
The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is
important for the numerical solution of Poisson’s equation and volume integral equations.
In this paper, we present a simple and efficient high-order algorithm for computing the
Newtonian potential over a planar domain discretized by an unstructured mesh. The
algorithm is based on the use of Green’s third identity for transforming the Newtonian
potential into a collection of layer potentials over the boundaries of the mesh elements,
which can be easily evaluated by the Helsing-Ojala method. One important component of
our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in
the monomial basis, for which we provide extensive justification. The performance of our
algorithm is illustrated through several numerical experiments.
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1 Introduction

The accurate and efficient discretization of the Newtonian potential integral operator

NΩ[f ](x) :=
1

2π

∫∫
Ω

log(‖x− y‖)f(y) dAy (1)

for a complicated 2-D domain Ω is important for the numerical solution of Poisson’s
equation and volume integral equations. However, its numerical evaluation poses three
main difficulties. Firstly, the integrand is weakly-singular, and thus, special-purpose
quadrature rules are required. Secondly, a complicated domain Ω typically requires at
least part of the domain to be discretized by an unstructured mesh, over which the direct
evaluation of the potential by quadrature becomes costly. Finally, the algorithm for
evaluation should have linear time complexity with small constants.

When solving Poisson’s equation, the Newtonian potential is used as a particular
solution to the equation. This particular solution can be obtained by evaluating the
volume integral in (1) directly (see, for example, [22, 1, 29, 20]), or, alternatively, can
be obtained by computing the Newtonian potential over a regular domain Ω+ ⊃ Ω for
an extended density function f+ defined on Ω+, such that f+|Ω = f |Ω, which allows for
efficient precomputations for accelerating the potential evaluation [7, 2]. When following
the latter approach, the order of convergence depends on the smoothness of the extended
density function f+, which means that f+ must be sufficiently smooth over Ω+ in order
to reach high accuracy within a reasonable computational budget. We refer the readers
to, for example, [10, 2, 8, 5], for a series of work along this line.
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When solving volume integral equations, the aforementioned function extension
method is no longer applicable, as the computation does not require a particular solution
to Poisson’s equation, but rather, a discretization of the operator (1). However, as is
shown in [22, 1], difficulties arise when the domain is discretized by an unstructured mesh,
and a quadrature-based method is used. Firstly, the Newtonian potential generated over
a mesh element at a target location close to that element is costly to compute, as the
integrand is nearly-singular, and thus, expensive adaptive integration is generally required.
Furthermore, one cannot efficiently precompute these near interactions as is done in [7],
since the relative position of the target location and the nearby mesh elements is arbitrary
when an unstructured mesh is used. Secondly, efficient self-interaction computations (i.e.,
when the target location is inside the mesh element generating the Newtonian potential)
generally require a large number of precomputed generalized Gaussian quadrature rules
[3, 4], which could be nontrivial to construct.

There are several previously proposed methods [19, 21, 6, 24] which avoid these issues,
by not directly evaluating the volume integral. One such method is the dual reciprocity
method (DRM) [21], which first constructs a global approximation of the anti-Laplacian
of the density function over the domain, and then reduces the evaluation of the Newtonian
potential over the domain to the evaluation of layer potentials over the boundary of
the domain by Green’s third identity. As the 1-D layer potential evaluation problem
has been studied extensively, such a reduction is favorable. Furthermore, the method
does not require the domain to be meshed, and thus, is particularly suitable for use
in the boundary integral equation method [25]. However, approximating the density
function globally over the domain using, for example, radial basis functions with tractable
anti-Laplacians, is challenging, and the method is often inefficient when high accuracy is
required.

In this paper, we present a simple and efficient high-order algorithm that unifies the far,
near and self-interaction computations, and resolves all of the aforementioned problems.
As in the DRM, we use the anti-Laplacian to reduce the volume integral to a collection of
boundary integrals. However, unlike the DRM, we approximate the anti-Laplacian locally
over each mesh element, and then reduce the Newtonian potential to layer potentials
over the boundaries of the individual mesh elements. We efficiently evaluate the resulting
layer potentials to machine precision using the Helsing-Ojala method. As a result, we are
able to rapidly evaluate the Newtonian potential generated by each mesh element at any
target location to machine accuracy, with the speed of the evaluation independent of the
target location. In particular, the speeds of close and self-evaluations for a single mesh
element are almost the same as the speed of evaluating a layer potential over the element
boundary by naive quadrature. Furthermore, the use of Green’s third identity reduces
the number of quadrature nodes in the far field interaction computation over a single
mesh element from O(N2) to O(N). Finally, we note that the precomputation required
by our algorithm makes up a small fraction of the total cost.

The key component of our algorithm is the computation of the anti-Laplacian of the
density function f over each mesh element. We approximate f by a bivariate polynomial
interpolant in the monomial basis, which allows for easy computation of the anti-Laplacian
using simple recurrence relations, and provides a unified approach for handling both
triangle and curved triangle mesh elements. Despite the exponential ill-conditioning of
the Vandermonde matrix, we recently show in [23] that the monomial basis generally
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performs as well as a well-conditioned polynomial basis for interpolation, provided that
the condition number of the Vandermonde matrix is below the reciprocity of machine
epsilon. In this paper, we apply this idea to bivariate polynomial interpolation in the
monomial basis over a (possibly curved) triangle, and demonstrate that the resulting
order of approximation can reach up to 20, regardless of the triangle’s aspect ratio.

One may observe that our algorithm resembles the method proposed in Chapter 5 of
[6]. However, there exist two notable distinctions. Firstly, the order of approximation
is constrained to 4 in [6], whereas our approach permits a substantially higher order of
approximation, reaching up to 20. Secondly, we discretize the domain solely by (possibly
curved) triangles, while in [6], the domain is discretized by the Cartesian cut cell method,
where the potentials generated over the interior boxes are computed by the box code [7],
and the ones generated over the cut cells are computed via Green’s third identity.

2 Mathematical and numerical preliminaries

2.1 Newtonian potential

Definition 2.1. The infinite-space Green’s function for Poisson’s equation is

G(x, y) =
1

2π
log ‖x− y‖, (2)

where x, y ∈ R2.

It is well-known that the function G satisfies

∇2
xG(x, y) = δ(x− y), (3)

where δ denotes the Dirac delta function.

Definition 2.2. Given a domain Ω and an integrable function f : Ω→ R, the Newtonian
potential with density f is defined to be

u(x) =

∫∫
Ω
G(x, y)f(y) dAy =

1

2π

∫∫
Ω

log(‖x− y‖)f(y) dAy. (4)

It follows immediately from (3) that the Newtonian potential u(x) satisfies ∇2u = f
in Ω.

We now introduce Green’s third identity, which reduces the Newtonian potential
over Ω to layer potentials over ∂Ω.

Theorem 2.1. Let Ω be a 2-D planar domain and f be an integrable function on Ω.
Suppose that ϕ : Ω→ R satisfies ∇2ϕ = f . Then,∫∫

Ω
G(x, y)f(y) dAy = ϕ(x)1Ω(x) +

∮
∂Ω

(
G(x, y)

∂ϕ

∂ny
(y)− ∂G(x, y)

∂ny
ϕ(y)

)
d`y, (5)

for x ∈ R2 \ ∂Ω, where 1Ω denotes the indicator function for the domain Ω, and ny
denotes the outward pointing unit normal vector at the point y.
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2.2 The Helsing-Ojala method for the close evaluation of 1-D layer
potentials

In this section, we review the Helsing-Ojala method [17] for accurate and efficient
evaluation of the 1-D single- and double-layer potentials∫

Γ
G(x, y)

∂ϕ

∂ny
(y) d`y and

∫
Γ

∂G(x, y)

∂ny
ϕ(y) d`y, (6)

where x ∈ R2 is in close proximity to the curve Γ ⊂ R2. Without loss of generality, we
assume that the left endpoint of Γ is (−1, 0), and the right endpoint of Γ is (1, 0).

Firstly, observe that∫
Γ
G(x, y)

∂ϕ

∂ny
(y) d`y =

1

2π
Re

∫
Γ

log(z − x)
( ∂ϕ
∂ny

(z) · d`y
dz

)
dz, (7)

and ∫
Γ

∂G(x, y)

∂ny
ϕ(y) d`y = Re

1

2πi

∫
Γ

ϕ(z)

z − x
dz, (8)

where, in a slight abuse of notation, we equate R2 with C. The integrals
∫

Γ
zk

z−x dz and∫
Γ log(z − x)zk dz satisfy the following recurrence relations:∫

Γ

1

z − ξ
dz = log(1− ξ)− log(−1− ξ) + 2πiNξ, (9a)∫

Γ

zk+1

z − ξ
dz = ξ

∫
Γ

zk

z − ξ
dz +

1 + (−1)k

k + 1
, (9b)∫

Γ
log(z − ξ)zk dz =

1

k + 1

(
log(1− ξ) + (−1)k log(−1− ξ)−

∫
Γ

zk+1

z − ξ
dz
)
, (9c)

for all k ≥ 0, where Nξ = 0 when ξ is outside the region enclosed by the oriented
closed curve formed by Γ (traversed forwards) and [−1, 1] (traversed backwards), and
Nξ = +1 (−1) when ξ is inside the region enclosed counterclockwise (clockwise). We note
that these recurrence relations are stable when ξ is close to Γ. Therefore, if the complex
density functions ∂ϕ

∂ny
(z) · d`y

dz and ϕ(z) in (7) and (8) are approximated uniformly to
high accuracy by complex polynomials expressed in the monomial basis, then the single-
and double-layer potentials (6) can be readily calculated via (7) and (8), respectively,
with the aid of the aforementioned recurrence relations.

To approximate the density functions ∂ϕ
∂ny

(z) · d`y
dz and ϕ(z) by complex polynomials

in the monomial basis, one collocates at a set of nodes over Γ with a small Lebesgue
constant, and then solves the resulting Vandermonde system with a backward stable solver.
Despite the ill-conditioning of the Vandermonde matrix, based on our analysis in [23],
the monomial basis is as good as a well-conditioned polynomial basis for interpolation,
provided that the condition number of the Vandermonde matrix is smaller than 1

u , where
u denotes machine epsilon, and that u · ‖a‖2 is smaller than the polynomial interpolation
error, where a denotes the monomial coefficient vector of the interpolating polynomial.
As is shown in [23], the first condition is met when the order of approximation is less
than ≈ 40, even in the case where Γ has a high curvature. In addition, the second
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condition is satisfied automatically in most practical situations. Therefore, the use of a
monomial basis in floating point arithmetics is justified under these conditions. However,
it is pointed out in [16] that the complex density functions ∂ϕ

∂ny
(z) · d`y

dz and ϕ(z) have a
singularity close to the domain Γ when the curvature of Γ is not small, which leads to a
slowly decaying polynomial interpolation error. This issue can be remedied by adaptively
subdividing Γ until the curvature of each subpanel is small.

3 Bivariate polynomial interpolation in the monomial basis

In this section, we discuss the numerical stability of bivariate polynomial interpolation in
the monomial basis over a (possibly curved) triangle.

Let ∆ ⊂ R2 be a triangle, and let F : ∆→ R be an arbitrary function. We define Ñ
to be the dimensionality of the space of 2-D polynomials of degree at most N , which is
equal to (N+1)(N+2)

2 . The Nth degree interpolating polynomial, which we denote by PN ,

of the function F for a given set of Ñ collocation points Z := {(xj , yj)}j=1,...,Ñ
⊂ ∆ can

be expressed as

PN (x, y) :=

N∑
j=0

j∑
k=0

aj−k,k

(x− c
s

)j−k(y − d
t

)k
, (10)

where (c, d) ∈ R2 is the monomial expansion center, s, t ∈ R are the scaling factors of

the basis, and the monomial coefficient vector a(N) := (a00, a10, a01, . . . , a0N )T ∈ RÑ is
the solution to the Vandermonde system V (N)a(N) = f (N), where

V (N) :=


1 x1−c

s
y1−d
t (x1−cs )2 (x1−cs )(y1−dt ) · · · (y1−dt )N

1 x2−c
s

y2−d
t (x2−cs )2 (x2−cs )(y2−dt ) · · · (y2−dt )N

...
...

...
...

...
. . .

...

1
x
Ñ
−c
s

y
Ñ
−d
t (

x
Ñ
−c
s )2 (

x
Ñ
−c
s )(

y
Ñ
−d
t ) · · · (

y
Ñ
−d
t )N

 ∈ RÑ×Ñ (11)

is a 2-D Vandermonde matrix and f (N) :=
(
F (x1, y1), F (x2, y2), . . . , F (x

Ñ
, y
Ñ

)
)T ∈ RÑ .

A notable feature of polynomial interpolation in dimensions higher than one is the
possibility of non-uniqueness in the solution to this Vandermonde system (equivalently,
non-uniqueness of PN ), even when the collocation points are all distinct. A nonlinear
optimization algorithm for computing well-conditioned collocation points for polynomial
interpolation of order up to 20 over a bounded convex domain has been proposed in [26].
The resulting points, known as Vioreanu-Rokhlin nodes, are well-conditioned in the sense
that the associated Lebesgue constant is relatively small in magnitude (which also implies
that the corresponding Vandermonde matrix (11) is invertible). In Figure 1, we plot an
example set of Vioreanu-Rokhlin nodes over a triangle, along with the corresponding
Lebesgue constants for various orders of approximation.

Now let ∆̃ ⊂ R2 be a star-shaped curved triangle with only one curved side, γ :
[0, L]→ R2 be the parameterization of the curved side of ∆̃, and O ∈ R2 be the vertex
opposite to the curved side. The blending function method [11] provides a smooth
mapping from the standard simplex ∆0 = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x} to the
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Figure 1: The 20th order Vioreanu-Rokhlin nodes over a triangle, and the
associated Lebesgue constants for various orders of approximation.. The x-
axis label N denotes the order of approximation. One may observe in Figure 1b that the
Lebesgue constant for the Vioreanu-Rokhlin nodes does not exhibit monotonic growth,
which is due to the heuristic nature of the algorithm used to construct these nodes.

curved triangle ∆̃, defined by the formula

ρ(ξ, η) := (1− ξ − η) · γ(L) + ξ · γ(0) + η ·O

+
1− ξ − η

1− ξ

(
γ
(
L(1− ξ)

)
− (1− ξ) · γ(L)− ξ · γ(0)

)
. (12)

To obtain a set of collocation points over ∆̃, we map the Vioreanu-Rokhlin nodes over
∆0 to ∆̃ via (12). We observe that the Lebesgue constant of resulting collocation points
is also relatively small in magnitude when γ is not too curved.

Similar to the 1-D case, the 2-D Vandermonde matrix (11) is also exponentially
ill-conditioned. The following theorem provides a priori bounds for the monomial
approximation error, which shows that the accuracy of approximation is essentially
unrelated to the ill-conditioning of the matrix. Its proof is almost identical to the proof
of Theorem 2.2 in [23].

Theorem 3.1. Let Ω ⊂ R2 be a bounded domain, and let F : Ω → C be an arbitrary
function. Suppose that PN is the N th degree bivariate interpolating polynomial of F for
a given set of Ñ distinct collocation points Z := {(xj , yj)}j=1,2,...,Ñ

⊂ Ω. Let V (N), a(N)

and f (N) be the same as introduced above. Suppose that there exists some constant γN ≥ 0

such that the computed monomial coefficient vector â(N) := (â00, â10, â01, . . . , â0N )T ∈ RÑ

satisfies (
V (N) + δV (N)

)
â(N) = f (N), (13)

for some δV (N) ∈ RÑ×Ñ with

‖δV (N)‖2 ≤ u · γN , (14)
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where u denotes machine epsilon. Let P̂N (x, y) :=
∑N

j=0

∑j
k=0 âj−k,k

(
x−c
s

)j−k(y−d
t

)k
be

the computed monomial expansion. If the 2-norm of (V (N))−1 satisfies

‖(V (N))−1‖2 ≤
1

2u · γN
, (15)

then the 2-norm of the numerical solution â(N) is bounded by

2

3
‖a(N)‖2 ≤ ‖â

(N)‖2 ≤ 2‖a(N)‖2, (16)

and the monomial approximation error can be quantified a priori by

‖F − P̂N‖L∞(Ω) ≤‖F − PN‖L∞(Ω) + 2u · γNΛN‖a(N)‖2, (17)

where ΛN denotes the Lebesgue constant for Z.

When solving the Vandermonde system using a backward stable linear system solver,
the set of assumptions (13) and (14) is satisfied with constant γN = O(‖V (N)‖2). Further-
more, based on the same analysis as in [23], one can show that u·‖a(N)‖2 . ‖F − PN‖L∞(Ω)

holds in most practical situations when ‖(V (N))−1‖2 satisfies the condition (15), from
which it follows that the monomial basis is as good as an orthogonal polynomial basis for
interpolation in such cases. Therefore, it is advisable to carefully select the monomial
expansion center (c, d) and the scaling factors s, t to minimize the growth of the condition
number κ(V (N)) = ‖V (N)‖2‖(V (N))−1‖2. Below, we provide an algorithm for choosing
these constants.

Given an arbitrary bounded domain Ω in R2, we define B to be the minimum bounding
box of Ω (see Figure 2a). Then, we establish a local coordinate system centered at the
midpoint of B, with the x- and y-axes aligned parallel to the sides of B. In this coordinate
system, we set c and d to be zero, s to be half the length of the longer side of B, and
t to be half the length of the shorter side of B1. One can show that the entries of the
resulting Vandermonde matrix V (N) are no larger than one in magnitude. In addition,
one can observe from Figure 2b that the condition (15) is satisfied for N . 20, regardless
of the triangle’s aspect ratio.

In Section 5.1, we provide numerical experiments to demonstrate the feasibility of
bivariate polynomial interpolation in the monomial basis.

4 Numerical algorithm

In this section, we first present an algorithm for computing the Newtonian potential
when the domain Ω is a (possibly curved) triangle. Then, we describe how to apply this
algorithm to compute the Newtonian potential over a general domain. In the end, we
show that our algorithm has linear time complexity.

4.1 Construction of the anti-Laplacian mapping

In this section, we present an algorithm for computing the anti-Laplacian of a bivariate
monomial. With a slight abuse of notation, we denote the anti-Laplacian operator by
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(a) (b)

Figure 2: The growth of κ(V (N)) for triangles with different aspect ratios. The
colors of the triangles in Figure 2a correspond to the line colors depicted in Figure 2b.
The boxes in Figure 2a define the local coordinate for each triangle.

∇−2, which we define by the recurrence relations

∇−2
[(x− c

s

)m]
=

s2

(m+ 1)(m+ 2)

(x− c
s

)m+2
, (18a)

∇−2
[(x− c

s

)m(y − d
t

)]
=

s2

(m+ 1)(m+ 2)

(x− c
s

)m+2(y − d
t

)
, (18b)

for all m ≥ 0, and

∇−2
[(y − d

t

)n]
=

t2

(n+ 1)(n+ 2)

(y − d
t

)n+2
, (19a)

∇−2
[(x− c

s

)(y − d
t

)n]
=

t2

(n+ 1)(n+ 2)

(x− c
s

)(y − d
t

)n+2
, (19b)

for all n ≥ 0, and

∇−2
[(x− c

s

)m(y − d
t

)n]
=

s2

(m+ 2)(m+ 1)

(x− c
s

)m+2(y − d
t

)n
− s2n(n− 1)

t2(m+ 2)(m+ 1)
∇−2

[(x− c
s

)m+2(y − d
t

)n−2]
(20a)

=
t2

(n+ 2)(n+ 1)

(x− c
s

)m(y − d
t

)n+2

− t2m(m− 1)

s2(n+ 2)(n+ 1)
∇−2

[(x− c
s

)m−2(y − d
t

)n+2]
, (20b)

for all m ≥ 2, n ≥ 2. It is easy to verify that ∇2 ◦ ∇−2 = I. Based on these recurrence
relations, one can construct a mapping from the monomial coefficients of a bivariate poly-
nomial of degree N to the monomial coefficients of the anti-Laplacian of this polynomial.
This mapping only has O(N2) non-zero entries, and should be stored in a sparse format.

Remark 4.1. The identity (20a) produces a shorter sequence of recurrence relations
when m ≥ n, and vice versa for (20b).
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4.2 Close and self-evaluation of Newtonian potential over a mesh ele-
ment

Given a possibly curved triangle ∆1 and a function f : ∆1 → R, we first compute its
bivariate interpolating polynomial in the monomial basis, as described in Section 3. By
Green’s third identity (see Theorem 2.1), the Newtonian potential with density function
f over ∆1 at a given target x ∈ R2 can be expressed as∫∫

∆1

G(x, y)f(y) dAy ≈
∫∫

∆1

G(x, y)PN (y) dAy

=ϕ(x)1∆1(x) +

∮
∂∆1

(
G(x, y)

∂ϕ

∂ny
(y)− ∂G(x, y)

∂ny
ϕ(y)

)
d`y, (21)

where PN is the Nth degree bivariate interpolating polynomial of f , and ϕ := ∇−2[PN ]
is a bivariate polynomial of degree (N + 2) computed using the algorithm outlined in the
previous section. Thus, it remains to compute the layer potentials

∫
Li
G(x, y) ∂ϕ∂ny

(y) d`y

and
∫
Li

∂G(x,y)
∂ny

ϕ(y) d`y for i = 1, 2, 3, where Li denotes the ith edge of ∆1. When x

is well-separated from Li, these integrands are smooth, and (21) is computed using a
standard quadrature rule. When x is close to Li, these integrands become nearly-singular,
and the Helsing-Ojala method is used for the calculation (see Section 2.2). We note that
the restriction of the anti-Laplacian ϕ to a line segment is a univariate polynomial of
degree N + 2.

Remark 4.2. It is well-known that Horner’s method evaluates a polynomial in the
monomial basis with the fewest number of multiplications. However, Estrin’s scheme
outperforms Horner’s method in terms of speed on a modern computer, as it effectively
utilizes CPU pipelines.

4.3 Generalization to an arbitrary domain

Given a general planar region Ω, we first discretize Ω into triangles and curved triangles
using a standard off-the-shelf meshing algorithm. Then, we construct the anti-Laplacian
of the density function in the form of a 2-D monomial expansion for each mesh element.
We also compute the 1-D monomial expansion coefficients for the restriction of the
anti-Laplacian and its normal derivatives to the edges of each element. At this stage, all
of the required precomputations are completed.

Then, we use the point-based fast multipole method (FMM) [15] to compute the far
field interactions. Typically, one uses 2-D quadrature rules over triangles to compute the
far field interactions generated over mesh elements (see, for example, [22, 1]) and, thus,
the number of quadrature nodes over each element for computing far field interactions is
of order O(N2), where N is the degree of the bivariate interpolating polynomial for the
density function. We note, however, that in the far field, the layer potentials in Green’s
third identity (5) can be computed efficiently and accurately by Gauss-Legendre rules.
It follows that, in our algorithm, the number of quadrature nodes over each element is
of order O(N). Finally, we compute the near and self-interactions using the algorithm
presented in the previous section, and use the “subtract-and-add” method to remove the
spurious contribution from the FMM (see [14] for details).
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Remark 4.3. Given two adjacent mesh elements, their far field quadrature nodes
over their common edge coincide, and thus, one could merge the nodes in the FMM
computation to reduce the number of sources by a factor of two. Similarly, one could
merge the expansion coefficients of the two 1-D monomial expansions over the common
edge of two elements to reduce the near interaction computational cost by a factor of two.

4.4 Time complexity analysis

In this section, we present the time complexity of our algorithm. Suppose that we
construct a pth degree bivariate interpolating polynomial of the density function over
each element. Consequently, each polynomial is represented by (p+ 1)(p+ 2)/2 = O(p2)
terms in the monomial basis. We estimate the various costs as follows.

Precomputation for each mesh element:

1. The computation of the 2-D monomial expansion coefficients of the density function
takes O(p6) operations, since the cost is dominated by the factorization of a 2-D
Vandermonde matrix of size O(p2)×O(p2).

2. The computation of the anti-Laplacian takes O(p3) operations.

3. The evaluation of the anti-Laplacian and its normal derivative at theO(p) collocation
points on the edges of the mesh elements takes O(p3) operations.

4. The computation of the 1-D monomial expansions of the restriction of the anti-
Laplacian and its normal derivatives takes O(p2) operations on a straight edge
(as one can store and reuse the pivoted LU factorization of the 1-D Vandermonde
matrix with Gauss-Legendre collocation nodes over [−1, 1]), and takes O(p3) on a
curved edge. We note that the total number of curved edges is generally far fewer
than the total number of straight edges.

Close and self-evaluation of the Newtonian potential over a mesh element at
a single target location:

1. It takes O(p) operations to evaluate the layer potentials on the right hand side of
Green’s third identity (5), either by the Gauss-Legendre rule or the Helsing-Ojala
method.

2. It takes O(p2) operations to evaluate the anti-Laplacian on the right hand side of
Green’s third identity (5). This is only required by the self-evaluation.

Based on these estimates, we present the total number of operations required to
evaluate the Newtonian potential over all of the discretization nodes over the domain Ω.
Suppose that Ω is discretized into m mesh elements. Then, the number of discretization
nodes Ntot is of order O(p2m). First, the precomputation takes O(p6m) = O(p4Ntot)
operations. Second, the far field interaction costs (i.e., the FMM cost) are of order
O(pm+Ntot). Third, the near interaction computation takes O(pNtot) operations, as
each discretization node is inside the near fields of a constant number of mesh elements.
Finally, the self-interaction computation takes O(p2Ntot) operations. Since p is generally
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a small constant, our algorithm has linear time complexity. Furthermore, we note that
the constant associated with the precomputation is small (see Table 3), and the near and
self-interaction computations are nearly instantaneous after the precomputations have
been performed.

5 Numerical experiments

In this section, we illustrate the performance of the algorithm with several numerical
examples. We implemented our algorithm in Fortran 77 and Fortran 90, and compiled it
using the Intel Fortran Compiler, version 2021.6.0, with the -Ofast flag. We conducted
all experiments on a ThinkPad laptop, with 16 GB of RAM and an Intel Core i7-10510U
CPU.

We use the Vioreanu-Rokhlin rules [26], which are publicly available in [13]. We
use the FMM library published in [12] in our implementation. We use the subroutines
dgetrf and dgetrs (i.e., LU factorization with partial pivoting) from LAPACK as our
linear system solver for the Vandermonde system. We make no use of parallelization.
While we comment in Remark 4.3 that it is more efficient to loop through edges instead
of triangles, these features are not implemented in our code, for the sake of simplicity.

We list the notation that appears in this section below.

• Sexps: The number of targets at which the Newtonian potential can be evaluated
per second using our algorithm, after the precomputation.

• Sadap: The number of targets at which the Newtonian potential can be evaluated,
per second, using adaptive integration.

• Eexps: The absolute error of the potential evaluation computed using our algorithm.

• Eadap: The absolute error of the potential evaluation computed using adaptive
integration.

• h0: The mesh element size.

• Nord: The order of the bivariate polynomial approximation to the density function
over each mesh element.

• N tgt
tot : the total number of targets at which the Newtonian potential is evaluated at.

• N src
tot : the total number of sources (i.e., far field quadrature nodes).

• Tgeom: The time spent on the geometric algorithms: quadtree constructions, nearby
elements queries, etc. The mesh creation time is not counted.

• Tinit: The time spent on the precomputations required by our algorithm.

• TF : The time spent on the far field interaction computation (i.e., the FMM
computation).

• TN : The time spent on the near field interaction computation, including the
subtraction of spurious contributions from the far field interaction computation
(see [14, 22]).
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• TS : The time spent on the self-interaction computation, including the subtraction
of spurious contributions from the far field interaction computation (see [14, 22]).

• Ttot: The total time for the evaluation of the volume potential at all of the dis-
cretization nodes.

• #tgt
sec : The number of targets at which the Newtonian potential can be evaluated

per second using our algorithm, including the precomputation cost.

• Ẽabs: The largest absolute error of the solution to Poisson’s equation at all of the
target nodes.

5.1 Bivariate polynomial interpolation in the monomial basis

In this section, we present numerical experiments to demonstrate the feasibility of bivariate
polynomial interpolation in the monomial basis.

Let ∆1 be an equilateral triangle with vertices (−1, 0), (1, 0) and (0,
√

3), and let ∆2

be a squashed triangle with vertices (−1, 0), (1, 0) and (0, 1
16). In Figures 3 and 4, we

estimate L∞ errors of bivariate polynomial interpolation in the 2-D monomial basis and
in the Koornwinder polynomial basis [3] (i.e., the orthogonal polynomial basis over a
triangle) over the domains ∆1 and ∆2 with the Vioreanu-Rokhlin collocation points, for
different orders of approximation N , by comparing the values of the two approximations
with the true value of the function at 20000 uniformly sampled points over the domain.
We also report the extra numerical error which arises from the use of monomial basis
(i.e., u · ‖a(N)‖2, see Theorem 3.1). One can observe that the use of the monomial basis
induces essentially no extra loss of accuracy in both cases.

Now let ∆̃ be a curved triangle, given by the formula

∆̃ := {(r cos θ − 1, r sin θ) ∈ R2 : 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/3}. (22)

We repeat the previous experiment on ∆̃, and show the results in Figure 5. One can
observe that the performance of the monomial approximation over a curved triangle is
almost identical to the triangle domain case.

5.2 Newtonian potential generated over a mesh element

In this section, we illustrate the performance of our algorithm. In Table 1, we report the
speed-up of the close evaluation of the Newtonian potential obtained by our algorithm
after the precomputation, compared to the conventional adaptive integration-based
approach, for different orders of approximation. We do not include a similar experiment
that demonstrates the speed-up of the self-evaluation, since a fair experiment requires
the speed of the adaptive integration-based approach to be independent of the cost of
evaluating the density function. We note that, even when the density function is a
constant (so that its evaluation is free), the speed of the self-evaluation by our algorithm
is significantly faster than the adaptive integration-based approach when h is less than
2× 10−2 (see the caption of Table 1 for the definition of h). In Figure 6, we report the
speeds for the close and self-evaluations, and of the precomputations, for various orders
of approximations. In Figure 7, we show the plots of the computational errors of the
Newtonian potential.
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(a) f(x, y) = e−(x2+y2)/8 (b) f(x, y) = sin( 1
2xy + x+ y)

(c) f(x, y) = 1
x2+(y+1)2 (d) f(x, y) = |x|5.5

Figure 3: Bivariate polynomial interpolation over the equilateral triangle ∆1

by monomials and Koornwinder polynomials.

5.3 Poisson’s equation

In this section, we report the performance of our Newtonian potential evaluation algorithm
in the context of solving Poisson’s equation

∇2ϕ = f in Ω,

ϕ = g on ∂Ω, (23)

where

f(x, y) = 9 cos(9x) sin(6y) + 16 cos
(
16y +

8

5

)
− 12 sin(12x), (24)

and

g(x, y) = ϕ(x, y)|∂Ω =
( 1

12
sin(12x)− 1

16
cos
(
16y +

8

5

)
− 1

13
cos(9x) sin(6y)

)∣∣∣
∂Ω
, (25)

for the domain Ω is displayed in Figure 8. The boundary of this domain was created
by the following procedure. First, we fit a C∞ curve through a collection of points
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(a) f(x, y) = e−(x2+y2)/8 (b) f(x, y) = sin( 1
2xy + x+ y)

(c) f(x, y) = 1
x2+(y+1)2 (d) f(x, y) = |x|5.5

Figure 4: Bivariate polynomial interpolation over the squashed triangle ∆2 by
monomials and Koornwinder polynomials.

using the algorithm described in [28], and then up-sampled the curve to produce a
new collection of data points. The final curve was constructed by interpolating these
new points using the interpolation formula and C∞ interpolatory basis introduced
in [27], where the basis functions are translates of the product of the sinc function
and the Gaussian exp(−ax2), with the parameter a = 0.1. The final curve can be
recreated from this interpolation formula, together with the data points, which we
provide in https://doi.org/10.5281/zenodo.8067629. Once the boundary of Ω has
been constructed, a mesh is created on Ω using the Gmsh mesh generator.

It is easy to verify that the solution ϕ to Poisson’s equation (23) can be expressed as
the sum of the Newtonian potential u with density function f over the domain Ω and the
solution to the Laplace equation

∇2uh = 0 in Ω,

uh = g − u on ∂Ω. (26)

In our implementation, we first compute u using our algorithm, and then solve the Laplace
equation (26) using the boundary integral equation method [25].

15

https://doi.org/10.5281/zenodo.8067629


(a) f(x, y) = e−(x2+y2)/8 (b) f(x, y) = sin( 1
2xy + x+ y)

(c) f(x, y) = 1
x2+(y+1)2 (d) f(x, y) = |x|5.5

Figure 5: Bivariate polynomial interpolation over the curved triangle ele-
ment ∆̃ by monomials.

We report the problem sizes in Table 2, and the performance of our algorithm in
Table 3. We note that the time spent on solving the Laplace equation (26) is not included
in the table, as it is separate from our Newtonian potential evaluation algorithm.

Remark 5.1. We found that the time spent on the far field interaction computation
performed by the FMM has a high variance, so we ran the program several times and
reported the experiment with the smallest FMM computation time. We note that the
runtimes of all other parts of our algorithm have low variance.

6 Conclusions and further directions

In this paper, we present a simple and efficient high-order algorithm for the rapid
evaluation of Newtonian potentials over a general planar domain. Furthermore, we
provide a justification for employing a monomial basis in the context of high-order (up to
order 20) bivariate polynomial interpolation. This choice serves as a crucial component
of our algorithm, despite being commonly regarded as infeasible.
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Nord h Sexps Sadap
Sexps

Sadap
Eexps Eadap

8 2× 10−1 9.29×105 3.56×105 2.61 4.07×10−8 1.37×10−7

2× 10−2 1.19×106 2.02×105 5.88 3.06×10−8 9.73×10−8

2× 10−3 1.19×106 6.13×104 19.4 4.89×10−8 2.78×10−7

2× 10−4 1.19×106 5.39×104 22.1 5.10×10−8 5.35×10−8

2× 10−5 1.19×106 3.95×104 30.1 5.12×10−8 7.03×10−8

14 2× 10−1 1.04×106 5.07×104 20.6 9.42×10−13 9.41×10−13

2× 10−2 1.04×106 1.51×104 69.0 1.69×10−11 1.20×10−11

2× 10−3 1.04×106 8.21×103 127 2.27×10−11 5.83×10−11

2× 10−4 1.04×106 5.64×103 185 2.34×10−11 5.30×10−11

2× 10−5 1.04×106 4.09×103 255 2.35×10−11 5.66×10−11

20 2× 10−1 7.40×105 1.19×104 62.2 7.77×10−16 1.00×10−16

2× 10−2 7.41×105 3.11×103 238 4.16×10−16 8.33×10−17

2× 10−3 7.41×105 1.56×103 474 8.60×10−16 2.03×10−15

2× 10−4 7.43×105 1.00×103 741 1.05×10−15 6.38×10−16

2× 10−5 7.42×105 8.09×102 917 8.33×10−16 5.83×10−16

Table 1: The speed-up of close evaluation of Newtonian potentials. In this
example, the domain ∆ := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}, and the density
function is given by f(x, y) = cos(5xy)+sin(2x+1)+cos(3y−1). The target location is set
to be (0.5,−h). In the adaptive integration computation, we used the Vioreanu-Rokhlin
rule of order Nord, equipped with the error control technique introduced in [22] to align
the error of our algorithm. To make the adaptive integration speed independent of the
complexity of the density function, we excluded the time spent on the density function
evaluations on the first level, but included the time spent on interpolating the density
function values to the next level (see [3] for a fast interpolation technique). Furthermore,
we accelerated the application of the interpolation matrix by LAPACK, and fine-tuned
the baseline to make the comparisons fair. The reference solutions were computed using
extremely high-order adaptive integration.

We note that our algorithm can be generalized to compute the Helmholtz (or Yukawa)
volume potential, provided that the anti-Helmholtizian (or anti-Yukawaian) of a bivariate
polynomial can be approximated accurately, and that the Helmholtz (or Yukawa) layer
potentials over the boundaries of mesh elements can be efficiently computed to high
accuracy (see, for example, [18, 9]). Furthermore, the use of polynomial interpolation in
the monomial basis and Green’s third identity generalize in a straightforward way to 3-D
domains, but efficient algorithms for the evaluation of surface Newtonian potentials are
an area of active research.
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(a)
(b)

Figure 6: The speed of the far, close, and self-evaluations, and of the precom-
putations. The x-axis denotes the order of approximation. The y-axes in (a) and (b)
denote the number of targets the volume potential can be evaluated at and the number
of mesh elements that the precomputation can be executed, per second, respectively. The
labels “Far” and “Near” denote the evaluation of the Newtonian potential via (5) by a
Gauss-Legendre rule of order N + 2 and by the Helsing-Ojala method of order N + 2,
respectively, over the three edges of the mesh element.

Nord h0 N src
tot N tgt

tot
Nsrc

tot

Ntgt
tot

8 0.6 18216 24840
73.3%0.3 60852 82980

0.15 227634 310410

14 0.6 28152 66240
42.5%0.3 94044 221280

0.15 351798 827760

20 0.6 38088 127512
29.9%0.3 127236 425964

0.15 475962 1593438

Table 2: The total number of sources and targets for different orders of ap-
proximation Nord and for difference mesh sizes h0. We note that the total number
of the mesh elements equals 552, 1844, 6898 when h0 = 0.6, 0.3, 0.15, respectively. The
sources are the Gauss-Legendre nodes of order Nord + 2 along the boundaries of the mesh
elements, and the targets are the Vioreanu-Rokhlin nodes of order Nord over all mesh
elements. The last column shows the reduction in the number of far field quadrature
nodes, when the far field interactions are computed using Green’s third identity.
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