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Superconvergent interpolants for collocation methods
applied to Volterra integro-differential equations with d elay
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Abstract Standard software based on the collocation method for differential equa-
tions, delivers a continuous approximation (called the collocation solution) which
augments the high order discrete approximate solution thatis provided at mesh points.
This continuous approximation is less accurate than the discrete approximation. For
’non-standard’ Volterra integro-differential equationswith constant delay, that often
arise in modeling predator-prey systems in Ecology, the collocation solution isC0

continuous. The accuracy isO(hs+1) at off-mesh points andO(h2s) at mesh points
wheres is the number of Gauss points used per subinterval andh refers to the step-
size. We will show how to constructC1 interpolants with an accuracy at off-mesh
points and mesh points of the same order (2s). This implies that even for coarse mesh
selections we achieve an accurate and smooth approximate solution. Specific schemes
are presented fors = 2,3, and numerical results demonstrate the effectiveness of the
new interpolants.
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1 Introduction and Motivation

Progress in the qualitative and numerical understanding ofDelay Volterra Integro-
Differential Equations (DVIDEs) is enhancing the use of this type of equations in
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various fields of Biology [14], Medicine [6] and Engineering. Many DVIDEs arising
as mathematical models in population dynamics, rheology, etc. have the general ’non-
standard’ form,

y′(t) = f (t,y(t))+
∫ t

t−τ
K(t,s,y(t),y(s))ds, (1.1)

for t ∈ [t0,T ], f : R×Rm → Rm andK : R×R×Rm ×Rm → Rm. To make the prob-
lem well-defined, a unique solutiony(t) is usually identified by specifying an initial
functionφ(t) for t ∈ [t0−τ, t0], with φ(t) : R → Rm. As a particular case in traditional
population biology, the following system models the dynamics of two interacting
species often called a ’predator-prey’ system,







N′
1(t) = N1(t)

(

ε1− γ1N2(t)−
∫ t

t−τ F1(t − s)N2(s)ds
)

,

N′
2(t) = N2(t)

(

−ε2+ γ2N1(t)+
∫ t

t−τ F2(t − s)N1(s)ds
)

,

(1.2)

for t ∈ [0,T ], whereεi > 0, γi ≥ 0,Fi(t)≥ 0 is continuous, andN1(t) = φ1(t), N2(t) =
φ2(t) for t ∈ [t0−τ, t0]. N1(t) andN2(t) represent two populations (prey and predator)
at timet (see for example [5,18] for more details). Multi-species ecological systems
can be derived as extensions of this system [19,1]. For sufficient conditions regarding
the existence of solutions and also the long term behavior ofspecial types of such
systems see [10,11].

Numerical investigations concerning the approximate solution of ’standard’ Volterra
integro-differential equations have been considered overthe last few decades [4].
In particular, after the systematic introduction of Runge-Kutta (RK) methods for
ODEs by J.C. Butcher, attempts were made to formally generalize these methods to
Volterra integro-differential equations (VIDEs). As a result, two particular subclasses
of Volterra RK (VRK) methods, namely, the VRK methods ofPouzet type, and VRK
methods ofBel’tyukov type have received attention in the literature. The advantage of
these methods is that they may have explicit forms (no implicit algebraic system to
be solved) despite the presence of the Volterra integral term in the equation.Pouzet
andBel’tyukov type methods were extended to ’standard’ VIDEs with constant delay
for fixed stepsize implementation ( see for example [21,22,20]). One can straightfor-
wardly extend these methods to the ’non-standard’ DVIDEs with constant delay. A
major deficiency of these methods is that the discretizationis a part of the method and
no continuous interpolant is produced. There have been some attempts to make such
methods more effective and convenient for users. In particular, some investigations
[7] have focused on the development of smooth interpolants augmenting the discrete
solution generated by the discrete numerical method. Although the computation of
these interpolants imposes an inevitable cost, they allow one to consider the result-
ing method as providing a continuous approximate solution to the original equation
throughout the domain of interest that might be used for visualization, root-finding
and other purposes.

One approach for developing numerical methods that determine such smooth in-
terpolants of the discrete solution is based on the use of continuous Runge-Kutta
(CRK) methods. Ans−stage,pth order, explicit discrete Runge-Kutta formula when
applied to the standard initial value problem (IVP),

y′ = f (t,y), y(a) = y0, for t ∈ [a,b],
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determines,

yn+1 = yn + hn

s

∑
i=1

wiki,

where,

ki = f (tn + cihn,yn + hn

i−1

∑
j=1

ai, jk j), i = 1, . . . ,s.

An additional(s̄ − s) stages are introduced to obtain an optimal-order continuous
(rather than ’discrete’) approximation for anyt ∈ (tn, tn+1) as,

un(t) = yn + hn

s̄

∑
j=1

b j(τ)k j,

whereb j(τ) is a polynomial of degree at mostp+ 1 andτ = t−tn
hn

. The parameters
defining such a CRK method are usually chosen to ensure that the piecewise polyno-
mial u(t), defined by the mesht0 < t1 < .. . < tN and the associated polynomialsun(t)
n = 0,1, . . . ,(N−1), is inC1[a,b] (to accomplish this the first additional stageks+1 is
defined byks+1 = f (tn+1,yn+1) ). Different criteria, such as the quality of the defect
and the corresponding defect estimate associated with the continuous interpolant, are
used to determine the number of additional stages as well as the specific coefficients
used to define them.

CRK methods have been applied to a more general class of DVIDEs in [17].
When applied to (1.1), theki’s (required for the definition of the local interpolant
un(t)) are defined by the following system of equations (see [17]),

ki = f (tn+cihn,yn+hn

i−1

∑
j=1

ai, jk j)+

tn+cihn
∫

tn+cihn−τ

K(tn+cihn,s,yn+hn

i−1

∑
j=1

ai, jk j,u(s))ds,

for i = 1,2, . . . , s̄, whereu(s) is the piecewise polynomial numerical solution defined
by [ui(s)]

N−1
i=0 for s ∈ [t0, tN ]. For this CRK, we have a system of ¯s×m coupled equa-

tions (defining theki’s), sinceun(t) is defined in terms of all theki’s introduced on this
step. This CRK method allows for variable stepsize implementation as well as error
control, and is able to cope with general time-dependent delays. However, for VIDEs
with constant delays and fixed stepsize, we would still need to solve this implicit sys-
tem of equations on each step and the order of accuracy would not be optimal. In this
investigation we will show that for problem (1.1) and methods which determine high
order approximations at mesh points, CRKs can be implemented with a significant
improvement in efficiency to produce high order approximations for allt ∈ [t0, tN ].

Another approach which determines aC0 interpolant to approximate the solution
of (1.1), and which is the approach we will focus on in this paper, is based on col-
location formulas. A detailed analysis and justification ofthis approach for standard
DVIDEs can be found in [2,3]. The approach and analysis was extended to apply to
problems of the form (1.1) in [16]. Despite the high order approximations at the mesh
points, theC0 interpolant is not as accurate at off-mesh points for these methods.
Collocation methods applied to Volterra equations with more general non-vanishing
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delays,θ (t) := t − τ(t), often impose limitations on the stepsize selection strategy.
The points characterized byθ (ξµ+1) = ξµ for ξµ = t0,µ = 0,1, . . . are called primary
discontinuity points. The solutions of DVIDEs can suffer from a loss of regularity at
these points [2]; therefore, the detection and inclusion ofthem as mesh points (con-
strained mesh) is necessary for a reliable numerical method. Aside from including the
discontinuity points in the mesh which is a requirement for any DVIDEs solver, the
mesh has to beθ−invariant, i.e., the mesh points within the interval[ξµ ,ξµ+1] must
all be mapped (underθ (t) = t − τ(t)) onto mesh points within the interval[ξµ−1,ξµ ]
whereξ ’s are the propagated discontinuity points. In addition, the delay argument
is assumed to be increasing. These are strong conditions andare essential for both
the convergence analysis and for ease of implementation. Collocation method has
been shown to be very effective if a constant stepsize strategy is adopted. For more
general delays, theθ−invariant property is unlikely to be satisfied and this makes
the method impractical. In this investigation, in contrastto the approach in [17], we
assume the collocation method produces an approximate solution on a uniform mesh
with superconvergent behavior at mesh points. Then, we introduce a post-processing
procedure to construct improved interpolants, using additional explicit stages, in or-
der to improve the off-mesh accuracy to be consistent with the mesh-point accuracy.
It is worth mentioning that the proposed bootstrapping procedure cab be applied to
more general delays based on a variable stepsize implementation as long as the col-
location solution with high order accuracy at mesh points isavailable.

Discontinuous Galerkin method is a different numerical approach to non-standard
(non-delay) VIDEs wheref (see (1.1)) is linear. It was investigated in [13] and the
associated error bounds at the mesh points were established.

Numerical methods generating continuous polynomial approximations to DVIDEs
will generally involve solving implicit systems of equations over each subinterval.
The size of the implicit system grows as the desired off-meshaccuracy becomes more
stringent. In this paper, we show how to improve the accuracyand smoothness of the
collocation interpolants for DVIDEs using a few additionalexplicit computations (on
each step).

2 Overview of the Collocation Methods

In the application of the collocation approach to (1.1) we will assume that the follow-
ing standard properties are satisfied:

– f andK are sufficiently smooth functions over their respective domains,
– aconstrained uniform mesh is employed (i.e.h := τ

r for somer ∈ N) ,
– the collocation abscissae are chosen to be the Gauss points (0< c1 < c2 < .. . <

cs < 1),
– the collocation solution associated with stepn is a vector of piecewise polynomi-

als (each of degree≤ s), uh(t), which is the unique solution of

u′h(tn+cih)= f (tn+cih,uh(tn+cih))+
∫ tn+cih

tn+cih−τ
K(tn+cih,s,uh(tn+cih),uh(s))ds,

(2.1)
subject to the initial conditionuh(t) := φ(t) whent ∈ [−τ,0].
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Note thatuh(t) can be expressed in the formuh(tn + vh) = yn +h∑s
j=1β j(v)k j where

k j = u′h(tn + c jh), yn := uh(tn), β j(v) :=
∫ v

0 L j(s)ds and theL j ’s are the Lagrangian
basis functions associated with the Gauss points. Using this notation, (2.1) can be
rewritten as,

ki = f (tn + cih,yn + h
s

∑
j=1

ai jk j)+Fn(tn + cih)

+ hci

s

∑
l=1

blK(tn + cih, tn + ciclh,yn + h
s

∑
j=1

ai jk j,yn + h
s

∑
j=1

β j(cicl)k j), (2.2)

where we have setai j := β j(ci), bl := βl(1) for 1 ≤ i ≤ s , 1 ≤ n ≤ N − 1. Note
that thelag term Fn refers to the integrals computed over past intervals. Also,in the
implementations we are considering we will use the interpolatory quadrature formu-
las using thes abscissae based on the Gauss points{ci} to discretize the integral
terms. Once this implicit nonlinear system of dimensionm× s is solved, the colloca-
tion solution is completely determined. The theory of collocation at Gauss points for
the standard and non-standard DVIDEs (see for example [2,3,16]) reveals that for
sufficiently smallh we achieve local superconvergence at the mesh points, i.e.,

‖y(ti)− uh(ti)‖∞ = O(h2s), i = 0,1, . . . ,N

while the global order of convergence achieved by the collocation interpolant is,

‖y(t)− uh(t)‖∞ = O(hs+1), for t ∈ [t0,T ].

In the next section, we will demonstrate how to extend the high accuracy that is
available at the mesh points to the off-mesh points by constructing new improved
continuous approximations.

3 Derivation of Improved Interpolants

Deriving these improved orsuperconvergent interpolants has been investigated for
methods for boundary value ordinary differential equations (BVODEs) where the col-
location solution is also available throughout the integration interval. The additional
computation concerned with the superconvergent interpolant occurs after the collo-
cation software delivers the solution over the integrationinterval. Some authors have
used information available from adjacent subintervals, both backward and forward,
to construct an improved interpolant of orderO(h2s) over each subinterval [15]. Oth-
ers, restrict the superconvergent interpolant to use information only from within the
current subinterval. In [8], the authors use the theoretical framework of continuous
Runge-Kutta formulas for IVPs to construct superconvergent interpolants of order
O(h2s) for BVODEs. They use a continuous version of the well-known (Butcher)
order conditions as a basis to augment the collocation solution with inexpensive
mono implicit Runge-Kutta (MIRK) stages. This scheme uses the minimum num-
ber of additional stages required to achieve the desired accuracy. Runge-Kutta theory
for Volterra integro-differential equations was developed by Lubich in [12]. Later,
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Brunner showed that the collocation method applied to Volterra integro-differential
equations can be interpreted as anextended s−stage implicitPouzet Runge-Kutta
method [2] with optimal order 2s at mesh points, wheres is the number of Gauss
points. Therefore, it might be possible to develop numerical schemes, based on di-
rect use of the continuous version of the collocation-basedRK order conditions for
VIDEs, to obtain high accuracy at off-mesh points by re-using the collocation stages
already computed. In this case, the additional stages are not computed as straightfor-
ward as in BVODEs due to the presence of lag terms, and we mighteven need to
use implicit stage derivatives which is undesirable. In addition to complicated alge-
braic (order condition) equations that arise, this approach is restricted to first order
DVIDEs.

An alternative technique, uses thebootstrapping approach, first introduced in [7]
for constructing a sequence of continuous interpolants forIVPs using the discrete
information produced by a RK method. It was subsequently used for constructing
high order interpolants for BVODEs in [9]. This scheme does not necessarily use
the fewest number of extra stages, but is straightforward toapply to higher-order
differential equations. Both these approaches have been developed for ODEs where
the underlying equation possesses sufficient smoothness. We introduce an extension
of the bootstrapping approach which can be used for the DVIDE(1.1).

Given the collocation solutionuh(t) of (1.1) we define, on stepn,

k̃0,1 := f (tn,yn)+
∫ tn

tn−τ
K(tn,s,yn,uh(s))ds

k̃0,2 := f (tn+1,yn+1)+

∫ tn+1

tn+1−τ
K(tn+1,s,yn+1,uh(s))ds (3.1)

and we construct a Hermite-Birkhoff polynomial of degree atmost s + 1, u(1)(t),
interpolating mesh datayn, yn+1, derivative datãk0,1 and k̃0,2 and s − 2 additional
stages,

k̃0,2+i := f (tn +ρ (0)
i h,uh(tn +ρ (0)

i h))

+

∫ tn+ρ(0)
i h

tn+ρ(0)
i h−τ

K(tn +ρ (0)
i h,s,uh(tn +ρ (0)

i h),uh(s))ds,

i = 1, . . . ,s−2,

whereρ (0)
i ’s are arbitrary abscissae in(0,1). The interpolantu(1)(t) can be written

as,

u(1)(tn +θh) = b1(θ )yn + b2(θ )yn+1

+ hb3(θ )k̃0,1+ hb4(θ )k̃0,2+ h
s−2

∑
i=1

bi+4(θ )k̃0,2+i, (3.2)

whereθ = (t−tn)
h and thebi(θ )’s are known polynomials of degree≤ s+ 1. This

selection ofk̃0,1 andk̃0,2 reduces the cost of determining the stages needed on each
step sincẽk0,2 for stepn equals̃k0,1 for stepn+1. We then introduce, for the purpose
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of analysis, the Hermite-Birkhoff polynomialy(1)(t) interpolating the exact solutions
y(tn), y(tn+1), the exact derivative datāk0,1 andk̄0,2,

k̄0,1 := f (tn,y(tn))+
∫ tn

tn−τ
K(tn,s,y(tn),y(s))ds,

k̄0,2 := f (tn+1,y(tn+1))+

∫ tn+1

tn+1−τ
K(tn+1,s,y(tn+1),y(s))ds.

and exact additionals−2 derivative data,

k̄0,2+i := f (tn +ρ (0)
i h,y(tn +ρ (0)

i h))

+

∫ tn+ρ(0)
i h

tn+ρ(0)
i h−τ

K(tn +ρ (0)
i h,s,y(tn +ρ (0)

i h),y(s))ds,

i = 1, . . . ,s−2

The interpolanty(1)(t) can then be written as,

y(1)(tn +θh) = b1(θ )y(tn)+ b2(θ )y(tn+1)

+ hb3(θ )k̄0,1+ hb4(θ )k̄0,2+ h
s−2

∑
i=1

bi+4(θ )k̄0,2+i (3.3)

Since constructed mesh ensures that the primary discontinuity points are included in
the set of mesh points, the exact solutiony(t) is sufficiently smooth over(tn, tn+1).
Therefore, according to the theory of Hermite-Birkhoff interpolation we have,

‖y(t)− y(1)(t)‖= O(hs+2)

In addition, since the available approximate solutionsyn andyn+1 areO(h2s), and
uh(t) approximates the exact solutiony(t) to O(hs+1), from (3.2) and (3.3) we have
(assuming the boundedness of partial derivatives or suitable Lipschitz conditions for
f andK),

‖y(1)(t)− u(1)(t)‖= O(hs+2)

and, using the triangle inequality, we obtain,

‖y(t)− u(1)(t)‖= O(hs+2).

As seen above, for collocation based ons = 2 Gauss points we get the optimal order
by computing only two extra explicit derivative valuesk̃0,1 and k̃0,2. For s > 2 it is
natural to choose theρi’s to be a subset of the Gauss points because these values
are already available from the original collocation computations. We now consider
constructing an interpolantu(2)(t) of degrees+2 by interpolating the mesh datayn,
yn+1 and additionals+1 stages,

k̃1,s+i := f (tn +ρ (1)
i h,u(1)(tn +ρ (1)

i h))

+
∫ tn+ρ(1)

i h

tn+ρ(1)
i h−τ

K(tn +ρ (1)
i h,s,u(1)(tn +ρ (1)

i h),u(1)(s))ds,

i = 1, . . . ,s+1 (3.4)
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Notice that the previously defined end point derivative datak̃0,1 and k̃0,2 are not ac-
curate enough to be used in this case. Also,u(2)(t) is only inC0[t0,T ] unless the set

of abscissae{ρ (1)
i ; i = 1, . . . ,s+ 1} contains the subset{0,1}. Applying a simi-

lar analysis as above, we conclude that the new constructed interpolant satisfies the
following error bound,

‖y(t)− u(2)(t)‖= O(hs+3)

The bootstrapping algorithm proceeds in a similar manner and produces a sequence
of interpolants until an interpolant of the desired order isobtained. In general, hav-
ing computed the interpolantu(q)(t),q ≥ 1 of orderO(hs+q+1), the new interpolant
u(q+1)(t) of orderO(hmin{s+q+2,2s}) is constructed as,

u(q+1)(tn +θh) = b1(θ )yn + b2(θ )yn+1+ h
s+q

∑
i=1

bi+2(θ )k̃q,i ,

wherebi(θ )’s are Hermite-Birkhoff polynomials of degrees+ q+1 (for ease of no-
tation, we have used the notationb1,b2 and bi+2 for all intermediate and optimal
interpolants while they have different meanings dependingon the selection of abscis-
sae) and,

k̃q,i := f (tn +ρ (q)
i h,u(q)(tn +ρ (q)

i h))

+

tn+ρ(q)
i h

∫

tn+ρ(q)
i h−τ

K(tn +ρ (q)
i h,s,u(q)(tn +ρ (q)

i h),u(q)(s))ds,

i = 1, . . . ,s+ q (3.5)

In order for u(q+1)(t) to be C1 continuous, the set of abscissae corresponding to
{k̃q,i; i = 1, . . . ,s+ q} has to contain{0,1}. The error bound

‖y(t)− u(q+1)(t)‖ ∼ O(hmin{s+q+2,2s})

is valid for any selection of distinct abscissae in[0,1] used on each step of the boot-
strapping process.

The algorithm requires storing not only the optimal-order interpolants for each of
the past subintervals, but also all intermediate polynomials in the pastr steps. This
requirement could be dropped by using the optimal-order interpolants in computing
the lag terms appearing in stage calculations. This leads toa variation of the outlined
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Table 3.1 Number of additional explicit stages required to constructa superconvergent interpolant of order
2s

s 1 2 3 4
Number of additional stages - 2 5 11

algorithm for which we have,

k̃q,i := f (tn +ρ (q)
i h,u(q)(tn +ρ (q)

i h))

+

tn
∫

tn+ρ(q)
i h−τ

K(tn +ρ (q)
i h,s,u(q)(tn +ρ (q)

i h),u(s−1)(s))ds

+

tn+ρ(q)
i h

∫

tn

K(tn +ρ (q)
i h,s,u(q)(tn +ρ (q)

i h),u(q)(s))ds,

i = 1, . . . ,s+ q

whereu(s−1)(s) is the optimal-order interpolant of orderO(h2s), already computed
in the past steps, andu(q)(s) is the most updated interpolant in the current step. One
obvious advantage of this variation is thatk̃0,1 can be re-used in all bootstrapping
steps and this reduces the number of required additional stages. Table 3.1 reports, for
this variation, the total number of additional stages required for constructing super-
convergent interpolants of orderO(h2s) for various values ofs.

An important point regarding this algorithm is that, although the lower order
stages belonging to previous steps are not re-used, all additional stages are com-
puted explicitly despite the presence of an integral term evaluated over the current
subinterval of integration. This will only be true if the improved interpolants are each
computed sequentially in a step by step manner. It should be noted that in addition to
the roundoff and truncation errors that already affect the results, we have additional
sources of error when treating integral equations, i.e., quadrature discretization error
and iteration error arising in the solution of the associated implicit equations. These
additional sources of error contribute directly to the accuracy of the approximate so-
lution.

As mentioned earlier, augmenting the high order discrete collocation solution has
also been investigated for BVODEs [8,9]. A question arises whether the most effec-
tive superconvergent interpolants proposed for BVODEs canbe used for extending
the discrete collocation solution of DVIDEs. If so, the resulting method could be
more efficient because the interpolants derived for BVODEs use a smaller number
of extra explicit stages. Table 3.2 reports the number of additional stages required to
construct superconvergent interpolants based on these BVODE formulas. It should
be remarked that̃k0,1 andk̃0,2 (derivative data at end points) are calculated using only
two function evaluations in the case of collocation appliedto BVODEs while for
DVIDEs they would be more expensive to compute due to the quadrature discretiza-
tion and lag term calculations. Also, these values are re-used in all subsequent steps
of the bootstrapping process for BVODEs while new derivative values (at least the
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Table 3.2 Number of additional explicit stages based on BVODE interpolants of order 2s

s 1 2 3 4
Number of additional stages - 2 4 9

right end point derivative) have to be computed for DVIDEs oneach bootstrapping
step. This reduces the number of additional stages requiredfor BVODE formulas
compared to those in table 3.1.

Suppose we are stepping fromtn to tn+1. We can define a local ’ODE’ problem
associated with the DVIDE (1.1) as:

z′n(t) = f (t,zn(t))+
∫ t

t−τ
K(t,s,zn(t),uh(s))ds,

zn(tn) = yn (3.6)

whereuh(s) in the integrand is the available low order collocation polynomial com-
puted up totn+1. Repeated differentiation of the right hand side of (3.6) using the
Leibnitz rule reveals that we have the same order of smoothness for this local prob-
lem as we have forf andK. This is because whent ∈ [tn−r, tn−r+1], the collocation
solutionuh is either the previously computed collocation polynomial of degrees or
the predefined smooth functionφ in casetn−r+1 < t0. The local problem (3.6) could
then be written in the followingsmooth ODE-equivalent form:

z′n(t) = f̃ (t,zn(t)),

zn(tn) = yn

where f̃ has an obvious meaning. If we now apply the collocation method based on
the Gauss points to this smooth ODE on the single interval[tn, tn+1], we will get the
collocation solution ˜uh for which we have the following error bound,

‖zn(t)− ũh(t)‖∞ ∼ O(hs+1), for t ∈ [tn, tn+1]

It is easy to see that ˜uh(t) ≡ uh(t) whereuh(t) is the collocation solution satisfy-
ing (2.1). Therefore, available superconvergent interpolants for BVODEs can now be
employed for this local ODE to obtain an accuratelocal interpolant ¯uh(t) with the
following error bound,

‖zn(t)− ūh(t)‖∞ ∼ O(h2s), for t ∈ [tn, tn+1].

Notice that this error bound could be improved toO(h2s+1), the optimal local ac-
curacy of the superconvergent interpolant. Although the local order of accuracy is
significantly improved by employing the interpolants constructed for ODEs, the error
bound for the global accuracy remainsO(hs+1) since,

‖y(t)− zn(t)‖∞ ∼ O(hs+1), for t ∈ [tn, tn+1].

due to the implicit presence of low order collocation polynomial uh(t) in the defini-
tion of f̃ . Any attempt to increase the accuracy of the interpolant appearing in the
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integrand will result in emergence of implicit systems of equations similar to the sit-
uation for CRK methods. At the end, it has to be remarked that to achieve this local
accuracy,f̃ has to be a smooth function. This would be the case when the mesh is
necessarilyθ−invariant. We note that the number of Gauss points does not usually
exceed 4 in practice. Now, as examples of our general approach, we derive specific
interpolation schemes fors = 2 ands = 3.

3.1 Bootstrapping Interpolant for s = 2

For s = 2 it is straightforward to derive the interpolantu(1)(t) ∈C1[t0,T ] as we need
no bootstrapping step. The interpolant is represented as,

u(1)(tn +θh) = b1(θ )yn + b2(θ )yn+1+ hb3(θ )k̃0,1+ hb4(θ )k̃0,2

where,

b1(θ ) = 2θ 3−3θ 2+1, b2(θ ) =−2θ 3+3θ 2
,

b3(θ ) = θ 3−2θ 2+θ , b4(θ ) = θ 3−θ 2
,

andk̃0,1, k̃0,2 are computed as in (3.1).

3.2 Bootstrapping Interpolant for s = 3

In this case we need two bootstrapping steps. In the first step, (i.e., deriving a 5th order
piecewise polynomial interpolant) we use the first Gauss point ρ1 =

1
2 −

√
15

10 , whose
associated stagek1 (see (2.2)) is already available from the collocation solution, as
an additional abscissa which yields,

k1 = f (tn +ρ1h,uh(tn +ρ1h))+
∫ tn+ρ1h

tn+ρ1h−τ
K(tn +ρ1h,s,uh(tn +ρ1h),uh(s))ds,

u(1)(tn +θh) = b1(θ )yn + b2(θ )yn+1+ h(b3(θ )k̃0,1+ b4(θ )k̃0,2+ b5(θ )k1),

b1(θ ) =
√

15θ 4+(2−2
√

15)θ 3+(
√

15−3)θ 2+1,

b2(θ ) = −
√

15θ 4+(−2+2
√

15)θ 3+(3−
√

15)θ 2
,

b3(θ ) = (−5
2
−

√
15
3

)θ 4+(6+
2
√

15
3

)θ 3+(
9
2
−

√
15
3

)θ 2+θ ,

b4(θ ) = (
5
2
−

√
15
3

)θ 4+(−4+
2
√

15
3

)θ 3+(
3
2
−

√
15
3

)θ 2
,

b5(θ ) =
5
√

15
3

θ 4− 10
√

15
3

θ 3+
5
√

15
3

θ 2
.
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In order to construct an optimal 6th order (minimum number of stages)C1 inter-
polant, we need four additional abscissae. We performed a search over 2 free param-

eters (abscissae) through various numerical experiments and choseρ (1)
1 = 0,ρ (1)

2 =
1
2,ρ

(1)
3 = 2

3,ρ
(1)
4 = 1 as a result of an attempt to minimize the amplitudes of the

Hermite-Birkhoff basis polynomials (note thatρ (1)
1 andρ (1)

4 are correspondingly as-
sumed 0 and 1 to ensureC1 continuity). Having computed̃k1,4, k̃1,5, k̃1,6 and k̃1,7

according to (3.4) we obtain the 6th order interpolantu(2)(t) as,

u(2)(tn +θh) = b1(θ )yn + b2(θ )yn+1 + h
(

b3(θ )k̃1,4+ b4(θ )k̃1,5+ b5(θ )k̃1,6

+ b6(θ )k̃1,7
)

,

where the Hermite-Birkhoff basis polynomials, for this choice of ρ (1)
1 ,ρ (1)

2 ,ρ (1)
3 and

ρ (1)
4 are,

b1(θ ) = 24θ 5−65θ 4+60θ 3−20θ 2+1,

b2(θ ) = −24θ 5+65θ 4−60θ 3+20θ 2
,

b3(θ ) = 4θ 5− 139
12

θ 4+
73
6

θ 3− 67
12

θ 2+θ ,

b4(θ ) = 16θ 5− 112
3

θ 4+
80
3

θ 3− 16
3

θ 2
,

b5(θ ) = −27
4

θ 4+
27
2

θ 3− 27
4

θ 2
,

b6(θ ) = 4θ 5− 28
3

θ 4+
23
3

θ 3− 7
3

θ 2
.

We have performed several numerical tests using various sets of abscissae, resulting

in eitherC0 (for example withρ (1)
1 = 1

3,ρ
(1)
2 = 4

5,ρ
(1)
3 = 1

5,ρ
(1)
4 = 2

3) or C1 inter-
polants and, in each case observed the predicted improvement for order of conver-
gence.

4 Numerical Results

In this section we present our numerical investigations of the improved interpolants
derived in Sect. 3 (based on the procedure outlined in 3.1-3.5 ). The observed orders
of convergence for the discrete collocation solution, the collocation interpolant and
the improved interpolant are reported fors = 2,3 for one typical problem. The prob-
lem is the well-known Volterra population system of ’predator-prey’ dynamics (1.2)
with the following set of parameters [16],

ε1 = 0.02, ε2 = 1, γ1 = 1,γ2 = 1, τ = 0.2, T = 2.

The history functions are chosen to beφ1(t) = φ2(t) = 3, t ∈ [−τ,0]. We also set
F1(t) = F2(t) =

1
2! t

3e−3t . This problem doesn’t have a known closed form solution. A
reference solution is determined using collocation at 5 Gauss points over a fine mesh
of 320 subintervals. The observed rate of convergence is estimated in two ways. First,
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the approximate solution is evaluated at a large number of non-mesh sample points
on each subinterval. Then,RI is computed as the base 2 logarithm of the ratio of the
maximum observed value of the global error associated withvi to that ofvi+1, where
vi and vi+1 are correspondingly vector approximate solutions associated with two
consecutive sample mesh (the number of mesh points is doubled for each increase in
i.)

To calculate a second estimate, denotedRII (that can be computed without any
knowledge of the reference solution), a total of 320 equally-spaced sample points
are identified. These sample points are used to estimate the order of convergence by
observing how well the coarse mesh solutions agree asi increases. Suppose thatvi,
vi+1 andvi+2 are correspondingly vector approximate solutions associated with three
consecutive sample meshe evaluated at the same common sample points. Then, the
rate of convergence can be estimated byRII defined as log2(

max|vi+1−vi|
max|vi+2−vi+1| ).

For s = 2,3, tables 4.1 and 4.2 reportRI andRII for the collocation polynomial
and the superconvergent interpolant. In addition, these estimates of the observed order
are reported for the collocation solution at the mesh pointswhich represent the order
of convergence for the discrete collocation solution.GE stands for the maximum
global error over the sample mesh, andThr. O. indicates the theoretical expected
order of convergence. Tables 4.1 and 4.2 show that the expected theoretical order of
convergence is achieved for the superconvergent interpolants on this problem. Our
numerical experiments demonstrate that the reported ratesof convergence become
less consistent with that predicted by our analysis as the sample mesh becomes finer
and the accuracy of the approximate solution starts to approach the accuracy of the
generated reference solution. This could be resolved by carrying out the computations
for the reference solution in higher precision. While the superconvergent interpolants
do exhibit the same order, they seem to be less accurate than the discrete collocation
solution. However, we should note that both RI and RII are calculated by sampling
at a large number of non-mesh points relative to the number ofmesh points. Also,
the additional explicit calculations for the superconvergent interpolants will result in
larger roundoff and discretization errors.

We ran several experiments by increasing the accuracy of thederivative data ( by
increasing the optimal number of stages by one and generating new polynomials, or
alternatively by recalculating the derivative data in the last stage based on the com-
puted high-order optimal interpolant) and monitored the global error associated with
the superconvergent interpolant. The global errors associated with the improved in-
terpolants become closer to the discrete global error fors = 2, however, the orders of
convergence start to become less consistent due to the reason mentioned above. For
s = 3, the roundoff error resulting from the stage calculations, polynomial evalua-
tions, etc. can not be ignored and indicates the need for higher precisions if improved
optimal-order interpolants are to be realized. As seen in table 4.3, fors= 2, the global
errors become closer to the discrete global errors (table 4.1); however, the orders be-
come less consistent with the theory. The new superconvergent interpolant for this
test was generated by recalculating stage derivatives using the most recent optimal
interpolant and also using one additional stage derivativeevaluated at abscissac = 2

3.
For more examples of such phenomena in case of boundary valueODEs see [9].
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We also ran the same numerical experiments using the improved variation of the
bootstrapping process. The global errors were almost identical with those reported in
the tables 4.1 and 4.2, however this variation required lessstorage space.

Figure 4.1 displays the execution time required for the computation of the collo-
cation polynomial and also the total time for computing boththe underlying colloca-
tion polynomial and the associated superconvergent interpolant for various mesh sizes
with s = 2,3. As can be seen from the figure, the major execution cost is for the orig-
inal collocation calculations which involve solving a nonlinear system of equations
on each subinterval. Another major cost is the constructionof the superconvergent
interpolant after the the collocation solution has been computed. However, as these
figures show, this is only a fraction of the original collocation cost. The code has been
implemented in a numeric-symbolic fashion and therefore the execution times are not
optimal. However, it allows a comparison between the setup of the collocation and
superconvergent interpolants. All computations are carried out in Matlab in double
precision.
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