moreover, we initialize our weight and bias parameters to zero.

The categorical features in F c are rider type and gender of the policyholder. The

following numeric features make up F+.

f(z, zi) =
[φ(x)− φ(xi)]

+

Rφ

(3.18)

In our experiments, φ can assume the values maturity, age, AV , GD/AV , GW/AV , and

withdrawal rate in which AV is the account value, GD is the guaranteed death benefit,

and GW is the guaranteed withdrawal benefit. In Equation (3.18), Rφ is the range of

values that φ can assume, x is the vector of numeric attributes for input VA contract z,

and xi is the vector of numeric attributes for representative contract zi. The features of

F− are defined in a similar fashion by swapping x and xi on the right side of Equation

(3.18).

We record MSE every 50 iterations. We compute a moving average with a window of

size 10 to smooth the MSE values. Moreover, we fit, in a least squares sense, a polynomial

of degree 6 to the smoothed MSE values and use a window of length 4 to find the trend

in the resulting MSE graph. In addition, we choose a δ of 0.005 as our threshold for the

relative error in estimation of the Greeks for the validation portfolio.

3.2.4 Performance

In these experiments, we compare the performance (i.e., accuracy, efficiency, and gran-

ularity) of our proposed neural network scheme, referred to as NN in the results tables,

with that of the traditional spatial interpolation schemes. From the set of interpolation

techniques discussed in Chapter 2, we only choose the following interpolation methods

with a corresponding distance function which exhibited the most promising results in

Section 2.3.

Chapter 3. A Neural Network Approach to Estimation of Greeks 62

• Kriging with Spherical and Exponential variogram models,

• IDW with power parameters p of 1 and 100,

• Gaussian RBF with free parameter ε of 1.

The distance function for the Kriging and RBF methods is

D(x,y, γ) =

√∑
h∈N

(xh − yh
maxh−minh

)2

+ γ
∑
h∈C

δ(xh, yh)

where N = {AV, GD, GW, maturity, age, withdrawal rate} is the set of numerical values

and C = {gender, rider} is the set of categorical values, and γ = 1.

For the IDW methods we choose the following distance function that provided the

most promising results in Section 2.3.

D(x,y, γ) =

√
f(xage, yage)gage(x,y) +

∑
h∈N

gh(x,y) + γ
∑
h∈C

δ(xh, yh)

f(xage, yage) = exp
(xage + yage

2
−M

)
gh(x,y) = (exp(−rx)xh − exp(−ry)yh)2

where C = {gender, rider}, N = {maturity, withdrawal rate}, r = AV
GD

and M is the

maximum age in the portfolio.

Because we randomly select our representative contracts according to the method

described in Section 3.2.1, we compare the performance of the interpolation schemes

using 6 different realizations of the representative contracts, Si, 1 ≤ i ≤ 6. For our

proposed neural network approach, we use the same training portfolio and validation

portfolio in all of these 6 experiments. We study the effect of the training portfolio and

the validation portfolio in a different experiment.

Although in this set of experiments and in many other experiments in this thesis

we chose to report our findings using only a limited number of simulations (e.g., 5 or 6

Chapter 3. A Neural Network Approach to Estimation of Greeks 63

simulations), this is not to suggest that we have conducted only these limited number of

experiments to draw the conclusions that we present. Rather, for each set of experiments,

we ran many simulations, and once we saw certain patterns emerge from the outcomes

of those simulations, we reported only a few of these simulations that best represent

these emerging patterns. For example, if we report the accuracy results of all of the

experiments that we ran for the current set of experiments, the changes in mean and

standard deviation of the relative error values, which we discuss in detail below, are very

small. However, the general conclusions that we make by comparing the accuracy results

of various methods still holds.

Table 3.4 displays the accuracy of each scheme in estimation of the delta value for

the input portfolio. The accuracy of different methods is recorded as the relative error

Errm =
∆m −∆MC

|∆MC |
(3.19)

where ∆MC is the estimated delta value of the input portfolio computed by MC simula-

tions and ∆m is the estimate delta value of the input portfolio computed by method m.

As we also discuss in Chapter 2, with 10, 000 inner loop scenarios, the ∆MC of successive

runs of MC simulations has a statistics of std(∆MC)
mean(∆MC)

= 0.25%.

The results of Table 3.4 show the superior performance of our proposed neural network

(NN) framework in terms of accuracy. Except in a few cases, the accuracy of our proposed

NN framework is better than all of the other interpolation schemes. Spherical Kriging

has the best performance amongst the traditional interpolation schemes. Comparing the

accuracy results of our proposed neural network scheme with that of Spherical Kriging

shows that the relative error of the proposed scheme has lower standard deviation and

hence is more reliable.

In Table 3.5, the average training and estimation time of each method is presented

for two scenarios: (1) the method is used to estimate only the delta value of the entire

portfolio and (2) the method is used to estimate the delta value of each policy in the

Chapter 3. A Neural Network Approach to Estimation of Greeks 64

Method
Relative Error (%)

S1 S2 S3 S4 S5 S6

Kriging (Sph) −0.60 0.55 7.62 2.86 2.58 3.59

Kriging (Exp) −0.29 1.73 8.09 4.77 3.46 4.38

IDW (p = 1) −21.43 −14.48 −21.76 −7.22 −12.47 −11.77

IDW (p = 100) −11.74 −7.81 −4.36 −0.07 −2.72 −2.45

RBF (Gau, ε = 1) −0.76 −5.21 −10.45 −7.83 2.47 4.11

NN −1.16 0.84 1.56 0.85 1.66 −1.46

Table 3.4: Relative error in estimation of the portfolio’s delta value by each method.

input portfolio. Because of the complex calculations required to train the proposed

NN method, the running time of the proposed NN method is longer than that of the

traditional interpolation scheme. However, it still out performs the MC simulations

(speed up of > ×15).

In this experiment, assuming no prior knowledge of the market, we used zero as our

initial value for weight/bias parameters, which is far from the optimal value and causes the

performance of the proposed NN method to suffer from a long training time. In practice,

insurance companies estimate the Greeks of their portfolios on frequent intraday basis

to do dynamic hedging. Assuming a small change in the market condition, one does not

expect the Greek values of the VA policies to change significantly. Hence, intuitively,

the change in the optimal values of weight/bias parameters of the network under the

previous and the current market conditions should be small. In Chapter 4, in the context

of estimating the probability distribution of the one year loss, we demonstrate how we

exploit this fact to reduce the training time of the network from an average of 4000

iterations to less than 200 iterations and hence reduce the training time significantly. In

particular, assuming a neural network that has been calibrated to the previous market

conditions, we construct a new network that uses the values of the weight/bias parameters

Chapter 3. A Neural Network Approach to Estimation of Greeks 65

Method Portfolio Per Policy

MC 10617 10617

Kriging (Spherical) 41 � 10617

Kriging (Exponential) 41 � 10617

IDW (P = 1) 29 29

IDW (P = 100) 28 28

RBF (Gaussian, ε = 1) 41 41

NN 539 539

Table 3.5: Simulation time of each method to estimate the delta value. All times are in

seconds.

of the previous network as the initial values for the weight/bias parameters in the training

stage.

A comparison of the running time in the two columns of Table 3.5 shows that the

proposed NN method, similar to IDW and RBF, can be used to efficiently provide a

granular view of the delta values in the input portfolio. Figures 3.6, 3.7, and 3.8 show

a granular view of the estimated delta values of contracts in the input portfolio by our

proposed NN scheme, the IDW method, and the RBF method, respectively. As we

discuss earlier, Kriging methods cannot provide granularity and hence we cannot provide

comparable graphs for them.

By comparing these graphs, we can see that the NN estimated delta values follow

their corresponding MC estimated values (plotted data values are very close to the line

y = x) much closer than the IDW and RBF estimated delta values do. In particular,

the R2 value of the y = x line (the red line) for the proposed NN method is much closer

to one than is the R2 value for either the IDW and RBF methods. In fact, the graphs

of Figures 3.7a and 3.7c show that IDW methods are not able to provide even modestly

accurate estimates of delta values for contracts in the input portfolio. The R2 value of

Chapter 3. A Neural Network Approach to Estimation of Greeks 66

the line y = x for the estimated delta values by the IDW methods is close to zero or even

negative which shows very weak correlation between the estimated delta values by the

IDW methods and the MC method.

Figures 3.6b, 3.7b, 3.7d, and 3.8b show the histogram of differences in estimation

of delta values for contracts in the input portfolio via the MC simulations and each

of the proposed NN methods, the IDW methods, and the RBF method, correspond-

ingly. Amongst these interpolation methods, only the proposed NN method and the

RBF method have histograms that are densely populated close to zero (i.e., low standard

deviation in estimation error) and are symmetric around it (i.e., low bias in estimation

error). However, the histogram of the proposed NN method is more concentrated around

zero than the histogram of the RBF method. In fact, the statistics in the above-mentioned

graphs show that the proposed NN method has the least mean and the least standard

deviation of absolute estimation error amongst all the methods.

Although, the data of Figure 3.6a show large deviations from the line y = x, but the

concentration of the histogram 3.6b around zero suggests that these deviations are in

fact rare. Moreover, the symmetry of the histogram 3.6b further suggests the amount of

over estimation by the neural network is close to the amount of under estimation by the

neural network. Therefore, the estimation errors, in aggregate, cancel each other out,

resulting in a smaller portfolio error.

3.2.5 Sensitivity to Training/Validation Portfolio

The training of our proposed NN method requires the selection of three VA portfolios.

In the experiments of Section 3.2.4, we fix the selection of two of these portfolios (i.e.,

training portfolio and validation portfolio) while we measured the performance of our

proposed method by changing the set of representative contracts. In the experiments of

this section, we investigate the sensitivity of the accuracy and efficiency of our proposed

method to the choice of training and validation portfolio. We conduct two sets of ex-

Chapter 3. A Neural Network Approach to Estimation of Greeks 67

(a) Histogram of the difference in esti-

mation of delta values for contracts in

the input portfolio via the NN method

and the MC simulations.

(b) Estimated delta values of contracts in the input

portfolio by MC simulations and the NN method.

Figure 3.6: Comparing estimation of the delta values of the contracts in the input port-

folio computed by the neutral network method and the MC method.

periments in which we fix the choice of representative contracts and either the training

portfolio or the validation portfolio, while training the network with different realizations

of the remaining portfolio. In the first set of experiments, we fix the choice of the rep-

resentative contracts and the validation portfolio. We train the network with 5 different

choices of the training portfolio and estimate the delta value of the input portfolio in

each experiment. In the second set of experiments, we fix the choice of the representative

contracts and the training portfolio and train the network with 5 different realizations of

the validation portfolio. We then use the trained network to estimate the delta value of

the input portfolio in each experiment. We used the same set of representative contracts

in both set of experiments.

Chapter 3. A Neural Network Approach to Estimation of Greeks 68

(a) Histogram of the difference in esti-

mation of delta values for contracts in

the input portfolio via the IDW (P =

1) method and the MC simulations.

(b) Estimated delta values of contracts in the input

portfolio by MC simulations and the IDW method

(P = 1).

(c) Histogram of the difference in esti-

mation of delta values for contracts in

the input portfolio via the IDW method

(P = 100) and the MC simulations.

(d) Estimated delta values of contracts in the input

portfolio by MC simulations and the IDW method

(P = 100).

Figure 3.7: Comparing estimation of the delta values of contracts in the input portfolio

computed by the IDW method and the MC method.

Chapter 3. A Neural Network Approach to Estimation of Greeks 69

(a) Histogram of the difference in esti-

mation of delta values for contracts in

the input portfolio via the RBF method

and the MC simulations.

(b) Estimated delta values of the contracts in the input

portfolio by MC simulations and the RBF method.

Figure 3.8: Comparing estimation of the delta values of contracts in the input portfolio

computed by the RBF method and the MC method.

Variable Portfolio
Relative Error (%) Running Time

Mean STD Mean STD

Training 0.27 1.52 660 246

Validation −0.62 1.51 523 38

Table 3.6: Statistics on the running time sensitivity and accuracy sensitivity of the

training network with different sets of training and validation portfolios. The recorded

errors are relative errors as defined in (3.19). All times are in seconds.

Chapter 3. A Neural Network Approach to Estimation of Greeks 70

The statistics for the running time 7 (training and estimation) and accuracy of each

set of experiments are presented in Table 3.6. The relatively big values of the stan-

dard deviations indicate that the accuracy of the estimation is sensitive to the choice of

the training portfolio and the validation portfolio. Despite this sensitivity, the method

remains accurate.

The choice of the training portfolio can significantly affect the running time of the

neural network; however, the running time of the network is fairly insensitive to changes

in the choice of validation portfolio. The validation portfolio in the training is mainly used

as a guard against overfitting. It is a useful stopping criteria to fine tune the network

once we are close to the local optimum. On the other hand, the training portfolio

defines the optimization problem that the training algorithm must solve. In particular,

it determines how close the initial weight parameters are to the optimal choice of weight

and bias parameters. For a fixed learning rate, a bad training portfolio can slow down

the training by increasing the distance of the initial weight and bias parameters from the

optimal choice of these parameters which necessitates more training iterations. Hence

the choice of the training portfolio has a more significant effect than the choice of the

validation portfolio on the running time.

3.2.6 Sensitivity to Sample Sizes

In the previous experiments, we examined the sensitivity of our proposed neural network

framework to the selection of the training portfolio, the validation portfolio, and the

set of representative contracts. In this section, we conduct experiments that assess the

sensitivity of our proposed framework on the size of these portfolios. In each experiment,

we fix two out of the three required portfolios while changing the size of the third portfolio.

For each selected size of the latter portfolio, we train the network with 5 realizations of

7Although we fix the training portfolio or validation portfolio in these experiments, we still include
the time that it took us to generate them in the reported running times.

Chapter 3. A Neural Network Approach to Estimation of Greeks 71

Portfolio Sizes
Relative Error (%) Running Time

Mean STD Mean STD

(300, 200, 250) 0.38 1.35 539 120

(250, 200, 250) −0.73 1.42 373 73

(200, 200, 250) −1.62 1.52 310 85

(300, 200, 250) 0.27 1.52 539 246

(300, 150, 250) −4.31 7.66 708 254

(300, 100, 250) 6.50 14.47 669 303

(300, 200, 250) −0.62 1.51 523 38

(300, 200, 200) 0.70 3.23 511 24

(300, 200, 150) 2.31 3.67 582 188

Table 3.7: Statistics on running time sensitivity and accuracy sensitivity of training

network with portfolios of various sizes. The recorded errors are relative errors as defined

in (3.19). All times are in seconds.

the portfolio and record the running time and accuracy of the method.

Table 3.7 contains the statistics on the recorded running time and the relative error

for each set of selected portfolio sizes. Each row in the table begins with a tuple (r, t, v)

denoting the size of the set of representative contracts, the training portfolio, and the

validation portfolio, respectively. In the scenarios corresponding to the first three rows,

we changed the size of representative contracts. The second three rows show the results

for the scenarios in which we changed the size of the training portfolio. Finally, in the

scenarios corresponding to the third three rows, we changed the size of the validation

portfolio.

The results of Table 3.7 show that decreasing the number of representative contracts

increases the efficiency of the network. Furthermore, the amount of decrease in running

Chapter 3. A Neural Network Approach to Estimation of Greeks 72

time is proportional to the amount of decrease in the number of representative contracts.

This result is expected since the number of calculations in the network is proportional to

the number of neurons in the hidden layer which is proportional to the number of repre-

sentative contracts. Although the accuracy of the method deteriorates as we decrease the

number of representative contracts, the accuracy of the worst network is still comparable

to the best of the traditional spatial interpolation techniques (see Table 3.4). Hence, if

required, we can sacrifice some accuracy for better efficiency.

According to the statistics in the second set of three rows of Table 3.7, decreasing

the size of the training portfolio can significantly affect the accuracy of the method.

Decreasing the number of training VA contracts results in a poorer coverage of the space in

which the network is trained. In the space where the training VA contracts are sparse, the

parameters of the representative VA contracts are not calibrated well, resulting in poor

accuracy of estimation. Although the mean of the simulation time does not consistently

decrease with the decrease in the size of the training portfolio, the standard deviation of

the simulation time increases significantly. The increase in the standard deviation of the

network’s simulation time is a further proof that the network is struggling to calibrate

its parameters for the smaller training portfolios.

The results in the last three rows of Table 3.7 suggest that decreasing the size of

validation portfolio decreases the accuracy of the proposed framework. The deterioration

in the performance of the network is more apparent from the amount of increase in the

standard deviation of the relative error values. As one decreases the size of the validation

portfolio, the VAs in the validation portfolio provide a poorer representation of the input

portfolio. Although the change in the accuracy of the method is significant, the running

time of the method is less affected by the size of the validation portfolio, except for the

validation portfolio of the smallest size, where one can see a big increase in the standard

deviation of the running time.

As we mentioned earlier in Section 3.2.5, the validation portfolio only affects the

Chapter 3. A Neural Network Approach to Estimation of Greeks 73

last stage of the training where the network parameters are close to their local optimal

values. Define the common neighborhood of a validation portfolio as the intersection

between the δ neighborhood of the portfolio delta values for the validation portfolio and

the local neighborhood of the optimal network parameter values. When the size of the

validation portfolio is too small, various realizations of the validation portfolio may not

adequately fill the space resulting in portfolio delta values that differ significantly from

one realization to another. Hence, the common neighborhood of various realizations of

validation portfolio may vary in place and size significantly. By definition, the stopping

criteria terminates the training algorithm as soon as the training algorithm finds a set of

network parameters that are within the common neighborhood of the validation portfolio.

Therefore, the training time of the network can vary significantly based on the size and the

place of the common neighborhood. As the size of the common neighborhood increases,

the network spends less time searching for a set of network parameters that are within

the common neighborhood. Because the training time is a significant part of the running

time of the proposed neural network scheme, the standard deviation of the running time

increases as a result of the increase in the standard deviation of the training time.

3.2.7 Sensitivity to the Size of Input Portfolio

In the experiments of this section, we investigate if the number of VAs in the input

portfolio can affect the performance of the proposed NN framework. To keep the number

of variable parameters small and hence have a better assessment, we keep the size of

the representative portfolio, the training portfolio and the validation portfolio constant.

We choose 300/200/250 as the size of the representative/training/validation portfolio

because the NN framework in the previous experiments achieved the best performance

results with these portfolio sizes.

The input portfolio in each set of experiment is a synthetic portfolio of VAs that is

uniformly distributed in the space defined by attributes in Table 3.1. For each portfolio

Chapter 3. A Neural Network Approach to Estimation of Greeks 74

Portfolio Size
Relative Error (%) Running Time

Mean STD Mean STD

100, 000 0.38 1.35 539 120

50, 000 0.58 2.99 681 158

25, 000 −0.95 4.07 544 106

Table 3.8: Statistics on running time sensitivity and accuracy sensitivity of the neural

network framework on input portfolios of various sizes. The recorded errors are relative

errors as defined in (3.19). All times are in seconds.

size, we run 6 independent experiments each with a new set of representative portfolio,

training portfolio and validation portfolio. The input portfolio is fixed for all 6 indepen-

dent runs. The result of the experiments are recorded in Table 3.8.

From Table 3.8, we see that the accuracy of the NN framework decreases as the size

of input portfolio decreases. In particular, the NN framework provides a poor estimation

(relative to industry standards) for the input portfolio of size 25, 000. In fact, for the

input portfolio of size 25, 000, we have to increase the parameter δ to 0.01 to be able to

properly train the network and obtain the recorded results of Table 3.8.

We select the VAs of the representative portfolio to uniformly fill the space because we

assume that the synthetic input portfolio is uniformly distributed in the space. Because

the VAs of the input portfolio are randomly generated, the accuracy of the aforemen-

tioned assumption depends on the size of the input portfolio. The uniform distribution

assumption is less accurate for the input portfolios of smaller size which causes a mis-

match between the distribution of the input portfolio and the representative contracts.

The mismatch between the distributions of the input portfolio and the validation portfo-

lio leads to bias in the estimation of the portfolio delta value. The mean accuracy results

of Table 3.8 show evidence of this bias. The mean accuracy results grow in absolute value

as the size of the input portfolio decreases which indicates a growing bias.

Chapter 3. A Neural Network Approach to Estimation of Greeks 75

Because the validation portfolio is a small sample of the input portfolio, the unifor-

mity assumption is even less accurate for the validation portfolio. Hence, for small input

portfolios, the representative portfolio may have a bigger bias in estimation of the port-

folio delta value of the validation portfolio. Because of this bias, there may not be an

overlap between the δ neighborhood of the portfolio delta value of the validation portfolio

and the local neighborhood of the optimal values of weight and bias parameters in the

second phase of training, i.e., the common neighborhood of the validation portfolio is

empty. It is for this reason that we increased the value of δ to allow a bigger search

space for the neural network to find a good choice of weight/bias parameters to finish the

training. A better alternative approach to deal with this issue is to change the sampling

method to consider the distribution of the input portfolio in the space. We discuss this

alternative in more detail in Chapter 5.

The running time of the NN framework for the input portfolio of size 50, 000 is larger

than that of the input portfolio of size 100, 000. Although NN framework’s estimation

time for the former has decreased, the training time of the NN framework for the input

portfolio of size 50, 000 has increased compared to the training time of the NN framework

for the input portfolio of size 100, 000. The increase in the training time is caused by

the neural network’s struggle to find an appropriate choice of weight/bias parameters

in the second phase of the training. Increasing the value of parameter δ for the input

portfolio of size 25, 000 alleviates this struggle and hence, as show in Table 3.8, results

in a decrease in the training time and hence the running time of the NN framework.

Chapter 4

Application of Neural Network

Framework in Estimation of SCR

The1 Solvency II Directive is the new insurance regulatory framework within the Euro-

pean Union. Solvency II enhances consumer protection by requiring insurers to monitor

the risks facing their organization. An integral part of Solvency II is the SCR that re-

duces the risk of insurers’ insolvency. SCR is the amount of reserves that an insurance

company must hold to cover any losses within a one year period with a confidence level

of 99.5%.

The calculation standards are described in the documents of the Committee of Eu-

ropean Insurance and Occupational Pensions Supervisors (CEIOP) (e.g., [16]). The reg-

ulation allows insurance companies to use either the standard formula or to develop an

internal model based on a market-consistent valuation of assets and liabilities. Because

of the imprecise language of the aforementioned standards, many insurance companies

are struggling to implement the underlying model and to develop efficient techniques to

do the necessary calculations. In [4, 21], rigorous mathematical definitions of SCR are

provided. Moreover, [4] describes an implementation of a simplified, but approximately

1The material of this chapter is based on our paper [38].

76

Chapter 4. Application of Neural Network Framework in Estimation of SCR77

equivalent, notion of SCR using nested MC simulations.

The results of the numerical experiments in [4] to find the SCR for a simple insurance

product show that the proposed nested MC simulations are too expensive, even with

their simplified notion of SCR. Hence, insurance companies cannot directly use the

proposed MC approach to find the SCR for their large portfolios of insurance products.

In this chapter, we propose a neural network approach to ameliorate the computational

complexity of MC simulations which allows us to efficiently compute the SCR for large

portfolios of insurance products. We provide insights into the efficiency of the proposed

framework by studying its performance in computing the SCR for a large portfolio of

VAs.

4.1 Solvency Capital Requirement

A rigorous treatment of SCR2 requires the definition of Available Capital (AC) which

is a metric that determines the solvency of a life insurer at each point in time. The

AC is the difference between the Market Value of Assets (MVA) and Market Value of

Liabilities (MVL):

ACt = MVAt −MVLt (4.1)

where the subscript t denotes the time, in years, at which each variable is calculated.

Assuming the definition (4.1) of AC, the SCR, under Solvency II, is defined as the

smallest amount of AC that a company must currently hold to insure a positive AC in

one year with a probability of 99.5%. In other words, the SCR is the smallest amount x

that satisfies the following inequality.

P (AC1 ≥ 0|AC0 = x) ≥ 99.5% (4.2)

2The material in this section is based largely on the discussion in [4].

Chapter 4. Application of Neural Network Framework in Estimation of SCR78

The application of definition (4.2) to find an approximate value of SCR, in practice,

requires the estimation of the probability distribution of AC1 for many AC0 values (one

probability distribution for each value of AC0). Therefore, using definition (4.2) to find

an accurate estimation of SCR is complex and is computationally intensive.

To reduce the computational complexity associated with (4.2), Bauer et al. use a

simpler, approximately equivalent notion of the SCR which is based on the one-year loss

function, ∆, evaluated at time zero:

∆ = AC0 −
AC1

1 + r
(4.3)

where r is the one-year risk-free rate. The SCR is then redefined as the one-year Value-

at-Risk (VaR)

SCR = argminx{P (∆ > x) ≤ 0.5%} (4.4)

Definition (4.4) allows one to find an estimation of SCR by estimating the probability

distribution of ∆ once only. We use the definition (4.4) of the SCR in the rest of this

chapter.

4.2 Nested Simulation Approach

Given the definition (4.4) of SCR, we can calculate the SCR by first computing the

empirical probability distribution of ∆ and then computing the 99.5%-quantile of the

calculated probability distribution. We can implement this scheme by the nested simu-

lation approach of [4]. In this section, we first outline the nested simulation approach

of [4] and then describe our modification of it to make it more computationally efficient.

In the nested simulation approach of [4], summarized in Figure 4.1, we first generate

N (p) sample paths P(i), 1 ≤ i ≤ N (p), that determine the one-year evolution of financial

markets. Note that we are only interested in the partial state of the financial markets.

Chapter 4. Application of Neural Network Framework in Estimation of SCR79

Generate N (p) sample paths P(i), 1 ≤ i ≤ N (p)

Evaluate AC
(i)
1 , 1 ≤ i ≤ N (p), for each sample path P(i) Evaluate AC0

Evaluate ∆(i), 1 ≤ i ≤ N (p), for each sample path P(i)

Sort ∆(i) in ascending order

Output the bN × 0.995 + 0.5c element as the approximation for SCR

Figure 4.1: Diagram of the nested simulation approach proposed by [4].

In particular, we are only interested in the state of the financial instruments that help us

evaluate the asset values and the liability values of our portfolio. Hence, we can generate a

sample state of the financial market by drawing one sample from the stochastic processes

that describe the value of those financial instruments of interest.

In the nested simulation approach of [4], for each sample path P(i), we use a MC

simulation to determine the value AC
(i)
1 , the available capital one year hence. We also

calculate AC0 via another MC simulation and use that to determine the value of ∆(i), 1 ≤

i ≤ N (p), for each sample path P(i), 1 ≤ i ≤ N (p), via equation (4.3). The values

∆(i), 1 ≤ i ≤ N (p), can be used to determine the empirical distribution of ∆. In order to

estimate the 99.5%-quantile for ∆ as required by the definition of the SCR in equation

(4.4), we sort the calculated ∆(i), 1 ≤ i ≤ N (p), values in ascending order and choose the

bN × 0.995 + 0.5c element amongst the sorted values as the approximation for SCR.

The nested MC simulation approach of Figure 4.1 is computationally expensive even

for simple insurance contracts [4]. The computational complexity of the approach stems

Chapter 4. Application of Neural Network Framework in Estimation of SCR80

from two factors: 1) The value of N (p) can be very large [4]. 2) The suggested MC

valuation of AC
(i)
1 for each path P(i) and AC0, even for a single contract, is expensive

and hence does not scale well to large portfolios of insurance products. In this thesis,

we focus on the latter factor and provide an approach to significantly reduce the cost

of computing each AC
(i)
1 , 1 ≤ i ≤ N (p), and AC0. We also briefly discuss a proposal to

address the former factor. However, we leave a detailed development and analysis of the

proposal as a future work.

To begin, we briefly outline our proposal for reducing N (p) to address the first factor.

In the nested simulation approach suggested by [4], to have a good estimation of the

empirical probability distribution of ∆, the number of sample paths, N (p), must be large,

since the ∆(i) values, 1 ≤ i ≤ N (p), are used to approximate the probability distribution

of ∆. Consequently, many ∆(i) values are needed to provide a sufficiently accurate

approximation. Because a significant number of these values should, intuitively, be very

close to each other, we suggest using a data interpolation scheme to reduce the cost

associated with the number of sample paths, N (p). To do the interpolation, we first

select/generate a small number, N
(p)
s , of paths P(i)

s , 1 ≤ i ≤ N
(p)
s , and evaluate ∆(i) for

each path P
(i)
s . Then, we use the calculated values ∆

(i)
s , 1 ≤ i ≤ N

(p)
s , of the representative

paths P(i)
s , 1 ≤ i ≤ N

(p)
s , to interpolate each ∆(i), 1 ≤ i ≤ N (p), associated with each path

P(i), 1 ≤ i ≤ N (p). The choice of the interpolation scheme that should be used depends

on the distribution of the generated N (p) paths in the space. The variables that define

this space are dependent on the sources of randomness in the financial instruments that

we use to value our portfolio. In this thesis, we use a simple linear interpolation scheme,

described in more detail in Section 4.3, to reduce the running time of our numerical

experiments. We postpone a more thorough development and analysis of the interpolation

method as a future work.

Now we turn to the main focus of this chapter, a more efficient way to compute AC
(i)
1

for each path P(i)
s , 1 ≤ i ≤ N

(p)
s , and AC0. A key element in computing the ∆ value via

Chapter 4. Application of Neural Network Framework in Estimation of SCR81

equation (4.3) is the calculation of AC values. From (4.1), we see that the calculation of

AC requires a market consistent valuation of assets and liabilities. Insurance companies

can follow a mark-to-market approach to value their assets in a straightforward way.

However, the innovative and complex structure of insurance products does not allow for

such a straightforward calculation of liabilities. In practice, insurance companies often

have to calculate the liabilities of insurance products by direct valuation of the cash flows

associated with them (direct method [35]). Hence, the difficulty in calculation of SCR is

primarily associated with the difficulty in the calculation of liabilities.

As we discuss in detail in Chapter 2, a MC simulation approach, as suggested in

[4], to compute the liability of large portfolios of insurance products is very expensive.

Furthermore, traditional portfolio valuation techniques, such as the replication portfolio

approach [25, 26, 57] and the LSMC method [14, 15, 47], are not effective in reducing the

computational cost.

As we discuss in detail in Chapter 2, a spatial interpolation approach can reduce

the required computation of the MC scheme by reducing the number of contracts that

must be processed by the MC method. In Chapter 3, we describe how a neural network

approach to the spatial interpolation can not only solve the problem associated with

finding a good distance metric for the portfolio but also provide a better balance between

efficiency, accuracy, and granularity of estimation. The numerical experiments of Section

3.2 provided insights into the performance of our proposed neural network approach in

estimation of Greeks for a portfolio of VAs. We show in this chapter how a similar neural

network approach can be used to find the liabilities and subsequently the SCR for an

input portfolio of VA products in an efficient and accurate manner.

Although we are using a neural network similar to the one proposed in Chapter 3,

our experiments demonstrate that a blind usage of the neural network framework to

estimate the liability values can provide no better computational efficiency than parallel

implementation of MC simulations. As we discuss in Chapter 3, the time it takes to

Chapter 4. Application of Neural Network Framework in Estimation of SCR82

train the neural network accounts for a major part of the running time of the proposed

neural network framework. Therefore, if we have to train the network from scratch

for each realization of the financial markets (P(i), 1 ≤ i ≤ N (p)) to compute ∆(i), 1 ≤

i ≤ N (p), the proposed neural network loses its computational efficiency compared to

a parallel implementation of the MC simulations. To address this problem, in Section

4.3, we discuss a methodology to use the parameters for a neural network trained to

compute the MVL
(i)
1 associated with P(i)

s as a good first guess for the parameters for

another neural network to compute MVL
(j)
1 associated with P(j)

s , for i 6= j. The proposed

methodology is based on the idea that, for two neural networks that are trained under two

market conditions that are only slightly different, the optimal choices of neural network

parameters are likely very close to each other.

In summary, we suggest to use the approach of Figure 4.2 instead of the nested

simulation approach of Figure 4.1 to approximate the value of SCR via equation (4.4).

In this chapter, as mentioned earlier, our focus is on reducing the computational cost

of the MC simulations used to calculate the liability of large portfolios of VAs. Hence, to

focus on the problem of calculating the liabilities and to make the analysis more tractable,

we assume that the company has taken a passive approach (i.e., no hedging is involved)

and the only asset of the company is a pool of shareholders’ money M0 that is invested

in a money market account and hence accrues risk-free interest. We understand that this

is a very simple, and probably unrealistic, asset structure model; however, using a more

complex asset structure only makes the computation of asset values more time consuming

and diverts our attention from the key issue we are focusing on in this study, which is

how to improve the efficiency of the computation of the liability values. Moreover, note

that we can use the proposed framework to calculate the portfolio liability value of the

input portfolio independently of the evaluation of asset values. That is, a more complex

model for asset valuation can be inserted into our proposed framework without changing

our scheme for improving the efficiency of the computation of liability values.

Chapter 4. Application of Neural Network Framework in Estimation of SCR83

Generate N (p) sample paths P(i), 1 ≤ i ≤ N (p)

Sample/Generate N
(p)
s sample paths P(i)

s , 1 ≤ i ≤ N
(p)
s

Compute MVA
(i)
1 , 1 ≤ i ≤ N

(p)
s ,

of the input portfolio for each P(i)
s

using a mark-to-market approach

Compute MVL
(i)
1 , 1 ≤ i ≤ N

(p)
s ,

of the input portfolio for each P(i)
s

via the neural network approach

Compute AC
(i)
1 = MVA

(i)
1 −MVL

(i)
1 , 1 ≤ i ≤ N

(p)
s

Compute MVA0 of the input portfolio

using a mark-to-market approach

Compute MVL0 of the input portfolio

via the neural network approach

Compute AC0 = MVA0 −MVL0

Compute ∆
(i)
s = AC

(i)
1 − AC0, 1 ≤ i ≤ N

(p)
s

Interpolate ∆(i), 1 ≤ i ≤ N (p), for P(i) using the ∆
(i)
s , 1 ≤ i ≤ N

(p)
s , values

Sort the ∆(i), 1 ≤ i ≤ N (p), values in ascending order

Select the bN × 0.995 + 0.5c element as the approximation for SCR

Figure 4.2: Diagram of the proposed nested simulation approach.

The proposed simple structure of assets allows us to eliminate the assets in the defi-

nition of ∆ in (4.3) as follows.

Chapter 4. Application of Neural Network Framework in Estimation of SCR84

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {20, 21, . . . , 60}

Account Value [1e4, 5e5]

Guarantee Value [0.5e4, 6e5]

Widthrawal Rate {0.04, 0.05, 0.06, 0.07, 0.08}

Maturity {10, 11, . . . , 25}

Table 4.1: GMDB and GMWB attributes and their respective ranges of values.

∆ = AC0 −
AC1

1 + r

= (M0 −MVL0)− (
(M0(1 + r)−MVL1)

1 + r
)

= −MVL0 +
MVL1

1 + r
(4.5)

Hence, in our simplified problem, calculating the SCR reduces to the problem of calcu-

lating the current liability and the distribution of the liability in one-year’s time.

4.3 Numerical Experiments

In this section, we demonstrate the performance of the proposed neural network frame-

work in calculating portfolio liability values using the nested simulation approach of

Section 4.2. To do so, we estimate the SCR for a synthetic portfolio of 100, 000 VA con-

tracts assuming the financial structure of assets as described in Section 4.2 that allows

us to use equation (4.5).

Each contract in the portfolio is assigned attribute values uniformly at random from

the space defined in Table 4.1. The guarantee values (death benefit and withdrawal

Chapter 4. Application of Neural Network Framework in Estimation of SCR85

benefit) of GMWB riders are chosen to be equal3, but they are different than the account

value. The account values of the contracts follow a simple log-normal distribution model

[42] with a risk free rate of return of µ = 3%, and volatility of σ = 20%.

We acknowledge that this model of account value is very simple; we use it here to

make our computations more tractable. A more complex model increases the number

of MC simulations that is required to find liability values and affects the distribution

of one-year-time’s liability values. A more complex model of account values may also

necessitate the use of more complicated valuation techniques for which the computational

complexity is much more than simple MC simulations. However, regardless of the changes

imposed by using a more complex model to describe the dynamics of the account value,

the proposed nested simulation framework incorporating a neural network approach,

described in Sections 4.2 and 3.1, can be used to calculate the SCR. Therefore, to focus

on our neural network approach in this chapter, we have chosen to use a simple account

value model to avoid distracting the reader with a lengthy description of a more complex

account value model.

A change in the probability distribution of one-year-time’s liability values changes

the probability distribution of ∆(i), 1 ≤ i ≤ N (p), values. A change in the probability

distribution of ∆(i), 1 ≤ i ≤ N (p), values can increase the number of sample P(i)
s , 1 ≤ i ≤

N
(p)
s , paths and the interpolation scheme that should be used to calculate the ∆(i), 1 ≤

i ≤ N (p), values. As mentioned earlier, in this chapter, our focus is not on the choice of

the interpolation scheme and/or the size N
(p)
s , the number of sample paths that should be

used here. We leave these questions to future work. We can still repeat the experiments

of this section and arrive at the same conclusions even if we directly compute the ∆(i), 1 ≤

i ≤ N (p), values for the original N (p) paths P(i), 1 ≤ i ≤ N (p); however, the running times

will be much bigger.

We can increase the number of MC simulations or use more complex techniques to

3This is typical of the beginning of the withdrawal phase.

Chapter 4. Application of Neural Network Framework in Estimation of SCR86

value liability values. But both of these approaches only slightly increase the running

time of our proposed neural network approach to calculate liability values and hence only

slightly increase the running time of our proposed nested simulation approach of Section

4.2. However the aforementioned approaches significantly increase the running time of

the nested simulation approach of [4]. The nested simulation approach of [4] evaluates

the liability values for each VA in the input portfolio; however, our proposed neural

network framework only evaluates the liability values for the selected number of sample

VA contracts of the representative portfolio, the training portfolio, and the validation

portfolio and then does a spatial interpolation to find the liability values for the VAs in

the input portfolio. Increasing the time to calculate the per VA liability value linearly

increases the running time in the nested simulation approach of [4]. The size of the

representative portfolio, the training portfolio and the validation portfolio combined in

practice is much smaller than the size of the input portfolio. Therefore, increasing the

time to calculate per VA liability only affects the total running time of the neural network

to the extent that the calculation of liability values for the representative portfolio, the

training portfolio, and the validation portfolio can affect the training time which in most

of our experiments is not significant. Most of the computing time for the neural network

approach is consumed in training the network.

We use the framework of [32] to value each VA contract. As in the previous chapters,

we use 10, 000 MC simulations to value each contract. In our experiments, we use the

mortality rates of the 1996 IAM mortality tables provided by the Society of Actuaries.

We implement our experiments in Java and run them on a machine with dual quad-

core Intel X5355 CPUs. For each valuation of the input portfolio using the MC simu-

lations, we divide the input portfolio into 10 sub-portfolios, each with an equal number

of contracts, and run each sub-portfolio on one thread, i.e., a total of 10 threads, to

value these 10 sub-portfolios in parallel. We use a similar parallel processing approach

to value the representative contracts, the training portfolio and the validation portfolio.

Chapter 4. Application of Neural Network Framework in Estimation of SCR87

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {20, 30, 40, 50, 60}

Account Value {1e4, 1e5, 2e5, 3e5, 4e5, 5e5}

Guarantee Value {0.5e4, 1e5, 2e5, 3e5, 4e5, 5e5, 6e5}

Withdrawal Rate {0.04, 0.08}

Maturity {10, 15, 20, 25}

Table 4.2: Attribute values from which representative contracts are generated for exper-

iments.

Although we use the parallel processing capability of our machine for MC simulations,

we do not use parallel processing to implement our code for our proposed neural network

scheme: our neural network code is implemented to run sequentially on one core. How-

ever, there is significant potential for parallelism in our neural network approach, which

should enable it to run much faster. We plan to investigate this in future.

4.3.1 Network Setup

Although a sagacious sampling scheme can significantly improve the performance of the

network, for the sake of simplicity, we use a simple uniform sampling method similar to

that used in previous chapters. We postpone the discussion on the choice of a better

sampling method to the next chapter. We construct a portfolio of all combinations of

attribute values defined in Table 4.2. In each experiment, we randomly select 300 VA

contracts from the aforementioned portfolio as the set of representative contracts.

As discussed in Section 3.1, in addition to the set of representative contracts, we need

to introduce two more portfolios, the training portfolio and the validation portfolio, to

Chapter 4. Application of Neural Network Framework in Estimation of SCR88

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {23, 27, 33, 37, 43, 47, 53, 57}

Account Value {0.2e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5}

Guarantee Value {0.5e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5, 5.5e5}

Withdrawal Rate {0.05, 0.06, 0.07}

Maturity {12, 13, 17, 18, 22, 23}

Table 4.3: Attribute values from which training contracts are generated for experiments.

train our neural network. For each experiment, we randomly select 250 VA contracts

from the input portfolio as our validation portfolio. The training portfolio, in each

experiment, consists of 200 contracts that are selected uniformly at random from the set

of VA contracts of all combinations of attributes that are presented in Table 4.3. In order

to avoid unnecessary overfitting of the data, the attributes of Table 4.3 are chosen to be

different than the corresponding values in Table 4.2.

We train the network using a learning rate of 20, a batch size of 20 and we set µmax

to 0.99. Moreover, we fix the seed of the pseudo-random number generator that we use

to select mini batches to be zero. For a given set of the representative contracts, the

training portfolio, and the validation portfolio, fixing the seed allows us to reproduce the

trained network. We set the initial values of the weight and bias parameters to zero.

We estimate the liability of the training portfolio and the validation portfolio every

50 iterations and record the corresponding MSE values. We smooth the recorded MSE

values using a moving average with a window size of 10. Moreover, we fit a polynomial

of degree 6 to the smoothed MSE values and use a window size of length 4 to find the

trend in the MSE graphs. In the final stage of the training, we use a δ of 0.005 as our

threshold for maximum relative distance in estimation of the liabilities for the validation

Chapter 4. Application of Neural Network Framework in Estimation of SCR89

portfolio.

We use the rider type and the gender of the policyholder as the categorical features

in F c. The numeric features in F+ are defined as follows.

f(z, zi) =
[φ(x)− φ(xi)]

+

Rφ

(4.6)

In our experiments, φ can assume the values maturity, age, AV, GD, GW and with-

drawal rate, Rφ is the range of values that φ can assume, x and xi are vectors denoting

the numeric attributes of the input VA contract z and the representative contract zi,

respectively.

We define the features of F− in a similar fashion by swapping x and xi on the right

side of equation (4.6).

4.3.2 Performance

The experiments of this section are designed to allow us to compare the efficiency and

the accuracy of the proposed neural network approach to the nested simulations with

the nested MC simulation approach of [4]. In each experiment, we use N (p) = 40, 000

realizations of the market to estimate the empirical probability distribution of ∆. As we

describe in Section 4.2, the particular simple structure of assets that we use allows use to

use equation (4.5) to evaluate ∆. By design, the liability value of the VA products that we

are using in our experiments is dependent on their account values. As mentioned earlier,

the account values follow a log-normal distribution model. Hence, we can describe the

state of the financial market by the one-year’s time output of the stochastic process of the

model. Assuming a price ofA0 as the current account value of a VA, each realization of the

market corresponds to a coefficient C1, from the above-mentioned log-normal distribution,

that allows us to determine the account value in one year’s time as A1 = C1 × A0.

To come up with sample paths P(i)
s , we determine a range (interval) based on the

Chapter 4. Application of Neural Network Framework in Estimation of SCR90

maximum value and the minimum value of the generated 40, 000 C
(i)
1 , 1 ≤ i ≤ 40, 000,

coefficients that describe the state of the financial markets in one-year’s time and divide

that range into 99 equal length sub-intervals. We use the resulting 100 end points,

C
(i)
s1 , 1 ≤ i ≤ 100, as the sample paths P(i)

s , 1 ≤ i ≤ 100.

If one graphs the resulting ∆
(i)
s , 1 ≤ i ≤ 100, values as a function of the C

(i)
s1 , 1 ≤

i ≤ 100, values that describe the evolution of the financial markets, the resulting curve

is very smooth and the 100 points are very close to each other in the space. Because

of this, we chose to interpolate the value of ∆(i), 1 ≤ i ≤ 40, 000 for the aforementioned

40, 000 realizations of the financial markets (C
(i)
1 , 1 ≤ i ≤ 40, 000,) by a simple piecewise-

linear interpolation of the ∆
(i)
s , 1 ≤ i ≤ 100, values. As we discuss later, the choice of a

piecewise-linear interpolator might not be optimal. As noted earlier in Section 4.2, we

use it here as a first simple choice for an interpolation. We plan to study the choice of

possibly more effective interpolations later.

To estimate the liability values for each of the sample paths P(i)
s via the proposed

neural network framework, we first generate the representative portfolio, the training

portfolio, and the validation portfolio. We then train the network using the liability of

values at time 0 (current liability) of VAs in these portfolios. We use the trained network

to estimate the liability of the input portfolio at time 0.

As we mention in Section 4.2, if we train the network before estimating each liability,

the running time of the proposed neural network approach, because of the significant

time it takes to train the network, is no better than a parallel implementation of MC

simulations. To address this issue, we use the above-mentioned trained network for the

liability values of times 0 to estimate the one year liability of the input portfolio for each

end point, C
(i)
s1 , 1 ≤ i ≤ 100. However, before each estimation, we perform the last stage

of the training method to fine-tune the network. More specifically, we train the network

for a maximum of 200 iterations until the network estimated portfolio liability for the

validation portfolio is within δ = 0.01 relative distance of the MC estimated portfolio

Chapter 4. Application of Neural Network Framework in Estimation of SCR91

liability of the validation portfolio. If the fine-tuning of the network is unable to estimate

the liability of the validation portfolio within the defined δ relative distance, we define

a new network using the set of representative contracts, the training portfolio and the

validation portfolio and train the new network– i.e., we do the complete training. We

then use the new trained network in the subsequent liability estimation– i.e., we use the

new trained network to do the fine-tuning and portfolio liability estimation for subsequent

C
(i)
s1 values.

The idea behind the above-mentioned proposal to reduce the training time is that

if two market conditions are very similar, the liability values of the VAs in the input

portfolio under both market conditions should also be very close and hence the optimal

network parameters (weight parameters and bias parameters) for both markets are likely

very close to each other as well. If the optimal network parameters are indeed very

close, the fine-tuning stage allows us to reach the optimal network parameters for the

new market conditions without going through our computationally expensive training

stage that searches for the local minimum in the whole space. If the fine-tuning stage

fails, then we can conclude that the local minimum has changed significantly and hence

a re-training in the whole space is required.

To effectively exploit the closeness of market conditions to reduce the training time,

we have to sort C
(i)
s1 , 1 ≤ i ≤ 100, values and evaluate the portfolio liability values in

order. Otherwise, we might have a scenario in which consecutive values of C
(i)
s1 represent

market conditions that are not relatively close. Under such a scenario, the fine-tuning

stages will most likely fail requiring us to do a complete training of the neural network

for each C
(i)
s1 , 1 ≤ i ≤ 100. The above-mentioned proposal is not as straightforward for

more complex models in which the dynamics of financial markets is described with more

than one variable. The choice of an effective strategy to exploit the closeness of market

conditions to reduce the training time for more complex models of financial markets

requires further investigation and we leave it as a future work.

Chapter 4. Application of Neural Network Framework in Estimation of SCR92

We compare the performance of the interpolation schemes using 6 different realiza-

tions, Si, 1 ≤ i ≤ 6, of the representative contracts, the training portfolio, and the

validation portfolio. Table 4.4 lists the accuracy of our proposed scheme in estimating

MVL0, the 99.5%-quantile of MVL1 (MVL
(99.5)
1), which corresponds to the 99.5%-quantile

of the ∆, and the SCR value for each scenario. Accuracy is recorded as the relative error

Err =
XNN −XMC

|XMC |
(4.7)

where XMC is the value of interest (liability or the SCR) in the input portfolio computed

by MC simulations and XNN is the estimation of the corresponding value of interest

computed by the proposed neural network method.

The results of Table 4.4 provide strong evidence that our neural network method is

very accurate in its estimation of MVL0 and MVL
(99.5)
1 . The estimated liability values also

result in very accurate estimation of the SCR, except for scenarios S4 and S5. Even for

scenarios S4 and S5, the estimated SCR values are well within the desired accuracy range

required by insurance companies in practice. Our numerical experiments in Section 3.2

show that our proposed neural network framework has low sensitivity to the particular

realization of the representative contracts, and the training/validation portfolio once the

size of these portfolios are fixed. The results of Table 4.4 further corroborate our finding

in Chapter 3 as the realization of the representative contracts, and the training/validation

portfolio is different in each scenario.

The accuracy of the proposed method can be further examined by considering Figure

4.3 in which the estimated liability values, for the 100 end points of the intervals, by

the proposed neural network method are compared with their respective MC estima-

tions. The graphs of Figures 4.3b and 4.3c show that the liability estimated values by

the proposed neural network method are very close to those of the MC method, which

demonstrates the projection capabilities of the neural network framework. As we discuss

earlier, the smoothness of the MC liability curve, as shown in Figure 4.3, motivated us

Chapter 4. Application of Neural Network Framework in Estimation of SCR93

Value Of Interest
Relative Error (%)

S1 S2 S3 S4 S5 S6

SCR −0.85 0.69 −0.81 −3.58 3.02 1.52

MVL0 0.22 0.52 0.96 −0.36 −0.27 0.70

MVL
(99.5)
1 0.43 0.11 0.91 0.97 −1.20 −0.05

Table 4.4: Relative error in the estimation of the current liability value, one year liability

value, and the SCR for the input portfolio.

to use piecewise linear interpolation to estimate the value of the liability for points in-

side the sub-intervals. However, the estimation of this curve using the proposed neural

network framework does not result in as smooth a curve as we had hoped. Therefore, we

might be able to increase the accuracy of the proposed framework by using a non-linear

curve fitting technique. Notice that, because of the particular simple asset structure that

we use in this chapter the difference between the liability values in one year’s time and

the corresponding ∆ values is a constant.

As we mention in Section 4.2 and earlier in this section, in this chapter, we do not

address the issue of the choice of the interpolation scheme to estimate the ∆ values of

the P(i), 1 ≤ i ≤ 40, 000, paths. Because of that and to have a fair pointwise comparison

between the proposed neural network technique and the MC technique, we avoid using

different interpolation schemes to estimate liabilities for the P(i), 1 ≤ i ≤ 40, 000, paths.

Table 4.5 presents the statistics on the running time of the proposed neural network

approach for the nested simulation framework (denoted as NN in this table and elsewhere

in the chapter) and the nested MC simulation framework. The results suggest a speed-up

of 4−8 times, depending on the scenario, and an average speed-up of 6 times. Considering

that the implementation of the neural network was sequential and we compared the

running time of the neural network with the implementation of MC simulations that

uses parallel processing on 4 cores, we observe that even a simple implementation of the

Chapter 4. Application of Neural Network Framework in Estimation of SCR94

(a) Estimated one-year liability values computed by the neural network framework and the MC

method.

(b) Histogram of the difference at each end

point of sub-intervals in estimation of the li-

ability via the neural network approach and

the MC simulations.

(c) Histogram of the relative difference (4.7)

at each end point of sub-intervals in estima-

tion of liability via the neural network ap-

proach and the MC simulations.

Figure 4.3: Comparing estimation of one-year liability values of the input portfolio com-

puted by the proposed neural network framework and the MC method.

Chapter 4. Application of Neural Network Framework in Estimation of SCR95

Method
Running Time

Mean STD

MC 49334 0

NN 8370 2465

Table 4.5: simulation time of each method to estimate the SCR. All times are in seconds.

neural network can be highly efficient. As noted earlier, there is significant potential for

parallelism in our neural network approach as well. Exploiting this parallelism should

further improve the running time of the neural network. We plan to investigate this

in the future. In addition, notice that we used a moderate number of MC simulation

scenarios compared to the suggested values in [4]. As we mention earlier, an increase in

the number of MC scenarios will not increase the running time of our neural network

significantly, because we only need MC simulations for the representative contracts and

for the validation/training portfolio; however, it increases the running time of the MC

simulations significantly.

Chapter 5

Sampling Method

In our experiments so far in this thesis, for simplicity of analysis, we have only studied

uniformly distributed synthetic portfolios of VA contracts. However, insurance companies

often deal with VA portfolios that are non-uniformly distributed in the space in which

the portfolio is defined. As we discuss later in the chapter, our numerical experiments on

a non-uniform input portfolio shows that our proposed neural network framework, when

used with the uniform sampling of Chapter 3 to estimate the delta value of the portfolio,

is less accurate than when it is used to estimate the delta value of a uniform input

portfolio. Therefore, we need to change the sampling method to improve the accuracy of

our neural network approach.

In this chapter, we propose a non-uniform sampling method that provides samples

that have a probability distribution that is similar to that of the input portfolio. Our

experimental results show that the proposed sampling method, if used to create the

representative portfolio and the training portfolio, achieves better accuracy results –

lower mean and standard deviation of recorded relative errors.

96

Chapter 5. Sampling Method 97

5.1 Design of the Sampling Method

A non-uniform portfolio fills the space in which it is defined in a way that creates con-

centration of points in some parts of the space and sparse regions in other parts of the

space. A sample portfolio that has more representative policies in parts of the space that

is densely filled with VAs of the input portfolio allows us to have a finer resolution of risk

values in that part of the space and hence can potentially increase the accuracy of our

estimation. If we generate the sample portfolio according to the probability distribution

of the input portfolio (i.e., the distribution of the contracts in the input portfolio in the

space in which the input portfolio is defined), we can exploit this property to obtain

better accuracy.

To generate the sample portfolio according to the probability distribution of the in-

put portfolio, we need to approximate the true probability distribution of input portfolio

first. An accurate estimation of the true probability distribution should also consider the

statistical dependency of per attribute distributions. But such probability estimators are

complex and using them to estimate the probability distribution of the input portfolio

can significantly increase the running time of the spatial interpolation framework. Fur-

thermore, the ultimate goal of our spatial interpolation framework is not to accurately

estimate the true probability distribution of the input portfolio, but rather to estimate

accurately and efficiently the risk metrics associated with the portfolio. Therefore to

manage the computational complexity of the proposed neural network framework, in

what follows, we propose a sampling method that assumes statistical independence of

attributes that define the space in which the input portfolio is defined. Our numerical

results (refer to Section 5.2) show that even with correlated probability distributions of

the input portfolio, the proposed sampling method allows the proposed neural network

approach to provide fairly accurate estimations of the Greeks for large portfolios of VA

contracts.

The probability distribution for numerical attributes of VAs, such as account value

Chapter 5. Sampling Method 98

and guarantee value, are continuous variables. In practice, we need to discretize the

domain of these attributes to be able to find a probability distribution (an approxima-

tion of the true probability distribution) for them. The number of discretization points

determines the accuracy of the estimated probability distribution. It also determines the

cost of computing the probability distribution and taking samples from that probability

distribution. The computational cost and accuracy are both increasing functions of the

number of discretization points. Hence, we aim to find the right balance between accu-

racy and computational complexity when we choose the number of discretization points.

Similarly, for numeric attributes that have a discrete domain, we may choose a subset of

the points in the domain of these numeric attributes to reduce the computational com-

plexity while providing accurate estimations of the true probability distribution. To keep

our sampling method simple, we propose to divide the domain of numeric attributes into

sub-intervals of almost equal length and take the end points of these sub-intervals as our

discretization points that we use to generate the representative portfolio. As we discuss

in Chapter 3, to avoid over-fitting the data, the end points of the training portfolio and

the representative portfolio cannot be too similar. Therefore, we propose to divide each

of the above-mentioned sub-intervals into almost equal length sub-sub-intervals and take

only the end points of those sub-sub-intervals that are internal points of the sub-intervals

as our discretization points that we use to generate the training portfolio.

Let c1, c2, · · · , cn represent a set of end points defined for attribute A. Moreover,

assumem andM are, respectively, the minimum and the maximum values of the attribute

A in the input portfolio. For each i ∈ {1, 2, · · · , n}, we associate an interval [ai, bi] with

end point ci. For i > 1, we set ai = ci+ci−1

2
and we let a1 = min(c1,m). If i < n, we set

bi = ci+ci+1

2
and we let bn = max(cn,M). Now, we can use [ai, bi], 1 ≤ i ≤ n, to assign

empirical probability values to ci, 1 ≤ i ≤ n.

To increase the accuracy of the estimation, we estimate the probability distribution

of each attribute for each type of VA that exists in the input portfolio separately. For

Chapter 5. Sampling Method 99

example, if the input portfolio consists of GMWB and GMAB riders, we compute two

probability distributions, one for the VAs with the GMWB rider and one for VAs with

the GMAB riders. However, for attributes that are similar between the the two riders,

we use the same end points.

As noted at the beginning of this section, we are interested in measuring the spatial

distribution of VAs. In particular, we want to measure the density by which VAs fill

each part of the space. Therefore, for an attribute A, with end points ci, 1 ≤ i ≤ n, and

associated intervals [ai, bi], 1 ≤ i ≤ n, we compute the empirical probability distribution

of A for the VAs with rider r as follows:

p(ci) = F−1 × N
(r)
i

(bi − ai)
, 1 ≤ i ≤ n (5.1)

where N
(r)
i defines the number of VAs in the input portfolio with rider r for which the

value of attribute A is in [ai, bi] and F−1 is the normalization factor. The value
N

(r)
i

bi−ai

measures the spatial density of points in the interval [ai, bi] and hence p(ci), in essence,

approximates the probability density function of values in the interval [ai, bi]. For two

intervals [ai, bi] and [aj, bj] of different size (i.e., bi − ai 6= bj − aj), equation (5.1) allows

us to assign both intervals equal probabilities so long as the density of points in the

two intervals are equal– i.e.,
N

(r)
i

(bi−ai) =
N

(r)
j

(bj−aj)
. This is particularly important for the

end points c1 and cn for which the size of associated sub-intervals [a1, b1] and [an, bn]

might be smaller than the size of other sub-intervals. For example, for a uniformly

distributed input portfolio, we want the end points ci, 1 ≤ i ≤ n, to all have equal

chance of occurrence in the sample. In other words, we want p(ci) = p(cj), 1 ≤ i, j ≤ n.

Now assume for this input portfolio, we have chosen ci, 1 ≤ i ≤ n, values such that

a1 = c1 and bn = cn. Because there exists no values smaller than c1 = a1 or bigger

than cn = bn and the sub-intervals [ci, ci+1], 1 ≤ i ≤ n − 1, are of almost equal length,

the size of the intervals [a1, b1] and [an, bn] are half the size of the internal intervals

[ai, bi], 1 < i < n. Therefore, N
(r)
1 ≈ 1

2
N

(r)
i , 1 < i < n, N

(r)
n ≈ 1

2
N

(r)
i , 1 < i < n, and

Chapter 5. Sampling Method 100

N
(r)
i ≈ N

(r)
j , 1 < i, j < n. Thus, the bi− ai term in the denominator of (5.1) is necessary

to ensure that the p(ci), 1 ≤ i ≤ n, values are approximately equal and hence to provide

that the empirical probability distribution approximates the uniform distribution.

Calculating the probability distribution of categorical attributes is much easier. A

categorical attribute has a discrete probability distribution with typically a few categories

only. For the VAs considered in this thesis, the number of categories do not exceed

3. Hence, we can easily calculate the empirical probability distribution for all of the

categories. For an attribute A with categories c1, c2, · · · , cn, we compute the empirical

probabilities of VAs with rider r as

p(ci) =
N

(r)
i

Nr

, 1 ≤ i ≤ n (5.2)

where N
(r)
i is the number of VAs in the input portfolio with rider r for which the category

of attribute A is ci and Nr is the number of VAs in the input portfolio with rider r.

After computing the empirical probability distributions of attributes for a rider r

by (5.1) or (5.2), we can generate a sample VA portfolio with rider r by selecting the

attributes of the sample VAs independently of each other and according to the computed

probability distributions. One major problem with this method of generating samples is

that it is likely that we generate duplicate sample VAs, especially if the sample size is

big and/or the probability distribution of the attributes is very skewed. As we discuss

in Chapter 3, duplicate VAs can decrease the accuracy of the proposed neural network

by over emphasizing the influence that the value of duplicate sample VAs have on the

value of VA policies in the space. Therefore, if we generate a duplicate VA, we discard it

and generate another VA sample. Notice that, if we just discard a duplicate VA without

generating another, the size of the sample varies from one experiment to the next. As

we demonstrate in Section 3.2.6, the size of the sample portfolios affects the accuracy

and the running time of the neural network framework. Therefore, to minimize these

effects, we choose to replace the duplicate VAs with other sample VAs. In other words,

Chapter 5. Sampling Method 101

we generate sample VAs, discarding duplicates, until we have a sample portfolio with a

pre-defined size.

One major problem with discarding duplicate VAs and replacing them with other

sample VAs is that the realized probability distribution of the generated sample portfolio

may no longer be close to the computed empirical probability distribution. To alleviate

this problem in a simple manner, we suggest an iterative approach to generating the

sample portfolio. In each iteration, we generate a sample VA portfolio and count the

number of duplicate VAs that we discarded in the process. Among the generated sample

VA portfolios, we choose the one with the least number of duplicates. There might be

more than one sample VA portfolio with the least number of duplicate VAs. To break

the ties, we choose the sample with the minimum MSE of the relative error between

the computed empirical probability distribution for the input portfolio and the sample

VA portfolio. The aforementioned MSE measures the closeness of realized probability

distribution of the sample portfolio to the computed empirical probability distribution

of the input portfolio.

To compute the above-mentioned MSE value, we first calculate the per rider per at-

tribute empirical probability distribution of each sample VA portfolio. The calculation

is similar to the method described above for computing the empirical probability dis-

tribution of the input portfolio–i.e., values ai, bi and ci, 1 ≤ i ≤ n, defined above and

equations (5.1) and (5.2). We then compute the MSE of the relative error between the

computed empirical probability distribution for the input portfolio and the sample VA

portfolio as follows

MSE =

√√√√ 1∑
r∈R
∑

a∈Ar
na

∑
r∈R

∑
a∈Ar

na∑
i=1

(
PS(ci; a, r)− PI(ci; a, r)

PI(ci; a, r)

)2

(5.3)

where R is the set of riders in the input portfolio, Ar is the set of attributes for rider

r, na is the number of end points associated with attribute a, ci is the ith end point,

PI(·; r, a) is the empirical probability distribution of attribute a of rider r in the input

Chapter 5. Sampling Method 102

portfolio and PS(·; r, a) is the empirical probability distribution of attribute a of rider r

in the sample portfolio.

Once we know the size of the sample portfolio that we want to generate, we need to

decide the number of samples that we want to have for each rider. Intuitively, one might

generate samples from each VA rider according to the frequency of occurrence of that

rider in the input portfolio. For example, for the synthetic input portfolio of 100,000 VAs

that we use in Section 3.2, we should choose approximately 50% of the samples to have

the GMDB rider while the rest of the samples to have the GMDB + GMWB rider.

We used the neural network of Section 3.2 with the sampling method proposed in this

section to estimate the delta of the synthetic portfolio of 100,000 VAs described in Section

3.2. We use the proposed sampling method to generate the representative portfolio and

the training portfolio. In the generated sample portfolios, the number of VAs having the

GMDB rider is almost equal to the number of VAs having the GMDB + GMWB rider.

We used the same per attribute end points as we did in our experiments of Section 3.2

(see Tables 3.2 and 3.3).

A MC simulation approach is considered to provide accurate estimations of a key risk

metric if the standard deviation in outcomes of various runs of the MC simulations is

far less than 1% of the mean value of these outcomes. In pursuit of estimation methods

that are more efficient than an accurate MC simulation approach, insurance companies

consider only estimation methods for which the absolute value of the relative error com-

pared to the outcome of a run of the MC simulations is at most 5%. As we discuss in

Chapters 2 and 3, MC simulations with 10, 000 inner loop scenarios provide accurate

estimations of the portfolio delta value for the portfolio of VAs that we consider in this

set of experiments. Therefore, the neural network method of Section 3.2 is a good alter-

native to these MC simulations if each run of this method has an absolute relative error

of less than 5%.

We did 5 independent experiments each with a different set of the representative port-

Chapter 5. Sampling Method 103

folio, the training portfolio and the validation portfolio. The absolute value of the relative

error of estimating the delta for the input portfolio in most of the above-mentioned exper-

iments was bigger than 5%. In each run, the generated sample portfolios had a per rider

empirical distribution that was very close to uniform with fewer than 3 duplicate VAs in

their generation process. Hence, generating samples that are not uniformly distributed

in the space is not the cause of the poor accuracy.

Comparing the sampling method proposed in this section with the uniform sampling

method of Section 3.2 sheds light on an important issue. Comparing the attributes that

we use to characterize the VAs of the synthetic input portfolio of Section 3.2, we see that

the two groups of VAs in the input portfolio differ in only one attribute, the withdrawal

rate. The VAs with the GMDB rider do not need a withdrawal rate. However, the

VAs with the GMDB + GMWB rider need a withdrawal rate. Consequently, the space

in which the VAs with GMDB + GMWB riders are defined has an extra dimension

compared to the space in which the GMDB riders are defined. Hence, intuitively, we

need more samples of VAs with GMDB + GMWB riders, compared to VAs with GMDB

riders, to provide the information required for the added dimension. In fact, this is what

the uniform sampling method of Section 3.2 does. The uniform sampling method for each

of the representative portfolio and the training portfolio first creates a portfolio consisting

of all the combinations of end points in Tables 3.2 and 3.3 respectively. In those sample

portfolios, because of the number of withdrawal rates that are used as end points, the

number of VAs with GMDB + GMWB riders are twice and thrice, respectively, the

number of VAs with GMDB riders. GMDB riders, in this comparison, can be considered

as having a withdrawal rate of zero. The uniform sampling method then eliminates VAs

uniformly at random from the sample portfolios. Because the elimination is uniformly at

random, the number of eliminated sample VAs from each rider is almost proportional to

the number of VAs that was originally created for that rider. Hence, after the elimination,

the number of VAs with GMDB + GMWB riders are still almost twice/thrice of the

Chapter 5. Sampling Method 104

number of VAs with GMDB riders.

This observation suggests that we should measure the importance of each attribute

for each rider by the number of points that we need for that attribute to accurately

estimate the risk metric of interest. In other words, the number of VAs for rider r should

be proportional to Ir =
∏

a∈Ar
n

(r)
a , where Ar is the set of attributes that characterizes

rider r and n
(r)
a is the number of end points defined for attribute a of rider r. The product

Ir determines the number of vertices on the grid in the space of rider r that is necessary

for accurate estimation of the risk metric of interest for rider r.

A grid with Ir vertices is necessary only if the VAs in the input portfolio sufficiently fill

the space of rider r. In other words, the space of rider r is not sparsely filled. Even then,

the accuracy in estimation of the risk metric of interest for VAs with rider r can affect

the overall (portfolio level) accuracy of our estimation to the extent that VAs with rider

r are present in the input portfolio. If VAs with rider r make up only a small fraction of

the input portfolio and/or rider r does not significantly affect the risk metric of interest,

we may not benefit from a highly accurate estimation of rider r when computing the risk

metric of interest. In our neural network framework, the sampling happens before we

begin estimating the values. Therefore, we are not able to quantify the significance of

each rider on the risk metric of interest to do the sampling. However, we can quantify the

percentage by which each rider fills the input portfolio. Therefore, we propose to choose

the number of VAs with a particular rider r in the sample portfolio to be proportional

to the number of VAs with that rider in the input portfolio (Nr).

Based on the discussion above, the number of VAs in the sample portfolio should be

proportional to both Ir and Nr. Therefore, we propose to split the VAs of the sample

portfolio amongst different riders according to the following distribution

fr =
Nr ×

∏
a∈Ar

n
(r)
a∑

r′∈R

(
Nr′ ×

∏
a∈Ar′

n
(r)
a

) (5.4)

where R is the set of riders in the input portfolio, Nr is the number of VAs in the input

Chapter 5. Sampling Method 105

portfolio with rider r, Ar is the set of attributes that characterizes rider r, n
(r)
a is the

number of end points defined for attribute a and fr is the fraction of samples that should

be dedicated to rider r. The denominator of equation (5.4) is for normalization.

We regard the fr in equation (5.4) as elements of a probability distribution. In

other words, in the proposed sampling method, we, first, assign each sample VA a rider

according to the probability distribution associated with (5.4) and then proceed to find

the attributes of the sample VA according to equations (5.1) and (5.2). To summarize,

the sampling method works as follows.

Chapter 5. Sampling Method 106

Algorithm 1 Proposed Sampling Method

Input: Input portfolio, Size of the sample portfolio (ns), and maximum number of iter-

ations (itermax)

1: Select end points of sub-intervals for each attribute of each rider

2: Compute the empirical probability dist. of numerical attributes by (5.1)

3: Compute the empirical probability dist. of categorical attributes by (5.2)

4: Compute the probability dist. of riders by (5.4)

5: best-sample← generate a sample of size ns according to the distributions associated

with (5.4), (5.1), and (5.2)

6: best-dup ← number of duplicates generated in creating the sample

7: best-mse ← compute the mse of the generated sample by (5.3)

8: for i = 1 to itermax − 1 do

9: sample ← generate a sample of size ns according to the distributions associated

with (5.4), (5.1), and (5.2)

10: dup ← number of duplicates generated in creating the sample

11: mse ← compute the mse of the generated sample by (5.3)

12: if (dup < best-dup) then

13: best-sample ← sample

14: best-dup ← dup

15: best-mse ← mse

16: else if (dup = best-dup AND mse < best-mse) then

17: best-sample ← sample

18: best-dup ← dup

19: best-mse ← mse

20: end if

21: end for

22: return best-sample

Chapter 5. Sampling Method 107

In the next section, we demonstrate the accuracy and time efficiency of Algorithm 1.

5.2 Numerical Experiments

In this section, we investigate the performance of the proposed sampling method by

using it in the neural network framework described in Chapter 3 to find the delta value

of synthetic portfolios of VAs. We use the sampling method proposed in the previous

section to find the representative portfolio and the training portfolio in each experiment.

As in Section 3.2, the validation portfolio consists of 250 VA contracts chosen uniformly

at random from the input portfolio. Our experiments, implemented in Java, are run on

a machine with dual quad-core Intel X5355 CPUs.

5.2.1 Uniform Input Portfolio

In the first set of experiments, we use the proposed sampling method to find the delta

value of the synthetic portfolio of 100,000 VAs that we describe and use in Section 3.2.

We already know that, when the proposed neural network framework uses the uniform

sampling method of Chapter 3, it can provide accurate results. Hence, these experiments

test if the proposed neural network remains accurate when using the sampling method

proposed in this chapter.

As we mention earlier, the sampling method proposed in this chapter assumes sta-

tistical independence of attributes that define the space in which the input portfolio is

defined. Therefore, this sampling method should work best with input portfolios for

which the per attribute marginal distributions are independent. To measure the statisti-

cal dependence between these marginal distributions, we choose to use their correlation

coefficient and their Randomized Dependence Coefficient (RDC) [48]. The RDC is a

measure, defined in [0, 1], of non-linear dependence between random variables that is

Chapter 5. Sampling Method 108

easy to implement and has low computational cost1. Furthermore, it is invariant with

respect to monotonically increasing transformations of the marginal distributions and

estimates Hirschfeld-Gebelein-Renyis Maximum Correlation Coefficient, which is a mea-

sure that satisfies all the fundamental properties of a measure of dependence described

by Renyi [60]. Compared to commonly used and theoretically known measures such as

Person’s rho, Spearman’s Rank or Kendall’s tau, which only consider association pat-

terns like linear or monotonically increasing functions, RDC considers a broader class of

non-linear dependencies [48].

Tables 5.1 and 5.2 contain, respectively, the pairwise correlation coefficient and RDC

of attributes for the input portfolio. Except for the entries corresponding to the value of

the correlation coefficient and the RDC for the rider and the withdrawal rate attributes,

all the other entries in Table 5.2 are very small, which suggests that the attributes of

the input portfolio are statistically independent. The correlation coefficient and the

RDC value corresponding to the rider and withdrawal rate attributes is big only because

we have chosen the withdrawal rate to be zero for GMDB riders. Therefore, it is fair

to assume that the attributes of the input portfolio are statistically independent and

hence expect the proposed neural network framework when using the proposed sampling

method to provide accurate estimations.

The setup of the neural network is similar to Section 3.2. The choice of the end points

of each attribute for the representative portfolio and the training portfolio is defined in

Tables 3.2 and 3.3, respectively. Notice that in both tables the choice of the end points

determines a set of almost equal length sub-intervals for each attribute. Moreover, the

attributes for both types of riders are the same except for the withdrawal rate2. In

other words, the only difference between the attributes of the two riders is that the

1The implementation of RDC requires an appropriate choice of free parameters k, which determines
the number of non-linear transformations, and s, which determines the randomness of linear projections
[48]. In our experiments, following the guidelines of [48], we use k = 10 and s = 1/10, which provides
reliable and stable results.

2The GMDB riders are assumed to have a withdrawal rate of zero.

Chapter 5. Sampling Method 109

Attributes Corr. Coef. Attributes Corr. Coef. Attributes Corr. Coef.

(Rider, Gender) 0.0011 (Rider, Age) -0.0017 (Rider, AV) 0.0000

(Rider, GV) 0.0012 (Rider, WR) 0.9492 (Rider, Mat) 0.0011

(Gender, Age) 0.0044 (Gender, AV) -0.0027 (Gender, GV) 0.0014

(Gender, WR) -0.0002 (Gender, Mat) 0.0064 (Age, AV) 0.0005

(Age, GV) -0.0015 (Age, WR) -0.0011 (Age, Mat) -0.0013

(AV, GV) 0.0027 (AV, WR) -0.0013 (AV, Mat) 0.0009

(GV, WR) 0.0013 (GV, Mat) 0.0013 (WR, Mat) 0.0019

Table 5.1: Correlation coefficient between pairs of attributes in the synthetic uniform

input portfolio defined in Section 3.2.

GMDB+GMWB rider has the withdrawal rate as an extra attribute. This choice of

attributes affects equation (5.4), which simplifies to

fr =
Nr × n(r)

wr

NGMDB × n(GMDB)
wr +NGMWB+GMDB × n(GMDB+GMWB)

wr

(5.5)

where r ∈ {GMDB, GMDB+GMWB}, n(GMDB)
wr = 1 and for the representative portfolio

n
(GMDB+GMWB)
wr = 2 (refer to Table 3.2) and for the training portfolio n

(GMDB+GMWB)
wr = 3

(refer to Table 3.3). We use a maximum number of iterations of 20, 000 in Algorithm 1

to generate both the representative portfolio and the training portfolio.

We record the relative error of the estimated delta values using equation (3.19) as

the measure of accuracy of our framework. In Table 5.3, the performance of the neural

network framework when employed with uniform sampling of Chapter 3 is compared to

the performance of the neural network framework when used with the sampling method

proposed in Section 5.1. To be fair in our comparisons, the data in Table 5.3 for the

proposed sampling method was gathered from 6 independent experiments in a manner

similar to that used to gather the data for the uniform sampling method. The data in

Chapter 5. Sampling Method 110

Attributes RDC Attributes RDC Attributes RDC

(Rider, Gender) 0.0011 (Rider, Age) 0.0073 (Rider, AV) 0.0041

(Rider, GV) 0.0067 (Rider, WR) 1.0000 (Rider, Mat) 0.0072

(Gender, Age) 0.0083 (Gender, AV) 0.0079 (Gender, GV) 0.0037

(Gender, WR) 0.0075 (Gender, Mat) 0.0083 (Age, AV) 0.0123

(Age, GV) 0.0100 (Age, WR) 0.0156 (Age, Mat) 0.0103

(AV, GV) 0.0149 (AV, WR) 0.0072 (AV, Mat) 0.0124

(GV, WR) 0.0096 (GV, Mat) 0.0094 (WR, Mat) 0.0098

Table 5.2: Randomized dependence coefficient (RDC) with k = 10 and s = 1/10 pairs of

attributes in the synthetic uniform input portfolio defined in Section 3.2.

Sampling Method
Relative Error (%) Running Time

Mean STD Mean STD

Uniform Sampling 0.38 1.35 539 120

Proposed Sampling −0.50 1.88 622 113

Table 5.3: Statistics on the running time and accuracy of the neural network framework

when used with the uniform sampling method of Chapter 3 and the sampling method

proposed in Section 5.1 to estimate the delta value of a uniformly distributed input

portfolio. The recorded errors are relative errors as defined in (3.19). All times are in

seconds.

Table 5.3 shows that the neural network framework with the proposed sampling method

is accurate – low mean and standard deviation. However, the standard deviation is larger

than for the uniform sampling method. The number of iterations are large enough that,

in almost all of the experiments, we can find sample portfolios for which the number

of generated duplicate VAs is zero. Therefore, the increase in the standard deviation

of the relative error is not caused by the generation of duplicate VAs. However, our

Chapter 5. Sampling Method 111

proposed sampling method, unlike the uniform sampling method, has to estimate the

empirical probability distribution of the input portfolio. Thus, one possible explanation

for the increase in the standard deviation is that the error in estimation of the empirical

probability distribution results in generation of sample portfolios that do not uniformly

and effectively fill the space in which the input portfolio is defined, resulting in poorer

estimations. In Section 5.2.3, we provide more evidence that supports this conjecture.

Because of the extra overhead in computing the empirical probability distribution and

more importantly the iterative process involved in generation of the sample portfolios,

the sampling method proposed in Section 5.1 has a larger running time than the uniform

sampling method of Section 3.2.

5.2.2 Non-Uniform Input Portfolio With Low Correlation

Proposing a sampling method that is more complicated than the uniform sampling

method of Section 3.2 only makes sense if it provides a better performance on non-

uniform input portfolios. To demonstrate the need for a sampling method that is more

sophisticated than the uniform sampling method, in the following experiments, we use

the neural network framework of Chapter 3 to estimate the delta value of synthetic port-

folios of 100,000 VAs that are non-uniformly distributed in the space. To investigate only

the effect of the non-uniformity of the distribution, we first use an input portfolio of VAs

that is non-uniformly distributed, but the attributes of VA contracts in this portfolio are

statistically independent. Because the attributes used to describe the input portfolio of

this section and the one used in experiments of Section 5.2.1 are similar and are statis-

tically independent, we can compare the performance results of the experiments of this

Section with the performance results of Section 5.2.1 to gain a sense of the effect that

the non-uniformity of the distribution has. In Section 5.2.4, we consider a non-uniformly

distributed input portfolio that has statistically dependent attributes. This allows us

to gain a sense of the effect that statistical dependency has on the performance of the

Chapter 5. Sampling Method 112

Attribute Distribution

Guarantee Type 30% GMDB and 70% GMDB + GMWB

Gender 40% Male and 60% Female

Age Normal Distribution with Mean 40 and Standard Deviation 7

Account Value Uniformly at Random From [1e4, 5e5]

Guarantee Value Uniformly at Random From [0.5e4, 6e5]

Withdrawal Rate Uniformly at Random From {0.04, 0.05, 0.06, 0.07, 0.08}

Maturity Normal Distribution with Mean 17 and Standard Deviation 3

Table 5.4: Distribution of attributes in the input portfolio.

proposed sampling method.

In this experiment, the input portfolio is non-uniformly distributed in the space de-

fined by the attributes of Table 3.1. Table 5.4 describes the distribution of each attribute

in the space. In Table 5.4, although the age and the maturity values are referred to

as normally distributed, they are integer values rounded from a set of real values with

the corresponding normal distribution and restricted to the intervals [20, 60] and [10, 25],

respectively.

The data in Tables 5.5 and 5.6 show, respectively, the correlation coefficient and the

RDC value for each pair of attributes. Similar to the data in Tables 5.1 and 5.2, the

entries in these tables are small enough, except for the correlation coefficient/RDC value

of rider and withdrawal rate, that we can assume the attributes of the input portfolio are

statistically independent. The correlation coefficient/RDC value corresponding to the

rider and withdrawal rate attributes is big because we choose to assign a value of zero

to withdrawal rate of VA accounts with the GMDB rider. Although, the percentage of

VA accounts in the input portfolio with GMDB rider is smaller than that of the input

portfolio of Section 5.2.1, the percentage of GMDB riders is still significant enough to

cause the correlation coefficient to be big and the RDC score to be one.

Chapter 5. Sampling Method 113

Attributes Corr. Coef. Attributes Corr. Coef. Attributes Corr. Coef.

(Rider, Gender) 0.0017 (Rider, Age) 0.0005 (Rider, AV) -0.0026

(Rider, GV) 0.0017 (Rider, WR) 0.9184 (Rider, Mat) -0.0036

(Gender, Age) 0.0060 (Gender, AV) -0.0037 (Gender, GV) -0.0032

(Gender, WR) 0.0017 (Gender, Mat) -0.0024 (Age, AV) 0.0024

(Age, GV) 0.0005 (Age, WR) 0.0002 (Age, Mat) 0.0002

(AV, GV) -0.0015 (AV, WR) 0.0005 (AV, Mat) -0.0036

(GV, WR) 0.0005 (GV, Mat) 0.0016 (WR, Mat) -0.0046

Table 5.5: Correlation coefficient between pair of attributes in the synthetic non-uniform

input portfolio defined in the space of Table 5.4.

Attributes RDC Attributes RDC Attributes RDC

(Rider, Gender) 0.0017 (Rider, Age) 0.0075 (Rider, AV) 0.0079

(Rider, GV) 0.0067 (Rider, WR) 1.0000 (Rider, Mat) 0.0046

(Gender, Age) 0.0086 (Gender, AV) 0.0085 (Gender, GV) 0.0043

(Gender, WR) 0.0030 (Gender, Mat) 0.0076 (Age, AV) 0.0097

(Age, GV) 0.0125 (Age, WR) 0.0107 (Age, Mat) 0.0116

(AV, GV) 0.0134 (AV, WR) 0.0136 (AV, Mat) 0.0105

(GV, WR) 0.0114 (GV, Mat) 0.0112 (WR, Mat) 0.0122

Table 5.6: Randomized dependence coefficient (RDC) with k = 10 and s = 1/10 pair of

attributes in the synthetic non-uniform input portfolio defined in the space of Table 5.4.

The parameters of the neural network are similar to those used in Section 3.2. How-

ever, we choose a degree 4 polynomial to fit the smoothed MSE values when using

the sampling method proposed in Section 5.1. The proposed sampling method (i.e.,

Algorithm 1) uses 40,000 iterations to provide the representative contracts and 20,000

iterations to provide the training portfolio. Table 5.7 lists the performance statistics

Chapter 5. Sampling Method 114

Sampling Method
Relative Error (%) Running Time

Mean STD Mean STD

Uniform Sampling −1.21 2.24 623 230

Proposed Sampling −0.84 1.46 655 213

Table 5.7: Statistics on the running time and accuracy of the neural network framework

when used with the uniform sampling method and the sampling method proposed in

Section 5.1 to estimate the delta value of a non-uniformly distributed input portfolio.

The recorded errors are relative errors as defined in (3.19). All times are in seconds.

for the neural network framework of Chapter 3 using the uniform sampling method and

the sampling method proposed in Section 5.1 to estimate the delta value of the input

portfolio. The statistics are derived from 6 independent runs. In each run a new set of

representative portfolio, training portfolio, and validation portfolio is used.

The mean and standard deviation of the relative error for the uniform sampling

method in Table 5.7 is significantly larger than for the uniform input portfolio in the

previous section. In other words, the accuracy has decreased significantly. In particular,

the high standard deviation value implies that the method is less stable and hence less

reliable for the non-uniform portfolio of this section than for the uniform portfolio of

the previous section. The statistics for the sampling method proposed in Section 5.1 are

much better than the corresponding statistics for the uniform sampling method. This

supports our belief that the proposed sampling method is more accurate than the uniform

sampling method when applied to non-uniform portfolios.

Another interesting observation is that the running times of the neural network frame-

work under both sampling methods are almost equal. One interpretation of this obser-

vation is that the bad samples provided by the uniform sampling method has increased

the running time of the method. We substantiate this explanation in the next section.

In generation of the representative portfolios for the non-uniform input portfolio of

Chapter 5. Sampling Method 115

this section, our sampling method proposed in Section 5.1 on average generates 9 du-

plicate VA samples. Considering that we have doubled the number of iterations from

20, 000 to 40, 000 iterations, compared to the experiments of the previous section, we can

see that increasing the number of iterations any further is not an effective way to reduce

the number of duplicate VA samples in hope of achieving better accuracy. Therefore, we

should accept that having duplicates cannot be avoided and look for other strategies to

improve the accuracy of the proposed sampling method. It is worth mentioning that, in

our experiments, we were always able to generate the training portfolio from a sample

portfolio for which no duplicate VA samples were generated.

5.2.3 Sobol Sequence

We note in Sections 3.1.4 and 5.1 that a good sample for the proposed neural network

framework should avoid duplicates and should consist of well-spaced sample VAs. Be-

cause of that, in our proposed sampling method, we discard duplicates knowing that

discarding the duplicates might create a sample with an empirical distribution that may

not be similar to the empirical distribution of the input portfolio.

Java, like most programming languages, has a default random number generator that

uses a linear congruential formula to generate random numbers [1]. Linear congruential

random number generators do not have low discrepancy3. In other words, the sequence of

numbers generated by these pseudo-random number generator does not uniformly fill the

space. Hence, it is highly likely that they create duplicate values if used in the sampling

method proposed in Section 5.1 to generate the attributes of sample VAs.

Several quasi-random number generators are proposed in literature [10] to generate

low-discrepancy sequences. One of the simplest to implement and most commonly used

is Sobol’s quasi-random number generator [64]. In the next set of experiments, we use

3Discrepancy is a measure of good spacing. The discrepancy of a sequence is low if the numbers of
values in the sequence that fall into an arbitrary set A is almost proportional to the measure of A.

Chapter 5. Sampling Method 116

Sampling Method
Relative Error (%) Running Time

Mean STD Mean STD

Proposed Sampling With Sobol Rand −0.49 1.11 556 64

Table 5.8: Statistics on the running time and accuracy of the neural network framework

when used with the sampling method proposed in Section 5.1 and the Sobol quasi-

random number generator to estimate the delta value of a non-uniformly distributed

input portfolio. The recorded errors are relative errors as defined in (3.19). All times are

in seconds.

an efficient implementation of Sobol’s quasi-random number generator [10] within the

sampling method proposed in Section 5.1 to create attributes of our VAs. Our hope is

that by using Sobol sequences, we can generate VAs that are well-spaced and have fewer

duplicates.

A Sobol quasi-random number generator requires a set of direction numbers to gener-

ate random outputs. In our implementation, we use the set of direction numbers proposed

in [44]. These direction numbers create random outputs that are not only well-spaced in

the high-dimensional space in which they are generated, but also their projections into

a lower-dimensional space are also well-spaced.

Table 5.8 contains the performance statistics of our proposed sampling method incor-

porating a Sobol random number generator to find the attributes of each VA. The neural

network that we use for these experiments has the same set of parameters as the neural

network for our last set of experiments with the proposed sampling method in Section

5.2.2. Moreover, the recorded statistics in Table 5.8 are the result of 6 independent runs

for the method. Comparing the results of Tables 5.8 and 5.7, we can conclude that the

proposed sampling method incorporating a Sobol quasi-random number generator pro-

vides more accurate estimations – i.e., the mean and standard deviation of the relative

error is lower. Our proposed sampling method, even with incorporation of the Sobol

Chapter 5. Sampling Method 117

quasi-random number generator, on average generates 9 and 0 duplicate sample VAs in

generation of the representative portfolio and the training portfolio, respectively. These

numbers of duplicate VAs are similar to the ones that we documented in the previous

section. However, with incorporation of the Sobol quasi-random number generator, the

MSE scores of the generated sample portfolios for the representative portfolio and the

training portfolios on average are reduced to 0.2243 and 0.2548, respectively, from the av-

erage MSE scores of 0.2556 and 0.2872 when Java’s default congruential random number

generator was used. The decrease in the MSE score shows that the portfolios generated

by the incorporation of the Sobol quasi-random number generator have probability dis-

tributions that are closer to the estimated empirical probability distribution of the input

portfolio and hence have more effectively filled the space of the input portfolio.

Another interesting point about the results of Table 5.8 is that, with incorporation

of the Sobol quasi-random number generator, the running time has also decreased quite

significantly compared to the running time in Table 5.7, which can be attributed to better

choices of the representative portfolio and the training portfolio. These results provide

further evidence supporting our claims in Sections 5.2.2 and 3.1.4 that good samples can

reduce the training time.

5.2.4 Non-Uniform Input Portfolio With High Correlation

In previous experiments in this thesis, we consider only input portfolios that are defined

by attributes that are statistically independent. The proposed sampling method also

assumes statistical independence of attributes that define the input portfolio. However,

in practice, we expect some degree of dependence to exist between attributes that define

an input portfolio. Therefore, in this set of experiments, we use an input portfolio which

is defined by attributes that have some degree of statistical dependence.

To determine statistical dependencies that are realistic, we use the data of two recent

surveys [65,69] on portfolios of VA contracts to design the synthetic input portfolio. Both

Chapter 5. Sampling Method 118

of these surveys contain information from major insurance companies. We need to select

the input portfolio on VA contracts with GMDB and GMDB + GMWB riders so that

we can have a meaningful study of statistical dependency by comparing the results of the

experiments of this section with the results of previous experiments. Thus, we choose

the input portfolio to contain only GMDB and GMDB + GMWB riders.

In all the surveys that we studied, i.e., [43,65,68,69], we were unable to find statistics

that help us decide what percentage of the input portfolio we should allocate to each

type of VA products that we are interested in. Furthermore, in the data from surveys,

there exists no evidence of statistical dependence between the rider of the contracts and

other attributes that define these contracts. Therefore, as in Section 5.2.2, we choose to

define the input portfolio such that 30% of the contracts have a GMDB rider and 70%

of the contracts have a GMDB + GMWB rider, independently of how the attributes of

these contracts are defined.

The GMDB rider was a popular VA contract in the 90s. However, in recent years, it

has become an option that is offered along with other riders, e.g., GMWB [68]. Therefore

in recent surveys, there exist no meaningful statistics on these contracts. On the other

hand, the GMWB rider is studied in detail in recent surveys [65,69]. Therefore, we choose

the attributes of the contracts in the input portfolio, irrespective of the type of the VA

contracts, according to the statistics reported for GMWB riders in these survyes.

The study of gender (male/female) distribution for GMWB contracts in [69] shows

that males constitute at most 58% (in 1982) and at least 42% (in 2009) of the policyhold-

ers. In the most recent survey in 2013, 51% of the policyholders were male and 49% were

female. Furthermore, the study doesn’t provide any statistics that show dependence be-

tween gender and other attributes of the contracts. Therefore, we choose to assign 51% of

the contracts to males and 49% to females, independent of the choice of other attributes.

Figure 2-17 in [65] provides a graph of age distribution for GMWB contracts that

are in force by the end of 2011. The age of policyholders in the graph ranges from 50

Chapter 5. Sampling Method 119

Figure 5.1: Approximate age distribution of Figure 2-17 in [65] and its approximation by

part of a rescaled beta-binomial distribution.

years to 84 years. The graph is left skewed and has a fat right tail. The information

of Figure 2-17 in [65] is consistent with the age statistics reported in [69] and provides

more detailed statistics of age. Thus, we choose to work with the data of Figure 2-17

in [65]. Using a suitable choice of β and α parameters, a beta-binomial distribution can

satisfy these properties. We choose to approximate the graph of Figure 2-17 in [65] by

part of a beta-binomial distribution with α = 45, β = 95 and n = 150 that is re-scaled

to be a probability distribution (black curve in Figure 5.1). The data of [65] indicates

that the age of the policyholder can partially explain the amount of the account value.

Furthermore, it suggests that there are statistical dependencies between the guarantee

value and the account value. However, it provides no significant information that suggests

the existence of a statistical dependency between the age of the policyholder and other

attributes of the account. In order to best model these dependencies, we assume that

policyholders of the VA accounts in the input portfolio have an age distribution that is

drawn from the aforementioned approximate distribution of age by part of the rescaled

beta-binomial distribution, independently of other attributes.

Given the aforementioned age distribution, we choose the account values between

Chapter 5. Sampling Method 120

$5,000 to $330,000 according to the following age specific distribution. For people

who are less than 54 years old, we choose the account values uniformly at random in

[5,000, 100,000] with a probability of 0.59 and we choose the account values uniformly

at random in (100,000, 330,000] with a probability of 0.41. For people whose age is in

the range [54, 71], we choose the account values uniformly at random in [5,000, 100,000]

with a probability of 0.35 and we choose the account values uniformly at random in

(100,000, 330,000] with a probability of 0.65. For people who are older than 71 years old,

we choose the account values uniformly at random in [5,000, 100,000] with a probability

of 0.47 and we choose the account values uniformly at random in (100,000, 330,000] with

a probability of 0.53. These distributions of account values allow us to exactly replicate

the age specific statistics that are documented in [65] and fairly accurately estimate the

age agnostic statistics that are documented on account values.

The data in [65] indicates that 57% of GMWB contracts have guaranteed values that

exceed the account value. Furthermore, the average of account values is 95% of the

average of guarantee values. In order to create a skewed distribution that conforms to

these statistics, we choose to model the guarantee values for each account as follows.

GV = AV + ε

where ε has a normal distribution with mean µ = AV×5
95

and standard deviation σ =

−µ
Φ−1(0.43)

u 5.6698µ. 4 These choices of parameters are required so that, for each contract,

the guarantee value is greater than the account value with a probability of 57% and

AV
E[GV]

= 0.95. There exists a possibility that for some contracts with small AV values,

the realized value of GV is less than zero. For these contracts, we set the value of GV to

$10 so that we can keep the contract in force. This modification affected only 19 of the

contracts in the input portfolio of these experiments, which is insignificant compared to

the size of the input portfolio. This model creates more dependency than the data of [65]

4Φ(·) is the CDF of normal distribution.

Chapter 5. Sampling Method 121

indicates, but we choose to work with it so that we can stress test, to some extent, the

proposed sampling method. As in our previous experiments, for GMWB contracts, we

set the value of the guaranteed death benefit to be equal to the value of the guaranteed

withdrawal benefit.

The survey of [65] provides more insights into the withdrawal rates offered by the

insurance companies. According to the data in [65], participant insurance companies,

which includes major insurance companies, do not offer a wide selection of withdrawal

rates to their costumers. The majority of contracts issued by these companies have a

withdrawal rate of 7%. These companies also offer withdrawal rates of 5% and 10%. Some

of these companies also offer a withdrawal rate of 6%; however, the sale of these contracts

was statistically insignificant (≤ 1%) and hence we choose to ignore them. The sale of

contracts with withdrawal rate of 5% was common in 2005-2008. However, in recent years

(after 2010) contracts with 10% withdrawal rate are common. The data of survey [65]

does not show the existence of any statistical dependence between the withdrawal rate

and other attributes. Moreover even if there exists a statistical dependence, it should be

a weak dependence, as the majority of contracts have a withdrawal rate of 7%. Therefore

to incorporate all these statistics in our input portfolio, we choose to assign withdrawal

rates to contracts with a GMWB+GMDB rider independently at random and according

to the following distribution: withdrawal rate of 5%, 7%, and 10% are assigned with

respective probabilities of 0.16714, 0.73714, and 0.09572. These probabilities represent

the average share of sales over 2005-2011.

We were not able to find any statistics on the maturity time of annuity contracts.

Therefore, to have a fair comparison between the results of this section and the previous

section, we choose to assign maturity times independent of other attributes and uniformly

at random as integers in the range [10, 25].

Tables 5.9 and 5.10 contain the correlation coefficients and RDC values for each pair of

attributes in the input portfolio that we use in this set of experiments. Given the above-

Chapter 5. Sampling Method 122

Attributes Corr. Coef. Attributes Corr. Coef. Attributes Corr. Coef.

(Rider, Gender) 0.0013 (Rider, Age) -0.0086 (Rider, AV) 0.0011

(Rider, GV) 0.0010 (Rider, WR) 0.9515 (Rider, Mat) 0.0006

(Gender, Age) -0.0015 (Gender, AV) -0.0047 (Gender, GV) -0.0050

(Gender, WR) 0.0017 (Gender, Mat) 0.0010 (Age, AV) -0.0800

(Age, GV) -0.0698 (Age, WR) -0.0098 (Age, Mat) -0.0013

(AV, GV) 0.8875 (AV, WR) 0.0015 (AV, Mat) -0.0026

(GV, WR) 0.0012 (GV, Mat) -0.0020 (WR, Mat) 0.0011

Table 5.9: Correlation coefficient between each pair of attributes in the synthetic non-

uniform input portfolio.

mentioned design of the input portfolio, we expect age, AV and GV to show significant

statistical dependency. However, except for rider and withdrawal rate, we don’t expect

any tangible statistical dependency between any other pair of attributes. The data in

Tables 5.9 and 5.10 confirm our hypothesis. The only significant values in these tables

are the ones corresponding to pairs of attributes from age, AV and GV as well as the

pair of attributes rider and withdrawal rate. Unlike previous input portfolios, there is a

more meaningful dependency between rider and withdrawal rate attributes in the input

portfolio of this section. Because GMDB contracts are assigned a withdrawal rate of 0

and the majority of contracts with GMWB + GMDB riders are assigned a withdrawal

rate of 7%.

We choose the parameters of the neural network to be similar to the parameters of

Section 3.2, except that we choose a learning rate of 0.1 and we fit the smoothed MSE

values with a polynomial of degree 2. In all of the experiments, we use the end points

in Table 5.11 to generate the sample portfolio and we use the end points of Table 5.12

to generate the training portfolio. These end points are almost equally distanced and

hence should naturally work with the uniform sampling method. We use 1000 iterations

Chapter 5. Sampling Method 123

Attributes RDC Attributes RDC Attributes RDC

(Rider, Gender) 0.0013 (Rider, Age) 0.0109 (Rider, AV) 0.0055

(Rider, GV) 0.0097 (Rider, WR) 1.0000 (Rider, Mat) 0.0074

(Gender, Age) 0.0066 (Gender, AV) 0.0098 (Gender, GV) 0.0074

(Gender, WR) 0.0055 (Gender, Mat) 0.0045 (Age, AV) 0.1129

(Age, GV) 0.1033 (Age, WR) 0.0125 (Age, Mat) 0.0084

(AV, GV) 0.9493 (AV, WR) 0.0083 (AV, Mat) 0.0074

(GV, WR) 0.0097 (GV, Mat) 0.0069 (WR, Mat) 0.0093

Table 5.10: Randomized dependence coefficient (RDC) with k = 10 and s = 1/10 between

each pair of attributes in the synthetic non-uniform input portfolio.

Attribute Value

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {50, 54, 58, 62, 67, 71, 75, 79, 84}

Account Value {5e3, 5e4, 1e5, 1.5e5, 2e5, 2.5e5, 3.3e5}

Guarantee Value {1e3, 0.5e5, 1e5, 1.5e5, 2e5, 2.5e5, 3e5, 3.5e5, 4e5, 4.5e5, 5e5}

Withdrawal Rate {0.05, 0.1}

Maturity {10, 15, 20, 25}

Table 5.11: Attribute values from which representative contracts are generated for ex-

periments.

in the proposed sampling method to come up with the representative contracts and the

training portfolio.

Table 5.13 contains the performance statistics of the proposed neural network of

Chapter 3 for different choices of sampling method. We do 6 independent runs, each with

a different choice of the sample/training/validation portfolio, for each of the sampling

Chapter 5. Sampling Method 124

Attribute Values

Guarantee Type {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age {52, 56, 60, 64, 69, 73, 77, 81}

Account Value {2.5e4, 7.5e4, 1.25e5, 1.75e5, 2.25e5, 2.9e5}

Guarantee Value {2.5e4, 7.5e4, 1.25e5, 1.75e5, 2.25e5, 2.75e5, 3.25e5, 3.75e5, 4.25e5, 4.75e5}

Withdrawal Rate {0.06, 0.07, 0.08}

Maturity {12, 13, 17, 18, 22, 23}

Table 5.12: Attribute values from which training contracts are generated for experiments.

Sampling Method
Relative Error (%) Running Time

Mean STD Mean STD

Uniform Sampling −2.84 8.92 364 146

Proposed Sampling Without Sobol Rand −2.03 5.03 560 271

Proposed Sampling With Sobol Rand −1.87 2.78 518 155

Table 5.13: Statistics on the running time and accuracy of the neural network framework

when used with the uniform sampling method and the sampling method proposed in

Section 5.1 with and without the Sobol quasi-random number generator to estimate

the delta value of a non-uniformly distributed input portfolio. The recorded errors are

relative errors as defined in (3.19). All times are in seconds.

methods. The statistics in Table 5.13 report the outcome of these runs.

The proposed non-uniform sampling method, incorporating Sobol quasi-random num-

bers, is the most accurate of the three methods tested. The results also show that both

versions of the proposed non-uniform sampling method are more accurate than the uni-

form sampling method. Also note that the errors reported in Table 5.13 are larger than

those in Tables 5.7 and 5.8. Moreover, the increase in the percentage of the relative

Chapter 5. Sampling Method 125

error is more significant for the uniform sampling method than for the two non-uniform

sampling methods. In particular, the value of the standard deviation for the uniform

sampling method is so big that it makes this method useless in practical applications.

Although the relative errors are large for both versions of the non-uniform sampling

method, these methods are more likely to provide absolute relative error values that are

less than the industry accepted error of 5%. In particular, 5 out of the 6 runs for the

proposed sampling method with Sobol quasi-random numbers have an absolute relative

error value of less than 4% and the absolute relative error value of the other experiment

was less than 6%. Therefore, we believe that the proposed non-uniform sampling method

with Sobol quasi-random numbers can work reliably even with input portfolios that have

statistical dependency between their attributes.

The attributes of non-uniform input portfolios fill some parts of the space in which

they are defined more densely than other parts. Having statistical dependence in a

non-uniform portfolio further reduces the volume of space occupied by the attributes

of a non-uniform portfolio. Uniform sampling methods are designed to fill the whole

space and hence they are highly likely to produce samples in parts of the space that are

not filled (or only sparsely filled) with contracts in the input portfolio. The proposed

sampling method reduces the number of samples in the parts of the sample space that are

not occupied (or only sparsely occupied) by the input portfolio. However, the proposed

sampling method still creates redundant samples because of the independence assumption

that it makes. Given that the size of the sample portfolio and the training portfolio in

this set of experiments and in the experiments of Sections 5.2.2 and 5.2.3 are equal,

creation of these redundant samples may contribute to the decrease in the accuracy of

the sampling method.

The results on the running time are mixed. The average running time of the proposed

neural network for all choices of the sampling method has decreased. However, the stan-

dard deviation for the proposed non-uniform sampling methods is increased compared to

Chapter 5. Sampling Method 126

the results in Tables 5.7 and 5.8. The increase in the standard deviation of both versions

of the proposed non-uniform sampling method can be explained by the fact that some of

sample portfolios generated by this sampling method do not effectively fill the space mak-

ing it harder for the proposed neural network to find the best choice of parameters. We

suggest further investigation of improved variants of the proposed non-uniform sampling

method that do consider statistical dependency to address this issue.

Chapter 6

Conclusions and Future Work

In this thesis, we proposed an efficient and accurate neural network framework to find

key risk metrics for large portfolios of VA products. As we discuss in Chapter 1, valu-

ing a large portfolio of VA contracts via nested MC simulations, the industry standard

methodology, to find key risk metrics is a time consuming process [29, 61]. Recently,

Gan and Lin [30, 32] proposed a Kriging framework that ameliorates the computational

demands of the valuation process. Both our proposed method and Kriging are examples

of a more general framework called spatial interpolation, which works as follows. A small

set of representative VA contracts is selected and valued via MC simulations. The val-

ues of the representative contracts are then used in a spatial interpolation method that

approximates the value of the contracts in the input portfolio as a linear combination of

the values of the representative contracts.

We study three of the most prominent spatial interpolation techniques (i.e., Kriging,

IDW, RBF) in Chapter 2. Our study of these traditional spatial interpolation techniques

highlights the strong dependence of the accuracy of the framework on the choice of

distance function used in the estimations. Moreover, none of the traditional spatial

interpolation techniques can provide us with all of accuracy, efficiency, and granularity.

In Chapter 3, we propose a neural network implementation of the spatial interpolation

127

Chapter 6. Conclusions and Future Work 128

technique that learns an effective choice of the distance function and provides accuracy,

efficiency, and granularity. We study the performance of the proposed approach on a

synthetic portfolio of VA contracts with GMDB and GMWB riders. Our results in Section

3.2 illustrate the superior accuracy of our proposed neural network approach in estimation

of the delta value for the input portfolio compared to the traditional spatial interpolation

techniques. Although our numerical experiments are centred around estimation of the

delta value, the application of the proposed neural network framework is not limited

to the estimation of the delta value. The network can be easily adapted to estimate

any of the Greeks. However, for higher-order Greeks, e.g., Gamma, we may need to

increase the number of samples and/or to use polynomials of the features with degrees

greater than one. Higher-order Greeks usually have a smaller range of values than first

order Greeks. Therefore to have sufficient granularity, we may need more representative

contracts to capture the changes in values from one location in the sample space to

another. Increasing the number of representative contracts typically reduces the distance

between these contracts. Therefore, we need the value of the G function to change

significantly as we move between two close representative contracts. Such change in the

value of the G function can be achieved by using higher order polynomials of the features.

Training of the neural network requires us to introduce two additional sets of sample

VA contracts, i.e., the training portfolio and the validation portfolio, compared to the

traditional spatial interpolation frameworks. Our experiments in Chapters 3 and 5 show

that, for an appropriate choice of sampling method, if each of the aforementioned sample

sets is sufficiently large, the particular realization of the sample set does not significantly

affect the accuracy and efficiency of the method. However, if too small, the size of each of

these sample sets can significantly affect the performance of our proposed neural network

approach.

In Chapter 4, we use the proposed neural network approach to estimate, in an ef-

ficient and accurate way, the probability distribution of the portfolio loss, which is key

Chapter 6. Conclusions and Future Work 129

to calculate the Solvency Capital Requirement (SCR). SCR is an integral part of the

new regulatory framework of Solvency II. Because of the imprecise language used to de-

scribe the standards in Solvency II, many insurance companies struggle to understand

and implement the framework.

In recent years, mathematical frameworks for calculation of the SCR have been pro-

posed to address the former issue [4, 21]. Furthermore, Bauer et al. [4] has suggested

a nested MC simulation approach to calculate the SCR to address the later issue. The

suggested MC approach is computationally expensive, even for one simple insurance con-

tract. Hence, it cannot be easily generalized to a large portfolio of insurance products.

The results of our numerical experiments in Section 4.3 corroborate the superior ac-

curacy and efficiency of the sequential implementation of our proposed neural network

approach compared with an implementation of the MC approach that uses parallel pro-

cessing.

Although our method requires us to train our neural network using three small (< 1%

of the size of the input portfolio) portfolios, as we mention earlier, if these small portfolios

are sufficiently large, the performance of the method has low sensitivity to the particular

realization of these portfolios.

As we discuss in Chapter 2, one key parameter that can noticeably affect the per-

formance of the spatial interpolation framework is the choice of sampling method. In

practice, insurance companies often deal with VA portfolios that are non-uniformly dis-

tributed in the space in which the input portfolio is defined. Intuitively, an estimation

method can benefit from better accuracy in dense regions of the space. Hence, our sam-

pling method, intuitively, should consider the distribution of the VA policies in the input

portfolio. However, as we elaborate in Chapter 3, a bad sample with dense clusters of

representative contracts can decrease the accuracy of the proposed neural network by

over emphasizing the influence that the value of sample VAs in each of the clusters has

on the value of VA policies in the space. Hence, a good sampling method should avoid

Chapter 6. Conclusions and Future Work 130

creating dense clusters in the sample VA portfolio.

In Chapter 5, we build on the above-mentioned insights and propose a non-uniform

sampling method that uses an iterative approach to generate samples that can effectively

fill the space and have similar per attribute probability distributions as the input port-

folio. To effectively fill the space and avoid duplicate VAs in the generated samples, the

proposed sampling method uses a Sobol quasi-random number generator. Our experi-

mental results in Section 5.2 show that the proposed sampling method, if used to create

the representative portfolio and the training portfolio, achieves better accuracy results,

i.e., lower mean and standard deviation of the recorded relative errors, than the simple

uniform sampling method used in previous chapters.

In this thesis, we assume the existence of a single asset that backs all of our VA con-

tracts. Although this assumption allows us to simplify our analysis and implementations,

in reality, insurance companies invest, on behalf of policyholders, in a basket of assets.

Hence, the evolution of the account value, for each contract, can be better described

using a multi-asset model. Multi-asset models have significantly more complex structure

for their key risk metrics than single-asset models. For example, in a two asset model,

a study of the delta value should consider a surface of delta values rather than a single

delta value for the input portfolio.

Increasing the complexity of key risk metrics requires us to revisit the training method-

ology of the proposed neural network (similar to our study in Chapter 4). Moreover, it

might require us to make changes to the structure of neurons in the proposed neural

network. Extending our single asset model to a multi-asset model is a possible future

research direction.

In our introductory study in Chapter 4, our simple model of financial markets allows

us to simply sort the C
(i)
s1 values that represent market conditions to achieve the best

outcome with our neural network approach. However, this simple strategy is not as

straightforward for more complex models of the financial markets. Therefore, we need

Chapter 6. Conclusions and Future Work 131

to study an effective strategy to exploit the closeness of the sample points representing

various states of more complex models of financial markets to reduce the training time

of the neural network. We leave this study for future work.

The neural network that we used in our experiments was implemented sequentially.

Given the structure of parameters/variables that define the behavior of the neural net-

work, we can easily develop a parallel implementation of the neural network. A parallel

implementation can significantly reduce the training time of the neural network and

thereby the running time of the neural network framework. Hence another line of future

work is to develop a parallel implementation of the neural network.

Although, in Chapter 4, we do not study in depth the problem of having a large num-

ber of outer simulation scenarios, we proposed a possible solution via data interpolation

to alleviate this problem. In our experiments, to reduce the simulation times and because

of the smoothness of the curve that describes the ∆ values, as a first simple choice, we

suggest using piecewise-linear interpolation to approximate the ∆ values. However, our

experimental results suggest that using a better interpolation method may increase the

accuracy of our proposed neural network approach for nested simulations. We suggest a

study on the choice of the interpolation scheme as another possible future work.

Our proposed non-uniform sampling method in Chapter 5 assumes statistical inde-

pendence between the attributes that define the input portfolio. Our numerical results in

Section 5.2 show that the performance of the proposed neural network may deteriorate

when this assumption does not hold, i.e., the attributes of the input portfolio have strong

statistical dependence. Therefore, to further improve the performance of the proposed

neural network and decrease its sensitivity to statistical dependencies in the input port-

folio, we suggest a further study on ways to incorporate the information on statistical

dependencies of the input portfolio into the proposed sampling method.

Appendix A

How To Choose The Training

Parameters

The training method that we discuss in Section 3.1 is dependent on the choice of several

free parameters such as the learning rate and µmax. In this appendix, we discuss heuristic

ways to choose a value for each of these free parameters and justify each choice.

In order to determine a good choice of the learning rate and the batch size, we need to

train the network for some number of iterations, say 3000, and study the error associated

with the training portfolio as a function of the number of iterations. If the graph has

a general decreasing trend and it does not have many big jumps between consecutive

iterations, then we say that the choice of the learning rate/batch size is stable. Otherwise,

we call the choice of the learning rate/batch size unstable.

From (3.13), we see that the choice of the learning rate parameter affects the amount

of change in the weight and bias parameters per iteration. As we discuss in Section

3.1.2, too small of a change increases the training time while too big of a change causes

numerical instability. From Figure A.1, we see that, as we increase the value of the

learning rate, the graph of the error values moves downwards which means that the

training has sped up. However, for a learning rate equal to 2, we see many big jumps in

132

Appendix A. How To Choose The Training Parameters 133

Figure A.1: The MSE error graph (left) and the moving average smoothed MSE error

graph (right) of the training portfolio as a function of iteration number and learning rate.

the graph which suggests numerical instability. The numerical instability is more obvious

from the moving average smoothed curve of error values. More specifically, starting from

iteration 2000, the smoothed MSE error graph for a learning rate of 2 has big jumps

which are signs of numerical instability. Note that the smoothed MSE error graphs for

learning rates 0.5 and 1 are much smoother.

To find a good choice of the learning rate, we can start from a value of 1 for the

learning rate and determine if that choice is stable? If the choice of learning rate is

stable, we double the value of the learning rate and repeat the process until we find a

learning rate which is unstable. At this point, we stop and choose the last stable value

of the learning rate as our final choice of the learning rate. If the learning rate equal to 1

is unstable, we decrease the value of learning rate to half of its current value and repeat

this process until we find a stable learning rate.

The batch size controls the speed of training and the amount of error that we get

in approximating the gradient of the MSE for the entire training set. Small batch sizes

increase the speed of training; however, they also increase the amount of error in approx-

imating the gradient of the MSE error. A good batch size should be small enough to

Appendix A. How To Choose The Training Parameters 134

Figure A.2: The MSE error graph (left) and the moving average smoothed MSE error

graph (right) of the training portfolio as a function of iteration number and batch-size.

increase the speed of training but not so small as to introduce a big approximation error.

To find a good batch size value, we start with a small value, say 5, and determine if this

choice of batch size is stable. If so, we stop and choose it as our final choice of the batch

size. If the batch size is unstable, we double the batch size and repeat the process until

we find a stable batch size.

Figure A.2 shows that small batch size values are associated with many big jumps

and hence are unstable. As we increase the batch size value, the error graph becomes

much more stable– fewer jumps and a more consistent decreasing trend.

Notice that, in the aforementioned processes for finding the appropriate value of the

learning rate and batch size, doubling the values may seem too aggressive as the values

may increase or decrease too quickly. To alleviate this problem, upon reaching a desired

value, we can do a binary search between the final choice of the parameter’s value and

the next best choice (the value of parameter before the final doubling) of the parameter’s

value.

Nesterov, [55, 56], advocates a constant momentum coefficient for strongly convex

functions and advocates Equation (A.1) when the function is not strongly convex [67].

Appendix A. How To Choose The Training Parameters 135

µt = 1− 3

t+ 5
(A.1)

Equation (3.15), suggested in [67], blends a proposal similar to Equations (A.1) and

a constant momentum coefficient. Equation (A.1) converges quickly to values very close

to 1. In particular, for t ≥ 25, µt ≥ 0.9. Hence, as suggested in [67], we should choose

a large value (e.g., 0.9, 0.99, 0.995, 0.999) of µmax to achieve better performance and that

is what we suggest too.

In Section 3.1.3, we proposed a mechanism to detect stopping events and avoid over-

training of the network. As part of this mechanism, we need to record the MSE of the

validation set every I th iteration. Too small values of I can slow down the training

process while too big values of I can result in losing information regarding the trend that

exists in the MSE graph. In order to find a good value of I that neither slows down

the training too much nor creates excessive information loss, we can use a multiplicative

increase process similar to that described above for the batch size. We start with a small

value of I, say 10, and train the network for some 4000 iterations and draw the graph

of MSE values. We then double the I value and graph the MSE for the new value of I.

If the MSE graph for the new value of I has a similar trend as the MSE graph for the

previous value of I, we keep increasing the value of I and repeat the process. But, if the

resulting graph has lost significant information regarding increasing/decreasing trends in

the previous graph, then we stop and choose the previous value of I as the appropriate

choice of I. For example, in Figure A.3, the MSE graph corresponding to the value of

100 has fewer big valleys and big peaks than the MSE graph for the value of 50. Hence, if

we were to use 100, rather than 50, for the value of I, we would lose a significant amount

of information regarding trends in the graph. However, the MSE graph for the value of

I equal to 10 has a roughly similar number of big valleys and big peaks compared with

the MSE graph for the value of I equal to 50. Hence, the value of 50 is a much better

choice for I than either 100 or 10. The value of 50 allows for a faster training than the

Appendix A. How To Choose The Training Parameters 136

Figure A.3: The MSE error graph (left) and the moving average smoothed MSE error

graph (right) of the validation portfolio as a function of iteration number and I value.

value of 10 and retains more information regarding increasing/decreasing trends in the

MSE error graph than the value of 100.

We use data smoothing and polynomial fitting to extract the major u-shape trend in

the MSE graph and hence find stopping events. In order to find a good choice for the

smoothing window, we start with a small value of the smoothing window and calculate

the smoothed curve. If the small peaks and valleys of the original curve are suppressed

and big peaks and big valleys of the original curve are significantly damped, then we

choose that value of the smoothing window as our final choice for the smoothing window.

For example, in Figure A.4, the smoothed curve with a smoothing window of 5 has a big

valley around iteration number of 400. However the valley is dampened in the smoothed

graph resulting from smoothing window of 10.

The primary goal of the polynomial fitting is to find the u-shaped trend in the graph

so that we can detect the stopping event. To model the u-shaped trend, we require

that the polynomial should go to infinity as its argument goes to either plus or minus

infinity. Therefore, the degree of the polynomial should be even. Since we are only

interested in detecting a u-shaped trend, it is sufficient to use polynomials of low degree

Appendix A. How To Choose The Training Parameters 137

Figure A.4: The MSE error graph of the validation portfolio as a function of iteration

number and smoothing window value.

(≤ 10). High degree polynomials overfit the data and they can’t detect a slowly increasing

trend such as the one in Figure A.4 after iteration 2500. On the other hand, a simple

polynomial of degree 2 does not always work well. A quadratic polynomial on a MSE

graph similar to Figure A.4 falsely detects a u-shape trend in the big valley between

iteration numbers 0 and 500. However a polynomial of degree 4 or higher will not trigger

such a false stopping event. Because we smooth the data before we fit any polynomials

and we choose our learning parameter such that we expect an initial decreasing trend,

we suggest polynomials of degree 4, 6 or 8 to be used to fit the data to find u-shaped

trends.

Finally for the value of window length to detect that we have reached the minimum,

we choose a value of W such that the number of iterations in the window (W × I) is

big enough (around a hundred iterations) that we can confidently say the graph of the

MSE error has reached a minimum value and started to increase in value (an increasing

trend). Notice that the window length should not be too big so that we can start the

search in the local neighborhood and minimize the training time.

Bibliography

[1] https://docs.oracle.com/javase/7/docs/api/java/util/Random.html.

[2] P.A. Azimzadeh and P.A. Forsyth. The Existence of Optimal Bang-Bang Controls

for GMxB Contracts. SIAM Journal on Financial Mathematics, 6(1):117–139, 2015.

[3] D. Bauer, A. Kling, and J. Russ. A Universal Pricing Framework For Guaranteed

Minimum Benefits in Variable Annuities. ASTIN Bulletin, 38:621–651, 2008.

[4] Daniel Bauer, Andreas Reuss, and Daniela Singer. On the Calculation of the Sol-

vency Capital Requirement Based on Nested Simulations. ASTIN Bulletin, 42:453–

499, November 2012.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, NJ, USA, 2006.

[6] Shyam Boriah, Varun Chandola, and Vipin Kumar. Similarity Measures for Cat-

egorical Data: A Comparative Evaluation. In In Proceedings of the eighth SIAM

International Conference on Data Mining, pages 243–254, 2008.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, NY, USA, 2004.

[8] P. Boyle and W. Tian. The Design of Equity-Indexed Annuities. Insurance: Math-

ematics and Economics, 43:303–315, 2008.

138

Bibliography 139

[9] Phelim P. Boyle and Mary R. Hardy. Reserving for Maturity Guarantees: Two

Approaches. Insurance: Mathematics and Economics, 21:113–127, 1997.

[10] Paul Bratley and Bennett L. Fox. Algorithm 659: Implementing Sobol’s Quasiran-

dom Sequence Generator. ACM Trans. Math. Softw., 14(1):88–100, March 1988.

[11] Mark Broadie, Yiping Du, and Ciamac C. Moallemi. Risk Estimation Via Regres-

sion. Operations Research, 63:1077–1097, 2015.

[12] P.A. Burrough, R.A. McDonnell, and C.D. Lloyd. Principles of Geographical Infor-

mation Systems. Oxford University Press, 2nd edition, 1998.

[13] A. Belanger, P. Forsyth, and G. Labahn. Valuing the Guaranteed Minimum Death

Benefit Clause with Partial Withdrawals. Applied Mathematical Finance, 16(6):451–

496, 2009.

[14] J. Carriere. Valuation of the Early-Exercise Price for Options Using Simulations

and Nonparametric Regression. Insurance: Mathematics and Economics, 19(1):19–

30, 1996.

[15] M. Cathcart and S. Morrison. Variable Annuity Economic Capital: the Least-

Squares Monte Carlo Approach. Life & Pensions, pages 36–40, October 2009.

[16] CEIOP. EIOPA Report on the Fifth Quantitative Impact Study (QIS5) for Solvency

II. 2011.

[17] Z. Chen and P.A. Forsyth. A Numerical Scheme for the Impulse Control Formula-

tion of Pricing Variable Annuities with a Guaranteed Minimum Withdrawal Benefit

(GMWB). Numerische Mathematik, 109:535–569, June 2008.

[18] Z. Chen, K. Vetzal, and P.A. Forsyth. The Effect of Modelling Parameters on the

Value of GMWB Guarantees. Insurance: Mathematics and Economics, 43:165–173,

2008.

Bibliography 140

[19] Y. Chi and X. S. Lin. Are Flexible Premium Variable Annuities Underpriced?

ASTIN Bulletin, 42(2):559–574., 2012.

[20] J. P. Chiles and P. Delfiner. Geostatistics, Modelling Spatial Uncertainty. Wiley-

Interscience, 1999.

[21] Marcus C. Christiansen and Andreas Niemeyer. Fundamental Definition of the Sol-

vency Capital Requirement in Solvency II. ASTIN Bulletin, 44(3):501–533, 2014.

[22] T. Coleman, Y. Li, and Maria-Cristian Patron. Hedging Guarantees in Variable

Annuities under Both Equity and Interest Rate Risks. Insurance: Mathematics and

Economics, 38:215–228, 2006.

[23] Noel A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons, Inc., New York,

USA, 1993.

[24] M. Dai, Y. K. Kwok, and J. Zong. Guaranteed Minimum Withdrawal Benefit in

Variable Annuities. Journal of Mathematical Finance, 18(4):595–611, 2008.

[25] S. Daul and E. Vidal. Replication of Insurance Liabilities. RiskMetrics Journal,

9(1):79–96, 2009.

[26] R. Dembo and D. Rosen. The Practice of Portfolio Replication: A Practical

Overview of Forward and Inverse Problems. Annals of Operations Research, 85:267–

284, 1999.

[27] Y. d’Halluin, P. Forsyth, and K. Vetzal. Robust Numerical Methods for Contingent

Claims Under Jump Diffusion Processes. IMA Journal of Numerical Analysis, 25:65–

92, 2005.

[28] V. A. Epanechnikov. Non-Parametric Estimation of a Multivariate Probability Den-

sity. Theory of Probability and Its Applications, 14(1):153–158, 1967.

Bibliography 141

[29] J. Fox. A Nested Approach to Simulation VaR Using MoSes. Insights: Financial

Modelling, pages 1–7, 2013.

[30] G. Gan. Application of Data Clustering and Machine Learning in Variable Annuity

Valuation. Insurance: Mathematics and Economics, 53(3):795–801, 2013.

[31] G. Gan. Representative Variable Annuity Policy Selection using Latin Hypercube

Sampling. November 2013.

[32] G. Gan and X. S. Lin. Valuation of Large Variable Annuity Portfolios Under Nested

Simulation: A Functional Data Approach. Insurance: Mathematics and Economics,

62(0):138–150, 2015.

[33] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms and Applications.

SIAM Press, Philadelphia, PA, USA, 2007.

[34] H. Gerber, E. Shiu, and H. Yang. Valuing Equity-Linked Death Benefits and Other

Contingent Options: A Discounted Density Approach. Insurance: Mathematics and

Economics, 51(1):73–92, 2012.

[35] L. Girard. An Approach to Fair Valuation of Insurance Liabilities Using the Firm’s

Cost of Capital. North American Actuarial Journal, 6:18–41, 2002.

[36] M. Hardy. Investment Guarantees: Modeling and Risk Management for Equity-

Linked Life Insurance. John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[37] S. A. Hejazi and K. R. Jackson. A Neural Network Approch to Efficient Valuation

of Large Portfolios of Variable Annuities. Insurance: Mathematics and Economics,

70:169–181, 2016.

[38] S. A. Hejazi and K. R. Jackson. Effcient Valuation of SCR via

a Neural Network Approach. Manuscript Submitted for Publication to

Bibliography 142

the Journal of Insurance: Mathematics and Economics, Available at

http://www.cs.toronto.edu/pub/reports/na/IME-Paper3.pdf, 2016.

[39] S. A. Hejazi, K. R. Jackson, and G. Gan. A Spatial Interpolation Framework for

Efficient Valuation of Large Portfolios of Variable Annuities. Manuscript Submitted

for Publication to the Journal of Insurance: Mathematics and Economics, Available

at http://www.cs.toronto.edu/pub/reports/na/IME-Paper1.pdf, 2015.

[40] K. Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neural

Networks, 4(2):251–257, 1991.

[41] Y. Huang and P.A. Forsyth. Analysis of A Penalty Method for Pricing a Guaran-

teed Minimum Withdrawal Benefit (GMWB). IMA Journal of Numerical Analysis,

32(1):320–351, June 2011.

[42] John C. Hull. Options, Futures, and Other Derivatives. Pearson Prentice Hall,

Upper Saddle River, NJ, 6th edition, 2006.

[43] IRI. The 2011 IRI Fact Book. Insured Retirement Institute, 2011.

[44] S. Joe and F. Y. Kuo. Constructing Sobol Sequences with Better Two-Dimensional

Projections. SIAM Journal on Scientific Computing, (30):2635–2654, 2008.

[45] D.G. Krige. A Statistical Approach to Some Mine Valuations and Allied Problems

at the Witwatersrand. Master’s thesis, University of Witwatersrand, 1951.

[46] X. Lin, K. Tan, and H. Yang. Pricing Annuity Guarantees under a Regime-Switching

Model. North American Actuarial Journal, 13:316–338, 2008.

[47] F. Longstaff and E. Schwartz. Valuing American Options by Simulation: A Simple

Least-Squares Approach. The Review of Financial Studies, 14(1):113–147, 2001.

[48] David Lopez-Paz, Philipp Hennig, and Bernhard Schlkopf. The Randomized De-

pendence Coefficient. Available at http://arxiv.org/abs/1304.7717, 2013.

Bibliography 143

[49] G. Matheron. Principles of Geostatistics. Economic Geology, 58:1246–1266, 1963.

[50] M. McKay, R. Beckman, and W. J. Conover. A Comparison of Three Methods

for Selecting Values of Input Variables in the Analysis of Output from a Computer

Code. Technometrics, 21(2):239–245, 1979.

[51] M. Milevsky and T. Salisbury. Financial Valuation of Guaranteed Minimum With-

drawal Benefits. Insurance: Mathematics and Economics, 38:21–38, 2006.

[52] T. Moenig and D. Bauer. Revisiting the Risk-Neutral Approach to Optimal Policy-

holder Behavior: A study of Withdrawal Guarantees in Variable Annuities. In 12th

Symposium on Finance, Banking, and Insurance, Germany, December 2011.

[53] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,

2012.

[54] E. A. Nadaraya. On Estimating Regression. Theory of Probability and its Applica-

tions, 9:141–142, 1964.

[55] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Ap-

plied Optimization. Springer US, 2003.

[56] Yurii Nesterov. A Method of Solving a Convex Programming Problem with Con-

vergence Rate O(1/sqrt(k)). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[57] J. Oechslin, O. Aubry, M. Aellig, A. Kappeli, D. Bronnimann, A. Tandonnet, and

G. Valois. Replicating Embedded Options in Life Insurance Policies. Life & Pen-

sions, pages 47–52, 2007.

[58] E. Parzen. On Estimation of a Probability Density Function and Mode. Annals of

Mathematical Statistics, 33(3):1065–1076, 1962.

[59] B. T. Polya. Some Methods of Speeding up the Convergence of Iteration Methods.

USSR Computational Mathematics and Mathematical Physics, 4:1–17, 1964.

Bibliography 144

[60] Alfred Renyi. On Measure of Dependence. Acta Mathematica Academiae Scien-

tiarum Hungaricae, 10:441–451, 1959.

[61] C. Reynolds and S. Man. Nested Stochastic Pricing: The Time Has Come. Product

Matters!— Society of Actuaries, 71:16–20, 2008.

[62] Jurgen Schmidhuber. Deep Learning in Neural Networks: An Overview. 2014.

[63] Donald Shepard. A Two-dimensional Interpolation Function for Irregularly-spaced

Data. In Proceedings of the 1968 23rd ACM National Conference, pages 517–524,

NY, USA, 1968. ACM.

[64] I. M. Sobol’. On the Distribution of Points in a Cube and the Approximate Eval-

uation of Integrals. USSR Computational Mathematics and Mathematical Physics,

7(4):86–112, 1967.

[65] Society of Actuaries and LIMRA. Variable Annuity Guaranteed Liv-

ing Benefits Utilization Study-2013 Experience. 2013. Available at

https://www.soa.org/Files/Research/research-2016-limra-vaglbus-2013-

experience.pdf.

[66] E.M. Stein and R. Shakarchi. Real Analysis: Measure Theory, Integration, and

Hilbert Spaces. Princeton University Press, 2009.

[67] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On The Im-

portance of Initialization and Momentum in Deep Learning. In Proceedings of the

30th International Conference on Machine Learning (ICML-13), volume 28, pages

1139–1147. JMLR Workshop and Conference Proceedings, May 2013.

[68] TGA. Variable Annuities—An Analysis of Financial Stability. The Geneva Associ-

ation, March 2013.

Bibliography 145

[69] The Gallup Organization and Mathew Greenwald & Associates. 2013 Survey of

Owners of Individual Annuity Contracts. The Committee of Annuity Insurers, 2013.

Available at http://www.annuity-insurers.org/wp-content/uploads/2013/10/2013-

Gallup-Survey.pdf.

[70] E.R. Ulm. The Effect of the Real Option to Transfer on the Value Guaranteed

Minimum Death Benefit. The Journal of Risk and Insurance, 73(1):43–69, 2006.

[71] J. Vadiveloo. Replicated Stratified Sampling—A New Financial Modelling Option.

Tower Watson Emphasis Magazine, pages 1–4, 2011.

[72] Geoffrey S. Watson. Smooth Regression Analysis. Sankhyā: Indian Journal of

Statistics, 26:359–372, 1964.

