
The distributions of the k-th largest level at the soft edge scaling limit of Gaussian ensembles
are some of the most important distributions in random matrix theory, and their numerical
evaluation is a subject of great practical importance. One numerical method for evaluating
the distributions uses the fact that they can be represented as Fredholm determinants
involving the so-called Airy integral operator. When the spectrum of the integral operator is
computed by discretizing it directly, the eigenvalues are known to at most absolute precision.
Remarkably, the Airy integral operator is an example of a so-called bispectral operator, which
admits a commuting differential operator that shares the same eigenfunctions. In this paper,
we develop an efficient numerical algorithm for evaluating the eigendecomposition of the Airy
integral operator to full relative precision, using the eigendecomposition of the commuting
differential operator. This allows us to rapidly evaluate the distributions of the k-th largest
level to full relative precision rapidly everywhere, except in the left tail, where they are
computed to absolute precision. In addition, we characterize the eigenfunctions of the
Airy integral operator, and describe their extremal properties in relation to an uncertainty
principle involving the Airy transform. We observe that the Airy integral operator is fairly
universal, and we describe a separate application to Airy beams in optics.
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1 Introduction

Recently, random matrix theory (RMT) has become one of the most exciting fields in
probability theory, and has been applied to problems in physics [14], high-dimensional
statistics [24], wireless communications [8], finance [5], etc. The Tracy-Widom distribu-
tions, or, more generally, the distributions of the k-th largest level at the soft edge scaling
limit of Gaussian ensembles, are some of the most important distributions in RMT, and
their numerical evaluation is a subject of great practical importance (see [19, 11] for
friendly introductions to RMT, and see [3] for an overview of the numerical aspects of
RMT). There are generally two ways of calculating the distributions to high accuracy
numerically: one, using the Painlevé representation of the distribution to reduce the
calculation to solving a nonlinear ordinary differential equation (ODE) numerically [10],
and the other, using the determinantal representation of the distribution to reduce the
calculation to an eigenproblem involving an integral operator [3].

In the celebrated work [30], the Tracy-Widom distribution for the Gaussian unitary
ensemble (GUE) was shown to be representable as an integral of a solution to a certain
nonlinear ODE called the Painlevé II equation. This nonlinear ODE can be solved to
relative accuracy numerically, but achieving relative accuracy is extremely expensive,
since it generally requires multi-precision arithmetic [25]. In addition, the extension of
the ODE approach to the computation of the k-th largest level at the soft edge scaling
limit of Gaussian ensembles is not straightforward, as it requires deep analytic knowledge
for deriving connection formulas [3, 10].

On the other hand, the method based on the Fredholm determinantal representation
uses the fact that the cumulative distribution function (CDF) of the k-th largest level
at the soft edge scaling limit of the Gaussian unitary ensemble can be written in the
following form:

F2(k; s) =

k−1∑
j=0

(−1)j

j!

∂j

∂zj
det
(
I − zK|L2[s,∞)

)∣∣∣
z=1

, (1)

where K|L2[s,∞) denotes the integral operator on L2[s,∞) with kernel

KAi(x, y) =

∫ ∞
s

Ai(x+ z − s)Ai(z + y − s) dz, (2)
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where Ai(x) is the Airy function of the first kind (see [30, 13] for the derivations). We
also note that there exist similar Fredholm determinantal representations for the cases of
the Gaussian orthogonal ensemble (GOE) and Gaussian sympletic ensemble (GSE) (see
Section 5.1). The cumulative distribution function and the probability density function
(PDF) of the distribution can be computed using the eigendecomposition of the so-called
Airy integral operator Ts, where Ts[f ](x) =

∫∞
0 Ai(x + y + s)f(y) dy for x ≥ 0. This

is because K|L2[s,∞) = G2s , where Gs[f ](x) =
∫∞
s Ai(x+ y − s)f(y) dy for x ≥ s, and Ts

shares the same eigenvalues and eigenfunctions (up to a translation) with Gs. If the
eigenvalues of the integral operator Ts are computed directly, they can be known only to
absolute precision, since Ts is a compact integral operator. Furthermore, the number of
degrees of freedom required to discretize Ts increases when the kernel is oscillatory (as
s→ −∞).

In this paper, we present a new method for computing the eigendecomposition
of the Airy integral operator Ts, which solves an open problem in random matrix
theory (see, for example, Open Problem 6 in [9]). It exploits the remarkable fact
that the Airy integral operator admits a commuting differential operator, which shares
the same eigenfunctions (see, for example, [30, 16]). In our method, we compute the
spectrum and the eigenfunctions of the differential operator by computing the eigenvalues
and eigenvectors of a banded eigenproblem. Since the eigenproblem is banded, the
eigendecomposition can be done very quickly in O(n2) operations, and the eigenvalues
and eigenvectors can be computed to entry-wise full relative precision. Finally, we use
the computed eigenfunctions to recover the spectrum of the Airy integral operator Ts,
also to full relative precision.

As a direct application, our method computes the distributions of the k-th largest
level at the soft edge scaling limit of Gaussian ensembles to full relative precision rapidly
everywhere, except in the left tail (the left tail is computed to absolute precision). We
note that several other integral operators admitting commuting differential operators
have been studied numerically from the same point of view as this paper (see, for example,
[23, 18])

Integral operators like Ts, which admit commuting differential operators, are known
as bispectral operators (see, for example, [6]). One famous example of a bispectral
operator is the truncated Fourier transform, which was investigated by Slepian and
his collaborators in the 60’s [29]; its eigenfunctions are known as prolate spheroidal
wavefunctions. We note that, unlike prolates, the eigenfunctions of the operator Ts are
relatively unexamined: “The behavior of the eigenfunctions, a problem of great practical
interest, presents a serious numerical challenge” (see Open Problem 6 in [9]); “In the
case of the Airy kernel, the differential equation did not receive much attention and its
solutions are not known” (see Section 24.2 in [21]). In this paper, we also characterize
these previously unstudied eigenfunctions, and describe their extremal properties in
relation to an uncertainty principle involving the Airy transform.

Finally, we note that the Airy integral operator Ts is rather universal. For example, in
Section 5.2, we describe an application to optics. In that section, we use the eigenfunctions
of the Airy integral operator to compute finite-energy Airy beams that are optimal, in
the sense that they maximally concentrate energy near the main lobes in their initial
profiles, while also remaining diffraction-free over the longest possible distances.
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2 Mathematical and Numerical Preliminaries

In this section, we introduce the necessary mathematical and numerical preliminaries.

2.1 Airy function of the first kind

The Airy function of the first kind is the solution to the differential equation

d2f

dx2
− xf = 0, (3)

for all x ∈ R, that decays for large x. It can also be written in an integral representation

Ai(x) =
1

π

∫ ∞
0

cos
( t3

3
+ xt

)
dt. (4)

Remark 2.1. One can extend the definition of Ai(x) to the complex plane and show
that it is an entire function.

Remark 2.2. As x→ +∞,

Ai(x) ∼ e−
2
3
x3/2

2π1/2x1/4
. (5)

2.2 The Airy Integral Operator

In this section, we give the definition and properties of the Airy integral operator.

2.2.1 The Airy integral operator Tc and its associated integral operator Gc

In this subsection, we define the Airy integral operator, including its eigenvalues and
eigenfunctions. Its associated integral operator is introduced as well.

Definition 2.1. Given a real number c, let Tc : L2[0,∞) → L2[0,∞) denote the Airy
integral operator defined by

Tc[f ](x) =

∫ ∞
0

Ai(x+ y + c)f(y) dy, x ≥ 0. (6)

Let Gc : L2[c,∞)→ L2[c,∞) denote the associated Airy integral operator defined by

Gc[f ](x) =

∫ ∞
c

Ai(x+ y − c)f(y) dy, x ≥ c. (7)

Obviously, Gc and Tc are both compact and self-adjoint.

We denote eigenvalues of Tc by λ0,c, λ1,c, . . . , λn,c, . . . , ordered so that |λj−1,c| ≥ |λj,c|
for all j ∈ N+. For each non-negative integer j, let ψj,c denote the (j+1)-th eigenfunction
of Tc, so that

λj,cψj,c(x) =

∫ ∞
0

Ai(x+ y + c)ψj,c(y) dy, x ∈ [0,∞). (8)
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In this paper, we normalize the eigenfunctions such that ‖ψj,c‖2 = 1 for any real number c
and non-negative integer j. Since the eigenfunctions are real, this condition only specifies
the eigenfunctions up to multiplication by −1. We thus require that ψj,c(0) > 0 (we show
in Theorem A.2 in Appendix A that ψj,c(0) 6= 0).

Note that Tc and Gc share the same eigenvalues and eigenfunctions up to a translation,
i.e. λj,c, ψj,c(x) is an eigenpair of the operator Tc, and λj,c, ψj,c(x− c) is an eigenpair of
the operator Gc (see Theorem 2.2). Note that the operator Tc is more convenient to work
with than the operator Gc, as its domain is invariant under change of c. Therefore, we
will mainly focus on the study of the Airy integral operator Tc in this paper.

Remark 2.3. For simplicity, we will use λj and ψj to denote the eigenvalue and the
eigenfunction when there is no ambiguity.

2.2.2 Properties and connection to the Airy transform

Definition 2.2. Let A : L2(R) → L2(R) denote the integral transform defined by the
formula

A[φ](x) =

∫ ∞
−∞

Ai(x+ y)φ(y) dy. (9)

In a mild abuse of terminology, we call A the Airy transform. Note that the standard
Airy transform of φ is defined as

∫∞
−∞Ai(x− y)φ(y) dy, which can be written as A ◦R,

where R denotes the reflection operator.

It is well-known that A is unitary, and that A2 = I, where I is the identity operator
(see, for example, [33]). To introduce the connection between the Airy transform A, the
so-called Airy kernel integral operator K (see formula (2)), and the two integral operators
Tc,Gc defined in Section 2.2.1, we first define the following operators.

Definition 2.3. Given real numbers a and b, let Fa,b : L2(R)→ L2(R) be the operator
defined by the formula

Fa,b[φ](x) = 1[b,∞)(x)A[1[a,∞)(y)φ(y)](x), (10)

where 1X denotes the indicator function associated with the set X. Let F̃c be a synonym
for the operator F0,c.

The operator Fa,b represents a truncation or “band-limiting” to the half line [a,∞),
followed by an Airy transform, followed by another truncation to the half line [b,∞).
Clearly, F ∗a,b = Fb,a.

Definition 2.4. Given a real number c, let Pc : L2(R)→ L2(R) denote the projection
operator defined by the formula

Pc[φ](x) = 1[c,∞)(x)φ(x). (11)

It’s easy to see that F̃c = PcAP0, and that F̃−∞ = AP0.
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Definition 2.5. Given a real number c, let Tc : L2(R)→ L2(R) denote the translation
operator defined by the formula

Tc[φ](x) = φ(x− c). (12)

Below, we define the integral operator K.

Definition 2.6. Let K : L2(R)→ L2(R) denote the integral operator with kernel

KAi(x, y) =

∫ ∞
0

Ai(x+ z)Ai(y + z) dz. (13)

Clearly, K = F̃−∞F̃
∗
−∞. Moreover, by a change of variables, the kernel (13) can be

rewritten as

KAi(x, y) =

∫ ∞
c

Ai(x+ z − c)Ai(y + z − c) dz, (14)

from which we see that K|L2[c,∞) (equivalently, PcKPc or F̃cF̃
∗
c ) is equal to the square of

the associated Airy integral operator Gc defined in Definition 2.1. Thus, the eigenfunctions
and eigenvalues of K|L2[c,∞) are given by ψj,c(x−c) and λ2j,c (see formula (8)), respectively.

The following theorem, proved in Lemma 2 of [30], states that the eigenvalues λj,c
approach one in absolute value as c→ −∞.

Theorem 2.1. For each j, λ2j,c → 1 as c→ −∞, where λj,c is the (j + 1)-th eigenvalue
of the Airy integral operator Tc.

Proof. We first show that K is a projection operator. Since F̃−∞ = AP0, we have that
K = F̃−∞F̃

∗
−∞ = AP0A, so K2 = AP0A2P0A. Recalling that A2 = I, it follows that

K2 = AP0A = K. Since K is a projection, its spectrum takes values in the set {0, 1}, and
since K has an infinite dimensional range, it has infinitely many eigenvalues equal to 1.
The operator PcKPc converges to K as c→ −∞, so it follows that, for each j, λ2j,c → 1
as c→ −∞. �

In the next theorem, we show that the Airy integral operator Tc is related to its
associated integral operator Gc by a similarity transformation.

Theorem 2.2. The Airy integral operator Tc is similar to its associated integral operator
Gc. Furthermore, if λj,c and ψj,c are eigenvalues and eigenfunctions of Tc, then λj,c and
ψj,c(x− c) are eigenvalues and eigenfunctions of Gc.

Proof. We observe that Tc = T−cF0,c, so Tc = T−c(TcFc,0Tc) = T−cGcTc. Since T ∗c = T−c
and TcT

∗
c = I, we see that Tc is related to Gc by a similarity transformation. The

statement about the eigenfunctions and eigenvalues follows immediately. �

Finally, we characterize the relation between the eigenfunction ψj,c and its Airy
transform A[ψj,c].

Theorem 2.3. For any real c, there exists an analytic continuation of the eigenfunction
ψj,c of the Airy integral operator with parameter c, which we denote by ψ̃j,c. Furthermore,

ψ̃j,c(x) =
1

λj,c
A[ψj,c](x+ c), (15)

for all x ∈ R, where λj,c is the corresponding eigenvalue of ψj,c.
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Proof. The existence of the analytic continuation ψj,c is given by formula (8) and the
fact that the Airy function is analytic and decays superexponentially. Note that

Tc = T−cF0,c = T−cPcA = P0T−cA, (16)

so after applying both sides of (16) to ψj,c, we get

λj,cψj,c(x) = P0A[ψj,c](x+ c), (17)

from which it follows that

ψ̃j,c(x) =
1

λj,c
A[ψj,c](x+ c), (18)

for all x ∈ R. �

2.2.3 Commuting differential operator

Definition 2.7. Given a real number c, let Lc : L2[0,∞)→ L2[0,∞) denote the Sturm-
Liouville operator defined by

Lc[f ](x) = − d

dx

(
x
d

dx
f
)

+ x(x+ c)f. (19)

Obviously, Lc is self-adjoint (more specifically, it’s a singular Sturm-Louville operator
with singular points x = 0 and x = ∞). It has been shown in [30] that Lc commutes
with the Airy integral operator Tc, and their eigenvalues have multiplicity one. Thus,
Lc and Tc share the same set of eigenfunctions. The following theorem formalizes this
statement (see [30, 16]).

Theorem 2.4. For any real number c, there exists a strictly increasing sequence of
positive real numbers χ0,c, χ1,c, . . . such that, for each m ≥ 0, the differential equation

d

dx

(
x
d

dx
ψm,c

)
− (x2 + cx− χm,c)ψm,c = 0 (20)

has a unique solution ψm,c that is continuous on the half-closed interval [0,∞). For each
m ≥ 0, the function ψm,c is exactly the (m+ 1)-th eigenfunction of the integral operator
Tc.

Remark 2.4. The equation (20) can also be written as

Lc[ψm,c] = χm,cψm,c. (21)

Remark 2.5. The numerical evaluation of high-order eigenfunctions via the discretization
of the Airy integral operator Tc is highly inaccurate due to its exponentially decaying
eigenvalues. However, the Sturm-Liouville operator Lc has a growing and well-separated
spectrum, which is numerically much more tractable. Therefore, Lc is the principal
analytical tool for computing the eigenvalues and eigenfunctions of Tc to relative accuracy.
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2.3 Laguerre polynomials

The Laguerre polynomials, denoted by Ln : [0,∞) → R, are defined by the following
three-term recurrence relation for any k ≥ 1 (see [1]):

Lk+1(x) =
(2k + 1− x)Lk(x)− kLk−1(x)

k + 1
, (22)

with the initial conditions

L0(x) = 1, L1(x) = 1− x. (23)

The polynomials defined by the formulas (22) and (23) are an orthonormal basis in the
Hilbert space induced by the inner product 〈f, g〉 =

∫∞
0 e−xf(x)g(x) dx, i.e.,

〈Ln, Lm〉 =

∫ ∞
0

e−xLn(x)Lm(x) dx = δn,m. (24)

In addition, the Laguerre polynomials are solutions of Laguerre’s equation

xf ′′ + (1− x)f ′ + nf = 0. (25)

We find it useful to use the scaled Laguerre functions defined below.

Definition 2.8. Given a positive real number a, the scaled Laguerre functions, denoted
by han : [0,∞)→ R, are defined by

han(x) =
√
ae−ax/2Ln(ax). (26)

Remark 2.6. The scaled Laguerre functions han(x) are an orthonormal basis in L2[0,∞),
i.e., ∫ ∞

0
han(x)ham(x) dx = δn,m. (27)

The following two theorems directly follow from the results for Laguerre polynomials
in, for example, [1].

Theorem 2.5. Given a positive real number a and a non-negative integer n,

xhan(x) =
1

a

(
−nhan−1(x) + (2n+ 1)han(x)− (n+ 1)han+1(x)

)
, (28)

x2han(x) =
1

a2
(
n(n− 1)han−2(x)− 4n2han−1(x) + (6n2 + 6n+ 2)han(x)

− 4(1 + n)2han+1(x) + (n+ 1)(n+ 2)han+2(x)
)
. (29)

Theorem 2.6. Given a positive real number a and a non-negative integer n,

d

dx
han =− a

2
han − a

n−1∑
k=0

hak, (30)

d2

dx2
han =

a2

4
han + a2

n−1∑
k=0

(n− k)hak. (31)
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The following corollary is a direct result of (30).

Corollary 2.7. Given a positive real number a and a non-negative integer n,

d

dx
han −

d

dx
han−1 = −a

2
han −

a

2
han−1. (32)

Observation 2.7. The scaled Laguerre functions han(x) are solutions of the following
ODE on the interval [0,∞):

d

dx

(
x
d

dx
han

)
− a

4
(ax− 4n− 2)han = 0. (33)

The following theorem, proven (in a slightly different form) in [34], describes the
decaying property of the expansion coefficients in the Laguerre polynomial basis.

Theorem 2.8. Suppose f ∈ Ck[0,∞) where k ≥ 1, and f satisfies

lim
x→∞

e−x/2xj+1f (j)(x) = 0, (34)

V =

√∫ ∞
0

xk+1e−x(f (k+1)(x))2 dx <∞, (35)

for j = 0, 1, . . . , k. Suppose further that an =
∫∞
0 e−xf(x)Ln(x) dx. Then, for n > k,

|an| ≤
V√

n(n− 1) . . . (n− k)
= O

( 1

n(k+1)/2

)
, (36)

and

‖f(x)−
N∑
n=0

anLn(x)‖ → 0, (37)

as N →∞, where ‖·‖ represents the L2[0,∞) norm with the weight function e−x.

The following corollary extends the theorem above to the case where the Laguerre
polynomials are replaced by scaled Laguerre functions.

Corollary 2.9. Suppose that a ∈ R and a > 0. Suppose further that g ∈ Ck[0,∞) for
some k ≥ 1, and define f(x) = 1√

a
ex/2g(x/a). Assume finally that f satisfies

lim
x→∞

e−x/2xj+1f (j)(x) = 0, (38)

V =

√∫ ∞
0

xk+1e−x(f (k+1)(x))2 dx <∞, (39)

for j = 0, 1, . . . , k, and let bn =
∫∞
0 g(x)han(x) dx. Then, for n > k,

|bn| ≤
V√

n(n− 1) . . . (n− k)
= O

( 1

n(k+1)/2

)
, (40)

and

‖g(x)−
N∑
n=0

bnh
a
n(x)‖ → 0, (41)

as N →∞, where ‖·‖ represents the L2[0,∞) norm with the weight function 1.
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Proof. By definition,

|bn| =
∣∣∣ ∫ ∞

0
han(x)g(x) dx

∣∣∣
=
∣∣∣ ∫ ∞

0

√
ae−ax/2Ln(ax)g(x) dx

∣∣∣
=
∣∣∣ ∫ ∞

0

1√
a
e−x/2Ln(x)g(x/a) dx

∣∣∣
=
∣∣∣ ∫ ∞

0
e−xLn(x)f(x) dx

∣∣∣
= |an|

≤ V√
n(n− 1) . . . (n− k)

, (42)

where an is defined in the same way as in Theorem 2.8. Thus, (40) is proved.
To prove (41), note that

‖g(x)−
N∑
n=0

bnh
a
n(x)‖ 2 =

∫ ∞
0

(
g(x)−

N∑
n=0

bn
√
ae−ax/2Ln(ax)

)2
dx

=

∫ ∞
0

(
g
(y
a

)
−

N∑
n=0

bn
√
ae−y/2Ln(y)

)2 1

a
dy

=

∫ ∞
0

( 1√
a
g
(y
a

)
−

N∑
n=0

bne
−y/2Ln(y)

)2
dy

=

∫ ∞
0

e−y
(
f(y)−

N∑
n=0

bnLn(y)
)2

dy

≤
∫ ∞
0

(
f(y)−

N∑
n=0

bnLn(y)
)2

dy

= ‖f(x)−
n∑
j=0

anLn(x)‖ 2 → 0, (43)

as N →∞, where the last equality holds by combining Theorem 2.8 and the fact that
bn = an (see formula (42)). �

2.4 Numerical tools for five-diagonal matrices

2.4.1 Eigensolver

A five-diagonal matrix can be reduced to a tridiagonal matrix using the algorithm in [26].
Once it is in tridiagonal form, a standard Q-R (or Q-L) algorithm can then be used to
solve for all of its eigenvalues to absolute precision.

Remark 2.8. The time complexity of the reduction and Q-R algorithm are both O(n2)
for a five-diagonal matrix of size n× n.
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2.4.2 Shifted inverse power method

Suppose that A is an N ×N real matrix, for some positive integer N , and suppose that
its eigenvalues are distinct. Let σ1 < σ2 < · · · < σN denote the eigenvalues of A. The
shifted inverse power method iteratively finds the eigenvalue σk and the corresponding
eigenvector vk ∈ RN , provided an approximation λ to σk is given, and that

|λ− σk| < max{|λ− σj | : j 6= k}. (44)

Each shifted inverse power iteration solves the linear system

(A− λjI)x = wj , (45)

where λj and wj ∈ Rn are the approximations to σk and vk, respectively, after j
iterations; the number λj is usually referred to as the “shift”. The approximations λj+1

and wj+1 ∈ RN are evaluated via the formulas

wj+1 =
x

‖x‖
, λj+1 = wTj+1Awj+1 (46)

(see, for example, [23, 31] for more details).
In this paper, we note that we use the phrase “inverse power method” to refer to the

unshifted inverse power method.

Remark 2.9. The shifted inverse power method converges cubically in the vicinity of the
solution, and each iteration requires O(n) operations for a tridiagonal or a five-diagonal
matrix (see [23, 31]).

3 Analytical Apparatus

In this section, we first introduce several analytical results which we will use to develop
the numerical algorithm of this paper. We then characterize the Airy integral operator’s
previously unstudied eigenfunctions, and describe their extremal properties in relation to
an uncertainty principle involving the Airy transform (see Sections 3.6, 3.7, 3.8).

Recall that we denote the eigenfunctions of the eigenfunctions of the operators Tc and
Lc by ψn,c (see Sections 2.2.1, 2.2.3), and represent them in the basis of scaled Laguerre
functions hak (see Section 2.3). We denote the eigenvalues of the Airy integral operator Tc
by λn,c.

3.1 The commuting differential operator in the basis of scaled Laguerre
functions

Theorem 3.1. For any positive real number a, real number c, and non-negative integer
k,

Lc[hak](x) =
1

4a2

(
4k(k − 1)hak−2(x)

+ k(a3 − 4ac− 16k)hak−1(x)

+ (8 + a3 + 4ac+ 24k + 2a3k + 8ack + 24k2)hak(x)

+ (k + 1)
(
a3 − 4ac− 16(k + 1)

)
hak+1(x)

+ 4(k + 1)(k + 2)hak+2(x)
)
, (47)
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for x ∈ [0,∞).

Proof. By definition,

Lc[hak](x) = − d

dx

(
x
d

dx
hak(x)

)
+ x(x+ c)hak(x). (48)

By applying (33), terms involving derivatives of han(x) on the right side of (48) disappear.
Finally, we reduce the remaining xhak(x), x2hak(x) terms to hak(x) via (28), (29). �

Remark 3.1. Although hak−2(x), hak−1(x) may be undefined when k = 0, 1, the theorem
still holds, since the coefficients of hak−2(x), hak−1(x) in (47) will be zero in that case.

3.2 Decay of the expansion coefficients of the eigenfunctions

Theorem 3.2. Suppose that a, c ∈ R and a > 0. Suppose further that β
(m)
k =∫∞

0 ψm,c(x)hak(x) dx for k = 0, 1, . . . . Then, |β(m)
k | decays super-algebraically as k

goes to infinity.

Proof. Using the integral representation of ψm,c,

|β(m)
k | = 1

|λm|

∣∣∣∣ ∫ ∞
0

ψm,c(y)
(∫ ∞

0
Ai(y + x+ c)hak(x) dx

)
dy

∣∣∣∣
≤ 1

|λm|
‖ψm,c(y)‖L2[0,∞)

∥∥∥∥∫ ∞
0

Ai(y + x+ c)hak(x) dx

∥∥∥∥
L2[0,∞)

=
1

|λm|

∥∥∥∥∫ ∞
0

Ai(y + x+ c)hak(x) dx

∥∥∥∥
L2[0,∞)

, (49)

by the Cauchy-Schwartz inequality and the fact that ‖ψm,c(y)‖L2[0,∞) = 1.

Define g(x) = Ai(y + x+ c) for some constants y ≥ 0, c ∈ R. By Remark 2.2, for any
real number a > 0, it’s clear that f(x) = 1√

a
ex/2g(x/a) satisfies the conditions (38), (39)

in Corollary 2.9. As g is analytic, we have that g ∈ Cp[0,∞) for any non-negative inte-

ger p. Therefore, by Corollary 2.9, |β(m)
k | decays super-algebraically as k goes to infinity. �

3.3 Recurrence relation involving the Airy integral operator acting on
scaled Laguerre functions of different orders

Theorem 3.3. Given a positive real number a, a real number s, and a non-negative
integer n, define

Ha
n :=

∫ ∞
0

Ai (y + s)han(y) dy =
√
a

∫ ∞
0

Ai (y + s) e−
ay
2 Ln(ay) dy. (50)

Then

(n− 1)Ha
n−2 − (4n− 1 + as− 1

4
a3)Ha

n−1 + (6n+ 3 + 2as+
1

2
a3)Ha

n

− (4n+ 5 + as− 1

4
a3)Ha

n+1 + (n+ 2)Ha
n+2 = 0, (51)
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for n = 1, 2, . . . . We note that Ha
n depends on the variable s, but we omit this dependency

on s in our notation where the meaning is clear.

Proof. By combining the recurrence relation for Laguerre polynomials (see (22)) and
the definition of the Airy function (see (3)), we have

Ha
n+1 =

∫ ∞
0

Ai(y + s)han+1(y) dy

=

∫ ∞
0

Ai(y + s)
(2n+ 1− ay)han(y)− nhan−1(y)

n+ 1
dy

=
2n+ 1

n+ 1
Ha
n −

n

n+ 1
Ha
n−1 −

a

n+ 1

∫ ∞
0

yAi(y + s)han(y)dy

=
2n+ 1 + as

n+ 1
Ha
n −

n

n+ 1
Ha
n−1 −

a

n+ 1

∫ ∞
0

Ai′′(y + s)han(y) dy, (52)

for any non-negative integer n. By applying integration by parts twice to the last term
in (52), we get ∫ ∞

0
Ai′′(y + s)han(y) dy =−

√
aAi′(s)− a

√
a(

1

2
+ n)Ai(s)

+

∫ ∞
0

Ai(y + s)(han(y))′′ dy. (53)

By (31), the last term in (53) becomes∫ ∞
0

Ai(y + s)(han(y))′′ dy = a2
∫ ∞
0

Ai(y + s)
(1

4
han(y) +

n−1∑
k=0

(n− k)hak(y)
)

dy

= a2
(1

4
Ha
n +

n−1∑
k=0

(n− k)Ha
k

)
. (54)

Thus, by multiplying both sides of (52) by n+ 1, and combining (53), (54), we have

nHa
n−1 − (2n+ 1 + as− 1

4
a3)Ha

n + (n+ 1)Ha
n+1 + a3

n−1∑
k=0

(n− k)Ha
k

= a
√
a
(

Ai′(s) + a(
1

2
+ n)Ai(s)

)
, (55)

for n = 0, 1, 2, . . . .
We can write (55) equivalently as

(n− 1)Ha
n−2 − (2n− 1 + as− 1

4
a3)Ha

n−1 + nHa
n + a3

n−2∑
k=0

(n− 1− k)Ha
k

= a
√
a
(

Ai′(s) + a(−1

2
+ n)Ai(s)

)
, (56)

for n = 1, 2, 3, . . . , or

(n+ 1)Ha
n − (2n+ 3 + as− 1

4
a3)Ha

n+1 + (n+ 2)Ha
n+2 + a3

n∑
k=0

(n+ 1− k)Ha
k

= a
√
a
(

Ai′(s) + a(
3

2
+ n)Ai(s)

)
, (57)
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for n = −1, 0, 1, . . . .
Finally, noticing that

n−2∑
k=0

(n− 1− k)Ha
k − 2

n−1∑
k=0

(n− k)Ha
k +

n∑
k=0

(n+ 1− k)Ha
k = Ha

n, (58)

equation (56), minus two times equation (55), plus equation (57), gives the identity that
we need. �

3.4 Ratio between the eigenvalues of the Airy integral operator

Theorem 3.4. For any non-negative integers m and n,

λm
λn

=

∫∞
0 ψ′n(x)ψm(x) dx∫∞
0 ψn(x)ψ′m(x) dx

. (59)

Proof. The identity immediately follows from formula (170) in the proof of Theorem
A.4 in Appendix A. �

3.5 Derivative of λn,c with respect to c

A slightly different version of the following theorem is first proved in [30]. Here, we
present a different proof.

Theorem 3.5. For all real c and non-negative integers n,

∂λn,c
∂c

= −1

2
λn,c

(
ψn,c(0)

)2
. (60)

Proof. Given two real numbers a, c, define ε = c−a
2 . By (8),

λn,cψn,c(x)ψn,a(x+ ε) = ψn,a(x+ ε)

∫ ∞
0

Ai(x+ y + c)ψn,c(y) dy. (61)

We integrate both sides of (61) over the interval [0,∞) with respect to x to obtain

λn,c

∫ ∞
0

ψn,c(x)ψn,a(x+ ε) dx =

∫ ∞
0

ψn,c(y)

∫ ∞
0

Ai(x+ y + c)ψn,a(x+ ε) dx dy

=

∫ ∞
0

ψn,c(y)

∫ ∞
ε

Ai(y + ε+ s+ a)ψn,a(s) ds dy

=

∫ ∞
0

ψn,c(y)
(∫ 0

ε
Ai(y + ε+ s+ a)ψn,a(s) ds

+ λn,aψn,a(y + ε)
)

dy, (62)

where the change of variable s = x+ ε is applied in (62). After rearranging the terms, we
have

(λn,c − λn,a)
∫ ∞
0

ψn,c(x)ψn,a(x+ ε) dx =

∫ ∞
0

ψn,c(y)
(∫ 0

ε
Ai(y + ε+ s+ a)ψn,a(s) ds

)
dy.

(63)
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Then, we divide both sides by 2ε and take the limit 2ε→ 0. The left side of (63) becomes

lim
2ε→0

λn,c − λn,a
2ε

∫ ∞
0

ψn,c(x)ψn,a(x+ ε) dx

=
∂λn,c
∂c

lim
a→c

∫ ∞
0

ψn,c(x)ψn,a
(
x+

c− a
2

)
dx

=
∂λn,c
∂c
‖ψn,c‖22

=
∂λn,c
∂c

. (64)

The right side of (63) becomes

lim
2ε→0

1

2ε

∫ ∞
0

ψn,c(y)
(∫ 0

ε
Ai(y + ε+ s+ a)ψn,a(s) ds

)
dy

= −1

2
ψn,c(0) lim

a→c

∫ ∞
0

Ai
(
y +

c+ a

2

)
ψn,c(y) dy

= −1

2
λn,c

(
ψn,c(0)

)2
. (65)

Finally, by combining (63), (64), and (65),

∂λn,c
∂c

= −1

2
λn,c

(
ψn,c(0)

)2
. (66)

�
The following corollaries are immediate consequences of the preceding one.

Corollary 3.6. For all real c and non-negative integers m,n,

∂

∂c

(λm,c
λn,c

)
=
λm,c

(
(ψn,c(0))2 − (ψm,c(0))2

)
2λn,c

. (67)

Corollary 3.7. For all real c and non-negative integers n,

∂λ2n,c
∂c

= −λ2n,c
(
ψn,c(0)

)2
. (68)

3.6 An uncertainty principle

Definition 3.1. Suppose that the function f : R→ R has an Airy transform σ : R→ R

that is supported on the half-line [a,∞), so that

f(x) =

∫ ∞
a

Ai(x+ y)σ(y) dy (69)

for all x ∈ R. We call functions representable by integrals of the form (69) Airy-
bandlimited.
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Since the Airy function Ai(y) decays rapidly for y > 0, it is not difficult to see that
the function f can be extended to an entire function, as the integral (69) can always
be differentiated with respect to x ∈ C under the integral sign. Thus, f cannot vanish
identically over any subinterval of R. In particular, f cannot have its support restricted
to the half-line [b,∞), for any b ∈ R. The following theorem bounds the proportion of
the energy of f on [b,∞).

Theorem 3.8 (Uncertainty principle). Let f be a Airy-bandlimited function with an
Airy transform σ that is supported on [a,∞). Define

α2 =

∫∞
b f2 dx∫∞
−∞ f

2 dx
, (70)

where b ∈ R. Then

α2 ≤
∫ ∞
b

∫ ∞
a

(Ai (x+ y))2 dy dx. (71)

Proof. Squaring both sides of (69) and applying the Cauchy-Schwarz inequality, we have
that

f(x)2 ≤
∫ ∞
a

(Ai(x+ y))2 dy

∫ ∞
a

σ(y)2 dy. (72)

After integrating both sides over [b,∞), the inequality becomes∫ ∞
b

f(x)2 dx ≤
∫ ∞
b

∫ ∞
a

(Ai(x+ y))2 dy dx

∫ ∞
a

σ(y)2 dy. (73)

By dividing both sides of the inequality by
∫∞
−∞ f(x)2 dx, we get

α2 ≤
(∫ ∞

b

∫ ∞
a

(Ai(x+ y))2 dy dx
) ∫∞

a σ(y)2 dy∫∞
−∞ f(x)2 dx

. (74)

Since the Airy transform is unitary,
∫∞
−∞ f(x)2 dx =

∫∞
−∞ σ(y)2 dy. Furthermore, by our

assumption that σ is supported on [a,∞), we have that∫∞
a σ(y)2 dy∫∞
−∞ σ(y)2 dy

= 1. (75)

Thus, the inequality (74) becomes

α2 ≤
∫ ∞
b

∫ ∞
a

(Ai (x+ y))2 dy dx. (76)

�

Remark 3.2. The right hand side of inequality (71) decays rapidly when b ≥ −a. In
other words, when the Airy transform σ of a function f is supported on [a,∞), the
function f cannot have a large proportion of its energy on the half-line [b,∞) when
b ≥ −a. Furthermore, the proportion of energy it can have on [b,∞) decreases rapidly as
b increases.
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In the following theorem, we give a bound on the decay rate of f(x) for x ≥ −a, as
follows.

Theorem 3.9. Let f be a Airy-bandlimited function with an Airy transform σ that is
supported on [a,∞). Then

|f(x)| ≤ Ai (x+ a)

∫ ∞
a
|σ(y)| dy, (77)

for all x ≥ −a. In a mild abuse of terminology, we say that f has a turning point at
x = −a.

Proof. From (69), it follows that

|f(x)| ≤
∫ ∞
a
|Ai(x+ y)||σ(y)|dy. (78)

Since Ai(x+ a) is positive and monotonically decreasing for x ≥ −a, we have that

|f(x)| ≤ Ai(x+ a)

∫ ∞
a
|σ(y)|dy, (79)

for all x ≥ −a. �

3.7 Extremal properties of the eigenfunctions ψn,c

In this section, we describe the extremal properties of the Airy integral operator’s
eigenfunctions, in relation to the uncertainty principle described in Theorem 3.8.

Theorem 3.10. Let f be a Airy-bandlimited function with an Airy transform σ that is
supported on [a,∞). Then, for arbitrary b ∈ R, α2 (defined in (70)) attains its maximum
value λ20,a+b for σ(y) = ψ0,a+b(y − a), where λ0,a+b and ψ0,a+b denote the first eigenvalue
and eigenfunction of the Airy integral operator with parameter a+ b (see Section 2.2.1).
In other words, the inequality (71) can be refined to a tight inequality α2 ≤ λ20,a+b.

Proof. By definition, it’s easy to see that

α2 = ‖Fa,b[σ]‖2/‖f‖2 = ‖Fa,b[σ]‖2/‖σ‖2, (80)

where Fa,b is defined by formula (10). By the usual min-max principle for singular values,
we know that the maximum value of α is thus the largest singular value of Fa,b, and
that this maximum value is attained when σ is equal to the corresponding right singular
function of Fa,b. We observe that

Fa,b = T−aF0,a+bT−a = T−aTa+b(T−a−bF0,a+b)T−a = TbTa+bT−a, (81)

where T(·) represents the translation operator (see Definition 2.5), and Ta+b represents
the Airy integral operator with parameter a+ b. Since λ0,a+b is the eigenvalue of Ta+b
with the largest magnitude, and ψ0,a+b is the corresponding eigenfunction, it follows that
|λ0,a+b| and Ta[ψ0,a+b] are the largest singular value and corresponding right singular
function of Fa,b. Thus, the largest possible value of α2 is λ20,a+b, and this value is attained
by the function σ(y) = ψ0,a+b(y − a). �
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Remark 3.3. The eigenfunction ψn,c, for n 6= 0, obeys the same optimality result, except
that it’s optimal in the intersection of L2[0,∞) and span{ψ0,c, ψ1,c, . . . , ψn−1,c}⊥.

Finally, we characterize the behavior of the right singular functions of Fa,b. Without
loss of generality, we only need to consider the right singular functions of the operator
F̃c = F0,c, i.e., the eigenfunctions ψn,c of the Airy integral operator Tc, since the general

case of the operator Fa,b is related to F̃a+b only by translations (see the first equality in
(81)).

Theorem 3.11. For any real c, the analytic continuation ψ̃n,c of the eigenfunction ψn,c
of the Airy integral operator with parameter c has a turning point at x = −c, in the sense
of Theorem 3.9. Furthermore,

|ψ̃n,c(x)| ≤ 1

|λn,c|
· |Ai (x+ c)|

∫ ∞
0
|ψn,c(y)|dy, (82)

for x ≥ −c, where λn,c is the corresponding eigenvalue of ψn,c.

Proof. By Theorem 2.3, we have that

ψ̃n,c(x) =
1

λn,c
A[ψn,c](x+ c). (83)

Note that by Theorem 3.9, the Airy transform A[ψn,c] of the right singular function ψn,c
of F̃c has a turning point at x = 0, so ψ̃n,c has a turning point at x = −c by (83).

Furthermore, by combining (83) and inequality (77), we have that

|ψ̃n,c(x)| = 1

|λn,c|
· |A[ψn,c](x+ c)| ≤ 1

|λn,c|
· |Ai (x+ c)|

∫ ∞
0
|ψn,c(y)| dy, (84)

for all x ≥ −c. �

3.8 Qualitative descriptions of the eigenfunction ψ0,c and its Airy trans-
form

By the extremal property of ψ0,c (see Theorem 3.10), we have that, for any σ supported
on [0,∞), the proportion of the energy of A[σ] on [c,∞), i.e., the quantity

α2 =

∫∞
c (A[σ](x))2 dx∫∞
−∞(A[σ](x))2 dx

, (85)

attains its maximum λ20,c with the choice σ(y) = ψ0,c(y). Below, we characterize the
behavior of ψ0,c and its Airy transform, for c in three different regions.

• When c < −5, we have that 1 − α2 = 1 − λ20,c < 1.0 × 10−3, which means that
the proportion of the energy of A[ψ0,c] on (−∞, c] is negligible. In other words,
A[ψ0,c] only has negligible tail oscillations on the left. Asymptotically, both ψ0,c

and A[ψ0,c] converge to scaled Gaussian functions on [0,−c] and [c, 0], respectively,
as c→ −∞, by Theorem A.8 in Appendix A and Theorem 2.3.
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• When c > 1.5, we have that α2 = λ20,c < 1.0× 10−3. Note that, by Theorem 3.11
and the fact that the Airy function decays superexponentially, the eigenfunction
ψ0,c(x) decays increasingly fast for x ≥ 0 as c increases. However, we know that
‖ψ0,c‖2 = 1, which implies that it approaches a scaled delta function. It follows
that A[ψ0,c] approaches a scaled Airy function as c increases. Asymptotically,

ψ0,c(x)→
√

2c1/4e−
√
cx as c→∞ by Theorem A.5 in Appendix A.

• When c ∈ [−5, 1.5], generally we have that neither α2 nor 1 − α2 is negligible.
The former implies that the proportion of energy over [c,∞) is substantial, which
guarantees that a relatively large proportion of the total energy is supported around
the maximum of A[ψ0,c](x) (empirically, close to x = −1.5) by Theorem 3.9. The
latter suggests that A[ψ0,c] has tail oscillations. In fact, by Theorem 3.11, we know
that ψ0,c(x) decays for x ≥ max(−c, 0), so ψ0,c(x) also has a substantial proportion
of its energy near x = 0. Therefore, A[ψ0,c](x) still resembles a scaled Airy function.

Examples of the eigenfunctions ψn,c and the square of the eigenvalues λ0,c are shown
in Figure 1 and Figure 4, respectively.

4 Numerical Algorithm

In this section, we describe a numerical algorithm that computes the eigenvalues of the
Airy integral operator to full relative accuracy, and computes the eigenfunctions in the
form of an expansion in scaled Laguerre functions, where the expansion coefficients are
also computed to full relative accuracy.

4.1 Discretization of the eigenfunctions

The algorithm for the evaluation of the eigenfunctions ψj,c is based on the expression of
those functions as a series of scaled Laguerre functions (see (26)) of the form

ψj,c(x) =
∞∑
k=0

β
(j)
k hak(x), (86)

where the coefficients β
(j)
k depends on the parameter c.

Remark 4.1. By orthogonality of the scaled Laguerre functions and the fact that
‖ψj,c‖22 = 1, we conclude that

∞∑
k=0

(
β
(j)
k

)2
= 1. (87)

Now we substitute the expansion (86) into (21), which gives us

∞∑
k=0

β
(j)
k Lc[h

a
k] = χj,c

∞∑
k=0

β
(j)
k hak. (88)
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It follows from Theorem 3.1 that the left side of (88) can be expanded into a summation
that only involves ha0, h

a
1, . . . . Therefore, as the scaled Laguerre functions are linearly

independent, the sequence β
(j)
0 , β

(j)
1 , . . . satisfies the recurrence relation

A0,0 · β(j)0 +A0,1 · β(j)1 +A0,2 · β(j)2 = χj,c · β(j)0 , (89)

A1,0 · β(j)0 +A1,1 · β(j)1 +A1,2 · β(j)2 +A1,3 · β(j)3 = χj,c · β(j)1 , (90)

Ak,k−2 · β
(j)
k−2 +Ak,k−1 · β

(j)
k−1 +Ak,k · β

(j)
k

+Ak,k+1 · β
(j)
k+1 +Ak,k+2 · β

(j)
k+2 = χj,c · β(j)k , (91)

for k = 2, 3, . . . , where Ak,k, Ak,k+1, Ak,k+2 are defined via the formulas

Ak,k =
1

4a2
(8 + a3 + 4ac+ 24k + 2a3k + 8ack + 24k2), (92)

Ak,k+1 = Ak+1,k =
1

4a2
(k + 1)

(
a3 − 4ac− 16(k + 1)

)
, (93)

Ak,k+2 = Ak+2,k =
1

a2
(k + 1)(k + 2), (94)

for k = 0, 1, . . . . Note that (89)–(91) can be written in the form of the following linear
system:

(A− χj,cI) ·
(
β
(j)
0 , β

(j)
1 , . . .

)T
= 0, (95)

where I is the infinite identity matrix, and the non-zero entries of the infinite symmetric
matrix A are given above.

Suppose that k is a non-negative integer. Although the matrix A is infinite, and its
entries do not decay with increasing row or column number, the components of each
eigenvector β(k) decay super-algebraically (see Theorem 3.2). More specifically, the
absolute values of components of the k-th eigenvector will look like a bell-shaped curve
centered at the k-th entry of the eigenvector. Therefore, if we need to evaluate the first
n+1 eigenvalues χ0,c, χ1,c, . . . , χn,c and eigenvectors β(0), β(1), . . . , β(n) numerically, we can
replace the infinite matrix A with its (N+1)×(N+1) upper left square submatrix, where
N = O(n) is sufficiently large, which results in a symmetric five-diagonal eigenproblem.
It follows that we can replace the series expansion (86) with a truncated one

ψj,c(x) =

N∑
k=0

β
(j)
k hak(x), (96)

for j = 0, 1, . . . , n.
Assuming that we are interested in the first n+ 1 eigenfunctions of the differential op-

erator Lc, it’s important to pick the scaling factor a such that ψn,c gets best approximated,
in the sense that the bell-shape of the expansion coefficients of ψn,c are concentrated
around k = n. By (87), it follows that a considerably smaller matrix will be required
to calculate the ψn,c accurately, compared with other choices of a. Note that such an a
is not optimal for the rest of the n eigenfunctions (the eigenfunctions with indices from
0 to n − 1), especially for the leading ones ψ0,c, ψ1,c, . . . . However, in practice, if we
can represent ψn,c accurately, then the rest of the n eigenfunctions can be represented
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with at most the same number of basis functions. Therefore, we only need to choose a to
efficiently represent ψn,c.

To get a best approximation for ψn,c, we want the behavior of han to be similar to
ψn,c. Notice that by (33) and (20), the two ODEs satisfied by han, ψn,c only differ by the
coefficient of the zero-th order term. It follows that the turning point of han is

x =
4n+ 2

a
, (97)

while the turning point of ψn,c is

x =
−c+

√
c2 + 4χn,c
2

. (98)

Matching the turning points of the two solutions, we get the following approximation to
the optimal a:

a =
4(2n+ 1)

−c+
√
c2 + 4χn,c

. (99)

With this choice of a, βk decays quickly for k ≥ n, for the entire range of c ∈ R. We note
that the decay behavior of βk is highly sensitive to the choice of a; other values of a will
often cause βk to oscillate for a long time before it decays. To simplify the notation, we
will use hk(x) to denote hak(x) with a given by (99), in the rest of the paper.

Observation 4.2. By applying the method of least squares to our numerical experiments,
χn,c ≈ 19.3c+ 11.1n+ 1.19 · 10−2n2 + 7.4 · 10−5cn2 turns out to be a good approximation
to the eigenvalues of the differential operator for c ∈ [−50, 50], n = 0, 1, . . . , 800.

Observation 4.3. Empirically, β
(n)
k is much smaller than machine epsilon for k ≥ N ,

where N = 1.1n+ |c|+ 100.

Observation 4.4. One might hope that, by a certain selection of basis functions, it’s
possible to split this five-diagonal eigenproblem into two tridiagonal eigenproblems (see,
for example, [23, 17]). However, it turns out that none of the classical orthogonal
polynomials (Laguerre polynomials, Hermite polynomials, or their rescaled versions)
defined on the interval [0,∞) have the capability to split our five-diagonal eigenproblem.

Observation 4.5. When c is negative, the leading few eigenvalues, say, χ0,c, χ1,c, . . . , χn′,c,
are negative, where n′ is usually smaller than 100 in practical situations. In this case,
provided one is only interested in the first n eigenfunctions, where n− 1 ≤ n′, it would
appear that the approximation of a given by formula (99) may fail, since c2 + 4χn,c can
be negative. However, c2 + 4χn,c turns out to always be positive. To estimate a, we use
an approximation to χn,c, for which the quantity c2 + 4χn,c can, at least in principle, be
negative. This turns out to also not be a problem, since even when we only care about a
small number of eigenfunctions, we can always compute more, say, n+ 100, for which
c2 + 4χn+99,c is positive.
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4.2 Relative accuracy evaluation of the expansion coefficients of the
eigenfunctions

Suppose that n is a non-negative integer. In Section 4.1, we expand each of the eigen-
functions ψ0, ψ1, . . . , ψn into a series of scaled Laguerre functions, and formulate an

eigenproblem to solve for the expansion coefficients {β(j)k } of ψj . We showed that, for
the choice of basis functions described in Section 4.1, the number of required expan-
sion coefficients N is not much larger than n. In fact, by Observation 4.3, the choice
N = 1.1n+ |c|+ 100 is sufficient for all c ∈ R. The coefficients are thus the solution to
an eigenproblem involving a (N + 1)× (N + 1) five-diagonal matrix. Intuitively, one may
suggest applying a standard eigensolver to solve for all eigenpairs of the five-diagonal
matrix A. However, in this case, the eigenvalues and eigenvectors will only be evaluated to
absolute precision, which turns out not to be sufficient for the relative accuracy evaluation
of the spectrum of the Airy integral operator Tc. Instead, we use the fact that, since
the matrix is five-diagonal, the eigenvalues can be evaluated to relative precision and
the eigenvectors can be evaluated to coordinate-wise relative precision using the inverse
power method (see [22] for a discussion of the phenomenon). We derive the following
algorithm for the relative accuracy evaluation of expansion coefficients of eigenfunctions
{ψj}j=0,1,...,n and the spectrum of Lc:

1. Construct an (N + 1)× (N + 1) five-diagonal symmetric real matrix A whose entries
are defined via (92)–(94), where a is chosen by formula (99) and Observation 4.2,
and N is given by Observation 4.3.

2. Apply a standard symmetric five-diagonal eigenvalue solver to A to get a approxi-
mation of its eigenvalues χ0, χ1, . . . , χN to absolute precision.

3. Apply the shifted inverse power method to A with an initial shift of χ0, χ1, . . . , χn,
until convergence. This leads to an approximation of the expansion coefficients
of {ψj}j=0,1,...,n to coordinate-wise relative precision, and the spectrum of Lc to
relative precision.

Remark 4.6. For any j ∈ {0, 1, . . . , n}, let β̃(j) =
(
β̃
(j)
0 , β̃

(j)
1 , . . . , β̃

(j)
N

)
∈ RN+1 denote

the exact values of the first N + 1 coefficients of the expansion of ψj . Then, each
component of the approximation βj produced by the shifted inverse power method in the
third step of the algorithm has the following property, no matter how tiny the component
is:

|β(j)k − β̃
(j)
k |

|β̃(j)k |
< ε, ∀k ∈ {0, 1, . . . , N}, (100)

where ε represents the machine epsilon (see [22] for more details). However with a
standard eigensolver, one can only achieve

|β(j)k − β̃
(j)
k | < ε, ∀k ∈ {0, 1, . . . , N}, (101)

although in norm,

‖β(j) − β̃(j)‖2
‖β̃(j)‖2

< ε. (102)
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In other words, the standard eigensolver can only achieve absolute precision for each
coordinate of the eigenvectors, while the shifted inverse power method achieves relative
precision. This is because the small entries in the eigenvector only interact with adjacent
entries in the eigenvector in the course of a solve step during the shifted inverse power
method.

Observation 4.7. The relative accuracy evaluation of expansion coefficients is essential
both for performing high accuracy spectral differentiation of the eigenfunctions, and
for relative accuracy evaluation of the eigenfunctions ψj,c(x) for large x, where the
eigenfunctions are small.

Remark 4.8. The eigenvectors β(n+1), β(n+2), . . . , β(N) ∈ RN+1 are never used in our al-
gorithm, since they do not have sufficient number of terms to represent ψn+1, ψn+2, . . . , ψN ,
respectively.

Remark 4.9. The first and second steps of the algorithm cost O(n) and O(n2) operations,
respectively. The shifted inverse power method is applied to n eigenpairs in the third
step, and each iteration costs O(n) operations. The convergence usually requires less
than five iterations, since the initial guesses for the eigenvalues are correct to absolute
precision, the eigenvalues are well-separated (see Section 2.2.3), and the inverse power
method converges cubically in the vicinity of the solution. Thus, the third step costs
O(n2) operations. So, in total, the cost of the algorithm is O(n2) operations.

4.3 Relative accuracy evaluation of the spectrum of the integral oper-
ator

In this subsection, we introduce an algorithm that evaluates the Airy integral operator
Tc’s eigenvalues λ0, λ1, . . . , λn to relative precision, using the expansion coefficients of the
eigenfunctions computed by the algorithm in Section 4.2.

4.3.1 Evaluation of the first eigenvalue

By (8), we know that

λj =

∫∞
0 Ai(x+ y + c)ψj(y) dy

ψj(x)
. (103)

We will show that, when the expansion coefficients of ψ0 are known to relative accuracy,
for a particular choice of x, (103) can be used to evaluate λ0 to relative accuracy.

Firstly, we discuss how to pick an optimal x, such that the evaluation is well-
conditioned. Mathematically, the choice of x makes no difference to the value of λ0, but
numerically, it’s better to select x such that there’s minimal cancellation in evaluating
both ψ0(x) and

∫∞
0 Ai(x+y+c)ψ0(y) dy. To achieve this, we notice that the Airy function

is smooth and decaying on the right half-plane, and oscillatory on the left half-plane.
When c is non-negative, the integrand is decaying superexponentially fast for any value
of x ≥ 0, and x = 0 becomes a natural choice, since, for this value of x, the integrand is
the largest. When c is negative, the integrand decays superexponentially fast only when
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x ≥ −c, so, in that case, x = −c is similarly a natural choice. Therefore, we define x to
be

x =

{
0, if c ≥ 0

−c, otherwise
. (104)

We note that, when j = 0, formula (103) is well-defined when x is given by formula (104),
as follows. When c ≥ 0, Theorem A.2 in Appendix A shows that ψ0(0) 6= 0. When c < 0,
we have that −c > 0, so ψ0(−c) 6= 0 by the Sturm oscillation theorem.

Once the value of x is chosen, we substitute the truncated expansion (96) of ψ0 into
(103), to get

λ0 =

∑N
k=0 β

(0)
k

( ∫∞
0 Ai(x+ y + c)hak(y) dy

)∑N
k=0 β

(0)
k hak(x)

. (105)

Note that the scaled Laguerre functions are easy to evaluate, and in the last section,

we’ve already solved for {β(0)k }k=0,1,...,N to relative accuracy. Thus, it’s straightforward
to compute the denominator of (105), and for our choice of x, it is evaluated without
cancellation error. However, the computation of the numerator is more difficult due to
the presence of integral

∫∞
0 Ai(x+y+ c)hak(y) dy. The integrand is both highly oscillatory

and rapidly decaying as k gets larger, which implies that a standard quadrature rule will
be insufficient. Instead, we derive a five-term linear homogeneous recurrence relation for∫∞
0 Ai(x+ y + c)hak(y) dy that satisfies a certain linear condition involving the first four

terms (see Theorem 3.3), and by combining it with the inverse power method, we find
that the integrals are evaluated to relative accuracy, for all values of k = 0, 1, . . . , N . The
main ideas of the algorithm are as follows.

For consistency, we use Ha
k , which is first defined in Theorem 3.3, to represent the

integral
∫∞
0 Ai(x+ y + c)hak(y) dy. It follows that the variable s, defined in formula (50)

of Theorem 3.3, equals x + c in our case. Clearly, the absolute value of Ha
k decays

exponentially fast as k increases, since the integrand becomes more and more oscillatory
(See Theorem 2.9). The key empirical observation is that only one of the three linearly
independent solutions to the five-term linear homogeneous recurrence relation satisfying
(51), for n = 1, decays as k →∞. This implies that, by truncating the infinite matrix
associated with the recurrence relation and evaluating the eigenvector corresponding to
the zero eigenvalue, we can solve for Ha

k in a manner similar to Section 4.1. To put it
more precisely, we first write out the recurrence relation in the form of a linear system:

B1,0H
a
0 +B1,1H

a
1 +B1,2H

a
2 +B1,3H

a
3 = 0, (106)

Bk−2,kH
a
k−2 +Bk−1,kH

a
k−1 +Bk,kH

a
k +Bk+1,kH

a
k+1 +Bk+2,kH

a
k+2 = 0, (107)

for k = 2, 3, . . . , where Bk−2,k, Bk−1,k, Bk,k, Bk+1,k, Bk+2,k are defined via the formulas

Bk−2,k = k − 1, (108)

Bk−1,k = − (4k − 1 + a(x+ c)− 1

4
a3), (109)

Bk,k = 6k + 3 + 2a(x+ c) +
1

2
a3, (110)

Bk,k+1 = − (4k + 5 + a(x+ c)− 1

4
a3), (111)

Bk,k+2 = k + 2, (112)
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for k = 1, 2, . . . . Note that the first row of the infinite matrix B is all zeros. If we
consider the eigenproblem for the infinite matrix B, by our observation, it must have an
eigenvector corresponding to the zero eigenvalue, and the coordinates of the eigenvector
decay exponentially fast. Therefore, if we want to evaluate the first N + 1 coordinates
of the eigenvector with eigenvalue zero, we can replace the infinite matrix B with its
(N ′ + 1)× (N ′ + 1) upper left square submatrix, where N ′ = O(N) is sufficiently large,
and apply the inverse power method to B. The empirical fact that there is only one
decaying solution to the recurence relation which satisfies (106) means that this leads
to an eigenvector {H̃a

k}k=0,1,...,N ′ whose first N + 1 coordinates match {Ha
k}k=0,1,...,N to

relative accuracy, up to some scalar factor.

Remark 4.10. To avoid division by zero, we set B0,0 to be ε during computation, where ε
is the smallest floating-point number. Since we are performing the inverse power method,
division by a tiny number is numerically stable.

Therefore, the last step is to rescale the eigenvector, such that its k-th coordinate
equals Ha

k , for all k. This can be achieved by first computing Ha
0 to relative precision, and

multiplying every coordinate of the eigenvector by Ha
0 /H̃

a
0 . Note that, by our particular

choice of x, the integrand of Ha
0 =

∫∞
0 Ai(x + y + c)ha0(y) dy is smooth and decays

superexponentially and monotonically. Thus, the evaluation can be done rapidly and
accurately via quadrature.

Observation 4.11. It’s important to truncate the domain of the integral
∫∞
0 Ai(x +

y + c)ha0(y) dy properly when it is integrated numerically, since otherwise it’s either
impossible or too expensive to compute the integral to full relative precision. A good
rule for truncating the domain of the integral is to choose the domain where the absolute
value of the integrand is larger than machine epsilon times the L∞ norm of the integrand.
Since maxy≥0 Ai(x+ y+ c)ha0(y) =

√
aAi(x+ c), where x is chosen by (104), we construct

an approximate formula for the cutoff point ymax such that Ai(x+ ymax + c)ha0(ymax) ≈
ε
√
aAi(x + c) by using Remark 2.2 and symbolic computation, where ε represents the

machine epsilon.

Observation 4.12. Empirically, N ′ = N + 40 is a safe choice for the truncation of the
infinite matrix B.

The first eigenvalue of the integral operator Tc can now be evaluated to relative
precision by (105), using our computed expansion coefficients β(0) and the solution to
the recurrence relation {Ha

k}k=0,1,...,N .

Remark 4.13. One may suggest using numerical integration to compute
∫∞
0 Ai(x +

y + c)ψ0(y) dy directly, since the integrand decays superexponentially and is smooth.
However, it’s rather involved to generate sets of good quadrature nodes that integrate∫∞
0 Ai(x+ y+ c)ψ0(y) dy to full relative precision for all ranges of c, since the behavior of

the eigenfunction ψ0 is strongly dependent on c. Adaptive quadrature could be applied
to overcome this issue, but it is generally not efficient and robust enough to be used in
an algorithm for computing special functions. On the other hand, the algorithm that
we propose only requires the numerical integration of

∫∞
0 Ai(x+ y + c)ha0(y) dy, whose

behavior is substantially easier to characterize, since ha0(y) :=
√
ae−ay/2 is only weakly

dependent on c (see formula (99)).
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4.3.2 Evaluation of the rest of the eigenvalues

The standard way to overcome the obstacle for the numerical evaluation of small λj ’s
is to compute all the ratios λ1

λ0
, . . . , λn

λn−1
, and then evaluate the eigenvalue λj via the

formula

λj = λ0 ·
λ1
λ0
· · · · · λj

λj−1
, (113)

where the ratio λn+1

λn
can be computed by Theorem 3.4:

λn+1

λn
=

∫∞
0 ψ′n(x)ψn+1(x) dx∫∞
0 ψn(x)ψ′n+1(x) dx

, (114)

(see Section 10.2 in [23]).
We note that the computation of the ratio can be done spectrally: for example, one

can evaluate the numerator of (114) by first computing the expansion of ψ′n via Corollary
2.7, then computing the inner product of the two series expansions of ψ′n and ψn+1 by
the orthogonality of the basis functions. The denominator is symmetric to the numerator,
and can be computed in essentially the same way. Therefore, it takes O(N) operations

to compute λn+1

λn
, and takes O(nN) operations in total to compute λj for j = 1, 2, . . . , n.

Recalling that N = 1.1n+ |c|+ 100, we see that the cost is O(n2 + |c|n).

Remark 4.14. One may also compute the expansion of the derivative of ψn by applying a
differentiation matrix (see formula (30)) to the expansion coefficients β(n) of ψn. However,
this will cost O(N2) operations for each differentiation, which makes the total cost
O(nN2) operations.

Observation 4.15. It’s important that the expansion coefficients of the eigenfunctions
are computed to relative accuracy, since otherwise the spectral differentiation of the
eigenfunctions in formula (114) will lead to a loss of accuracy proportional to the order
of the expansion (see Observation 4.7).

Given the expansion coefficients {β(j)k } computed by the algorithm stated in Section
4.2, we summarize the algorithm for computing the eigenvalues as follows.

1. Construct an (N ′ + 1) × (N ′ + 1) five-diagonal real matrix B whose entries are
defined via (108)–(112), where N ′ = N + 40 (see Observation 4.12), and N is given
by Observation 4.3.

2. Apply the inverse power method to B until convergence. This leads to an ap-
proximation of an eigenvector {H̃a

k}k=0,1,...,N ′ whose first N + 1 coordinates match
{Ha

k}k=0,1,...,N to relative accuracy, up to some scalar factor.

3. Compute Ha
0 to relative precision by numerical integration (see Remark 4.14).

Rescale the computed eigenvector by multiplying every coordinate by Ha
0 /H̃

a
0 .

4. Compute λ0 using the previously computed {β(0)k } and {Ha
k} via formula (105),

where the value of x inside that formula is chosen by (104).

5. Compute the rest of the eigenvalues by formulas (113), (114) with the use of spectral
differentiation (see Corollary 2.7) and the orthogonality of the basis functions.
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5 Applications

In this section, we discuss two applications of the eigendecomposition of the Airy integral
operator. In Section 5.1, we discuss an application to the distributions of the k-th largest
level at the soft edge scaling limit of Gaussian ensembles, and in Section 5.2, we discuss
an application to finite-energy Airy beams in optics.

5.1 Distributions of the k-th largest level at the soft edge scaling limit
of Gaussian ensembles

The cumulative distribution function of the k-th largest level at the soft edge scaling
limit of the GUE is given by the formula

F2(k; s) =
k−1∑
j=0

(−1)j

j!

∂j

∂zj
det
(
I − zK|L2[s,∞)

)∣∣∣
z=1

, (115)

where K|L2[s,∞) denotes the integral operator on L2[s,∞) with kernel

KAi(x, y) =

∫ ∞
s

Ai(x+ z − s)Ai(z + y − s) dz. (116)

It’s clear that

K|L2[s,∞)[f ] = G2s [f ], (117)

where Gs is the associated Airy integral operator defined in Section 2.2.1.
Using the fact that

det
(
I − zK|L2[s,∞)

)
=
∞∏
i=0

(1− zλ2i,s), (118)

F2(k; s) can be expressed in the following form:

F2(k; s) =

k−1∑
j=0

1

j!

∞∑
i1=0

λ2i1,s

∞∑
i2=0,
i2 6=i1

λ2i2,s · · ·
∞∑

ij=0,
ij 6=i1,...,ij−1

λ2ij ,s

∞∏
i=0,

i 6=i1,...,ij

(1− λ2i,s), (119)

where λi is the (i+ 1)-th eigenvalue of Gs. The formula

d

ds
F2(k; s) =

1

(k − 1)!

∞∑
i1=0

λ2i1,s

∞∑
i2=0,
i2 6=i1

λ2i2,s · · ·
∞∑

ik=0,
ik 6=i1,...,ik−1

(−
∂λ2ik,s
∂s

)

∞∏
i=0,

i 6=i1,...,ik

(1− λ2i,s)

(120)

for the probability density function d
dsF2(k; s) of the k-th largest level at the soft edge

scaling limit of the GUE is obtained from (119) by a lengthy calculation in which many
terms cancel. By applying the identity

∂λ2n,s
∂s

= −λ2n,s
(
ψn,s(0)

)2
(121)
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(see Corollary 3.7) to formula (120), the PDF d
dsF2(k; s) gets expressed in terms of the

eigenvalues {λi,s} and the values of the eigenfunctions {ψi,s(x)} of the Airy integral
operator Ts at x = 0:

d

ds
F2(k; s) =

1

(k − 1)!

∞∑
i1=0

λ2i1,s

∞∑
i2=0,
i2 6=i1

λ2i2,s · · ·
∞∑

ik=0,
ik 6=i1,...,ik−1

λ2ik,s
(
ψik,s(0)

)2 ∞∏
i=0,

i 6=i1,...,ik

(1− λ2i,s).

(122)

Clearly, with the eigenvalues {λj,s} and expansion coefficients {β(j)} of the eigenfunctions
{ψj,s} computed to full relative precision, the PDF d

dsF2(k; s) can be evaluated to relative
precision everywhere, except in the left tail, for any positive integer k. We note that, in
this case, knowing the eigenvalues to relative precision is essential, since if the eigenvalues
are only computed to absolute precision, d

dsF2(k; s) loses accuracy exponentially fast for
any fixed s as k increases. Finally, we observe that the left tail of the PDF is evaluated
only to absolute precision due to the cancellation error in the computation of ψj,s(0) and
1− λ2j,s.

Observation 5.1. When k = 1, d
dsF2(k; s) reduces to the PDF of the Tracy-Widom

distribution d
dsF2(s), and, by the discussion above, the number of correct digits of d

dsF2(s)
is approximately equal to the number of correct digits of λ0,s, for all s except in the
left tail. Although, in general, the Fredholm determinant method introduced in [4] only
solves eigenvalues to absolute precision, the first eigenvalue λ0,s is actually computed to
relative precision. Therefore, by using formula (122), the Tracy-Widom distribution can
be evaluated to relative precision everywhere with Bornemann’s method, except in the
left tail. However, to our knowledge, formula (122) was not used in the computation of
the PDF until this paper. We also recall that evaluating d

dsF2(k; s) for k ≥ 2 to relative
precision requires the eigenvalues beyond λ0,s to be computed to relative precision.

Observation 5.2. Provided that the eigenvalues λi,s and the values of the eigenfunctions
ψi,s at zero are given, and each series in the nested representations (119), (122) is truncated
at the n-th term, the time complexities of computing F2(k; s) and d

dsF2(k; s) via the
series (119), (122) are O(nk) and O(nk+1), respectively. The cost appears at first glance
to be unaffordable when k is large, but, in reality, only a fixed constant number of
terms in the infinite series is required to compute F2(k; s) and d

dsF2(k; s) for all k to
full relative accuracy, owing to the exponential decay of the eigenvalues λi,s. Thus, the
time complexity of evaluating F2(k; s) and d

dsF2(k; s) is O(k). We also recall that the
computation of {λi,s}i=0,1,...,n−1 and {ψi,s(0)}i=0,1,...,n−1 requires O(n2) operations (see
Section 4).

Similarly, the cumulative distribution function F1(k; s) of the k-th largest level at the
soft edge scaling limit of the GOE equals

F1(k; s) =
1

2

k−1∑
j=0

(−1)j

j!

∂j

∂zj

((
1 +

√
z

2− z

)
det
(
I −

√
z(2− z)Ts/2|L2[0,∞)

)
+

(
1−

√
z

2− z

)
det
(
I +

√
z(2− z)Ts/2|L2[0,∞)

))∣∣∣∣
z=1

,

(123)
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and the cumulative distribution function F4(k; s) of the k-th largest level at the soft edge
scaling limit of the GSE can be written as

F4(k; s) =
1

2

k−1∑
j=0

(−1)j

j!

∂j

∂zj

(
det
(
I −
√
zTs/2|L2[0,∞)

)
+ det

(
I +
√
zTs/2|L2[0,∞)

))∣∣∣∣
z=1

,

(124)

(see [3]). It follows that the distributions (including both the CDFs and PDFs) can be
expressed in terms of the eigenvalues and eigenfunctions of the Airy integral operator Ts/2,
in a manner similar to the GUE case (see formulas (119), (122)). Thus, the distributions
can also be computed to high accuracy using our method.

Remark 5.3. Two popular methods for computing the Tracy-Widom distribution are:
solving for a Painlevé transcendent [3, 11], and approximating a Fredholm determinant
of an integral operator [4]. When high accuracy is not required, other effective methods
can be used, including methods based on a shifted Gamma distribution approximation
[7], and direct statistical simulation [12].

5.2 Connection to Airy beams in optics

In this section, we describe an application of the eigenfunctions of the Airy integral
operator to the construction of an optimal finite-energy approximation to a certain
optical beam called the Airy beam. We begin by describing the equations governing the
propagation of light in free space.

The propagation of light in free space, in the absence of currents and charges, is
governed by Maxwell’s equations

∇×H − ε

c
E′ = 0, (125)

∇× E +
µ

c
H ′ = 0, (126)

∇ · E = 0, (127)

∇ ·H = 0, (128)

where E and H denote the electric and magnetic fields, respectively, ε is the permittivity,
and µ is the magnetic permeability. From (125)–(128), it can be shown that

∇2E − εµ

c2
E′′ = 0, (129)

∇2H − εµ

c2
H ′′ = 0, (130)

where the equations are satisfied separately by each of the components of E = (Ex, Ey, Ez)
and H = (Hx, Hy, Hz), respectively (see, for example, [2]). When the light is monochro-
matic or time-harmonic with frequency ω, the electric field takes the form E(r) =
Re(U(r)e−iωt), where, after subtituting into (129), we find that U solves the Helmholtz
equation

∇2U + k20n
2U = 0, (131)
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where k0 = ω/c is the reduced or vacuum wavenumber, n =
√
εµ is the absolute refractive

index of the medium, and where the equation is again satisfied separately by each
component of U = (Ux, Uy, Uz). Letting ψ denote a single component of U and letting
kH = k0n, we have that

∇2ψ + k2Hψ = 0, (132)

where kH is called the free space wavenumber.

5.2.1 Propagation-invariant optical fields

If we suppose that ψ has the form

ψ(x, y, z) = Ψ(x, y)eikzz, (133)

then the intensity of that particular component of the electric field will be invariant along
the z-axis (which we call the axial direction). Substituting ψ into (132), we find that

∇2Ψ + k2tΨ = 0, (134)

where

kt =
√
k2H − k2z , (135)

and kt denotes the transverse wave number. Suppose that each component of the
electric field has the form (133). If kz > 0, then the transverse parts of the Ex and Ey
components of the electric field can be chosen to be any two solutions of (134), and the
axial component Ez is then determined by Maxwell’s equations (see, for example, §3.1
of [32]). If kz ≈ kH , then most of the propagation will be in the axial (meaning z)
direction, and the component Ez will be very small. In this situation, the overall intensity
of the electric field is well approximated by the intensity of the field in just the transverse
(x-y) plane. Solutions to (132) are known as waves, and waves of the form (133) are
examples of propagation-invariant optical fields (PIOFs) (see, for example, [32] and [20]).

5.2.2 The paraxial wave equation

Instead of assuming that the transverse part of the field component ψ is invariant in the z
direction, suppose that the transverse component varies slowly with respect to z, so that

ψ(x, y, z) = Ψ(x, y, z)eikHz, (136)

where Ψ varies slowly with z. Substituting (136) into (132), we have

∇2
tΨe

ikHz +
∂2Ψ

∂z2
eikHz + 2ikH

∂Ψ

∂z
eikHz = 0, (137)

where ∇2
t = ∂2

∂x2
+ ∂2

∂y2
. Since we assumed that Ψ varies slowly with respect to z,

| ∂2
∂z2

Ψ| � |2ikH ∂
∂zΨ|. Thus, equation (137) becomes

∇2
tΨ + 2ikH

∂

∂z
Ψ = 0, (138)

which is an equation describing the transverse profile of a beam propagating along the
z-axis. Equation (138) is called the paraxial wave equation.

Remark 5.4. We note that (138) is just Schrödinger’s equation, where z represents
time.
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5.2.3 Airy beams

Separating variables, we write the solution Ψ to the paraxial wave equation (138) as

Ψ(x, y, z) = Φx(x, z)Φy(y, z). (139)

From (138), we obtain

∂2

∂x2
Φx + 2ikH

∂

∂z
Φx = 0, (140)

∂2

∂y2
Φy + 2ikH

∂

∂z
Φy = 0. (141)

Letting x0 and y0 be arbitrary transverse scaling factors, and setting

sx =
x

x0
, sy =

y

y0
, ξx =

z

kHx20
, ξy =

z

kHy20
, (142)

we have the equations

1

2

∂2

∂s2x
Φx(sx, ξx) + i

∂

∂ξx
Φx(sx, ξx) = 0, (143)

1

2

∂2

∂s2y
Φy(sy, ξy) + i

∂

∂ξy
Φx(sy, ξy) = 0. (144)

One particular solution to (143) is given by the formula

Φx(sx, ξx) = Ai
(
sx −

(ξx
2

)2)
exp
(
i
(
− ξ

3
x

12
+ sx

ξx
2

))
. (145)

Note that Φx(sx, 0) = Ai(sx). An identical solution exists for Φy, but for the sake of
simplicity we take Φy ≡ 1, and denote sx and ξx by s and ξ. Beams Ψ for which Φx is
given by (145) and Φy ≡ 1 are called Airy-Plane beams (see, for example, §3.1.5 of [20]).
The transverse profile of the Airy beam is invariant in the ξ-direction in the unusual sense
that the profile does not change, except that it is translated in the s-direction by (ξ/2)2.
Thus, the Airy beam is non-diffracting, and is self-accelerating due to its translation. This
seemingly paradoxical phenomenon (recall that the center of mass of the profile of a beam
must remain invariant with respect to ξ in the absence of external fields) is explained by
the fact that the energy of the Airy beam is infinite, since

∫∞
−∞Ai(x)2 dx =∞, and so

the center of mass of the beam is undefined.

5.2.4 Airy eigenfunction beams

While the Airy beam (145) is perfectly non-diffracting and self-accelerating, its energy is
infinite. Since such a beam is not realizable, it would be desirable to construct a beam
exhibiting the same properties, but with finite energy.

One well-known solution is the finite Airy beam (see, for example, [27, 28, 15]), which
is generated by introducing an exponential aperture function to the initial field envelope
of the Airy beam, i.e.,

Φ(s, 0) = (8πα)1/4Ai(s) exp
(
−α

3

3
+ αs

)
, (146)
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where α > 0. Note that, for simplicity, the initial field envelope has been normalized such
that ‖Φ(s, 0)‖2 = 1. Solving equation (143) under the initial condition (146), we have
that the beam evolves according to

Φ(s, ξ) = (8πα)1/4Ai
(
s−

(ξ
2

)2
+ iαξ

)
exp
(
−α

3

3
+ αs− αξ2

2
+ i
(
− ξ

3

12
+
α2ξ

2
+
sξ

2

))
.

(147)

Although these beams only have finite energy, it has been shown both theoretically and
experimentally that, when α is small, the finite Airy beams exhibit the key characteristics
of the Airy beam, i.e., the ability to remain diffraction-free over long distances, and to
freely accelerate during propagation. To be more specific, as α→ 0, the resulting beam
Φ approaches a scaled Airy function. When α gets bigger, on the other hand, the beam
Φ resembles a Gaussian. The beam profiles for several values of α are illustrated in
Figures 7 and 8.

Below, we show that the Airy transform of the eigenfunctions of the Airy integral
operator, which also have finite energy, resemble the infinite-energy Airy beam in a
different way, in that they maximally concentrate the energy near the main lobes in
their initial profiles, while remaining diffraction-free over the longest possible distances.
We note that the eigenfunction beams achieve their long diffraction-free distances by
spreading their energy as evenly as possible in their side lobes. For simplicity, we name
them Airy eigenfunction beams.

It is not hard to see that, for any density function σ, the beam with transverse profile

Φ(s, ξ) =

∫ ∞
0

σ(v)Ai
(
s+ v −

(ξ
2

)2)
exp
(
i
(
− ξ

3

12
+ (s+ v)

ξ

2

))
dv (148)

is a solution to (143), since (148) can be differentiated under the integral sign due to the
rapid decay of Ai(v) as v →∞. Note that, when ξ = 0,

Φ(s, 0) =

∫ ∞
0

σ(v)Ai(s+ v) dv. (149)

When σ is a delta function, the beam Φ is perfectly non-diffracting, since then it is just
an Airy function. When σ is supported over some interval of positive width, however,
the beam will diffract due to interference between different modes. This diffraction is
caused by the term exp(ivξ/2) in (148), without which the beam would be perfectly
non-diffracting for any σ. If the goal is to construct a non-diffracting and self-accelerating
beam, then the support of σ should be as small as possible, so that the beam resembles
the Airy beam as much as possible. However, when σ is highly concentrated around
v = 0, the energy in Φ will be very poorly localized, resulting in an overall weak beam
intensity. This trade-off between the localization of Φ and the localization of σ is a result
of the uncertainty principle described in Section 3.6. Consequently, the extremal property
of the eigenfunction ψ0,c can be utilized to optimize the localization of both the beam
intensity Φ and the density σ. To be more specific, we let σ(v) = ψ0,c(v) for some real
number c, such that formula (149) becomes

Φ(s, 0) =

∫ ∞
0

Ai(s+ v)ψ0,c(v) dv = A[ψ0,c](s). (150)
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Based on Section 3.8, when c ∈ [−5, 1.5], the resulting Airy eigenfunction beam concen-
trates the most energy in [c,∞), while remaining Airy-bandlimited.

The densities and corresponding beam profiles for several values of c are illustrated in
Figures 7, 8 and 9.

6 Numerical Experiments

In this section, we illustrate the performance of the algorithm with several numerical
examples.

We implemented our algorithm in FORTRAN 77, and compiled it using Lahey/Fujitsu
Fortran 95 Express, Release L6.20e. For the timing experiments, the Fortran codes were
compiled using the Intel Fortran Compiler, version 2021.2.0, with the -fast flag. We
conducted all experiments on a ThinkPad laptop, with 16GB of RAM and an Intel Core
i7-10510U CPU.

6.1 Computation of the eigenfunctions and spectra

In this section, we report the plots of the eigenfunctions and spectra for different values
of c and n in Figures 1–4, and the corresponding computation times in Table 1. We
normalize the eigenfunctions ψn,c by requiring that ψn,c(0) > 0 (recall that ψn,c(0) 6= 0,
see (161)). In addition, we illustrate the importance of selecting the optimal scaling
factor of the scaled Laguerre functions in Figure 5.

c n N Time

20 50 175 2.10×10−3 secs

100 230 3.64×10−3 secs

200 340 8.76×10−3 secs

400 560 3.35×10−2 secs

0 50 155 3.36×10−3 secs

100 210 4.93×10−3 secs

200 320 9.75×10−3 secs

400 540 3.17×10−2 secs

−20 50 175 4.32×10−3 secs

100 230 5.64×10−3 secs

200 340 1.14×10−2 secs

400 560 3.37×10−2 secs

Table 1: The computation time of the eigenfunctions and spectra of the in-
tegral operator for different value of c and n. The value of N is determined by
Observation 4.3. The time cost is of order O(N2).
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Figure 1: Eigenfunctions ψn,c, defined by (8), of different orders with different
parameters c.

35



0 50 100 150 200
n

10-281

10-238

10-195

10-152

10-109

10-66

10-23
100

λ
2 n
,c

c= − 20

c= − 10

c=0

c=10

c=20

Figure 2: Squares of the spectra of the Airy integral operators Tc with different
parameters c. This corresponds to the spectra of the integral operator K (see formulas
(2), (117)). Note that the square of the leading eigenvalues converge to 1 as c→ −∞.
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Figure 3: The spectra of the commuting differential operators Lc with different
parameters c. Note the presence of negative eigenvalues for sufficiently negative values
of c.
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0 200 400 600 800
n

−0.10

−0.05

0.00

0.05

0.10

β
(4

00
)

n

(d) a = 1

Figure 5: Expansion coefficients of ψn,c in the basis of scaled Laguerre functions
with different scaling factors a, where n = 400 and c = 10. Note that the optimal
scaling factor ã ≈ 20.62, and is selected by formula (99). It’s clear that our basis functions
become optimal when a = ã. Figure (d) shows that the unscaled Laguerre functions are
unsuitable for approximating the eigenfunctions of the Airy integral operator.
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6.2 Computation of the distribution of the k-th largest eigenvalue of
the Gaussian unitary ensemble

In this section, we report the computation time and the numerical errors of the PDF
d
dsF2(k; s) and CDF F2(k; s) in Tables 2 and 3, for different values of k and s. The
reference solutions are computed by our solver using extended precision. We note that
Prähofer tabulated the values of F2(1; s) and log d

dsF2(1; s) to 16 digits of relative accuracy
in [25], and our computed values match with the values reported there. We also show
the plots of d

dsF2(k; s) and F2(k; s) for k = 1, 2, 3 in Figure 6.
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k s n N Time
Relative Absolute d

dsF2(k; s)
error error

1 50 30 50 1.70×10−4 secs 2.53×10−14 3.76×10−222 1.48437×10−208

25 20 40 1.20×10−4 secs 1.16×10−14 7.61×10−90 6.56096×10−76

10 20 40 1.25×10−4 secs 2.18×10−15 4.14×10−36 1.90064×10−21

5 20 40 1.36×10−4 secs 3.28×10−16 8.27×10−25 2.52106×10−9

2 20 40 1.44×10−4 secs 4.15×10−15 1.57×10−18 3.79199×10−4

0 20 40 1.50×10−4 secs 2.07×10−16 1.39×10−17 6.69753×10−2

−2 20 40 1.49×10−4 secs 5.03×10−16 2.22×10−16 4.41382×10−1

−5 40 60 2.96×10−4 secs 7.25×10−13 9.71×10−17 1.34039×10−4

−10 50 80 4.39×10−4 secs 2.53×10−4 2.66×10−39 1.05359×10−35

−20 70 120 9.45×10−4 secs 8.50×1087 1.50×10−200 1.77193×10−288

2 30 30 50 1.79×10−4 secs 3.23×10−14 2.85×10−217 8.88120×10−204

0 20 40 1.50×10−4 secs 1.11×10−15 1.36×10−20 1.21766×10−5

−4 30 50 2.23×10−4 secs 3.08×10−15 1.55×10−15 5.05206×10−1

−6 50 80 4.88×10−4 secs 1.43×10−13 3.02×10−16 2.10626×10−3

−10 50 100 7.38×10−4 secs 1.35×10−6 2.27×10−30 1.67893×10−24

−12 60 120 1.07×10−3 secs 2.80×10−2 3.20×10−48 1.14082×10−46

3 15 30 50 2.46×10−4 secs 4.10×10−15 1.02×10−140 2.48166×10−126

4 20 40 2.11×10−4 secs 1.50×10−15 8.21×10−48 5.50657×10−33

−4 30 50 3.03×10−4 secs 1.15×10−14 1.44×10−15 1.25051×10−1

−8 50 80 5.69×10−4 secs 5.81×10−12 1.03×10−16 1.76988×10−5

−10 50 100 8.19×10−4 secs 1.07×10−8 8.56×10−24 8.01983×10−16

−13 60 120 1.27×10−3 secs 1.61×10−2 1.55×10−48 9.63884×10−47

Table 2: The evaluation of the probability density functions. The actual values of
d
dsF2(k; s) are reported to 6 significant digits. Note that the relative accuracy degenerates

when one evaluates d
dsF2(k; s) in the left tails of the distributions (see Section 5.1).
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k s n N Time
Relative Absolute

F2(k; s)
error error

1 50 30 50 1.70×10−4 secs <1.00×10−16 <1.00×10−16 1.00000×100

25 20 40 1.20×10−4 secs <1.00×10−16 <1.00×10−16 1.00000×100

10 20 40 1.25×10−4 secs <1.00×10−16 <1.00×10−16 1.00000×100

5 20 40 1.36×10−4 secs <1.00×10−16 <1.00×10−16 1.00000×100

2 20 40 1.44×10−4 secs 1.11×10−16 1.11×10−16 9.99888×10−1

0 20 40 1.50×10−4 secs 1.15×10−16 1.11×10−16 9.69373×10−1

−2 20 40 1.49×10−4 secs 4.03×10−16 1.67×10−16 4.41322×10−1

−5 40 60 2.96×10−4 secs 1.39×10−12 2.96×10−17 2.13600×10−5

−10 50 80 4.39×10−4 secs 3.07×10−4 1.29×10−40 4.21226×10−37

−20 70 120 9.45×10−4 secs 1.80×1088 3.19×10−202 1.77182×10−290

2 30 30 50 1.79×10−4 secs <1.00×10−16 <1.00×10−16 1.00000×100

0 20 40 1.50×10−4 secs 1.11×10−16 1.11×10−16 9.99998×10−1

−4 30 50 2.23×10−4 secs 1.04×10−14 3.50×10−15 3.35602×10−1

−6 50 80 4.88×10−4 secs 2.99×10−13 1.10×10−16 3.69221×10−4

−10 50 100 7.38×10−4 secs 1.70×10−6 1.38×10−31 8.14202×10−26

−12 60 120 1.07×10−3 secs 3.30×10−2 1.21×10−49 3.65917×10−48

3 15 30 50 2.46×10−4secs <1.00×10−16 <1.00×10−16 1.00000×100

4 20 40 2.11×10−4 secs <1.00×10−16 <1.00×10−16 1.00000×100

−4 30 50 3.03×10−4 secs <1.00×10−16 <1.00×10−16 9.59838×10−1

−8 50 80 5.69×10−4 secs 9.70×10−12 2.03×10−17 2.09567×10−6

−10 50 100 8.19×10−4 secs 1.42×10−8 6.93×10−25 4.89120×10−17

−13 60 120 1.27×10−3 secs 1.89×10−2 5.63×10−50 2.98361×10−48

Table 3: The evaluation of the cumulative distribution functions. The actual
values of F2(k; s) are reported to 6 significant digits. Note that the relative accuracy
degenerates when one evaluates F2(k; s) in the left tails of the distributions (see Section
5.1).

Observation 6.1. The computation times of d
dsF2(k; s) and F2(k; s) are dominated by

the calculation of the eigendecomposition of the Airy integral operator Ts (see Observation
5.2). As a consequence, the computation times of d

dsF2(k; s) and F2(k; s) are almost
identical for any fixed k and s (see Tables 2, 3).

Observation 6.2. Once the eigendecomposition of the Airy integral operator Ts is
computed, the time cost of evaluating F2(k; s) and d

dsF2(k; s) via formulas (119) and
(122) for different k is relatively negligible (see Observation 5.2). We note that we only
consider the evaluation of d

dsF2(k; s) and F2(k; s) for a single k in our experiments, which
means that the reported times include the time required for the computation of the
eigendecomposition.
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Figure 6: d
dsF2(k; s) and F2(k; s) for k = 1, 2, 3.

Observation 6.3. From Tables 2, 3 and Figure 6, it’s clear that our algorithm evaluates
the distributions d

dsF2(k; s) and F2(k; s) to relative accuracy everywhere, except in the left
tail. The algorithm only evaluates the left tail of the distributions to absolute precision,
since the leading eigenvalues of the Airy integral operator Ts converge to 1 as s→ −∞
(see also Theorem 2.1), which leads to catastrophic cancellation in the computation of
the distributions (see formulas (119), (122)).
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6.3 Computation of finite-energy Airy beams

In this section, we compute the beam intensities for both the finite Airy beams and
the Airy eigenfunction beams constructed from ψ0,c, described in Section 5.2. In our
experiments, we construct finite Airy beams and Airy eigenfunction beams with unit
total energy, and with roughly the same intensity in their main lobes. We demonstrate
that the eigenfunction beams are more non-diffracting than the finite Airy beams (see
Figures 7, 8). We also plot the densities and beam intensities of the Airy eigenfunction
beams at ξ = 0 for various values of the parameter c in Figure 9.

Observation 6.4. From Figures 7 and 8, it’s clear that the Airy eigenfunction beams
exhibit the key characteristics of the Airy beam. Moreover, the Airy eigenfunction beams
do a better job in preserving fine structure than the finite Airy beams, which implies
that the Airy eigenfunction beams have both a better self-healing ability, and stronger
gradient forces.
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Figure 7: The intensity profiles of the finite Airy beam with parameter α =
0.202 and the Airy eigenfunction beam with parameter c = −2. The initial
intensity profiles are shown in Figure (a). The beam profiles of the finite Airy beam and
the Airy eigenfunction beam are shown on the left and right of Figure (b), respectively.
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Figure 8: The intensity profiles of the finite Airy beam with parameter α =
0.108 and the optimal finite-energy Airy beam with parameter c = −1. The
initial intensity profiles are shown in (a). The beam profiles of the finite Airy beam and
the Airy eigenfunction beam are shown on the left and right of Figure (b), respectively.
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Figure 9: The density functions and beam intensities of the Airy eigenfunction
beams, constructed from ψ0,c, for various values of the parameter c. The density
functions σ(v) = ψ0,c(v) and their corresponding beam intensities |Φ(s, 0)|2, defined by
formula (150), are shown in Figures (a) and (b), respectively, for various values of the
parameter c.
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7 Conclusions

In this paper, we present a numerical algorithm for rapidly evaluating the eigendecom-
position of the Airy integral operator Tc, defined in (6). Our method computes the
eigenvalues λj,c of Tc to full relative accuracy, and computes the eigenfunctions ψj,c of Tc
and Lc in the form of an expansion (86) in scaled Laguerre functions, where the expansion
coefficients are also computed to full relative accuracy. In addition, we characterize the
previously unstudied eigenfunctions of the Airy integral operator, and describe their
extremal properties in relation to an uncertainty principle involving the Airy transform.

We also describe two applications. First, we show that this algorithm can be used to
rapidly evaluate the distributions of the k-th largest level at the soft edge scaling limit of
Gaussian ensembles to full relative precision rapidly everywhere, except in the left tail
(the left tail is computed to absolute precision). Second, we show that the eigenfunctions
of the Airy integral operator can be used to construct finite-energy Airy beams that
achieve the longest possible diffration-free distances by spreading their energy as evenly
as possible in their side lobes, while also concentrating energy near the main lobes of
their initial profiles.
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A Appendix: Miscellaneous Properties of the Airy inte-
gral operator and its commuting differential operator

In this section, we describe miscellaneous properties of the eigenfunctions ψn,c of the
operators Tc and Lc, as well as properties of the eigenvalues χn,c of the commuting
differential operator Lc, and λn,c of the Airy integral operators Tc.

A.1 Derivative of χn,c with respect to c

Theorem A.1. For all real number c and non-negative integers n,

∂χn,c
∂c

=

∫ ∞
0

x
(
ψn,c(x)

)2
dx. (151)

Proof. By (20), we have

d

dx

(
x
d

dx
ψn,c

)
− (x2 + cx− χn)ψn,c = 0. (152)

With the infinitesimal change c = c+h, it follows that χn = χn+ε, ψn,c(x) = ψn,c(x)+δ(x).
Therefore, (152) becomes

d

dx

(
x
d

dx
(ψn,c + δ)

)
−
(
x2 + (c+ h)x− (χn + ε)

)
(ψn,c + δ) = 0. (153)
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After subtracting (152) from (153) and discarding infinitesimals of second order or greater,
(153) becomes

Lc[δ](x)− (hx− ε)ψn,c(x) = 0, (154)

where Lc is defined by (19). Then, we multiply both sides of (154) by
ψn,c(x)

h and integrate
both sides over the interval [0,∞), which gives us

1

h

∫ ∞
0
Lc[δ](x)ψn,c(x) dx−

∫ ∞
0

x
(
ψn,c(x)

)2
dx+

ε

h

∫ ∞
0

(
ψn,c(x)

)2
= 0. (155)

Due to the self-adjointness of Lc,
1

h

∫ ∞
0
Lc[δ](x)ψn,c(x) dx =

1

h

∫ ∞
0

δ(x)Lc[ψn,c](x) dx = 0. (156)

By (156) and the fact that ‖ψn,c‖2 = 1, in the appropriate limit, (155) becomes

∂χn,c
∂c

=

∫ ∞
0

x
(
ψn,c(x)

)2
dx. (157)

�

A.2 Recurrence relations involving the derivatives of eigenfunctions of
different orders

Theorem A.2. For all real numbers c, non-negative integers n, and x ∈ [0,∞),

− k(k − 1)ψ(k−2)
n,c (x)− k(c+ 2x)ψ(k−1)

n,c (x) +
(
χn,c − cx− x2

)
ψ(k)
n,c(x)

+ (k + 1)ψ(k+1)
n,c (x) + xψ(k+2)

n,c (x) = 0, (158)

for all k ≥ 2. Furthermore,

−(c+ 2x)ψn,c(x) + (χn,c − cx− x2)ψ′n,c(x) + 2ψ′′n,c(x) + xψ(3)
n,c(x) = 0. (159)

In particular, for all positive real c, non-negative integers n,

χn,cψn,c(0) + ψ′n,c(0) = 0, (160)

ψn,c(0) 6= 0. (161)

Proof. The identities (158) and (159) are immediately obtained by repeated differentia-
tion of (20). The identity (160) is proved by substituting x = 0 into (20). Finally, the
identity (161) can be easily verified via proof by contradiction. �

Remark A.1. We can compute the initial conditions ψn,c(x) and ψ′n,c(x) by evaluating
the truncated expansion (96) and its first derivative in O(N) operations, where N
represents the number of the expansion coefficients. The higher derivatives can then be
calculated via identities (20), (159) and (158) in O(1) operations. This theorem is useful
for computing the Taylor expansion of ψn,c at a given point x.

Corollary A.3. For all positive real c, non-negative integers m,n,

(χm,c − χn,c)ψm,c(0)ψn,c(0) + ψ′m,c(0)ψn,c(0)− ψm,c(0)ψ′n,c(0) = 0. (162)

Proof. The corollary follows directly from the identity (160). �
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A.3 Expansions in eigenfunctions

Given a real number c, the functions ψ0,c, ψ1,c, . . . are a complete orthonormal basis in
L2[0,∞). Thus, every f ∈ L2[0,∞) admits an expansion in the basis {ψn,c}. In this
subsection, we’ll provide identities for the expansion coefficients of ψ′n,c, ψ

′′
n,c, xψn,c and

∂ψn

∂c , in the basis {ψn,c}.

Theorem A.4. For any real c, non-negative integers m,n,∫ ∞
0

ψ′n(x)ψm(x) dx = − λm
λn + λm

ψn(0)ψm(0), (163)

and if m 6= n, then∫ ∞
0

ψ′′n(x)ψm(x) dx =
λm

λn − λm

(
ψ′n(0)ψm(0)− ψn(0)ψ′m(0)

)
, (164)∫ ∞

0
xψn(x)ψm(x) dx =

λnλm
λ2n − λ2m

(
ψ′n(0)ψm(0)− ψn(0)ψ′m(0)

)
, (165)∫ ∞

0

∂ψn
∂c

(x)ψm(x) dx =
λnλm
λ2m − λ2n

ψm(0)ψn(0), (166)

where ψm, ψn, λm, λn denote the eigenfunctions and eigenvalues of the Airy integral
operator with parameter c.

Proof. To prove (163), we start with the identity

λn

∫ ∞
0

ψ′n(x)ψm(x) dx =

∫ ∞
0

(∫ ∞
0

d

dx
Ai(x+ y + c)ψn(y) dy

)
ψm(x) dx. (167)

Note that

d

dx
Ai(x+ y + c) =

d

dy
Ai(x+ y + c). (168)

Therefore, the above calculation (167) can be repeated with m and n exchanged, yielding
the identity

λm

∫ ∞
0

ψ′m(x)ψn(x) dx =

∫ ∞
0

(∫ ∞
0

d

dx
Ai(x+ y + c)ψm(y) dy

)
ψn(x) dx

=

∫ ∞
0

(∫ ∞
0

d

dy
Ai(y + x+ c)ψn(x) dx

)
ψm(y) dy. (169)

By combining (167) and (169), we get∫ ∞
0

ψ′n(x)ψm(x) dx =
λm
λn

∫ ∞
0

ψ′m(x)ψn(x) dx. (170)

On the other hand, integrating the right side of (170) by parts and rearranging the terms
gives (163).

In the following, we assume that m 6= n.
To prove formula (164), we first combine (3), (8), and derive the following identity:

λnψ
′′
n(x) =

∫ ∞
0

(x+ y + c)Ai(x+ y + c)ψn(y) dy. (171)
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By repeating the same procedure (167)-(170), we get∫ ∞
0

ψ′′n(x)ψm(x) dx =
λm
λn

∫ ∞
0

ψ′′m(x)ψn(x) dx. (172)

Integrating the right side of (172) by parts twice and rearranging the terms gives (164).
To prove (165), first note that by combining (171) and (8), we get

λn

(
ψ′′n(x)− (x+ c)ψn(x)

)
=

∫ ∞
0

yAi(x+ y + c)ψn(y) dy. (173)

Taking the inner product of both sides of (173) with ψm(x), we have

λn

∫ ∞
0

(
ψ′′n(x)− (x+ c)ψn(x)

)
ψm(x) dx =

∫ ∞
0

∫ ∞
0

yAi(x+ y + c)ψn(y) dy ψm(x) dx

=

∫ ∞
0

yψn(y)

∫ ∞
0

Ai(y + x+ c)ψm(x) dx dy

=λm

∫ ∞
0

yψn(y)ψm(y) dy. (174)

Therefore, (174) becomes

(λm + λn)

∫ ∞
0

xψn(x)ψm(x) dx = λn

∫ ∞
0

(
ψ′′n(x)− cψn(x)

)
ψm(x) dx. (175)

By combining the orthogonality of ψn and (164), we prove (165).
To prove (166), we take the derivative with respect to c of both sides of (8), yielding

the identity

∂λn
∂c

ψn(x) + λn
∂ψn
∂c

(x) =

∫ ∞
0

( d
dc

Ai(x+ y + c)ψn(y) + Ai(x+ y + c)
∂ψn
∂c

(y)
)

dy.

(176)

Taking the inner product of both sides of (176) with ψm(x), by (8), we get

λn

∫ ∞
0

∂ψn
∂c

(x)ψm(x) dx

=

∫ ∞
0

(∫ ∞
0

d

dc
Ai(x+ y + c)ψn(y) dy

)
ψm(x) dx+ λm

∫ ∞
0

∂ψn
∂c

(y)ψm(y) dy. (177)

Since

d

dx
Ai(x+ y + c) =

d

dc
Ai(x+ y + c), (178)

we have that

λnψ
′
n(x) =

∫ ∞
0

d

dc
Ai(x+ y + c)ψn(y) dy. (179)

Therefore,∫ ∞
0

(∫ ∞
0

d

dc
Ai(x+ y + c)ψn(y) dy

)
ψm(x) dx = λn

∫ ∞
0

ψ′n(x)ψm(x) dx. (180)

Finally, by combining (163), (177) and (180), we prove (166). �
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A.4 Behavior of the eigenfunction ψn,c as c→∞

In this section, we show that the eigenfunction ψn,c of the Airy integral operator Tc
converges to a scaled Laguerre function in the limit as c→∞.

Theorem A.5. As c→∞,

ψn,c(x)→ h2
√
c

n (x), (181)

where h
2
√
c

n is the scaled Laguerre function defined in (26) with parameter a = 2
√
c.

Proof. As c→∞, ψn,c converges to the solution of

d

dx
(x

d

dx
f)− cxf = −χn,cf, (182)

by formula (20) and the fact that ψn,c becomes almost compactly supported in the limit
as c→∞ (see Theorem 3.11). By comparing (182) and (33), we conclude that

lim
c→∞

ψn,c(x) = h2
√
c

n (x). (183)

�

Corollary A.6. limc→∞ χn,c = (2n+ 1)
√
c.

Proof. This corollary is an immediate consequence of formulas (182) and (33). �

A.5 Behavior of the eigenfunction ψn,c as c→ −∞

In this section, we show that the eigenfunction ψn,c of the Airy integral operator Tc
converges to a scaled and shifted Hermite function in the limit as c → −∞. We first
introduce the mathematical preliminaries.

The Hermite polynomials, denoted by Hn : R → R, are defined by the following
three-term recurrence relation for any k ≥ 1 (see [1]):

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (184)

with the initial conditions

H0(x) = 1, H1(x) = 1− x. (185)

The polynomials defined by the formulas (184) and (185) are an orthogonal basis in the
Hilbert space induced by the inner product 〈f, g〉 =

∫∞
0 e−x

2
f(x)g(x) dx, i.e.,

〈Hn, Hm〉 =

∫ ∞
0

e−x
2
Hn(x)Hm(x) dx =

√
π2nn!δn,m. (186)

In addition, Hermite polynomials are solutions of Hermite’s equation:

f ′′ − 2xf ′ + 2nf = 0. (187)

We find it useful to use the scaled Hermite functions defined below.
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Definition A.1. Given a positive real number a, the scaled Hermite functions, denoted
by φan : R→ R, are defined by

φan(x) =

√
a

π
1
4 2

n
2 (n!)

1
2

e−a
2x2/2Hn(ax). (188)

The scaled Hermite functions satisfy the differential equation

− d2

dx2
φan + a4x2φan = a2(2n+ 1)φan. (189)

Lemma A.7. Given a negative real number c, define gn(u) = ψn,c((− c
2)

1
4u− c

2), where
ψn,c is the (n + 1)-th eigenfunction of the Airy integral operator Tc. Then, gn is the
solution of the ODE

− d2

du2
f −

(
− c

2

)− 3
4

(
u
d2

du2
f +

d

du
f
)

+ u2f =
((
− c

2

) 3
2 +

(
− c

2

)− 1
2χn,c

)
f, (190)

where χn,c is the (n+ 1)-th eigenvalue of the commuting differential operator Lc.

Proof. The lemma directly follows from the definition of gn and the differential equation
satisfied by ψn,c (see formula (20)). �

Theorem A.8. As c→ −∞,

ψn,c(x)→ 1√
a
φan
(
x+

c

2

)
, (191)

where a = (− c
2)−

1
4 . In other words, ψn,c(x) converges a Hermite function that is translated

by − c
2 , and scaled by scaling parameter (− c

2)−
1
4 .

Proof. As c→ −∞, gn converges to the solution of

− d2

du2
f + u2f =

((
− c

2

) 3
2 +

(
− c

2

)− 1
2χn,c

)
f, (192)

since limc→−∞(− c
2)−

3
4 = 0. By comparing (192) and (189), we conclude that

lim
c→−∞

gn(u) = φ1n(u). (193)

Therefore, by definition,

lim
c→−∞

ψn,c(x) = φ1n
((
− c

2

)− 1
4
(
x+

c

2

))
=

1√
a
φan
(
x+

c

2

)
, (194)

where a = (− c
2)−

1
4 . �

Corollary A.9. limc→−∞ χn,c = (2n+ 1)(− c
2)

1
2 − c2

4 .

Proof. This corollary is an immediate consequence of formulas (192) and (189). �
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