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Abstract

Cellular processes are typically viewed as systems of atemeactions. Often such processes involve
some species with low population numbers, for which a trawi#l deterministic model of classical chemical
kinetics fails to accurately capture the dynamics of theéesys In this case, stochastic models are needed to
account for the random fluctuations observed at the levelsirigle cell. We survey the stochastic models
of well-stirred biochemical systems and discuss impontagcgnt advances in the development of numerical
methods for simulating them. Finally, we identify some kepits for future research.
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1 Introduction

Modeling and simulation of biochemical systems has becomar@a of intense research in recent years [40,
44]. Cellular processes are typically represented asragsté chemical reactions. The evolution of these sys-
tems has been traditionally modeled by deterministic freactte equations. However, at the level of a single
cell it is often the case that some key reactants are presdatvi molecular numbers (eg., only few copies
of a gene or of some important regulatory molecules). Tloeee continuous model may not be appropri-
ate [72, 75]. Moreover, such a system behaves stochagtiedher than deterministically [5, 8, 20, 21, 23,
55, 56, 59, 68, 70]. The refined model of stochastic chemiiradtics, the Chemical Master Equation, was
developed decades ago by Gillespie [27], who also proposeckact algorithm to simulate it. Also, the rela-
tionship between the stochastic and the deterministic @ameaction models was studied in the early work
of Kurtz [46, 47]. In spite of this, it was not until recentliget this model has established itself as a standard
model for a wide variety of biological processes. The Chairlidaster Equation has since been the subject of
intense research and it has been successfully applied tenousibiochemical systems, even when the well-
mixed assumption is not valid (such as in the cell). The fipgiiaation of Gillespie’s algorithm to a biological
system is due to McAdams & Arkin. They showed that stochisgtidays a critical role in the lysis/lysogeny
decision of the bacteria-phage [55]. Samoilov et al. [67] demonstrated that noiseimduce bi-stability in an
otherwise monostable system.

However, stochastic models are computationally much mbatlenging than deterministic models. Fur-
thermore, biochemical systems are generally very comflegy involve reactant species with a wide range of
molecular numbers and/or reactions with multiple timeleszaAlso, the network of interactions between the
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reactant species can be quite complicated. Gillespietwidtgn becomes prohibitively expensive on these sys-
tems. All these challenges have renewed the interest inajeg effective numerical methods for a stochastic
model, capable of coping with the level of complexity chagdstic to biological systems. An enhanced exact
algorithm was proposed by Gibson & Bruck [25]. Despite thigpiovement, the high computational cost of

exact methods on realistic applications motivated thecbetor more efficient approaches. Several approxi-
mate algorithms have been developed and this continues @ovbey active research area [38]. One strategy
to reduce the computational cost is due to Gillespie [31]p wioposed the tau-leaping method. More refined
algorithms based on various improvements of the tau-lgapiathods were explored by Rathinam et al. [63],

Cao, Gillespie & Petzold [13], Tian & Burrage [71] and Chgtte et al. [15]. Several theoretical studies of tau-
leaping methods were considered, addressing topics sumnaistency and stability by Rathinam et al. [64],

higher-order methods by Li [48] and adaptive time-stepfipdginderson [3].

Moreover, the tau-leaping method has been shown to be aetiemrbridge between a microscopic,
stochastic and discrete model of well-stirred biochemidattics, the Chemical Master Equation [28] and
a macroscopic, stochastic and continuous model, the Chébtangevin Equation [30]. Langevin type equa-
tions, which are stochastic differential equations (SD&Ye received considerable attention, not only in sys-
tems biology [44], but also in a wide range of practical aggtions in physics, chemistry and biology [24, 41].
There exist numerous studies on numerical solution of ststahdifferential equations. We suggest as reading
on this topic the introductory treatment by Higham [37] ahed mmore comprehensive reference by Kloeden &
Platen [45], respectively.

Another strategy to reduce the computational cost whenlating more challenging biochemical systems
is to use a combination of models and/or a combination oftexad approximate algorithms for them. Hybrid
methods were designed and applied for models that sparmptewstiales in space and/or time. Among them are
the methods of Alfonsi et al. [2], Cao et al. [12], HaseltindR@wlings [33], Hellander & Lotstedt [36], Kiehl
et al. [42], MacNamara et al. [50], Mattheyses & Simmons [B]chalka & Kierzek [60], Rao & Arkin [61],
Salis & Kaznessis [65], Samant & Vlachos [66], Weinan et B8] [

In this paper we review the most important advances in théemaatical modeling and simulation of well-
stirred biochemical reaction systems. We provide the hackgl information for the most relevant existing
mathematical models for biochemical systems. Our aim isuv® @ detailed description of some of the main
numerical methods developed for them. Since this area efirek has grown beyond the scope of any single
survey, it was not possible to cover all existing methodscellgnt introductory references for modeling and
simulations of biochemical kinetics are due to Higham [3B]]lespie & Petzold [32], and Turner et al. [72].
Wilkinson [75] gives an accessible introduction to prolisbitheory and stochastic modeling of biological
systems.

The paper is organized as follows. In section 2 we give anviewrof the hierarchy of mathematical
models for isothermal well-stirred biochemical kinetifrem the most refined, the Chemical Master Equation,
to the intermediate model of the Chemical Langevin Equadiad to the less accurate model based on reaction
rate equations. In section 3, we identify the key issues jpm@pmating the solution of these models and some
of the most significant contributions to algorithm devel@minfor them. In section 4 we give some numerical
results and we conclude with a description of key challeragesopportunities for future research.

2 Stochastic chemical kinetics

Stochastic chemical kinetics of well-stirred systems isnagcurately described by the Chemical Master Equa-
tion. The theoretical justification of this model was given Gillespie [28]. Let us consider a well-stirred
system which containd’ biochemical specieSy, - - - , Sy involved in M reactionsRy, - -- , Ry;. The system

is assumed at thermal equilibrium with a constant voldmé& he dynamical system is described by the vector
of statesX (¢) = (X1(t), ..., Xn(t))T, whereX;(t) is the number of; molecules at time. The vectoiX(t) is

a discrete (jump) Markov process. The aim is to find the statéovX (¢), given that at the initial time;, = ¢,

the system was in the staXgty) = Xo.



Each reactio?; produces a change in the system given by the state-chantg® vgc= (v4;, ..., v )T

Here we denote by;; the change in the number 8f molecules caused by one reactiBp. The matrix¥ =
{vij hi<i<n1<j<m is called thestoichiometric matrixIn addition, a reactiot?; can be described by its propen-
sity functiona;, which is defined by:; (x)dt = the probability of a single occurence B in the interval[t, t+
dt), whereX(t) = x. For asecond-order reactign

Sy + Sp — ‘reaction products’ (1)

with ¢ # k the propensity function has the form(x) = c¢;z¢xj. Intuitively, this means that the probability
that this reaction takes place is proportional to the nunabe¥, and S, molecules present. Similarly, for a
first-order reaction

S, —L ‘reaction products’ 2)

the propensity function has the form(x) = c;z. A similar intuitive justification can be used: the probéil
that a reaction of this type takes place is proportional torthmber of molecules of typ&,.. Finally, for a
dimerization

Sk + Sk 7, ‘reaction products’ 3)

the propensity function has the form(x) = c;zi(z, — 1)/2. This is a consequence of the observation that
the probability that this reaction takes place is propodiao the number of ways two molecules of tyfg
can be grouped as unordered pairs. These formulae for tipemsiy functions are rigourously derived from
the theory of molecular physics and kinetic theory [28]. Makfurther approximating assumptions can lead
to the reaction rates in the deterministic chemical kisetis will be discussed later.

2.1 Chemical Master Equation

Fort > ty we can define the probability that the state vector at tingeX (¢) = x given that at time it was
X(to) = Xp-
P(x,t|Xo,tg) = Prob{X(t) = X, given X(tp) = Xo} -

To compute this probability, we first derive the probabilltyx, ¢ + dt| o, to) wheredt is small enough that no
more than one elementary reaction occurs in the intgtyal- dt). The system will be in stateat timet + dt

if one of the following events took place: either the systeasw this state at timeand no reaction occurred
in [t,t 4 dt) or, for somel < j < M, the system was in a state— v; at timet and exactly one reactioR;
occurred in the intervdk, t 4+ dt). There are thud/ + 1 such events which lead to the system being in state
at timet + dt, and these events are disjoint and exhaustive. Since tialpitity that one reactio®; fires in
[t,t 4 dt) when at time the system was in state— v is, by definition,a;(x — v;)dt and the probability that
no reaction occurs ift, t + dt) when at timet the system was in stateis (1 — Z;‘il a;(x)dt), from the laws
of probability, we derive that

M M
P(x,t +di[ o, t0) = P(X,t|Xo,t0) | 1 =Y a;(x)dt | + D P(x—vj,t|Xo,to)a;(x — v;)dt .
- P

By rearranging the terms, dividing ki and taking the limit agt — 0, we obtain the following equation

P(x,t|Xo, to) = Z (X =vj, t| X, to)aj(X = vj) — P(X, t| X, to)a; (X)) , 4)
J=1

d

dt
known as theChemical Master Equatio(CME) or theforward Kolmogorov equatianit is a coupled system
of ordinary differential equations with size equal to thenter of all possible states of the system subject to



the M reaction channels. Thidiscreteandstochastiomodel is the most refined mathematical model of well-
stirred chemical reaction systems. Unfortunately, it teaictable for most realistic applications. For example,
in the Arkin et al. [5] model of\-phage, realistic population numbers lead to approximatel® possible
states in the Chemical Master Equation. Thus other methadsirhulation are needed for such problems.
However, we should mention that recent progress has beea maealing directly with the Chemical Master
Equation [58, 39].

2.2 Chemical Langevin Equation

Under certain assumptions, the Chemical Master equatiorbeaapproximated by a less refined model, the
Chemical Langevin Equation (CLE), which is more efficienafgproximate numerically. Below, we outline
the conditions for which this approximation is justifiedcarding to Gillespie [30].

Let us assume that there exists a time- 0 such that the followind.eap conditionis satisfied:a;(X(t))
remains almost constant ¢h¢ + 7) for all 1 < j < M. Fora;(X(-)) constant in this interval, the probability
that one reactio?; occurs int,t 4 7) is a;(x)T whereX(t) = x. Consequently, the number of reactioRs
that fire in the interval has a Poisson distribution with paetera;(x)7. Under the Leap condition assumption

one can then approximate
M

X(t+7)=x+>_ viPia;(x),7) . (5)
j=1
This is called the (explicitfau-leaping metho@B1]. If 7 > 0 is both small enough such that it satisfies the leap
condition, but also large enough such thatx)r > 1forall 1 < j < M, then the Poisson random variable
P;j(aj(x),7), with mean and variance; (x)7, can be approximated by a normal random variable with theesam
mean and variance

Pjaj(x),7) = a;(X)7 + 4/ a;(x)TN;(0,1) , (6)

whereN;(0,1) with 1 < j < M are statistically independent normal random variables wiean zero and
variance one. This approximation holds when all reactaetisg have sufficiently large population numbers.
Substituting the approximation (6) into the tau-leapingragimation (5) we obtain

M M
X(t+7) =X+ via;(X)r+ > vjy/a;(x)v7N;(0,1) (7
=1 j=1

We recognize in (7) the Euler-Maruyama numerical approkioneof the following stochastic differential equa-

tion
M M
AX(t) =Y wvja;(X(®)dt + > vy Ja;(X(£)dW;(t) (8)
j=1 i=1

whereW; for 1 < j < M are independent Wiener processes. The equation (8) isi¢a#é€hemical Langevin
Equation The discrete stochastic process is approximated by antamits stochastic proce¥gt) in the new
model (8). This Langevin model consists of a system of calfiié stochastic differential equations of size
equal to the number of reactant species and it is valid inggarre of large molecular populations.

An alternative derivation of the Chemical Langevin Equat{8) was obtained very recently by Burrage
and co-workers [57]. They show that CLE can be viewed as awpetrac family of equations, each having the
same finite-dimensional distribution of variables. This\g#ion is presented below.

The time evolution of the first moment of the state variabliethe CME is obtained from equation (4)

d
ZEX@)) = v E(a(X(?))) (9)



wherea(x) = (ai(x),az(X),...,ar(x))T is the column vector of propensities. The evolution of theose
moment is

d

7 EX(®) X(0)") = B(h(X (1) X()") + E(X®)h(X())") + E(B(X(t))) (10)
whereh(x) = va(x), and B(x) = vdiagla(x)) v? is thediffusion matrix(see also [41]). Next, we explore
how to construct a stochastic differential equation, sihet its expectation and covariance match those of the
CME, (9) and (10), respectively. Assume there efistRY — RY andg : RV — RN*P such that

dX(t) = f(X(¢))dt + g(X(¢))dW (t) , (11)

with W(t) = (Wi(t),...,Wp(t))T a D-dimensional Wiener process, has the first and second mertfesnt
same of those in (9) and (10). By applying the expectatiod 1) (e derive

d

ZEX(1) = E(f(X(?))) -

Comparing it with (9) we deduce that a natural choicég(is) = v a(x). For the second moment, we compute
from (11)

D
%E(Xi(t)Xk(t)) = E(fi(X(1))X1(8)) + E(Xi(0) f(X(£) + D Elgie(X(£)gre(X(1) . (12)
(=1

With the choice off given above, if we compare (12) with (10) we derive t@ﬁl E(gi¢(X)gre(X)) = Bix(X).
This condition is satisfied if we choogesuch that

9(x)g(x)" = v diag(a(x)) " . (13)

For g(x) = vdiag(\/ai(X),/az2(X),...,v/ay (X)) and D = M we obtain the form (8) of the Chemical

Langevin Equation, which is due to Gillespie. An importabservation is that, for the above choicesfaind
g, the two moments of the CME and of (11) are identical if all tbactions are at most first order.

2.3 Reaction rate equations

A further reduction of the model of well-stirred chemicahétics is obtained when very large numbers for each
species are present. More precisely, let us consideh#renodynamic limjtthat isX;(¢) — oo and the volume

V' — oo such thatX;(¢)/V remains constant for all < i < N. Hence, the stochastic terms in the Chemical
Langevin Equation (8) become much smaller than the detéstinerms, as the former grow as the square
root of the system size while the latter grow as the system Jiherefore the stochastic terms can be neglected
in a neighborhood of the thermodynamic limit. In this regjrtiee mathematical model is typically written in
terms of concentrations, rather than in population numb&fsdefine the vector of concentratianét) to have
componentsZ;(t) = X;(t)/(VN4) for 1 < i < N, whereN4 = 6.02214179 x 10**mol~! is Avogadro’s
number and/ is the volume. It follows that the concentrations satisfy

M
%7(;') = JZ} vja;(Z(1)) . (14)

These are the classicadaction rate equationsNote that the reaction ratég(Z(t)) for 1 < j < M in the
reaction rate equation correspond to the propensity fonstin the Chemical Master Equation.

Indeed, in the case of the second-order reaction (1) théioeaate isa;(Z(t)) = k;Ze(t)Zi(t) with k; =
c;N4V. The reaction rate of the first-order reaction (2§j$Z(t)) = k; Zi(t) with k; = ¢;. In the case of the



dimerization (3), the ternX,(¢) in the expression of the propensity function is negligibdenpared taX?(¢),
for large population numbers. Therefore the reaction ratkis case i&;(Z(t)) = k; Z7(t) with k; = FN4V.

The reaction rate equations (14) are a deterministic andneaus model, consisting of a system of cou-
pled ordinary differential equations of dimension equah® number of reactive species. It is a simplification
of the Chemical Langevin Equation, which is valid in the magiof very large population numbers. An im-
portant observation is that, unless all reactions are dfdiider, the reaction rate equations are not obtained
from averaging over the Chemical Langevin Equation. Ingdeethputing the expectation of (8) leads to (9).
HoweverE(a;(X(t))) # a;(E(X(t))) if the propensitya; is quadratic, which is the case for dimerization or
second-order reactions.

3 Methods

3.1 Direct CME-solvers

As mentioned above, solving directly the Chemical Mastardtign (4) can be quite expensive for most realis-
tic applications, due to the very large dimension of theestpice. Alternative approaches exist to deal with this
difficulty, such as Gillepie’s algorithm, tau-leaping medls, methods based on partial equilibrium assumptions
and hybrid methods. Before describing these approachesptedhat recent progress has been made in devel-
oping numerical methods for the direct computation andalization of the solution of the Chemical Master
Equation. Let us denote hyy(t) the vector of probabilitied(x, t| Xo, to) indexed by the statesof the system.

It has been observed that the CME can be written as a systdmeaf brdinary differential equations,

Zp(t) = Ap()

whereA;; is the propensity of the system to move to stafeom statei, if ¢ # j andA;; = — Z#i A;;. The

solution to this equation ip(t) = exp(tA)p(0). The finite state projection approach (FSP) replakdsy a
k x k-submatrixA . of A and approximates (see [58])

p(T) ~ exp(TAy)px(0) .

The vectorX,, of the states{1,2,...,k} constitutes thdinite state projection Denote the column sum by
'y = 17 exp(T A)px(0). Munsky & Khammash [58] show that, if, > 1 — ¢, then

exp(TAg)px(0) < p(T) < exp(TAg)pi(0) +c-1.

This observation led to the FSP-algorithm [58] to approxartae solution of the CME. This algorithm grad-
ually expands the finite state projecti® in order to satisfy the prescribed tolerance in the totabphility
density error. An improved FSP-algorithm based on Krylothods and an FSP-leap method are developed by
Burrage and co-workers in [50]. Numerical experiments stimt/these methods can be efficient for computing
the mean and variance of the solution for the CME.

The Finite State Projection Algorithm Calculate the propensity functions aid and choose(0), 7', €
andX,. Setk = 0.

(1). ComputeA;, = submatrix,(A), depending oiX, andl', = 17 exp(T'A)px(0).
(2). If Ty, > 1 — ¢, stop. Therexp(T'Ax)px(0) approximates the probability(X, T") with errore.
(3). Else add more statesy 1 = expandXy), and takek — k + 1.

(4). Return to step (1).



In [39], Jahnke proposes a different technique to diregtigraximate the Chemical Master Equation. The
author constructs an adaptive Galerkin method based onrsespad adaptive wavelet representation of the
solution. The wavelet compression allows one to decreassitle of the approximate solution very efficiently
since the time-dependent probability distribution is ljcamooth. Then the remaining degrees of freedom can
be resolved by applying Rothe’s method.

3.2 Exact methods

Instead of solving the Chemical Master Equation to gendrajectories of all possible states, one could sim-
ulate one correct trajectory at a time. It is possible to $ateusuch trajectories, by specifying reactions and
times of these reactions with tlegact probability distributionconsistent with the probability distribution asso-
ciated with the Chemical Master Equation. Then by runningyrsaich trajectories, one can recover the correct
statistics for the solution of the Chemical Master Equatibising this approach, Gillespie [26, 27] gave two
exact stochastic simulation algorithms to solve the Chahiitaster Equation, the Direct Method and the First
Reaction Method. The algorithms and their derivation asedee below. Following Gillespie [26] we define

p(T,j|X,t) = the probability that the next reaction will occur in the V@& [t + 7,¢ + 7 + d7)
and this reaction will be?;, given thatX(t) = x.

In addition, we denote by
Py(7|x,t) = the probability than no reaction occurs[int + ) given thatX(¢) = x . (15)

The two events, that no reactions takes plade, in+-) and that one reactioR; occurs int+7,t+7+dr), are
independent. Their joint probability density functionfs(7|x, ¢), multiplied by the probability that a reaction
R; occurs oveft + 7,t + 7 + dr), which isa; (x)dr. Therefore

p(T, jIX, t)dT = Py(7|X,t) X a;j(x)dT . (16)

So, we need to compute the probabilfgy(r|x, ¢). Following the definition (15), we observe that no reaction
occurs inft,t + 7 + dr) if (i) no reaction occurs ift, ¢ + 7) and (ii) no reaction occurs ift + 7,¢t + 7 + dr).
These two events are independent. Their joint probabiditthe product of the probability of the event (i),
which is Py(7|x, t), and the probability of the event (ii), which {$ — Z,ﬂ‘il ag(x)dr):

M
Py(m + dr|x,t) = Po(1|x,t) X <1 - Z ak(x)d7> .
k=1

By taking the limitdm — 0 we obtain a differential equation for the desired probahilvhose solution is
Po(7|x, t) = exp(—ao(X)7) 17

whereay(x) = 22”:1 ar(X). Equations (16) & (17) lead tp(7, j|X,t) = exp(—ao(X)T) X a;(X), or, equiva-
lently,
. a;(x)
p(7,j|%,t) = (ao(X) exp(—ao(X)7)) x =—— . (18)
ao(X)
This is the joint density function for the time to the nextatian and of the index of the next reaction. It can
be viewed as splitting the joint density function into twandity functions for

(i) 7, thetimeto the next reaction, having density(x) exp(—ag(X)7) ,
(i) j, theindexof the next reaction, having density(x)/ao(X) .

These results lead to the following Monte Carlo method ofeSflie [26, 27] for generating sample paths with
the correct probabilities.



Gillespie’s Direct Method This method computes directly the time to the next reactimhthe index of this
reaction, according to their correct distributions. Fitse system is initialized at time= ¢y by X(¢9) = Xo.
Then, it proceeds with the following steps:

(1). Calculate the propensity functions,(x), for 1 < k < M, for the current state of the systeX(t) = x,
and the sum of all propensitiesy(x) = S"1" | ay(X).

(2). Generate two independent unit-interval uniform randaumbers+ andr,.
(3). Calculate the time to the next reactionby= (1/ag(X)) In(1/ry) .
(4). Calculate the index of the next reaction, as the intﬁe’gatisfyingZZ;l1 ar(X) < raap(X) < Zizl ax(X).

(5). Update the state of the system to reflect that a read&tjorccurred X (t +7) = X(t) +v;, sett = t+7,
then return to stepl) or stop.

Gillespie’s First Reaction Method Gillespie’s [26] second exact algorithm computes the fbsdimer; at
which each reaction could occur, if no other reaction takasg Then it finds the indexof the first reaction,
that is the one with the smallest time. After the initialinat at timet = ¢, by X(t9) = Xo, the algorithm
consists of:

(1). Calculate the propensity functions,(x) for 1 < k < M, for the current state of the systeX(t) = x,
and the the sum of all propensitieg,(x) = 224:1 ag(X).

(2). Foreachl < k < M, calculate the times, when the reactiom?;, occurs, according to the exponential
distribution with parametet;, (x), wherex is the current state vector. Each = (1/ax (X)) In(1/r),
wherery, ro, ...,y are independent unit-interval uniform random numbers.

(3). Calculatej for which7; = min;<j<p/{7} and setr = 7;.

(4). Update the state of the system to reflect that a readtiomccurred X (t +7) = X(t) + v, sett =t 47,
then return to stepl) or stop.

These two algorithms are equivalent, using the same priitigadistributions for~ andj, derived above.
Each of these methods requires (per iteration) a time ptiopat to M, the total number of reactions. The
Direct Method uses two random numbers per iteration. Thet Reaction Method use® random numbers
per iteration and hence it is less efficient than the Direddeé. For this reason we subsequently consider only
the Direct Method, which is the faster of the two methods, eatlit Gillespie’s algorithm or thestochastic
simulation algorithm(SSA).

Gibson-Bruck Algorithm: The Next Reaction Method Gibson & Bruck [25] modified Gillespie’s First
Reaction Method to give an exact algorithm which requiresach iteration, a computational time proportional
to the logarithm of the number of reactiorisg M. The method does so by constructing a dependency graph
from the set of reactions and by using an appropriate datatste to store all the propensitieg and the
possible times,. This structure is an indexed priority graph (also known agap). The algorithm can also
be applied to systems with time-dependent propensity imst

Algorithm  The initialization consists of settin§ (¢,) = X, attimet = ¢, and generating a dependency graph
G. Then it calculates the propensity functiong(x) for 1 < k < M, for the given state of the system. For
eachl < k < M, it computes the possible time,, when the reactio®; occurs, according to the exponential
distribution with parameteti (x), for the given state vector. It storeg in an indexed priority queu® and
follows the steps:



(1). Find, in the indexed priority queug, the index; of the reaction for which the possible time is the
smallest and set = 7.

(2). Update the state of the system to reflect that a readtjomccurred X (¢t + 7) = X(t) + v, .
(3). For each edggj, k) in the dependency gragh do

(). Updateay.

(ii). Fork # jtaket, = (ak,oid/k new) (T — ) +1 .
(iii). For k = j computer; = (1/a;(X))In(1/r) +t, wherer is a unit-interval uniform random number.
(iv). Update the values; in the indexed priority queu® and set =t + 7.

(4). Return to step (1) or stop.

Further details on this method can be found in [25]. The GiklBouck algorithm has the potential of being
more efficient than Gillespie’s algorithm for systems withmyg species and many reactions.

Any exact method simulates all reactions, one at a time. eSmast realistic biochemical systems have
some reactions evolving on very fast time scales, the exathads become computationally very intense
on these practical applications. Typically, Monte Carlmdations require tens of thousands or hundreds of
thousands of individual trajectory computations to get ecugate estimation of the probability distributions.
Thus the efficiency of these computations is very importaks. a result, finding a better trade-off between
speed and accuracy of the numerical methods for approximtie solution of the Chemical Master Equation
is essential.

3.3 Tau-leaping methods

A speed-up over the exact methods could be obtained by emglagproximateschemes, such &su-leaping
A tau-leaping method advances the system by leaping with prioai chosen time-step, rather than by
stepping from one reaction to the next with the correct podiba distribution. To be faster than Gillespie’s
algorithm, tau-leaping should take a larger step-sizelléavdor more reactions to fire within this time-step.
should also be chosen to satisfy the Leap condition, thatdl propensity function changes only by a “small”
amount over the time intervét, ¢ + 7). Several conditions to ensure that each propensity fumctaes not
vary significantly have been proposed. Among them, the agbroaescribed in [13] is currently widely used.
This requires that the relative changes in each properssitpiformly bounded by a small accuracy parameter,
ek 1,

la;(X(t+ 7)) — a;(X)| < max(ea;j(x),c;) foreachl < j < M . (19)

Since(a;(X(t + 7)) — a;(x)) is a random variable, both its mean and standard deviationldtsatisfy the
condition (19). This leads to a procedure to determine thamam step-size for the desired accuracy [13].

Explicit tau-leaping  The (explicit) tau-leaping method (5) is due to Gillespi#&][3The algorithm consists of
initialization of the system at time= ¢, by X(ty) = X, followed by

(1). Forthe current state of the systenat timet, calculate the propensity functiong,(x) with 1 < k£ < M,
and the step-size that satisfies the Leap condition.

(2). Foreachl < j < M, generate the numbét of reactionsR; that occur in the time intervdt, ¢ + 7)
from the Poisson random variati® (a;(x), 7).

(3). Update the state of the system to reflect thateactionsR; occurred,1 < j < M, X(t+ 1) =
X(t)+ Zj]‘il kjv;. Sett =t + 7, then return to stefl) or stop.



The main difficulty with this method is that biochemical ®rss are almost always stiff, exhibiting both
fast and slow dynamics. As in the case of stiff determinististems, explicit schemes become impractical
when applied to stiff stochastic systems. They restrictstiep-size to the system'’s fastest mode. To improve
the efficiency and the accuracy of the simulations, othetdaping schemes more suitable for stiff stochastic
systems were investigated.

Implicit tau-leaping  To overcome the step-size limitation due to the differemietiscales, implicit versions
of the tau-leaping method (5) were proposed in [63]. Theserisandom variable which appears in the explicit
tau-leaping method?; (a;(x), 7), has meam;(x)7. If the deterministic termg;(X)r, is evaluated at the end
of the step, while the stochastic term of zero med)(a;(X),7) — a;(X)7), is evaluated at the beginning of
the step, then we derive timplicit tau-leapingmethod

M
X(t+7)=x+>_ (ra;(X(t+7)) + Pi(a;(x),7) — Ta;(x)) v; . (20)
j=1

As in the deterministic case, this equation is normally edlby a variant of Newton’s method to determine
X(t + 7). In the reaction rate equations regime, of very large pauanumbers, the explicit tau-leaping
method (5) reduces to the explicit Euler’s method while tinglicit tau-leaping method (20) reduces to the
implicit Euler's method. A drawback of the implicit tau-j@ag method is that it damps the noise excessively:
the variance in the fast componentsXft) is reduced when large step-sizes are employed. To reduge thi
effect, a combination of steps with the implicit tau-leapand steps with Gillespie’s algorithm can be taken in
order to recover the correct probability distributions tloe fast variables [63].

Other tau-leaping methods In an attempt to improve on the convergence and stabilitpgntaes of tau-
leaping methods, other leaping strategies have been mdpbsr example, based on the midpoint Runge-Kutta
method for ordinary differential equations, a midpointsien of the tau-leaping method has been introduced
in [31]. For ar which satisfies the Leap condition, the predicted stateeanttipoint(¢ + 7/2) is given by

X' =x+[37 Zj]‘il a;(x)v;] wherel] is the integer part. Then one generates sample values fr@disson
random variableP; (a;(x"), T) for eachl < j < M. The predicted state at tinfe+ 7) is

M
X(t+7)=x+>_ Pi(a;(X),7)v; (21)
j=1

which gives themidpoint tau-leapingnethod.

Burrage & Tian [11] introduced a class of Poisson-Rungetdatethods for simulating chemical reaction
systems. These methods are similar to the Runge-Kutta aetho stochastic differential equations driven by
Wiener processes [10]. The Chemical Langevin Equationstachastic differential equations (SDE) obtained
by simplifying the Chemical Master Equation, via the taagimg method. The idea that higher-order numerical
methods for the Langevin model can be generalized to highaardau-leaping methods for the Chemical
Master Equation seems promising, but it has been obsere¢dhit order of the Runge-Kutta methods for the
Langevin model was not inherited by the Poisson Runge-Ku#thods for the discrete stochastic model. This
is due to the lower order of convergence for the stochastigpoment.

Convergence of tau-leaping A theory of local errors, valid for small step-size for both the explicit and
implicit tau-leaping methods is developed in Rathinam e{G]. The error estimates may be used for the
design of adaptive time-stepping strategies. The papépfe4es the)-stability and convergence of the explicit
and implicit tau-leaping methods of all the moments in thdipalar case when all propensity functions are
linear (which correspond to first-order reactions). Fos 8pecial case, both methods are shown to be of weak
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order of convergencé. More precisely, for a general chemical reaction systemyth conditional moment
of the incrementX(t + 7) — X(t)) is

M
E[(X(t+71)—X(t)"|X(t) =x] = TZ vjaj(x) + o(r?).
j=1

Then for the explicit tau-leaping approximatisrthe following weak consistency result can be derived: fgr an
multivariate polynomialy : R — R and initial statex there existC' > 0 andd > 0 such that for al- € [0, §]

‘E(g(f((t 7)) — g(X(t + 1) X(E) = X(t) = x) ‘ <o,

Li [48] generalized this result by showing that, providedstthll propensity functions are locally Lipschitz,
the explicit tau-leaping method has strong order of coremegl /2 in the L2-norm and weak order of conver-
gencel. Specifically, suppose that the tau-leaping scheme isepptiamesh =ty < t; < ... <t, =T of
the interval[0, T']. Then there exist€’ > 0 such that forr = 0<Ié1<a2{_1(tg+1 — ty) the following global results

hold
s & ([X(t0) - Xt ) < 07 and [B(a(k(0)) - Blax(e))] < €

<n

These findings are consistent with those for Euler’s (alssknas Euler-Maruyama’s) method for SDE: it is a
scheme of strong order of convergerig@ and weak order of convergentgsee [45]). Still, none of the tau-
leaping methods presented here (including the midpoirgrseh is shown to have higher-order convergence
with respect tar than the explicit tau-leaping method.

The error analysis of tau-leaping methods is different ibther discretization parameter is considered.
In [4], the authors employ” > 1 as a large parameter, typically chosen to be the volumedrslinultiplied
by the Avogadro number. They re-scale the system with respéc¢, such thaXV (t) = X(t)/V is the scaled

exact solution an&' — X/V is the scaled tau-leaping approximation. The stepsize=isV —”. The explicit
tau-leaping method is shown to be of strong order of convexgé, while the midpoint tau-leaping method
is shown to exhibit higher order of strong convergence. Mwezisely, for the midpoint tau-leaping scheme
there exists a constant > 0 such that on0, 7]

1+ 4

sup F <‘Xv(t) — Xv(t)D < L where  k(3) = min{24, o

<T Vk(B)
For the weak approximation by the midpoint tau-leaping méttthe authors prove that, for any multivariate
polynomialg : RN — R and initial statex there exist€”' > 0 such that

SV

sup E(g(X" (1)) = B(g(X"()))| < V5

Avoiding negative populations When Poisson tau-leaping methods are applied to chemmetimg systems
with some species in small population numbers, a large sitgpmay lead to negative population numbers.
Therefore careful step-size selection strategies shoelldniployed to avoid such physically unrealistic pre-
dictions [13]. An alternative approach for tackling thisplem was proposed by Tian and Burrage [71] and
independently by Chatterjee et al. [15]. They considerbthamial tau-leapingnethod, in which the Poisson
random variables are replaced by binomial random varialf#sce a binomial random variable has a finite
range of sample values, the parameters in the binomial mn@woiables can be chosen such that no molecular
population becomes negative over a step.

If some populations are driven negative due to a large stepvgth the Poisson tau-leaping method, then
the step is rejected. However, rejection of steps may biassthtistics of the sample paths and so must be
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handled carefully. Anderson [3] develops a new Poissonegaping procedure that incorporates post-leap
checks to ensure that an accuracy requirement is satisfigdyithout biasing the statistics. It does so by
storing the information generated during one leap and usiirgghistory information to preserve the correct
trajectory. According to Kurtz and co-workers [6, 46], tleaction times can be represented as the firing times
of some independent, unit-rate Poisson proced3ewjth 1 < j < M so that we can write

X(t) = X(0) + ijjpj (/Ot aj(X(s))ds> ”

Then Anderson proves that,#(¢) is a Poisson process with intensityand0 < s < u < ¢, then(P(u)—P(s))
conditioned onP(s) has a binomia(P(t) — P(s), «) distribution witha = (u — s)/(¢t — s). This theoretical
result is used to construct an adaptive step-size stratégghvallows step rejections while ensuring that the
statistics of the sample paths are not skewed.

Finally, we note that the Chemical Langevin Equation mag lad to negative values for species that have
low population numbers [52].

3.4 Methods for stochastic quasi-steady-state or partialaquilibrium approximations

A different approach to dealing with stiffness in stochabibchemical systems is due to Rao & Arkin [61] and
is based on the idea of elimination of the fast components duyasi-steady-state approximation. The species
are partitioned into primary species and intermediate or ephemeral speciés Thus the state vector can be
written asx = (x*,x/). Denote byP(x*,x/; t) the probability density of the system. This joint probabitian

be represented in terms of conditional probabilities as

P(x¢,xI5t) = P(xT|x*; 1) P(x*; 1) (22)

Moreover, we assume thaf conditional tox® is Markovian. So, for a fixea®, the conditional probability
distribution P(x/|x*; t) approximately satisfies a (dynamic) master equation. dilasi-steady-state assump-
tion in the stochastic kinetics setting assumes that the rateasfge of the conditional probability distribution

. d .
P(xf|x*;t) is almost zero,d—tP(xf]xs; t) = 0. Consequently, we derive th&(x/|x*;t) = P(x/|x*). There-

fore, we can approximate the conditional probability distiion P(x/|x*) by a steady-state master equation.
Finally, an approximate CME can be derived in terms of thenpry species® only. One can then apply
Gillespie’s algorithm to this reduced CME.

While the quasi-steady-state assumption deals with the g#aiables, the partial equilibrium assumption
deals with the reactions in the system. The partial eqiilibrapproximation assumes that the fast reaction
are in equilibrium. This assumption constitutes the bawsighe slow-scale stochastic simulation algorithm
(ssSSA) [12]. First, the set of all reactions is partitiote® the set of slow reactiorB* (with M, elements)
and the set of fast reactiol®s’ (with M, elements) depending on the magnitude of their propensitgtions.
Next, the state vector is partitioned into the state vedtstaw speciesX*(t), and that of fast specieX 7 (#),
thatisX (t) = (X*(t), X/(t)). Fast species are considered those involved in fast reactichile the remaining
species are slow. A new virtual fast process is introdudeit), and it is obtained fronX/(¢) by turning all
the slow reactions off. The slow species are set conskiiit,) = x;. We define

P! 1%, to) = Prob{X’ (1) = x/, given X(to) = xo} -

The new procesX/ (t) satisfies a CME with the slow reactions turned off. Two cdodi should be satisfied
for the ssSSA to apply. (i) The first condition is that thewditfast process must be stable(x/, t| xo, to) —
P(x/, 00| xq, ty) ast — oo. (i) The second condition is that the relaxation of theuaitfast procesX/ (¢) to

its stationary asymptotic limit occurs much faster thanekgected time to the next slow reaction. This entails
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a separation of the time-scales of the fast and slow reactibime conditional probabilityf)(xf , 00| Xo, to) satis-
fies a steady-state master equation with the slow reactioned off. Finally, for the slow-scale approximation,
the fast reactions may be ignored and only the slow reacaoasimulated. The propensity functions of the
slow reactions are approximated by an average with respabietasymptotic virtual fast process. Thus the
propensity of a slow reaction?; can be approximated on the time-scale of the slow reactigns b

as(x),x*) =" P(zf  oolx!, x*)as (2!, x°) . (23)
zf

Now the system dynamics can be simulated by applying Gikésplgorithm for the slow reactions only, while

using the approximate propensities (23). More details eafobnd in [12].

The slow-scale stochastic simulation algorithm The system is partitioned into fast and slow reactions and it
is initialized at timet = ¢ by X(to) = (x{; ,X5). The virtual fast process is found and the stationary pritibab
P(xf, 00| X9, t9) is computed according to its steady-state master equation.

(1). At time t, calculate the approximate propensity functioﬁjﬁ,(xf ,X%), according to (23) for the cur-

rent state of the system. Also calculate the sum of all apprate slow propensitiesf;g(xf,xs) =
Ms ~s(yf s
oo Q7. (X7, X%).

(2). Generate two independent unit-interval uniform randaumbers- andr,.
(3). Calculate the time to the next slow reactiondy (1/ag(x7,x*)) In(1/r1) .
(4). Calculatej, the index of the next slow reactioB-i_; a5 (x/,x*) < raag(xf,x*) < S_, a3 (x/, x%).

(5). Update the state of the system to reflect that a slowioeaft; occurred X*(t + 7) = X*(¢) + v; and
X/ (t +7) = sample ofP(z, co|xf, x5). Sett = t + 7. Return to stef1) or stop.

The algorithms described in this section are applicablecife is a separation in time-scales in the dynamics
of the system. It is worth noting that important species &hbe simulated very accurately. If such species are
involved in fast reactions, then the above algorithms waaldbe appropriate.

3.5 Hybrid methods

Hybrid methods were developed in an attempt to speed-upitindations of systems with multiple scales

in the molecular population numbers and widely disparateetscales. These numerical methods typically
deal with a combination of microscopic and macroscopic rfsodehe system is partitioned into subsets: one
subset consists of species with low molecular numbers whedd to be simulated with exact algorithms,
and the other subset corresponding to species with largeaular numbers, which are simulated with some
approximate algorithms.

Discrete stochastic—continuous deterministic modelsKiehl et al. [42] partition the system into two regimes:
continuous and discrete. The discrete regime is repredenth a stochastic model, while the continuous
regime is modeled with the reaction rate equations. Exasnpleeactions modeled with the Master equa-
tion include transcription, translation and moleculamsiing. However, a theoretically justified criteria for
automatically partitioning the system is needed. A sim@lpproach was taken by Takahashi et al. [69], and
Vasudeva & Bhalla [73]. The deterministic model suppres$isesntrinsic noise in the continuous variables and
this may impact on the overall behavior of the system.
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Discrete exact—discrete approximate stochastic algoriths Rather than combining different mathematical
models of biochemical kinetics, Puchalka & Kierzek [60] eleped a hybrid method for simulating the Chem-
ical Master Equation. Their method, called thaximal time-step algorithrases the exact Gibson-Bruck
scheme, for the set of slow reactions and the (Poissonktsirlg method for the set of fast reactions. The sys-
tem is advanced with a time-step which is the minimum of tha& neaction time and a user selected maximal
time-step. In addition, the method dynamically partitidhe reactions set into slow and fast reactions. The
algorithm, while being capable of accurately capturinggygtems’ dynamics for small time-steps, may not be
practical for large systems with reaction rates varying oweltiple time-scales.

Discrete stochastic—continuous stochastic modelsAn improvement over the above hybrid models was orig-
inally proposed by Haseltine & Rawlings [33]. The authorgifianed the reactions into the set of slow and the
set of fast reactions, based on the magnitude of their peifyeiinctions and recommended at least two orders
of magnitude difference between the respective valuesrtifipaed reaction probabilities. The slow reactions
are modeled with the Chemical Master Equation and are steullasing Gillespie’s Direct Method. The fast
reactions are modeled either with the Langevin equationilsited using the Euler-Maruyama method, or with
the reaction rate equations. Since biochemical systemefe stiff, an explicit simulation method such as
Euler-Maruyama could become quite expensive.

Starting from the approach of Haseltine & Rawlings, Salis &zKessis [65] proposed an improved, dy-
namic partitioning of the system into slow and fast reaciand a hybrid model which couples the discrete
stochastic and the Langevin regimes. The method they igegstl, called th@ext reaction hybridemployed
the Next Reaction Method for the discrete model. The autfemsgnized the importance of employing efficient
adaptive, higher-order and possibly implicit methods favieg the Langevin model [45], but they employed
the low-order Euler-Maruyama method for it.

In the dynamic partitioning, a reactidi; is classifies as fast if it satisfies both

a;j(t)At>X>1 and X;(t) > e|vj| with i = {reactant or product of th&; reactior} .  (24)

The suggested values for the parameters\ate10 ande = 100.

Next Reaction Hybrid Algorithm  We describe below a simplified version of the next reactiooriglyalgo-
rithm. First, the system is initialized at time= ¢, by X(¢) = Xo. Next, these steps are followed:

(1). Classify the reactions into fast and slow according#) (Calculate the propensities of the fast and slow
reactionsa/ (t) anda®(t).

(2). Numerically approximate the solution of the Langevijuation overft, t + At) using onlya/ (), and
obtain the path of integration.

(3). Based om*(t), decide if a slow reaction occurred duridg.

(). 1f no slow reaction occurred, update= t + At and approximate the fast variablé§! (t + At).

(ii). If only one slow reaction,Rz;, occurred, find the next time; at which it occurred and update
t =t + 7. Integrate the continuous variables on the correct pathscbanstep (2). Then set
X = X(t—l—Tj) +v;.

(iii). If more than one slow reaction occurred, reduseand return to step (2).

(4). Return to step (1) or stop.
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3.6 Methods for stochastic delay models of chemical kinetsc

We discuss below the problem of simulating the solution stiite stochastic models of biochemical kinetics
with delays. Bratsun et al. [9] and Barrio et al. [7] develdprimerical methods which are appropriate for
the non-Markovian processes associated with these motlbks delayed stochastic simulating algorithm [7]
generalizes Gillespie’s Direct Method by incorporating #ffect of delayed reactions.

Delayed stochastic simulation algorithm First, the system is initialized at tinte= ¢t by X(¢9) = Xo. Then,
it proceeds with the following steps:

(1). Calculate the propensity functions,(x), for 1 < k < M, for the current state of the systeMt) = x,
and the sum of all propensitiegy (x) = Z,i”zl ak(X).

(2). Generate two independent unit-interval uniform randaumbers- andr,.
(3). Calculate the time to the next reactiondy = (1/ap(X)) In(1/71) .
(5). Calculate the index of the next reaction, as the intggetisfyingd " _1 ax(x) < raag(x) < S37_, ax(x).

(5). If a delayed reaction is scheduled duriftgt + At] then letk be the index of the delayed reaction
scheduled first, at timé + 7. Update the state of the system to reflect that a readtiproccurred,
X(t+71)=X(t)+ v, sett =t + 7.

(6). Else, ifj is not a delayed reaction, then update the state of the systeeflect that a reactiomk;
occurred X (t + At) = X(t) + v;.

(7). Else record the time+ At + 7 for reactionj and set = ¢ + At. Return to stegl) or stop.

4 Numerical experiments

Bi-stability The Schlogl model [51, 64] is a remarkable example of a r@aatetwork which exhibits bi-
stability. For the deterministic model represented by Fégliand the reactions in Table 1 a solution converges
to one of the two stable states, and stays in the neighborbidbdt solution after a finite time. However, for the
stochastic models, a trajectory of the Chemical Master foudFigure 2, left) or of the Chemical Langevin
Equation (Figure 2, right) may spontaneously switch betwide two stable states, due to the intrinsic noise
of the system. This spontaneous transition between the tiimesstates is not possible for the reaction rate
equations, motivating the need for stochastic modeling.

The set of reactions for the Schlogl reaction network arir tborresponding propensities are presented
in Table 1. The stochastic reaction rate parameters we gexgblovhich lead to the bistable behavior, are
also given in Table 1. The molecular numbers for the spediesid B are kept at constant valued, = 10°
andB = 2 x 10°. In the stochastic models, the initial condition for the fugmof molecules of species is
X (0) = 250. To obtain the two stable states in the deterministic ste¢gpok the initial conditionX (0) = 248
for the lower stable state (represented in blue) an@) = 249 for the upper stable state (represented in
red). The state vector ¥ = (X, A, B)” and the state-change vectors for reacti®is Ro, R3 and R, are,
respectively,

1 -1 1 -1
vi=|—1 , Vg = 1 , Vg = 0 , Uy = 0
0 0 -1 1

Other examples of interesting qualitative behavior inelndise-induced bistable systems which are mono-
stable in the deterministic setting [67] or noise-inducestiltations in systems which are otherwise non-
oscillatory [74].
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Table 1: The Schlogl model.

Reactions Propensities Reaction rates
R, A+2xH3x a1(X) = ki AX (X — 1)/2 k=3 x 1077
R, 3X B AL2X (X)) =X (X —1)(X —2)/6 ky=10""
R; B x as(X) = k3B ks = 1073
Ry x®p ay(X) = ks X ky =35
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Figure 1: The Schlogl model: Reaction rate equation model
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Table 2: The Vilar model.

Reactions Propensities Reaction rates
R Pa® Pa+mRNAa  a1(X) =k Pa ky = 50
Ry Pa_A™3 Pa_A+mRNAa  ax(X) = koPa_A ey = 500
Ry Pr' Pr+mRNAr  a3(X) = ksPr ks = 0.01
Ry PrA™ pr At mRNAr  ay(X) = kaPr_A ks = 50
Rs  mRNAa ™ mRNAa+ A as(X) = ksmRNAa ks = 500
Re  mRNAr ™ mRNAr + R ag(X) = kemRNAr kg = 100
R; A+R™ AR ar(X) = k- AR k7 = 20
Rs Pa+A™ Pa_A as(X) = ksPa A ks = 1
Ry Pr+ A% pra ag(X) = koPr A kg = 1
Ry AN aio(X) = koA k1o =1
R R™ g an(X) = kn R ki = 0.2
Ri»  mRNAa™30 a12(X) = kiomRNAa ki = 10
R  mRNAr™ a13(X) = kismRNAr ki3 = 0.5
R AR™ R a1a(X) = k14 AR kg = 10
Ris AR™ A+ R a15(X) = kisA_R krs = 0
Ry Pa_A™S Pa+ A a16(X) = kigPa A k16 = 50
Ry ProA® pr4 A a17(X) = kyr Pr_A ko7 = 100

Genetic oscillator Vilar et al. [74] proposed a circadian clock model. The bimcal system they described
has an interesting feature: while, for some values of thetldrparameters, the CME model describes a system
with sustained oscillations, the reaction rate equatiodehpredicts no oscillations. The set of reactions for the
Vilar model, their propensities and their correspondiragisastic reaction rate parameters are given in Table 2.
We used the following initial condition®a(0) = Pr(0) = 1 and all the other molecular numbers are set to
zero [1]. In Figure 3, we show the molecular numbers of speRienodeled with the CME (left) and with the
reaction rate equations (right). The oscillations are @edlby the intrinsic noise.

5 Challenges

This research area is only in its initial stages and manydomehtal open questions remain to be answered by
the numerical analysis and scientific computing community.

e Higher order tau-leaping methods. Finding higher-order stochastic discrete methods hasdtenpal
of improving the speed of computation for practical biot@diapplications, as it should permit larger
step-sizes while maintaining the accuracy of the simufatio

e Adaptive time-stepping methods.The effect of adaptive step-size strategies on the conmeegef the
numerical approximation to the correct solution of stoticadiscrete models remains a key question.
Some adaptive schemes for tau-leaping were developed bgtGhan [13, 14].

e Hybrid methods. These methods seem very promising in dealing with the nialspales which are
ubiquitous in biochemical systems. Improved strategiesped-up the dynamic partitioning of the
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Figure 3: The Vilar et al. [74] model: Chemical Master Eqoatmodel (left), reaction rate equation model
(right) .

system are needed. Better criteria for partitioning thetiea system is another important issue.

e Spatially inhomogeneous systemsThe assumption that the biochemical reacting system is gemo
neous is not always satisfied. Stochastic models for s|yatiaterogeneous systems are needed. Ef-
ficiency is critical for such models. Existing schemes forenalar-crowding conditions include [19]
(where a Monte Carlo method was adapted for the reactidasith Chemical Master Equation), the
next volume method, [53] (where a binomial spatial tau-legnethod is developed) and [17] (where a
diffusive finite state projection method is introduced).

6 Conclusion

Stochastic modeling and simulation of biological processm® problems of high interest today. The multitude
of research opportunities related to the development et#¥e and reliable simulation tools for these stochas-
tic models as well as for formulating the theoretical fourmato support them, makes this area particularly
attractive for numerical analysts. In this paper, we re@i@wome of the key achievements in the efficient mod-
eling and simulation of well-stirred biochemical reactgystems and outlined some of the important directions
for future research.
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