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1 Introduction

Stochastic modeling and simulation have become areas of intense research in
recent years, as more sophisticated mathematical models of physical phenom-
ena became available. Stochastic differential equations arise in many applica-
tions. Examples include molecular biology, epidemiology, population dynamics,
optimal control theory, hydrology, theoretical physics and finance [1–3].

Stochastic models are computationally much more challenging than deter-
ministic models. The high computational cost of the numerical simulations
of stochastic models arising in applications motivated the search for more
efficient approaches [4,1]. One way to reduce the computational cost of an
approximation algorithm is to use adaptive time-stepping schemes to advance
the numerical solution. In the framework of ordinary differential equations,
stepsize adapting strategies have been proved to be essential in generating
optimal algorithms. While for the numerical solution of ordinary differential
equations such strategies have been well-developed [5], much less work has
been done on designing adaptive algorithms for approximating the solution to
stochastic differential equations (SDE).

The design of an adaptive time-stepping technique depends on whether the
SDE is in the Itô or the Stratonovich form, and whether strong or weak numer-
ical solution of the SDE is required. Weak numerical solutions are acceptable
when only the moments of the exact solution need to be estimated accurately,
while strong numerical solutions are required when individual trajectories of
the exact solution need to be well approximated. Both weak and strong nu-
merical methods are crucial and the choice between the two depends on the
application. According to Burrage, Burrage & Tian [6], “in genetic regulation,
for example, where the behaviour of just one molecule can be highly signifi-
cant, strong solutions can be important”. While strong numerical solutions can
be critical for stochastic models in molecular biology and biochemistry [6–9],
weak numerical solutions are sufficient for models in financial mathematics.

Adaptive time-stepping for the strong (pathwise) solution of stochastic dif-
ferential equations driven by one Wiener process was considered by Lamba [10],
Mauthner [11], Hofmann, Müller-Gronbach & Ritter [12]. Adaptivity for Stratonovich
stochastic differential equations with multidimensional Wiener processes was
studied by Burrage & Burrage [13], Burrage, Burrage & Tian [6]. In Hofmann
et al. [12], adaptive time-stepping strategies in the mean-square sense were de-
veloped, which were optimal for asymptotically small stepsizes. Adaptive dis-
cretization schemes for the weak solution of stochastic differential equations
were discussed in Szepessy et al. [14]. Gaines & Lyons [15] showed that to
guarantee convergence for variable stepsize schemes applied to the pathwise
solution of stochastic differential equations a strong order at least one dis-
cretization scheme is needed. An important difficulty in integrating the path-
wise solution of a system of stochastic differential equations is that, when rejec-
tion of stepsizes is allowed, the solution should remain on the same Brownian
path. Otherwise a bias in the numerical solution is introduced. Mauthner [11,
16] developed a general adaptive strategy for the numerical pathwise solution
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of Stratonovich stochastic differential equations with one driving Wiener pro-
cess. This strategy works as follows: once a stepsize is rejected and a smaller
stepsize is considered, the necessary Wiener integrals for the smaller stepsize
are conditioned on the previously generated Wiener integrals, corresponding
to the rejected stepsize, such that the same Brownian path is traversed. Bur-
rage & Burrage [13] introduced a general adaptive algorithm for Stratonovich
SDEs, when Runge-Kutta methods are considered and an embedded method
is used to estimate the local error. The Runge-Kutta methods employed have
strong order one for problems with commutative noise. Gaines & Lyons [15]
proposed a Brownian tree structure for adapting the stepsize for stochastic dif-
ferential equations, where only halving and doubling of the stepsize is allowed.
This is the standard adaptive time-stepping method for Itô SDEs driven by
multidimensional Wiener processes, however it is a very restrictive strategy.

In this paper, we propose some alternative adaptive time-stepping strate-
gies for the strong numerical solution of multidimensional Itô stochastic differ-
ential equations, driven by multiple Wiener processes which satisfy the com-
mutativity condition. The case of the strong numerical solution of SDE driven
by one Wiener process is well understood and we do not advocate the use of
our approach for this class of problems. Stochastic differential equation models
with commutative noise arise in a wide range of application areas such as genet-
ics (e.g., Shiga model [1]), finance (e.g., LIBOR Market Models [17]), physics
(e.g., stochastic Lorenz equations) and biological sciences (e.g., Duffing-van
der Pol oscillator [1]), etc.

We employ the Milstein method to compute the numerical solution of the
stochastic differential equation and use extrapolation to cheaply estimate the
local error of the Milstein scheme. We propose some adaptive time-stepping
strategies based on I and PI controllers. On each individual path, the adap-
tive method adjusts the time-step such that the local error during one step
is below the user-prescribed tolerance. Such a time-stepping scheme is con-
vergent, since the Milstein method has strong order of convergence one. This
method works very well for problems which are non-stiff or mildly stiff. Our
approach extends to Itô SDEs the work of Söderlind [18,19], who developed
PI-controllers which behave well for the numerical solution of ordinary dif-
ferential equations. Moreover, in our adaptive time-stepping strategy, when a
stepsize is rejected only the Wiener increments corresponding to the smaller
stepsize are conditioned on the previously generated Wiener increments. This
reduces the computational cost of adapting the time-step. Therefore, our di-
rect method for Itô SDE is less expensive than transforming the problem into
a Stratonovich SDE and applying the variable time-step technique proposed in
[20] where, in addition, higher order Wiener integrals need to be conditioned.

The paper is organized as follows. In section 2 we describe the necessary
background for the numerical solution of stochastic differential equations. In
section 3, some new adaptive algorithms for selecting the stepsize are pre-
sented. In section 4, we give some numerical results for several stochastic
models arising in applications. We compare the proposed adaptive schemes
with the fixed stepsize ones as well as to the existing adaptive methods based
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on a Brownian tree and show that our adaptive methods perform better than
both of these alternative approaches.

2 Numerical solution of stochastic differential equations

Let us consider a system of stochastic differential equations in Itô form

dX = f(t,X)dt+

m∑
j=1

gj(t,X)dW j (1)

where f : R+×Rd → Rd, g : R+×Rd → Rd×Rm, and W j(t) are independent
scalar Wiener processes for j = 1, . . . ,m. A Wiener process W = {W (t), t ≥ 0}
is a Gaussian process satisfying

W (0) = 0 w.p.1 , W (t)−W (s) ∼
√
t− s ·N(0, 1) ,

and having independent increments, W (t)−W (s) and W (u)−W (v), for any
0 ≤ s < t < v < u ≤ T .

We assume that the drift coefficient f and each diffusion coefficient gj in
(1) satisfy the Lipschitz condition: there exists some constant M > 0 such
that

‖f(t,y)− f(t, z)‖ ≤M‖y − z‖ , ‖gj(t,y)− gj(t, z)‖ ≤M‖y − z‖

for all y, z ∈ Rd and t ∈ [0, T ]. This condition [1] ensures that an initial value
problem for the stochastic differential equation (1) has a pathwise unique
solution on [0, T ].

For any j = 1, . . . ,m, let us denote the following differential operator by

Lj =

d∑
k=1

gk,j
∂

∂Xk
. (2)

A stochastic differential equation in Itô form (1) can be written in Stratonovich
form as

dX = F(t,X)dt+

m∑
j=1

gj(t,X) ◦ dW j

where F = (F 1, . . . , F d)′ and

F k(t,X) = fk(t,X)− 1

2

m∑
j=1

Ljgk,j(t,X)

for k = 1, . . . , d, and the differential operator Lj is defined by (2).
Since in most cases a closed form solution does not exist, numerical meth-

ods are needed to approximate the solution of a stochastic differential equation,
at some grid points of the time-interval [0, T ], 0 = t0 < t1 < · · · < tn < · · · <
tN = T .
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Definition A time-discretization of X(t) on [0, T ], X̂n, is said to have strong
order of convergence γ > 0 if there exist a constant C > 0, independent of h,
and δ > 0 such that

E(|X(tn)− X̂n|) ≤ Chγ .
for any fixed tn = n · h ∈ [0, T ] and any h ∈ (0, δ).

2.1 Milstein method

A widely used numerical method of strong order 1 is the Milstein scheme,
which may be written as

Xk
n+1 = Xk

n+fk(tn,Xn)hn+

m∑
j=1

gk,j(tn,Xn)∆W j
n+

m∑
j1,j2=1

Lj1gk,j2(tn,Xn)I
(n)
(j1,j2)

for k = 1, . . . , d. The Wiener increments can be generated numerically by
∆W j

n = W j
n+1−W j

n =
√
hn ·rj,n where tn+1 = tn+hn and rj,n are realizations

of the standard normal random variable N(0, 1). We denote the double Itô
integrals by

I
(n)
(j1,j2)

=

∫ tn+1

tn

∫ s1

tn

dW j1(s2)dW j2(s1) (3)

where j1, j2 = 1, . . . ,m. Note that for j1 6= j2 the double Itô integrals cannot
be expressed in terms of the increments ∆W j1

n and ∆W j2
n . Their numerical

approximation is computationally intensive [1, Chapter 5]. Such expensive
simulations can be avoided when the stochastic differential equation has com-
mutative noise.

The stochastic differential equation is said to have commutative noise if

Lj1gj2 = Lj2gj1 for any j1, j2 = 1, . . . ,m, with j1 6= j2 ,

where the differential operators Lj are defined by (2). Then, the following
general property can be used to simplify the numerical scheme,

I
(n)
(j1,j2)

+ I
(n)
(j2,j1)

= ∆W j1
n ∆W

j2
n

for j1 6= j2 and j1, j2 = 1, . . . ,m. In addition, for any j1 = 1, . . . ,m

I
(n)
(j1,j1)

=
1

2
((∆W j1

n )2 − hn) .

In the case of stochastic differential equations with commutative noise, the
Milstein scheme reduces to

Xk
n+1 = Xk

n + fk(tn,Xn)hn +

m∑
j=1

gk,j(tn,Xn)∆W j
n

+
1

2

m∑
j1 6=j2

Lj1gk,j2(tn,Xn)∆W j1
n ∆W

j2
n

+
1

2

m∑
j=1

Ljgk,j(tn,Xn)((∆W j
n)2 − hn)
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for k = 1, . . . , d. Therefore the simulation of higher dimensional Itô inte-
grals is no longer necessary. It is interesting to observe that, similarly to the
Milstein scheme, the simulation of stochastic differential equations with non-
commutative noise by Runge-Kutta schemes of strong order 1 or higher is not
possible if only the Wiener increments ∆W j

n are employed. Thus, the advan-
tage of using numerical schemes of strong order greater than 1 is reduced, as
then it is required to sample the expensive higher dimensional Itô integrals.

2.2 Local error estimation

By analogy to ordinary differential equations, assuming the same starting point
of the current step, the (pathwise) local error is the difference between the
exact and the numerical solution on the same Brownian path, at the end of
the step. For a strong method, the numerical solution approximates the exact
solution on each Brownian path. On such a path, while the local error is a
random quantity, it has an Itô-Taylor series structure associated with it [1].

A variable stepsize implementation depends on the measure of the error
generated by the numerical method under consideration. In the following, we
use extrapolation [5] to estimate the local error obtained after each step with
the Milstein method. Extrapolation is a cheap method to approximate the er-
ror if the problem is not stiff. The numerical solution is computed first in one
step, say on [tn, tn+1), where tn+1 = tn + hn. Then, the solution is approx-
imated in two steps over the same interval: on [tn, tn + hn/2) and again on
[tn +hn/2, tn+1). Finally, local extrapolation is applied, that is the local error
in the numerical solution is approximated by taking the difference between the
approximated values in two steps, Xn+1,2, and in one step, Xn+1,1.

If the user-prescribed tolerance is Tol, then the local error is approximated
by

err(Xn, hn) =

√√√√1

d

d∑
k=1

(
Xk
n+1,2 −Xk

n+1,1

Tol

)2

(4)

and should satisfy the condition

err(Xn, hn) ≤ 1 . (5)

We note that, for stochastic differential equations, if a numerical method is
of strong (global) order γ, then the local error has order (γ+ 1/2) rather than
(γ + 1), as is the case for ordinary differential equations. The fractional order
is a result of the property that the root mean square order of each Wiener

process is h
1/2
n . Thus the local error approximation for a step hn behaves as

err(Xn, hn) ≈ φ(tn, Xn)

Tol
· hγ+1/2

n ,

where φ(tn, Xn) = φn is the principal error function. The function φ depends
on both the drift and the diffusion coefficients. In general, the dependency
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of the principal error function on these coefficients is quite complex and it is
difficult to decompose the local error estimate into the drift-dominating and
the diffusion-dominating components. Extrapolation is a simple and inexpen-
sive method to estimate the error for a general class of stochastic differential
equations. In particular, it avoids the evaluations of quite complicated error
terms.

3 An adaptive time-stepping scheme

In this section we discuss a variable time-stepping strategy which allows re-
jection of a stepsize, while guaranteeing that the correct Brownian path is
followed. This ensures that the correct statistics of the numerical solution are
maintained. According to Gaines & Lyons [15], a numerical method of strong
order 1 guarantees that an adaptive time-stepping method converges to the
strong solution of a stochastic differential equation. Gaines & Lyons [15] used
a stepsize selection strategy which allowed only preserving the step or dou-
bling/halving of the previous stepsize. More precisely, the choice of the time
intervals was such that a tree structure was generated, called a Brownian tree.
Following Gaines & Lyons [15], we assume, without loss of generality and for
ease of discussion, that the interval of integration is [0, 1]. This binary tree
may have only intervals of the form [k/2n, (k + 1)/2n] for k, n ∈ N. The first
level of the tree is obtained by computing the Wiener increments on N unit
length subintervals of the initial interval,

∆Wk = W (k)−W (k − 1), for k = 1, . . . , N .

Therefore each Wiener increment ∆Wk is normally distributed with mean zero
and variance one. When the accuracy is not satisfied on one of the intervals
[k−1, k], then this interval is divided in two subintervals of the same length and
the accuracy is verified on each. If a smaller stepsize is needed to satisfy the
accuracy requirement, then such a stepsize is obtained with a recursive gen-
eration of smaller subintervals by taking the midpoint of the current interval.
The Wiener increments corresponding to level j are constructed as

∆W2k−1,j+1 =
1

2
∆Wk,j + zk,j ,

∆W2k,j+1 =
1

2
∆Wk,j − zk,j , for j = 1, 2, . . . ,

where zk,j−1 are normally distributed with mean zero and variance 2−j . The
Brownian path has to pass through all the points generated for the smaller
subintervals before progressing to an upper lever in the tree. This condition
imposes serious restrictions on the selection of a stepsize, and may slow down
the integration process significantly.

In the generic case of a non-commutative SDE, Gaines & Lyons show that
it is sufficient to include the approximation of the Lévy areas A(i,j)(t, t +
h) = I(i,j)(t, t + h) − I(j,i)(t, t + h), in addition to the Wiener increments, to
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guarantee convergence of the variable stepsize method. A different technique
is to discretize directly the double Itô integrals (3) by using the Karhunen-
Loève or Fourier expansions of the Brownian bridge processes corresponding
to the Wiener processes in the SDE. Both approximations, by Lévy areas and
by Karhunen-Loève expansions, are quite expensive.

The strategy we consider in this paper is based on an alternative method
introduced by Mauthner [11,16] for stochastic differential equations with a
single driving Wiener process and which was later extended in Burrage &
Burrage [13,20] for multiple driving Wiener processes. Both approaches ap-
ply to Stratonovich stochastic differential equations. They employ embedded
stochastic Runge-Kutta (SRK) methods to advance the solution and the dif-
ference between the higher order and the lower order approximations is used
to estimate the local error. The SRK methods are of global order 1, as re-
quired for the convergence of an adaptive scheme, provided that the noise is
commutative. Otherwise the global order is 1/2.

The idea is as follows: assume that a step h is computed and the Wiener
increment

∆Wh = W (t+ h)−W (t) =

∫ t+h

t

dW (s)

is sampled (∆Wh = ih, with ih ∈ R a realization of the Wiener increment). If
the step h is rejected, then ih is stored and a smaller stepsize 0 < h1 < h is
tried. Then the Wiener increments on the subintervals [t, t+h1] and [t+h1, t+h]
are evaluated, conditioned on the Wiener increments on the entire interval
[t, t+ h], i.e. ∆Wh = ih. This ensures maintaining the same Brownian path.

Let us denote the Wiener increments on [t, t+ h1] and on [t+ h1, t+ h] by

∆Wh1 = W (t+ h1)−W (t) , ∆Wh2 = W (t+ h)−W (t+ h1) ,

where h2 = h − h1. The increments should satisfy the additivity condition
given by the direct integration

∆Wh1 +∆Wh2 =

∫ t+h

t

dW (s) = ih . (6)

Moreover, the Wiener increments are normally distributed and they obey the
conditions for expectation

E((∆Wh1 , ∆Wh2)) = (0, 0) (7)

and for covariances

Cov((∆Wh1
, ∆Wh2

)) =

(
h1 0
0 h2

)
(8)

which guarantee that the correct Brownian path is followed. Then, it can be
shown that the Wiener increments satisfying the conditions (6), (7) and (8)
can be calculated as [16,13]

∆Wh1
=
h1
h
ih +

√
h1h2
h

z , ∆Wh2
=
h2
h
ih −

√
h1h2
h

z , (9)
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where z = N(0, 1) is a new random variable.
A stepsize hn+1 is accepted if err(Xn+1, hh+1) ≤ 1, otherwise it is rejected

and the procedure above is applied. Since the error estimate computed for the

previous successful stepsize is err(Xn, hn) = (φn/Tol)h
γ+1/2
n , then an optimal

stepsize hn+1 should satisfy (φn+1/Tol)h
γ+1/2
n+1 = 1. Based on these relations,

the standard approach from ODE is to choose the next stepsize hn+1 to satisfy

hn+1 = hn

(
fac

err(Xn, hn)

)1/(γ+1/2)

where the safety factor fac ≤ 1 is introduced to reduce the chance of rejecting
the next stepsize. Since the stepsize should not increase or decrease too much,
the following stepping scheme is employed

hn+1 = hn min(facmax,max(facmin, (fac/err(Xn, hn))1/(γ+1/2))) (10)

which is known as the integral stepsize controller in the deterministic frame-
work [5]. The maximal stepsize increase allowed facmax > 1 and the minimal
stepsize decrease facmin < 1 are chosen depending on the problem. We re-
mark that SDEs seem to be more sensitive than ODEs to the choice of facmax
and facmin. For example, if facmax is too large, the algorithm may lead to
many step rejections. On the other hand, if facmax is too small, then the
stepping strategy may take more steps than necessary to traverse the inte-
gration interval, while satisfying the tolerance. A smaller sensitivity arises for
facmin.

3.1 Proportional-integral stepsize control

We present below the approach to adaptive time-stepping based on control
theory [18–20]. In particular, we are interested in the predictive-integral con-
trollers (PI) which behave well for the numerical solution of SDEs. Let us take
k to be the order of the local error, that is k = γ + 1/2 where γ is the order
of the global error. Thus, in the asymptotic regime, the local error per step
can be written as e(Xn, hn) = φnh

k
n, where φn may vary significantly. The

standard adaptive stepsize algorithm based on this error is

hn+1 = hn

(
fac · Tol
e(Xn, hn)

)1/k

. (11)

By taking the logarithm in (11) we obtain

log(hn+1) = log(hn) +
1

k
(log(fac · Tol)− log(e(Xn, hn))) (12)

which is called a discrete-time integral (I) controller in control theory. Its name
comes from the observation that the solution of the difference equation (12) is

log(hn) = log(h0) +
1

k

n−1∑
j=0

(log(fac · Tol)− log(e(Xj , hj))) , (13)
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which is similar to a discrete representation of an integral.
The process that needs to be controlled is modeled by the local error, for

which we derive that

log(e(Xn, hn)) = k log(hn) + log(φn) . (14)

We wish to study now the closed loop-dynamics [18] which considers the inter-
action of the controller and of the process it controls. Thus, we can substitute
(14) into (12) to obtain

log(hn+1) =
1

k
(log(fac · Tol)− log(φn)) . (15)

This is a difference equation in log(hn). Its characteristic equation, q = 0, has
as unique root the origin. The factor kI = 1/k is called the integral gain of the
controller. Though, in control theory kI is viewed as a design parameter, its
value being determined depending on the desired properties of the controller.
In the particular case kI = 1/k, we obtain the dead-beat controller, which
predicts a stepsize as non-smooth as the principal error function. We note
that the principal error function φn depends on the Wiener processes, thus
it takes random values. This makes the dead-beat controller less attractive
when solving numerically stochastic differential equations. If kI is an arbitrary
parameter, then the closed loop-dynamics become

log(hn+1) = (1− kkI) log(hn) + kI(log(fac · Tol)− log(φn)) .

The difference equation above has the characteristic equation q−(1−kkI) = 0
with the root q = 1−kkI . The controller is stable if and only if its root is inside
the unit circle, thus kkI ∈ (0, 2). Hence, we derived the integral controller

hn+1 = hn

(
fac · Tol
e(Xn, hn)

)kI
.

However, it is well-known in control theory that more robust controllers
may be designed by inserting a proportional component in the integral con-
troller. Such controllers are called proportional-integral, or PI. We may com-
pute them by adding a term proportional to the control error (log(fac ·Tol)−
log((e(Xn−1, hn−1)) to the integral controller (13). Consequently,

log(hn) = log(h0) + kI
∑n−1
j=0 (log(fac · Tol)− log(e(Xj , hj)))

+ kP (log(fac · Tol)− log((e(Xn−1, hn−1)) ,

where kP is the proportional gain. This leads to the following recursion

log(hn+1) = log(hn) + kI(log(fac · Tol)− log(e(Xn, hn)))
+ kP (log(e(Xn−1, hn−1)))− log(e(Xn, hn)))

(16)

Hence, we get the PI-controller

hn+1 = hn

(
fac · Tol
e(Xn, hn)

)kI(e(Xn−1, hn−1)

e(Xn, hn)

)kP
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or, equivalently,

hn+1 = hn

(
fac · Tol
e(Xn, hn)

)kI+kp(e(Xn−1, hn−1)

fac · Tol

)kP
. (17)

If we substitute the asymptotic model of the local error (14) into the difference
equation of the controller (16), we obtain the closed loop-dynamics

log(hn+1) = (1− kkI − kkP ) log(hn) + kkP log(hn−1)

+ kI(log(fac · Tol)− log(φn)) + kP (log(φn−1)− log(φn))

The characteristic equation of this difference equation is

q2 − (1− kkI − kkP )q − kkP = 0 . (18)

The PI-controller is stable provided that the roots of characteristic equa-
tion (18) are inside the unit circle. We are interested in controllers which
are suited for solving numerically non-stiff SDEs.

We note that the controller PI-1 with parameters satisfying (kkI , kkP ) =
(0.3, 0.1) gives good results for the Milstein scheme. The controller is stable.

After performing many simulations, we propose an improved controller, PI-
2, with parameters (kkI , kkP ) = (0.101, 0.009). The PI-2 controller shows an
enhanced performance over the other PI-controllers tested, including PI-1 and
the standard PI-controllers for ODEs, when Milstein’s method is employed.
Its roots are [0.9,−0.01], therefore it is stable. It has the advantage that its
negative root is quite small while the magnitude of the ratio of the positive to
negative root is large, thereby reducing the risk of step rejections.

In Figure 1, we show in the top plot the values, inside the unit circle, of
the roots q1 (continuous line) and q2 (dashed line) of the equation (18) as
functions of the parameters kkI and kkP ; the black dots show the values of
the roots for the controller PI-2. The bottom plot gives a view from above,
with the black lines delimiting the region in the (kkI , kkP ) plane where both
roots of the equation (18) are within the unit circle.

We remark that there is a trade-off between finding the largest ratio of
the positive to the negative value of the roots inside the unit circle and min-
imizing the total computational cost of the method, that is the total number
of attempted steps for the same tolerance. A very large ratio of the roots is
represented by points close to (0, 0) (blue point in Figure 1, bottom plot) and
reduces the number of rejected steps but requires a large total number of steps,
being too conservative. Our choice for the PI-2 controller (black point in Fig-
ure 1, bottom plot) is determined experimentally, as a very good compromise.

The results for the PI-1, PI-2 and dead-beat controllers are given below.
We note that, when applied to stochastic differential equations, the standard
PI-controllers developed for non-stiff ODEs require more work to achieve the
same accuracy than the adaptive controllers proposed in this paper. This is
because their design objectives are different in the deterministic framework. In
the case of ODEs, the objective is to choose controllers which lead to smooth
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Fig. 1 The roots of equation (18) as functions of kkI and kkP . The black dots in the top
plot show the roots used in PI-2. The bottom plot shows the region in the (kkI , kkP ) plane
where both roots of the equation (18) are within the unit circle.

stepsize sequences. In the case of SDEs, one important challenge when design-
ing pathwise-adaptive methods is to decrease the (typically large) number of
step rejections, since such rejections add significantly to the computational
effort. For mildly stiff Itô SDEs simulated with Milstein’s method, we propose
adaptive controllers that reduce the number of rejected steps and the total
computational cost. In the next section, we test these adaptive techniques
against the two other currently existing strategies for the strong numerical so-
lution of generic Itô SDE driven by multiple Wiener processes (with or without
commutative noise), the fixed stepsize scheme and the Brownian tree adap-
tive strategy. Our methods show an improved performance over both of these
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alternative schemes for the commutative case, which suggests that a similar
improvement may be possible in the non-commutative case.

4 Numerical results

In this section we test the adaptive algorithms proposed above on several
examples of Itô stochastic differential equations arising in applications. The
adaptive schemes are compared to fixed stepsize schemes and adaptive schemes
using Brownian trees for the strong numerical solution of the models under
consideration. The procedure for the comparison is as follows: for each tol-
erance Tol we ran the adaptive algorithms first, for the I and PI controllers
and recorded the total numbers of steps attempted by each (the number of
accepted and of rejected steps). Next, we ran the fixed stepsize algorithm with
the same number of steps as the maximum between the number of steps taken
by the I and the PI-based methods for the tolerance Tol. In addition, we ran
the existing adaptive schemes based on Brownian trees for the same tolerance
and record the total number of attempted steps. In each case, we estimated
the error obtained according to the formula for the local error (4). We remark
that the error recorded in the last column of Tables 1, 2 and 3 is computed as
the mean over the maximum of the local errors on each individual trajectory.
However, we should note that the I and the PI adaptive schemes ensure that
the local error on each step and on each trajectory is below the given tolerance.

4.1 Marine bacteriophage infection model

A dimensionless deterministic model for the epidemics induced by the virulent
phages on marine bacteria was given by Beretta & Kuang [21]. Below, we
consider a stochastic extension of the model introduced in Carletti [22] and
Carletti et al. [23]

ds(t) = (as(t)(1− (i(t) + s(t)))− s(t)p(t))dt+ σ1(s(t)− s∗)dW 1(t)

di(t) = (s(t)p(t)− `i(t))dt+ σ2(i(t)− i∗)dW 2(t)

dp(t) = (−s(t)p(t)−mp(t) + b`i(t))dt+ σ3(p(t)− p∗)dW 3(t) .

(19)

Here s represents the susceptible bacteria, i the infected bacteria and p the
phage (viruses). The parameters a, `,m and b are the bacteria logistic growth,
the bacteria lysis death rate, the phage death rate and the virus replicating
factor, respectively. They have the values observed for the infection by viruses
of the bacteria Cytophage marinoflava, that is a = 10, ` = 24.628, m =
14.925 and b = 60. The noise perturbs the positive equilibrium position E+ =
(s∗, i∗, p∗) where

s∗ =
m

b− 1
, i∗ =

as∗(1− s∗)
`+ as∗

, p∗ =
a`(1− s∗)
`+ as∗

.
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Fig. 2 The phage-bacteria interaction model: susceptible bacteria (left) and infected bac-
teria (center) and phage (right). Only 40 trajectories are shown.

Note b � b∗ = 1 + m = 15.925. The initial conditions are (s0, i0, p0) =
(0.3, 0.2, 5), while the noise coefficients have the values σi = 0.4 for i = 1, 2, 3.

The evolution of the three interacting species is given in Figure 2 and a plot
of the stepsizes taken by the integral adaptive scheme vs. time for Tol = 2·10−3

on a Brownian path is shown in Figure 3. The behaviors of the I, PI-1, PI-2
adaptive, the adaptive Brownian tree, and the fixed step size algorithms are
reported in Table 1. The table shows the ratio of the computation times of
the adaptive algorithms to the running time of the PI-2 adaptive scheme, the
number of attempted steps, accepted steps and the accuracy of the numeri-
cal method for a sequence of imposed tolerances. The Brownian tree method
fails on at least 10% of the trajectories tried, therefore its average computa-
tional times were not meaningful and were not reported. For the Brownian
tree method, Table 1 presents the average number of attempted, accepted and
rejected steps only on the successful trials. For the same total work, the fixed
stepsize scheme gives an error up to 48 times larger than the adaptive algo-
rithms for the tolerances tested. The ratio between the number of rejected
steps and the total number of attempted steps for the adaptive method based
on the I-controller is around 25%, for the PI-1 controller is about 19%, for
the PI-2 controller is less than 15%, while, for the adaptive Brownian tree
scheme, the ratio is between 33% and 48% on the successful trials. The total
work performed by the PI methods was less than that of the I scheme, with
the PI-2 adaptive scheme taking slightly fewer steps in total than PI-1 for
the same tolerance. The adaptive Brownian tree algorithm took considerably
more attempted steps on its successful trajectories than the I, PI-1, and PI-2
methods for the same tolerance. Moreover, the Brownian tree approach leads
to a biased numerical solution due to the large number of rejected trajectories.
Also, we remark that the fixed stepsize strategy is considerably less accurate
than the variable stepsize implementations.



Adaptive time-stepping for SDE 15

Table 1 The phage-bacteria interaction model (1000 trajectories) facmin = 0.2, facmax =
1.4.

Tol Method Ratio # Attempted # Accepted # Rejected Error
times steps (mean) steps (mean) steps (mean)

10−2 Adaptive PI-2 1.00 592 511 81 0.993
Adaptive PI-1 1.06 612 499 113 0.994
Adaptive I 1.14 650 492 158 0.995
Brownian tree − 760 501 259 0.995
Fixed 650 − − 28.74

2 · 10−3 Adaptive PI-2 1.00 1123 962 161 0.996
Adaptive PI-1 1.06 1147 930 217 0.996
Adaptive I 1.10 1195 899 296 0.997
Brownian tree − 1438 951 487 0.997
Fixed 1195 − − 43.66

10−3 Adaptive PI-2 1.00 1582 1352 230 0.997
Adaptive PI-1 1.02 1595 1290 305 0.998
Adaptive I 1.07 1655 1243 412 0.998
Brownian tree − 2043 1352 991 0.998
Fixed 1655 − − 46.79

2 · 10−4 Adaptive PI-2 1.00 3940 3354 586 0.999
Adaptive PI-1 1.02 3951 3185 766 0.999
Adaptive I 1.05 4002 2994 1008 0.999
Brownian tree − 5067 3360 1707 0.999
Fixed 4002 − − 48.40
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Fig. 3 The phage-bacteria interaction model: stepsize vs. time for Tol=2 · 10−3 and the
I-adaptive scheme.
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4.2 Stochastic Brusselator

Another example of interesting qualitative behavior is the stochastic Brusse-
lator [1]. The mathematical model is

dx1 = ((α− 1)x1 + αx21 + (1 + x1)2x2)dt+ σx1(1 + x1)dWt

dx2 = (−αx1 − αx21 − (1 + x1)2x2)dt− σx1(1 + x1)dWt

(20)

for t ∈ [0, 100]. The system (20) is subject to the initial conditions x(0) =
[0.01, 0.01]T and the parameters are α = 2.1, σ = 0.2. The deterministic
version of the Brusselator exhibits unforced oscillations. Indeed, the problem
exhibits a Hopf bifurcation when α = 2 and for α > 2 becomes a limit cycle.
The stochastic version is obtained from the deterministic model by allowing
the parameter α to be perturbed by noise, α→ α+ σWt.

The dynamics of the two components of the Brusselator are shown in Fig-
ure 4 for a typical trajectory. The sequence of I-adaptive stepsizes on an indi-
vidual Brownian path, corresponding to a tolerance of 10−4, is plotted against
time in Figure 5. In Table 2, we give the ratio of the simulation times of the
adaptive algorithms to that of the PI-2 adaptive scheme, the total number of
attempted, successful and rejected steps and the accuracy of the I, PI-1 and
PI-2, and Brownian tree adaptive methods applied to the Brusselator system,
for a range of prescribed tolerances. The performance of the fixed stepsize al-
gorithm is also included. We observe that the error committed by using the
fixed stepsize algorithm, for the same tolerance and for the same work, is up
to 12 times higher than that obtained with the adaptive schemes. The ratio of
rejected to attempted steps is remarkably low, below 12% for the I-controller,
below 10% for the PI-1 and PI-2 controllers, for the tolerances tried. How-
ever, for the adaptive Brownian tree algorithm, it is at least 33%. The work
taken by the I, PI-1, and PI-2 algorithms is similar. We note that the adaptive
Brownian tree algorithm takes up to a remarkable 90% more steps than the
PI algorithms for the same tolerance. Thus, the proposed I and PI adaptive
methods perform much better than both the Brownian tree adaptive scheme
and the fixed stepsize one.

4.3 Chemical reaction model

The last example we consider is a chemical reaction model [24], which was
modified to include external commutative noise

dx1 = (−c1x1 − c2x1(x1 − 1) + 2c3x2)dt+ x1(α1dW
1
t + α2dW

2
t )

dx2 =
(c2

2
x1(x1 − 1)− c3x2 − c4x2

)
dt+ x2(β1dW

1
t + β2dW

2
t ) .

(21)

The system parameters take the values c1 = c2 = 10, c3 = 100 and c4 = 0.1
while the stochastic coefficients are α1 = 5, α2 = β1 = 0.5 and β2 = 0.001.
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Table 2 The stochastic Brusselator model (2000 trajectories), facmax = 1.1, facmin =
0.2.

Tol Method Ratio # Attempted # Accepted # Rejected Error
times steps (mean) steps (mean) steps (mean)

2 · 10−2 Adaptive PI-2 1.00 464 415 49 0.990
Adaptive PI-1 1.01 464 415 49 0.990
Adaptive I 1.02 464 410 54 0.991
Brownian tree 1.07 531 356 175 0.994
Fixed 464 − − 5.147

10−2 Adaptive PI-2 1.00 590 529 61 0.990
Adaptive PI-1 1.01 593 530 63 0.993
Adaptive I 1.02 592 521 71 0.993
Brownian tree 1.14 727 485 242 0.997
Fixed 593 − − 5.724

2 · 10−3 Adaptive PI-2 1.00 1165 1048 117 0.996
Adaptive PI-1 1.01 1178 1060 118 0.996
Adaptive I 1.03 1177 1033 143 0.997
Brownian tree 1.62 2197 1459 738 0.998
Fixed 1178 − − 7.135

10−3 Adaptive PI-2 1.00 1643 1476 167 0.997
Adaptive PI-1 1.01 1666 1502 164 0.998
Adaptive I 1.02 1668 1465 203 0.998
Brownian tree 1.62 3049 2024 1025 0.998
Fixed 1668 − − 7.978

2 · 10−4 Adaptive PI-2 1.00 4083 3662 421 0.999
Adaptive PI-1 1.01 4198 3802 396 0.999
Adaptive I 1.03 4131 3641 490 0.999
Brownian tree 1.65 7267 4807 2461 0.999
Fixed 4198 − − 11.56
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Fig. 4 The stochastic Brusselator model: for Tol=10−4.
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Fig. 5 The stochastic Brusselator model: stepsize vs. time for Tol=10−4 and the I-adaptive
scheme.

The initial conditions are x1(0) = 1000 and x2(0) = 100. The integration is
performed on the interval [0, 0.01].

The graph of 20 trajectories is depicted in Figure 6, while Figure 7 shows
the plot of the evolution in time of the sequence of PI-2 adaptive stepsizes on
an individual Brownian path for Tol = 2 · 10−2. The ratio of the computation
times of the variable stepsize algorithms compared to the PI-2 adaptive strat-
egy and the comparison between the fixed stepsize scheme and the adaptive
schemes are presented in Table 3, for several tolerances. The error for the fixed
stepsize algorithm is between approximately 80 and 110 times larger than that
obtained with the proposed adaptive methods. For a tolerance ranging from
2 ·10−2 to 10−3 the number of rejected steps is approximately 28% of the num-
ber of attempted steps for the I-adaptive implementation, approximately 21%
for the PI-1 adaptive scheme and below 15% for the PI-2 adaptive method.
For the adaptive Brownian tree method the ratio of rejected to attempted
steps is between 33% and 35%. Brownian tree adaptive methods attempted
more steps than the I, PI-1, and PI-2 methods, but accepted fewer steps than
the PI-schemes for the same tolerance. The PI-controllers required less work
than the I-controller. The results show again the advantage of using the vari-
able stepsize methods based on PI-control over a constant step scheme or an
adaptive Brownian tree method.

5 Conclusion

This paper provides a strategy for adapting the stepsize in the strong numerical
solution of Itô stochastic differential equations with commutative noise. The
strategy allows for a flexible stepsize selection, which is much less restrictive
than the adaptive Brownian tree strategy (where only doubling and halving of
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Table 3 The stochastic chemical model (1000 trajectories) for facmax = 1.5, facmin =
0.2.

Tol Method Ratio # Attempted # Accepted # Rejected Error
times steps (mean) steps (mean) steps (mean)

2 ∗ 10−2 Adaptive PI-2 1.00 1342 1145 197 0.9758
Adaptive PI-1 1.03 1356 1067 289 0.9888
Adaptive I 1.05 1386 1002 384 0.9919
Brownian tree 1.12 1556 1025 531 0.9978
Fixed − 1386 − − 111.6604

10−2 Adaptive PI-2 1.00 2109 1802 307 0.9840
Adaptive PI-1 1.03 2123 1667 456 0.9926
Adaptive I 1.05 2164 1564 600 0.9948
Brownian tree 1.12 2418 1597 821 0.9987
Fixed − 2164 − − 101.3402

2 ∗ 10−3 Adaptive PI-2 1.00 6108 5286 822 0.9929
Adaptive PI-1 1.03 6146 4845 1301 0.9975
Adaptive I 1.05 6217 4493 1724 0.9982
Brownian tree 1.10 6916 4576 2340 0.9995
Fixed − 6217 − − 87.2380

10−3 Adaptive PI-2 1.00 9911 8646 1265 0.9956
Adaptive PI-1 1.03 9961 7909 2052 0.9985
Adaptive I 1.06 10133 7332 2801 0.9989
Brownian tree 1.10 11008 7285 3723 0.9997
Fixed − 10133 − − 80.3096
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Fig. 6 The stochastic chemical reaction model: for Tol=10−2. Only 20 trajectories are
shown.

the stepsize are allowed). The stepsizes may be occasionally rejected, but such
rejections are guaranteed not to introduce bias in the approximated solution.
The underlying numerical method used is the Milstein scheme and the local
error is estimated at a low cost by extrapolation. The proposed adaptive time-
stepping strategies, based on integral and proportional-integral controllers,
are tested on three interesting models arising in applications and are shown
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Fig. 7 The stochastic chemical reaction model: stepsize vs. time for Tol=2 · 10−2 and the
PI-2 adaptive scheme.

to perform significantly better than the fixed stepsize scheme and better than
the adaptive Brownian tree method.

Our future research will consider efficient and reliable adaptive schemes
for stochastic differential equations with non-commutative noise and optimal
initial time-step selection.
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