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Superconvergent interpolants for collocation methods
applied to Volterra integro-differential equations with d elay
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Abstract Standard software based on the collocation method forrdifitéal equa-
tions, delivers a continuous approximation (called thdooaltion solution) which
augments the high order discrete approximate solutiongipabvided at mesh points.
This continuous approximation is less accurate than theretis approximation. For
'non-standard’ Volterra integro-differential equatiomgh constant delay, that often
arise in modeling predator-prey systems in Ecology, théocation solution isC°
continuous. The accuracy @&(h%t1) at off-mesh points an@®(h?) at mesh points
wheres is the number of Gauss points used per subintervalheraders to the step-
size. We will show how to constru@! interpolants with an accuracy at off-mesh
points and mesh points of the same orde}.(Zhis implies that even for coarse mesh
selections we achieve an accurate and smooth approximat®soSpecific schemes
are presented fa= 2, 3, and numerical results demonstrate the effectivenes$seof t
new interpolants.
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collocation- Bootstrapping Order conditions
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1 Introduction and Motivation

Progress in the qualitative and numerical understandirigatdy Volterra Integro-
Differential Equations (DVIDES) is enhancing the use ofthipe of equations in
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various fields of Biology [14], Medicine [6] and Engineerildany DVIDESs arising
as mathematical models in population dynamics, rheoldgyhave the general 'non-
standard’ form,

YO =fey) + [ Ky ys)ds @y

fort € [to,T], f : Rx R"—= RMandK : Rx Rx R"x R™ — R™. To make the prob-
lem well-defined, a unique solutiorit) is usually identified by specifying an initial
functiong(t) fort € [to — T,to], with @(t) : R— R™. As a particular case in traditional
population biology, the following system models the dynesmf two interacting
species often called a ’predator-prey’ system,

Np(t) = Ny (t) (&1 — iNa(t) — [ FL(t —)Np(s)ds),
(1.2)
Nj(t) = Na(t) (—&2+ yaNa(t) + i Fa(t — )Ny (s)ds) ,

fort € [0, T], whereg >0,y > 0,F(t) > 0is continuous, anbl; (t) = @ (t), Na(t) =
@(t) fort € [to— T,1o]. N1 (t) andNy(t) represent two populations (prey and predator)
at timet (see for example [5, 18] for more details). Multi-specieslegical systems
can be derived as extensions of this system [19, 1]. For grificonditions regarding
the existence of solutions and also the long term behavispetial types of such
systems see [10, 11].

Numerical investigations concerning the approximatetgmiiof 'standard’ Volterra
integro-differential equations have been considered tiverast few decades [4].
In particular, after the systematic introduction of Ruriggta (RK) methods for
ODEs by J.C. Butcher, attempts were made to formally geizertiiese methods to
\olterra integro-differential equations (VIDES). As auéistwo particular subclasses
of Wolterra RK (VRK) methods, namely, the VRK methodsRoluzet type, and VRK
methods oBel’ tyukov type have received attention in the literature. The advantage of
these methods is that they may have explicit forms (no int@igebraic system to
be solved) despite the presence of the Volterra integral terthe equationPouzet
andBel’tyukov type methods were extended to 'standard’ VIDESs with coristalay
for fixed stepsize implementation ( see for example [21,@D, Dne can straightfor-
wardly extend these methods to the 'non-standard’ DVIDEBS wonstant delay. A
major deficiency of these methods is that the discretizagiarpart of the method and
no continuousinterpolant is produced. There have been some attempts to make such
methods more effective and convenient for users. In pdaticsome investigations
[7] have focused on the development of smooth interpolamseenting the discrete
solution generated by the discrete numerical method. Atgthahe computation of
these interpolants imposes an inevitable cost, they allogvto consider the result-
ing method as providing a continuous approximate solutiotiné original equation
throughout the domain of interest that might be used foralization, root-finding
and other purposes.

One approach for developing numerical methods that detersuch smooth in-
terpolants of the discrete solution is based on the use direarus Runge-Kutta
(CRK) methods. Ars—stage p" order, explicit discrete Runge-Kutta formula when
applied to the standard initial value problem (IVP),

)/ = f(tvy)’ y(a) =Yo, forte [a’ b]v
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determines,
S
Y1 =Yn+hn ) wik;,
2,

where,
i—1
ki = f(tn+cihann+hnz aijkj), i=1,...,s
=1

An additional (S— s) stages are introduced to obtain an optimal-order contiauou
(rather than 'discrete’) approximation for ah¥¢ (tn,th11) as,

Un(t) = yn+hnzbJ ki,

wherebj (1) is a polynomial of degree at mopt+ 1 andt = t" . The parameters

defining such a CRK method are usually chosen to ensure mpiebemse polyno-
mial u(t), defined by the mesp < t; < ... <ty and the associated polynomialgt)
n=0,1,...,(N-1),isinC[a,b] (to accomplish this the first additional stage; is
defined byks1 = f(tht1,Ynt+1) ). Different criteria, such as the quality of the defect
and the corresponding defect estimate associated wittotitenaous interpolant, are
used to determine the number of additional stages as welkesspiecific coefficients
used to define them.

CRK methods have been applied to a more general class of D¥/IBDEL7].
When applied to (1.1), thi’s (required for the definition of the local interpolant
un(t)) are defined by the following system of equations (see [17]),

i1 th+Cihn i1

k|—f(tn+clhnaYn+hnZa+JkJ / (tn‘f'cihnasaYn‘thzai,jkjau(s))dsa
th+Gihn—T =1

fori=1,2,...,s whereu(s) is the piecewise polynomial numerical solution defined
by [ui(s)]N5! for s€ [to, tn]. For this CRK, we have a system ok m coupled equa-
tions (defmmg thdg’s), sinceun(t) is defined in terms of all thie's introduced on this
step. This CRK method allows for variable stepsize impletaigon as well as error
control, and is able to cope with general time-dependeraydeHowever, for VIDES
with constant delays and fixed stepsize, we would still neesblve this implicit sys-
tem of equations on each step and the order of accuracy wotilzeroptimal. In this
investigation we will show that for problem (1.1) and metha¢hich determine high
order approximations at mesh points, CRKs can be implerdesiid a significant
improvement in efficiency to produce high order approximdifor allt € [to, tn].
Another approach which determine€&interpolant to approximate the solution
of (1.1), and which is the approach we will focus on in this grajs based on col-
location formulas. A detailed analysis and justificatiortro$ approach for standard
DVIDEs can be found in [2,3]. The approach and analysis wésnebed to apply to
problems of the form (1.1) in [16]. Despite the high ordermpgmations at the mesh
points, theC? interpolant is not as accurate at off-mesh points for thesthaus.
Collocation methods applied to Volterra equations with engeneral non-vanishing
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delays,0(t) :=t — 1(t), often impose limitations on the stepsize selection gisate
The points characterized (¢, 1) = &, for &, =to,u =0,1,... are called primary
discontinuity points. The solutions of DVIDESs can suffesrfr a loss of regularity at
these points [2]; therefore, the detection and inclusiothef as mesh points (con-
strained mesh) is necessary for a reliable numerical metgide from including the
discontinuity points in the mesh which is a requirement foy BVIDES solver, the
mesh has to b@—invariant, i.e., the mesh points within the inter{&, &,,,1] must
all be mapped (unde#(t) =t — 7(t)) onto mesh points within the interv, 1, &,]
whereé’s are the propagated discontinuity points. In additior, delay argument
is assumed to be increasing. These are strong conditionaranessential for both
the convergence analysis and for ease of implementatioiodation method has
been shown to be very effective if a constant stepsize giyaseadopted. For more
general delays, th@—invariant property is unlikely to be satisfied and this makes
the method impractical. In this investigation, in conttasthe approach in [17], we
assume the collocation method produces an approximatgssobn a uniform mesh
with superconvergent behavior at mesh points. Then, wedntre a post-processing
procedure to construct improved interpolants, using auithi explicit stages, in or-
der to improve the off-mesh accuracy to be consistent wighmtlesh-point accuracy.
It is worth mentioning that the proposed bootstrapping edace cab be applied to
more general delays based on a variable stepsize impletioenda long as the col-
location solution with high order accuracy at mesh pointsalable.

Discontinuous Galerkin method is a different numericalrapph to non-standard
(non-delay) VIDEs wherd (see (1.1)) is linear. It was investigated in [13] and the
associated error bounds at the mesh points were established

Numerical methods generating continuous polynomial agprations to DVIDEs
will generally involve solving implicit systems of equati® over each subinterval.
The size of the implicit system grows as the desired off-naesliracy becomes more
stringent. In this paper, we show how to improve the accuaacysmoothness of the
collocation interpolants for DVIDESs using a few additioeaplicit computations (on
each step).

2 Overview of the Collocation Methods

In the application of the collocation approach to (1.1) wk agsume that the follow-
ing standard properties are satisfied:

— f andK are sufficiently smooth functions over their respective dors,
— aconstrained uniform mesh is employed (i.t.:= { for somer € N) ,

— the collocation abscissae are chosen to be the Gauss foits (< ¢ < ... <
Cs < 1),
— the collocation solution associated with stelg a vector of piecewise polynomi-
als (each of degree€ s), uy(t), which is the unique solution of
th+cih
Unh(ta+cih) = f(ta+cih, un(th+cih)) + e K(th+cih, s, up(th+cih), up(s))ds,
n (2.1)
subject to the initial conditionp(t) := ¢(t) whent € [—1,0].



Title Suppressed Due to Excessive Length 5

Note thatun(t) can be expressed in the fouR(ty +vh) = ya +h35_; Bj(v)kj where
Kj = Uf,(tn + cjh), Yn == Un(tn), Bj(V) := [y Lj(S)ds and theL;'s are the Lagrangian
basis functions associated with the Gauss points. Usirsgntbiiation, (2.1) can be
rewritten as,

s
ki = f(tn+cih7yn+hz aijkj)+Fn(tn+Cih)
=1

S S S
+ hei ZblK(tn+cih;tn+ciclh7Yn+hZ aijkj7yn+hz Bj(cic)kj), (2.2)
= =1 =1

where we have sedj == Bj(c), by ;== (1) for1<i<s,1<n<N-1. Note
that thelag term F, refers to the integrals computed over past intervals. Afsthe
implementations we are considering we will use the intexfwol quadrature formu-
las using thes abscissae based on the Gauss pofoi} to discretize the integral
terms. Once this implicit nonlinear system of dimensior sis solved, the colloca-
tion solution is completely determined. The theory of caditon at Gauss points for
the standard and non-standard DVIDEs (see for examplel@]Breveals that for
sufficiently smallh we achieve local superconvergence at the mesh points, i.e.,

Iy(t) = Un(ti) [l = O(h*), i1=0,1,...,N
while the global order of convergence achieved by the catioa interpolant is,
[¥(t) = Un(t) [« = O(*Y), for t € fto, T].

In the next section, we will demonstrate how to extend thén tdgcuracy that is
available at the mesh points to the off-mesh points by coosirg new improved
continuous approximations.

3 Derivation of Improved Interpolants

Deriving these improved asuperconvergent interpolants has been investigated for
methods for boundary value ordinary differential equati(B\ODES) where the col-
location solution is also available throughout the intéigrainterval. The additional
computation concerned with the superconvergent intenpaecurs after the collo-
cation software delivers the solution over the integratitarval. Some authors have
used information available from adjacent subintervalsh tiackward and forward,
to construct an improved interpolant of ordh?) over each subinterval [15]. Oth-
ers, restrict the superconvergent interpolant to use imésion only from within the
current subinterval. In [8], the authors use the theorkfieanework of continuous
Runge-Kutta formulas for IVPs to construct superconvergeerpolants of order
O(h?) for BVODES. They use a continuous version of the well-knoBut¢her)
order conditions as a basis to augment the collocation solution with inexens
mono implicit Runge-Kutta (MIRK) stages. This scheme us$esrhinimum num-
ber of additional stages required to achieve the desiragsracg. Runge-Kutta theory
for Volterra integro-differential equations was develdg®y Lubich in [12]. Later,
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Brunner showed that the collocation method applied to Ydtentegro-differential
equations can be interpreted as extended s—stage implicitPouzet Runge-Kutta
method [2] with optimal order 2at mesh points, whergis the number of Gauss
points. Therefore, it might be possible to develop numégchemes, based on di-
rect use of the continuous version of the collocation-bddédrder conditions for
VIDEs, to obtain high accuracy at off-mesh points by re-gdhe collocation stages
already computed. In this case, the additional stages am@nwputed as straightfor-
ward as in BVODESs due to the presence of lag terms, and we reigd need to
use implicit stage derivatives which is undesirable. Inithold to complicated alge-
braic (order condition) equations that arise, this appgndacestricted to first order
DVIDEs.

An alternative technique, uses thaotstrapping approach, first introduced in [7]
for constructing a sequence of continuous interpolantd\f®s using the discrete
information produced by a RK method. It was subsequentlyl dse constructing
high order interpolants for BVODES in [9]. This scheme does mecessarily use
the fewest number of extra stages, but is straightforwardptoly to higher-order
differential equations. Both these approaches have beaiaped for ODEs where
the underlying equation possesses sufficient smoothnesmtiiduce an extension
of the bootstrapping approach which can be used for the DIDB.

Given the collocation solution(t) of (1.1) we define, on stem

~ tn
ko.l = f(tnaYn)‘f' 8 K(tn,S,ynaUh(s))ds
n—T
~ thi1
k0,2 =1 (tn+1a yn+l) + K (tn+]_, S, Yn+1, Uh(s))ds (31)

thy1—T

and we construct a Hermite-Birkhoff polynomial of degreeraists+ 1, u@ (t),
interpolating mesh datg,, a1, derivative dateko; andkp» ands— 2 additional
stages,

Kozii = F(ta+ PN n(ta + o 7))

©)
Tt p@h s un(t+ p©h d
© (th+ 05 'h, S, un(th + o5 '), Un(s))ds,
th+p, h—1

i=1..s5-2

+

Wherepi(0> 's are arbitrary abscissae {0,1). The interpolantu®(t) can be written
as,

@ (th+ 6h) = by (0)yn+b2(6)yni1
s—2

+ hbg(8)ko 1+ hbs(8)ko2 + h 21 bi+a(8)ko2+i, (3.2)

where 8 = =) and theb;(6)'s are known polynomials of degree s+ 1. This

selection oiko 1 andkoz reduces the cost of determining the stages needed on each
step smceko 2 for stepn equalsko 1 for stepn+ 1. We then introduce, for the purpose
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of analysis, the Hermite-Birkhoff polxnomiyql_) (t) interpolating the exact solutions
Y(tn), ¥(th+1), the exact derivative datg 1 andkg 2,

o1 1= f(tayt) + [ K5 y(t).y(9)ds

the1

EO.Z = f (thrl, y(tn+l)) + K (tn+la Sa y(tn+1) ) y(S))dS.

thy1—T

and exact additiona— 2 derivative data,

o211 1= 1(ta+ A hy(ta+ p{Oh)
(0)
tn+p, ' h
/ o, Kltnt+p7hsy(ta+ph).y(s)ds
th+p; h—1
i=1,..,5-2

+

The interpolany!¥) (t) can then be written as,

YV (ta+ 6h) = by(6)y(tn) +b2(6)y(tn+1)
_ _ s—2 _
+ hb3(6)ko 1+ hba(8)ko 2 +h Zibi+4(9)k0,2+i (3.3)

Since constructed mesh ensures that the primary discatytpnints are included in
the set of mesh points, the exact solutigh) is sufficiently smooth ovefty,tn1).
Therefore, according to the theory of Hermite-Birkhofiargolation we have,

Ily(t) =y ()l = O(h**?)

In addition, since the available approximate solutignsindy;, 1 are O(h%®), and
un(t) approximates the exact solutigtt) to O(hs*?), from (3.2) and (3.3) we have
(assuming the boundedness of partial derivatives or daitdapschitz conditions for
f andK),

YV () —uP b)) = o(h**?)
and, using the triangle inequality, we obtain,
ly(®) —u®(t)]| = O(h**?).

As seen above, for collocation basedsa 2 Gauss points we get the optimal order

by computing only two extra explicit derivative valukg; andkg,. Fors> 2 it is
natural to choose thg’s to be a subset of the Gauss points because these values
are already available from the original collocation conapioins. We now consider
constructing an interpolant? (t) of degrees—+ 2 by interpolating the mesh daya,

Yn+1 and additionas+ 1 stages,

Kioti 1= H(tn+ o0 Ut -+ o)
@y,

th+p;
+ / (1) K(tn+pi(l>h7s7 u(l) (tn +p|<1)h)a u(l> (S))dsa
th+p, ' h—1

i=1,..5+1 (3.4)
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Notice that the previously defined end point derivative J@I@and I~<o,2 are not ac-
curate enough to be used in this case. Aig8,(t) is only in C%[to, T] unless the set
of abscissae{pf”; i=1,...,5+ 1} contains the subsd,1}. Applying a simi-
lar analysis as above, we conclude that the new constructepolant satisfies the
following error bound,

ly(t) - u®(t)]| = O(h**?)

The bootstrapping algorithm proceeds in a similar manndrmaoduces a sequence
of interpolants until an interpolant of the desired ordeoli¢ained. In general, hav-
ing computed the interpolant? (t),q > 1 of orderO(hst9*1), the new interpolant
u(@t1(t) of orderO(hMnsta+2.2s}) is constructed as,

stq 3
u@ Dty 4 6h) = by(8)yn + b2(8)yni1+h ZLbi+2(e)kq,i ,
i=

whereb;(6)’s are Hermite-Birkhoff polynomials of degrese- q+ 1 (for ease of no-
tation, we have used the notatitm, b, andb;.» for all intermediate and optimal
interpolants while they have different meanings dependimthe selection of abscis-
sae) and,

= fta+pVh,u@ (t, 4 pVh))
<q)h

£

th+p;
+ / K (tn+ 0'Vh,s,u@ (t, 4+ o Vh), u@(s))ds,

tn+pi(q)h—1'
i=1,..,5+q (3.5)

In order foru®1(t) to be C' continuous, the set of abscissae corresponding to
{kgi;i=1,...,s+q} has to contaif0,1}. The error bound

Iy (t) — ul@ D (t)[| ~ O(hmin{s+a+22s}

is valid for any selection of distinct abscissagnl] used on each step of the boot-
strapping process.

The algorithm requires storing not only the optimal-oreeeipolants for each of
the past subintervals, but also all intermediate polynésiiathe past steps. This
requirement could be dropped by using the optimal-orderpaiants in computing
the lag terms appearing in stage calculations. This leadwé&oiation of the outlined
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Table 3.1 Number of additional explicit stages required to consteustiperconvergent interpolant of order
2s

S 112|3]| 4
Number of additional stages - | 2 | 5 | 11

algorithm for which we have,
Kai == f(tn+ 0 V0, u@ (t, + p@h))

t
+ / K (ta+ 0{Vh,5,uD (tn + p{¥h),u=(s))ds
tn+p\Vh—1
tn+Pi(q)h

+ / K (tn+ 0'Vh,5,u@ (t, 4+ o Vh), u@(s))ds,
th
i=1...,s+0q

whereu(s-Y(s) is the optimal-order interpolant of ord&(h®), already computed

in the past steps, and% (s) is the most updated interpolant in the current step. One
obvious advantage of this variation is that; can be re-used in all bootstrapping
steps and this reduces the number of required additiorggstdable 3.1 reports, for
this variation, the total number of additional stages regflifor constructing super-
convergent interpolants of orde&(h?) for various values of.

An important point regarding this algorithm is that, altigbuthe lower order
stages belonging to previous steps are not re-used, alti@ulli stages are com-
puted explicitly despite the presence of an integral teraluated over the current
subinterval of integration. This will only be true if the imgved interpolants are each
computed sequentially in a step by step manner. It shouletezirthat in addition to
the roundoff and truncation errors that already affect #slts, we have additional
sources of error when treating integral equations, i.eadegature discretization error
and iteration error arising in the solution of the assodidteplicit equations. These
additional sources of error contribute directly to the aacy of the approximate so-
lution.

As mentioned earlier, augmenting the high order discreftecation solution has
also been investigated for BVODESs [8,9]. A question arisbstiver the most effec-
tive superconvergent interpolants proposed for BVODEshmnsed for extending
the discrete collocation solution of DVIDEs. If so, the ritisig method could be
more efficient because the interpolants derived for BVOD$&es ai smaller number
of extra explicit stages. Table 3.2 reports the number oftmaicl stages required to
construct superconvergent interpolants based on theseDBVOrmulas. It should
be remarked tha{y 1 andkg » (derivative data at end points) are calculated using only
two function evaluations in the case of collocation appliedBVODEs while for
DVIDEs they would be more expensive to compute due to the igiaick discretiza-
tion and lag term calculations. Also, these values are egtusall subsequent steps
of the bootstrapping process for BVODEs while new deriatralues (at least the
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Table 3.2 Number of additional explicit stages based on BVODE int&mis of order 8

5 112]|13]4
Number of additional stages - | 2 | 4 | 9

right end point derivative) have to be computed for DVIDEseath bootstrapping
step. This reduces the number of additional stages reqtoreBVODE formulas
compared to those in table 3.1.

Suppose we are stepping framto t,, 1. We can define a local 'ODE’ problem
associated with the DVIDE (1.1) as:

40 = ft20)+ [ KE.s2(0,ms)ds
Zo(tn) = Yn (3.6)

whereun(s) in the integrand is the available low order collocation palsnial com-
puted up totn,1. Repeated differentiation of the right hand side of (3.6hashe
Leibnitz rule reveals that we have the same order of smosthiwe this local prob-
lem as we have fof andK. This is because whene [t,_r,tn_r1], the collocation
solutionuy, is either the previously computed collocation polynomifatlegrees or
the predefined smooth functignin caset, .1 < tg. The local problem (3.6) could
then be written in the followingmooth ODE-equivalent form:

(1) = f(t,z(1)),
Zn(tn) =VYn

wheref has an obvious meaning. If we now apply the collocation methased on
the Gauss points to this smooth ODE on the single intdtyah. 1], we will get the
collocation solutioruy; for which we have the following error bound,

|1Z(t) = Gn(t) o ~ O(h®*),  for t € [tn,tnsd]

It is easy to see thaiy(t) = un(t) whereup(t) is the collocation solution satisfy-
ing (2.1). Therefore, available superconvergent intempis for BVODES can now be
employed for this local ODE to obtain an accurlieal interpolantuy(t) with the
following error bound,

[1Za(t) = Un(t) [l ~ O(h®),  for t€ [tn,tara).

Notice that this error bound could be improved@h?s*1), the optimal local ac-
curacy of the superconvergent interpolant. Although treall@rder of accuracy is
significantly improved by employing the interpolants cousted for ODEs, the error
bound for the global accuracy remai@shs*!) since,

I(t) = Za(t) ]| ~ O(K®H),  for t € [tn,tara].

due to the implicit presence of low order collocation polgnial up(t) in the defini-
tion of f. Any attempt to increase the accuracy of the interpolaneappg in the
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integrand will result in emergence of implicit systems ofiations similar to the sit-
uation for CRK methods. At the end, it has to be remarked thathieve this local
accuracyf has to be a smooth function. This would be the case when thh imes
necessarilyd —invariant. We note that the number of Gauss points does nallys
exceed 4 in practice. Now, as examples of our general appreacderive specific
interpolation schemes far= 2 ands= 3.

3.1 Bootstrapping Interpolant for s = 2

Fors= 2 it is straightforward to derive the interpolantt) (t) € Cl[to, T] as we need
no bootstrapping step. The interpolant is represented as,

u® (th+ 6h) = b1 (8)yn +b2(0)yns 1+ hbg(e)ko,l + hb4(9)R0,2
where,
b1(0) = 26°—36%+1, by(0)=—26°+362
b3(8) = 83 —262+6, by(6)=6°—6?

andkg 1, ko2 are computed as in (3.1).

3.2 Bootstrapping Interpolant fors = 3

In this case we need two bootstrapping steps. In the firstGtep deriving a § order

piecewise polynomial interpolant) we use the first Gausatgmi= % — \/1—1—05, whose
associated stagq (see (2.2)) is already available from the collocation sohytas

an additional abscissa which yields,

tn+p1h
ki = f(tn + p1h, un(ta + p1h)) + - K(tn + p1h, s, un(th + p1h), un(s))ds,
n+p1h—T

U (tn+ 8h) = by(8)yn + ba(8)yn 1+ h(bs(8)ko 1 + ba(8)ko2 + bs(8)k1),

by(6) = V150% + (2—2v/15)60% + (V15— 3)6% + 1,
ba(8) = —V150%* + (—2+2V15)6% + (3— V15)6?,

bs(6) = (—g - g)e‘w (6+ %E)e% (g —~ ?)eu 0,
ba(6) = (g — ?)9‘% (—4+ %1—5)6% (g — ?)62,

_ 5\21—594_ 10\3/1_593+ Séﬁe?.
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In order to construct an optimthG order (minimum number of stage€} inter-
polant, we need four additional abscissae. We performedralsever 2 free param-

eters (abscissae) through various numerical experimedtslaosepil) =0, pél)
2,p3l = 3,p41 =1 as a result of an attempt to minimize the amplitudes of the

Hermite-Birkhoff basis polynomials (note th/ail andp4 are correspondingly as-
sumed 0 and 1 to ensu@ continuity). Having computeﬂu, k15, kle and k17

according to (3.4) we obtain théBorder interpolant®(t) as,
U@ (tn + 6h) = by (8)yn+b2(8)yns1 + h(bs(8)ki 4+ ba(B)ky s+ bs(6)ky e
+ be(8)ky7),
where the Hermite-Birkhoff basis polynomials, for this idmofpil),pél),pél) and
1
p,”’ are,

b1(8) = 246° — 650 +600° — 2002+ 1,
by(6) = —246° + 650 — 60934—2092

139 67
_ 5 4 3
bs(6) = 46°— 6%+ 69 ]29+9
112 80 5
_ 5 _ 2
ba(6) = 160° — 39-i39 39,
bs(6) = — 94 i:g 329%
28 , 23, 7
_ 5 3 _2
be(6) = 460 -ge 5030

We have performed several numerical tests using variossnsi;abscissae, resulting
in eitherC? (for example W|thp1 3,p2 5,p3 5,p4 = 2) or C! inter-
polants and, in each case observed the predicted improvdoresrder of conver-
gence.

4 Numerical Results

In this section we present our numerical investigationsefimproved interpolants
derived in Sect. 3 (based on the procedure outlined in &3-3he observed orders
of convergence for the discrete collocation solution, tbikocation interpolant and

the improved interpolant are reported B+ 2, 3 for one typical problem. The prob-
lem is the well-known Volterra population system of 'premfgprey’ dynamics (1.2)

with the following set of parameters [16],

§=002,5=1y=1,p=11=02T=2

The history functions are chosen to bgt) = @(t) = 3, t € [-1,0]. We also set
Fi(t) =F(t) = %t3e*3‘. This problem doesn’t have a known closed form solution. A
reference solution is determined using collocation at 53Sgwints over a fine mesh
of 320 subintervals. The observed rate of convergenceimaistd in two ways. First,
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the approximate solution is evaluated at a large number wfmesh sample points
on each subinterval. TheR] is computed as the base 2 logarithm of the ratio of the
maximum observed value of the global error associated wiit that ofv;, 1, where

v; andvj, 1 are correspondingly vector approximate solutions assetiaith two
consecutive sample mesh (the number of mesh points is dbfdsleach increase in
i.)

To calculate a second estimate, dend®d (that can be computed without any
knowledge of the reference solution), a total of 320 equsfigced sample points
are identified. These sample points are used to estimatediee af convergence by
observing how well the coarse mesh solutions agradrageases. Suppose that
Vi1 andyvj, » are correspondingly vector approximate solutions astegtiaith three
consecutive sample meshe evaluated at the same commoresamis. Then, the

rate of convergence can be estimatedRily defined as Iog%).

Fors= 2,3, tables 4.1 and 4.2 repd®l andRlIl for the collocation polynomial
and the superconvergentinterpolant. In addition, theimates of the observed order
are reported for the collocation solution at the mesh paoitish represent the order
of convergence for the discrete collocation soluti@k stands for the maximum
global error over the sample mesh, afldr. O. indicates the theoretical expected
order of convergence. Tables 4.1 and 4.2 show that the eegbtfneoretical order of
convergence is achieved for the superconvergent intarsotan this problem. Our
numerical experiments demonstrate that the reported odtesnvergence become
less consistent with that predicted by our analysis as timpkamesh becomes finer
and the accuracy of the approximate solution starts to agprthe accuracy of the
generated reference solution. This could be resolved byingrout the computations
for the reference solution in higher precision. While thpemgonvergentinterpolants
do exhibit the same order, they seem to be less accuratehtbaliscrete collocation
solution. However, we should note that both Rl and RII arewdated by sampling
at a large number of non-mesh points relative to the numberesh points. Also,
the additional explicit calculations for the superconesrignterpolants will result in
larger roundoff and discretization errors.

We ran several experiments by increasing the accuracy afdhieative data ( by
increasing the optimal number of stages by one and gengnag¢iw polynomials, or
alternatively by recalculating the derivative data in thstlstage based on the com-
puted high-order optimal interpolant) and monitored thabgl error associated with
the superconvergent interpolant. The global errors agsstiwith the improved in-
terpolants become closer to the discrete global errcs fo2, however, the orders of
convergence start to become less consistent due to thenrgesttioned above. For
s = 3, the roundoff error resulting from the stage calculatjggedynomial evalua-
tions, etc. can not be ignored and indicates the need foehjgiecisions if improved
optimal-order interpolants are to be realized. As seerlet.3, fors= 2, the global
errors become closer to the discrete global errors (takle However, the orders be-
come less consistent with the theory. The new supercomeigierpolant for this
test was generated by recalculating stage derivativeg uk&most recent optimal
interpolant and also using one additional stage derivatraduated at abscissa= %
For more examples of such phenomena in case of boundary @&l&s see [9].
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We also ran the same numerical experiments using the imgnaration of the
bootstrapping process. The global errors were almosticintith those reported in
the tables 4.1 and 4.2, however this variation requireddessage space.

Figure 4.1 displays the execution time required for the catampon of the collo-
cation polynomial and also the total time for computing btb# underlying colloca-
tion polynomial and the associated superconvergentiatenpfor various mesh sizes
with s=2, 3. As can be seen from the figure, the major execution cost théoorig-
inal collocation calculations which involve solving a nim@ar system of equations
on each subinterval. Another major cost is the construatioe superconvergent
interpolant after the the collocation solution has beenmated. However, as these
figures show, this is only a fraction of the original colldoatcost. The code has been
implemented in a numeric-symbolic fashion and therefoeesttecution times are not
optimal. However, it allows a comparison between the sefupecollocation and
superconvergent interpolants. All computations are edrout in Matlab in double
precision.

250 ‘ ‘ ‘ ‘ ‘ 600 ‘ ‘ w
I Collocation Polynomial Il Collocation Polynomial
200! [ Isuperconvergent Interpolant 5001 |:|Superconvergent Interpolant
;‘ﬁ’\ 400
150¢ 5
o
) 300
1007 o
£ 200
|_
S0f 100}
0 0
10 20 40 80 160 10 20 40 80 160
Mesh Size Mesh Size
(@) s=2 (b) s=3

Fig. 4.1 Execution Times for s = 2 and s = 3 Gauss Points
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