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Abstract
The purpose of this research is to create effective training data for a neural network to

detect lung cancer. Since X-rays are a relatively cheap and quick procedure that provide a
preliminary look into a patient’s lungs and real X-rays are often difficult to obtain due to
privacy concerns, creating synthetic frontal chest X-rays using ray tracing and Beer’s Law on
several chest X-ray Computed Tomography (CT) scans with and without randomly inserted
lung nodules can provide a large, diverse training dataset. This research project involves lung
segmentation to separate lungs within CT scans and randomize nodule placement, nodule
generation to grow nodules of random size and radiodensity, bone removal to obtain dual-
energy X-rays, ray tracing to create X-rays from CT scans from several point sources using
Beer’s Law, image processing to produce realistic X-rays with uniform orientation, dimensions,
and contrast, and analyzing these various methods and the results of the neural network to
improve accuracy when compared to real X-rays, while reducing space complexity and time
complexity. This research may be helpful in detecting lung cancer at a very early stage.

1 Introduction

1.1 Lung Cancer

Lung cancer is caused by abnormally behav-
ing cells that grow too quickly or do not die reg-
ularly enough. Cancer cells grow into and de-
stroy neighboring cells [1]. These cells form tu-
mours and are commonly called nodules in Stage
I when they are less than 3cm in diameter.

In Canada, as of 2018, lung cancer has the
highest projected incidence and mortality rates
of all cancers. It also has one of the lowest 5-
year net survival rates as most diagnoses occur
in later stages of the disease. There are 5 main
stages of lung cancer: 0, I, II, III, and IV [2].
About 50% of lung cancer diagnoses occur dur-
ing Stage IV, which has a high mortality rate [3].
However, early detection is critical for a good
prognosis so this project considers the problem
of detecting nodules in Stage I of growth.

1.2 Diagnosis

There are several tests that can either rule
out or diagnose the existence or stage of lung
cancer such as health history, blood tests, biop-
sies, and imaging techniques [4]. This project
focuses on X-rays due to their relative afford-
ability when compared to other imaging tests.

Figure 1: A real X-ray with multiple nodules. [5]

X-rays are grayscale images of a certain part
of the body that capture the amount of X-ray
radiation that is absorbed after various tissues
within the body absorb the radiation at differ-
ent levels. For example (See Figure 1), bones
appear white since they absorb the most X-ray
radiation, fat and soft tissues appear various
shades of gray since they absorb lesser radia-
tion, and air appears black since it absorbs al-
most no radiation. As a result, since lungs are
filled with air, they appear dark in the X-rays.
This makes it easier to spot nodules, which are
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soft tissues, in the lungs, as opposed to those in
other organs, as the air within the lungs "high-
lights" the nodules. However, the malignancy of
a tumour cannot be determined solely from an
X-ray and requires further tests [6].

Figure 2: A slice of a chest CT scan containing the
lungs (dark regions) from a top view of the body.

CT scans are put together as a number of
slices of X-rays which are combined to create
a 3-dimensional model and provide a more com-
prehensive view of the inside of the body [7] (See
Figure 2). For this project, using CT scans
with or without inserted nodules as a model for
a patient’s body to synthesize the X-rays can
provide a very large set of training data.

To get an unobstructed view of the lungs in
the X-ray, bones are subtracted from the CT
scan and the empty area is smoothed out (See
Section 5). This method of assessing the soft
tissue and bone separately by directing X-rays of
two discrete energy levels at the body is called
dual-energy X-ray absorptiometry (or DAX) [8].
In this project, the bone-subtracted soft tissue
X-ray is used since the nodules may be distorted
by the ribs otherwise.

1.3 Neural Networks
In the past few years, there has been vast

interest and growing development in the field of
Artificial Intelligence, specifically in the branch
of Convolutional Neural Networks (CNNs), be-
cause of their many practical applications in var-
ious fields, especially Computer Vision. Well-
trained CNNs are very useful in the field of med-
ical imaging as they may be able to pick up de-
tails that human experts may have trouble dis-
cerning [9]. With this intention, effective train-
ing data is crucial in constructing a CNN that
provides good results.

In previous research projects [10, 11], CNNs

have provided promising results in detecting var-
ious abnormalities in frontal chest X-rays with
significant accuracy. However, there is a lack
of a large and diverse enough training database
due to privacy concerns and the lack of sufficient,
substantial variability within the data. So, cre-
ating synthetic X-rays allows for the control of
many random variables through CT scan manip-
ulation: location, radiodensity, size, and shape.

1.4 Project Input, Setup, Output

CT scans are the only inputs used to create
the X-rays. The CT scans provided by Dr. Bar-
fett are stored in Digital Imaging and Commu-
nications in Medicine (DICOM) files [12]. Re-
specting the privacy of the individuals who con-
sented to provide their CT scans for this project,
the CT scans have been anonymized. Horos, an
open source medical image viewer, was used to
inspect CT scans slice-by-slice [13].

Figure 3: The project outline as of Aug. 20, 2018.

Different aspects of the project have been
programmed respectively in the most suitable
languages (See Figure 3), such as Python’s
NumPy [14] for handling large matrices, C++
for its flexible memory allocation, and MatLab
for its Image Processing Toolbox [15].

The final X-rays for each CT scan are
256x256 pixel .png files. In the first batch, 6 CT
scans were used to create 1991 X-rays (includ-
ing 6 without nodules) using the parallel-ray ap-
proach with bones replaced with air, handpicked
contrasts, and manual nodule placement. To im-
prove the results of the GoogLeNet CNN for the
second batch, many programs were modified, as
discussed in this report, and 70 more CT scans
are being exported to generate larger datasets.
30 more CT scans were obtained recently.
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2 Attenuation & Radiodensity
Each pixel of an X-ray is measured using

a linear attenuation coefficient (cm−1), which
is the nonnegative proportion of the number of
photons in the X-ray that is absorbed per unit
thickness of the medium [16]. Similarly, each
volumetric pixel (voxel), the smallest part of a
3D object [17], of a CT scan is measured using
Hounsfield Units (HU) or CT numbers, which
are a dimensionless unit that linearly transform
linear attenuation coefficients to the scale where
water and air have radiodensity 0 and -1000 HU,
respectively [18, 19].

HUmedium = 1000× (µmedium−µwater)
(µwater−µair)

µmedium = µwater + HUmedium

1000 × (µwater − µair)

Figure 4: The linear transformation to convert
from the attenuation of a medium, µmedium, to ra-
diodensity, HUmedium, and vice-versa.

It is necessary to be able to convert from ra-
diodensity to attenuation since the voxels of the
CT scans contain radiodensities in HU and gen-
erating X-rays requires work with attenuations
(See Figure 4). Various tissues have varying
attenuations and radiodensities (See Table 1).

Medium Attenuation Radiodensity
(cm−1) (HU)

Bone 0.528 1000
Muscle 0.237 50
Blood 0.208 20
Water 0.206 0
Fat 0.185 -100
Lung 0.093 -200
Air 0.0004 -1000

Table 1: Some common media and their approxi-
mate attenuations and radiodensities [19].

3 Bone Removal
To mimic the effect of dual-energy X-rays

(See Figure 5), which are created by projecting
two X-rays of different energy levels to improve
image contrast [20], bone voxels were modified
before tracing rays through the CT. In the first
batch of X-rays, voxels over an attenuation of
0.5 cm−1 [21, 22], which is approximately close
to the attenuation of bone, were replaced with
air, which has an attenuation of approximately
0 cm−1). Although a large proportion of bones
were removed, the substitution of bones with
air was unrealistic because dark lines were no-
ticeable in the generated X-rays. Some bones
around the ribcage appeared to be remaining,
giving an impression of hollow ribs.

Upon viewing attenuation plots of CT scan
slices near the ribs, the attenuation threshold
was decreased and the removed bone voxels were
interpolated using linear interpolation [23] in 3
dimensions (trilinear interpolation) using Mat-
Lab’s fillmissing function. However, this method
produced more faint, but visible, bones in the X-
rays. Finally, the best method was to reduce the
attenuation threshold further and replace the
bone voxels with water. See Figure 6 for the
three attempts to mimic soft-tissue X-rays.

4 Nodule Placement
The first set of synthetic X-rays with nod-

ules were created with the brute-force approach.
Future batches will use the lung segmentation
algorithm to randomly select nodule positions.

4.1 Brute-Force Approach
To model the random positioning of nodule

growth in the lungs, the first approach consisted
of manually selecting points within the lungs
with a modified version of a CT viewing tool
developed by Dr. Barfett by scrolling through
CT scan slices. Two points from each slice con-
taining lung voxels were selected (one from each
lung). Lung voxels were identified by darker
shades of gray (See Figure 2) which had lower
attenuations. Although the points appeared to
be selected randomly, positions on slices with
fewer lung voxels had the same probability of
being chosen as those on slices with more lung
voxels, which skews the data. Another downside
with this approach is the time and labor required
to select the positions in numerous CT scans.

4.2 Lung Segmentation Approach
The lung segmentation algorithm consists

mainly of a Breadth-First Search call. A voxel
belonging to each lung is manually selected sim-
ilarly to the Brute-Force Approach and added
to the queue as a starting point. Voxels in
the queue are removed and their neighbours
are added if their attenuations do not surpass
a handpicked attenuation threshold associated
with lung voxels. This process is repeated until
no new voxels can be discovered from the lung
voxels. The attenuation threshold was deter-
mined by analyzing attenuation graphs of the
CT scan slices. In addition to the upper thresh-
old, a similarly determined lower threshold was
later added to prevent voxels in the trachea and
the bronchi from being discovered [24]. The re-
sults of the lung segmentation algorithm (See
Algorithm 1) can be seen in Figure 7. About
400 nodule centre positions are picked from any-
where within or on the borders of the segmented
lungs using a uniform random distribution.
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Figure 5: Real X-rays that show the effect of dual-energy X-rays. A standard X-ray (left). A negative
X-ray highlighting the bones (middle). A soft-tissue X-ray with the bones subtracted (right).

Figure 6: Synthetic X-rays that mimic the effect of dual-energy X-rays. A standard X-ray (left). A
soft-tissue X-ray with the bones removed and replaced with air (middle) and water (right).

def segment_lungs_bfs ( ct , l_threshold , u_threshold , pts ) :
def check_point ( pt ) :

i f pt not in v i s i t e d and \
0 <= pt [ 0 ] <= ct . shape [ 0 ] − 1 and \
0 <= pt [ 1 ] <= ct . shape [ 1 ] − 1 and \
0 <= pt [ 2 ] <= ct . shape [ 2 ] − 1 and \
l_thresho ld <= ct [ pt + ( 0 , ) ] <= u_threshold :

q . append ( pt )
s e l e c t e d [ pt ] = 1

v i s i t e d [ pt ] = 1

v i s i t e d = {}
s e l e c t e d = {}
q = pts
while len ( q ) > 0 :

s l i c e_pt = q . pop ( )
check_point ( tuple (map( operator . add , s l i c e_pt , (0 , 0 , 1 ) ) ) )
check_point ( tuple (map( operator . add , s l i c e_pt , (0 , 0 , −1))))
check_point ( tuple (map( operator . add , s l i c e_pt , (0 , 1 , 0 ) ) ) )
check_point ( tuple (map( operator . add , s l i c e_pt , (0 , −1, 0 ) ) ) )
check_point ( tuple (map( operator . add , s l i c e_pt , (1 , 0 , 0 ) ) ) )
check_point ( tuple (map( operator . add , s l i c e_pt , (−1 , 0 , 0 ) ) ) )

return s e l e c t e d

Algorithm 1: Lung Segmentation algorithm (Python). The check_point function takes a point and
checks if it falls in the given range of thresholds. The while loop explores all the voxels around the current
point in the CT scan to check if they fall within the threshold using Breadth-First Search.
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Figure 7: Points selected (in blue) using the CT
scan lung segmentation algorithm from two angles.

5 Nodule Generation
Lung nodules come in various shapes, sizes,

and radiodensities [25] (See Figure 8). The size
of a lung nodule is usually between 0.5 cm to 3
cm, so it suffices to pick the size using a uniform
random distribution. Similarly, the radioden-
sity of a nodule usually falls between 50 HU to
150 HU and is also picked using a uniform ran-
dom distribution. However, generating various
shapes of nodules is more challenging.

Growing the nodules to obtain realistic
shapes (See Figure 9) took several tries. The
initially explored dispersed model more closely
simulated lung infections than lung cancer.
Thus, this project uses the lobulated model,
since it provided the most realistic shapes. Orig-
inally, the nodules were placed in the CT scans
without resizing to match the dimensions of
the lung voxels, making them appear stretched
in the vertical direction. Resizing the nodules
properly before inserting them into the CT scan
fixed this issue, providing spherical nodules.

Figure 8: Various lung nodule shapes.

Since the X-rays are 256x256 pixel images
and the nodules are relatively small within the
X-rays, the nodules do not appear sharp enough
in the X-rays for different types of nodule shapes
to be distinguishable from one another. Thus,

the lobulated model was used as an approxima-
tion for all of the lung nodule shapes.

Figure 9: Accurate nodule growth model that ac-
counts for the ability of cells to migrate locally and
form microlesions, which are the smaller spheres
around the central sphere of cancer cells [26].

5.1 Dispersed Model

Figure 10: X-ray with a nodule (dispersed model).

Based on [27], the first attempt was to gener-
ate nodules within a region by growing a central
spherical nodule and growing smaller spherical
nodules in that region until 7% of the volume
in the region was filled to simulate the ability
of cells to migrate locally and form "microle-
sions" (See Figure 9). According to Dr. Bar-
fett, the resulting X-ray (See Figure 10) ap-
peared like an X-ray of a lung infection rather
than that of lung cancer. The generated nodules
appeared "dispersed" throughout the region of
interest (See Figure 11), rather than appear as
one continuous, connected nodule.
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Figure 11: Growth of nodules in the dispersed model.

5.2 Lobulated Model

Figure 12: X-ray with a nodule (lobulated model).

A previous student worked on generating the
lobulated model of a nodule. This model started
with a central sphere of a randomly chosen diam-
eter and iteratively added multiple hemispheres
of smaller diameters on randomly chosen points
on the surface of the existing shape until the re-
quired nodule diameter was reached in any one

of the three dimensions. According to Dr. Bar-
fett, the resulting X-ray (See Figure 12) ap-
peared much more accurate. The generated nod-
ules appeared as one continuous, connected nod-
ule (See Figure 13).

The algorithm for the lobulated model (See
Algorithm 2) chooses the radii of the smaller
hemispheres (based on the centres) to be such
that they grow no larger than the given desired
size of the nodule. The nodule is grown in a cube
of a slightly larger dimension for this reason, to
allow enough space for growth.

6 Beer’s Law
Once the generated nodules are inserted into

the CT scan, the X-rays can be synthesized using
Beer’s Law (See Section 6.3). Two approaches
were used to create the X-rays. The parallel-
ray version is a simplification of the point-source
version, which is a more accurate model of the
X-ray procedure seen in practice. Both ver-
sions produce very similar results, except that
rather than being 1 m away from the patient,
the parallel-ray version "places" the point source
infinitely far away from the patient. The point-
source version also has the advantage that X-
rays can be taken from different point sources
for slight variations in the data.
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Figure 13: Growth of a nodule in the lobulated model.

def shape_grower ( s i z e , voxel_dimension ) :
larger_dimens ions = 3∗ [ int ( s i z e /voxel_dimension )+3]
dimensions = 3∗ [ int ( s i z e /voxel_dimension ) ]
base = np . z e ro s ( larger_dimens ions )

c en t r e = ( )
for i in range ( len ( larger_dimens ions ) ) :

c en t r e += ( int ( larger_dimens ions [ i ] / 2 ) , ) # Ca l cu l a t e the cen t re
rad iu s = np . random . uniform ( 0 . 5 , 0 . 7 5 ) ∗ \
ca l cu l a t e_rad iu s ( larger_dimensions , c en t r e ) # Radius f o r i n i t i a l c en t re

# Create l i s t o f t u p l e s o f cen t re and rad ius
cen_rads = [ ]
cen_rads . append ( ( centre , r ad iu s ) )
border_pts = [ ]
i n t e rna l_po in t s = [ ]
i = 0
while not reach_des i red_s ize ( base , dimensions ) :

# Po l l a t u p l e from cen_rads l i s t
cen_rad_tuple = cen_rads [ i ]
# Create sphere in the matrix
border_pts = create_sphere ( base , cen_rad_tuple [ 0 ] , \
cen_rad_tuple [ 1 ] , 1 , border_pts )
i += 1
i f reach_des i red_s ize ( base , dimensions ) :

break
# Create a new cen t re and new rad ius
new_cen , new_rad = find_new_centre_radius ( cen_rad_tuple , \
border_pts , larger_dimensions , s i z e )
cen_rads . append ( ( new_cen , new_rad ) )

Algorithm 2: The nodule growing algorithm for the lobulated model. The calculate_radius function
returns the largest possible radius for the given dimensions. The find_new_centre_radius function adds
a new hemisphere of a random size and location centered on the existing shape.
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6.1 Parallel-Ray Version

Figure 14: Parallel-ray method [28].

Parallel rays can be traced as an approxima-
tion to a real X-ray produced from an infinitely
distant source point. Before the implementation
of the efficient ray-tracing algorithm discussed
in Section 6.2.2, this approximation greatly re-
duced the runtime as the intersecting distance of
a ray through each voxel is constant (the inter-
secting distance is the voxel depth).

This method was used to produce the first
batch of training data. However, after the first
neural network training session, we hypothesized
that the X-rays taken from the same position
may contribute to the neural network recogniz-
ing patients and their lung shapes instead of
nodule presence.

Figure 15: An X-ray generated using the parallel-
ray version of X-ray generation.

6.2 Point-Source Version

Figure 16: Point-source method [28].

To produce X-rays from a point source, the
intersecting distance of each ray with each tra-
versed voxel must be calculated. A 2D example
of an efficient algorithm to accomplish this task
is shown in Figure 18.

Starting from the entrance point, c, the
points which correspond to the next voxel bor-
ders (one in each dimension) are calculated. The
closest point, d, represents the next border in-
tersection, and thus the distance from c to d is
calculated. These steps are repeated with point
d as the next entrance point.

The source point can also be changed to pro-
duce different perspectives of the same lungs as
mentioned in Section 6.2.1.

Figure 17: An X-ray generated using the point-
source version of X-ray generation.
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Figure 18: 2D example of the ray tracing algorithm. The points a to g represent voxel borders. The next
border intersection points in each dimension (red) are calculated from the voxel entrance point (blue). The
closest red point must be the voxel’s exit point, and becomes the next voxel’s entrance point. [29].
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During the implementation of the ray traver-
sal algorithm, the first approach was to rewrite
the C++ program in Python due to its famil-
iarity and ease of implementation. However,
Python’s generous memory allocation was prob-
lematic with the immense amount of CT voxel
instantiation. The low-level programming pro-
vided by C++ was crucial in this step.

6.2.1 Randomized Point-Source

In order to prevent producing identical X-rays
with nodule placement as the only variation in
each CT scan, the next batch will also have vary-
ing source point positions. Each source point
will be randomly chosen from a sphere surround-
ing the original source point (1 m away and cen-
tered on the front face of the CT scan), which
will provide many different angles, adding vari-
ation to the data. With different source points,
X-rays have slight variations (See Figure 19).

Figure 19: From top-left, X-rays generated by
moving the point-source up, down, forward, back-
ward, left, right, and leaving it centered at 1 m away.

6.2.2 Ray Tracing & Voxel Traversal

Upon implementing Algorithm 3 in the source
point X-ray generation program passed on from
the previous student to obtain the voxels that
were traversed by each ray and the intersect-
ing distances, the runtime was significantly cut
down from hours to under a minute, making
mass production of point-source X-rays feasible.

For the upcoming batches, an X-ray with a
nodule and a nodule-free X-ray will be produced
from unique, randomly chosen angles. To reduce
runtime, only the rays intersecting the modified
nodule chunk will be traced.

6.3 Usage of Beer’s Law
Once the sequence of voxels that intersect the

rays are selected, the X-rays can be made using
Beer’s Law for both the parallel-ray version and
the point-source version.

The measure of intensity loss of the X-rays as
they pass through the body is modeled by Beer’s
Law (See Figure 20, line 1), which states that
the rate of change of intensity per cm of an X-
ray beam passing through a medium is jointly
proportional to the intensity of the beam and to
the attenuation coefficient of the medium [30].

Let I(x) be the intensity and A(x) be the
attenuation of the xth voxel in the sequence of
voxels that the X-ray passes through. Let x0

be the first voxel in the sequence and I(x0) be
the initial intensity. Let xn be the final voxel
in the sequence and I(xn) be the final intensity.
Note that ∆xi is the distance the X-ray travels
through the ith voxel (stays constant for parallel-
ray version). Integrating is transformed into a
summation since we do not have an attenuation
function, but rather a list of attenuations.

dI
dx = −A(x) · I(x)

=⇒ dI
I = −A(x)dx

=⇒
∫ xn

x0

dI
I = −

∫ xn

x0
A(x)dx

=⇒ ln(I(xn))− ln(I(x0)) = −
∑n
i=0A(i)∆xi

=⇒ ln( I(xn)
I(x0) ) = −

∑n
i=0A(i)∆xi

=⇒ I(xn)
I(x0) = e−

∑n
i=0 A(i)∆xi

=⇒ I(xn) = e−
∑n

i=0 A(i)∆xi · I(x0)

Figure 20: Starting with Beer’s Law, we obtain an
equation for the final intensity of a pixel [28, 30].

Note that the above method calculates the
remaining intensities of the X-rays as they travel
through the body as opposed to the absorbed in-
tensities (See Section 7, invert colours).
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double t rave r s eVoxe l ( Coordinate ∗prev , double ∗ t , int dim ,
Coordinate ∗ coordArray , SimulatedRay ∗ ray ,
vector<vector<vector<Voxel ∗>>> &ctVoxels ,
double voxel_xy_dim , double voxel_z_dim ){

// Obtain the l o s t i n t e n s i t y in the t r a v e r s a l o f t h i s v o x e l .
double l o c a l I n t e n s i t yL o s s = ge t I n t en s i t yLo s s (∗ prev , coordArray [ dim ] ,

ctVoxels , voxel_xy_dim , voxel_z_dim ) ;
// f i nd the next i n t e g e r po in t f o r dimension dim
double nextInt ;
i f (dim == XDIM){

next Int = coordArray [ dim ] . x + ray−>xSign ;
} else i f (dim == YDIM){

next Int = coordArray [ dim ] . y + ray−>ySign ;
} else {

next Int = coordArray [ dim ] . z + ray−>zSign ;
}
// Update the next ( i n t e g e r ) e x i t po in t f o r t h i s dimension .
∗prev = coordArray [ dim ] ;
∗ t = findT ( ray , dim , next Int ) ;
newCoordinate ( ray , ∗ t , coordArray [ dim ] ) ;
return l o c a l I n t e n s i t yL o s s ;

}

Algorithm 3: This function shows how to traverse a single voxel. The parameter "dim" specifies the
next traversed dimension. The intensity loss caused by the voxel with entrance point "prev" and exit point
"coordArray[dim]" is calculated. coordArray[dim] is then updated to prepare for the next iteration.

7 Image Processing
The final part of generating accurate-looking

synthetic X-rays requires image processing. Be-
cause of the way the CT scan is oriented and
stored, there are several image processing tech-
niques (most of which are found in MatLab’s
Image Processing Toolbox) that we have to use
to make the X-ray look realistic and ensure that
the dimensions, orientation, and contrast are as
close to those of a real X-ray.

When making the X-ray, we measure the
amount of energy left, so the colours must
be inverted to get the attenuation, which is
the amount of energy absorbed. Inverting the
colours of the matrix simply requires assigning
the matrix to one minus itself (See Figure 21).

Figure 21: X-ray with inverted grayscale.

The functions rot90 (See Figure 22) and flip
(See Figure 23) were used to orient the image
with the lungs upright and the heart on the right

side. These functions manipulate the matrix of
pixels to obtain the desired orientation.

Figure 22: X-ray rotated by 90 degrees clockwise.

Figure 23: X-ray flipped along the vertical axis.

For the parallel-ray version of X-ray genera-
tion, resizing the images is necessary to get the
desired size due to the shapes of the CT scans.

However, the most challenging part of image
processing was accurately portraying the con-
trast within the X-rays.
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7.1 Resizing with Interpolation

While generating images using the parallel-
ray version, which essentially flattens the CT
scans in one dimension to make the X-rays, re-
sizing the image is necessary to create images of
size 256x256 since each CT scan may have differ-
ent dimensions (See Figure 24). CT scan slices
are always 512x512 pixels, however the number
of slices in each CT scan may vary from 116 to
527 based on the thickness of each slice.

The MatLab function imresize uses bilinear
interpolation to fill gaps in the data or shrink
the data to resize the images as desired.

Note that interpolation is not required for
the point-source version as we can control the
number of rays that are projected onto the
256x256 pixel image.

Figure 24: Before and after using linear interpola-
tion in two dimensions to stretch the image vertically
and shrink it horizontally. The original dimensions
of the CT were 125x512x512 voxels which resulted
in the dimensions of the X-ray being 125x512 pix-
els. After bilinear interpolation, the dimensions are
corrected to be 256x256 pixels.

7.2 Contrast Enhancement

There were many attempts to get the con-
trast to look realistic. After using Beer’s Law to
create the X-rays, the X-rays had very poor con-
trast (See Figure 25). They appeared bright
and faded unlike real X-rays which had lungs
appearing very dark and the surrounding tissues
appearing brighter, in a light gray colour.

Exploring the notion of histograms, which
are representations of the distribution of a set
of data [31], and in this case the distribution of
the pixel intensities in an image, it was possible
to fix the contrast.

First, the imadjust function was used to
manually find the right contrast by eye. This
method was prone to error and was very time
consuming.

Figure 25: Original image and its corresponding
histogram of intensities.

Figure 26: Gamma corrected, histogram equalized
image and its corresponding histogram of intensities.
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Second, the imhistmatch function was used
to adjust the histogram of the synthetic X-ray to
match the histogram of the real X-ray provided
by Dr. Barfett. This method failed due to the
differences in the size of the dark borders in the
images. These borders skewed each of the CT
scans differently based on the size of the patient
and how they lay on the table during the CT
scan procedure.

Then, we considered manipulating the bor-
ders of the X-ray by adding some dark pix-
els near the edges so that all X-rays have ap-
proximately the same distribution of dark pix-
els in the histograms on which we would then
use imhistmatch. However, this procedure was
prone to error and also very time consuming.

Finally, the best method to improve contrast
was to use gamma correction (gamma = 2.5) [32]
to weigh the mapping towards darker values and
then use histogram equalization to stretch out
the intensities in the image to the whole range
of intensities, making the dark parts darker to
produce dark lungs and bright parts brighter to
produce bright surrounding tissues [33]. Accord-
ing to Dr. Barfett, this process made the images
look much more realistic (See Figure 26). The
MatLab functions imadjust with a gamma pa-
rameter of 2.5 and histeq with a bins parameter
of 256 (for 256 intensity values) were used to
improve the contrast.

8 Analysis & Improvements
To create nodules and place them in CT

scans to produce X-rays, the first step was to
choose positions for the nodules.

Manually scrolling through each slice of the
lungs and picking a random location on the left
and right lung would take many hours for sev-
eral CT scans. Thus, switching to using lung
segmentation to select points within the lungs
and then randomly picking some of those points
saves a lot of time.

Initially, there were empty lines in the X-
rays. This bug occurred in the dicomHandler
MatLab file and the chestCTscroller MatLab file
since during initialization, more space was allo-
cated than necessary for the slices, leaving some
of them unfilled at the end. Removing the empty
rows at the end fixed this issue.

Reducing space and time complexity was es-
sential in producing a large number of X-rays ef-
ficiently. The main improvement in saving space
and time was achieved by making empty X-rays
from empty CT scans first and then only trac-
ing around inserted nodules in the CT scan to
update certain "chunks" of the X-ray images.

To improve accuracy, along with fixing con-
trast and removing bones, we have also worked

on improving the implementation of the point-
source ray tracing algorithm rather than use the
parallel-ray algorithm since, in practice, X-rays
are taken from a point-source that is usually
around 1 meter away from the patient. Mov-
ing the point-source around in a ball of radius
10cm allows different perspectives of the same
lungs, adding variation to the data but with the
drawback that it increases the amount of space
and time used to create the X-rays.

9 Future Work
There are various topics to explore for future

work on this project. After obtaining 100 more
CT scans, we hope to inspect and remove any
corrupted or suboptimal CT scans to create ap-
proximately 50000 X-rays of training data. This
can help us understand if we are making progress
on the path towards making effective synthetic
training data.

Another idea is to perform histogram equal-
ization on real X-rays to be part of the training
data as well. This might help make the contrast
of synthetic and real X-rays match more closely
when training the neural network.

On a similar note, segmenting the lungs in
real X-ray libraries can aid in increasing focus
analysis & detection of nodules. Since the lungs
are the only organ being considered for this
project, it may be sufficient to train the neu-
ral network using cropped images of the lungs
rather than including parts of the abdomen on
the bottom, air on the side, or collarbones on
the top in the X-rays. It may be useful to con-
sider the attenuation of lungs within the X-rays
or the statistics of lung dimensions [34] to crop
around the lungs accordingly.

Additionally, along with the frontal X-rays,
it may be useful to train the neural network with
lateral X-rays as that may reduce the possibility
of nodules blending in with surrounding tissues.

Other ideas include trying different methods
of nodule generation for more variation in shape
and creating synthetic training data for various
diseases with those shape growing algorithms.
It may also be helpful to use a convex hull to
smooth out any sharp edges or corners [35] in
the generated shapes.

On the logistical side, considering ways of
creating a balanced training dataset based on
prevalence of various aspects like size, shape, lo-
cation, or radiodensity may help the neural net-
work identify nodules more naturally.

And finally, implementing a Generative Ad-
versarial Network (GAN) may generate more re-
alistic synthetic X-rays. Previous research with
GANs on frontal chest X-rays has shown promis-
ing results for various lung abnormalities [36].
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Figure 27: Examples of an assortment of synthetic X-rays, with and without nodules, generated from
the 36 CT scans that we currently possess. Nodules are circled in red. Note that some of the nodules are
hard to see by eye as they might be hiding behind the heart, might be nodules on the borders of the lungs
(snowball lesions), might have low radiodensity, or might be blending into the surrounding tissues.
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Appendix
The following link is a private repository that

contains the regularly updated programs and details
on running them: https://goo.gl/zLtPvd. A Bit-
bucket account is needed to access this private repos-
itory. Please contact abhishek.moturu or le.chang
[at] mail.utoronto.ca for access.
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