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Abstract

Cellular processes are typically viewed as systems of chemical reactions. Often such processes involve
some species with low population numbers, for which a traditional deterministic model of classical chemical
kinetics fails to accurately capture the dynamics of the system. In this case, stochastic models are needed to
account for the random fluctuations observed at the level of asingle cell. We survey the stochastic models
of well-stirred biochemical systems and discuss importantrecent advances in the development of numerical
methods for simulating them. Finally, we identify some key topics for future research.
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1 Introduction

Modeling and simulation of biochemical systems has become an area of intense research in recent years [40,
44]. Cellular processes are typically represented as systems of chemical reactions. The evolution of these sys-
tems has been traditionally modeled by deterministic reaction rate equations. However, at the level of a single
cell it is often the case that some key reactants are present in low molecular numbers (eg., only few copies
of a gene or of some important regulatory molecules). Therefore a continuous model may not be appropri-
ate [72, 75]. Moreover, such a system behaves stochastically rather than deterministically [5, 8, 20, 21, 23,
55, 56, 59, 68, 70]. The refined model of stochastic chemical kinetics, the Chemical Master Equation, was
developed decades ago by Gillespie [27], who also proposed an exact algorithm to simulate it. Also, the rela-
tionship between the stochastic and the deterministic chemical reaction models was studied in the early work
of Kurtz [46, 47]. In spite of this, it was not until recently that this model has established itself as a standard
model for a wide variety of biological processes. The Chemical Master Equation has since been the subject of
intense research and it has been successfully applied to numerous biochemical systems, even when the well-
mixed assumption is not valid (such as in the cell). The first application of Gillespie’s algorithm to a biological
system is due to McAdams & Arkin. They showed that stochasticity plays a critical role in the lysis/lysogeny
decision of the bacteriaλ-phage [55]. Samoilov et al. [67] demonstrated that noise can induce bi-stability in an
otherwise monostable system.

However, stochastic models are computationally much more challenging than deterministic models. Fur-
thermore, biochemical systems are generally very complex.They involve reactant species with a wide range of
molecular numbers and/or reactions with multiple time-scales. Also, the network of interactions between the

∗This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

1



reactant species can be quite complicated. Gillespie’s algorithm becomes prohibitively expensive on these sys-
tems. All these challenges have renewed the interest in developing effective numerical methods for a stochastic
model, capable of coping with the level of complexity characteristic to biological systems. An enhanced exact
algorithm was proposed by Gibson & Bruck [25]. Despite this improvement, the high computational cost of
exact methods on realistic applications motivated the search for more efficient approaches. Several approxi-
mate algorithms have been developed and this continues to bea very active research area [38]. One strategy
to reduce the computational cost is due to Gillespie [31], who proposed the tau-leaping method. More refined
algorithms based on various improvements of the tau-leaping methods were explored by Rathinam et al. [63],
Cao, Gillespie & Petzold [13], Tian & Burrage [71] and Chatterjee et al. [15]. Several theoretical studies of tau-
leaping methods were considered, addressing topics such asconsistency and stability by Rathinam et al. [64],
higher-order methods by Li [48] and adaptive time-steppingby Anderson [3].

Moreover, the tau-leaping method has been shown to be a theoretical bridge between a microscopic,
stochastic and discrete model of well-stirred biochemicalkinetics, the Chemical Master Equation [28] and
a macroscopic, stochastic and continuous model, the Chemical Langevin Equation [30]. Langevin type equa-
tions, which are stochastic differential equations (SDE),have received considerable attention, not only in sys-
tems biology [44], but also in a wide range of practical applications in physics, chemistry and biology [24, 41].
There exist numerous studies on numerical solution of stochastic differential equations. We suggest as reading
on this topic the introductory treatment by Higham [37] and the more comprehensive reference by Kloeden &
Platen [45], respectively.

Another strategy to reduce the computational cost when simulating more challenging biochemical systems
is to use a combination of models and/or a combination of exact and approximate algorithms for them. Hybrid
methods were designed and applied for models that span multiple scales in space and/or time. Among them are
the methods of Alfonsi et al. [2], Cao et al. [12], Haseltine &Rawlings [33], Hellander & Lötstedt [36], Kiehl
et al. [42], MacNamara et al. [50], Mattheyses & Simmons [54], Puchalka & Kierzek [60], Rao & Arkin [61],
Salis & Kaznessis [65], Samant & Vlachos [66], Weinan et al. [18].

In this paper we review the most important advances in the mathematical modeling and simulation of well-
stirred biochemical reaction systems. We provide the background information for the most relevant existing
mathematical models for biochemical systems. Our aim is to give a detailed description of some of the main
numerical methods developed for them. Since this area of research has grown beyond the scope of any single
survey, it was not possible to cover all existing methods. Excellent introductory references for modeling and
simulations of biochemical kinetics are due to Higham [38],Gillespie & Petzold [32], and Turner et al. [72].
Wilkinson [75] gives an accessible introduction to probability theory and stochastic modeling of biological
systems.

The paper is organized as follows. In section 2 we give an overview of the hierarchy of mathematical
models for isothermal well-stirred biochemical kinetics,from the most refined, the Chemical Master Equation,
to the intermediate model of the Chemical Langevin Equationand to the less accurate model based on reaction
rate equations. In section 3, we identify the key issues in approximating the solution of these models and some
of the most significant contributions to algorithm development for them. In section 4 we give some numerical
results and we conclude with a description of key challengesand opportunities for future research.

2 Stochastic chemical kinetics

Stochastic chemical kinetics of well-stirred systems is most accurately described by the Chemical Master Equa-
tion. The theoretical justification of this model was given by Gillespie [28]. Let us consider a well-stirred
system which containsN biochemical speciesS1, · · · , SN involved inM reactionsR1, · · · , RM . The system
is assumed at thermal equilibrium with a constant volumeV . The dynamical system is described by the vector
of statesX(t) = (X1(t), . . . ,XN (t))T , whereXi(t) is the number ofSi molecules at timet. The vectorX(t) is
a discrete (jump) Markov process. The aim is to find the state vectorX(t), given that at the initial time,t = t0,
the system was in the stateX(t0) = x0.
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Each reactionRj produces a change in the system given by the state-change vector νj ≡ (ν1j , . . . , νNj)
T .

Here we denote byνij the change in the number ofSi molecules caused by one reactionRj . The matrixΣ =
{νij}1≤i≤N,1≤j≤M is called thestoichiometric matrix. In addition, a reactionRj can be described by its propen-
sity functionaj , which is defined byaj(x)dt = the probability of a single occurence ofRj in the interval[t, t+
dt), whereX(t) = x. For asecond-order reaction,

Sℓ + Sk

cj−→ ‘reaction products’ (1)

with ℓ 6= k the propensity function has the formaj(x) = cjxℓxk. Intuitively, this means that the probability
that this reaction takes place is proportional to the numberof Sℓ andSk molecules present. Similarly, for a
first-order reaction,

Sk

cj−→ ‘reaction products’ (2)

the propensity function has the formaj(x) = cjxk. A similar intuitive justification can be used: the probability
that a reaction of this type takes place is proportional to the number of molecules of typeSk. Finally, for a
dimerization,

Sk + Sk

cj−→ ‘reaction products’ (3)

the propensity function has the formaj(x) = cjxk(xk − 1)/2. This is a consequence of the observation that
the probability that this reaction takes place is proportional to the number of ways two molecules of typeSk

can be grouped as unordered pairs. These formulae for the propensity functions are rigourously derived from
the theory of molecular physics and kinetic theory [28]. Making further approximating assumptions can lead
to the reaction rates in the deterministic chemical kinetics, as will be discussed later.

2.1 Chemical Master Equation

For t ≥ t0 we can define the probability that the state vector at timet is X(t) = x given that at timet0 it was
X(t0) = x0:

P (x, t| x0, t0) = Prob{X(t) = x, given X(t0) = x0} .

To compute this probability, we first derive the probabilityP (x, t + dt| x0, t0) wheredt is small enough that no
more than one elementary reaction occurs in the interval[t, t + dt). The system will be in statex at timet + dt
if one of the following events took place: either the system was in this state at timet and no reaction occurred
in [t, t + dt) or, for some1 ≤ j ≤ M , the system was in a statex − νj at timet and exactly one reactionRj

occurred in the interval[t, t + dt). There are thusM + 1 such events which lead to the system being in statex
at timet + dt, and these events are disjoint and exhaustive. Since the probability that one reactionRj fires in
[t, t + dt) when at timet the system was in statex− νj is, by definition,aj(x− νj)dt and the probability that
no reaction occurs in[t, t + dt) when at timet the system was in statex is (1−∑M

j=1 aj(x)dt), from the laws
of probability, we derive that

P (x, t + dt| x0, t0) = P (x, t| x0, t0)



1−
M
∑

j=1

aj(x)dt



+

M
∑

j=1

P (x−νj, t| x0, t0)aj(x− νj)dt .

By rearranging the terms, dividing bydt and taking the limit asdt→ 0, we obtain the following equation

d

dt
P (x, t| x0, t0) =

M
∑

j=1

(P (x−νj, t| x0, t0)aj(x− νj)− P (x, t| x0, t0)aj(x)) , (4)

known as theChemical Master Equation(CME) or theforward Kolmogorov equation. It is a coupled system
of ordinary differential equations with size equal to the number of all possible states of the system subject to
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theM reaction channels. Thisdiscreteandstochasticmodel is the most refined mathematical model of well-
stirred chemical reaction systems. Unfortunately, it is intractable for most realistic applications. For example,
in the Arkin et al. [5] model ofλ-phage, realistic population numbers lead to approximately 1070 possible
states in the Chemical Master Equation. Thus other methods for simulation are needed for such problems.
However, we should mention that recent progress has been made in dealing directly with the Chemical Master
Equation [58, 39].

2.2 Chemical Langevin Equation

Under certain assumptions, the Chemical Master equation can be approximated by a less refined model, the
Chemical Langevin Equation (CLE), which is more efficient toapproximate numerically. Below, we outline
the conditions for which this approximation is justified, according to Gillespie [30].

Let us assume that there exists a timeτ > 0 such that the followingLeap conditionis satisfied:aj(X(t))
remains almost constant on[t, t + τ) for all 1 ≤ j ≤M . Foraj(X(·)) constant in this interval, the probability
that one reactionRj occurs in[t, t + τ) is aj(x)τ whereX(t) = x. Consequently, the number of reactionsRj

that fire in the interval has a Poisson distribution with parameteraj(x)τ . Under the Leap condition assumption
one can then approximate

X(t + τ) = x +

M
∑

j=1

νjPj(aj(x), τ) . (5)

This is called the (explicit)tau-leaping method[31]. If τ > 0 is both small enough such that it satisfies the leap
condition, but also large enough such thataj(x)τ ≫ 1 for all 1 ≤ j ≤ M, then the Poisson random variable
Pj(aj(x), τ), with mean and varianceaj(x)τ , can be approximated by a normal random variable with the same
mean and variance

Pj(aj(x), τ) ≈ aj(x)τ +
√

aj(x)τNj(0, 1) , (6)

whereNj(0, 1) with 1 ≤ j ≤ M are statistically independent normal random variables with mean zero and
variance one. This approximation holds when all reactant species have sufficiently large population numbers.
Substituting the approximation (6) into the tau-leaping approximation (5) we obtain

X(t + τ) = x +

M
∑

j=1

νjaj(x)τ +

M
∑

j=1

νj

√

aj(x)
√

τNj(0, 1) (7)

We recognize in (7) the Euler-Maruyama numerical approximation of the following stochastic differential equa-
tion

d X(t) =

M
∑

j=1

νj aj(X(t))dt +

M
∑

j=1

νj

√

aj(X(t))dWj(t) (8)

whereWj for 1 ≤ j ≤M are independent Wiener processes. The equation (8) is called theChemical Langevin
Equation. The discrete stochastic process is approximated by a continuous stochastic processX(t) in the new
model (8). This Langevin model consists of a system of coupled Itô stochastic differential equations of size
equal to the number of reactant species and it is valid in the regime of large molecular populations.

An alternative derivation of the Chemical Langevin Equation (8) was obtained very recently by Burrage
and co-workers [57]. They show that CLE can be viewed as a parametric family of equations, each having the
same finite-dimensional distribution of variables. This derivation is presented below.

The time evolution of the first moment of the state variables of the CME is obtained from equation (4)

d

dt
E(X(t)) = ν E(a(X(t))) (9)
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wherea(x) = (a1(x), a2(x), . . . , aM (x))T is the column vector of propensities. The evolution of the second
moment is

d

dt
E(X(t) X(t)T ) = E(h(X(t)) X(t)T ) + E(X(t)h(X(t))T ) + E(B(X(t))) (10)

whereh(x) = ν a(x), andB(x) = ν diag(a(x))ν
T is thediffusion matrix(see also [41]). Next, we explore

how to construct a stochastic differential equation, such that its expectation and covariance match those of the
CME, (9) and (10), respectively. Assume there existf : R

N → R
N andg : R

N → R
N×D such that

d X(t) = f(X(t))dt + g(X(t))dW (t) , (11)

with W (t) = (W1(t), . . . ,WD(t))T a D-dimensional Wiener process, has the first and second moments the
same of those in (9) and (10). By applying the expectation in (11) we derive

d

dt
E(X(t)) = E(f(X(t))) .

Comparing it with (9) we deduce that a natural choice isf(x) = ν a(x). For the second moment, we compute
from (11)

d

dt
E(Xi(t)Xk(t)) = E(fi(X(t))Xk(t)) + E(Xi(t)fk(X(t))) +

D
∑

ℓ=1

E(giℓ(X(t))gkℓ(X(t))) . (12)

With the choice off given above, if we compare (12) with (10) we derive that
∑D

ℓ=1 E(giℓ(x)gkℓ(x)) = Bik(x).
This condition is satisfied if we chooseg such that

g(x)g(x)T = ν diag(a(x))ν
T . (13)

For g(x) = ν diag(
√

a1(x),
√

a2(x), . . . ,
√

aM (x)) and D = M we obtain the form (8) of the Chemical
Langevin Equation, which is due to Gillespie. An important observation is that, for the above choices off and
g, the two moments of the CME and of (11) are identical if all thereactions are at most first order.

2.3 Reaction rate equations

A further reduction of the model of well-stirred chemical kinetics is obtained when very large numbers for each
species are present. More precisely, let us consider thethermodynamic limit, that isXi(t)→∞ and the volume
V → ∞ such thatXi(t)/V remains constant for all1 ≤ i ≤ N . Hence, the stochastic terms in the Chemical
Langevin Equation (8) become much smaller than the deterministic terms, as the former grow as the square
root of the system size while the latter grow as the system size. Therefore the stochastic terms can be neglected
in a neighborhood of the thermodynamic limit. In this regime, the mathematical model is typically written in
terms of concentrations, rather than in population numbers. We define the vector of concentrationsZ(t) to have
componentsZi(t) = Xi(t)/(V NA) for 1 ≤ i ≤ N , whereNA = 6.02214179 × 1023mol−1 is Avogadro’s
number andV is the volume. It follows that the concentrations satisfy

dZ(t)

dt
=

M
∑

j=1

νj âj(Z(t)) . (14)

These are the classicalreaction rate equations. Note that the reaction rateŝaj(Z(t)) for 1 ≤ j ≤ M in the
reaction rate equation correspond to the propensity functions in the Chemical Master Equation.

Indeed, in the case of the second-order reaction (1) the reaction rate iŝaj(Z(t)) = kjZℓ(t)Zk(t) with kj =
cjNAV. The reaction rate of the first-order reaction (2) isâj(Z(t)) = kjZk(t) with kj = cj . In the case of the
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dimerization (3), the termXk(t) in the expression of the propensity function is negligible compared toX2
k(t),

for large population numbers. Therefore the reaction rate in this case iŝaj(Z(t)) = kjZ
2
k(t) with kj =

cj

2 NAV.
The reaction rate equations (14) are a deterministic and continuous model, consisting of a system of cou-

pled ordinary differential equations of dimension equal tothe number of reactive species. It is a simplification
of the Chemical Langevin Equation, which is valid in the regime of very large population numbers. An im-
portant observation is that, unless all reactions are of first-order, the reaction rate equations are not obtained
from averaging over the Chemical Langevin Equation. Indeed, computing the expectation of (8) leads to (9).
HoweverE(aj(X(t))) 6= aj(E(X(t))) if the propensityaj is quadratic, which is the case for dimerization or
second-order reactions.

3 Methods

3.1 Direct CME-solvers

As mentioned above, solving directly the Chemical Master Equation (4) can be quite expensive for most realis-
tic applications, due to the very large dimension of the state space. Alternative approaches exist to deal with this
difficulty, such as Gillepie’s algorithm, tau-leaping methods, methods based on partial equilibrium assumptions
and hybrid methods. Before describing these approaches, wenote that recent progress has been made in devel-
oping numerical methods for the direct computation and visualization of the solution of the Chemical Master
Equation. Let us denote byp(t) the vector of probabilitiesP (x, t| x0, t0) indexed by the statesx of the system.
It has been observed that the CME can be written as a system of linear ordinary differential equations,

d

dt
p(t) = Ap(t) ,

whereAij is the propensity of the system to move to statej from statei, if i 6= j andAii = −∑j 6=i Aij. The
solution to this equation isp(t) = exp(tA)p(0). The finite state projection approach (FSP) replacesA by a
k × k-submatrixAk of A and approximates (see [58])

p(T ) ≈ exp(TAk)pk(0) .

The vectorXk of the states{1, 2, . . . , k} constitutes thefinite state projection. Denote the column sum by
Γk = 1T exp(TAk)pk(0). Munsky & Khammash [58] show that, ifΓk ≥ 1− ε, then

exp(TAk)pk(0) ≤ p(T ) ≤ exp(TAk)pk(0) + ε · 1 .

This observation led to the FSP-algorithm [58] to approximate the solution of the CME. This algorithm grad-
ually expands the finite state projectionXk in order to satisfy the prescribed tolerance in the total probability
density error. An improved FSP-algorithm based on Krylov methods and an FSP-leap method are developed by
Burrage and co-workers in [50]. Numerical experiments showthat these methods can be efficient for computing
the mean and variance of the solution for the CME.

The Finite State Projection Algorithm Calculate the propensity functions andA, and choosep0(0), T , ε
andX0. Setk = 0.

(1). ComputeAk = submatrixk(A), depending onXk, andΓk = 1T exp(TAk)pk(0).

(2). If Γk ≥ 1− ε, stop. Thenexp(TAk)pk(0) approximates the probabilityp(Xk, T ) with errorε.

(3). Else add more states,Xk+1 = expand(Xk), and takek ← k + 1.

(4). Return to step (1).
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In [39], Jahnke proposes a different technique to directly approximate the Chemical Master Equation. The
author constructs an adaptive Galerkin method based on a sparse and adaptive wavelet representation of the
solution. The wavelet compression allows one to decrease the size of the approximate solution very efficiently
since the time-dependent probability distribution is locally smooth. Then the remaining degrees of freedom can
be resolved by applying Rothe’s method.

3.2 Exact methods

Instead of solving the Chemical Master Equation to generatetrajectories of all possible states, one could sim-
ulate one correct trajectory at a time. It is possible to simulate such trajectories, by specifying reactions and
times of these reactions with theexact probability distribution, consistent with the probability distribution asso-
ciated with the Chemical Master Equation. Then by running many such trajectories, one can recover the correct
statistics for the solution of the Chemical Master Equation. Using this approach, Gillespie [26, 27] gave two
exact stochastic simulation algorithms to solve the Chemical Master Equation, the Direct Method and the First
Reaction Method. The algorithms and their derivation are describe below. Following Gillespie [26] we define

p(τ, j|x, t) = the probability that the next reaction will occur in the interval [t + τ, t + τ + dτ)

and this reaction will beRj , given thatX(t) = x .

In addition, we denote by

P0(τ |x, t) = the probability than no reaction occurs in[t, t + τ) given thatX(t) = x . (15)

The two events, that no reactions takes place in[t, t+τ) and that one reactionRj occurs in[t+τ, t+τ +dτ), are
independent. Their joint probability density function isP0(τ |x, t), multiplied by the probability that a reaction
Rj occurs over[t + τ, t + τ + dτ), which isaj(x)dτ . Therefore

p(τ, j|x, t)dτ = P0(τ |x, t)× aj(x)dτ . (16)

So, we need to compute the probabilityP0(τ |x, t). Following the definition (15), we observe that no reaction
occurs in[t, t + τ + dτ) if (i) no reaction occurs in[t, t + τ) and (ii) no reaction occurs in[t + τ, t + τ + dτ).
These two events are independent. Their joint probability is the product of the probability of the event (i),
which isP0(τ |x, t), and the probability of the event (ii), which is(1−∑M

k=1 ak(x)dτ):

P0(τ + dτ |x, t) = P0(τ |x, t) ×
(

1−
M
∑

k=1

ak(x)dτ

)

.

By taking the limitdτ → 0 we obtain a differential equation for the desired probability, whose solution is

P0(τ |x, t) = exp(−a0(x)τ) (17)

wherea0(x) =
∑M

k=1 ak(x). Equations (16) & (17) lead top(τ, j|x, t) = exp(−a0(x)τ) × aj(x), or, equiva-
lently,

p(τ, j|x, t) = (a0(x) exp(−a0(x)τ)) × aj(x)

a0(x)
. (18)

This is the joint density function for the time to the next reaction and of the index of the next reaction. It can
be viewed as splitting the joint density function into two density functions for

(i) τ , thetimeto the next reaction, having densitya0(x) exp(−a0(x)τ) ,

(ii) j, theindexof the next reaction, having densityaj(x)/a0(x) .

These results lead to the following Monte Carlo method of Gillespie [26, 27] for generating sample paths with
the correct probabilities.
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Gillespie’s Direct Method This method computes directly the time to the next reaction and the index of this
reaction, according to their correct distributions. First, the system is initialized at timet = t0 by X(t0) = x0.
Then, it proceeds with the following steps:

(1). Calculate the propensity functions,ak(x), for 1 ≤ k ≤M , for the current state of the system,X(t) = x,
and the sum of all propensities,a0(x) =

∑M
k=1 ak(x).

(2). Generate two independent unit-interval uniform random numbersr1 andr2.

(3). Calculate the time to the next reaction byτ = (1/a0(x)) ln(1/r1) .

(4). Calculate the index of the next reaction, as the integerj satisfying
∑j−1

k=1 ak(x) < r2a0(x) ≤∑j
k=1 ak(x).

(5). Update the state of the system to reflect that a reactionRj occurred,X(t+τ) = X(t)+νj , sett = t+τ ,
then return to step(1) or stop.

Gillespie’s First Reaction Method Gillespie’s [26] second exact algorithm computes the possible timeτk at
which each reaction could occur, if no other reaction takes place. Then it finds the indexj of the first reaction,
that is the one with the smallest time. After the initialization, at timet = t0 by X(t0) = x0, the algorithm
consists of:

(1). Calculate the propensity functions,ak(x) for 1 ≤ k ≤ M , for the current state of the system,X(t) = x,
and the the sum of all propensities,a0(x) =

∑M
k=1 ak(x).

(2). For each1 ≤ k ≤ M , calculate the time,τk, when the reactionRk occurs, according to the exponential
distribution with parameterak(x), wherex is the current state vector. Eachτk = (1/ak(x)) ln(1/rk),
wherer1, r2, . . . , rM are independent unit-interval uniform random numbers.

(3). Calculatej for which τj = min1≤k≤M{τk} and setτ = τj .

(4). Update the state of the system to reflect that a reactionRj occurred,X(t+ τ) = X(t)+νj, sett = t+ τ ,
then return to step(1) or stop.

These two algorithms are equivalent, using the same probability distributions forτ andj, derived above.
Each of these methods requires (per iteration) a time proportional to M , the total number of reactions. The
Direct Method uses two random numbers per iteration. The First Reaction Method usesM random numbers
per iteration and hence it is less efficient than the Direct Method. For this reason we subsequently consider only
the Direct Method, which is the faster of the two methods, andcall it Gillespie’s algorithm or thestochastic
simulation algorithm(SSA).

Gibson-Bruck Algorithm: The Next Reaction Method Gibson & Bruck [25] modified Gillespie’s First
Reaction Method to give an exact algorithm which requires, on each iteration, a computational time proportional
to the logarithm of the number of reactions,log M . The method does so by constructing a dependency graph
from the set of reactions and by using an appropriate data structure to store all the propensitiesak and the
possible timesτk. This structure is an indexed priority graph (also known as aheap). The algorithm can also
be applied to systems with time-dependent propensity functions.

Algorithm The initialization consists of settingX(t0) = x0 at timet = t0 and generating a dependency graph
G. Then it calculates the propensity functions,ak(x) for 1 ≤ k ≤ M , for the given state of the system. For
each1 ≤ k ≤M , it computes the possible time,τk, when the reactionRk occurs, according to the exponential
distribution with parameterak(x), for the given state vector. It storesτk in an indexed priority queueP and
follows the steps:
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(1). Find, in the indexed priority queueP , the indexj of the reaction for which the possible timeτj is the
smallest and setτ = τj .

(2). Update the state of the system to reflect that a reactionRj occurred,X(t + τ) = X(t) + νj .

(3). For each edge(j, k) in the dependency graphG do

(i). Updateak.

(ii). For k 6= j takeτk = (ak,old/ak,new)(τk − t) + t .

(iii). For k = j computeτj = (1/aj(x)) ln(1/r) + t, wherer is a unit-interval uniform random number.

(iv). Update the valuesτk in the indexed priority queueP and sett = t + τ .

(4). Return to step (1) or stop.

Further details on this method can be found in [25]. The Gibson-Bruck algorithm has the potential of being
more efficient than Gillespie’s algorithm for systems with many species and many reactions.

Any exact method simulates all reactions, one at a time. Since most realistic biochemical systems have
some reactions evolving on very fast time scales, the exact methods become computationally very intense
on these practical applications. Typically, Monte Carlo simulations require tens of thousands or hundreds of
thousands of individual trajectory computations to get an accurate estimation of the probability distributions.
Thus the efficiency of these computations is very important.As a result, finding a better trade-off between
speed and accuracy of the numerical methods for approximating the solution of the Chemical Master Equation
is essential.

3.3 Tau-leaping methods

A speed-up over the exact methods could be obtained by employing approximateschemes, such astau-leaping.
A tau-leaping method advances the system by leaping with an apriori chosen time-stepτ , rather than by
stepping from one reaction to the next with the correct probability distribution. To be faster than Gillespie’s
algorithm, tau-leaping should take a larger step-size, to allow for more reactions to fire within this time-step.τ
should also be chosen to satisfy the Leap condition, that is each propensity function changes only by a “small”
amount over the time interval[t, t + τ). Several conditions to ensure that each propensity function does not
vary significantly have been proposed. Among them, the approach described in [13] is currently widely used.
This requires that the relative changes in each propensity is uniformly bounded by a small accuracy parameter,
ε≪ 1,

|aj(X(t + τ))− aj(x)| ≤ max(εaj(x), cj) for each1 ≤ j ≤M . (19)

Since(aj(X(t + τ)) − aj(x)) is a random variable, both its mean and standard deviation should satisfy the
condition (19). This leads to a procedure to determine the maximum step-size for the desired accuracy [13].

Explicit tau-leaping The (explicit) tau-leaping method (5) is due to Gillespie [31]. The algorithm consists of
initialization of the system at timet = t0 by X(t0) = x0, followed by

(1). For the current state of the system,x at timet, calculate the propensity functions,ak(x) with 1 ≤ k ≤M ,
and the step-sizeτ that satisfies the Leap condition.

(2). For each1 ≤ j ≤ M , generate the numberkj of reactionsRj that occur in the time interval[t, t + τ)
from the Poisson random variablePj(aj(x), τ).

(3). Update the state of the system to reflect thatkj reactionsRj occurred,1 ≤ j ≤ M , X(t + τ) =

X(t) +
∑M

j=1 kj νj. Sett = t + τ , then return to step(1) or stop.
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The main difficulty with this method is that biochemical systems are almost always stiff, exhibiting both
fast and slow dynamics. As in the case of stiff deterministicsystems, explicit schemes become impractical
when applied to stiff stochastic systems. They restrict thestep-size to the system’s fastest mode. To improve
the efficiency and the accuracy of the simulations, other tau-leaping schemes more suitable for stiff stochastic
systems were investigated.

Implicit tau-leaping To overcome the step-size limitation due to the different time scales, implicit versions
of the tau-leaping method (5) were proposed in [63]. The Poisson random variable which appears in the explicit
tau-leaping method,Pj(aj(x), τ), has meanaj(x)τ . If the deterministic term,aj(X)τ , is evaluated at the end
of the step, while the stochastic term of zero mean,(Pj(aj(X), τ) − aj(X)τ), is evaluated at the beginning of
the step, then we derive theimplicit tau-leapingmethod

X(t + τ) = x +

M
∑

j=1

(τaj(X(t + τ)) + Pj(aj(x), τ) − τaj(x)) νj . (20)

As in the deterministic case, this equation is normally solved by a variant of Newton’s method to determine
X(t + τ). In the reaction rate equations regime, of very large population numbers, the explicit tau-leaping
method (5) reduces to the explicit Euler’s method while the implicit tau-leaping method (20) reduces to the
implicit Euler’s method. A drawback of the implicit tau-leaping method is that it damps the noise excessively:
the variance in the fast components ofX(t) is reduced when large step-sizes are employed. To reduce this
effect, a combination of steps with the implicit tau-leaping and steps with Gillespie’s algorithm can be taken in
order to recover the correct probability distributions forthe fast variables [63].

Other tau-leaping methods In an attempt to improve on the convergence and stability properties of tau-
leaping methods, other leaping strategies have been proposed. For example, based on the midpoint Runge-Kutta
method for ordinary differential equations, a midpoint version of the tau-leaping method has been introduced
in [31]. For aτ which satisfies the Leap condition, the predicted state at the midpoint(t + τ/2) is given by
x′ = x + [12τ

∑M
j=1 aj(x)νj] where[·] is the integer part. Then one generates sample values from the Poisson

random variablePj(aj(x′), τ) for each1 ≤ j ≤M . The predicted state at time(t + τ) is

X(t + τ) = x +

M
∑

j=1

Pj(aj(x′), τ)νj (21)

which gives themidpoint tau-leapingmethod.
Burrage & Tian [11] introduced a class of Poisson-Runge-Kutta methods for simulating chemical reaction

systems. These methods are similar to the Runge-Kutta methods for stochastic differential equations driven by
Wiener processes [10]. The Chemical Langevin Equations arestochastic differential equations (SDE) obtained
by simplifying the Chemical Master Equation, via the tau-leaping method. The idea that higher-order numerical
methods for the Langevin model can be generalized to higher order tau-leaping methods for the Chemical
Master Equation seems promising, but it has been observed that the order of the Runge-Kutta methods for the
Langevin model was not inherited by the Poisson Runge-Kuttamethods for the discrete stochastic model. This
is due to the lower order of convergence for the stochastic component.

Convergence of tau-leaping A theory of local errors, valid for small step-sizeτ , for both the explicit and
implicit tau-leaping methods is developed in Rathinam et at. [64]. The error estimates may be used for the
design of adaptive time-stepping strategies. The paper [64] proves the0-stability and convergence of the explicit
and implicit tau-leaping methods of all the moments in the particular case when all propensity functions are
linear (which correspond to first-order reactions). For this special case, both methods are shown to be of weak
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order of convergence1. More precisely, for a general chemical reaction system, the r-th conditional moment
of the increment(X(t + τ)− X(t)) is

E[(X(t + τ)− X(t))r|X(t) = x] = τ
M
∑

j=1

ν
r
j aj(x) +O(τ2) .

Then for the explicit tau-leaping approximationX̂ the following weak consistency result can be derived: for any
multivariate polynomialg : R

N → R and initial statex there existC > 0 andδ > 0 such that for allτ ∈ [0, δ]

∣

∣

∣E
(

g(X̂(t + τ))− g(X(t + τ))|X̂(t) = X(t) = x
)∣

∣

∣ < Cτ2 .

Li [48] generalized this result by showing that, provided that all propensity functions are locally Lipschitz,
the explicit tau-leaping method has strong order of convergence1/2 in theL2-norm and weak order of conver-
gence1. Specifically, suppose that the tau-leaping scheme is applied on a mesh0 = t0 < t1 < . . . < tn = T of
the interval[0, T ]. Then there existsC > 0 such that forτ = max

0≤ℓ≤n−1
(tℓ+1 − tℓ) the following global results

hold

sup
ℓ≤n

E

(

∣

∣

∣X̂(tℓ)− X(tℓ)
∣

∣

∣

2
)

≤ Cτ and
∣

∣

∣E(g(X̂(tn)))− E(g(X(tn)))
∣

∣

∣ ≤ Cτ .

These findings are consistent with those for Euler’s (also known as Euler-Maruyama’s) method for SDE: it is a
scheme of strong order of convergence1/2 and weak order of convergence1 (see [45]). Still, none of the tau-
leaping methods presented here (including the midpoint scheme) is shown to have higher-order convergence
with respect toτ than the explicit tau-leaping method.

The error analysis of tau-leaping methods is different if another discretization parameter is considered.
In [4], the authors employV ≫ 1 as a large parameter, typically chosen to be the volume in liters multiplied
by the Avogadro number. They re-scale the system with respect to V , such thatXV (t) = X(t)/V is the scaled

exact solution and̂X
V

= X̂/V is the scaled tau-leaping approximation. The stepsize isτ = V −β. The explicit
tau-leaping method is shown to be of strong order of convergence1, while the midpoint tau-leaping method
is shown to exhibit higher order of strong convergence. Moreprecisely, for the midpoint tau-leaping scheme
there exists a constantC > 0 such that on[0, T ]

sup
t≤T

E
(∣

∣

∣X̂
V

(t)− XV (t)
∣

∣

∣

)

≤ C

V k(β)
where k(β) = min{2β,

1 + β

2
} .

For the weak approximation by the midpoint tau-leaping method, the authors prove that, for any multivariate
polynomialg : R

N → R and initial statex there existsC > 0 such that

sup
t≤T

∣

∣

∣E(g(X̂
V

(t))) −E(g(XV (t)))
∣

∣

∣ ≤ C

V 2β
.

Avoiding negative populations When Poisson tau-leaping methods are applied to chemical reacting systems
with some species in small population numbers, a large step-size may lead to negative population numbers.
Therefore careful step-size selection strategies should be employed to avoid such physically unrealistic pre-
dictions [13]. An alternative approach for tackling this problem was proposed by Tian and Burrage [71] and
independently by Chatterjee et al. [15]. They considered abinomial tau-leapingmethod, in which the Poisson
random variables are replaced by binomial random variables. Since a binomial random variable has a finite
range of sample values, the parameters in the binomial random variables can be chosen such that no molecular
population becomes negative over a step.

If some populations are driven negative due to a large step-size with the Poisson tau-leaping method, then
the step is rejected. However, rejection of steps may bias the statistics of the sample paths and so must be

11



handled carefully. Anderson [3] develops a new Poisson tau-leaping procedure that incorporates post-leap
checks to ensure that an accuracy requirement is satisfied, but without biasing the statistics. It does so by
storing the information generated during one leap and usingthis history information to preserve the correct
trajectory. According to Kurtz and co-workers [6, 46], the reaction times can be represented as the firing times
of some independent, unit-rate Poisson processes,Pj with 1 ≤ j ≤M so that we can write

X(t) = X(0) +

M
∑

j=1

Pj

(∫ t

0
aj(X(s))ds

)

νj .

Then Anderson proves that, ifP (t) is a Poisson process with intensityλ and0 ≤ s < u < t, then(P (u)−P (s))
conditioned onP (s) has a binomial(P (t) − P (s), α) distribution withα = (u− s)/(t − s). This theoretical
result is used to construct an adaptive step-size strategy which allows step rejections while ensuring that the
statistics of the sample paths are not skewed.

Finally, we note that the Chemical Langevin Equation may also lead to negative values for species that have
low population numbers [52].

3.4 Methods for stochastic quasi-steady-state or partial equilibrium approximations

A different approach to dealing with stiffness in stochastic biochemical systems is due to Rao & Arkin [61] and
is based on the idea of elimination of the fast components by aquasi-steady-state approximation. The species
are partitioned into primary speciesxs and intermediate or ephemeral speciesxf . Thus the state vector can be
written asx = (xs, xf ). Denote byP (xs, xf ; t) the probability density of the system. This joint probability can
be represented in terms of conditional probabilities as

P (xs, xf ; t) = P (xf |xs; t)P (xs; t) (22)

Moreover, we assume thatxf conditional toxs is Markovian. So, for a fixedxs, the conditional probability
distributionP (xf |xs; t) approximately satisfies a (dynamic) master equation. Thequasi-steady-state assump-
tion in the stochastic kinetics setting assumes that the rate of change of the conditional probability distribution

P (xf |xs; t) is almost zero,
d

dt
P (xf |xs; t) = 0. Consequently, we derive thatP (xf |xs; t) = P (xf |xs). There-

fore, we can approximate the conditional probability distribution P (xf |xs) by a steady-state master equation.
Finally, an approximate CME can be derived in terms of the primary speciesxs only. One can then apply
Gillespie’s algorithm to this reduced CME.

While the quasi-steady-state assumption deals with the state variables, the partial equilibrium assumption
deals with the reactions in the system. The partial equilibrium approximation assumes that the fast reaction
are in equilibrium. This assumption constitutes the basis for theslow-scale stochastic simulation algorithm
(ssSSA) [12]. First, the set of all reactions is partitionedinto the set of slow reactionsRs (with Ms elements)
and the set of fast reactionsRf (with Mf elements) depending on the magnitude of their propensity functions.
Next, the state vector is partitioned into the state vector of slow species,Xs(t), and that of fast species,Xf (t),
that isX(t) = (Xs(t),Xf (t)). Fast species are considered those involved in fast reactions, while the remaining
species are slow. A new virtual fast process is introduced,X̂f (t), and it is obtained fromXf (t) by turning all
the slow reactions off. The slow species are set constant,Xs(t) = xs

0. We define

P̂ (xf , t|x0, t0) = Prob{X̂f
(t) = xf , given X(t0) = x0} .

The new procesŝXf (t) satisfies a CME with the slow reactions turned off. Two conditions should be satisfied
for the ssSSA to apply. (i) The first condition is that the virtual fast process must be stable:P̂ (xf , t| x0, t0) →
P̂ (xf ,∞| x0, t0) ast→∞. (ii) The second condition is that the relaxation of the virtual fast procesŝXf (t) to
its stationary asymptotic limit occurs much faster than theexpected time to the next slow reaction. This entails

12



a separation of the time-scales of the fast and slow reactions. The conditional probabilitŷP (xf ,∞| x0, t0) satis-
fies a steady-state master equation with the slow reactions turned off. Finally, for the slow-scale approximation,
the fast reactions may be ignored and only the slow reactionsare simulated. The propensity functions of the
slow reactions are approximated by an average with respect to the asymptotic virtual fast process. Thus the
propensity of a slow reactionsRj can be approximated on the time-scale of the slow reactions by

âs
j(x

f , xs) =
∑

z
f

P̂ (zf ,∞|xf , xs)as
j(z

f , xs) . (23)

Now the system dynamics can be simulated by applying Gillespie’s algorithm for the slow reactions only, while
using the approximate propensities (23). More details can be found in [12].

The slow-scale stochastic simulation algorithm The system is partitioned into fast and slow reactions and it
is initialized at timet = t0 by X(t0) = (xf

0 , xs
0). The virtual fast process is found and the stationary probability

P̂ (xf ,∞| x0, t0) is computed according to its steady-state master equation.

(1). At time t, calculate the approximate propensity functions,âs
j(x

f , xs), according to (23) for the cur-
rent state of the system. Also calculate the sum of all approximate slow propensities,̂as

0(x
f , xs) =

∑Ms

k=1 âs
k(x

f , xs).

(2). Generate two independent unit-interval uniform random numbersr1 andr2.

(3). Calculate the time to the next slow reaction byτ = (1/âs
0(x

f , xs)) ln(1/r1) .

(4). Calculatej, the index of the next slow reaction:
∑j−1

k=1 âs
k(x

f , xs) < r2â
s
0(x

f , xs) ≤∑j
k=1 âs

k(x
f , xs).

(5). Update the state of the system to reflect that a slow reaction Rj occurred,Xs(t + τ) = Xs(t) + ν
s
j and

Xf (t + τ) = sample ofP̂ (zf ,∞|xf , xs). Sett = t + τ . Return to step(1) or stop.

The algorithms described in this section are applicable if there is a separation in time-scales in the dynamics
of the system. It is worth noting that important species should be simulated very accurately. If such species are
involved in fast reactions, then the above algorithms wouldnot be appropriate.

3.5 Hybrid methods

Hybrid methods were developed in an attempt to speed-up the simulations of systems with multiple scales
in the molecular population numbers and widely disparate time-scales. These numerical methods typically
deal with a combination of microscopic and macroscopic models. The system is partitioned into subsets: one
subset consists of species with low molecular numbers whichneed to be simulated with exact algorithms,
and the other subset corresponding to species with large molecular numbers, which are simulated with some
approximate algorithms.

Discrete stochastic–continuous deterministic modelsKiehl et al. [42] partition the system into two regimes:
continuous and discrete. The discrete regime is represented with a stochastic model, while the continuous
regime is modeled with the reaction rate equations. Examples of reactions modeled with the Master equa-
tion include transcription, translation and molecular signaling. However, a theoretically justified criteria for
automatically partitioning the system is needed. A similarapproach was taken by Takahashi et al. [69], and
Vasudeva & Bhalla [73]. The deterministic model suppressesthe intrinsic noise in the continuous variables and
this may impact on the overall behavior of the system.
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Discrete exact–discrete approximate stochastic algorithms Rather than combining different mathematical
models of biochemical kinetics, Puchalka & Kierzek [60] developed a hybrid method for simulating the Chem-
ical Master Equation. Their method, called themaximal time-step algorithmuses the exact Gibson-Bruck
scheme, for the set of slow reactions and the (Poisson) tau-leaping method for the set of fast reactions. The sys-
tem is advanced with a time-step which is the minimum of the next reaction time and a user selected maximal
time-step. In addition, the method dynamically partitionsthe reactions set into slow and fast reactions. The
algorithm, while being capable of accurately capturing thesystems’ dynamics for small time-steps, may not be
practical for large systems with reaction rates varying over multiple time-scales.

Discrete stochastic–continuous stochastic modelsAn improvement over the above hybrid models was orig-
inally proposed by Haseltine & Rawlings [33]. The authors partitioned the reactions into the set of slow and the
set of fast reactions, based on the magnitude of their propensity functions and recommended at least two orders
of magnitude difference between the respective values of partitioned reaction probabilities. The slow reactions
are modeled with the Chemical Master Equation and are simulated using Gillespie’s Direct Method. The fast
reactions are modeled either with the Langevin equation simulated using the Euler-Maruyama method, or with
the reaction rate equations. Since biochemical systems areoften stiff, an explicit simulation method such as
Euler-Maruyama could become quite expensive.

Starting from the approach of Haseltine & Rawlings, Salis & Kaznessis [65] proposed an improved, dy-
namic partitioning of the system into slow and fast reactions and a hybrid model which couples the discrete
stochastic and the Langevin regimes. The method they investigated, called thenext reaction hybrid, employed
the Next Reaction Method for the discrete model. The authorsrecognized the importance of employing efficient
adaptive, higher-order and possibly implicit methods for solving the Langevin model [45], but they employed
the low-order Euler-Maruyama method for it.

In the dynamic partitioning, a reactionRj is classifies as fast if it satisfies both

aj(t)∆t ≥ λ ≥ 1 and Xi(t) > ε|νji| with i = {reactant or product of theRj reaction} . (24)

The suggested values for the parameters areλ = 10 andε = 100.

Next Reaction Hybrid Algorithm We describe below a simplified version of the next reaction hybrid algo-
rithm. First, the system is initialized at timet = t0 by X(t) = x0. Next, these steps are followed:

(1). Classify the reactions into fast and slow according to (24). Calculate the propensities of the fast and slow
reactions,af (t) andas(t).

(2). Numerically approximate the solution of the Langevin equation over[t, t + ∆t) using onlyaf (t), and
obtain the path of integration.

(3). Based onas(t), decide if a slow reaction occurred during∆t.

(i). If no slow reaction occurred, updatet = t + ∆t and approximate the fast variables,Xf (t + ∆t).

(ii). If only one slow reaction,Rj, occurred, find the next timeτj at which it occurred and update
t = t + τj. Integrate the continuous variables on the correct paths based onstep (2). Then set
X = X(t + τj) + νj.

(iii). If more than one slow reaction occurred, reduce∆t and return to step (2).

(4). Return to step (1) or stop.
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3.6 Methods for stochastic delay models of chemical kinetics

We discuss below the problem of simulating the solution of discrete stochastic models of biochemical kinetics
with delays. Bratsun et al. [9] and Barrio et al. [7] developed numerical methods which are appropriate for
the non-Markovian processes associated with these models.The delayed stochastic simulating algorithm [7]
generalizes Gillespie’s Direct Method by incorporating the effect of delayed reactions.

Delayed stochastic simulation algorithm First, the system is initialized at timet = t0 byX(t0) = x0. Then,
it proceeds with the following steps:

(1). Calculate the propensity functions,ak(x), for 1 ≤ k ≤M , for the current state of the system,X(t) = x,
and the sum of all propensities,a0(x) =

∑M
k=1 ak(x).

(2). Generate two independent unit-interval uniform random numbersr1 andr2.

(3). Calculate the time to the next reaction by∆t = (1/a0(x)) ln(1/r1) .

(5). Calculate the index of the next reaction, as the integerj satisfying
∑j−1

k=1 ak(x) < r2a0(x) ≤∑j
k=1 ak(x).

(5). If a delayed reaction is scheduled during(t, t + ∆t] then letk be the index of the delayed reaction
scheduled first, at timet + τ . Update the state of the system to reflect that a reactionRk occurred,
X(t + τ) = X(t) + νk, sett = t + τ .

(6). Else, if j is not a delayed reaction, then update the state of the systemto reflect that a reactionRj

occurred,X(t + ∆t) = X(t) + νj .

(7). Else record the timet + ∆t + τ for reactionj and sett = t + ∆t. Return to step(1) or stop.

4 Numerical experiments

Bi-stability The Schlögl model [51, 64] is a remarkable example of a reaction network which exhibits bi-
stability. For the deterministic model represented by Figure 1 and the reactions in Table 1 a solution converges
to one of the two stable states, and stays in the neighborhoodof that solution after a finite time. However, for the
stochastic models, a trajectory of the Chemical Master Equation (Figure 2, left) or of the Chemical Langevin
Equation (Figure 2, right) may spontaneously switch between the two stable states, due to the intrinsic noise
of the system. This spontaneous transition between the two stable states is not possible for the reaction rate
equations, motivating the need for stochastic modeling.

The set of reactions for the Schlögl reaction network and their corresponding propensities are presented
in Table 1. The stochastic reaction rate parameters we employed, which lead to the bistable behavior, are
also given in Table 1. The molecular numbers for the speciesA andB are kept at constant values,A = 105

andB = 2 × 105. In the stochastic models, the initial condition for the number of molecules of speciesX is
X(0) = 250. To obtain the two stable states in the deterministic state,we took the initial conditionX(0) = 248
for the lower stable state (represented in blue) andX(0) = 249 for the upper stable state (represented in
red). The state vector isX = (X,A,B)T and the state-change vectors for reactionsR1, R2, R3 andR4 are,
respectively,

ν1 =





1
−1
0



, ν2 =





−1
1
0



, ν3 =





1
0
−1



, ν4 =





−1
0
1



 .

Other examples of interesting qualitative behavior include noise-induced bistable systems which are mono-
stable in the deterministic setting [67] or noise-induced oscillations in systems which are otherwise non-
oscillatory [74].
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Table 1: The Schlögl model.

Reactions Propensities Reaction rates

R1 A + 2X
k1→ 3X a1(X) = k1AX(X − 1)/2 k1 = 3× 10−7

R2 3X
k2→ A + 2X a2(X) = k2X(X − 1)(X − 2)/6 k2 = 10−4

R3 B
k3→ X a3(X) = k3B k3 = 10−3

R4 X
k3→ B a4(X) = k4X k4 = 3.5
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Figure 1: The Schlögl model: Reaction rate equation model
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Figure 2: The Schlögl model: Chemical Master Equation model (left), Chemical Langevin Equation model
(right) . Only12 trajectories are shown.
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Table 2: The Vilar model.

Reactions Propensities Reaction rates

R1 Pa
k1→ Pa + mRNAa a1(X) = k1Pa k1 = 50

R2 Pa A
k2→ Pa A + mRNAa a2(X) = k2Pa A k2 = 500

R3 Pr
k3→ Pr + mRNAr a3(X) = k3Pr k3 = 0.01

R4 Pr A
k4→ Pr A + mRNAr a4(X) = k4Pr A k4 = 50

R5 mRNAa
k5→ mRNAa + A a5(X) = k5mRNAa k5 = 500

R6 mRNAr
k6→ mRNAr + R a6(X) = k6mRNAr k6 = 100

R7 A + R
k7→ A R a7(X) = k7AR k7 = 20

R8 Pa + A
k8→ Pa A a8(X) = k8Pa A k8 = 1

R9 Pr + A
k9→ Pr A a9(X) = k9Pr A k9 = 1

R10 A
k10→ ∅ a10(X) = k10A k10 = 1

R11 R
k11→ ∅ a11(X) = k11R k11 = 0.2

R12 mRNAa
k12→ ∅ a12(X) = k12mRNAa k12 = 10

R13 mRNAr
k13→ ∅ a13(X) = k13mRNAr k13 = 0.5

R14 A R
k14→ R a14(X) = k14A R k14 = 10

R15 A R
k15→ A + R a15(X) = k15A R k15 = 0

R16 Pa A
k16→ Pa + A a16(X) = k16Pa A k16 = 50

R17 Pr A
k17→ Pr + A a17(X) = k17Pr A k17 = 100

Genetic oscillator Vilar et al. [74] proposed a circadian clock model. The biochemical system they described
has an interesting feature: while, for some values of the kinetic parameters, the CME model describes a system
with sustained oscillations, the reaction rate equation model predicts no oscillations. The set of reactions for the
Vilar model, their propensities and their corresponding stochastic reaction rate parameters are given in Table 2.
We used the following initial conditionsPa(0) = Pr(0) = 1 and all the other molecular numbers are set to
zero [1]. In Figure 3, we show the molecular numbers of species R modeled with the CME (left) and with the
reaction rate equations (right). The oscillations are induced by the intrinsic noise.

5 Challenges

This research area is only in its initial stages and many fundamental open questions remain to be answered by
the numerical analysis and scientific computing community.

• Higher order tau-leaping methods.Finding higher-order stochastic discrete methods has the potential
of improving the speed of computation for practical biological applications, as it should permit larger
step-sizes while maintaining the accuracy of the simulation.

• Adaptive time-stepping methods.The effect of adaptive step-size strategies on the convergence of the
numerical approximation to the correct solution of stochastic discrete models remains a key question.
Some adaptive schemes for tau-leaping were developed by Caoet al. in [13, 14].

• Hybrid methods. These methods seem very promising in dealing with the multiple scales which are
ubiquitous in biochemical systems. Improved strategies tospeed-up the dynamic partitioning of the
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Figure 3: The Vilar et al. [74] model: Chemical Master Equation model (left), reaction rate equation model
(right) .

system are needed. Better criteria for partitioning the reaction system is another important issue.

• Spatially inhomogeneous systems.The assumption that the biochemical reacting system is homoge-
neous is not always satisfied. Stochastic models for spatially heterogeneous systems are needed. Ef-
ficiency is critical for such models. Existing schemes for molecular-crowding conditions include [19]
(where a Monte Carlo method was adapted for the reaction-diffusion Chemical Master Equation), the
next volume method, [53] (where a binomial spatial tau-leaping method is developed) and [17] (where a
diffusive finite state projection method is introduced).

6 Conclusion

Stochastic modeling and simulation of biological processes are problems of high interest today. The multitude
of research opportunities related to the development of effective and reliable simulation tools for these stochas-
tic models as well as for formulating the theoretical foundation to support them, makes this area particularly
attractive for numerical analysts. In this paper, we reviewed some of the key achievements in the efficient mod-
eling and simulation of well-stirred biochemical reactionsystems and outlined some of the important directions
for future research.
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