
Iterative Reconstruction Algorithms for Polyenergetic
X-Ray Computerized Tomography

by

Nargol Rezvani

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2012 by Nargol Rezvani

Abstract

Iterative Reconstruction Algorithms for Polyenergetic X-Ray Computerized

Tomography

Nargol Rezvani

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2012

A reconstruction algorithm in computerized tomography is a procedure for reconstructing

the attenuation coefficient, a real-valued function associated with the object of interest,

from the measured projection data. Generally speaking, reconstruction algorithms in

CT fall into two categories: direct, e.g., filtered back-projection (FBP), or iterative. In

this thesis, we discuss a new fast matrix-free iterative reconstruction method based on a

polyenergetic model.

While most modern x-ray CT scanners rely on the well-known filtered back-projection

algorithm, the corresponding reconstructions can be corrupted by beam hardening ar-

tifacts. These artifacts arise from the unrealistic physical assumption of monoenergetic

x-ray beams. In this thesis, to compensate, we use an alternative model that accounts

for differential absorption of polyenergetic x-ray photons and discretize it directly. We do

not assume any prior knowledge about the physical properties of the scanned object. We

study and implement different solvers and nonlinear unconstrained optimization methods

such as a Newton-like method and an extension of the Levenberg-Marquardt-Fletcher al-

gorithm. We explain how we can use the structure of the Radon matrix and the properties

of FBP to make our method matrix-free and fast. Finally, we discuss how we regularize

our problem by applying different regularization methods, such as Tikhonov and regu-

larization in the 1-norm. We present numerical reconstructions based on the associated

nonlinear discrete formulation incorporating various iterative optimization methods.

ii

Dedication

To my parents, Taraneh and Mahmoud.

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my PhD supervisors

Dr. Ken Jackson and Dr. Dhavide Aruliah for their continuous support, patience, mo-

tivation, enthusiasm, and immense knowledge. Indubitably, this thesis would have not

been possible without them.

I also owe my most profound gratitude to Dr. Rob Corless, my MSc supervisor, who

has been a great inspiration to me. He challenged me beyond my expectations and made

me discover who I really am and where I stand.

It has been an honor to be their student. They all portrayed what the well-known

Persian poet, Sa’adi, said more than seven hundred years ago:

“All men are members of the same body

Created from one essence

Should destiny bring agony to one

Others, restless, will suffer disturbance

Thou who remainest indifferent to others’ miseries

Meritest not the human competence”1

Besides my supervisors, I would like to thank my external examiner, Dr. Adel Fari-

dani. His insightful comments and helpful suggestions brought a new spirit to this thesis.

I would also like to thank the rest of my thesis committee: Dr. Christina Christara,

Dr. Wayne Enright and Dr. Tom Fairgrieve for their encouragement, perceptive com-

ments, and hard questions.

My sincere thanks also go to Dr. Douglas Moseley, Dr. Jeff Siewerdsen, and Dr. David

Jaffray for offering me a Summer internship at the Princess Margaret Hospital. Their

help and guidance is very much appreciated.

1Translated from Farsi by Abdolmahmoud Rezvani

iv

I am truly thankful to my undergraduate professors, Dr. Hassan Haghighi, Dr. Fereshteh

Malek and Dr. Kourosh Norouzi, who changed my perspective toward mathematics.

I owe my sincere thankfulness to my high school teachers, Ms. Mahrokh Khoshnevis

and Ms. Elham Nejati, who taught me how to be a stronger woman and have faith in

myself.

My most genuine gratefulness and respect go to Ms. Afzali, my first grade teacher,

who taught me that in the process of learning, nothing can take the place of persistence.

Furthermore, I would like to thank the Department of Computer Science at the Uni-

versity of Toronto, the Department of Applied Mathematics at the University of Western

Ontario, and the Department of Mathematics at the K. N. Toosi University of Technol-

ogy. I would also like to thank MITACS (the Mathematics of Information Technology

and Complex Systems) Canadian research network and AAPM (the American Associa-

tion of Physicists in Medicine) for sponsoring my internship project. In addition, I thank

the Walter C. Sumner foundation and NSERC (the Natural Sciences and Engineering

Research Council of Canada) for partly sponsoring my PhD project.

I wish to thank my dear family and friends for their love and support. In particular,

I would like to thank (alphabetically ordered) Afsar Shirazi, Dr. Azar Shakoori, Behdad

Esfahbod, Farbod Nassiri, Dr. Houman Javidnia, Dr. Jingrui Zhang, Kataneh Karimian,

Mahsa Moallem, Meg Kwasnicki, Narges Nattaghi, Shohreh Armin, Dr. Solmaz Kolahi,

Sumaya Corless, Taban Karimian, Termeh Karimian and many more.

Lastly, I would like to thank my close family. My utmost gratitude goes to my

mother, Taraneh Karimian, who has always been my greatest inspiration in life. She has

showed me the true meaning of unconditional love. I will always be grateful to my father,

Dr. Abdolmahmoud Rezvani, for his strong faith in me and his tremendous support at

every stage of my life. He proved to me, by his actions, that following one’s passion,

even if one fails, brings happiness; but chasing wealth may not. I am thankful for the

presence of my little, yet bighearted, sister, Sogol, in my life. I would have not been

v

the person I am without her. I would also like to express my most sincere appreciation

to my grandparents, my ultimate sources of pure love and kindness, Molouk Ghaffari

(Aziz), Parvindokht Baghdadi (Papari), Masoumeh Mahmoudi and Dr. Iradj Karimian.

Finally, I am very grateful for having my loving and patient husband, Rubil, in my life.

I appreciate his understanding and faithful support during the final stages of this PhD

very much.

vi

List of Symbols

Symbol Description

µ Continuous attenuation coefficient

µ Discretized attenuation coefficient

R and R Radon transform and Radon matrix

R∗ and R∗ Adjoint of Radon transform and Adjoint of Radon matrix

µ̂ Fourier transform of µ

h̃(r, θ) 1-D Fourier transform, in the affine parameter, of function h(t, θ)

F Fourier transform matrix

Nt Number of affine parameter values

Nθ Number of projection angles

Ngrid Number of grid points (pixels or voxels)

Nε Number of energy levels

Nproj Number of projections, which is Nt ×Nθ

Pt,θ Projection data (sinogram)

P0 Blank scans (intensity without the presence of an object)

ε Beam energy

〈x,y〉 Inner product of vectors x and y

ĝ Filter in the frequency domain

Dĝ Filtering matrix based on the filter ĝ

J Interpolation matrix

w Quadrature weights

vii

Contents

1 Introduction 1

1.1 Main contributions . 5

2 Mathematical Background and Filtered Back-Projection 6

2.1 A physical model . 6

2.2 Mathematical background of x-ray CT 7

2.2.1 The Radon transform . 7

2.2.2 Fourier transform . 9

2.2.3 Central slice theorem . 10

2.3 Acquisition geometries . 11

2.3.1 Parallel-beam . 11

2.3.2 Fan-beam . 11

2.3.3 Cone-beam . 13

2.4 Direct reconstruction methods: Filtered back-projection 14

2.4.1 More about filtering . 16

2.4.2 More about back-projection . 18

2.4.3 A Reconstruction algorithm for parallel-beam machines 18

2.5 Matrix representation of filtered back-projection 21

2.5.1 Kronecker product . 23

2.5.2 Fourier transform matrix . 23

viii

2.5.3 Filtering matrix . 24

2.5.4 Inverse Fourier transform matrix 24

2.5.5 Back-projection – Interpolation 24

3 Iterative Reconstruction Algorithms 27

3.1 Introduction . 27

3.2 Algebraic reconstruction techniques (ART) 28

3.2.1 Mathematical formulation . 28

3.2.2 Pixel basis . 29

3.2.3 Reconstruction model . 30

3.2.4 Kaczmarz’s method . 32

3.3 Statistical image reconstruction techniques (SIRT) 33

3.3.1 Polyenergetic physical model . 33

3.3.2 Beam hardening . 34

3.3.3 Incorporating a polyenergetic acquisition model 36

4 Polyenergetic Nonlinear Iterative Method 38

4.1 More about the polyenergetic physical model 38

4.2 Discretization . 39

4.2.1 Discretizing the outer integral . 39

4.2.2 Discretizing the inner integral . 40

Solve for the Radon transform of the attenuation coefficient . . . 41

Solve for the attenuation coefficient 42

Discrete Radon transform . 43

4.3 Filtering . 44

4.4 Unconstrained optimization . 44

4.4.1 Objective function . 45

Jacobian/Gradient of the objective function 45

ix

4.5 Newton’s method . 46

4.6 Levenberg-Marquardt-Fletcher algorithm 47

4.6.1 LMF for the polyenergetic problem 49

4.6.2 Shortcomings of the LMF approach 50

4.7 An energy-dependent mathematical phantom 51

4.8 Numerical results . 52

5 Large Scale Polyenergetic Nonlinear Iterative Method 58

5.1 Modified LMF algorithm for the polyenergetic problem 59

5.2 The Radon matrix in the Jacobian matrix 59

5.3 Using back-projection in LMF . 60

5.3.1 Block diagonal matrix . 61

5.3.2 Back-projection and the adjoint of the Radon transform 62

5.4 Storage reduction and fast computation 63

5.4.1 Matrix-free computation . 64

5.5 Regularization and image restoration . 66

5.5.1 Tikhonov regularization . 67

5.5.2 Regularization in the 1-norm . 68

5.6 Numerical results . 69

5.6.1 Example 1 . 72

5.6.2 Example 2 . 74

5.6.3 Example 3 . 78

5.6.4 Example 4 . 81

6 Conclusions and future work 84

6.1 Summary and conclusions . 84

6.2 Future work . 87

6.2.1 Using real data . 87

x

6.2.2 Cone-beam geometry . 87

6.2.3 Comparison with other polyenergetic techniques 87

6.2.4 Reducing the running-time of our matrix-free polyenergetic recon-

struction method . 87

A OSCaR 89

A.1 A reconstruction algorithm for cone-beam machines 91

A.2 Assumptions and limitations . 92

A.3 Running OSCaR . 94

A.3.1 The GUI OSCaRMain . 94

A.3.2 The GUI OSCaRPreprocess . 94

Geometry/resolution parameters 95

Storage parameters . 96

Projection-dependent parameters 97

Orientation buttons . 98

Export to OSCaRReconstruct . 98

A.3.3 The GUI OSCaRReconstruct . 99

Reconstruction size . 100

Filter . 101

Execute and export . 102

A.3.4 The function OSCaR . 103

Syntax . 103

A.4 One quick example . 104

A.5 Standalone executable . 106

xi

List of Figures

1.1 Physical model . 2

1.2 Diagram of reconstruction algorithms in CT. 3

2.1 Parallel projection. 12

2.2 Equiangular fan-beam projection. 12

2.3 Equispaced fan-beam projection. 13

2.4 Equiangular and equispaced fan-beam projection. 13

2.5 Cone-beam projection. 14

2.6 Sinogram data and image of an object. 16

2.7 A parallel-beam scanner and the sample space. 19

3.1 Geometric construction of elements of the measurement matrix 30

3.2 Beam hardening phenomenon. 35

3.3 Beam hardening effect. 35

4.1 Typical x-ray spectrum with different maximum energies. 40

4.2 Radon algorithm in Matlab . 43

4.3 Relation between the attenuation coefficient and the energy values. . . . 52

4.4 Sinogram data of a 20× 20× 7 energy-dependent Shepp-Logan phantom. 54

4.5 Results with Cnoise = 0.1. 55

4.6 Results compared to FBP & phantom with Cnoise = 0.1. 55

4.7 Results with Cnoise = 0.5. 56

xii

4.8 Results compared to FBP & phantom with Cnoise = 0.5. 57

5.1 Sparsity structure of the Radon matrix & the Jacobian matrix. 61

5.2 The composite Trapezoidal nonuniform nodes. 70

5.3 Sinogram data of a 200×200×11 energy-dependent Shepp-Logan phantom. 71

5.4 Results for Example 1. 73

5.5 Results for Example 1 compared to FBP & phantom. 73

5.6 Ĝ(µ(k)) & λ(k) versus number of iteration in Example 1. 74

5.7 Profile of result, phantom & FBP result for Example 1. 74

5.8 Results for Example 2. 75

5.9 Results for Example 2 compared to FBP & phantom. 76

5.10 Ĝ(µ(k)) & λ(k) in Example 2. 76

5.11 Profile of result, FBP solution & phantom for Example 2. 77

5.12 Results for Example 3. 78

5.13 Results for Example 3 compared to FBP & phantom. 79

5.14 Ĝ(µ(k)) & λ(k) for Example 3. 79

5.15 Profile of result, FBP solution & phantom for Example 3. 80

5.16 Results for Example 4. 81

5.17 Result for Example 4 compared to FBP & phantom. 82

5.18 Ĝ(µ(k)) & λ(k) for Example 4. 82

5.19 Profiles of the results, FBP & phantom for Example 4. 83

A.1 Cone-beam projection. 92

A.2 OSCaRMain . 95

A.3 OSCaRPreprocess . 99

A.4 OSCaRReconstruct . 100

xiii

Chapter 1

Introduction

X-ray Computerized Tomography1 (CT) is a nondestructive technique for representing

interior features within solid objects from a series of x-ray measurements taken from

different angles around the object. CT has become an important tool in medical imaging.

It has had a considerable impact on the diagnosis of many different diseases. Besides

medicine, it also has industrial applications, such as nondestructive materials testing.

In tomographic imaging, an object is illuminated with a series of x-rays from multiple

orientations. Then the change in the intensity of x-rays along a series of linear paths is

measured. This change is characterized by Beer’s Law (or alternative physical models –

see Sections 2.1 and 3.3.1), which describes intensity change as a function of x-ray energy,

path length, and material attenuation coefficient, a real-valued function defined on R2

or R3 that measures how much the object can absorb or scatter x-rays of a given energy.

Then a specialized algorithm is used to reconstruct the image in question.

The elements of data acquisition in x-ray tomography are an x-ray source, a series

of detectors that measure x-ray intensity attenuation along multiple beams, and a ro-

tational geometry with respect to the object being imaged (see Figure 1.1). Different

configurations of these components can be used to create CT scanners (see Section 2.3).

1Literally speaking, tomography means slice imaging. The word tomography is derived from the
Greek words tomos meaning slice, and graphein meaning to write.

1

Chapter 1. Introduction 2

Figure 1.1: Physical model

The first CT scanner was constructed by Godfrey Newbold Hounsfield in 1972. In-

dependently and at about the same time, Allan McLeod Cormack designed a similar

process. Hounsfield and Cormack shared the 1979 Nobel Prize in Medicine. The first CT

x-ray machine was installed in Atkinson Morley’s Hospital in Wimbledon, England, and

the first patient brain-scan was made with it in 1972.

A CT reconstruction algorithm is a procedure for reconstructing the attenuation coef-

ficient from the measured projection data. Generally speaking reconstruction algorithms

in CT fall into two categories: direct, e.g., filtered back-projection (FBP), or iterative,

e.g., algebraic reconstruction techniques (ART) or statistical image reconstruction tech-

niques (SIRT).

Filtered back-projection is the most commonly used reconstruction algorithm in CT.

This method is based on the Central slice theorem. In Chapter 2, we cover the mathemat-

ical background of x-ray CT, introduce some basic notation and definitions and present

the formulation of FBP.

Using FBP, we develop a software package called OSCaR (Open Source Cone-beam

Reconstructor) for generating 3-D reconstructions from x-ray data acquired from cone-

beam scanning geometries, in Matlab. OSCaR is based on the well-known Feldkamp-

Davis-Kress (FDK) reconstruction algorithm for 3-D cone-beam CT [21]. In Appendix A,

we describe OSCaR.

Chapter 1. Introduction 3

Figure 1.2: Diagram of reconstruction algorithms in CT.

Recently, the limits of FBP have been challenged by the progress toward scanning

geometries, such as cone-beam and multi-slice helical CT. Therefore, there has been more

interest in iterative methods for CT image reconstruction such as ART and SIRT. Iter-

ative methods can have several advantages over direct methods. They can incorporate

prior knowledge, including system geometry, detector response and object constraints.

Iterative methods also permit modeling data noise. An assumption underlying FBP is

that x-ray sources are monoenergetic; in practice, there is a nonuniform distribution of

photons of different wavelengths that leads to a phenomenon physicists call beam hard-

ening [19, p. 68]. Some iterative methods, such as statistical methods can model polyen-

ergetic x-ray sources and thus account for beam hardening in the reconstruction [18, 37].

However, iterative techniques are widely perceived to require more computing time than

Chapter 1. Introduction 4

FFT-based FBP techniques [6, 18, 19, 28, 37]. We discuss different iterative methods in

Chapter 3.

In Chapter 4, we present a novel non-statistical iterative reconstruction method that

is based on a polyenergetic model. We apply quadrature rules, e.g., a Gaussian quadra-

ture rule or the composite Trapezoidal rule, and take advantage of some properties of

the Radon transform, FBP and ART methods to discretize the energy-dependent con-

tinuous model with respect to different energy levels and different projections. In this

model, we must account for the nonlinearity in the measurements which is caused by the

energy-dependent attenuation coefficient. To this end, we have studied different solvers

and nonlinear unconstrained optimization methods such as a Newton-like method and

an extension of the Levenberg-Marquardt-Fletcher algorithm. This polyenergetic recon-

struction method is one of the major contributions of this thesis.

In the first variant of our iterative reconstruction method, we need to store large

sparse, but not very sparse, matrices. Therefore, the method may either experience long

computation time, or even worse, run out of memory. However, if we use small data sets,

we get results with better image quality than the corresponding FBP solutions. Unfor-

tunately, clinical data sets are usually very large, and therefore, a naive implementation

of our reconstruction method will not be effective. This motivates the development of a

matrix-free fast algorithm for large scale problems.

In Chapter 5, we analyze the structure of the Radon matrix to exploit the structure

of the Jacobian matrix associated with our objective function. Then we apply the prop-

erties of the Radon transform and FBP to make our computations matrix-free and fast.

Moreover, this approach allows us to take advantage of existing, highly efficient imple-

mentations for FBP and the Radon transform. This development of a fast matrix-free

implementation for the polyenergetic model is another major contribution of this thesis.

Chapter 1. Introduction 5

1.1 Main contributions

The main contributions of this thesis (primarily described in Chapters 4 and 5) are as

follows.

• We introduce and discuss a new iterative polyenergetic reconstruction method that

is based on a polyenergetic model which accounts for beam hardening. To develop

this method, we use an extension of the Levenberg-Marquardt-Fletcher algorithm.

• Our polyenergetic model has two integrals. We apply quadrature rules, e.g., a

Gaussian quadrature or the composite Trapezoidal rule, to discretize the outer

integral with respect to different energy levels. At this step we use a typical x-ray

spectrum (see Figure 4.1). To discretize the inner integral with respect to different

projection angles and affine parameters, we take advantage of some properties of

the Radon transform and FBP. At this step we may also use the ART instead.

• We use the known structure of the Radon matrix to exploit the structure of the

Jacobian matrix of our objective function (see Figure 5.1). This helps us gain

insight into our problem.

• We take advantage of well-known and fast implementations of the Radon trans-

form and the FBP method to make our iterative polyenergetic method matrix-free

and fast. The matrix representation of FBP introduced in Section 2.5 helps us

understand this process better.

• We introduce several stabilizing operators and regularize the problem using Tikhonov

regularization and regularizing in the 1-norm.

• We discuss the development of a software package called OSCaR (Open Source Cone-

beam Reconstructor) for generating 3-D reconstructions from x-ray data acquired

from cone-beam scanning geometries, in Appendix A. This software is written

in Matlab and uses the well-known Feldkamp-Davis-Kress (FDK) algorithm [21].

Chapter 2

Mathematical Background and

Filtered Back-Projection

2.1 A physical model

X-ray slice data is generated using an x-ray source that rotates around the object; x-

ray sensors are positioned on the opposite side of the object from the x-ray source (see

Figure 1.1).

Objects of interest in x-ray imaging are associated with a real-valued function defined

on R2 (or R3), called the attenuation coefficient. This value measures how much the

object can absorb or scatter x-ray of a given energy. This function varies from point to

point within the object and is usually taken to vanish outside it. For example, bone has

a much higher attenuation coefficient than soft tissue.

Sometimes the attenuation coefficient is compared to the attenuation coefficient of

water and quoted in terms of a dimensionless quantity called the Hounsfield unit (HU).

The normalized attenuation coefficient, in Hounsfield units, is defined by

Htissue =
µtissue − µwater

µwater

× 1000. (2.1)

6

Chapter 2. Mathematical Background and Filtered Back-Projection 7

In a typical clinical situation the attenuation coefficients range between -1000 HU (air)

and 1100 HU (bone). [19]

Here we describe a very common model for the interaction of x-rays with matter in

CT. For this model, there are three basic assumptions [19]:

• Straight lines (no refraction/diffraction): x-ray beams travel along straight lines

and are not bent by the objects they pass through.

• Monoenergetic source: The waves constituting the x-ray beam are all of the same

energy (or, equivalently, the same wavelength).

• Beer’s Law: Each material considered has a characteristic linear attenuation coef-

ficient µ for x-rays of a given energy. The intensity, P , of the x-ray beam satisfies

Beer’s law

dP

ds
= −µP ⇒

∫
l

µ ds = − ln

(
P

P0

)
. (2.2)

Here s is the arc-length along the straight-line trajectory l of the x-ray beam and

P0 is the blank scan intensity.

2.2 Mathematical background of x-ray CT

In this section we briefly describe the mathematical background for x-ray CT, based

mostly on references [19] and [34]. We also explain how to estimate the attenuation

coefficient, which is the key component of image reconstruction.

2.2.1 The Radon transform

In medical imaging, the Radon transform of a function provides a mathematical model

for the measured attenuation. The Radon transform of function µ is the totality of line

integrals of µ along the lines in the plane. More specifically the Radon transform of

Chapter 2. Mathematical Background and Filtered Back-Projection 8

µ : R2 −→ R (in 3-D images, µ : R3 −→ R) is defined by

[Rµ(x)](t, θ) :=

∫
lt,θ

µ(x) ds, (2.3)

where

l(t,θ) = {x : 〈x, ω(θ)〉 = t} = {tω(θ) + sω̂(θ) : s ∈ R} . (2.4)

Here ω̂(θ) = (− sin θ, cos θ) is the unit vector perpendicular to the unit vector ω(θ) =

(cos θ, sin θ). This parametric representation of the line gives the following formula.

Rµ(t, θ) :=

∫
R

µ(tω(θ) + sω̂(θ)) ds. (2.5)

In terms of Cartesian coordinates in R2 and (t, θ)-coordinates for the set of oriented lines,

(2.5) can be re-expressed as

Rµ(t, θ) :=

∫
R

µ(t cos θ − s sin θ, t sin θ + s cos θ) ds. (2.6)

We say the function µ is in the natural domain of the Radon transform if it satisfies

|Rµ(t, θ)| :=

∣∣∣∣∣∣
∫
R

µ(t cos θ − s sin θ, t sin θ + s cos θ) ds

∣∣∣∣∣∣ <∞ for all (t, θ) ∈ R×[0, 2π] .

(2.7)

This is really two different conditions:

1. The function is sufficiently regular that restricting it to any line gives a locally

integrable function.

2. The function goes to zero rapidly enough for the improper integrals to converge.

The variable t is called the affine parameter; it is the oriented distance from the line

l(t,θ) to the origin.

Chapter 2. Mathematical Background and Filtered Back-Projection 9

2.2.2 Fourier transform

The Fourier transform of an L1-function1 µ, defined on R, is the function µ̂ defined on

R by the integral

µ̂(t) =

+∞∫
−∞

µ(x)e−ixt dx. (2.9)

The utility of the Fourier transform comes from the fact that µ can be reconstructed

from µ̂ using the Fourier Inversion Formula defined in (2.10) below. Suppose that µ is

an L1-function such that µ̂ is also in L1(R). Then

µ(x) =
1

2π

+∞∫
−∞

µ̂(t)eixt dt. (2.10)

The above formulae can be extended to Rn. Suppose that µ is an L1-function defined

on Rn. The Fourier transform µ̂ of µ is defined by

µ̂(t) =

∫
Rn

µ(x)e−i〈t,x〉 dx, (2.11)

where 〈·, ·〉 denotes the inner product in Rn. If µ̂ also belongs to L1(Rn), then

µ(x) =
1

(2π)n

∫
Rn

µ̂(t)ei〈x,t〉 dt. (2.12)

1Let µ be a function defined on Rn. We say that µ is absolutely integrable or an L1-function if

‖µ‖1 =

∫
Rn

|µ(x)| dx <∞ (2.8)

Chapter 2. Mathematical Background and Filtered Back-Projection 10

2.2.3 Central slice theorem

The Central slice theorem, also known as the Fourier slice theorem, states an important

relation between the Fourier transform and the Radon transform. This Theorem is

key to efficient tomographic imaging, relating the measured projection data to the two-

dimensional Fourier transform of the object cross section.

Theorem 2.2.1. Central slice theorem. Let µ be an absolutely integrable function in

the natural domain of the Radon transform. For any real number r and unit vector ω,

we have the identity
+∞∫
−∞

[Rµ(x)](t, θ)e−itr dt = µ̂(rω(θ)). (2.13)

The following example shows that, according to the Central slice theorem, the 2-D

Fourier transform, µ̂(rω(θ)), is the 1-D Fourier transform of Rµ(t, θ) with respect to t.

Example 2.2.1. Let ω(θ) = (1, 0) and ω̂(θ) = (0, 1). The Radon transform at (t, θ) is

given by

Rµ(t, θ) =

+∞∫
−∞

µ(tω(θ) + sω̂(θ)) ds

=

+∞∫
−∞

µ(t, s) ds.

The 1-D Fourier transform of Rµ(t, θ) with respect to t is

+∞∫
−∞

Rµ(t, θ)e−irt dt =

+∞∫
−∞

+∞∫
−∞

µ(t, s)e−irt ds dt.

Chapter 2. Mathematical Background and Filtered Back-Projection 11

On the other hand, the 2-D Fourier transform of µ is

µ̂(rω(θ)) =

+∞∫
−∞

+∞∫
−∞

µ(t, s)e−i〈rω,(t,s)〉 ds dt

=

+∞∫
−∞

+∞∫
−∞

µ(t, s)e−irt ds dt.

2.3 Acquisition geometries

Different geometries for acquisition of data are used in modern CT scanners. That

is, sampling the Radon transform of the attenuation coefficient and, consequently, the

algorithmic implementation of the filtered back-projection formula varies in different

machines with different designs, e.g., parallel-beam, fan-beam or cone-beam.

2.3.1 Parallel-beam

In a parallel-beam scanner, a source-detector combination must linearly scan over the

length of the projection, then rotate a certain angular interval, then scan linearly over the

length of the next projection, and so on. In these machines, the approximate samples of

Rµ are measured in a finite set of directions. The measurements made in a given direction

are therefore samples of Rµ at a set of equally spaced affine parameters. Figure 2.1 shows

the geometry of the parallel projection.

2.3.2 Fan-beam

A fan-beam machine has a point source on one side of the object and a bank of detectors,

which collects the measurements in one fan simultaneously, on the other side. The

source and the entire bank of detectors are rotated to generate the desired number of fan

projections. The source is pulsed at a discrete sequence of angles, and the measurements

of Rµ are collected for a finite family of lines passing through the source. There are two

Chapter 2. Mathematical Background and Filtered Back-Projection 12

Figure 2.1: Parallel projection.

different designs for fan-beam machines:

• Equiangular fan-beam CT In such machines, projections are sampled at equian-

gular intervals, i.e., the angle between rays is constant but the detector spacing is

uneven. In this case the detectors for the measurement of the line integrals are

arranged on a straight line (see Figure 2.2).

Figure 2.2: Equiangular fan-beam projection.

• Equispaced fan-beam CT In such machines, the measurements are made at

equispaced intervals. In this case the detectors are arranged with constant spacing

along a line but the angle between rays is not constant (see Figure 2.3).

Of course these two are not mutually exclusive. If the detectors are arranged on the arc

of a circle whose centre is at the source, rather than a straight line, then it is possible to

have both an equispaced and an equiangular detector (see Figure 2.4).

Chapter 2. Mathematical Background and Filtered Back-Projection 13

Figure 2.3: Equispaced fan-beam projection.

Figure 2.4: Equiangular and equispaced fan-beam projection.

2.3.3 Cone-beam

An efficient way to image a three-dimensional object is a generalization of the two-

dimensional fan-beam algorithms. Instead of illuminating a slice of the object with a

fan of x-rays, the entire object is illuminated with a point source and the x-ray flux

is measured using a planar detector (see Figure 2.5). This is usually called cone-beam

reconstruction as the x-rays are assumed to be emitted from the source in a three-

dimensional cone-shaped beam. The object is positioned between the x-ray source and

the planar detector. There are two distinct ways to gather projection data from different

angles during a scan:

1. The object is rotated about an axis and the source-detector pair is held fixed in

space; and

Chapter 2. Mathematical Background and Filtered Back-Projection 14

2. The object is held fixed in space while the source-detector pair is rotated about the

axis.

Figure 2.5: Cone-beam projection.

The second option is most commonly used in clinical C-arm CT scanners. Moreover,

although the axis in Figure 2.5 is vertical, most clinical scanners use a horizontal axis of

rotation (for patients lying down). The principal advantages of a cone-beam x-ray scanner

are in reducing data collection time during the scan as well as maximizing the use of x-ray

photons actually passing through the object, thereby reducing patient dose [34].

2.4 Direct reconstruction methods:

Filtered back-projection

The Central slice theorem and the inversion formula for the Fourier transform give an

inversion formula for the Radon transform, often called the filtered back-projection (FBP)

formula. FBP can be implemented with fast Fourier transforms.

Chapter 2. Mathematical Background and Filtered Back-Projection 15

To explain how this can be done, we first introduce notation for the 1-D Fourier

transform, in the affine parameter, of a function h(t, θ):

h̃(r, θ) =

+∞∫
−∞

h(t, θ)e−itr dt. (2.14)

Applying this to the Radon transform, we get from Theorem 2.2.1

R̃µ(r, θ) =

+∞∫
−∞

Rµ(t, θ)e−itr dt = µ̂(rω(θ)). (2.15)

Theorem 2.4.1. (Radon inversion formula): If µ = µ(x) is an absolutely integrable

function in the natural domain of the Radon transform and µ̂ is also absolutely integrable,

then

µ(x) =
1

[2π]2

π∫
0

+∞∫
−∞

eir〈x,ω(θ)〉R̃µ(r, θ)|r| dr dθ. (2.16)

The Radon inversion formula (2.16) describes the computation of a function µ from

its Radon transformRµ. It is a starting point for practical algorithms. The most obvious

flaw in this model is that, in practice, Rµ(t, θ) can only be measured for a finite set of

pairs (t, θ).

The filtered back-projection formula can be decomposed into two stages (correspond-

ing to the two nested integrals in (2.16)).

• The first stage is the application of a linear, shift-invariant2 filter to the Radon

transform (which corresponds to integration with respect to the variable r in (2.16)).

2A filter g is shift invariant (mapping functions defined on Rn to functions defined on Rn) if it satisfies

g(ft) = (gf)t, (2.17)

where for t ∈ Rn the shift of f by t is the function ft, defined by

ft(x) = f(x− t). (2.18)

Chapter 2. Mathematical Background and Filtered Back-Projection 16

• The second stage is an angular back-projection (BP) of the filtered Radon trans-

form (which corresponds to integration with respect to the variable θ in (2.16)). In

practice, this step is usually computed using an interpolation, e.g. nearest-neighbor

interpolation, linear interpolation, spline interpolation, or shape-preserving piece-

wise cubic interpolation.

Note that the projection data, which is also known as the sinogram data, gives us

Rµ(t, θ). The projection data is often represented in (t, θ)-space. The data is often called

a sinogram since each object point contributes to a projection value along a sinusoidal

curve in this space (see Figure 2.6). We first compute R̃µ(r, θ) by (2.15) and then we

compute the double integral in (2.16) in two steps, as described above.

Figure 2.6: Reconstruction algorithms convert raw data (sinogram) to an image of
the object. This image is taken from http://scien.stanford.edu/class/psych221/

projects/08/AdamWang/project_report.htm

2.4.1 More about filtering

In electrical engineering and signal/image processing, filters are used to transform signals

from one form to another, specifically to eliminate (filter out) various frequencies in a

signal [27]. Mathematically speaking, a filter is a map from one space of functions to

another. Filtering is usually needed to compensate for noise in data. A common approach

 http://scien.stanford.edu/class/psych221/projects/08/AdamWang/project_report.htm
 http://scien.stanford.edu/class/psych221/projects/08/AdamWang/project_report.htm

Chapter 2. Mathematical Background and Filtered Back-Projection 17

for extracting the desired signals from the raw data is to convolve3 the filter with the

Radon transform of the input data. In practice, functions representing the filters are

usually defined in the frequency (Fourier) domain. Thus, the filtering is performed as a

multiplication in the frequency domain instead of convolution in the spatial domain. For

more details, refer to [53].

Many common filters used in FBP consist of a ramp (or Ram-Lak) filer multiplied by

an apodizing window, WIN(r), i.e.,

ĝ(r) = WIN(r) |r|. (2.19)

The purpose of the apodizing window is to localize the support of the filter in the

frequency domain (thereby suppressing noise). Common apodizing windows include:

• Hamming: WIN(r) = (0.54 + 0.46 cos(πr
Bwin

))χ[−Bwin,Bwin](r),

• Hann: WIN(r) = (0.5 + 0.5 cos(πr
Bwin

))χ[−Bwin,Bwin](r),

where the characteristic function, χ[−Bwin,Bwin], is

χ[−Bwin,Bwin](r) =

 1 if r ∈ [−Bwin, Bwin],

0 otherwise.
(2.20)

For more details about windows and filters, refer to [19, 43, 58]. Also, see [60] for an

interesting discussion on the definition, properties, and construction of an idealised ramp

filter.

3If f is an L1-function defined on Rn and g is a bounded, locally integrable function, the convolution
product of f and g is the function on Rn defined by the integral

f ∗ g(x) =

∫
Rn

f(x− y)g(y) dy.

Chapter 2. Mathematical Background and Filtered Back-Projection 18

2.4.2 More about back-projection

In the back-projection stage, the projection value is back-projected, or smeared out over

the image points along a particular ray. That is, for each pixel or voxel in the recon-

struction domain, after applying the desired filter in the Radon transform, we compute

the angular integral of the Radon inversion formula.

In the exact formula (2.3) for the Radon transform, it is assumed thatRµ is known for

all lines; in practice,Rµ is approximately sampled for a finite number of lines. The Radon

inversion formula (2.16) leads to methods for reconstructing discrete approximations

of the attenuation coefficient from a realistic finite collection of measurements. The

computation step in FBP depends on the acquisition method, such as parallel-beam,

fan-beam, or cone-beam, discussed in Section 2.3. Here we describe an algorithm for

parallel-beam geometry, which is inspired by similar discussions in [19, 34].

2.4.3 A Reconstruction algorithm for parallel-beam machines

In parallel-beam scanners, the samples of Rµ are measured at a finite set of equally

spaced angles and equally spaced affine parameters (see Figure 2.7).

• Projection angle. The samples are measured at a finite set of directions associ-

ated with equally spaced angles,

{ω(k∆θ), k = 0, . . . ,M}, (2.21)

where

∆θ =
π

M + 1
, (2.22)

and, as before,

ω(k∆θ) = (cos(k∆θ), sin(k∆θ)). (2.23)

• Affine Parameter. Then for a given direction we sample at a finite set of equally

Chapter 2. Mathematical Background and Filtered Back-Projection 19

spaced affine parameters t ∈ [−L,L] . That is,

{t = jd : j = −N, . . . , N}, (2.24)

where d is the sample spacing in the affine parameter, and N = Ld−1.

Therefore, our data, which depend on the angles {k∆θ}Mk=0 and the affine parameters

{jd}Nj=−N , are

{Rµ(jd, k∆θ) : j = −N, . . . , N, k = 0, . . . ,M}. (2.25)

As the first step in the derivation of a reconstruction algorithm, we assume that we can

Figure 2.7: A parallel-beam scanner (on the left) and the sample space (on the right).

measure all the data from a finite set of equally spaced angles. That is, we assume our

samples are extended to

{Rµ(t, k∆θ) : t ∈ [−L,L] , k = 0, . . . ,M}. (2.26)

The samples (2.26) can be used to compute approximations to samples of the 2-D Fourier

transform of µ,

µ̂(rjω(k∆θ)) , where rj ∈ {0,±η,±2η, . . . ,±Nη},with η =
1

N

π

d
=
π

L
. (2.27)

Chapter 2. Mathematical Background and Filtered Back-Projection 20

To accomplish this, we use the Central slice theorem (Theorem 2.2.1):

µ̂(rω(k∆θ)) = R̃µ(r, k∆θ) =

∞∫
−∞

Rµ(t, k∆θ)e−irt dt. (2.28)

As mentioned earlier, the r integral in (2.16) is often interpreted as a linear, shift

invariant filter, i.e.,

gRµ(t, θ) =
1

2π

∞∫
−∞

R̃µ(r, θ)eirt |r| dr. (2.29)

Therefore, we can write the Radon inversion formula (2.16), also known as the filtered

back-projection formula, as

µ(x) =
1

2π

π∫
0

gRµ(〈x,ω(θ)〉, θ) dθ. (2.30)

As (2.16) suggests, by using the 2-D Fourier inversion formula and a Riemann sum

in the angular direction, we get an approximate value for µ:

µ(x) ≈ 1

4π(M + 1)

M∑
k=0

∞∫
−∞

µ̂(rω(k∆θ))eir〈(x),ω(k∆θ)〉|r| dr (2.31)

≈ 1

2(M + 1)

M∑
k=0

gRµ(〈x,ω(k∆θ)〉, k∆θ). (2.32)

In practice, the approximation to the transfer function g is chosen to be an approx-

imation to filtering with |r|. We denote the approximate transfer function by ĝ defined

by (2.19). To develop a reconstruction algorithm for the attenuation coefficient, we ap-

proximate the integrals in (2.16) using a quadrature formula, in both the spatial and the

frequency domain. Then, using the actual measurements (2.25), we can compute samples

of the approximate Fourier transform of µ. More specifically, when the data is collected

and filtered, we compute an approximation to the image by using a Riemann sum ap-

proximation to the back-projection and find an approximation to the 2-D attenuation

Chapter 2. Mathematical Background and Filtered Back-Projection 21

coefficient µ at x by

µapprox(x) =
d

2(M + 1)

M∑
k=0

N∑
j=−N

R̃µ(jd, k∆θ)ĝ(〈x,ω(k∆θ)〉 − jd). (2.33)

As explained, the projection data is sampled in polar coordinates, (t, θ). Therefore, after

the outer summation in (2.33) (in the continuous case, the outer integral), we use an

interpolation to deliver the computed filtered back-projection values to corresponding

pixels in the cartesian coordinates.

2.5 Matrix representation of filtered back-projection

In this section we show how to represent each step of the filtered back-projection algo-

rithm in matrix form. This representation helps establish a relation between the iterative

methods, in particular ART, and FBP. The iterative methods are discussed in Chapter 3.

It also helps us develop the matrix-free polyenergetic iterative reconstruction algorithm

in Chapter 5.

The matrix representation of FBP can have other applications as well. For example,

it can help us analyze and compare the complexity of the direct and iterative methods. It

may also help us find a way to use FBP in an iterative method, e.g., as a preconditioner,

to make the computation more efficient.

The input to the FBP algorithm is the Radon transform of the projection data, P,

which is also known as the sinogram, as noted before. That is, P = [Rµ(x, y)](t, θ). This

matrix P is of size Nt ×Nθ, where Nθ is the number of projection angles, and Nt is the

number of affine parameters, t. It is often convenient to reshape the matrix P into a 1-D

vector b in column-major order of size Nproj = Nt ×Nθ and use b as the input to FBP.

One of the approaches for reconstructing an object is to run the projections back

through the image. That is, we filter the projection data (either in the spatial domain or

in the frequency domain), and then smear the current filtered projection over the entire

Chapter 2. Mathematical Background and Filtered Back-Projection 22

image. Intuitively, this corresponds to an interpolation process from the available set of

projections. Different interpolation methods, such as nearest neighbor, linear, cubic, or

spline, can be applied. We give an overview of the algorithm. Each step is described in

detail in the next sections.

• The fast Fourier transform of b is calculated:

Fb. (2.34)

This step computes an approximation to R̃µ (see Equation (2.15)). Note that, we

filter the projection data in the frequency domain.

• To filter in the frequency domain, we use the diagonal matrix Dĝ:

DĝFb. (2.35)

This step corresponds to filtering R̃µ by the radial (i.e., inner) integral in (2.16).

• After filtering in the frequency domain, we use the inverse FFT to transform the

filtered projections back to the spatial domain:

F(−1)DĝFb. (2.36)

• After computing the filtered sinogram, we perform the back-projection (outer sum-

mation in (2.33)) using matrix E:

EF(−1)DĝFb. (2.37)

• For a given projection angle, find the interpolation matrix, J, such as Nearest

Neighbor, to assign the filtered back-projection values to the corresponding pixels.

Chapter 2. Mathematical Background and Filtered Back-Projection 23

That is, the image, µ can be reconstructed by using a series of matrix-vector

products:

µ ≈ JEF(−1)DĝFb. (2.38)

In the next subsections, we first introduce the Kronecker product in Section 2.5.1.

Then we describe the steps outlined above in more detail.

2.5.1 Kronecker product

In this subsection, we introduce the Kronecker product to provide additional details for

the operations described in Section 2.5. The Kronecker product is an operation on two

matrices of arbitrary size resulting in a block matrix. If matrix A is of size M ×N and

matrix B is of size P×Q, the Kronecker product of A and B, A⊗B, is of size MP×NQ,

and is defined by

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 . (2.39)

2.5.2 Fourier transform matrix

To filter the projection data in the frequency domain, rather than the spatial domain,

we use FFT to transform the projections to the frequency domain. After filtering (see

Section 2.4.1), we transform the filtered projection-back to the spatial domain by using

the inverse FFT operator explained in Section 2.5.4.

Define FNt = [Fjk]

Fjk = exp(−2π(j − 1)(k − 1)i/Nt), (2.40)

Chapter 2. Mathematical Background and Filtered Back-Projection 24

where j, k = 1, . . . , Nt. Then the matrix F in (2.38) is

F = INθ ⊗ FNt , (2.41)

which is a block matrix of size NtNθ ×NtNθ having Nθ ×Nθ blocks each of size Nt×Nt.

2.5.3 Filtering matrix

After applying the Fourier transform to the projection data, we filter the data in the

frequency domain. The filtering matrix Dĝ is the same size as F.

2.5.4 Inverse Fourier transform matrix

After filtering, we transform the filtered data back to the spatial domain by applying the

inverse Fourier transform. Define F
(−1)
Nt

=
[
F

(−1)
jk

]
[
F

(−1)
jk

]
=

1

Nt

exp(2π(j − 1)(k − 1)i/Nt), (2.42)

where j, k = 1, . . . , Nt. Then let

F(−1) = INθ ⊗ F
(−1)
Nt

. (2.43)

2.5.5 Back-projection – Interpolation

So far we have the values of the filtered sinogram data, gRµ(tl, θk). In the next step,

we perform the back-projection by multiplying these values by the matrix E, which is

equivalent to the outer summation in (2.33). Then we use an interpolation to assign the

filtered back-projection values to the corresponding pixels (xn, ym), where n = 1, . . . , Nx,

m = 1, . . . , Ny. Note that E has the same size as F and Dĝ.

Chapter 2. Mathematical Background and Filtered Back-Projection 25

We use Nearest Neighbor interpolation to illustrate the interpolation process. Given

each pixel (xn, ym), where n = 1, . . . , Nx, m = 1, . . . , Ny, Ngrid = Nx × Ny and each

projection angle θk, k = 1 . . . Nθ, we set

t̄knm = xn cos θk + ym sin θk. (2.44)

Using these t̄knm values, we implement Nearest Neighbour interpolation as a matrix-

vector multiply, as indicated in (2.38), by forming the following interpolation matrix,

Jθk , of size (NxNy)×Nt, for each projection angle θk.

Jθk =



χ[t1/2,t3/2)(t̄k11) χ[t3/2,t5/2)(t̄k11) . . . χ[tNt−1/2,tNt+1/2)(t̄k11)

χ[t1/2,t3/2)(t̄k21) χ[t3/2,t5/2)(t̄k21) . . . χ[tNt−1/2,tNt+1/2)(t̄k21)

...
...

...
...

χ[t1/2,t3/2)(t̄kNx1) χ[t3/2,t5/2)(t̄kNx1) . . . χ[tNt−1/2,tNt+1/2)(t̄kNx1)

χ[t1/2,t3/2)(t̄k12) χ[t3/2,t5/2)(t̄k12) . . . χ[tNt−1/2,tNt+1/2)(t̄k12)

...
...

...
...

χ[t1/2,t3/2)(t̄kNx2) χ[t3/2,t5/2)(t̄kNx2) . . . χ[tNt−1/2,tNt+1/2)(t̄kNx2)

...
.

...

χ[t1/2,t3/2)(t̄k1Ny) χ[t3/2,t5/2)(t̄k1Ny) . . . χ[tNt−1/2,tNt+1/2)(t̄k1Ny)

...
...

...
...

χ[t1/2,t3/2)(t̄kNxNy) χ[t3/2,t5/2)(t̄kNxNy) . . . χ[tNt−1/2,tNt+1/2](t̄kNxNy)


(NxNy)×Nt

(2.45)

where χ is the characteristic function defined in (2.20), t1/2 = −∞, and tNt+1/2 = ∞.

We have Nθ matrix blocks and therefore the final interpolation matrix is

J =

[
Jθ1 Jθ2 . . . JθNθ

]
. (2.46)

Chapter 2. Mathematical Background and Filtered Back-Projection 26

We can also use other interpolation schemes, such as linear interpolation, spline interpo-

lation or the Piecewise Cubic Hermite Interpolating Polynomial (CHIP) method. We use

the Matlab implementation of the CHIP method (called pchip) in Section 5.6. CHIP

is a third-degree spline method with each polynomial of the spline in Hermite form. For

more information about this method refer to [24] and [33].

Chapter 3

Iterative Reconstruction Algorithms

3.1 Introduction

Reconstruction algorithms in CT fall into two categories: direct (e.g., filtered back-

projection (FBP)) or iterative (e.g., algebraic reconstruction techniques (ART) and sta-

tistical image reconstruction techniques (SIRT)). FBP, the most commonly used recon-

struction algorithm in CT, is based on the Central slice theorem as explained in Chapter 2.

In recent years, the limits of FBP have been challenged by the progress toward scanning

geometries, such as cone-beam and multi-slice helical CT. Therefore, there has been more

interest in iterative methods for CT image reconstruction.

Iterative methods can have several advantages over direct methods. These meth-

ods can incorporate some prior knowledge, including system geometry, detector re-

sponse, object constraints, and they also permit modeling data noise. Also, an as-

sumption underlying FBP is that x-ray sources are monoenergetic; in practice, there

is a nonuniform distribution of photons of different wavelengths (hence, different en-

ergies) that leads to a phenomenon physicists call beam hardening. Different meth-

ods to compensate for the effects of beam hardening have been proposed, such as pre-

filtering [9, 40]; post-reconstruction [32, 62]; and incorporating a polyenergetic acquisition

27

Chapter 3. Iterative Reconstruction Algorithms 28

model [17, 18, 37, 61]. Some iterative methods, such as statistical image reconstruction

techniques (SIRT), can model polyenergetic x-ray sources and thus account for beam

hardening in the reconstruction. They use a statistical model, such as a likelihood-based

approach, to estimate the attenuation coefficient.

On the other hand, the main disadvantage of these iterative reconstruction methods

is their high computation time [6, 17, 18, 19, 28, 37]. In this chapter, we review several

iterative methods.

3.2 Algebraic reconstruction techniques (ART)

The algebraic reconstruction technique (ART) is a completely different approach for im-

age reconstruction from those described in Section 2.4. This method was first proposed

in 1970 [25]. As for FBP, we assume that the cross-section of the object to be imaged

consists of an array of unknowns. Therefore, the reconstruction problem can be formu-

lated as a system of linear equations and then an iterative methods is applied to find

the unknown attenuation coefficient. Conceptually this method is simpler than filtered

back-projection (FBP). Also, FBP is less adaptable than ART to missing data and par-

tial occlusion effects. On the other hand, for comparable results in medical applications,

algebraic techniques are computationally more expensive (in terms of both storage and

computation time).

In the following sections, we briefly describe the mathematical formulation of ART

and its properties. The presentation adopted in this section is drawn largely from [19].

3.2.1 Mathematical formulation

We consider the problem of reconstructing a 2-D attenuation coefficient µ = µ(x, y). The

first step in an algebraic reconstruction technique is to choose a finite collection of basis

Chapter 3. Iterative Reconstruction Algorithms 29

functions

{B1(u, v), . . . ,BJ(u, v)}. (3.1)

It is assumed that the attenuation coefficient can be approximated by functions in the

linear span of the basis functions. Now considering a two-dimensional slice of attenuation

coefficient, µ, our goal is to find the coefficients {mj} that minimize the difference

∥∥∥∥∥µ−
J∑
j=1

mjBj

∥∥∥∥∥ (3.2)

in some suitable function norm to be chosen. We typically use localized basis functions,

each of which has a bounded support in a small set. The pixel basis, described below, is

an example of such a basis.

3.2.2 Pixel basis

Suppose that the domain of µ is the square [−1, 1]× [−1, 1] and this square is uniformly

divided into a K ×K grid . We label the subsquares sequentially from left to right and

then bottom to top, as illustrated in Figure 3.1. The elements of the K ×K pixel basis

are defined by

BKj (u, v) =

 1 if (u, v) ∈ jth-square,

0 otherwise.
(3.3)

Now if mj is the average value of µ in the jth-square, then an approximation of µ in

terms of the pixel basis is

µ̄K =
J∑
j=1

mjBKj , (3.4)

where J = K2. If µ is continuous on [−1, 1]2 with bounded support, the sequence {µ̄K}

converges uniformly to µ as K → ∞, i.e., the image defined by µ̄K converges to the

image represented by the function µ as K →∞.

Chapter 3. Iterative Reconstruction Algorithms 30

Figure 3.1: Geometric construction (using one-dimensional rays) of elements of the mea-
surement matrix in the pixel basis, where rij is the length of the intersection of the ith
ray with the jth pixel.

The Radon transform is linear and therefore

Rµ̄K =
J∑
j=1

mjRBKj . (3.5)

It is easy to compute Rµ̄K , since it is easy to compute each RBKj on the right side of

(3.5). This is an advantage since the measurements are modeled as samples of Rµ.

3.2.3 Reconstruction model

A measurement matrix models the result of applying the measurement process to the

basis functions. Assume that {Bj} is a localized basis, but not necessarily the pixel basis.

The samples are labeled sequentially by i ∈ {1, . . . , I}, with Rµ sampled at lines lti,ωi ,

where

(ti,ωi) ∈ {(t1,ω1), . . . , (tI ,ωI) , i = 1, . . . , I}. (3.6)

One way to define the measurement matrix is as the line integrals

rij = RBj(ti,ωi), i = 1, . . . , I, j = 1 . . . , J. (3.7)

Chapter 3. Iterative Reconstruction Algorithms 31

Then the entries of the vector of measurements are

bi = Rµ(ti,ωi), i = 1, . . . , I. (3.8)

The reconstruction problem can now be formulated as a system of I linear equations in

J unknowns:
J∑
j=1

rijmj = bi, i = 1 . . . , I, (3.9)

or equivalently, in matrix form, as

rm = b. (3.10)

For a geometric interpretation of the rijs, see Figure 3.1 and refer to [19].

Following the survey [10] of iterative algorithms, the variables in these equations are

interpreted as follows: the unknown entries of the vector m often represent intensity

levels of beam attenuation in transmission tomography, or of radionuclide concentration

in emission tomography. The entries of the vector of measurements b are typically counts

of detected photons. The vector b consists of exactly the same sinogram data that is used

in FBP. The measurement matrix describes a relationship between the various pixels and

the various detectors. That is, it describes the scanning process whereby the information

about the unknown function is translated into measured data.

The size of these systems of equations is usually large making ART methods com-

putationally expensive. To give an indication of the extent of the difficulty, we quote a

passage from [19, p. 495]:

“If the square is divided into J = 128 × 128 ' 16, 000 subsquares, then,

using the pixel basis, there are 16,000 unknowns. A reasonable number of

measurements is 150 samples of the Radon transform at each of 128 equally

spaced angles, so that I ' 19, 000. That gives a 19, 000 × 16, 000 system of

equations. Even today it is not practical to solve a system of this size.”

Chapter 3. Iterative Reconstruction Algorithms 32

A practical ART method has to maintain a balance between the computational load

of solving (3.10) and the inconsistencies that result from a crude grid. To solve (3.10)

effectively, we need to use relatively sophisticated techniques from numerical linear alge-

bra.

3.2.4 Kaczmarz’s method

The principle method used in ART is derived from Kaczmarz’s Method, often also called

the method of projections. In this method, like other iterative methods, instead of

solving (3.10) directly, we use an algorithm that defines a sequence m(k) of vectors that

get closer and closer to a solution (or approximate solution) with respect to a norm.

We start with an initial guess m(0). Then subsequent iterates are computed by pro-

jecting orthogonally onto the hyperplanes defined by (3.9). To be more specific, the new

iterates are computed by

m(k+1) = m(k) +
bi − 〈ri,m(k)〉
〈ri, ri〉

ri, (3.11)

where ri is a vector containing the ith row of the matrix r. Note that 〈ri,m(k+1)〉 = bi,

i.e., m(k+1) satisfies the ith row.

Typically, the iteration is stopped when ||rm(k) − b||2 ≤ TOL for some user-defined

tolerance, TOL. However, in medical applications, only a few complete iterations are

normally used. In [19, 42], it is claimed that the quality of the reconstructed image often

improves for a few iterates but then begins to deteriorate.

We usually have noisy data. To reduce the effect of the noise and to accelerate the

process, some kind of smoothing, also known as relaxation, is frequently incorporated

into the ART algorithm, extending it to

m(k+1) = m(k) + λ(k) bi − 〈ri,m(k)〉
〈ri, ri〉

ri, (3.12)

Chapter 3. Iterative Reconstruction Algorithms 33

where λ(k) is the relaxation parameter at the kth iteration. In [30], it is shown that

if we carefully adjust the order in which the collected data are accessed during the

reconstruction procedure, and choose the relaxation parameters judiciously, ART can

produce high-quality reconstructions efficiently. Several books and papers, such as [10],

[19] and [34], have discussed relaxation parameters. For a detailed description of different

variants of Kaczmarz’s iteration, refer to [2, 3, 29, 31].

3.3 Statistical image reconstruction techniques (SIRT)

Statistical image reconstruction techniques (SIRT) are based on modeling assumptions

that incorporate the stochastic nature of physical measurements. As with other CT re-

construction algorithms, the basic idea in SIRT is to find the distribution of the energy-

dependent attenuation coefficient µ given the measurements b. In FBP, usually mo-

noenergetic x-ray beams are assumed, and therefore the issue of beam hardening (see

Section 3.3.2) is not considered. Statistical methods allow us to assume polyenergetic

sources, and thereby reduce the negative affects of beam hardening artifacts.

In statistical methods, a physical, statistical acquisition model is assumed first. Then

a statistical model, such as a likelihood-based approach, is used to estimate the atten-

uation coefficient. In practice, the data is often noisy and, consequently, the likelihood

estimates give noisy reconstructions. Therefore, in some algorithms the next step would

be regularization. At the end, the estimation found is optimized, by applying an iterative

method.

3.3.1 Polyenergetic physical model

In Section 2.1, we describe a physical model based on a monoenergetic source. However,

in reality x-rays are polyenergetic. In this section, we describe a physical model, used

in [13, 17, 18, 37, 54], that accounts for a polyenergetic x-ray source spectrum. Therefore,

Chapter 3. Iterative Reconstruction Algorithms 34

the linear attenuation coefficient depends on both the spatial coordinates x (in 2-D,

x = (x, y)) and the beam energy ε. If we use the same variables as in Section 2.1, then,

for a ray lt,θ, the projection measurement Pt,θ is given by

Pt,θ =

εmax∫
εmin

P0(ε) exp

−∫
lt,θ

µ(x, ε) ds

 dε. (3.13)

Clearly, if we assume a monoenergetic source, this equation reduces to (2.2). Different

discretizations may be applied to approximate the integrals in (3.13).

3.3.2 Beam hardening

In practice, x-ray beams produced in CT scanners are polyenergetic with a relatively

wide energy spectrum. Moreover the attenuation coefficients are energy-dependent. Low

energy x-rays, which are more easily attenuated, are called soft x-rays. On the other

hand, high energy x-rays, which are more penetrating, are referred to as hard. The beam

hardening phenomenon is the process of increasing the average energy level of an x-ray

beam, or “hardening” of the x-ray beam, as it passes through the scanned object (see

Figure 3.2). This happens because, as a polyenergetic beam passes through an object, it

loses the lower-energy parts of its spectrum more rapidly than the higher-energy parts

of the spectrum,, since the lower-energy parts are more easily attenuated.

The degree to which a given x-ray beam is hardened in passing through matter de-

pends on both the initial x-ray spectrum and the composition of the material or tissue

traversed. However, for any fixed initial x-ray spectrum and tissue type, the process

of beam hardening represents a monotonic increase in beam hardness as a function of

distance. In other words, the attenuation coefficient depends on the thickness of mate-

rial traversed. This effect causes “beam hardening artifacts” in CT images. Figure 3.3

shows the effect of beam hardening on images. Notice in particular the false line integrals

Chapter 3. Iterative Reconstruction Algorithms 35

Figure 3.2: This graph shows that the average energy level of an x-ray beam increases
when the low-energy photons are filtered out. This phenomenon is known as beam
hardening. This picture is taken from http://aladdin.utef.cvut.cz/ofat/Methods/

BeamHardening/BeamHardening.html

between the inner ellipses.

Figure 3.3: This image contains beam hardening artifacts. The false line integrals be-
tween the inner ellipses are clear.

Generally, beam hardening leads to a reduction in the reconstructed attenuation

coefficient [5]. The computed values in soft tissues are depressed nonuniformly, and the

hard tissues, such as bones, generate dark streaks. Also, bone areas can spill over into

http://aladdin.utef.cvut.cz/ofat/Methods/BeamHardening/BeamHardening.html
http://aladdin.utef.cvut.cz/ofat/Methods/BeamHardening/BeamHardening.html

Chapter 3. Iterative Reconstruction Algorithms 36

soft tissue, leading to a perceived increase in the attenuation coefficient [17, 18]. Different

techniques have been proposed to reduce the incidence of beam hardening artifacts in

x-ray CT reconstructions.

• Pre-filtering A physical device is used to ensure that the x-ray beams used are

closer to being truly monoenergetic [9, 40], making the assumption of monoenergetic

x-ray beams more reasonable.

• Post-reconstruction This is a standard post-processing method proposed by

Joseph and Spital in 1978 [32]. This method relies on assumptions about the

material characteristics to provide corrections to the measured sinogram data. The

reconstruction is done in two stages: an approximate material distribution is as-

sumed at first, and the corresponding beam hardening artifacts are then reduced.

• Incorporating a polyenergetic acquisition model Statistical image recon-

struction techniques (SIRT) for x-ray CT can be developed based on physical mod-

els that account for polyenergetic sources. In this case, since the reconstruction

algorithm is built upon a polyenergetic acquisition model, the beam hardening

phenomenon is taken into account.

3.3.3 Incorporating a polyenergetic acquisition model

The derivation of FBP (as well as many other reconstruction algorithms for x-ray CT)

is strongly dependent on the assumption that the radioactive source used produces mo-

noenergetic x-ray beams that travel in straight lines. Consequently, in such algorithms,

beam hardening is neglected. On the other hand, in image reconstruction methods

that are based on a polyenergetic physical model (3.13), such as methods discussed

in [13, 17, 18, 37, 54], beam hardening is taken into account.

The majority of the statistical image reconstruction algorithms are iterative and

likelihood-based [16, 57]. The basic idea of most of these methods is to find the distribu-

Chapter 3. Iterative Reconstruction Algorithms 37

tion of µ by maximizing a likelihood of some objective function based on the polyenergetic

physical model (3.13). These techniques usually make some prior assumptions about the

physical properties of the scanned object and therefore, simplify the problem. For ex-

ample, in [17, 18], it is assumed that the scanned object consists of a given number of

nonoverlapping materials, such as soft tissue and bone. To simplify the problem more,

it is also assumed that µ is the product of its unknown density and a known energy-

dependent mass attenuation coefficient. Then, a penalized-likelihood function for the

polyenergetic model (3.13) is formulated. Finally, an iterative method using some surro-

gate functions is used for estimating the unknown densities in each voxel [20, 47, 48].

In Chapters 4 and 5, we introduce and discuss a new iterative polyenergetic recon-

struction method that is based on the same polyenergetic model (3.13). However, one

of the advantages of our new method is that we do not assume any prior knowledge to

simplify the problem. We discretize (3.13) directly and find the attenuation coefficient

by applying different optimization techniques.

Chapter 4

Polyenergetic Nonlinear Iterative

Method

We discuss the development of a non-statistical iterative reconstruction method that is

based on the polyenergetic model described in Section 3.3.1. We discretize the polyener-

getic model (3.13) directly with respect to different energy levels and different projections.

To this end, we have studied different solvers and nonlinear unconstrained optimization

methods, such as a Newton-like method and an extension of the Levenberg-Marquardt-

Fletcher algorithm. We solve the reconstruction problem by incorporating such iterative

optimization frameworks and present numerical results.

4.1 More about the polyenergetic physical model

In Section 2.1, we reviewed a physical model based on a monoenergetic source. In reality,

x-rays are polyenergetic and hence, a polyenergetic model can lead to results with better

image quality. In Section 3.3.1, we briefly discussed such models, which, to date, have

mostly been used in statistical image reconstruction techniques. Here, we continue the

discussion of a physical model, used in [13, 17, 18, 37, 54], that accounts for a polyenergetic

x-ray source spectrum. We use this model in the following sections of this chapter and

38

Chapter 4. Polyenergetic Nonlinear Iterative Method 39

Chapter 5.

Assume that, for any line lt,θ, we have the projection measurement Pt,θ. If µ is the

linear attenuation coefficient which depends both on the spatial coordinates, x (in 2-D

x = (x, y)) and the beam energy, ε, then, as noted in Section 3.3.1, the polyenergetic

model can be written as

Pt,θ =

εmax∫
εmin

P0(ε) exp

−∫
lt,θ

µ(x, ε) ds

 dε. (4.1)

In this polyenergetic model, the measurements Pt,θ are nonlinearly dependent on

the energy-dependent attenuation coefficient. Note that, if we assume a monoenergetic

source, then µ(x, ε) = µ(x) (since we have one energy level). Hence, (4.1) can be trans-

formed to (2.2). Different discretization methods can be applied to the two integrals

in (4.1). This is discussed in more detail in Section 4.2.

4.2 Discretization

4.2.1 Discretizing the outer integral

We discretize the outer integral with respect to ε, representing energy levels, by applying

a quadrature rule, such as a Gaussian quadrature rule or the composite Trapezoidal rule

on a nonuniform mesh. We use several points on the x-ray spectrum curve in Figure 4.1

as our quadrature nodes. The x-ray spectrum is photon count versus energy value.

Standard data for these curves can be found at the National Institute of Standards and

Technology (NIST) x-ray mass-attenuation database. In Figure 4.1, we show a typical

x-ray spectrum with different maximum energies.

For our problem, we use Nε quadrature nodes and weights, representing Nε different

energy levels and use them to discretize the outer integral in (4.1) with respect to ε. That

Chapter 4. Polyenergetic Nonlinear Iterative Method 40

Figure 4.1: Typical x-ray spectrum with different maximum energies.

is, we assume that the projection measurement Pt,θ satisfies the discretized equation

Pt,θ =
Nε∑
h=1

wh ·P0(εh) exp

−∫
lt,θ

µ(x, εh)ds

 , (4.2)

rather than the corresponding continuous equation (4.1), where in (4.2) {wh}Nεh=1 is the set

of quadrature weights and {εh}Nεh=1 is the set of quadrature nodes in the range [εmin, εmax].

For smooth curves, such as the low energy curves in Figure 4.1, we use a Gaussian

quadrature rule. However, for non-smooth curves with high peaks, we use the composite

Trapezoidal rule on a nonuniform mesh. We note that the discretized version of (4.2) is

also used to construct our mathematical phantom sinogram data, as explained in more

detail in Section 4.7.

4.2.2 Discretizing the inner integral

We consider two different approaches for discretizing the inner integral in (4.1). In the

first approach, we solve for the Radon transform of the attenuation coefficient and then

use any standard CT reconstruction method, such as FBP, to solve for the attenuation

coefficient. In the second approach, we solve for the attenuation coefficient directly.

Chapter 4. Polyenergetic Nonlinear Iterative Method 41

Solve for the Radon transform of the attenuation coefficient

Suppose that we have measurement data Ptm,θn , m = 1, . . . , Nt and n = 1, . . . , Nθ, for

appropriately chosen discrete values tm, θn. Our goal is to solve the discretized version

of (4.2)

Ptm,θn =
Nε∑
h=1

wh ·P0(εh) exp

− ∫
ltm,θn

µ(x, εh)ds

 (4.3)

for an approximation to the attenuation coefficient µ(x, εh). In the first approach, we

replace the Radon transform
∫

ltm,θn

µ(x, εh)ds in (4.3) by the real variable αtm,θn,h. Then

we solve the system of underdetermined equations

Ptm,θn =
Nε∑
h=1

wh ·P0(εh) exp (−αtm,θn,h) (4.4)

for the variables αtm,θn,h. Next, for each h, h = 1, . . . , Nε, we fix h and solve the standard

CT reconstruction ∫
ltm,θn

µ(x, εh)ds = αtm,θn,h, (4.5)

for an approximation to the attenuation coefficient µ(x, εh).

The advantage of this approach is that we can easily use highly efficient codes, such

as FBP, to solve the system (4.5). However, the system (4.4) that we must solve for the

αtm,θn,h consists of Nproj = Nt ×Nθ equations and NprojNε unknowns. So the number of

unknowns in the system (4.4) is Nε times larger than the number of equations. Hence,

the system is extremely underdetermined even if Nε is of moderate size. As a result,

we were not able to get this approach to work well. Therefore, we do not use it for our

computations reported later in the thesis. However, we mention it here because it does

have some appealing features and it may prove useful in the future.

Chapter 4. Polyenergetic Nonlinear Iterative Method 42

Solve for the attenuation coefficient

Another option for discretizing the inner integral in (4.2) is to discretize the Radon

transform and solve for the attenuation coefficient directly. To do this we can either use

the ART projection matrix (see Section 3.2) or use the Radon transform to compute

the line integral [39]. In the ART approach, computing the projection matrix can be

very expensive, in terms of both computing time and the memory required to store it.

Hence, we choose to use the Radon transform since there are several efficient algorithms

to compute it (see Section 4.2.2) and we do not need to store the associated matrix. Let

R represent the Nproj ×Ngrid Radon matrix, where Nproj = NtNθ is the number of affine

parameters multiplied by the number of projection angles. Also note that, Ngrid is the

number of pixels (or voxels in 3-D cases) in the reconstructed image. Let RT
i be the i-th

row of R, for i = 1, . . . , Nproj. Thus, RT
i is a Ngrid-vector. Therefore, the Radon matrix

can be written as

R =



RT
1

RT
2

...

RT
Nproj


= [R1,R2, . . . ,RNproj

]T . (4.6)

Now note that the Radon matrix R approximates the Radon transform R in the sense

that

[Rµ]m,n ≈ [Rµ] (tm, θn). (4.7)

The µ on the right side of (4.7) denotes the continuous attenuation coefficient; the µ on

the left side represents a discrete approximation of µ. With the discretizations in (4.2)

and (4.6), the original equations (4.1) can be approximated by

Pi =
Nε∑
h=1

whP0(εh) exp(−RT
i µh), (4.8)

Chapter 4. Polyenergetic Nonlinear Iterative Method 43

where i = 1, . . . , Nproj, Nproj = Nt × Nθ and µh is an approximation to the energy

dependent attenuation coefficient µ(x, εh).

Discrete Radon transform

In our implementations, we use the Matlab function radon to approximate the Radon

transform [39]. In Matlab, the Radon transform of an image is the sum of the Radon

transforms of each individual pixel. The algorithm first divides pixels in the image

into four subpixels and projects each subpixel separately, as shown in Figure 4.2. Each

subpixel’s contribution is proportionally split into the two nearest bins, according to the

distance between the projected location and the bin centers. If the subpixel projection

hits the center point of a bin, the bin on the axes gets the full value of the subpixel, or

one-fourth the value of the pixel. If the subpixel projection hits the border between two

bins, the subpixel value is split evenly between the bins. There are other methods for

discretizing the Radon transform, but we will not discuss those methods here. In the next

Figure 4.2: The Radon algorithm first divides pixels in the image into four subpixels and
projects each subpixel separately. This picture is taken from the MathWorks website
http://www.mathworks.com/help/toolbox/images/ref/radon.html

http://www.mathworks.com/help/toolbox/images/ref/radon.html

Chapter 4. Polyenergetic Nonlinear Iterative Method 44

sections, we discuss how to filter the sinogram data and solve the discretized problem. We

can use different optimization methods or solvers to find the unknown energy-dependent

attenuation coefficient. This is discussed in more detail in Sections 4.4, 4.5 and 4.6.

4.3 Filtering

For filtering, we apply the method discussed in Section 2.4.1. We remind the reader that

we filter the noisy sinogram data as follows:

1. Take the one dimensional FFT of the sinogram data;

2. To extract the desired signals from the raw data, instead of convolving a filter with

the sinogram data, multiply the filter (defined in the frequency domain) with the

FFT of the sinogram elementwise. In other words, the filtering is performed as

a multiplication in the frequency domain instead of a convolution in the spatial

domain.

3. Take the inverse Fourier transform of the filtered sinogram in the frequency domain.

We may filter our initial guess and then use our reconstruction algorithm; or filter the

result at the end. We discuss some regularization methods, which can replace or com-

plement the filtering stage, in Section 5.5.

4.4 Unconstrained optimization

So far, we have discretized the continuous model and written it as (4.8). The goal of

our reconstruction problem, like other reconstruction problems, is to approximate the

attenuation coefficient. Therefore, we need to develop a method to find the energy-

dependent attenuation coefficient that makes the right side of (4.8) as close as possible

to its left side. In order to find such a method, we first have to define an objective

function and ascertain its properties.

Chapter 4. Polyenergetic Nonlinear Iterative Method 45

4.4.1 Objective function

Define a vector-valued nonlinear function F(µ) with Nproj components as follows. For

each projection i, i = 1, . . . , Nproj, use the discretized model (4.8) to define

Fi(µ) =
Nε∑
h=1

wh ·P0(εh) exp(−RT
i µh)−Pi. (4.9)

Our goal is to minimize

G(µ) = ‖F(µ)‖2
2, (4.10)

which is a scalar-valued objective function. This is a nonlinear least-squares fitting

problem.

Jacobian/Gradient of the objective function

We choose to use an optimization method that uses the Gradient of G(µ) or the Jacobian

of F(µ), e.g., the Levenberg-Marquardt algorithm (see Section 4.6). The Jacobian of

F(µ) is the matrix of partial derivatives ∂Fi(µ)
∂µj,h

, where

∂Fi(µ)

∂µj,h
=

∂

∂µj,h

{
Nε∑
h∗=1

wh∗ ·P0(εh∗) exp(−RT
i µh∗)−Pi

}

=
Nε∑
h∗=1

wh∗ ·P0(εh∗)
∂

∂µj,h

{
exp

(
−RT

i µh∗
)}

= wh ·P0(εh)(−Ri,j)
{

exp
(
−RT

i µh
)}
, (4.11)

for i = 1, . . . , Nproj, j = 1, . . . , Ngrid and h = 1, . . . , Nε. Note that, in (4.11), we use h∗ as

a counter and h is a fixed index for the energy level associated with the derivative. The

Jacobian matrix is of size Nproj ×NgridNε. The scalar-valued objective function is

G(µ) = ‖F(µ)‖2
2 =

Nproj∑
i=1

Fi(µ)2. (4.12)

Chapter 4. Polyenergetic Nonlinear Iterative Method 46

The gradient of G(µ) is the vector of partial derivatives
[
∂G(µ)
∂µj,h

]
, where

∂G(µ)

∂µj,h
=

Nproj∑
i=1

∂

∂µj,h
{F2

i (µ)}

=

Nproj∑
i=1

2Fi(µ)
∂

∂µj,h
{Fi(µ)}, (4.13)

for j = 1, . . . , Ngrid and h = 1, . . . , Nε. We can use the Jacobian of F(µ) and the Gradient

of G(µ) in a variety of different optimization methods to solve our problem.

4.5 Newton’s method

The first method we consider is a Newton-like method to solve our nonlinear reconstruc-

tion problem. We call it a Newton-like method even though our system is extremely un-

derdetermined. One of the reasons that we choose to experiment with Newton’s method

is that this method can often converge remarkably quickly, especially if the starting guess

is sufficiently close to the desired minimizer. However, if the iteration begins far from

the desired minimizer, this method can fail to converge. In our problem, since we use

the FBP solution as the initial guess, we have a relatively good starting point. The kth

iteration of Newton’s method applied to (4.2) is

F′(µ(k))(µ(k+1) − µ(k)) = −F(µ(k)), (4.14)

or

F′(µ(k))(∆µ(k)) = −F(µ(k)), (4.15)

where µ(k) is the kth approximation to the discrete attenuation coefficient µ; µ(k+1) =

µ(k) + ∆µ(k); and we compute F′(µ), the Jacobian of F(µ), by (4.11).

Chapter 4. Polyenergetic Nonlinear Iterative Method 47

Now, if we define the multipliers

mih = whP0(εh) exp(−RT
i µ

(k)
h) (4.16)

and the right side values

Qi = −
Nε∑
h=1

whP0(εh) exp(−RT
i µ

(k)
h) + Pi, (4.17)

then we have
Nε∑
h=1

mihR
T
i ∆µ

(k)
h = Qi. (4.18)

Although this system is not normally square, we can solve it by applying the method of

least squares [7, 44].

Unfortunately, this Newton-like approach does not produce good quality results. In

the next sections, we discuss other more promising methods for solving the reconstruction

problem.

4.6 Levenberg-Marquardt-Fletcher algorithm

The Levenberg-Marquardt (LM) algorithm is one of the most widely used algorithms for

nonlinear least squares problems. The LM algorithm is a combination of gradient descent

and Gauss-Newton iteration [44]. This method can also be adapted to the trust region

framework [44].

Ignoring our specific problem for now, we describe the LM algorithm and the Levenberg-

Marquardt-Fletcher extension in a general setting. Assume we want to minimize the

objective function

‖r(x)‖2
2 = r(x)T r(x), (4.19)

where r(x) = b− f(x) is the residual for some nonlinear system of equations. Our goal

Chapter 4. Polyenergetic Nonlinear Iterative Method 48

is to find a sequence of iterates x(k) such that x(k) −→ x∗, where x∗ minimizes ‖r(x)‖2
2,

whence f(x∗) ≈ b. Let

∆x(k) = x(k+1) − x(k). (4.20)

If the residuals r(x) are smooth, then

r(k+1) = r(x(k+1)) = r(k) + A(k)∆x(k) + . . . , (4.21)

where the elements of the Jacobian matrix, A(k), are

A(k)
m,n =

∂rm(x(k))

∂xn
. (4.22)

If we multiply (4.21) by A(k)T on the left and rearrange the terms of the equation,

we find

A(k)TA(k)∆xk −A(k)T r(k+1) = −A(k)T r(k). (4.23)

If r(k+1) were known, then the solution can be found easily. However, this is not the

case, of course. Levenberg substituted λ∆xk for −AT r(k+1) in [35]. Therefore, (4.23) is

transformed to

(A(k)TA(k) + λI) ·∆xk = −A(k)r(k), (4.24)

where λ ∈ R is a scaling factor. It is evident that the method reduces to Newton’s

method when λ = 0.

Marquardt suggested that scaling the components of the gradient using the curvature

ensures greater movement in directions in which the gradient has small magnitude [38].

Therefore, Marquardt replaced the identity matrix I in (4.24) with the diagonal matrix

consisting of the diagonal elements of ATA. Marquardt also changed the scaling value,

λ, to λ(k), i.e., the scaling factor gets updated at each step. The value of λ(k) varies

depending on the behavior of each iteration. To this end, at each step, a new parameter

Chapter 4. Polyenergetic Nonlinear Iterative Method 49

ν(k) ∈ [2, 10] is introduced. Then λ(k) is updated as follows.

λ(k+1) =


λ(k)/ν(k) if convergence is slow and stable;

ν(k)λ(k) if the iterations appear to be diverging.

(4.25)

As a result, the Levenberg-Marquardt algorithm at the k-th iteration can be summarized

as

(A(k)TA(k) + λ(k)diag(A(k)TA(k))) ·∆xk = −A(k)Tr(k). (4.26)

Later, Fletcher improved the algorithm by introducing a new and more effective method

for updating λ at each step [4, 22] and [23, p. 100]. We refer to this method as LMF. For

more details about the LMF method, refer to [4, 22, 23, 41, 44].

4.6.1 LMF for the polyenergetic problem

Recall our goal is to find the minimizer of

min
µ
G(µ), (4.27)

where the objective function is

G(µ) = ‖F(µ)‖2
2, (4.28)

and F = {Fi}
Nproj

i=1 is defined by

Fi(µ) =
Nε∑
h=1

wh ·P0(εh) exp(−RT
i µh)−Pi, (4.29)

where µh is a Ngrid-vector representing the attenuation coefficient at the h-th energy level.

In our implementation of the LMF, we use F(µ) in (4.28) as the input. In (4.27), (4.28)

and (4.29), µ is of size Ngrid×Nε, where Ngrid is the number of pixels in the reconstruction

Chapter 4. Polyenergetic Nonlinear Iterative Method 50

image and Nε is the number of energy levels.

Recall also from (4.11) that the elements of the Jacobian matrix A are

∂Fi(µ)

∂µj,h
=

∂

∂µj,h
{
Nε∑
h∗=1

wh∗ ·P0(εh∗) exp(−RT
i µh∗)−Pi}

=
Nε∑
h∗=1

wh∗ ·P0(εh∗)
∂

∂µj,h
{exp(−RT

i µh∗)}

= wh ·P0(εh)(−Ri,j){exp(−RT
i µh)}, (4.30)

where, as seen in (4.6), R is the Radon matrix of size Nproj × Ngrid. If we use (4.29)

and (4.30) in (4.26), we get

(A(k)TA(k) + λ(k)B) ·∆µ(k) = −A(k)Tr(k), (4.31)

where r(k) =
[
F

(k)
1 ,F

(k)
2 , . . . ,F

(k)
Nproj

]
, and Fi(µ) is defined in (4.29); A

(k)
i,l =

∂F
(k)
i (µ)

∂µj,h
,

where l = (h− 1)Nproj + j, h = 1, . . . , Nε and j = 1, . . . , Ngrid; B = diag(A(k)TA(k)); and

µ(k+1) = µ(k) + ∆µ(k).

4.6.2 Shortcomings of the LMF approach

The LMF method described in Section 4.6 returns results with better image quality than

the Newton-like method described in Section 4.5 and FBP (see Section 4.8). However,

the main disadvantage of this method is that we have to store all the matrices in (4.31),

which may require a very large amount of memory for the problems that arise in practice.

In our preliminary test runs, we either experienced very long computation times or we

ran out of memory. Later in Chapter 5, we discuss this deficiency in more detail and

introduce some extensions to our method to overcome it.

Chapter 4. Polyenergetic Nonlinear Iterative Method 51

4.7 An energy-dependent mathematical phantom

Based on the energy-dependent model introduced in Section 3.3.1, we developed an

energy-dependent mathematical phantom for our experiments. We extended the Mat-

lab phantom function and called it ephantom. Our new Matlab function generates

an energy-dependent image of a head phantom that can be used to test the numerical

accuracy of 2-D energy-dependent reconstruction algorithms. If we assume that we have

Nε different energy levels, ephantom returns Nε grayscale intensity images. Each image

represents the energy-dependent attenuation coefficient at that given energy level.

Each of these images consist of one large ellipse (representing the brain) containing

several smaller ellipses (representing features in the brain). At each energy level, for any

given pixel in the output image, the pixel’s value is equal to the sum of the additive

intensity values of all ellipses of which the pixel is a part. If a pixel is not part of any

ellipse, its value is 0. Also note that, the additive intensity value for an ellipse can be

positive or negative; if it is negative, the ellipse will be darker than the surrounding

pixels.

Each ellipse is associated with an energy function fn(ε), where ε is the energy and n =

1, . . . , Nellipse, where Nellipse is the number of ellipses in our energy-dependent phantom.

We have Nε different energy levels, so

fn(ε) = (fn(ε1), . . . , fn(εNε)), (4.32)

for n = 1, . . . , Nellipse. Therefore, for each energy level, the phantom at pixel x is com-

puted by

µh(x) =

Nellipse∑
n=1

fn(εh)CnOn(x), (4.33)

Chapter 4. Polyenergetic Nonlinear Iterative Method 52

where Cn is a constant function associated with each ellipse, and

On(x) =

 1 if pixel x is part of ellipse n,

0 otherwise.
(4.34)

As seen in Figure 4.3, as the energy increases, the attenuation coefficient decreases.

Although, the materials shown in Figure 4.3 do not normally occur in the body, the

dependence of the attenuation coefficient on energy is similar for the materials that do

occur in the body. The sinogram data that is used as the input to test our reconstruction

Figure 4.3: This image presents the relation between the value of the attenuation coeffi-
cient and the energy value for different materials.

algorithm is computed by the discretized polyenergetic physical model (4.8).

4.8 Numerical results

In our preliminary experiments, we used different Matlab functions in the Optimiza-

tion Toolbox as our solver, such as fminunc. This function finds the minimum of our

unconstrained multivariable objective function. This algorithm is a subspace trust-region

Chapter 4. Polyenergetic Nonlinear Iterative Method 53

method and is based on the interior-reflective Newton method [15, 14]. Each iteration

involves the approximate solution of a large linear system using the preconditioned con-

jugate gradient (PCG) method.

We also experimented with the lsqnonlin function in the Optimization Toolbox.

This function is useful in solving nonlinear least-squares problems. It uses either the

trust-region-reflective optimization algorithm or the Levenberg-Marquardt method. In

our case, since the reconstruction problems of interest to us are mostly underdetermined,

we choose to use the Levenberg-Marquardt algorithm. The main problem is that, when

we use these solvers for large data sets, we experience very long computation times or

we run out of memory. However, for small data sets, using this algorithm, we obtain

promising results, reported later in this section.

The two numerical experiments reported below are based on our energy-dependent

mathematical phantom with

fn(ε) =
1

1 + 0.5ε · n
, (4.35)

where n is the index of the ellipse, as explained in Section 4.7. They are also based on a

Gaussian distribution for P0, since, as seen in Figure 4.1, for low maximum energy values,

we have a Gaussian-like distribution for P0. We use (4.2) with a Gaussian quadrature

rule with Nε = 7 nodes and weights to compute the sinogram data Pt,θ with Nθ = 18

and Nt = 33 (hence, Nproj = Nθ×Nt = 594). In the two numerical experiments reported

below, we use Ngrid = 20× 20 = 400.

Also, for each numerical experiment, we added Gaussian noise to the phantom, from

which we make the sinogram data Pt,θ. To be more specific, here and for all the other nu-

merical results in the thesis, we use the following Matlab code to compute the Gaussian

noise.

Gaussian_noise = mean(mu(:))*C_noise*var(mu(:))*randn(size(mu)),

where we use different constants Cnoise to vary the amount of added noise.

Chapter 4. Polyenergetic Nonlinear Iterative Method 54

In Figure 4.4, we display the sinogram data with Cnoise = 0.1 used as input to the

first of the two numerical experiments reported in this section to test our reconstruction

algorithms. The sinogram for the second numerical experiment with Cnoise = 0.5 is

similar, so we have not displayed it.

In the rest of the figures in this section, we display the reconstructed images computed

by our new nonlinear iterative algorithm using a Gaussian quadrature rule with Nε = 3

nodes and weights. The two numerical experiments reported here are similar, except

that, in the first, reported in Figures 4.5 and 4.6, we used Cnoise = 0.1 and, in the second,

reported in Figures 4.7 and 4.8, we used Cnoise = 0.5.

Figure 4.4: The sinogram data of the energy-dependent phantom computed by
ephantom.m, with Ngrid = 20 × 20, Nε = 7, Nθ = 18, Nt = 33 and Cnoise = 0.1.
The sinogram for the second numerical experiment with Cnoise = 0.5 is similar.

In Figures 4.5 and 4.7, the first row contains three slices of the energy-dependent

Shepp-Logan phantom produced by our Matlab function ephantom.m at the three en-

ergy levels used in these numerical experiments. The second row shows three energy-

dependent slices of the reconstructed image computed by our new nonlinear algorithm.

Finally, the third row shows the starting guess (the FBP solution) for the three energy

levels.

In Figures 4.6 and 4.8, we merge the solutions for different energy levels using the

discretized model (4.8). In these images, it is clear that the quality of the results are better

Chapter 4. Polyenergetic Nonlinear Iterative Method 55

Figure 4.5: In this figure, we display the results with Ngrid = 20× 20, Nε = 3, Nθ = 18,
Nt = 33, and Cnoise = 0.1. The first row contains different slices of the energy-dependent
Shepp-Logan phantom, produced by the Matlab function, ephantom.m, at different
energy levels. The energy value at each level is reported on top of each image. The second
row shows different slices of the reconstructed image computed by our new method. The
third row shows the starting guess (the FBP solution) which is the same for each energy
level.

Figure 4.6: In this figure, we display the results with Ngrid = 20× 20, Nε = 3, Nθ = 18,
Nt = 33, and Cnoise = 0.1. On the left, we show the original phantom data; in the
middle, the FBP solution (we use the Hamming filter and linear interpolation in the
iradon function in Matlab); and on the right, we merge the results for our new method
for different energy levels by using the discretized model (4.8).

Chapter 4. Polyenergetic Nonlinear Iterative Method 56

Figure 4.7: In this figure, we display the results with Ngrid = 20× 20, Nε = 3, Nθ = 18,
Nt = 33, and Cnoise = 0.5. The first row contains different slices of the energy-dependent
Shepp-Logan phantom, produced by the Matlab function, ephantom.m, at different
energy levels. The energy value at each level is reported on top of each image. The second
row shows different slices of the reconstructed image computed by our new method. The
third row shows the starting guess (the FBP solution) which is the same for each energy
level.

for our algorithm than for FBP, which uses the Hamming filter and linear interpolation in

the iradon function in Matlab. However, there is no filtering or regularization involved

in our reconstruction algorithm for these numerical results.

In these computations, 12 iterations of the Levenberg-Marquardt algorithm in the

Matlab code lsqnonlin were required for convergence to within the prescribed toler-

ance of 1e-10. The execution time for our method is approximately 90 seconds and for

FBP is approximately 0.66 seconds.

Chapter 4. Polyenergetic Nonlinear Iterative Method 57

Figure 4.8: In this figure, we display the results with Ngrid = 20× 20, Nε = 3, Nθ = 18,
Nt = 33, and Cnoise = 0.5. On the left, we show the original phantom data; in the
middle, the FBP solution (we use the Hamming filter and linear interpolation in the
iradon function in Matlab); and on the right, we merge the results for our new method
for different energy levels by using the discretized model (4.8).

Chapter 5

Large Scale Polyenergetic Nonlinear

Iterative Method

As a reminder, in Chapter 4, we present a nonlinear iterative reconstruction method

based on the polyenergetic model in (4.1). We use a quadrature rule, such as a Gaussian

quadrature rule or the composite Trapezoidal rule, and FBP and the Radon transform

to discretize the energy-dependent continuous model with respect to different energy

levels and different projections. To solve this problem, we study different nonlinear

unconstrained optimization solvers, such as a Newton-like method and the Levenberg-

Marquardt-Fletcher algorithm.

We find that the LMF method is the most effective among the methods we explored.

However, in our implementation of this method, described in Section 4.6, we have to

store all the matrices in (4.31). Hence, the memory requirements are large and the

computation time is usually long. In fact, in some test problems, we run out of memory

and the computation aborts. On the positive side, in Chapter 4, we report some promising

results for our new method, compared to FBP solutions, on small non-clinical data sets.

Clinical data sets are usually very large. Therefore, the reconstruction method dis-

cussed in Section 4.6 may not be applicable. Hence, the goal of this chapter is to make

58

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 59

our algorithm more efficient for large scale problems. We explain in this chapter how this

can be done.

5.1 Modified LMF algorithm for the polyenergetic

problem

As discussed in Section 4.6, if we use (4.29) and (4.30) in (4.26), we get (4.31). To recap,

the equation that we must solve at each LMF iteration is

(A(k)TA(k) + λ(k)B(k)T) ·∆µk = −A(k)T r(k), (5.1)

where r(k) = r(µ(k)) =
[
F1(µ(k)),F2(µ(k)), . . . ,FNproj

(µ(k))
]
, Fi(µ

(k)) is defined in (4.29),

A
(k)
i,l = ∂Fi(µ)

∂µj,h
, for l = (h−1)Nproj+j, B(k) = diag

(
A(k)TA(k)

)
and µ(k+1) = µ(k)+∆µ(k).

To reduce the clutter of notation, we drop the superscript k from now on.

One of the main disadvantages of our method as presented in Chapter 4 is that we

have to store all the large and not-so-sparse matrices. In the next sections, we introduce

a variant of the method that overcomes this deficiency. One difficulty that arises in our

new variant is computing the diagonal matrix B. We modify the method and use instead

a block diagonal matrix for B, as is explained in Section 5.3.1.

5.2 The Radon matrix in the Jacobian matrix

As explained in Section 4.6.1, the elements of the Jacobian matrix A = [Ai,m] are

Ai,l = wh ·P0(εh)(−Ri,j){exp(−RT
i µh)}, (5.2)

where l = (h − 1)Nproj + j and RT
i is the i-th row of R, for i = 1, . . . , Nproj. Recall

that we use R for the Radon transform and R for the associated Radon matrix (see

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 60

Equation (4.7)). From (5.2), we see that A has the form

A = [C(1)R,C(2)R, . . . ,C(Nε)R], (5.3)

where C(h), h = 1, . . . , Nε, is the Nproj ×Nproj diagonal matrix defined by

C(h) = diag([−whP0(εh) exp(−R1µh), . . . ,−whP0(εh) exp(−RNproj
µh)]), (5.4)

and R is the matrix associated with the Radon transform (see Section 2.2.1 and 4.2.2).

Hence, when computing the Jacobian matrix A, we can take advantage of the structure

of the matrix R, which is already known. Moreover, the structure of R is repeated Nε

(the number of energy levels) times, in the Jacobian. This is illustrated in Figure 5.1.

5.3 Using back-projection in LMF

In Section 4.6, we review the LMF algorithm and in (4.26) we specify the system of linear

equations that must be solved at each iteration of the algorithm. In (5.3), we show that

we can write the Jacobian matrix in terms of the Radon matrix. Therefore, we can write

ATA in terms of the Radon matrix as well.

ATA = [C(1)R, . . . ,C(Nε)R]T · [C(1)R, . . . ,C(Nε)R]

=



RTC(1)T

RTC(2)T

...

RTC(Nε)T


· [C(1)R, . . . ,C(Nε)R]. (5.5)

In these equations we use RT . Since R is a real-valued matrix, RT = R∗ and can be

approximated by R∗. In Section 5.3.2, we explain how to relate the matrix R∗ (or, more

specifically, the operator R∗) to back-projection.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 61

Figure 5.1: On the left, we display the sparsity structure of the Radon matrix, for a 4
by 4 image (Ngrid = 16), Nθ = 3 and Nt = 19 which makes Nproj = 57. On the right, we
display the sparsity structure of the Jacobian with the same number of pixels and angles
for 3 different energy levels (Nε = 3). Note that the structure of the Radon matrix is
repeated 3 times in the structure of the Jacobian matrix. We choose small values for
Ngrid, Nproj and Nε to make the images clear.

5.3.1 Block diagonal matrix

As mentioned above, computing the diagonal of ATA can be computationally expensive.

We modify the LMF method by using a block diagonal matrix for B in (4.31). To this

end, note that ATA is of size NgridNε × NgridNε. This matrix has Nε × Nε blocks each

of size Ngrid ×Ngrid. The (i, j)-th block is

RTC(i)C(j)R. (5.6)

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 62

We take B in our modified LMF method to be

B =



RTC(1)C(1)R

RTC(2)C(2)R

. . .

RTC(Nε)C(Nε)R


. (5.7)

Computing and storing the C(i)s is cheap, since they are diagonal. In the next sections we

show that we do not need to compute or store R and R∗. Instead, we can take advantage

of our knowledge about the Radon transform and back-projection (see Sections 5.3.2 and

5.4.1) to develop what we call the matrix-free LMF method. The block-diagonal form of

B shown in (5.7) is much easier to work with in this matrix-free version of our algorithm

than B = diag
(
ATA

)
, which occurs in the standard LMF algorithm.

5.3.2 Back-projection and the adjoint of the Radon transform

In [19, p. 197], Epstein shows the well-known result that back-projection equals (4π)−1

times the formal adjoint of the Radon transform. We’ll use this relationship between

back-projection and the adjoint of the Radon transform to derive our matrix-free LMF

method in Section 5.4.1. For completeness, we briefly review below Epstein’s derivation

of the relationship between back-projection and the adjoint of the Radon transform.

To this end, consider the same variables and notations used in Chapter 2. Assume b

is a function of bounded support on R× S1. The inner product of Rµ and b is

〈Rµ,b〉 =

2π∫
0

+∞∫
−∞

Rµ(t, θ)b(t, θ) dt dθ

=

2π∫
0

∞∫
−∞

∞∫
−∞

µ(tω(θ) + sω̂(θ))b(t, θ) ds dt dθ. (5.8)

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 63

If we let x = tω(θ) + sω̂(θ), we get t = 〈x,ω(θ)〉. If we switch the order of the integrals,

we can rewrite (5.8) as

〈Rµ,b〉 =

∫
R2

2π∫
0

µ(x)b(〈x,ω(θ)〉, θ) dθ dx

= 〈µ,R∗b〉. (5.9)

Equation (5.9) shows that back-projection is (4π)−1 times the formal adjoint of the

Radon transform. As noted above, we use this relationship in Section 5.4.1 to develop a

matrix-free version of the LMF-based iterative polyenergetic reconstruction method.

5.4 Storage reduction and fast computation

Generally, two of the main disadvantages of iterative reconstruction methods, including

the LMF described in Chapter 4, are high computational and storage costs. This makes

such methods inefficient (or not even applicable) when applied to the large problems that

arise in practice.

A few approaches to ameliorate the deleterious affects of large memory requirements

are discussed briefly below.

We can divide a large data set into blocks and process one block at a time. In our

case, we can process the data associated with each energy level separately. However,

this approach does not help us much. We can also break any functions that are used

into nested functions that require fewer arguments. This method allows us to reduce

the memory requirements to some extent. However, it does not help to reduce our

computation time. We may also apply other methods, such as using sparse arrays, when

possible; making more efficient use of memory, using preallocation of a block of memory,

large enough to hold the matrix at its final size before processing it; making sure to clear

old variables from memory; and allocating large matrices first. These approaches help us

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 64

improve the performance of our method to some small extent. However, the improvement

is not sufficient.

In addition to the standard approaches listed above, we develop a matrix-free iterative

reconstruction method, based on the LMF algorithm, in which we do not need to form and

save any matrices. This method helps us improve the performance of our reconstruction

algorithm. In Section 5.4.1, we explain this method in detail.

5.4.1 Matrix-free computation

Once again, consider the linear system (4.31) that must be solved at each iteration of

the LMF method. As mentioned before, we drop the superscript k to reduce the clutter

of notation. Therefore, the equation at the k-th iteration of the LMF method can be

written as

(ATA + λB) ·∆µ = −ATr. (5.10)

We can use conjugate gradient (CG) method to solve (5.10). Computing matrices A and

ATA can be very time-consuming and storing them requires a lot of memory. Hence,

we develop a matrix-free method, in which there is no need to construct and store the

matrices in question. To implement CG with this approach, we compute b = −AT r by

using the transpose of (5.3). That is,

AT r =



RTC(1)

RTC(2)

...

RTC(Nε)


· r =



RTC(1) · r

RTC(2) · r
...

RTC(Nε)·r


=



R∗C(1) · r

R∗C(2) · r
...

R∗C(Nε)·r


, (5.11)

where we use RT = R∗. As discussed in Section 5.3.2, R∗ can be approximated by back-

projection (BP). BP can be implemented very efficiently, as explained in Section 2.4, and

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 65

hence is much less computationally expensive than an explicit matrix multiply.

To solve (5.10) by CG, we need to be able to compute y = (ATA + λB) · x for any

given vector x. We partition this computation as

y = (ATA + λB) · x = AT Ax︸︷︷︸
w︸ ︷︷ ︸

v

+λ Bx︸︷︷︸
u

(5.12)

With this partitioning, we can do the computations in stages below without explicitly

forming the matrices as follows.

1. Compute w = Ax, where A is defined by (5.3). More specifically,

Ax = [C(1)R,C(2)R, . . . ,C(Nε)R]Nproj×NgridNε · [xT1 , . . . ,xTNε]
T
NgridNε×1 (5.13)

=
Nε∑
h=1

C(h)Rxh. (5.14)

In this equation Rxh ≈ Rxh, the Radon transform defined in (2.3). Hence, the only

matrices that need to be computed are the C(h)s, defined in (5.4). These matrices

are diagonal; therefore, computing and storing them is not expensive.

2. Compute v = ATw using the same approach used to compute AT r (see (5.11) and

the following explanation).

3. Compute u = Bx, where B is a block diagonal matrix with the ith diagonal block

being RTC(i)C(i)R. Thus, this computation can be carried out in stages similar to

those described in points 1 and 2 above, exploiting the relationship between R and

the Radon transform and between RT and BP.

4. Finally, we use the results of the previous steps and compute y = v + λu, which is

equal to the right hand side of (5.12).

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 66

This version of our method requires far less storage than our earlier version and is

also faster. Therefore, it allows us to reconstruct large images at different energy levels.

We discuss the numerical results in Section 5.6.

5.5 Regularization and image restoration

In our CT image reconstruction problem, like other inverse problems, we are trying

to estimate some quantities (the attenuation coefficient for CT image reconstruction)

using some indirect measurements of these quantities (the sinogram data for CT image

reconstruction). Inverse problems are often ill-conditioned. For CT image reconstruction,

noise in the sinogram data may give rise to significant errors in the estimated attenuation

coefficient. To overcome this ill-conditioning, regularization is frequently used. In image

processing, this process may be interpreted as filtering or image restoration. The main

goal of image restoration is noise removal, e.g., sensor noise, motion blur, etc.

To regularize our problem, we extend our objective function (4.28) to

Ĝ(µ) = G(µ) + γφ(µ), (5.15)

where γ is called the regularization parameter and φ(µ) is called the regularization func-

tion. The parameter γ controls the trade-off between fidelity in solving the original

problem and smoothness, for small and large γ, respectively. The regularization function

is often taken to be

φ(µ) = ‖Dµ‖, (5.16)

or

φ(µ) = ‖Dµ‖2, (5.17)

where ‖ · ‖ is some norm, which does not have to be the same as the norm used in the

objective function G(µ). Here D is called the stabilizing operator. D is normally a

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 67

very sparse matrix and the matrix-vector multiplication can often be implemented very

efficiently using a filter kernel. For our problem, we choose to use a discrete differential

operator (5.18). For more details about different stabilizing operators and filter kernels,

refer to [11, 12, 36, 46].

D =



−1 1 0 · · · 0

0 −1 1 · · · 0

... 0
. 0

0 . . . 0 −1 1


(NgridNε−1)×(NgridNε)

(5.18)

5.5.1 Tikhonov regularization

In image processing, Tikhonov regularization is often used for restoring images contam-

inated by noise.

Consider the objective function

Ĝ(µ) = ‖F(µ)‖2
2 + γ‖Dµ‖2

2, (5.19)

where D is defined in (5.18). As seen before, we define our problem as a nonlinear

least-squares fitting problem. Recall that F(µ) defined in (4.9) is of size Nproj. Also,

the attenuation coefficient µ is of size Ngrid × Nε or if we write it as a vector, of size

NgridNε × 1. Let

Dµ = [µ̈1, µ̈2, . . . , µ̈NgridNε−1]T . (5.20)

As mentioned in Section 4.6.1, we use F(µ) in (4.28) as the input to our implementation.

To use the same implementation for our regularized problem, we replace F(µ) by

[F1(µ),F2(µ), . . . ,FNproj
(µ), γ1/2µ̈1, γ

1/2µ̈2, . . . , γ
1/2µ̈NgridNε−1]T . (5.21)

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 68

Consequently the Jacobian matrix defined in (4.30) and (5.3) can be extended to

Ã =

 A

γ1/2 D

 , (5.22)

where D is defined in (5.18). Hence, we can formulate (5.19) as a standard nonlinear

least squares (NLS) problem. This regularization transforms an underdetermined NLS

problem into an overdetermined one. Now we can follow the approach described in

Section 4.6 to solve the new regularized NLS problem (5.21).

5.5.2 Regularization in the 1-norm

In this method, we define the regularization function as

Φ(µ) = ‖Dµ‖1, (5.23)

where D is defined in (5.18). That is, we can regularize our objective function using

Φ(µ) and rewrite the problem as

Ĝ(µ) = ‖F(µ)‖2
2 + γΦ(µ) ≡ ‖F(µ)‖2

2 + γ‖Dµ‖1. (5.24)

In the Levenberg-Marquardt-Fletcher method, we optimize a nonlinear least-squares fit-

ting problem in the 2-norm. As mentioned in Sections 4.6.1 and 5.5.1, we use F(µ)

in (4.28) as the input to our implementation. If we want to use the same implementa-

tion, we have to use some tricks for regularization in the 1-norm to approximate ‖Dµ‖1

in (5.24) by a 2-norm. To this end, we use the iterative reweighted norm algorithm. For

more details about regularization in the 1-norm, see [26], [52], and [56].

Define the regularization vector and objective function as we do in (5.20) and (5.21).

However, since this time we want to optimize the regularization function in the 1-norm,

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 69

we need to include weights νj for j = 1, . . . , NgridNε. We use an iterative method for

computing the weights. In this method, we use the approximate value of µ in the previous

iteration, i.e., µ(k−1), to compute the new weights at iteration k. That is, at iteration k,

we replace F(µ) in (4.10) by

[F1(µ(k)),F2(µ(k)), . . . ,FNproj
(µ(k)), γ1/2ν1µ

(k)
1 , γ1/2ν2µ

(k)
2 , . . . , γ1/2νNgridNε−1µNgridNε−1

(k)]T ,

(5.25)

where νj = (
∣∣∣µ̈(k−1)

j

∣∣∣)−1/2. Consequently, we modify the Jacobian matrix as follows.

Define

D̃ =


ν1 . . . 0

...
. . .

...

0 . . . νNgridNε−1

 ·D, (5.26)

where D is defined in (5.18). Now the Jacobian is extended to

Ã =

 A

γ1/2D̃

 . (5.27)

5.6 Numerical results

In Section 4.8, we present numerical results for a 20 by 20 energy-dependent phantom

(Ngrid = 20× 20 = 400) at 3 different energy levels (Nε = 3), using Nθ = 18 and Nt = 33

(Nproj = Nθ × Nt = 594). However, due to the small size of the projection data, this is

not a realistic example. Unfortunately, using the methods described in Chapter 4, we

are not able to handle larger, more realistic, reconstruction problems. In this section,

we show that by applying the methods developed in this chapter, we can significantly

increase the image resolution and projection angles and get satisfactory results.

We present four different experiments to assess the effectiveness of our algorithm.

In each numerical example, we use Nε = 7 energy levels, Nθ = 180 projection angles,

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 70

Nt = 287 affine parameters (note that Nproj = Nθ×Nt = 51, 660), and Ngrid = 200×200 =

40, 000 grid points (note that number of unknowns is Ngrid × Nε = 280, 000). In each

example, we either use no regularization, Tikhonov regularization or regularization in the

1-norm. In these experiments, we use the same energy-dependent phantom described in

Section 4.7. We also add some Gaussian noise to the data as explained in Section 4.8.

These example are summarized in the following table.

Noise constant Regularization method

Example 1 0 None

Example 2 0.5 None

Example 3 0.5 Tikhonov (γ = 10−3)

Example 4 0.5 1-norm (γ = 10−3)

.

In these examples, for P0 we use the non-smooth double-peaked 120keV distribution

shown in Figure 4.1. We use with εmin = 10 and εmax = 120. We apply the composite

Trapezoidal rule on a nonuniform grid with Nε = 7 nodes to discretize the outer integral

in (4.1) with respect to different energy levels. See Figure 5.2 for the placement of the

nodes. Note that, if we had used a smooth Gaussian distribution (similar to the 60keV

distribution in Figure 4.1), we could have used a Gaussian quadrature rule instead.

Figure 5.2: In this figure, we display the 7 nonuniform nodes (red dots) for the composite
Trapezoidal rule used in Examples 1, 2, 3 and 4.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 71

To make the mathematical phantom, we use the same energy function

fn(ε) =
1

1 + 0.5ε · n
, (5.28)

that we used for our examples reported in Section 4.8, where n in (5.28) is the index of

the ellipse, as explained in Section 4.7. We compute the sinogram data by the discretized

polyenergetic physical model (4.8) using Nε = 11 different energy levels (larger than the

Nε we use in the quadrature rule for the reconstruction stage). Therefore, we do not

take advantage of any additional information about the phantom or sinogram data. The

sinogram data use in Example 1 is displayed in Figure 5.3. The sinogram data used in

the other examples looks similar.

Figure 5.3: The sinogram data of the energy-dependent phantom computed by
ephantom.m, with Ngrid = 200 × 200, Nε = 11, Nθ = 180 and Nt = 287. This sino-
gram data is used in Example 1. Similar sinogram data with some added noise is used
in Examples 2, 3 and 4.

For each example, we plot the results for our new matrix-free LMF-based polyenergetic

reconstruction algorithm at different energy levels. Then we compare these results with

the FBP results and the phantom. To find the starting guess (FBP solution), we use the

Matlab function iradon with linear interpolation and the Hamming filter.

We also plot Ĝ(µ(k)) versus the number of iterations. In each example, we see that,

after several iterations of our new matrix-free LMF-based iterative polyenergetic recon-

struction algorithm, the value of the objective function at the final iterate is much smaller

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 72

than for the FBP solution that we use as the starting guess for our new algorithm. We

also plot λ(k) versus the number of iterations.

For each example, we also plot the image profile of the phantom, the FBP result

and the numerical solution using our new method. The profile of an image is the set

of intensity values taken from regularly spaced points along a line segment or multiline

path in an image. We use one path which contains many details and plot that.

Finally, for each example, we report the execution time for both FBP and our new

matrix-free LMF-based iterative polyenergetic reconstruction algorithm; the tolerance

used for the stopping criterion for the LMF method; the tolerance used for CG; the total

number of iterations of the LMF method; and the total number of CG iterations. Note

that the execution time for the radon function on a 200 × 200 grid and Nθ = 180 is

approximately 0.89 seconds. The execution time for the iradon function for a 180× 287

sinogram using linear interpolation and no filtering (which we use for BP to approximate

RT) is approximately 1.43 seconds. The execution time for the iradon function using

the Hamming filter and linear interpolation (which we use for FBP) is approximately

1.75 seconds.

We ran these experiments in Matlab version R2008b on a laptop with a 2.00GHz

dual core Intel CPU with 2GB memory that runs Windows XP.

5.6.1 Example 1

In Example 1, we add no noised to the input data and apply no regularization. The

numerical results for Example 1 are presented in Figures 5.4, 5.5, 5.6 and 5.7.

In this experiment, the execution time for our new method is approximately 2437.21

seconds. We use the tolerance 10−3 and the maximum number of iteration of 10 for the

stopping criteria for the LMF method. The tolerance used for CG at each LMF iteration

is 10−1. This is an unusually relaxed tolerance, but, in numerical experiments, we found

that it produced as accurate image reconstructions at less computational cost than the

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 73

more stringent tolerances that we tried. In this example, we use 10 LMF iterations and

the total number of CG iterations is 20.

Figure 5.4: In this figure, we display the results for Example 1 with Ngrid = 200 × 200,
Nε = 7, Nθ = 180, Nt = 287, adding no noise and applying no regularization. The first
row contains different slices of the energy-dependent Shepp-Logan phantom, produced
by the Matlab function, ephantom.m, at different energy levels. The energy value at
each level is reported on top of each image. The second row shows different slices of the
reconstructed image computed by our new matrix-free polyenergetic nonlinear algorithm.
The third row shows the starting guess (FBP solution) images which are the same for
each energy level. It is clear that the results for our new algorithm are significantly better
than the results for FBP.

Figure 5.5: In this figure, we display the results for Example 1 with Ngrid = 200 × 200,
Nε = 7, Nθ = 180, Nt = 287, adding no noise and applying no regularization. On the
left, we show the original phantom data; in the middle, the FBP solution (we use the
Hamming filter and linear interpolation in the iradon function in Matlab); and on the
right, we merge the results for our new method for different energy levels by using the
discretized model (4.8). It is clear that the results for our new algorithm are significantly
better than the results for FBP.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 74

(a) Ĝ(µ(k)) versus the number of iterations. We
see that, after 10 iterations of our new matrix-free
LMF-based iterative polyenergetic reconstruction
algorithm, Ĝ(µ(k)) is smaller than for the FBP
solution that we use as the starting guess for our
new algorithm (compare the first and last points
of the curve).

(b) λ(k) versus the number of iterations (see
Equation (4.31)) for Example 1.

Figure 5.6: In this figure, we display the results for Example 1 with Ngrid = 200 × 200,
Nε = 7, Nθ = 180, Nt = 287, adding no noise and applying no regularization.

Figure 5.7: In this figure, we display the profile of the phantom, the FBP result and the
numerical solution computed by our new method for Example 1 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, adding no noise and applying no regularization. It is clear
that the profile for our new method is much closer to the profile for the phantom than is
the profile for FBP.

5.6.2 Example 2

Example 2 is similar to Example 1 above, except that we add noise to the input data.

As explained in Section 4.8, for each numerical experiment, we add Gaussian noise to

the phantom, from which we make the sinogram data Pt,θ. To be more specific, here and

for all the other numerical results, we use the following Matlab code to compute the

Gaussian noise.

Gaussian_noise = mean(mu(:))*C_noise*var(mu(:))*randn(size(mu)),

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 75

where we use different constants Cnoise to vary the amount of added noise.

In this example, we use Cnoise = 0.5. Like Example 1, we apply no regularization. We

present the numerical results for this example in Figures 5.8, 5.9, 5.10 and 5.11.

In this experiment, the execution time for our new method is approximately 2670.60

seconds. We use the tolerance 10−3 and the maximum number of iteration of 10 for the

stopping criteria for the LMF method. The tolerance used for CG at each LMF iteration

is 10−1. In this example, we use 10 LMF iterations and the total number of CG iterations

is 22.

Figure 5.8: In this figure, we display the results for Example 2 with Ngrid = 200 × 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and applying no regularization. The first
row contains different slices of the energy-dependent Shepp-Logan phantom, produced
by the Matlab function, ephantom.m, at different energy levels. The energy value at
each level is reported on top of each image. The second row shows different slices of the
reconstructed image computed by our new matrix-free polyenergetic nonlinear algorithm.
The third row shows the starting guess (FBP solution) images which are the same for
each energy level. It is clear that the results for our new algorithm are significantly better
than the results for FBP.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 76

Figure 5.9: In this figure, we display the results for Example 2 with Ngrid = 200 × 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and applying no regularization. On the left, we
show the original phantom data; in the middle, the FBP solution (we use the Hamming
filter and linear interpolation in the iradon function in Matlab); and on the right, we
merge the results for our new method for different energy levels by using the discretized
model (4.8). It is clear that the results for our new algorithm are significantly better
than the results for FBP.

(a) Ĝ(µ(k)) versus the number of iterations for
Example 2. We see that, after 10 iterations of our
new matrix-free LMF-based iterative polyener-
getic reconstruction algorithm, Ĝ(µ(k)) is smaller
than for the FBP solution that we use as the
starting guess for our new algorithm (compare
the first and last points of the curve).

(b) λ(k) versus the number of iterations (see
Equation (4.31))in Example 2.

Figure 5.10: In this figure, we display the results for Example 2 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and applying no regularization.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 77

Figure 5.11: In this figure, we display the profile of the phantom, the FBP result and the
solution of our new method for Example 2 with Ngrid = 200 × 200, Nε = 7, Nθ = 180,
Nt = 287, Cnoise = 0.5 and no regularization. It is clear that the profile for our new
method is much closer to the profile for the phantom than is the profile for FBP.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 78

5.6.3 Example 3

In Example 3, we use the same amount of noise as in Example 2 (Cnoise = 0.5), but,

unlike Example 2, which uses no regularization, we apply Tikhonov regularization with

the regularization parameter γ = 10−3 in Example 3. The numerical results for Example 3

are presented in Figures 5.12, 5.13, 5.14, and 5.15.

In this experiment, the execution time for our new method is approximately 2561.03

seconds. We use the tolerance 10−3 and the maximum number of iteration of 10 for the

stopping criteria for the LMF method. The tolerance used for CG at each LMF iteration

is 10−1. In this example we use 10 LMF iterations and the total number of CG iterations

is 19.

Figure 5.12: In this figure, we display the results for Example 3 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and applying Tikhonov regularization with
γ = 10−3. The first row contains different slices of the energy-dependent Shepp-Logan
phantom, produced by the Matlab function, ephantom.m, at different energy levels.
The energy value at each level is reported on top of each image. The second row shows
different slices of the reconstructed image computed by our new matrix-free polyenergetic
nonlinear algorithm. The third row shows the starting guess (FBP solution) images which
are the same for each energy level. It is clear that the results for our new algorithm are
significantly better than the results for FBP.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 79

Figure 5.13: In this figure, we display the results for Example 3 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and applying Tikhonov regularization with
γ = 10−3. On the left, we show the original phantom data; in the middle, the FBP
solution (we use the Hamming filter and linear interpolation in the iradon function
in Matlab); and on the right, we merge the results for our new method for different
energy levels by using the discretized model (4.8). It is clear that the results for our new
algorithm are significantly better than the results for FBP.

(a) Ĝ(µ(k)) versus the number of iterations for
Example 3. We see that, after 10 iterations of
our new matrix-free LMF-based iterative polyen-
ergetic reconstruction algorithm, Ĝ(µ(k)) is much
smaller than for the FBP solution that we use as
the starting guess for our new algorithm (compare
the first and last points of the curve).

(b) λ(k) versus the number of iterations (see
Equation (4.31)).

Figure 5.14: In this figure, we display the results for Example 3 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and applying Tikhonov regularization with
γ = 10−3.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 80

Figure 5.15: In this figure, we display the profile of the phantom, the FBP result and the
solution of our new method for Example 3 with Ngrid = 200 × 200, Nε = 7, Nθ = 180,
Nt = 287, Cnoise = 0.5 and Tikhonov regularization with γ = 10−3. It is clear that the
profile for our new method is much closer to the profile for the phantom than is the
profile for FBP.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 81

5.6.4 Example 4

Example 4 is similar to Example 3, except that, in Example 4, we regularize the objective

function in the 1-norm with the regularization parameter γ = 10−3, whereas, in Exam-

ple 3, we apply Tikhonov regularization with the regularization parameter γ = 10−3.

Examples 3 and 4 use the same amount of noise (Cnoise = 0.5). In Figures 5.16, 5.17, 5.18

and 5.19, we show the numerical results for Example 4.

In this experiment, the execution time for our new method is approximately 2585.16

seconds. We use the tolerance 10−3 and the maximum number of iteration of 10 for the

stopping criteria for the LMF method. The tolerance used for CG at each LMF iteration

is 10−1. In this example, we use 10 LMF iterations and the total number of CG iterations

is 20.

Note that the numerical results for Examples 3 and 4 are similar; both methods are

equally effective for this reconstruction problem.

Figure 5.16: In this figure, we display the results for Example 4 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and regularizing in the 1-norm with γ = 10−3.
The first row contains different slices of the energy-dependent Shepp-Logan phantom,
produced by the Matlab function, ephantom.m, at different energy levels. The energy
value at each level is reported on top of each image. The second row shows different slices
of the reconstructed image computed by our new matrix-free polyenergetic nonlinear
algorithm. The third row shows the starting guess (FBP solution) images which are
the same for each energy level. It is clear that the results for our new algorithm are
significantly better than the results for FBP.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 82

Figure 5.17: In this figure, we display the results for Example 4 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and regularizing in the 1-norm with γ = 10−3.
On the left, we show the original phantom data; in the middle, the FBP solution (we use
the Hamming filter and linear interpolation in the iradon function in Matlab); and on
the right, we merge the results for our new method for different energy levels by using the
discretized model (4.8). It is clear that the results for our new algorithm are significantly
better than the results for FBP.

(a) Ĝ(µ(k)) versus the number of iterations for
Example 4. We see that, after 10 iterations of
our new matrix-free LMF-based iterative polyen-
ergetic reconstruction algorithm, Ĝ(µ(k)) is much
smaller than for the FBP solution that we use as
the starting guess for our new algorithm (com-
pare the first and last points of the curve).

(b) λ(k) versus the number of iterations
(see Equation (4.31)).

Figure 5.18: In this figure, we display the results for Example 4 with Ngrid = 200× 200,
Nε = 7, Nθ = 180, Nt = 287, Cnoise = 0.5 and regularizing in the 1-norm with γ = 10−3.

Chapter 5. Large Scale Polyenergetic Nonlinear Iterative Method 83

Figure 5.19: In this figure, we display the profile of the phantom, the FBP result and the
solution of our new method for Example 4 with Ngrid = 200 × 200, Nε = 7, Nθ = 180,
Nt = 287, Cnoise = 0.5 and regularizing in the 1-norm with γ = 10−3. It is clear that
the profile for our new method is much closer to the profile for the phantom than is the
profile for FBP.

Chapter 6

Conclusions and future work

6.1 Summary and conclusions

In this thesis, we first review the mathematical background needed for medical imaging

in Chapter 2, including the Fourier transform and its inverse, the Radon transform, the

Central slice theorem and the filtered back-projection (FBP) method, which can be used

to compute the inverse of the Radon transform. We show how we can use this theory

to build practical algorithms for different geometries, such as parallel-beam and cone-

beam. In Chapter 2, we also introduce the matrix representation of the well-known FBP

method. This representation helps establish a relation between the iterative methods, in

particular ART and FBP. It also helps us develop the matrix-free polyenergetic iterative

reconstruction algorithm in Chapter 5.

In Chapter 3, we review different families of iterative methods, such as the alge-

braic reconstruction techniques (ART) and the statistical image reconstruction tech-

niques (SIRT). We explain that iterative methods can have several advantages over direct

methods. First, they can incorporate some prior knowledge, including system geometry,

detector response, object constraints, and they also permit modeling data noise. Second,

an unrealistic assumption underlying FBP is that x-ray sources are monoenergetic. How-

84

Chapter 6. Conclusions and future work 85

ever, in practice, there is a nonuniform distribution of photons of different wavelengths

that leads to a phenomenon physicists call beam hardening. Some iterative methods, such

as SIRT, can model polyenergetic x-ray sources and thus account for beam hardening

in the reconstruction. SIRT typically use a statistical model, such as a likelihood-based

approach, to estimate the attenuation coefficient. In such techniques, to simplify the

problem, some prior assumptions about the physical properties of the scanned object are

often made. However, such prior assumptions can limit the scope and applications of the

reconstruction method.

Based on the same continuous polyenergetic model used for SIRT, we develop a non-

statistical iterative polyenergetic reconstruction method, in Chapter 4. Then we explain

how we can use a quadrature rule (such as a Gaussian quadrature rule or the composite

Trapezoidal rule) to discretize and approximate the outer integral in (4.1) with respect to

different energy levels. We also show how we can take advantage of our knowledge about

the Radon transform and the FBP method to discretize the energy-dependent continuous

model with respect to different projections. We emphasize that in this model we account

for the nonlinearity in the measurements. We study different solvers and nonlinear un-

constrained optimization methods, such as a Newton-like method and an extension of

the Levenberg-Marquardt-Fletcher (LMF) algorithm. We find that the extended LMF

method produces better-quality images than the Newton-like method. Therefore, we

apply the extended LMF method to solve our reconstruction problem. In this new recon-

struction method, we discretize the polyenergetic physical model directly, with no prior

assumption about the physical properties of the object of interest.

We show in our numerical experiments (using our energy-dependent mathematical

Shepp-Logan phantom) that the LMF method is the most effective among the methods we

have explored. However, if we store all the matrices in (4.31), the memory requirements

are large and the computation time is long. In fact, in some test problems, we run out

of memory. However, on the positive side, we report results with better image quality,

Chapter 6. Conclusions and future work 86

compared to FBP solutions, on small data sets.

In Chapter 5, to improve the efficiency of our approach, we use the known structure

of the Radon matrix to better understand the structure of the Jacobian matrix of our

objective function (see Figure 5.1). We also exploit some fast implementations of the

Radon transform and the back-projection method to make our iterative polyenergetic

method matrix-free and fast. The matrix representation of FBP introduced in Section 2.5

helps to understand this process better. Using our new reconstruction method, we get

results with better image quality than FBP. On the other hand, FBP is much faster than

our iterative reconstruction method. Nevertheless, our matrix-free approach is promising.

To improve the effectiveness of our new method, we regularize our optimization prob-

lem by the Tikhonov method and regularization in the 1-norm, using a difference kernel.

As reported in Section 5.6, the results of both regularization methods are equivalently ef-

fective; the user may employ either technique, depending on the reconstruction problem.

However, we emphasize that it is important to regularize the problem, since the problem

is usually underdetermined. Therefore, without regularization, we may get results with

poor image quality.

Finally, in Appendix A, we discuss our software package called OSCaR (Open Source

Cone-beam Reconstructor). OSCaR uses the well-known and practical Feldkamp-Davis-

Kress (FDK) algorithm, a filtered back-projection algorithm for cone-beam geometry.

OSCaR is written in Matlab and generates 3-D reconstructions from x-ray data acquired

from cone-beam scanning geometries. The lack of practical, flexible, free FDK software

implementations can hamper medical physics researchers and inhibit multi-institutional

research collaboration. Recognizing the need for a common, referenceable imaging re-

search software, we developed OSCaR as a research tool.

Chapter 6. Conclusions and future work 87

6.2 Future work

6.2.1 Using real data

To date, to test our new polyenergetic reconstruction algorithm, we have used math-

ematical phantoms with simulated beam hardening effects, and not “real” data from

physical phantoms or human/animal subjects. To make our experimental results more

convincing, we hope to apply our matrix-free polyenergetic nonlinear method to “real”

sinogram data. Our long-term hope is that our algorithm, or an extension of it, will be

used clinically.

6.2.2 Cone-beam geometry

The present algorithm assumes a two dimensional acquisition geometry, e.g., parallel-

beam (see Section 2.4.3). However, we believe we can extend this algorithm to three

dimensional geometries, such as cone-beam, which is described in Section 2.3.3.

6.2.3 Comparison with other polyenergetic techniques

In this thesis, we compare our numerical results for our new ployenergetic reconstruction

algorithm to those of FBP. However, as discussed in Section 3.3, there are other iterative

reconstruction techniques that are based on the same polyenergetic physical model (3.13)

that we use. We hope to compare our polyenergetic reconstruction method to other

available polyenergetic methods in the literature.

6.2.4 Reducing the running-time of our matrix-free polyener-

getic reconstruction method

Long computation time is one of the main drawbacks of some reconstruction algorithms,

iterative techniques in particular. This is acutely true of our new matrix-free polyener-

Chapter 6. Conclusions and future work 88

getic reconstruction method. As reported in Chapter 5, our new method is much slower

than FBP.

However, in doing the final revision of this thesis, after the PhD oral, we noticed

that we can improve the efficiency of our new method significantly. For example, our

description of the computation of (5.12) in Section 5.4.1 uses 2Nε matrix-vector multiplies

with R and 2Nε matrix-vector multiplies with RT . In our Matlab program that we

wrote to implement our new method, we use 2Nε calls to the Matlab function radon and

2Nε calls to the Matlab function iradon to implement the matrix-vector multiply (5.12)

at each CG iteration. However, in doing the final revision of this thesis, we noticed that

the matrix-vector multiply (5.12) can be implemented with Nε calls to radon and Nε calls

to iradon. We also found similar savings in other parts of our code that should speed up

our Matlab implementation of our new matrix-free polyenergetic reconstruction method

significantly. We plan to investigate this further and report the results in a forthcoming

paper.

Moreover, if we can make the computations parallel, then they may be much faster.

We plan to investigate the parallelization of our new matrix-free polyenergetic recon-

struction method, and possibly run them on parallel graphics processing units (GPUs).

There are several GPU libraries, such as OpenGL, Cg and CUDA, available at the mo-

ment. Moreover, software libraries for GPUs are growing very fast. Therefore, we believe

that, in the near future, it should be possible to build an effective, parallel, GPU-based

implementation of our algorithm. For more information about GPU programming, refer

to [1, 45].

Appendix A

OSCaR

OSCaR (Open Source Cone-beam Reconstructor) [49, 50] is a software package written

in Matlab developed for generating 3-D reconstructions from x-ray data acquired from

cone-beam scanning geometries. It is based on the Feldkamp-Davis-Kress (FDK) algo-

rithm [21], for 3-D cone-beam CT (CBCT) reconstruction.

In this appendix, we describe version 3 of OSCaR, the current version of OSCaR since

2010. The latest version of OSCaR, as well as the associated documentation and ex-

amples, can be obtained from the website http://www.cs.toronto.edu/~nrezvani/

OSCaR.html.

The lack of practical, flexible, free FDK software implementations can hamper medi-

cal physics researchers and inhibit multi-institutional research collaboration. Recognizing

the need for common, referenceable imaging research software, OSCaR was developed as a

research tool for free distribution by the American Association for Physicists in Medicine

(AAPM). The goal is to offer a straightforward, open source code and GUI (Graphical

User Interface) implementation that emphasizes flexibility, generality, and ease of use.

The implementation has a transparent interface for 3-D image reconstruction with the

intention of providing a useful base platform for developing advanced techniques (e.g.,

artifact correction) or for conducting image quality studies (e.g., selection of optimal

89

http://www.cs.toronto.edu/~nrezvani/OSCaR.html
http://www.cs.toronto.edu/~nrezvani/OSCaR.html

Appendix A. OSCaR 90

reconstruction filters). The code is intended for research use, not clinical or commer-

cial implementation. Although compiled software is certainly faster than interpreted

Matlab code, a Matlab implementation circumvents the necessity of custom compiled

libraries. The intention is not to produce the fastest implementation; rather, it is to

provide code from which researchers can start developing their own algorithms.

Broadly speaking, OSCaR has three main components: pre-processing, reconstruction,

and export. In the pre-processing stage, CBCT data is parsed from a broad, general

base of standard data-file formats, accessible to Matlab (e.g., DICOM1, binary, JPEG,

TIFF, PNG, etc.). The source-detector pair is assumed to move in a circular path,

but OSCaR can allow for variation in the position of the piercing point as a function

of the projection angle. Parameters associated with geometric corrections, sampling,

air normalization, and other device-dependent properties that affect acquisition of the

sinogram data can be specified using the pre-processing GUI prior to reconstruction.

In the reconstruction stage, OSCaR permits the specification of the Field-Of-View

(FOV), voxel size and reconstruction filters. The actual voxel-driven reconstruction uses

the well-known FDK filtered back-projection algorithm. Then, in the export stage, the

reconstructed data can be saved as a three dimensional matrix, which can be exported

as a standard data-file, such as DICOM, binary, etc, and visualized.

We hope that OSCaR will soon be made freely available on the AAPM web-site to

members of the AAPM for research in algorithm development, CBCT image quality

studies, and multi-institutional collaboration.

1DICOM (Digital Imaging and Communications in Medicine) is a standard for handling, storing,
printing, and transmitting information in medical imaging. It includes a file format definition and a
network communications protocol.

Appendix A. OSCaR 91

A.1 A reconstruction algorithm for cone-beam ma-

chines

As discussed in Section 2.4.3, a view for a parallel-beam scanner produces measurements

ofRµ from a family of parallel lines. Therefore, the Central slice theorem (Theorem 2.2.1)

applies to give an approximation to the Fourier transform of the attenuation coefficient

along lines passing through the origin. However, cone-beam geometry is more compli-

cated, since the samples of Rµ are associated with a set of non-parallel lines that form

a cone shape and all the lines pass through a common point. Hence, the Central slice

theorem is not directly applicable. There are two general approaches to reconstructing

images from the data collected by a cone-beam machine (this is also true for fan-beam

machines). We could sort and interpolate the cone-beam data to obtain data appropri-

ate for a fan-beam (or in some cases parallel-beam) algorithm. Alternatively, we could

extend a parallel-beam or fan-beam algorithm to cone-beam geometry. The Feldkamp-

Davis-Kress (FDK) algorithm [21] reviewed below is such an algorithm.

The FDK algorithm was introduced in 1984 and since then it has been the most

commonly used algorithm for 3-D reconstruction (there are many commercial scanners

that use variants of this algorithm). In the same year, a similar algorithm for divergent

beams was introduced by Webb [59].

We assume a planar detector, the same assumption as the original form of FDK.

The reconstruction is based on filtered back-projection similar to the two-dimensional

algorithm discussed previously. Let (u, v) be the co-ordinates of the detector, (x, y, z)

the co-ordinates of the real world, D the source-axis distance, g the filter and β the

projection angle (see Figure A.1). Using the FDK formulation, we get

µ(x, y, z) ≈
2π∫

0

D2

U2
[t(Rµ) ∗ g](β, u′, v′) dβ, (A.1)

Appendix A. OSCaR 92

Figure A.1: Cone-beam projection.

where

t(Rµ)(β, u, v) =
D√

D2 + u2 + v2
[Rµ](β, u, v), (A.2)

U = D + x cos β + y sin β, (A.3)

u′ =
D

U
(x sin β + y sin β), (A.4)

v′ =
D

U
z. (A.5)

In the discrete case, the integral is replaced by a sum over the projection angles. Then

we need a two-dimensional interpolation of the filtered projection data for each term of

the back-projection sum. For more details about FDK reconstruction, refer to [21, 51, 55].

A.2 Assumptions and limitations

The following assumptions and general recommendations are pertinent to the use and

further development of OSCaR. The geometry for acquisition of the 3-D sinogram is cir-

cular (i.e., the source-axis-distance and the source-detector-distance are constant). Also,

Appendix A. OSCaR 93

no detector tilt is allowed. However, the code does allow variations in the location of

piercing points (u0, v0) from view to view.

In CBCT, the projection geometry involves a point x-ray source with a divergent x-

ray beam. We assume that the detector is flat and has rectangular detector elements of

uniform dimensions. The projections may be collected at nonuniform projection angles.

The measurement distances are in centimeters unless otherwise stated. The origin of a

pixel is its centre.

OSCaR handles projection sets covering exactly 180 + fan or 360 degrees. Anything

in between is improperly weighted. The code has been tested on Matlab 2009a with

the Image Processing Toolbox 6.2. Potential file formats for input projection data can

be any image file format accessible to Matlab (e.g., DICOM, jpg, tiff, etc). Alterna-

tively, all projections can be input in a single binary data file. Sinogram data stored in

binary files are ordered in column major order (consistent with the Matlab convention).

Loading/saving data from three-dimensional arrays can take some time depending on the

memory available on the computer and disk-access time.

The largest 3-D sinogram that can be loaded by OSCaR depends on the amount of

memory available on the computer. The entire 3-D sinogram must fit into memory

with pixel values stored as double precision floating point numbers. Given that a single

projection of 192 by 256 pixels needs about 400 KB of memory, 300 projections require

about 113 MB. Conversely, 1 GB of free accessible memory corresponds to 320 (192×256

pixel) projections. Similar restrictions apply to the memory required for reconstructions;

the user must be able to store at least double the memory required for the user-specified

reconstruction array (for work arrays and the like).

In the next sections, we describe how to run OSCaR.

Appendix A. OSCaR 94

A.3 Running OSCaR

Prior to launching OSCaR, the directory containing the source code for OSCaR must be

in your Matlab path. Also, a .csv (comma-separated value, see Section A.3.2) file

needs to be prepared, and stored in the same directory that contains the 3-D sinogram

projections. The requirements are outlined in Section A.3.2 below.

The user has two options for using OSCaR. The first option is invoked by calling OS-

CaRMain which launches a GUI. The GUI OSCaRMain provides access to two other GUIs,

OSCaRPreprocess and OSCaRReconstruct. The second option for using OSCaR is entirely

command-line based and is invoked using OSCaR with appropriate inputs.

A.3.1 The GUI OSCaRMain

OSCaRMain (shown in Figure A.2) is the primary GUI. The buttons can be used to launch

OSCaRPreprocess and OSCaRReconstruct or to cancel the computation.

A.3.2 The GUI OSCaRPreprocess

The GUI OSCaRPreprocess (shown in Figure A.3) is used to input the 3-D sinogram

data for processing prior to reconstruction. The user can initiate the GUI OSCaRPre-

process either by clicking the button Load Projections from the GUI OSCaRMain, or by

entering OSCaRPreprocess at the Matlab command prompt. The individual projections

are assumed to have been captured at Nproj different gantry angles. Each projection

consists of an image of resolution Nu × Nv pixels. The v-direction on the detector is

assumed to be parallel to the axis of revolution of the source-detector pair; the u-direction

on the detector is assumed to be perpendicular to the v-direction.

Prior to loading the Nu×Nv×Nproj values comprising the 3-D sinogram from disk, the

user must provide some information about how the data was collected and how the data is

stored. Although some of it can be entered into the GUI OSCaRPreprocess directly, some

Appendix A. OSCaR 95

Figure A.2: OSCaRMain

of this information can vary for each of the Nproj projections. As such, before loading the

3-D sinogram into memory, OSCaRPreprocess requires the following information from

the user: the geometry/resolution parameters (pertaining to all the projections); storage

parameters (pertaining to all the projections); and the projection-dependent parameters.

The details of how the user can provide this information follows.

Geometry/resolution parameters

These are the parameters that describe the geometry and resolution of the cone-beam

apparatus used to acquire the projection data. These parameters are summarized as

follows:

Appendix A. OSCaR 96

du Pixel length (cm) in u direction (perpendicular to axis)

dv Pixel length (cm) in v direction (parallel to axis)

SAD Source-Axis-Distance (cm)

SDD Source-Detector-Distance (cm)

.

The GUI OSCaRPreprocess has textboxes on the right-hand side that allow users to

specify each of du, dv, SAD, and SDD appropriately.

Storage parameters

The projection data are assumed to be stored in one of two generic ways: either the

Nproj projections are all stored in a single binary data file in column major order or the

projections are stored in Nproj individual image files, each of which is in some format

that Matlab can import (e.g., JPEG, TIFF, DICOM, etc.).

The GUI OSCaRPreprocess has a pair of radio-buttons at the top left corner (Binary

File versus Other Formats, see Figure A.3) to specify the choice of data format.

If the user selects Binary File, all the Nproj projections are assumed to be stored in

a single file in column-major order (the filename should be provided in the .csv file,

see Section A.3.2). As such, the user must edit the textboxes to provide the Row No.

(i.e., Nu), the Column No. (i.e., Nv), and the Projection No. (i.e., Nproj). The user also

needs to specify, using pull-down menus, the Pixel Type (int32, float32, etc.) and the

Machine Format required for reading the binary data. Strings describing the machine

formats are summarized below.

Appendix A. OSCaR 97

n Numeric format of machine on which Matlab is running (default)

b 32 bit IEEE floats with big-endian byte ordering

l 32 bit IEEE floats with little-endian byte ordering

s 64 bit IEEE floats with big-endian byte ordering

a 64 bit IEEE floats with little-endian byte ordering

d VAX D floats and VAX ordering

g VAX G floats and VAX ordering

If the user selects Other Formats, the Nproj projections are assumed to be stored in

Nproj individual image files (whose names are provided in the .csv file, see Section A.3.2).

In this case, the values of Nu and Nv can be inferred directly from the image files as they

are loaded (recall that the values of Nu and Nv must be the same for every projection).

After input parameters Nu, Nv, Nproj and the input file format are specified, an esti-

mate of the amount of memory required is displayed in the box “Approximate Required

Memory (RAM)”, on the right side of the GUI. The user can check whether the machine

has enough memory to run OSCaRPreprocess. For example, to process SampleData.csv

and 20070611-1-roc-750434170.img, use the following values:

Nproj 320

Nrow 192

Ncol 256

du 0.1552

dv 0.1552

SAD 100

SDD 155

Projection-dependent parameters

Certain parameters can vary from projection to projection. These should be specified by

the user in a .csv (comma separated values) file to avoid having to enter each parameter

Appendix A. OSCaR 98

into a textbox in the GUI OSCaRPreprocess. A .csv file can be prepared and exported

using most commonly-used spreadsheet programs. The user is prompted for the name of

the .csv file before the 3-D sinogram can be loaded into memory.

The .csv file should consist of Nproj rows, each with 6 columns. The 6 columns

of the kth row of the .csv file consist of information pertinent to the kth projection

(k = 1: Nproj). These columns are as follows:

filename θG uoff voff I0 w .

filename string naming file in which kth projection is stored

θG gantry angle of kth projection (degrees)

uoff offset of centre of detector perpendicular to axis (cm)

voff offset of centre of detector parallel to axis (cm)

I0 air normalization (same units as values in projections)

w weight (dimensionless)

.

An example of such a .csv file is included in this package.

Orientation buttons

In the orientation box on the right side of the GUI, three buttons, Flip Horizontally,

Flip Vertically, and Transpose, can be found. Once a suitable orientation is found, the

modified data is displayed in the GUI, and the user can save the projection data and

export it to the reconstruction component, OSCaRReconstruct.

Export to OSCaRReconstruct

When the user has completed the preprocessing stage described above, the data can

be exported to a .mat file2 that can be used in the reconstruction stage (OSCaRRecon-

struct). The .mat file consists of a structure, experiment, with two fields: param and

2A .mat file is a file which contains saved variables written in a Matlab specific format.

Appendix A. OSCaR 99

data. The first field, in turn, consists of fourteen subfields that are filled by the values

displayed in the GUI OSCaRPreprocess; the second one, as its name suggests, contains

the data from the scanner.

Figure A.3: OSCaRPreprocess

A.3.3 The GUI OSCaRReconstruct

The GUI OSCaRReconstruct (shown in Figure A.4) is used for image reconstruction.

The user can initiate the GUI OSCaRReconstruct

• by clicking the button Reconstruct from the GUI OSCaRMain, or

• by entering OSCaRReconstruct at the Matlab command prompt.

Once OSCaRReconstruct is launched, the user must load the .mat file produced in the

previous stage by OSCaRPreprocess.

Appendix A. OSCaR 100

Figure A.4: OSCaRReconstruct

Reconstruction size

The user is required to specify the box [xmin, xmax], [ymin, ymax] and [zmin, zmax] that

bounds the voxelized reconstruction either graphically or numerically.

1. Graphically: After pushing the button Enter the Borders Graphically, the user must

click on the images to select the bottom left and top right of the reconstruction

volume. (In total, two points on each image are required.)

2. Numerically: The user must enter the borders numerically.

These values provide the dimensions of the reconstruction domain in the real world. If

the user enters the reconstruction sizes incorrectly (e.g., out of range or the minimum

value is greater than the maximum value), an error message appears. The default values

Appendix A. OSCaR 101

yield a two dimensional axial reconstructed slice. An estimate of the amount of memory

needed for reconstruction is displayed in a box near the centre of the GUI with the title

“Approximate Required Memory (RAM)”. The user should verify that the machine has

enough memory to run OSCaRReconstruct.

Filter

The next step is selecting the appropriate filter with a desired width of frequency window

(between 0 and 1). On the right side of the GUI OSCaRReconstruct, a drop down menu

offers a selection of different filters, such as Ram-Lak, Shepp-Logan, Cosine, Hamming,

and Hann. These filters are defined in the function OSCaRFilter.m. This function returns

a vector of coefficients that is multiplied element-wise by the rows of the Fourier transform

of the sinogram data. This vector of coefficients is the filter. The input arguments of

OSCaRFilter are the length and the spatial resolution of the projection data, and the

fraction of frequencies below the Nyquist frequency which we want to pass. The latter is

a value between zero and one. The user must enter the width of the frequency either in

the edit box or by using the slider on the right side of the OSCaRReconstruct GUI.

In OSCaRFilter the filters are defined as a multiplication of the ramp filter by the

following apodizing windows:

• Shepp-Logan: sinc(x),

• Cosine: cos(x),

• Hamming: 0.54 + 0.46 cos(x),

• Hann: 0.5 + 0.5 cos(x).

Alternatively, the user may choose to enter their own apodizing window, by choos-

ing “new filter” in the drop down menu on the right. After selecting this option, the

user is asked to enter the apodizing window as a function of x. Note that here x is a

Appendix A. OSCaR 102

vector. As an example, the user can enter cos(x) or cos(x) .∗ sin(x). (Note the array

element-wise multiplication operator “.∗”, since x is a vector.) If the function is not

recognized by Matlab, an error message alerts the user; otherwise, the corresponding

filter (the apodizing window multiplied by the ramp filter) is displayed and is used in

the reconstruction. If the user chooses “No Filter”, then the function returns an empty

vector.

In the filtering part of OSCaR, scaling of time and frequency domains are computed

according to reciprocity relations as in [8].

Execute and export

Pressing the “Execute” button on the right side of the GUI starts the reconstruction

process using the function OSCaRFDK.m. This function uses the Feldkamp-Davis-Kress

(FDK) algorithm [21, 59].

After fixing the projection angle, OSCaRFDK returns the value calculated by the FDK

algorithm for each voxel. Then the program loops over the projection angles, and the

calculated values by OSCaRFDK are summed together. The OSCaRFDK routine uses the

nearest neighbour interpolation to find the detector coordinates (u, v) that are closest to

the projections of voxels (x, y, z). Note that, we have vectorized the FDK algorithm to

increase the computational speed.

When the reconstruction is complete, the user can save the reconstructed data and

the parameters defining the FOV (Field-of-View) of the reconstructed volume in three

ways:

1. Save the reconstructed data in a .mat file. The user can specify a name for the

.mat file, but the reconstructed data (P), and the parameters defining the FOV of

the reconstructed volume, (xmin, xmax, ymin, ymax, zmin, zmax), are saved in a

structure called Save data, with seven fields. To open the .mat file (reconstructed

data), the user can use the following command in Matlab.

Appendix A. OSCaR 103

>> load(’NameofMatFile.mat’);

>> Save_data

Save_data =

P: [167x167x167 double]

xmax: 20

xmin: -20

ymax: 20

ymin: -20

zmax: 20

zmin: -20

2. Save the reconstructed data as a binary file and the needed parameters, such as

the reconstruction borders and voxel sizes, in a text file.

3. Save the reconstructed data as DICOM files.

A.3.4 The function OSCaR

This function opens a .mat file that stores preprocessed projection data as created by

OSCaRPreprocess. The function OSCaR can then be used to perform the FDK recon-

struction. By setting the value of verbose to 1 or 0, the user may choose to have the

reconstructed volumes (axial, sagittal, and coronal) displayed, or not, respectively. The

function OSCaR returns the reconstruction as its output.

Syntax

OSCaR(FileName,’PropertyName’,PropertyValue)

where,

Appendix A. OSCaR 104

• FileName:: String.

“FileName” is the name of the .mat file to be loaded as built by OSCaRPreprocess.

This file contains a structure named experiment, with two fields, param and data.

The first field has the subfields: projfilenames, θ, uoff , voff , I0, weights, Nproj, Nrow,

Ncol, du, dv, SAD, SDD, and IAD, and the second field has the projection data.

• PropertyName and PropertyValue:

PropertyName PropertyValue Default

FilterName ’No filter’,’hamming’, ’hann’, No filter

’cosine’, ’shepp-logan’, ’ram-lak’

ReconstructionVolume Vector of length 6 Entered Graphically

(xMin,xMax,yMin, . . . ,

yMax,zMin,zMax)

VoxelSize Vector of length 3 (dx,dy,dz) Determined Internally

by using a

geometry-dependent

formula

FilterWidth Width of Frequency Window 1

(Real value between 0 and 1)

Verbose 0 or 1 1

.

Note that to enter the borders graphically, the user must select bottom left and top

right corners of the reconstruction volume.

A.4 One quick example

Assuming the Matlab path is configured appropriately and the data is in the working

directory, the buttons in the GUI OSCaRMain, Load Projections and Reconstruct, can be

Appendix A. OSCaR 105

used to initiate OSCaRPreprocess and OSCaRReconstruct, respectively.

1. Enter OSCaRMain at the Matlab command prompt to launch the main GUI.

2. Launch OSCaRPreprocess by pressing the button Load Projections in the OSCaR-

Main GUI.

3. Select the radio-button Binary File (as opposed to Other Formats) from the top-

right corner of the GUI OSCaRPreprocess.

4. When prompted, enter the following values: Nproj=320, Nrow=192, Ncol=256,

Machine Format= n and Pixel Type= float32.

5. Press Load Data and open SampleData.csv and 20070611-1-proc-750434170.img

from the examples folder. The projection images are now displayed. The user can

fix the orientation of the images by using the buttons on the left side, Flip Hor-

izontally, Flip Vertically, and Transpose. In this case, use Transpose and Flip

Vertically.

6. Enter the following data into the textboxes on the right side of the GUI: du=0.1552,

dv=0.1552, SAD=100 and SDD=155

7. Press the Export button and name the exported file SampleData.mat. All the

preprocessed projection data together with the acquisition parameters are now

saved in the .mat file SampleData.mat.

8. Launch the GUI OSCaRReconstruct using the button in the GUI OSCaRMain.

9. When prompted, open the file SampleData.mat produced by OSCaRPreprocess.

10. Input the reconstruction volume graphically:

• Click Enter the Borders Graphically.

• Select the bottom left and top right of a rectangle in the left image.

Appendix A. OSCaR 106

• Select the bottom left and top right of a rectangle in the right image.

Values can be adjusted using the text-box Reconstruction Size.

11. Select a filter (e.g., hamming) from the pull-down menu on the right of the GUI

OSCaRReconstruct.

12. Select the desired width of frequency window (between 0 and 1) using the slider in

the upper right corner of the GUI OSCaRReconstruct.

13. Press the Execute button to start the reconstruction. This may take some time to

complete.

14. When finished, you will be prompted to save the reconstruction (either as a .mat

file, a binary file, or a DICOM file).

As an alternative to using OSCaRReconstruct in step (8) above, the function OSCaR can

be used to carry out the reconstruction from pre-processed data as created by OSCaR-

Preprocess. For example, consider entering the following at the Matlab prompt:

M = OSCaR(’examples/SampleData.mat’, ...

’FilterName’, ’hamming’, ...

’ReconstructionVolume’, ...

[-15,15,-15,15,0,0], ’Verbose’,0)

The output M is a Matlab structure whose fields contain the data describing the recon-

struction. More explicit details are available in the User Guide [49].

A.5 Standalone executable

In the OSCaR package, we have also included a Windows executable version of the GUIs

called OSCaREXE. The standalone application OSCaREXE is generated by the Matlab

Appendix A. OSCaR 107

compiler and can be found in the exe folder. The application OSCaREXE can be run on

any Windows machine even if Matlab is not installed.

The user must ensure that the correct version of the Matlab Compiler Runtime

(MCR) environment is installed on the target machine. We have used Matlab 2008b,

which uses MCR version 7.9. The MCR installer is included in this package in the

exe folder. The user may already have the MCR installed on their machine. To verify

the version number of the installed MCR, type the following command at the Matlab

command prompt:

[mcrmajor, mcrminor] = mcrversion

If the user does not have Matlab or the correct version of MCR installed on their

computer, then they can run MCRInstaller in the exe folder.

After installing the MCR, to run the standalone executable, the user must launch

OSCaREXE in the exe folder. This loads the GUI OSCaRMain and the user can proceed to

follow the steps described in the previous sections.

Bibliography

[1] GPGPU: General-purpose computation on Graphics Processing Units. http://

gpgpu.org/.

[2] A. H. Andersen and A. C. Kak. Simultaneous algebraic reconstruction technique

(SART): a superior implementation of the ART algorithm. Ultrasonic Imaging,

Elsevier, 6(1):81–94, 1984.

[3] C. H. Atkinson and J. Soria. Algebraic reconstruction techniques for tomographic

particle image velocimetry. 16th Australasian Fluid Mechanics Conference, pages

191–198, 2007.

[4] M. Balda. Levenberg-Marquardt-Fletcher algorithm for nonlinear least-squares prob-

lems. MathWorks, File Exchange, ID 16063, 2007. http://www.mathworks.com/

matlabcentral/fileexchange/loadFile.do?objectId=16063.

[5] Jacob Beutel, Harold Kundel, Richard L. Van Metter, and Milan Sonka. Handbook

of Medical Imaging: Medical Image Processing and Analysis, volume 1. Physics and

Psychophysics, SPIE Press, 2000.

[6] J. R. Bilbao-Castro, J. M. Carazo, J. J. Fernanndez, and I. Garcia. Parallel, dis-

tributed and network-based processing. Euromicro Conference, 2004.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, New York, NY, USA, 2004.

108

http://gpgpu.org/
http://gpgpu.org/
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16063
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16063

Bibliography 109

[8] W. L. Briggs and V. E. Henson. The DFT: An Owners’ Manual for the Discrete

Fourier Transform. SIAM, 1995.

[9] R. A. Brooks and G. Di Chiro. Beam hardening in x-ray reconstructive tomography.

Physics in Medicine and Biology, 21(3):390–398, 1976.

[10] Charles Byrne. Iterative Algorithms in Tomography. Department of Mathemati-

cal Sciences, University of Massachusetts Lowell, 2005. http://faculty.uml.edu/

cbyrne/nlat.pdf.

[11] J. F. Canny. Finding edges and lines in images. Massachusetts Institute of Technology

Artificial Intelligence Lab Technical Report, 1(2), 1983.

[12] J. F. Canny. A computational approach to edge detection. IEEE Transactions,

Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[13] Ho-Shiang Chueh, Wen-Kai Tsai, Chih-Chieh Chang, Shu-Ming Chang, Kuan-Hao

Su, and Jyh-Cheng Chen. Development of novel statistical reconstruction algorithms

for poly-energetic x-ray computed tomography. Computer Methods and Programs in

Biomedicine, 92(3):289–293, 2008.

[14] T. F. Coleman and Y. Li. On the convergence of reflective Newton methods for

large-scale nonlinear minimization subject to bounds. Mathematical Programming,

67(2):189–224, 1994.

[15] T. F. Coleman and Y. Li. An interior, trust region approach for nonlinear minimiza-

tion subject to bounds. SIAM Journal on Optimization, 6:418–445, 1996.

[16] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaa, and L. E. Meester. A Modern Intro-

duction to Probability and Statistics. Springer, 2005.

http://faculty.uml.edu/cbyrne/nlat.pdf
http://faculty.uml.edu/cbyrne/nlat.pdf

Bibliography 110

[17] Idris A. Elbakri. Statistical reconstruction algorithms for polyenergetic x-ray com-

puted tomography. PhD thesis, Department of Electrical Engineering: Systems,

University of Michigan, 2003.

[18] Idris A. Elbakri and Jeffrey A. Fessler. Statistical image reconstruction for polyen-

ergetic x-ray computed tomography. IEEE Transactions on Medical Imaging,

21(2):89–99, 2002.

[19] Charles L. Epstein. Introduction to the Mathematics of Medical Imaging. Prentice

Hall, Upper Saddle River, N.J., 2003.

[20] Hakan Erdogan and Jeffrey A. Fessler. Monotonic algorithms for transmission to-

mography. IEEE Transactions on Medical Imaging, 18:801–814, 1999.

[21] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algorithm.

Journal of the Optical Society of America A, 1(6):612–619, 1984.

[22] R. Fletcher. A modified Marquardt subroutine for nonlinear least squares. Harwell,

1971.

[23] R. Fletcher. Practical Methods of Optimization. Wiley-Interscience New York, New

York, USA, 1987.

[24] F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic interpolation. SIAM

Journal Numerical Analysis, 17:238–246, 1980.

[25] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques

(ART) for three-dimensional electron microscopy and x-ray photography. Journal

of Theoretical Biology, 29:471–482, 1970.

[26] Irina F. Gorodnitsky and Bhaskar D. Rao. A recursive weighted minimum norm

algorithm: analysis and applications. Proceedings of the 1993 IEEE international

Bibliography 111

conference on acoustics, speech, and signal processing: digital speech processing -

Volume III, pages 456–459, 1993.

[27] R. W. Hamming. Digital filters. Prentice Hall, Englewood Cliffs, N.J., 1989.

[28] Amy K. Hara, Robert G. Paden, Alvin C. Silva, Jennifer L. Kujak, Holly J. Lawder,

and William Pavlicek. Iterative reconstruction technique for reducing body radiation

dose at CT: feasibility study. American Journal of Roentgenology, 193(3):764–771,

2009.

[29] Gabor T. Herman. Fundamentals of Computerized Tomography: Image Reconstruc-

tion from Projections. Media, Springer, New York, 2009.

[30] Gabor T. Herman and Lorraine B. Meyer. Algebraic reconstruction techniques

can be made computationally efficient. IEEE Transactions on Medical Imaging,

12(3):600–609, 1993.

[31] M. Jiang and G. Wang. Convergence of the simultaneous algebraic reconstruction

technique (SART). IEEE Transactions on Image Processing, 12(8):957–61, 2003.

[32] Peter M. Joseph and Robin D. Spital. A method for correcting bone induced artifacts

in computed tomography scanners. Computer Assisted Tomography, 2(1):100–108,

1978.

[33] David Kahaner, Cleve Moler, and Stephen Nash. Numerical Methods and Software.

Prentice-Hall, Upper Saddle River, NJ, USA, 1998.

[34] Avinash C. Kak and Malcolm Slaney. Principles of Computerized Tomographic

Imaging. SIAM, Philadelphia, PA, 2001.

[35] K. Levenberg. A method for the solution of certain problems in least-squares. Quar-

terly Applied Mathematics, 2:164–168, 1944.

Bibliography 112

[36] Jae S. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, Upper

Saddle River, NJ, USA, 1990.

[37] Bruno De Man, Johan Nuyts, Patrick Dupont, Guy Marchal, and Paul Suetens. An

iterative maximum-likelihood polyenergetic algorithm for CT. IEEE Transactions

on Medical Imaging, 20(10):999–1008, 2001.

[38] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

SIAM Journal, 11:431–441, 1963.

[39] MathWorks. Radon transform, 2011. http://www.mathworks.com/help/toolbox/

images/ref/radon.html.

[40] W. D. McDavid, R. G. Waggener, W. H. Payne, and M. J. Denis. Correction for

spectral artifacts in cross-sectional reconstruction from x-rays. Journal of Medical

Physics, 4(1):54–57, 1997.

[41] J. J. Moré. The Levenberg-Marquardt algorithm: implementation and theory, Lec-

ture Notes in Mathematics. Springer Verlag, 630:105–116, 1978.

[42] Frank Natterer. The mathematics of computerized tomography. SIAM, Philadelphia,

PA, USA, 2001.

[43] Frank Natterer and Frank Wübbeling. Mathematical Methods in Image Reconstruc-

tion. Medical Physics, SIAM, Philadelphia, PA, 2001.

[44] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York,

1999.

[45] NVIDIA Corporation. GeForce 8 and 9 Series GPU Programming Guide,

2008. http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_

Programming_Guide_G80.pdf.

http://www.mathworks.com/help/toolbox/images/ref/radon.html
http://www.mathworks.com/help/toolbox/images/ref/radon.html
http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide_G80.pdf
http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide_G80.pdf

Bibliography 113

[46] James R. Parker. Algorithms for Image Processing and Computer Vision. John

Wiley and Sons, New York, 1997.

[47] A. R. De Pierro. On the relation between the ISRA and the EM algorithm for

positron emission tomography. IEEE Transactions on Medical Imaging, 12(2):328–

333, 1993.

[48] A. R. De Pierro. A modified expectation maximization algorithm for penalized like-

lihood estimation in emission tomography. IEEE Transactions on Medical Imaging,

14(1):132–137, 1995.

[49] Nargol Rezvani, D. A. Aruliah, John M. Boone, Michael J. Flynn, Kenneth R. Hoff-

mann, Kenneth R. Jackson, Douglas Moseley, Xiaochuan Pan, Jeffrey Siewerdsen,

and Xiangyang Tang. OSCaR: open source cone-beam reconstructor. American

Association of Physicists in Medicine, Technical report, submitted, 2012.

[50] Nargol Rezvani, D. A. Aruliah, John M. Boone, Michael J. Flynn, Kenneth R. Hoff-

mann, Kenneth R. Jackson, Douglas Moseley, Xiaochuan Pan, Jeffrey Siewerdsen,

and Xiangyang Tang. An overview of OSCaR: open source cone-beam reconstructor.

American Association of Physicists in Medicine, submitted, 2012.

[51] T. Rodet, F. Noo, and M. Defrise. The cone-beam algorithm of Feldkamp, Davis,

and Kress preserves oblique line integrals. Journal of Medical Physics, 31(7):1972–

1975, 2004.

[52] Paul Rodŕıguez and Brendt Wohlberg. An iteratively weighted norm algorithm

for total variation regularization. Proceedings of Fortieth Asilomar Conference on

Signals, Systems, and Computers, 43:892–896, 2006.

[53] B. Rust and D. Donnelly. The fast Fourier transform for experimentalists, part V:

Filters. Computing in Science and Engineering, 8(1):92–95, 2005.

Bibliography 114

[54] Somesh Srivastava and Jeffrey A. Fessler. Simplified statistical image reconstruction

algorithm for polyenergetic x-ray CT. IEEE Nuclear Science Symposium Conference

Record, 3:1551–1555, 2005.

[55] Henrik Turbell. Cone-beam reconstruction using filtered back-projection. PhD thesis,

Department of Electrical Engineering, Linköpings Universitet, 2001.

[56] C. R. Vogel and M. E. Oman. Iterative methods for total variation denoising. SIAM

Journal on Scientific Computing, 17(1):227–238, 1996.

[57] Curtis R. Vogel. Computational Methods for Inverse Problems, Frontiers in Applied

Mathematics. SIAM, 2002.

[58] James S. Walker. Fast Fourier Transforms. CRC Press, 2000.

[59] S. Webb. A modified convolution reconstruction technique for divergent beams.

Physics in Medicine and Biology, 27(3):419–423, 1982.

[60] Yuchuan Wei, Ge Wang, and Jiang Hsieh. An intuitive discussion on the ideal

ramp filter in computed tomography. Computers & Mathematics with Applications,

49(5–6):731–740, 2005.

[61] Chye Hwang Yan, R. T. Whalen, G. S. Beaupre, S. Y. Yen, and S. Napel. Recon-

struction algorithm for polychromatic CT imaging: application to beam hardening

correction. Medical Imaging, IEEE Transactions on, 19(1):1–11, 2000.

[62] Yanbo Zhang, Xuanqin Mou, and Shaojie Tang. Beam hardening correction for fan-

beam CT imaging with multiple materials. Nuclear Science Symposium Conference

Record (NSS/MIC), 2010 IEEE, pages 3566–3570, 2010.

	Introduction
	Main contributions

	Mathematical Background and Filtered Back-Projection
	A physical model
	Mathematical background of x-ray CT
	The Radon transform
	Fourier transform
	Central slice theorem

	Acquisition geometries
	Parallel-beam
	Fan-beam
	Cone-beam

	Direct reconstruction methods: Filtered back-projection
	More about filtering
	More about back-projection
	A Reconstruction algorithm for parallel-beam machines

	Matrix representation of filtered back-projection
	Kronecker product
	Fourier transform matrix
	Filtering matrix
	Inverse Fourier transform matrix
	Back-projection – Interpolation

	Iterative Reconstruction Algorithms
	Introduction
	Algebraic reconstruction techniques (ART)
	Mathematical formulation
	Pixel basis
	Reconstruction model
	Kaczmarz's method

	Statistical image reconstruction techniques (SIRT)
	Polyenergetic physical model
	Beam hardening
	Incorporating a polyenergetic acquisition model

	Polyenergetic Nonlinear Iterative Method
	More about the polyenergetic physical model
	Discretization
	Discretizing the outer integral
	Discretizing the inner integral
	Solve for the Radon transform of the attenuation coefficient
	Solve for the attenuation coefficient
	Discrete Radon transform

	Filtering
	Unconstrained optimization
	Objective function
	Jacobian/Gradient of the objective function

	Newton's method
	Levenberg-Marquardt-Fletcher algorithm
	LMF for the polyenergetic problem
	Shortcomings of the LMF approach

	An energy-dependent mathematical phantom
	Numerical results

	Large Scale Polyenergetic Nonlinear Iterative Method
	Modified LMF algorithm for the polyenergetic problem
	The Radon matrix in the Jacobian matrix
	Using back-projection in LMF
	Block diagonal matrix
	Back-projection and the blackadjoint of the Radon transform

	Storage reduction and fast computation
	Matrix-free computation

	Regularization and image restoration
	Tikhonov regularization
	Regularization in the 1-norm

	Numerical results
	Example 1
	Example 2
	Example 3
	Example 4

	Conclusions and future work
	Summary and conclusions
	Future work
	Using real data
	Cone-beam geometry
	Comparison with blackother polyenergetic techniques
	Reducing the running-time of our matrix-free polyenergetic reconstruction method

	OSCaR
	A reconstruction algorithm for cone-beam machines
	Assumptions and limitations
	Running OSCaR
	The GUI OSCaRMain
	The GUI OSCaRPreprocess
	Geometry/resolution parameters
	Storage parameters
	Projection-dependent parameters
	Orientation buttons
	Export to OSCaRReconstruct

	The GUI OSCaRReconstruct
	Reconstruction size
	Filter
	Execute and export

	The function OSCaR
	Syntax

	One quick example
	Standalone executable

