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Abstract

Muscles provide physiological functions to drive body movement and
anatomically characterize body shape, making them a crucial com-
ponent of modeling animated human figures. Substantial effort has
been devoted to developing computational models of muscles for the
purpose of increasing realism and accuracy in computer graphics and
biomechanics. We survey various approaches to model and simulate
muscles both morphologically and functionally. Modeling the realistic
morphology of muscle requires that muscle deformation be accurately
depicted. To this end, several methodologies are presented, includ-
ing geometrically-based, physically-based, and data-driven approaches.
On the other hand, the simulation of physiological muscle functions
aims to identify the biomechanical controls responsible for realistic
human motion. Estimating these muscle controls has been pursued
through static and dynamic simulations. We review and discuss all
these approaches, and conclude with suggestions for future research.



1
Introduction

Computational human modeling has been an important research topic
in many domains: from films and video games, to augmented and
virtual reality, in which virtual humans play vital roles. As the value
of virtual human models extends to new areas, such as ergonomics,
medicine, and biomechanics, there is a rapidly growing need for and
interest in modeling humans stemming from these new applications.
Different approaches to modeling humans address different performance
requirements. For example, while greater interactivity is required for
real-time applications, greater visual realism is more desirable in film
production. Moreover, physiological and biomechanical accuracy are
the most crucial in designing medical applications. Despite consider-
able effort, the immense complexity of the human body continues to
make modeling it computationally extremely challenging. Furthermore,
our keen perception of human bodies and their movement can make us
very critical of even small deviations from expected behavior.

The human body is composed of an intricate and complex
anatomical structure which is made up of a variety of interacting tis-
sues. Computational human modeling requires accurate reconstruction
of this anatomical structure, the relevant biological and physiological
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functions, and their mathematical formulation into practical physical
and mechanical models. Among the various tissues composing the body,
those that form muscles carry out diverse physiological functions and
collectively perform body movement. This survey focuses specifically
on skeletal muscles because they impart two important features essen-
tial for computational human modeling. First, skeletal muscles serve
as major body components which make up nearly 50% of total body
weight, characterizing the shape of a body and its tone. Second, they
provide physiological functions to stabilize body posture and drive body
movement. While the former is a key feature for realistic representation
of the body which demands accurate modeling of muscle morphology,
the latter is crucial for realistic animation of body movement which
needs accurate simulation of muscle functions.

Early approaches [11, 52] proposed human models based on rigid
skeletons. While they have been widely used in various biomechani-
cal studies, such as biped locomotion analysis, their capacity is fairly
limited to represent the human body realistically and they have dif-
ficulties in modeling soft tissues. Later, muscle and fatty tissue were
introduced as additional layers to represent elastic deformation of soft
bodies [17]. However, this muscle model is physically unrealistic and
its application is limited to expressing bulging effects over joints. Var-
ious researchers thus devoted significant effort to developing realistic
muscle models, focusing on accurate representation of muscle shape
and its deformable behaviors. For example, anatomical knowledge has
been integrated into constructing muscle geometry [10, 57, 69, 89] and
medical imaging techniques have been employed to enhance visual qual-
ity [59]. Once muscle geometry is constructed, its deformable behaviors
during muscle contraction need to be described. To this end, a variety of
approaches have been proposed: geometrically-based, physically-based,
and data-driven approaches. In the biomechanics community, skeletal
muscles have also been extensively studied, but most of this review
has focused on understanding their mechanical properties and physio-
logical functions for human locomotion. As biomechanical models have
been validated through rigorous experiments [34, 95], they have begun
to draw the attention of graphics researchers, who study simulation of
human motions based on computed muscle controls [41, 43, 44, 84], in
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the hope of producing realistic human animation. In this survey, we
examine and discuss these approaches with respect to two principal
features of muscle: muscle deformation and muscle simulation.

This review is organized as follows. Section 2 gives a brief
introduction to anatomical and biomechanical descriptions of muscle,
which have been considered in most applications. In Section 3, we
examine various approaches proposed to model muscle deformation.
In Section 4, we address muscle control problems and present related
simulation models to solve them. Section 5 concludes with a discussion
of possible approaches to bridge the efforts of the biomechanical and
graphics research communities, working toward a unified model.



2
Background

Muscles are the active tissues in the body that generate forces to drive
motion. Depending on their physiological functions, muscles can be
classified into three types: cardiac, smooth, and skeletal muscle. Cardiac
muscles make up the walls of the heart, while smooth muscles constitute
the walls of other organs or blood vessels. Both of these classes of muscle
are controlled by the autonomic nervous system and contract without
conscious effort. Unlike the first two classes of muscle, skeletal muscle
contraction is controlled through the somatic nervous system and, for
the most part, is done so consciously. These voluntary contractions
produce forces that are transferred to the underlying skeleton, resulting
in human body movement. Most research in graphics and related fields,
such as biomechanics and robotics, has focused on understanding the
physiological features and functions of skeletal muscles. In this section,
we briefly review both anatomical and biomechanical aspects of skeletal
muscle.
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2.1 Structural Description

Skeletal muscles are wrapped by the episysium, a dense connective
tissue that joins with the tendon. Internally, the muscle is composed
of numerous muscle fiber bundles, called fascicles, which are separated
from one another by a layer of connective tissue knowns as the perimy-
sium. In turn, every fascicle consists of muscle fibers that are isolated
from one another by the endomysium. Similarly, each muscle fiber con-
sists of parallel bundles of myofibrils. Finally, each myofibril is made
up of a serial array of contractile units, called sarcomeres, which are
responsible for producing the contractions associated with muscles. The
hierarchical structure of muscle is illustrated in Figure 2.1. Although
fascicles and fibers are often graphically depicted as circular structures,
it is important to note the true mosaic-like space-filling pattern of these
components.

Another important component to be considered is tendon. It trans-
mits forces produced by the attached muscle to bone. Tendon connects
muscle to bone either at a narrow area or over a wide and flattened
area, known as the aponeurosis. The attachment of muscle to more
stationary bone (i.e., the proximal site) is called the origin while the
other end, attached to more movable bone (i.e., distal site), is called the
insertion. Tendons are mostly composed of parallel arrays of collagen
fibers closely packed together and have the mechanical property that
they are much stiffer than muscles when they are pulled. In addition to
force transmission, tendon has a function to passively modulate force

TENDON MUSCLE FASCICLE MUSCLE FIBRE MYOFIBRIL SARCOMERES

Fig. 2.1 Major components of the hierarchical muscle structural system. (Adapted from
Ng-Thow-Hing [58].)



2.2 Muscle Architecture 235

during locomotion, providing additional stability (e.g., the Achilles ten-
don during a human stride).

2.2 Muscle Architecture

Muscle architecture refers to the internal arrangement of fascicles
within a muscle. Some muscles have simple architectures, in which
the fascicles are arranged parallel to one another along the length of
the muscle. These are typically the larger muscles, such as the biceps
brachii or the sartorius. However, most muscles exhibit fascicles with
an angular orientation, called the pennation angle, between their tendi-
nous attachments and the longitudinal axis of the muscle. Muscles with
angular fascicle arrangements are known as pennate muscles. Several
types of pennation patterns are observed in skeletal muscles, as illus-
trated in Figure 2.2. Parallel muscles can have either longitudinally
arranged fibers (e.g., sartorius) or similarly oriented fibers with taper-
ing ends (e.g., biceps brachii and psoas major). Unipennate muscles
have fibers arranged in a diagonal pattern to one side of tendon (e.g.,
lumbricals and extensor digitorum longus). Bipennate muscles have two
rows of fibers, running in opposite diagonal directions on both sides of
a central tendon (e.g., rectus femoris). Multipennate muscles have mul-
tiple rows of diagonal fibers, with a central tendon that branches into
two or more tendons (e.g., deltoid). Convergent muscles have wider ori-
gin and narrower insertion (e.g., pectoralis major). These differences in
muscle architecture determine the range of movement and power pro-
duced by a muscle. A muscle would contain a greater number of shorter
muscle fibers in a pennate configuration than in a parallel configuration.

Unipennate Bipennate MultipennateFusiform TriangularParallel

PARALLEL PENNATECONVERGENT

Fig. 2.2 Exemplary muscle architecture types. (Adapted from Ng-Thow-Hing [58].)
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As such, pennate muscles do not shorten as much, but can produce
more force than parallel muscles of the same size.

2.3 Muscle Contraction

Muscle contraction is controlled by the central nervous system; nerve
impulses originate from and travel down the motor neurons to the
sensory-somatic branch in the muscle. The place at which the termi-
nal of a motor neuron and a muscle fiber connect is called the neu-
romuscular junction. Each motor neuron innervates a set of muscle
fibers in which the nerve impulses stimulate the flow of calcium into
the sarcomeres, causing their filaments to slide [37]. Sarcomeres have
protein-based structures composed of high-tensile “thin” filaments of
actin and “thick” filaments of myosin. They are alternatingly stacked
on one another and interact via cross-bridges to produce force. The slid-
ing filament and cross-bridge theory [34, 35] describes the process of
muscle contraction. During muscle contraction, the lengths of these fil-
aments remain constant and slide past each other to increase their over-
lap, producing an overall shortening effect in the muscle, as illustrated
in Figure 2.3. The myosin heads are considered to be elastic elements
which oscillate about an equilibrium position (i.e., position of attach-
ment to the myosin filament) due to biochemical energy. They are linked
as the cross-bridges to the myosin binding sites located in the actin fil-
ament. When the heads oscillate, they continuously attach or detach
from the myosin binding site. When they attach, they exert forces on
the actin filaments, causing filaments to slide past each other. Muscle
contraction can be classified according to length change or force level.
In isotonic contraction, muscle length changes while producing force;

Actin

Myosin
RELAXED CONTRACTED

Fig. 2.3 During concentric muscle contraction, the sarcomere shortens as filaments of myosin
pull along the rigid filaments of actin. The more the filaments overlaps, the more the
sarcomere thickens. (Adapted from [37].)
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the muscle either shortens (i.e., concentric contraction) or lengthens
(i.e., eccentric contraction) depending on whether the produced force
is sufficient to resist an external load. In isometric contraction, muscle
length remains unchanged while producing force, as, for example, when
holding up an object without moving.

2.4 Mechanical Properties

Mechanical properties of muscle associated with force development
can be obtained from simple experiments using muscle isolated from
tendon [26]. Two fundamental functional properties, with force-length
and force-velocity, have been frequently incorporated into a variety of
biomechanical models to study muscle function.

When the whole muscle is stretched or shortened to several different
lengths (force-length property), the resulting force output is measured
and plotted against the length. With no muscle activation, muscle
only develops passive restorative force against increased stretching.
With muscle activation, muscle contracts and generates active force.
The total force is the sum of both active and passive forces (see
Figure 2.4(a)). The curves for these forces are approximated in various
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Fig. 2.4 Mechanical properties of muscles associated with force development. (Adapted from
[95].) (a) A sample force-length plot shows the passive elastic (dotted), active (dashed), and
total (solid) force generated by a muscle against its length. F M

0 is the maximum isometric
force and L0 is the rest/optimal length. F M

0 is experienced at L0. (b) A sample force-
velocity plot shows the changes in force a muscle generates against the velocity of muscle
contraction. V M

max is the maximum shortening velocity.
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ways, such as piecewise line segments [95], piecewise cubic spline [18]
or quadratic functions [87]. The active force is found by subtract-
ing the passive force from the total force. The nonlinear force-length
relationship is consistent with the sliding filament theory of muscle
contraction.

The force-velocity property of muscle is the relationship between
the velocity at which muscle shortens and the amount of force it pro-
duces (plotted in Figure 2.4(b)). To quantify this relationship, a fully
activated muscle is clamped isometrically and then suddenly released
to allow shortening against an external load. When there is no load on
the muscle, the maximum velocity of shortening is experienced. As the
external load increases, the velocity of shortening decreases. The curve
for this property is modeled by following hyperbolic equation (which is
also known as the Hill equation) [31]:

(F + a)(v + b) = (F0 + a)/b, (2.1)

where F is the force generated by muscle, v is the velocity of shorten-
ing, F0 is the maximum isometric force, a and b are constants related
to a specific class of muscle. This property is arguably thought to
be associated with the dependence of muscle force on the number of
attached cross-bridges [37]. During muscle contraction, cross-bridges
attach to produce forces. Since it takes some amount of time for them
to attach, as filaments slide past one another more quickly (i.e., muscle
shortens with increasing velocity), the produced force decreases due to
the lower number of attached cross-bridges. Conversely, as the relative
velocity of filaments decreases (i.e., muscle shortens with decreasing
velocity), more cross-bridges can take time to attach, producing more
force.

Another important property of muscle is line of action, which deter-
mines mechanical constraints on the behavior of muscle. There are two
common methods to represent the line of action: piecewise line seg-
ments [22] and centroid curves [36]. Piecewise line segments specify
the path of muscles to tendinous attachments. They can be wrapped
around the joints or pass through the tendon sheaths. Centroid curves
are constructed by interpolating approximate centroids of cross-sections
throughout the muscle.
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2.5 Mechanical Models

A simple and phenomenological mechanical model (shown in
Figure 2.5(a)) was suggested by Gasser and Hill [26] to capture the
mechanical properties of muscle discussed above. This model has three
major components: the series element (SE), the parallel element (PE),

SE

Activation Signal, a(t)

PE

CE

B

HILL’S MODEL

(a)

CE

Activation Signal, a(t)

ZAJAC’S MODEL

F
~T k

~T

k
~SE

k
~PE

F
~T

l
~T l

~Mcos

l
~M

l
~MT

(b)

Fig. 2.5 Mechanical muscle models. (Adapted from Chen and Zeltzer [18].) (a) Hill’s model
describes the force of a muscle contracting as the sum of four elements: the contractile
element (CE), the series elastic element (SE), the parallel element (PE) and the viscous
element (B) that depends on the shortening velocity. (b) Zajac’s model extends Hill’s model,
adding the pennation angle, α, of a muscle fiber.
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and the contractile element (CE). The series element (SE) represents
mainly the elastic effects of tendon and intrinsic elasticity within the
sarcomere. The parallel element (PE) represents the passive elastic-
ity of the muscle resulting from the penetration of connective tissues
into the muscle body. The CE accounts for generation of active force
that is dependent on the muscle length, lM , and the time-varying neu-
ral signal, a(t), originating from the central nervous system. The Hill
model was later refined by Zajac [95] to be a dimensionless aggregate
or “lumped” model that can be scaled easily to represent any skeletal
musculotendon unit. The force components are modeled from the mea-
surement of isolated muscle fibers, which directly reflect the nonlinear
properties due to the sliding filaments. While the series elastic element
can be lumped with the tendon and removed from the model, pen-
nation effects are directly included into the model. In Zajac’s model,
muscle length, lM , tendon length, lT , muscle force, FM , and shortening
velocity, vM , are respectively normalized as

l̃M =
lM

lM0
, l̃T =

lT

lTs
, F̃M =

FM

FM
0

, ṽM =
vM

vM
max

,

where lM0 is optimal muscle length at which FM
0 is developed, lTs is

tendon rest length, FM
0 is the maximum isometric force of active mus-

cle, and vM
max is the maximum shortening velocity of muscle fibers. The

relationship between muscle and musculotendon length is

l̃MT = l̃T + l̃M cosα,

where α is the pennation angle (see Figure 2.5(b)). The normalized
active force F̃CE

active and passive force F̃PE can be approximated from
the characteristic curves of force-length and force-velocity (shown in
Figure 2.4). The production of contractile force F̃CE is the F̃CE

active
scaled by activation level, a(t) varying with time t, and force-velocity
relation, Fv(ṽM ):

F̃CE = a(t)Fv(ṽM )F̃CE
active(l̃

M )

Finally, the total force generated by the whole muscolotendon unit is

F̃M = (F̃CE + F̃PE)cosα. (2.2)
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Another commonly used muscle model is the Huxley model [34] which
combines the sliding filaments and cross-bridge theory we reviewed in
Section 2.3. While the Hill model has been used to describe macro-
scopic behaviors of muscle, the Huxley model has been used mainly
to understand the properties of the microscopic contractile elements.
To describe muscle contraction, the actin-myosin bonding reaction is
expressed using first order kinetics as

dn

dt
=

∂n

∂t
− v(t)

∂n

∂x
= (1 − n)f(x) − ng(x). (2.3)

Here, the function n(x,t) is proportional to the number of attached
cross-bridges with displacement x at time t, v(t) is the velocity of con-
traction of a half sarcomere, f(x) is the rate of attachment, and g(x)
is the rate of detachment. The displacement x is the distance between
the equilibrium position and the myosin binding position located in the
actin filament. The cross-bridge is defined as the cross-link between the
myosin head and the myosin binding position and its behavior is mod-
eled using a Hookean spring with spring constant k. The total force
exerted by muscle is calculated by summing the forces contributed by
each bonded cross-bridge as

F (t) =
mkAs(t)

2l

∫ ∞

−∞
xn(x,t)dx, (2.4)

where m is the number of cross-bridges per unit volume, A is the cross-
sectional area of the muscle, s(t) is the sarcomere length, and l repre-
sents the distance between successive binding positions.

2.6 Limitations of Mechanical Models

While the Hill-based muscle models may be sufficient for various appli-
cations, their capacity is inherently limited in achieving highly accurate
and realistic motion. First, they oversimplify muscle architecture, such
as uniform fiber length, pennation angle, line of action and moment
arm. Real muscles often have highly complicated structure and architec-
tural variation (see Figure 2.6). This complexity may greatly influence
the functional capacity of muscles.

Second, their unidirectional behavior cannot incorporate any lateral
forces that may occur across the fibers. Neither for fiber to fiber
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Fig. 2.6 Digitized lumbar multifidus ([67]).

interaction, nor also any passive motion induced by other tissue
components, such as neighboring muscles or bones, can be easily accom-
modated. The interaction with other tissues may be important to rep-
resent in vivo muscle behaviors [13]. Constraint points or wrapping
surfaces are commonly used to prevent the muscle from penetrating
into other tissues. However, it is challenging to specify these constraints
accurately. Third, their tendinous attachments to bones are modeled
pointwise. This often makes it difficult to model complex muscles
with broad tendinous attachments (e.g., pectoralis major). Last, the
force production of skeletal muscle has hysteresis, namely history-
dependent properties: force depression and force enhancement [30].
While force depression is produced by shortening of an activated
muscle, force enhancement is caused by stretching or lengthening of
an activated muscle. Thus, movement control and voluntary force pro-
duction are affected by the contractile history of the muscle. The Hill-
based and Huxley-based muscle models do not explicitly account for
these properties.



3
Muscle Deformation

Muscle is not only a functional unit that drives body movement; it
is also a fundamental component in defining the visual appearance of
the human body. As such, realistic muscle deformation is needed for
high-quality animated human characters. Several approaches have been
proposed to model either muscle deformation or muscle-driven body
deformation. Their application can be used to simulate different scales
of systems, from a single muscle to an entire body. Based on their
underlying fundamental methodology, we classify these approaches
into three categories: geometrically-based, physically-based, and data-
driven approaches.

3.1 Geometrically-Based Approaches

Geometrically-based techniques were employed in early systems
because they are practical and efficient. Most proposed approaches have
focused on modeling animation effects of muscle contraction, such as
bulging or swelling, which can be the key underlying factors for skin
deformation or facial animation. They have been shown to be successful
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in modeling simple muscle (e.g., fusiform) but there may not be a
straightforward extension to complex muscles [69, 89]. Furthermore,
since muscle deformation is determined by skeleton arrangement, these
techniques have difficulty in achieving a high order of realism from
physiological or biomechanical perspectives. Thus, to better handle
these problems, muscles are constructed as multiple layers or are often
coupled with other physically-based approaches (see Section 3.2).

3.1.1 Space and Free Form Deformation

A space deformation is a mapping from an input domain to a target
domain within an Euclidean space, in which geometric control is
manipulated to satisfy specified constraints. The Free Form Deforma-
tion (FFD) technique places a lattice around an object and creates a
deformable space by using a trivariate Bézier volume defined by the
points of the lattice [70]:

X(u,v,w) =
l∑

i=0

m∑
j=0

n∑
k=0

Bi(u)Bj(v)Bk(w)Pijk, 0 ≤ u,v,w ≤ 1 (3.1)

where Bi(u),Bj(v), and Bk(w) are separable Bernstein polynomials
and Pijk is a point of the lattice (i.e., control point) and X(u,v,w) is
a deformed point (i.e., spatial point). Chadwick et al. [17] employed
FFD to represent muscle deformation. Articulated skeletons, located
inside muscle, transform a surrounding FFD lattice, which in turn rep-
resents a muscle shape change. Although FFDs provide simple and fast
control, they do not permit direct manipulation of muscle shape. Also,
the regular lattice spacing used by FFD prevents the detailed control
needed to produce more refined and complex shapes (see Figure 3.1).
Moccozet et al. [54] addressed this limitation by introducing Dirichlet
Free From Deformation (DFFD) which is based on a scattered data
interpolation technique. They removed the requirement for regularly
spaced control points by replacing rectangular local coordinates by
generalized natural neighbor coordinates (namely, Sibson coordinates).
Given a point, its natural neighbors are collected based on Delau-
nay and Dirichlet/Voronoi diagrams and its displacement is computed
using interpolation. They used a multi-layered deformation model to
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Fig. 3.1 An exemplary FFD surface is defined by a control lattice around the muscle
shape surface. (Left) The FFD surface before deformation. (Right) The FFD surface after
deformation.

illustrate hand animation in which the muscle layer is modeled by a
DFFD control point set corresponding to a simplified hand topography.
In Skeleton-Subspace Deformation (SSD), deformation of surface points
is determined by the weighted summation of the associated skeleton
coordinate transformations. Muscle bulging or swelling can be mod-
eled by manually defining skeleton subspaces and adjusting weights.
Lewis et al. [49] introduced the Pose-Space Deformation (PSD) by
generalizing the interpolation domain, which can be defined by a skele-
ton or even expression parameters. They improved upon the blend-
ing problem, in which neighboring subspaces might incorrectly blend
together in SSD, and permitted direct manipulation of the desired
deformation.

3.1.2 Parametric and Polygonal Surfaces

A parametric surface is represented by either parametric equations to
control shapes or a collection of surface patches which are defined
in terms of bivariate and single valued equations (i.e., x = x(u,w),
y = y(u,w), z = z(u,w)). A polygonal surface is an approximate and
discretized surface represented by many simple geometric primitives,
such as vertices, edges, and faces.

Komatsu [40] used biquartic Bézier surfaces to model body deforma-
tion. The Bézier surfaces are patched cylindrically around the skeleton
and are jointly controlled to transform the body. Wilhelms [89] and
Scheepers et al. [69] used a parametric ellipsoid as a basic primitive
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to model human skeletal muscles. Three principal axes are adjusted
to represent the bulging of the muscle belly, while volume is preserved
with respect to constrained ratios using predefined relationships among
these three axes. Although an ellipsoid is sufficient for modeling simple
shapes, such as fusiform muscle, it cannot be easily adapted to model
more complex muscle shapes. Scheepers et al. extended their model
to represent multi-belly muscles (e.g., pectoralis) in which n pairs of
origin and insertion points are specified and n ellipsoids are laterally
aligned along the path within the corresponding pair. Their model is
further generalized to represent more complex muscles which are bent
and wrapped around anatomical structure (e.g., brachioradialis in the
forearm). The straight path between the origin and the insertion point
is replaced by a cubic Bézier curve representing the direction of muscle
force and ellipses of varying size along this curve to define the volume
and shape of the muscle. Dow and Semwal [23] proposed the general-
ized cylinder based muscle model, in which muscle is represented by
a cylinder axis and surrounding cross-sectional slices. The contour of
each slice is modeled by B-spline curves and its radius is controlled to
express volumetric changes of muscle (see Figure 3.2). Wilhelms and
Gelder [90] presented a similar approach with the additional flexibil-
ity that a cylinder axis can be bent for modeling muscle bent over a
joint. Furthermore, the muscle length, width and, thickness are scaled
to maintain constant volume. Ng-Thow-Hing and Fiume [58, 59] used
B-spline solids in which a cylindrical coordinate system is chosen to
construct a control point lattice from real specimen data. Their geomet-
ric parameterization can model realistic muscle shape and also depict
muscle fibers inside the muscle.

Fig. 3.2 An exemplary parametric and polygonal surface: a muscle shape is defined by
control of a set of cross-sectional slices. The surface before deformation (left) and after
deformation (right).
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Fig. 3.3 An exemplary implicit surface is defined by the sum of field functions around associ-
ated spherical skeletons. The surface before deformation (left) and after deformation (right).

3.1.3 Implicit Surfaces

An implicit surface generated by a set of skeletons, si (i = 1,2, . . . ,n),
with associated field functions, fi, is defined at the isovalue c by

{P ∈ R
3| f(P ) = c}, where f(P ) =

n∑
i=1

fi(P ). (3.2)

The skeleton, si, can be any geometric primitive such as a point, a
curve, a parametric surface, etc. The field function, fi, is generally
a decreasing function of the distance from a given point, P , to the
associated skeleton (see Figure 3.3). Based on the type of field function,
various implicit surfaces have been developed: blobs, metaballs, soft
objects, and convolution surfaces [14, 15, 92].

Bloomenthal et al. [15] used convolution surfaces to model the
human hand and arm by approximating bones, muscles, tendons and
veins close to the underlying skeletons. Thalmann et al. [83] presented
the multi-layered human model whose body primitives (e.g., muscle,
limb, and fatty tissue) are additively constructed from a stick fig-
ure skeleton model and coated with the ellipsoidal metaball surfaces.
Although the implicit surfaces are smooth and continuous in modeling
objects, unwanted blending effects may often occur in modeling defor-
mation over joints. This problem can be avoided by defining neigh-
boring areas between the different skeletons, and specifying how the
contributions from them are to be summed (e.g., blending graph [16]
and weighted blending with the proximity [72]).

3.2 Physically-Based Approaches

While geometrically-based models have proven to be sufficient for some
graphical applications demanding visually acceptable quality, their
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Fig. 3.4 Geometrically-Based Approaches. (a) deformed cylinders [89] and (b) B-Spline
solids [58].

inherent simplicity and the need for human intervention often makes it
difficult to extend them to represent complex scenes involving dynamics
(Figure 3.4). Furthermore, they lack the physical or mechanical accu-
racy often required for realistic modeling and simulation. To overcome
these deficiencies, many researchers have turned to physically-based
approaches in which physical simulation is employed to solve for com-
plex interactions involving muscle dynamics and tissue properties. To
model physically-based muscles, the following two problems must be
addressed: (1) determining the contractile muscle forces and (2) rep-
resenting the changing muscle geometry during the contraction. To
solve these problems, several muscle models have been proposed based
on a variety of computational methods, such as mass-spring systems,
FEM (Finite Element Method), and FVM (Finite Volume Method).
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3.2.1 Mass-Spring System

An object is modeled by a collection of point masses linked together
with massless springs. An elastic force acting on mass i connected by
a spring to mass j is given by

fij = k(|xij | − lij)
xij

|xij | , (3.3)

where xij = xj − xi, and xi, xj are the locations of point masses i and j,
respectively, lij is the rest length between them, and k is the spring’s
stiffness. This linear spring model can be generalized by incorporating
various types of spring forces, such as angular, bending, and shearing.
Each force is derived from an energy minimization principle and serves
as a constraint to cause the desired deformation effects.

Chadwick et al. [17] linked FFD control points to point masses
in a mass-spring system, allowing this dynamic system to influence
the geometrically-based deformation. By augmenting their FFD-based
muscle model with a mass-spring system they were able to represent
the viscoelastic properties that articulated skeleton-driven deformation
often lacks. Lee et al. [45] and Albrecht et al. [4] embedded a muscle
layer based on a mass-spring system between the skin surface and
the skeleton structure to model facial expressions and hands, respec-
tively. Spring forces generated by the movement of bones in the skele-
ton caused the attached skin surface to deform realistically. Nedel and
Thalmann [57] and Aubel and Thalmann [10] proposed a two-layered
muscle model consisting of a line of action and the muscle surface.
The line of action is modeled using either a straight line [57] or a
1D mass spring [10] to define the profile of the muscle (e.g., orienta-
tion and bone attachment). The skeleton kinematically controls the
line of action to deform the surrounding muscle surface based on a
mass spring system (see Figure 3.5(a)). Besides linear springs repre-
senting the surface, angular springs have been incorporated to con-
trol the volume of the muscle [57]. Ng-Thow-Hing and Fiume [58, 59]
proposed a more sophisticated model based on anatomical and biome-
chanical considerations. Their solid muscle is extracted from medical
imaging data or cross-sectional sliced images (e.g., Visible Human [2])
and modeled using volumetric B-splines. For interior details, a muscle
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Fig. 3.5 A mass-spring system is used to simulate behaviors of lines of action and wrapped
surfaces of (a) pectoralis muscle [10] and (b) torso model [98].

fiber architecture is constructed based on digitally scanned fiber data.
While a Hill-based model is employed to express the dynamics of muscle
fiber, a mass-spring system is used to represent viscoelastic deforma-
tion of muscle. Zordan et al. [98] developed a human torso model to
animate breathing motions, such as inhalation and exhalation. The
interplay of rib cage, diaphragm, and abdomen muscles while breath-
ing was described based on respiration mechanics and was simulated
using a mass-spring system (see Figure 3.5(b)). Furthermore, in order
to preserve the volume of the human body, pressure forces based on
anticipated volume change were incorporated. Delp et al. [21] used a set
of line segments to define behavior of muscles. Additionally, wrapping



3.2 Physically-Based Approaches 251

surfaces (e.g., ellipsoids and cylinders) are employed to impose geo-
metrical constraints, preventing muscles from penetrating into other
surrounding tissues.

3.2.2 Finite Element Method (FEM)

In the finite element method (FEM), a body is subdivided into a set
of domains or finite elements (e.g., hexahedra or tetrahedra in 3D,
quadrilaterals or triangles in 2D). Displacements and positions in an
element are approximated from discrete nodal values using interpola-
tion functions:

Φ(x) ≈
∑

i

hi(x)Φi, (3.4)

where hi is a basis function and Φi is the scalar weight associated
with hi. There exist many choices for the element type and the
basis functions. The choice depends on the object geometry, accuracy
requirements, and computational budget. Higher order interpolation
functions and more complex elements require greater computation per
element, but may give a more accurate approximation. For a more
complete discussion of the FEM, see [78]. Given a dynamic problem
to be solved, equilibrium equations are derived in terms of quanti-
ties of interest (e.g., strain or stress) and are expressed as Partial
Differential Equations (PDEs). These PDEs are then approximated
by the FEM. For example, to represent solid deformation, the total
strain energy as the potential energy is carefully designed to express
desired material response and then equilibrium equations are derived
according to the principle of virtual work [27, 56]. Resulting alge-
braic equations form a linear or nonlinear system, depending on the
specified strain energy. While smaller linear systems can be solved by
direct methods (e.g., Gaussian Elimination), large or nonlinear sys-
tems require iterative methods (e.g., Conjugate Gradient or Newton’s
method) [66].

Chen and Zeltzer [18] proposed a biomechanical approach by
integrating a Hill-based muscle model into a linear elastic solid
model. Active muscle forces are approximated as parametric functions
and embedded into selected edges between vertices of a FEM-based
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solid. While they animated flexion of muscles, they emphasized the
biomechanical validity of their model by comparing it to experimental
measurements, such as the force-length and quick-release properties.
Zhu et al. [97] employed Stern’s muscle model [77] in which simplified
behaviors of bone-joint-muscle complexes are described. Both works
employed a linear elastic material model for connective passive tissues
of muscle, which is computationally efficient but valid only for infinites-
imal deformation. In contrast, Hirota et al. [32] and Lemos et al. [46]
adopted nonlinear material models that allowed the robust representa-
tion of large deformations. Hirota et al. combined the Mooney-Rivlin
model [55], the Veronda model [88] and the fiber-reinforcement material
model [39] to express passive response of tissues during body contact.
Lemos et al. [46] used a rubber-like material model (e.g., hyperelas-
tic material) and explicitly aligned Hill-based muscle forces to fiber
orientations within the finite elements.

In biomechanics, FEM has been widely investigated for study-
ing skeletal muscles. Various muscle models have been proposed to
analyze and predict accurate strain distribution of muscle during
contraction and its functional properties. Yucesoy et al. [93] mod-
eled the mechanical behavior of skeletal muscle as the interaction
between the intracellular domain (i.e., muscle fibers) and extracel-
lular matrix domain (i.e., connective tissues). Thus, muscle geome-
try is represented by two separate meshes that are elastically linked
to account for the force transmissions between these two domains.
Blemker and Delp [13] and Blemker [12] developed a way to repre-
sent complex muscle geometry and architecture (see Figure 3.6(a)). A
variation of the moment arms of fibers is modeled and the predicted
changes to muscle shape are compared to magnetic resonance images.
Tang et al. [80] proposed a constitutive muscle model in which active
contraction of muscle fibers and hyperelastic material properties are
coupled using the strain energy approach. They demonstrated differ-
ent types of contractions, such as concentric and eccentric contrac-
tions, and effects of muscle geometry and fiber orientation on the stress
distribution. The work by [28, 61] incorporated the Huxley model to
represent contractile properties of skeletal muscle. The Huxley equa-
tions (Equation 2.3) are approximated using a Distribution Moments
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Fig. 3.6 Physically-based Approaches: (a) gluteus maximus and medius muscle models with
the hip extension and flexion (based on FEM, [12]) and (b) subscapularis muscle model
attached to scapula bone model (based on FVM, [82]).

approach [94] and combined with the constitutive equation describing
nonlinear and incompressible material response.

3.2.3 Finite Volume Method (FVM)

As with FEM, the finite volume method approximates PDEs piece-
wise by algebraic equations. More specifically, for the integration of
conserved variables in PDEs, volume integrals are converted to surface
integrals using the divergence theorem. These terms are then evaluated
as fluxes at the surfaces of each finite volume. For example, to compute
the internal force f at node xi, we use

fi =
d

dt

∫ ∫ ∫
Ωi

ρvdx =
d

dt

∫ ∫
∂Ωi

tdS =
d

dt

∫ ∫
∂Ωi

σndS, (3.5)
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where Ωi is a small volume containing xi, ρ is the density, v is the
velocity, t is the surface traction on ∂Ωi, σ is the stress tensor, and
n is the surface normal. As we read from left to right in (3.5), note
that computationally the volumetric integral requiring velocities and
densities to be defined at every point in space are replaced by the
computation of a potentially more tractable stress tensor and normal
on a surface boundary. For a more complete discussion of the FVM,
see [47].

Teran et al. [81, 82] proposed a FVM-based approach to simulate
deformable behavior of skeletal muscles (shown in Figure 3.6(b)). They
argued that FVM inherently requires less computation and memory
usage than FEM does. Moreover, they showed that FVM provides a
geometric interpretation of stress inside the object (i.e., multidimen-
sional forces pushing on each face of an element), allowing for a simpler
and more intuitive way of integrating equations of motion compared to
FEM. To represent highly nonlinear material response of muscle, they
used a sophisticated constitutive model similar to [32]. Furthermore,
they incorporated anisotropic properties based on fiber architecture,
which are modeled using the B-spline solid technique [59].

3.3 Data-Driven Approaches

In contrast to many methods involving the modeling of physical
human components and processes, some data-driven approaches forego
anatomical mechanisms and directly model the skin shape in an
“outside-in” manner, deformed by the underlying muscle, of a human
in plausible poses. Data is captured on the surface of subjects usually
with markers on the skin by a motion capture system or a range scan-
ning device. Several techniques may then be used to generate a new
skin surface given a novel skeleton pose. Although such data-driven
approaches are relatively new, several key papers have already shown
the power of this technique.

Early work by Min et al. [53] is based on the observation that
skin shape in a human scan is determined by the underlying skeleton
and muscle, and uses an anatomically-based approach having layers of
skeleton, muscle, and skin. Moving the skeleton deforms the isosurface
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muscle in a volume-preserving fashion, which in turn deforms the skin
layer. The upper body was modeled and the resulting animation showed
realistic arm bending and stretching. Another approach to arm anima-
tion by Sloan et al. used several exemplary arm shapes [73] and a unique
interpolation scheme using linear and radial basis functions to create a
continuous range of well-behaved poses.

As example poses of human subjects became more accessible, more
ambitious systems were created [51]. In the range-scanning technique,
a person poses for a short time as a scanner creates tens of thousands
of data points on the surface of the subject at a density of just a
few millimeters. Allen et al. [5] created a high quality posable upper
body model from range scan data together with many correspondence
markers. This work was later expanded [6], to accommodate the large
CAESER (Civilian American and European Surface Anthropometry
Resource project) database of whole-body range scans, resulting in a
compelling system with several desirable features. Morphing by inter-
polating between registered scans or fitting a model to a sparse marker
set are two significant outcomes of this technique (see Figure 3.7). The
technique also supports transferring texture, surface data or animation
between models to correct scanning problems, to alter the appearance,
or to animate the characters. Multiple correlated parameters could be
modified, such as a person’s weight or height, or statistically correct
human shapes could be preserved when locally modifying a character
part, for example, lengthening an arm.

There are many steps involved in creating the reconstruction and
parameterization of the CAESER data sets. Previous techniques,
which were used primarily on morphable face models, were based on

Fig. 3.7 Data-driven approach: statistical model [6].
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cylindrical mappings that could not be adapted to a complex branching
object, like the complete human body. This review used an artist-
generated template object together with a nonrigid registration tech-
nique to create a vertex correspondence between a set of skin surfaces
that have substantial variation in shape, but a common overall human
structure. An energy-minimization approach was used with a weighted
sum error objective function that combines distance to a template
object, smoothness, and marker distance.

Seo and Thalmann [71] presented a similar template-based system
with additional tailoring parameters to generate new, instantly animat-
able, high-quality human forms, ideal for fashion design. An alternate
technique uses many silhouettes from a video stream instead of range
scan data to formulate the human shape in a re-animatable form [68].
Anguelov et al. [9] extended this work, focusing on representing mus-
cle deformation resulting from articulated body motion, to perform
Shape Completion and Animation of People (SCAPE), by using sep-
arate models for pose deformation and for body shape variation. By
decoupling the skeleton (rigid) deformation from the muscle (nonrigid)
deformation, the formulation, identification of the model, and the effi-
ciency of the learning algorithms are all improved. A limitation is that
a single muscle deformation model is used for all people so that a more
muscular person may not exhibit as much muscle deformation as they
should.

Data-driven modeling of skin and muscle deformation was further
refined by Park and Hodgins [64, 65] by modeling static deforma-
tions, as a function of skeleton pose, and dynamic deformations, as

Fig. 3.8 Data-driven approach: motion-capture [65].



3.3 Data-Driven Approaches 257

a function of the acceleration of each body part. Animated motions
of an actor were captured using a high density of 350 markers, while
performing slow motions and then fast motions. The two classes of
deformation were then modeled and new animations could be gener-
ated from more typical marker counts (40 to 50 markers) in additional
motion-capture sessions. Although this approach still has the limita-
tion of being skeleton-driven and does not express muscle motion with-
out joint angle changes, it does produce very high quality results (see
Figure 3.8).



4
Control and Simulation

While Section 3 examined various approaches proposed to represent
deformable behavior of skeletal muscles, this section reviews numerous
simulation models which were developed to control muscle functions,
producing realistic human movement. In general, the musculoskeletal
system is modeled as a combination of three sub-models: activation
dynamics, contraction dynamics, and skeleton dynamics. Activation
dynamics describe dynamic relations between the neural excitation and
muscle activation, which is often modeled using first order Ordinary
Differential Equations (ODEs) as

daj

dt
= (uj − aj)

(
uj

τact,j
+

1 − uj

τdeact,j

)
, (4.1)

where uj , aj , τact,j , and τdeact,j are the neural excitation, muscle activa-
tion, activation time constant and deactivation time constants of muscle
j, respectively. Contraction dynamics relates muscle activation to the
resulting muscle forces by taking into account physiological features
of muscle, such as fiber arrangement and passive tissue properties.
A Hill model is commonly used to model contraction dynamics (see
Section 2.5). Skeleton dynamics accounts for the relationship between
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muscle forces, external constraints, and resulting skeletal motions:

M(q)q̈ + c(q, q̇) + g(q) − S(q)fext = R(q)fmt, (4.2)

where q, q̇, q̈ are vectors of the generalized coordinates of joints,
velocity, and acceleration, respectively. M(q) is the generalized inertia
matrix, c(q, q̇) is the vector of generalized Coriolis and centrifugal
forces and g(q) is the vector of the generalized gravitational forces.
S(q) and R(q) denote the geometric transformation matrices of the
generalized external forces (fext) and musculotendon forces (fmt) to
the joint forces, respectively. To obtain M(q), the mass of the mus-
cle is lumped along with associated skeletal and soft tissues within
a body segment. Although this method is widely used in prac-
tice, a significant error can be induced in the associated simula-
tion model because (4.2) does not model the movement of the mass
of the muscle in the direction of stretching and shortening during
movement [62]. Upon generating skeletal motions using (4.2), driving
muscle forces can be computed using either manually-specified pro-
files (e.g., handcrafted curves [18], sinusoid [85, 98], and key-framed
control [81]) or computationally-predicted values of muscle activation
(e.g., [44, 79, 84]). In biomechanics, the computation of muscle func-
tions has been systematically studied through rigorous experiments,
and a variety of simulation models has been developed and vali-
dated against experimental data. As the complexity of desired motion
increases or more realistic representations are required in human anima-
tion, the usage of these simulation models becomes more advantageous
due to their reliability, consistency, and accuracy.

However, determination of muscle functions is challenging due to the
high redundancy of the human musculoskeletal system: the number of
contributing muscles is greater than the number of degrees of freedom
specifying skeletal motion, leading to an underdetermined problem.
This difficulty is often handled by using optimization approaches, which
are generally classified into static and dynamic optimization. They
are generally formulated as finite, constrained problems, or nonlinear
optimization problems of the control parameters. These optimization
problems are commonly solved by sequential quadratic programming
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methods [60]. We briefly describe below the static and dynamic opti-
mization approaches and review simulation models based on them.

4.1 Static Optimization

Static optimization (also referred to as inverse dynamics) takes non-
invasive measurements of body motions, such as position, velocity,
acceleration, and external loads, as inputs to (4.2) to calculate mus-
cle forces (see Figure 4.1). An instantaneous motion of the skeleton
at each time instant is translated into algebraic equations that specify
desired criteria through a set of constraints (e.g., 0 ≤ Fmt ≤ Fmax

mt ) or
objective functions. A typical objective function is the minimization of
total muscle force or activation amplitude [19]:

J =
n∑

i=1

(
Fmt,i

PCSAi

)2

(4.3)

where Fmt,i is the force applied by muscle i at time instant t, PCSAi is
the physiological cross-sectional area of muscle i, and n is the number
of muscles. In static optimization, because there is no dynamic depen-
dence between muscle forces at different time instants, time integration
is not necessary, which makes the problem computationally simpler.
However, it is difficult to integrate muscle physiology (e.g., excita-
tion and activation dynamics) and the objective of the motor tasks

Skeletal 
Dynamics

Musculoskeletal
GeometryFM T M d

dt
d
dt

qq̈ q·

STATIC OPTIMIZATION

Fig. 4.1 Static optimization (or inverse dynamics) pipeline. Body motions are prescribed
as inputs and optimal muscle forces are determined as outputs. (Adapted from [96]).
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(e.g., maximum height jumping). Furthermore, the validity of this
approach is highly dependent on the accuracy of the experimental mea-
surement of motions.

Komura et al. [42, 41] computed muscle activation from key-framed
postures of human lower extremities while minimizing total torque
changes and activation amplitude. Their model was further extended
to consider some physiological features, such as muscle fatigue and
injury [41]. Tsang et al. [84] presented a musculotendon model of the
human hand and forearm. Their model features both inverse and for-
ward simulation. Given motion capture data or key-framed animation,
an optimal set of muscle activations is determined using the static opti-
mization method and then taken as input to a forward simulation of
the model to achieve the desired pose or motion. Their optimization
criteria are formulated based on the minimization of the kinematic
error between computed and measured motion, and the total amount
of muscle contraction.

Lee and Terzopoulos [44] proposed a hierarchical approach to sim-
ulate the head and neck system (see Figure 4.2(b)), which is controlled
by a higher-level voluntary sub-controller and a lower-level reflex sub-
controller. The voluntary controller generates feedfoward neural signals
with respect to the desired pose, muscle tone (i.e., stiffness), and feed-
back gains based on monitored current motion. Upon their receipt, the
reflex controller determines activation and co-activation of muscles, and
modulates strain and strain rate of muscles in response to their current
state. An artificial neural network is employed to model these volun-
tary controllers and they are trained offline to precompute feedforward
signal functions of the target pose. This approach was extended to
simulate a complete human upper body by integrating trunk and arm
models [43]. As well as the muscle-based skeletal dynamics, a physics-
based soft tissue simulator was incorporated to represent realistic flesh
deformation during body movement. Kim et al. [38] optimized several
motion tasks based on the hypothesis that total energy consumption
governs human motion. The energy is described as the heat gener-
ated by muscle and formulated in joint space. Optimal joint kinematic
profiles are computed while minimizing total energy expended at each
time interval. Various tasks with different goals were simulated and
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Fig. 4.2 Static optimization: (a) musculotendon simulation for hand ([79]) and (b) neuro-
muscular simulation for head and neck ([44]).

demonstrated in the virtual human environment, Santos [1]. Sueda
et al. [79] presented a musculotendon simulation of a human hand, in
which behaviors of muscles and tendons are governed by spline-based
strand dynamics (see Figure 4.2(a)). The strand dynamics are formu-
lated by coupling muscle contraction and constraint forces based on
routing of muscle and tendons. The optimal muscle activation is com-
puted with respect to minimized total activation and proper damping.
Fels et al. [24] and Stavness et al. [74, 75] proposed dental applica-
tions to model and simulate the oral, pharyngeal and laryngeal complex
based on the ArtiSynth platform [50], in which associated muscle acti-
vation is predicted for jaw-tongue movement and hyolaryngeal elevation
during chewing and swallowing. As a generalized simulation framework,
Damsgaard et al. [20] developed the AnyBody Modeling System which
is capable of modeling and analyzing full body complexity for various
motions.
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Fig. 4.3 Static optimization: simulation for the jaw-tonge-hyoid dynamics ([76]).

4.2 Dynamic Optimization

Dynamic optimization (also referred to as forward dynamics) is gen-
erally formulated by combining (2.2), (4.1), and (4.2), taking muscle
excitation as inputs to produce body motion and then determining the
optimal excitation trajectory while satisfying performance criteria (see
Figure 4.4). While static optimization only accounts for each time
instant, dynamic optimization considers the entire duration of move-
ment, requiring the time integration of (4.2). Dynamic optimization
is much more computationally expensive than static optimization.
However, in contrast to static optimization, physiological, and time-
dependent properties can be incorporated. Also, desired motor tasks
can be formulated as performance criteria, such as minimum-time
kicking [29], maximum-height jumping [63], and maximum-distance
throwing [33]. Anderson and Pandy [7, 8] employed the minimization of
metabolic energy expenditure [86] per unit distance which is assumed
to characterize human gait during normal walking. Anderson and
Pandy [8] showed that static optimization and dynamic optimization
lead to similar results in predicting muscle forces and joint contact
forces during normal human walking. They argued that this similarity
is due to the fact that minimizing muscle fatigue at each time instant
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Fig. 4.4 Dynamic optimization (or forward dynamics) pipeline: muscle excitation is pre-
scribed as inputs and the resulting skeletal motion is used to determine optimal excitation.
(Adapted from [96]).

is roughly the same as minimizing metabolic energy expended per unit
distance traveled over the complete gait cycle. Also, they pointed out
that physiological properties, such as the force-length-velocity proper-
ties of muscle and activation dynamics, had little influence on static
optimization.



5
Discussion and Conclusion

We have reviewed a variety of approaches for modeling muscle deforma-
tion and simulation of muscle functions. For modeling muscle deforma-
tion, geometrically-based approaches prevailed in early work because
of their simplicity and efficiency. Although these techniques produce
results that have limited accuracy and realism, they may still be appro-
priate solutions for some real-time applications, in that they provide
intuitive and easy controls for designers to produce animations. On the
other hand, physically-based approaches augmented with biomechan-
ical and physiological considerations provide a high degree of visual
quality and accuracy in modeling muscles. Despite high computational
demands, their feasibility in applications continues to expand thanks in
part to increasing computing power. Data-driven muscle and skin defor-
mation modeling has advanced significantly in recent years. Only a few
components in addition to those proposed by Park and Hodgins [65] are
still needed to produce a complete system for computer graphics appli-
cations. Isometric muscle effects without joint-angle changes is still an
outstanding problem as is the ability to drive existing models from new
actors, which was available in other previous works. We are optimistic
that, for the purposes of computer animation, a complete system will
in future be created that is entirely data-driven.
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For simulation of muscles, we have reviewed static and dynamic
optimization, which can be viewed as complementary approaches. If
external forces and body motions can be accurately measured, static
optimization is preferred because it provides a practical and compu-
tationally efficient solution for estimating muscle forces. On the other
hand, dynamic optimization offers a more reliable and stable solution.
Also, if time-dependent performance criteria must be considered (e.g.,
maximum-height jumping) or if the aim is to investigate the influence of
musculoskeletal structures on the function and performance of a motor
task, dynamic optimization is required.

While significant progress has been made to date, there are still
many issues for future work. We offer some suggestions which could be
helpful for enhancing visual realism and accuracy in modeling muscle
and ultimately the complete human.

First, many researchers have focused primarily on modeling mus-
cles with simple internal architecture (e.g., parallel and fusiform) rather
than complex pennate muscles. Moreover, current muscle models are
often oversimplified by neglecting nonuniformity and irregularity that
is clearly present in the architecture of real muscle specimens. The rea-
son for this may be due to the limited availability of data and unknown
physiological properties. However, to enhance anatomical and physio-
logical accuracy, this complexity must be considered. Some invasive
assessment techniques, such as those proposed by Agur et al. [3], Fung
et al. [25] and Wu et al. [91], or non-invasive methods, such as diffusion
tensor MRI [48], could be incorporated (see Figure 5.1). In addition
to accurate reconstruction of muscle morphology, the effect of complex
muscle structure on muscle deformation and physiological functions
needs to be studied further. Validation against experimental measure-
ments should be attempted.

Second, there is a need to solve contact problems that occur in
muscle groups or between muscles and the underlying skeleton. This
problem has been largely overlooked in previous approaches, which have
presented models for the simulation of a single muscle in isolation or
simple muscle-skeleton dynamics. Some researchers (e.g.,[43, 44]) have
used multiple muscles to coordinate body movements, but they did not
address the issues associated with collision or contact between muscles.
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Fig. 5.1 Digitization and reconstruction of extensor carpi radialis brevis muscle ([91]).

This is a crucial omission, since most of our muscle systems, such as
biceps, triceps, and quadriceps, are grouped together and intertwined.
Furthermore, for realistic modeling and accurate simulation of body
movement, a solution to the contact problem within muscle groups
would produce a significant advancement in this area.

Third, biomechanical techniques could enhance visual realism and
accuracy of controls in human animation. In biomechanics, significant
progress has been made in understanding human movements through
rigorous data capture and analysis. Recently, some simulation models
have been introduced to provide more accurate, realistic, and auto-
mated controls for muscle-based animations [41, 43, 44, 84]. They have
shown that the inclusion of biomechanical approaches can produce more
accurate and realistic human models. This review is promising for var-
ious applications, such as ergonomics and medicine. However, biome-
chanical models are often too computationally expensive for use in
graphics applications. Some informed simplification or approximation
may be needed to obtain the efficiency needed for graphics applications.

Last, some physiological considerations could provide additional
expressive controls in human modeling. For example, animation of
human walking could be varied by specifying physiological or patho-
logical effects, such as fatigue, which is related to the intra-muscular
calcium level. Also, restriction of the activation range of certain muscles
or muscle fibers could be used to model muscle related injury or dis-
ease. Although they can be manually controlled [84], simulation against
external loads could yield promising results, which could be useful



268 Discussion and Conclusion

not only for video games, but also for ergonomics and rehabilitation
applications.

Ultimately, a unified model, scalable from visually realistic inter-
active systems to highly accurate offline patient-specific diagnostics
systems, is the holy grail of this research area. While much still needs
to be learned about detailed muscle architecture, human variation, and
human muscle coordination strategies, progress is being made both in
computer graphics and biomechanics. We believe that more extensive
collaboration between these research communities will result in signif-
icant advancements toward a unified model.
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tion,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 578–586, 2003.

[69] F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May, “Anatomy-based
modeling of the human musculature,” in SIGGRAPH Computer Graphics,
pp. 163–172, 1997.

[70] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric
models,” in SIGGRAPH Computer Graphics, pp. 151–160, 1986.

[71] H. Seo and N. Magnenat-Thalmann, “An automatic modeling of human bodies
from sizing parameters,” in I3D ’03: Proceedings of the 2003 symposium on
Interactive 3D graphics, pp. 19–26, New York, NY, USA: ACM, 2003.

[72] K. Singh and E. Fiume, “Wires: a geometric deformation technique,” in SIG-
GRAPH ’98: Proceedings of the Annual Conference on Computer Graphics and
Interactive Techniques, pp. 405–414, New York, NY, USA, 1998.

[73] P.-P. J. Sloan, C. F. Rose III, and M. F. Cohen, “Shape by example,” in I3D ’01:
Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 135–143,
New York, NY, USA: ACM, 2001.

[74] I. Stavness, A. Hannam, J. Lloyd, and S. Fels, “Predicting muscle patterns
for hemimandibulectomy models,” Computer Methods in Biomechanics and
Biomedical Engineering, vol. 13, no. 4, 2010.

[75] I. Stavness, J. Lloyd, Y. Payan, and S. Fels, “Coupled hardsoft tissue
simulation with contact and constraints applied to jawtonguehyoid dynamics,”



References 275

International Journal for Numerical Methods in Biomedical Engineering,
vol. 27, no. 3, 2011.

[76] I. K. Stavness, “Byte your tongue: A computational model of human
mandibular-lingual biomechanics for biomedical applications,” University of
British Columbia, Vancouver, Canada, December 2010.

[77] J. T. Stern, “Computer modelling of gross muscle dynamics,” Journal of biome-
chanics, vol. 7, no. 5, pp. 411–428, 1974.

[78] G. Strang and G. Fix, An Analysis of the Finite Element Method. Wellesley-
Cambridge, 2nd Edition, 2008.

[79] S. Sueda, A. Kaufman, and D. K. Pai, “Musculotendon simulation for hand
animation,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 1–8, 2008.

[80] C. Y. Tang, G. Zhang, and C. P. Tsui, “A 3D skeletal muscle model coupled
with active contraction of muscle fibres and hyperelastic behaviour,” Journal
of biomechanics, vol. 42, no. 7, pp. 865–872, 2009.

[81] J. Teran, S. Blemker, V. N. T. Hing, and R. Fedkiw, “Finite volume methods
for the simulation of skeletal muscle,” in SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 68–74,
2003.

[82] J. Teran, E. Sifakis, S. S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw,
“Creating and simulating skeletal muscle from the visible human data set,”
IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 3,
pp. 317–328, 2005.

[83] D. Thalmann, J. Shen, and E. Chauvineau, “Fast realistic human body defor-
mations for animation and VR applications,” in CGI ’96: Proceedings of the
1996 Conference on Computer Graphics International, pp. 166–174, 1996.

[84] W. Tsang, K. Singh, and E. Fiume, “Helping hand: An anatomically accurate
inverse dynamics solution for unconstrained hand motion,” in SCA ’05: Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 319–328, 2005.

[85] X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, perception,
behavior,” in SIGGRAPH Computer Graphics, pp. 43–50, 1994.

[86] B. R. Umberger, K. G. M. Gerritsen, and P. E. Martin, “A model of human
muscle energy expenditure,” Computer Methods in Biomechanics and Biomed-
ical Engineering, vol. 6, no. 2, pp. 99–111, 2003.

[87] A. J. van Soest and M. F. Bobbert, “The contribution of muscle proper-
ties in the control of explosive movements,” Biological Cybernetics, vol. 69,
pp. 195–204, 1993.

[88] D. R. Veronda and R. A. Westmann, “Mechanical characterization of skin-finite
deformations,” Journal of Biomechanics, vol. 3, no. 1, pp. 111–124, 1970.

[89] J. Wilhelms, “Animals with anatomy,” IEEE Computer Graphics and Applica-
tions, vol. 17, no. 3, pp. 22–30, 1997.

[90] J. Wilhelms and A. Van Gelder, “Anatomically based modeling,” in SIG-
GRAPH Computer Graphics, pp. 173–180, 1997.

[91] F. T. Wu, V. Ng-Thow-Hing, K. Singh, A. M. Agur, and N. H. McKee,
“Computational representation of the aponeuroses as NURBS surfaces in 3D



276 References

musculoskeletal models,” Computer Methods and Programs in Biomedicine,
vol. 88, no. 2, pp. 112–122, 2007.

[92] B. Wyvill and G. Wyvill, “Field functions for implicit surfaces,” The Visual
Computer, vol. 5, no. 1–2, pp. 75–82, 1989.

[93] C. A. Yucesoy, B. H. F. J. M. Koopman, P. A. Huijing, and H. J. Grootenboer,
“Three-dimensional finite element modeling of skeletal muscle using a two-
domain approach: Linked fiber-matrix mesh model,” Journal of biomechanics,
vol. 35, no. 9, pp. 1253–1262, 2002.

[94] G. I. Zahalak, “A distribution-moment approximation for kinetic theories of
muscular contraction,” Mathematical Biosciences, vol. 55, no. 1–2, pp. 89–114,
1981.

[95] F. E. Zajac, “Muscle and tendon: Properties, models, scaling, and application
to biomechanics and motor control,” Critical Review Biomedicine Engineering,
vol. 17, no. 4, pp. 359–411, 1989.

[96] F. E. Zajac and M. E. Gordon, “Determining muscle’s force and action in multi-
articular movement,” Exercise and Sport Sciences Reviews, vol. 17, pp. 187–230,
1989.

[97] Q.-H. Zhu, Y. Chen, and A. Kaufman, “Real-time biomechanically-based mus-
cle volume deformation using FEM,” Computer Graphics Forum, vol. 17, no. 3,
pp. 275–284, December 2001.

[98] V. B. Zordan, B. Celly, B. Chiu, and P. C. DiLorenzo, “Breathe easy: Model
and control of human respiration for computer animation,” Graphical Models,
vol. 68, no. 2, pp. 113–132, 2006.


