
Construction and Simulation of Correlated Multivariate Poisson
Processes

by

Michael Tsz-Chun Chiu

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

© Copyright 2026 by Michael Tsz-Chun Chiu

Abstract

Construction and Simulation of Correlated Multivariate Poisson Processes

Michael Tsz-Chun Chiu

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2026

Poisson processes are the canonical stochastic processes for modelling counts. In practice, counting

phenomena are primarily multivariate in nature. A motivating example for this thesis is the modelling

of operational events of different business lines within a financial institution as a multivariate Poisson

process where the observed correlation matrices have been found to exhibit negative correlation; similar

behavior has been observed in geophysics. Standard approaches to constructing multivariate Poisson

processes are unable to correctly model the observed negative dependence between the components of

the multivariate Poisson process. We extend an approach introduced by Kreinin consisting of two pillars:

Extreme Joint Distributions (EJD) and Backward Simulation (BS).

The EJD approach is a pure probabilistic-based approach for constructing joint distributions satis-

fying given marginals and possessing extreme dependence between its components, known as extreme

joint distributions, which are used in calibrating a (bivariate) joint distribution satisfying given marginal

constraints to a desired correlation matrix. We extend the EJD approach to the general d-dimensional

setting.

Backward Simulation exploits the conditional uniformity property of Poisson processes for its simu-

lation within an interval [0, T]. Given the number of the terminal events of the Poisson process, n, the

arrival moments are uniformly distributed and can be obtained by sampling. Backward Simulation is an

attractive simulation method for multivariate Poisson processes since, given a vector of terminal events,

Backward Simulation of the multivariate Poisson process consists of applying Backward Simulation to

each univariate component using the corresponding terminal event. The EJD approach is crucial for

constructing the appropriate multivariate joint distributions with the desired correlation matrix. We

also introduce a methodology for extending a multivariate Poisson process simulated within an interval

[0, T] using Backward Simulation to any subsequent interval [mT, (m+ 1)T] for any integer m ≥ 1. We

extend Backward Simulation to mixed Poisson and compound Poisson processes.

ii

To my children, Gabriel and Penelope.

iii

Acknowledgements

First and foremost, I must express my deepest gratitude for my supervisor, Ken Jackson, to whom I

am greatly indebted for his tutelage, dedication, time, and generosity. It has been a privilege for me to

have studied under not only a sharp mind but a kind soul from whom I have learnt many invaluable

skills. I hope that you found the work in this thesis both meaningful and worthwhile and that we may

continue to work on interesting problems in the future.

I am also grateful to my co-supervisor, Alex Kreinin, for introducing me to the problem that has

become the starting point of this thesis and for teaching me how to think about and approach problems

in probability. I am also grateful for the internship opportunity at Algorithmics where I learnt a lot and

met many wonderful people: I must thank Todd Goodwin for mentoring me in C++ and teaching me

compilers and Asif Lakhany for many insightful discussions on Scientific Computing.

I must also thank my committee members, Christina Christara and Sebastian Jaimungal for being

accommodating, encouraging, and for their helpful comments that have improved this thesis and my

presentation skills.

It has been a privilege to be a part of the Numerical Analysis group at DCS. There, I must thank

Jonathan Calver, Nat Leung, and Vida Heidarpour for making the NA Lab a warm place and for the

time we spent together.

Special acknowledgement and thanks goes to Uroš Kalabić, my brother from another mother, who has

given me much invaluable advice through many personal and professional difficulties and for introducing

me to the Serbian way of life that has now become part of my own as well. I am grateful for the time

that we have spent together both personally and professionally and am indebted for the many things

that he has taken the time to teach me. I am particularly grateful and fond of the writing bootcamp

back in depths of 2020. What a journey it has been since.

Acknowledgment and thanks also goes out to Peter McCormick, to whom I am grateful for our many

discussions on computing and faith and for teaching me much of what I know about Linux and computer

networking.

To my now extended family, my heartfelt gratitude goes first and foremost to my mother for the

numerous sacrifices she has made time and time again, without which I would not be where I am today.

I am also grateful to: my Aunt Sandy and Uncle Simon for their unconditional love and support; my

Godmother also for her love and support; Sharon Lee—the sister I never had—and Chris Leung, for

always supporting me personally without a second thought and for keeping me fed; Peter Ho for his

friendship throughout all these years.

Last, but certainly not least, I must thank past-Michael for persevering, even though you were slow.

iv

Contents

1 Introduction 1

1.0.1 Outline . 3

1.1 Operational Risk . 3

1.2 Poisson Processes . 4

1.2.1 Mixed Poisson Processes . 5

1.2.2 Compound Poisson Processes . 6

1.3 Correlated Multivariate Poisson Processes . 7

1.4 Extreme Joint Distributions . 8

1.5 Simulation of Poisson Processes . 10

1.6 Thesis Outline . 11

1.7 Summary of Contributions . 12

2 Extreme Joint Distributions 13

2.0.1 Outline . 16

2.1 Notation . 17

2.2 Extreme Measures in two-dimensions . 20

2.2.1 Monotone Sets and Distributions . 21

2.2.2 Extreme Joint Distributions in two-dimensions . 31

2.2.3 Equivalence to the Fréchet-Hoeffding Theorem . 37

2.3 The EJD Algorithm in two-dimensions . 39

2.3.1 The Comonotone Case . 40

2.3.2 The Antimonotone Case . 42

2.4 Extreme Measures in d -dimensions . 47

2.4.1 Monotonicity Structures . 49

2.4.2 Extreme Joint Distributions in d -dimensions . 51

2.4.3 Monotonicity in Higher Dimensions . 56

2.5 The EJD Algorithm in d -dimensions . 58

2.6 The Infinite Dimensional Case . 68

2.7 Numerical Example . 72

2.7.1 Support . 72

2.7.2 Marginal Distributions and the Joint Partition . 73

2.7.3 Probability Weights . 73

2.7.4 Extreme Correlations . 76

v

2.8 Calibration . 77

2.8.1 A Linear Algebraic Approach . 78

2.8.2 The Independent Case . 79

2.8.3 Admissible Correlations . 80

2.8.4 Calibration Algorithm . 82

2.9 Sampling from Multivariate Extreme Measures . 85

2.9.1 Sampling from Calibrated Measures . 85

2.10 Computational Complexity . 87

2.10.1 EJD Construction . 87

2.10.2 Extreme Correlation Matrix C(j,d) Construction 87

2.10.3 Calibration . 88

2.11 Summary . 89

3 Backward Simulation of Poisson Processes 90

3.0.1 Outline . 91

3.0.2 Notation . 93

3.1 Backward Simulation . 94

3.1.1 Backward Simulation Algorithm in d-dimensions 101

3.2 Correlation Structure . 102

3.3 Forward Continuation of the Backward Simulation . 108

3.3.1 Forward Correlation Structure . 108

3.3.2 Forward-Backward Simulation Algorithm in d-dimensions 113

3.4 Forward versus Backward Simulation . 114

3.4.1 Forward Simulation . 114

3.4.2 Range of Correlations Restricted under FS . 115

3.5 Computational Complexity . 117

3.5.1 Backwards Simulation . 117

3.6 Summary . 118

4 Backward Simulation of Mixed Poisson Processes 119

4.0.1 Outline . 119

4.0.2 Notation . 120

4.1 Mixed Poisson Process . 121

4.2 Backward Simulation . 123

4.2.1 Backward Simulation Algorithm for mixed Poisson processes in d-dimensions . . . 127

4.3 Correlation Structure . 128

4.4 Forward Continuation of the Backward Simulation for Mixed Poisson Processes 131

4.4.1 Forward Correlation Structure . 131

4.4.2 Forward-Backward Simulation Algorithm in d-dimensions 135

4.5 Summary . 136

vi

5 Backward Simulation of Compound Poisson Processes 138

5.0.1 Outline . 138

5.0.2 Notation . 139

5.1 Compound Poisson Processes . 140

5.2 Backward Simulation . 142

5.2.1 Backward Simulation Algorithm for compound Poisson processes in d-dimensions . 148

5.3 Correlation Structure . 149

5.4 Forward Continuation of the Backward Simulation . 153

5.4.1 Forward Correlation Structure . 153

5.4.2 Forward-Backward Simulation Algorithm in d-dimensions 157

5.5 Summary . 158

6 Conclusions and Future Work 159

6.1 Summary and Conclusions . 159

6.1.1 Our Contributions . 161

6.2 Future Work . 162

Bibliography 163

Appendices 171

A Chapter 2.3 Proofs 172

A.1 Proof of Theorem 3 . 172

A.2 Proof of Proposition 2 . 181

B Chapter 2.5 Proofs 184

B.1 Proof of Lemma 16 . 184

B.2 Proof of Lemma 17 . 185

B.3 Proof of Lemma 23 . 185

B.4 Proof of Corollary 2 . 187

B.5 Proof of Lemma 22 . 190

B.6 Proof of Lemma 21 . 194

B.7 Lemma 24 . 195

B.7.1 Proof of Lemma 24 . 199

vii

List of Tables

2.1 Joint partition of the extreme measure corresponding to comonotone case and the associ-

ated support and marginal cdf for each point. 73

2.2 Support and probabilities of three-dimensional extreme measures having Poisson marginals

with parameters (λ1, λ2, λ3) = (3, 5, 7) corresponding to the monotone structures (0, 0, 0)

and (0, 1, 0). 74

2.3 Support and probabilities of three-dimensional extreme measures having Poisson marginals

with parameters (λ1, λ2, λ3) = (3, 5, 7) corresponding to the monotone structures (0, 0, 1)

and (0, 1, 1). 75

viii

List of Figures

1.1 Realized correlations (in the main body of the table above) and estimated intensities (in

the right most column of the table above) associaed with the events listed in the top row

and left most column of the table above. [32]. 1

2.1 Support of a bivariate comonotone distribution (left) and a bivariate antimonotone dis-

tribution (right). 29

2.2 Partitions of the unit interval in the comonotone case. 41

2.3 Monotonicity structures of extreme measures. The direction of the arrows indicates the

direction of monotonically increasing support. 50

2.4 Different perspectives of the support of the 4 extreme measures for a three-dimensional

joint distribution. 57

2.5 Partitions of the unit interval in the multivariate case . 60

2.6 Supports of multivariate (d = 3) extreme measures with Poisson marginals having pa-

rameters (λ1, λ2, λ3) = (3, 5, 7) under all possible combinations of extremal dependence

between the coordinates. The binary vector in square brackets on top of each figure

indicates the corresponding monotonicity structure. 72

2.7 Extreme correlation matrices Ĉ (j,d) corresponding to extreme measures P̂ (j,d) with given

Poisson marginals having parameters (λ1, λ2, λ3) = (3, 5, 7). 76

3.1 The dashed black lines depict the correlation structure for two bivariate Poisson process,

each with intensities 3 and 5, calibrated to ρ(T) = 0.7 and ρ(T) = −0.9, respectively, com-

puted by Backward Simulation. The blue circles depict the theoretical values according

to Theorem 7. 107

3.2 The dotted black lines depict the correlation structure for a bivariate Poisson process with

intensities 3 and 5, calibrated to ρ(T) = 0.7 and ρ(T) = −0.9, respectively, computed by

the Forward-Backward Simulation approach. The blue circles depict the theoretical values

according to (3.45). 112

4.1 The dashed black lines depict the correlation structure for two bivariate Negative Bino-

mial process, with means 3 and 5 and variances 5 and 7, calibrated to ρ(T) = 0.7 and

ρ(T) = −0.9, respectively, computed by Backward Simulation. The blue circles depict

the theoretical values according to (4.17). The dashed red lines depict the Poisson case:

two bivariate Poisson processes with intensities 3 and 5, calibrated to ρ(T) = 0.7 and

ρ(T) = −0.9, respectively, computed by Backward Simulation. 130

ix

4.2 The dashed black lines depict the correlation structure for two bivariate Negative Binomial

processes with means 3 and 5 and variances 5 and 7, calibrated to ρ(T) = 0.7 and

ρ(T) = −0.8, respectively, computed by the Forward-Backward Simulation approach. The

blue circles depict the theoretical values according to (4.28). The dashed red lines depict

the Poisson case: two bivariate Poisson processes with intensities 3 and 5, calibrated to

ρ(T) = 0.7 and ρ(T) = −0.8, respectively, computed by the Forward-Backward Simulation

approach. 137

5.1 The dashed black lines depict the correlation structure, ρ(t) = corr(Y
(1)
t , Y

(2)
t), for a bi-

variate compound Poisson process, Yt = (Y
(1)
t , Y

(2)
t), having a primary processes, Xt =

(X
(1)
t , X

(2)
t), a bivariate Poisson process with intensities 3 and 5, calibrated to ρ̂(5) = 0.7

and ρ̂(5) = −0.9, respectively, computed by Backward Simulation. The jump sizes FZ(1)

and FZ(2) are lognormally distributed with parameters (2.1235, 0.5) and (1.9449, 0.75),

respectively. The parameters for the jump distributions were selected for illustrative pur-

poses. The blue circles depict the theoretical values for ρ(t) = corr(Y
(1)
t , Y

(2)
t) according to

Theorem 13. The dashed red lines depict the correlation structure, ρ̂(t) = corr(X
(1)
t , X

(2)
t),

of the primary process, i.e., the bivariate Poisson process Xt = (X
(1)
t , X

(2)
t). 152

5.2 The dashed black lines depict the correlation structure, ρ(t) = corr(Y
(1)
t , Y

(2)
t), for a bi-

variate compound Poisson process, Yt = (Y
(1)
t , Y

(2)
t), computed by the Forward-Backward

Simulation approach. The primary process Xt = (X
(1)
t , X

(2)
t), is a bivariate Poisson pro-

cess with intensities 3 and 5, calibrated to ρ̂(1) = 0.7 and ρ̂(1) = −0.9, respectively.

The secondary distributions FZ(1) and FZ(2) are lognormal distributions with parameters

(2.1235, 0.5) and (1.9449, 0.75), respectively. The blue circles depict the theoretical values

for ρ(t) = corr(Y
(1)
t , Y

(2)
t) according to (5.40). The dashed red line depicts the correlation

structure, ρ̂(t) = corr(X
(1)
t , X

(2)
t), of the primary process, Xt = (X

(1)
t , X

(2)
t). 156

x

List of Algorithms

1 Extreme Joint Distribution Algorithm in two-dimensions 45

2 Subroutine: Reverse Support . 45

3 Subroutine: Construct Marginal CDFs . 46

4 Generation of monotonicity structures . 51

5 Extreme Joint Distribution Algorithm in d -dimensions . 70

6 Subroutine: Reverse support in d-dimensions . 71

7 Subroutine: Construct Marginal CDFs in d-dimensions . 71

8 Subroutine: Partition of Unity . 71

9 Calibration of Extreme Measures . 82

10 Subroutine: Flatten entries above diagonal of A . 82

11 Compute Correlation Matrix from a d-dimensional Extreme Measures 83

12 Marginalize d-dimensional Extreme Measure into a d′-dimensional Extreme Measure . . . 83

13 Subroutine: Correlation Between Components of a Bivariate Extreme Measure 84

14 Subroutine: Expectation of a Bivariate Extreme Measure 84

15 Subroutine: Variance of a Bivariate Extreme Measure . 84

16 Subroutine: Dot Product Specialized to Birvariate Measures 84

17 Sampling from Multivariate Extreme Measures . 85

18 Sampling from Calibrated Measures . 86

19 Backward Simulation of correlated multivariate Poisson processes 101

20 Forward-Backward Simulation of correlated multivariate Poisson processes 113

21 Backward Simulation of correlated multivariate mixed Poisson processes 127

22 Forward-Backward Simulation of correlated multivariate mixed Poisson processes 135

23 Backward Simulation of correlated multivariate compound Poisson Processes 148

24 Forward-Backward Simulation of correlated multivariate compound Poisson processes . . 157

25 Subroutine: Extend sets constructed in the l2max setting to l
(j,d)
max 195

26 Subroutine: Construct ẑ(j,d;uv) from z(j,d) . 196

xi

Chapter 1

Introduction

Poisson processes are the canonical stochastic processes used to model counts of random events and

are broadly used in fields such as Insurance, Finance, Machine Learning, Operational Risk, Extreme

Value Theory, Geophysics, and many others, where they are most commonly used in a univariate set-

ting. Poisson processes are also often used in multivariate settings without correlation, i.e., multivariate

Poisson processes with independent components. There are, however, many instances, in fields such as

Geophysics [7] and Operational Risk [32], where events have been found to be correlated—even nega-

tively correlated—with each other. An example of a correlation matrix exhibiting negative correlation

that arises in Operational Risk [32] is reproduced below in Figure 1.1. This correlation matrix describes

the realized dependence between operational events within a financial institution; note the strong neg-

ative correlations highlighted in red. Negative correlations between events have also been observed in

earthquakes [7].

CB-CP CB-EF CB-IF RB-CP RB-EF RB-IF RK-CP RK-EF RK-IF λ
CB-CP 1 7.31
CB-EF 0.14 1 13.73
CB-IF 0.29 0.55 1 11.62
RB-CP 0.32 -0.12 0.11 1 16.59
RB-EF 0.15 0.49 0.27 -0.12 1 14.38
RB-IF 0.16 0.52 0.17 -0.23 0.49 1 22.68
RK-CP 0.03 -0.16 -0.31 0.19 -0.17 -0.02 1 14.78
RK-EF 0.05 0.2 0.05 -0.18 0.44 0.13 0.32 1 1.1
RK-IF -0.06 0.02 0.08 -0.11 -0.03 0.29 0.5 0.16 1 8.17

Figure 1.1: Realized correlations (in the main body of the table above) and estimated intensities (in
the right most column of the table above) associaed with the events listed in the top row and left most
column of the table above. [32].

Multivariate models arise from modeling random vectors and are completely described by their joint

distributions. For example, in the case of Operational Risk, losses are categorized by the tuple (event

type, business line) and are known as risk cells. Let d be the number of Operational Risks that an

institution is susceptible to. Then, we can denote the loss at each time t due to the kth risk cell, by L
(k)
t ,

where k = 1, . . . , d. The total losses, at time t, of the d possible Operational Risks can be modeled as

a d-dimensional vector Lt = (L
(1)
t , · · · , L(d)

t). Summing the component losses of the total Operational

Risk random vector, Lt, gives the aggregate loss
∑d

k=1 L
(k)
t at time t [96].

1

Chapter 1. Introduction 2

In general, correctly estimating the joint distribution of a multivariate model given empirical data,

also known as calibration, is a difficult problem [113]. One approach in determining a joint distribution

that corresponds to some given data is to estimate the marginal distributions and the dependence

structure1 separately. Then, suitable joint distributions satisfying the given marginals and possessing the

desired dependence structure can be determined by methods such as Mathematical Programming. (See,

for example, Section 2.8.) Note that there are many possible joint distributions even when the marginals

are given and the dependence structure—usually measured by a correlation matrix—is specified, since

higher order interactions and moments are not specified [53, 109, 119].

A natural question to ask is then:

Is it possible to construct correlated multivariate Poisson processes with given marginals and a spec-

ified dependency structure, including negative correlations?

The answer to this question is—thankfully—a yes. Previous work in the literature on this topic

include: the works by Fréchet [49] and Hoeffding [64] from which the EJD algorithm was inspired;

the works by Tiit [121, 122, 124]; the NORmal To Anything (NORTA) approach [54]; the approach

by Li et al. [78]; and the approach by Karlis [70]. This problem, more generally, has a long history,

being related to what has classically been known as problems of “Distributions with Given Marginals”

[64, 109, 121, 124, 128] or the problem of “Extremal Distributions” [122] in the literature and also has

rich connections to Optimal Transport2 and Mathematical Programming [105].

This thesis introduces a novel approach for the construction and simulation of correlated multi-

variate Poisson processes and is based on two pillars: the Extreme Joint Distribution (EJD) approach

(Chapter 2) and Backward Simulation (Chapters 3-5).

The EJD approach, first introduced in the bivariate setting [74] and subsequently extended to the mul-

tivariate setting [17], is a pure probabilistic approach for the computation of discrete extreme measures—

probability measures having specified marginals that exhibit extremal dependency in the form of extreme

values for the correlation coefficient; indeed there is a one-to-one relationship between an extreme mea-

sure and an extreme dependence structure (correlation coefficient in the bivariate setting and correlation

matrix in the multivariate setting). Convex combinations of extreme measures are used to construct a

multivariate measure having specified marginals and a specified correlation coefficient in the bivariate

setting or a specified correlation matrix in the multivariate setting. The EJD approach provides an

efficient algorithm for computing extreme measures.

Backward Simulation is a method of simulating Poisson processes that, at a high level, starts from the

end of interval [0, T] and works backwards in time to simulate the Poisson process. This is possible by

exploiting the well-known conditional uniformity property of univariate Poisson processes: conditional

on the total number of events n at time T , the n arrival moments are uniformly distributed in the

interval [0, T]. Crucially, Backward Simulation extends straightforwardly to the multivariate setting

since Backward Simulation of a multivariate Poisson process consists of applying Backward Simulation

to each univariate Poisson process component of the multivariate Poisson process. This requires a vector

of terminal events at time T , which is sampled from a suitable joint distribution; the EJD approach is

used to construct the joint distribution with given marginals and a specified dependence structure.

1If there is no dependence structure, i.e., the components of the multivariate process are independent, the joint distri-
bution factorizes multiplicatively and is completely specified by the product of the marginal distributions.

2We only mention this in passing for the sake of completeness; this connection is not the focus of our thesis.

Chapter 1. Introduction 3

1.0.1 Outline

The outline for this chapter is as follows. We begin in Section 1.1 by reviewing the motivating problem

originating from Operational Risk. In Section 1.2, we briefly recapitulate the basics of Poisson pro-

cesses to review notations and definitions. Section 1.3 reviews some constructions of correlated Poisson

processes. Section 1.4 introduces the Extreme Joint Distribution approach. Section 1.5 discusses the

general approaches to the simulation of Poisson processes. Section 1.6 provides an outline of the thesis.

Section 1.7 summarizes the contributions of this thesis.

1.1 Operational Risk

Operational Risk (OpRisk) within a financial institution is broadly defined as the risk of loss resulting

from inadequate or failed internal processes, people, systems, or from external events [21, 94, 96, 116].

Historically, OpRisk was managed implicitly, often subsumed under credit or market risk, until the

introduction of the Basel II regulatory framework [94], which required financial institutions to explicitly

quantify and provision capital against such risks.

A widely adopted modeling framework for OpRisk is the Loss Distribution Approach (LDA) [4].

In the LDA, total losses over a fixed horizon are modeled as the aggregation of losses across risk cells,

where the loss in each cell is represented as a compound-type process consisting of a frequency component

and a severity component. Specifically, the number of events in each risk cell is modeled as a counting

process—most commonly a Poisson or mixed Poisson process—while individual loss amounts are modeled

separately via a severity distribution. The frequency and severity components are typically assumed to

be independent and are calibrated independently. More formally, let

Lt = L
(1)
t + · · ·+ L

(d)
t (1.1)

where the L
(j)
t , for j = 1, 2, . . . , d, model the annual loss at time t in risk cell j. Each L

(j)
t is given by

L
(j)
t =

N
(j)
t∑

i=1

Z
(j)
i (1.2)

where each Z
(j)
i , random variables drawn from a corresponding severity distribution, models the ith loss

in risk cell j. The Z
(j)
i are usually assumed to be iid. N

(j)
t describes the number of events occurring

within risk cell j up until time t and is known as the frequency process, typically modelled as a Poisson

process or a Negative Binomial process [96]. The random variables Z
(j)
i and the frequency processes

N
(j)
t are generally assumed to be independent and are estimated separately.

From the perspective of frequency modeling, the LDA reduces the OpRisk problem to the construction

and simulation of multivariate counting processes with given marginal distributions and a prescribed

dependence structure across components. Dependence between risk cells enters primarily through the

joint behavior of the frequency processes, and it is precisely at this level that negative correlations have

been observed empirically. Accurately modeling such dependence is critical, as it directly impacts the

distribution of aggregate losses obtained by summing across risk cells.

While the LDA provides a concrete applied context in which correlated multivariate Poisson processes

naturally arise, the scope of this thesis is not restricted to Operational Risk modeling. The constructions

Chapter 1. Introduction 4

and simulation techniques developed herein address the general problem of generating multivariate count

processes with specified marginals and flexible dependence structures, including negative correlations.

As such, the OpRisk and LDA frameworks serve primarily as motivating examples, illustrating the prac-

tical relevance of the theoretical developments, rather than as recurring applications in the subsequent

chapters.

1.2 Poisson Processes

We briefly review basics properties of the Poisson processes discussed in this thesis—Poisson, mixed

Poisson, and compound Poisson—and introduce some related notation. See standard references such as

[23, 24, 51, 58, 71, 75] for more in-depth discussions on Poisson processes. We begin by recalling the

definition of a counting process.

Definition 1 (Counting Process [44]). A counting process {Nt; t ≥ 0} is a stochastic process such that

1. Nt ≥ 0,

2. Nt is an integer,

3. If s ≤ t then Ns ≤ Nt.

Counting processes are a very general class of integer-valued non-decreasing processes that are well

suited for modelling counts of random events. One of the most important counting processes is the

Poisson process.

Definition 2 (Poisson Distribution). A random variable N is said to be Poisson distributed with pa-

rameter λ, Pois(λ), if

P(N = n) = e−λλ
n

n!
for n = 0, 1, 2, . . . and λ ≥ 0. (1.3)

Definition 3 (Poisson Process [51]). A counting process {Nt; t ≥ 0} is a Poisson process with intensity

λ if

1. N0 = 0,

2. Nt has independent increments,

3. Nt −Ns ∼ Pois(λ(t− s)) for s < t.

where Pois(λ(t−s)) denotes a Poisson distribution with parameter λ(t−s), defined above. The conditions

listed in Definition 3 are one characterization of Poisson processes and are derived from the more general

theory of Point processes [23, 24].

Remark 1. Generalizations of Poisson processes, such as the mixed Poisson and compound Poisson

processes, can be characterized similarly to Definition 3, but the increments are mixed Poisson and

compound Poisson distributed, respectively. See Sections 1.2.1 and 1.2.2 for more details.

Poisson processes posses an important property known as conditional uniformity.

Chapter 1. Introduction 5

Proposition 1 (Conditional Uniformity [51]). The joint probability density function, f , of the arrival

moments T1, T2, . . . , Tn of the Poisson process, Nt, conditioned on the event Nt = n, is given by

f(T1,...,Tn|Nt=n)(x1, x2, . . . , xn) =

 n!
tn if 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ t

0 otherwise.
(1.4)

The conditional uniformity property is what enables the Backwards Simulation of Poisson processes;

mixed Poisson and compound Poisson processes also posses this crucial property [58].

There are many ways to construct and define multivariate Poisson distributions [53, 69, 120]. We

define the extensions of Definitions 2 and 3 to the multivariate setting below.

Definition 4 (Multivariate Poisson Distribution). A multivariate random variable N = (N (1), ..., N (d))

is said to be Poisson distributed with parameter λ = (λ1, . . . , λd) if every component N (k) for 1 ≤ k ≤ d

is a Poisson random variable with parameter λk.

Remark 2. Definition 4 implies that the d-dimensional Poisson probability function P (d) ∼ N satisfies

marginal constraints of the form

∑
v∈Ik

∞∑
iv=0

P
(d)
i1,...ik−1,ik,ik+1,...,id

= Q
(k)
ik

(1.5)

where k = 1, . . . , d, ik = 0, 1, . . . , Ik = {r : 1 ≤ r ≤ d, r ̸= k}, and Q
(k)
ik

is element ik of the kth Poisson

probability distribution Q(k) ∼ N (k).

Definition 5 (Multivariate Poisson Process). A multivariate Poisson process Nt = (N
(1)
t , . . . , N

(d)
t) is

a stochastic process such that every component N
(k)
t for 1 ≤ k ≤ d is a univariate Poisson process having

intensity λk and that, at each time t, Nt is multivariate Poisson distributed.

1.2.1 Mixed Poisson Processes

The mixed Poisson process is one generalization of the Poisson process used in many settings where the

empirical data displays overdispersion.

Definition 6 (Mixed Poisson Distribution [58]). A discrete random variable N̂ is said to be mixed

Poisson distributed, MP(U), with structure distribution U, if

P(N̂ = n) = E
[(Λ)n

n!
e−Λ

]
=

∫ ∞

0−

(λ)n

n!
e−λdU(λ), n = 0, 1, 2, . . . (1.6)

where Λ is a random variable distributed according to U .

Definition 7 (Mixed Poisson Process). N̂t is a mixed Poisson process if it is MP(t, U)-distributed for

all t ≥ 0. That is,

P(N̂t = n) =

∫ ∞

0−

(λt)n

n!
e−λtdU(λ), n = 0, 1, 2, (1.7)

The mixed Poisson process is a Poisson process with a non-negative random intensity.

Chapter 1. Introduction 6

Definition 8 (Multivariate Mixed Poisson Distribution). A multivariate mixed Poisson distribution

N̂ = (N̂ (1), . . . , N̂ (d)) is a multivariate distribution such that every component N̂ (k) ∈ MP(U (k)) for

1 ≤ k ≤ d is a univariate mixed Poisson distribution having structure distribution U (k).

Remark 3. Definition 8 implies that the d-dimensional mixed Poisson distribution, similar to Remark 2,

satisfies marginal constraints of the form (1.5) where the marginals Q(k) on the right side of (1.5) are

now mixed Poisson distributions rather than Poisson distributions.

Definition 9 (Multivariate Mixed Poisson Process). A multivariate mixed Poisson process

N̂t = (N̂
(1)
t , . . . , N̂

(d)
t) is a stochastic process such that every component N̂

(k)
t ∈ MP(t, U (k)) for 1 ≤ k ≤ d

is a univariate mixed Poisson process with structure distribution U (k) and that, at each time t, N̂t is

multivariate mixed Poisson distributed.

1.2.2 Compound Poisson Processes

Definition 10 (Compound Poisson Distribution [40]). The random variable

S = Z1 + Z2 + · · ·+ ZN

is said to be compound Poisson distributed if N ∼ Pois(λ) and the random variables {Zi}∞i=1 are iden-

tically and independently distributed having the common distribution FZ which is independent of N and

has finite expectation and finite variance. N is known as the primary random variable having, in this

case, Pois(λ) as the primary distribution and FZ is known as the secondary distribution.

Definition 11 (Compound Poisson Process [40]). The process

Lt =

Nt∑
i=1

Zi (1.8)

is said to be a compound Poisson process if Nt, known as the primary process, is a Poisson process with

intensity λ and the random variables Zi are identically and independently distributed having the common

distribution FZ which has finite expectation and finite variance and is independent of the primary process

Nt.

Definition 12 (Multivariate Compound Poisson Distribution). A multivariate compound Poisson dis-

tribution S = (S(1), . . . , S(d)) is a multivariate distribution with univariate compound Poisson marginals

having Poisson primary distributions with parameters λ = (λ1, . . . , λd) and secondary distribution FZ .

Remark 4. Definition 12 implies that the d-dimensional compound Poisson distribution, similar to

Remark 2, satisfies marginal constraints of the form (1.5) where the marginals Q(k)on the right side of

(1.5) are now compound Poisson distributions rather than Poisson distributions.

Definition 13 (Multivariate Compound Poisson Process). A multivariate compound Poisson process

Nt = (N
(1)
t , . . . , N

(d)
t) is a stochastic process such that every component N

(i)
t for 1 ≤ i ≤ d is a univariate

compound Poisson process having a Poisson primary process with intensity λi and secondary distribution

FZ and that, at each time t, Nt is multivariate compound Poisson distributed.

Chapter 1. Introduction 7

1.3 Correlated Multivariate Poisson Processes

In this thesis, we use the Pearson correlation as the measure of dependency in the multivariate setting.

The Pearson correlation for a bivariate Poisson process, (N
(1)
t , N

(2)
t), with intensities (λ1, λ2) at time t

is

ρ(t) =
E [N

(1)
t N

(2)
t]− E [N

(1)
t]E [N

(2)
t]

σ(N
(1)
t) · σ(N (2)

t)
. (1.9)

Here, σ2(X) denotes the variance of the random variable X, defined by σ2(X) = Var(X) = E [(X −
E [X])2]. In particular, for a Poisson process Nt with intensity λ, σ2(Nt) = λt. We can see from (1.9)

that the only term that is not determined by the distributional parameters of the Poisson processes is

the joint expectation, E [N
(1)
t N

(2)
t]. Therefore, extremizing ρ(t) is equivalent to extremizing the joint

expectation, E [N
(1)
t N

(2)
t]. This realization guides the choice of the objective function in the optimization

problems (2.3) in the two-dimensional case and (2.37) in the d-dimensional case.

One of the early attempts in introducing dependency between Poisson processes originated from actu-

arial modelling, known as the Common Shock Model (CSM) [82, 102, 116], wherein a third Poisson pro-

cess is used to couple two otherwise independent Poisson processes. To illustrate this, let (ν
(1)
t , ν

(2)
t , ν

(3)
t)

be three independent Poisson processes with intensities (λ1, λ2, λ3) We can obtain two correlated Poisson

processes from the three independent Poisson processes through superposition:

N
(1)
t :=

(
ν
(1)
t + ν

(2)
t

)
and

N
(2)
t :=

(
ν
(2)
t + ν

(3)
t

)
having intensities µ1 = λ1 + λ2 and µ2 = λ2 + λ3. The correlation coefficient between the Poisson

processes N
(1)
t and N

(2)
t in the CSM satisfies [82]

ρ =
λ2√
µ1 · µ2

.

The latter relation immediately implies that

0 ≤ ρ ≤

√
min(µ1, µ2)

max(µ1, µ2)
.

It is clear that, in the CSM, correlations do not depend on time and do not allow for negative cor-

relations. Therefore the CSM cannot reproduce the negative correlations exhibited in Figure 1.1. In

addition, the upper bound on the ρ, above, is in some cases less than that attainable by our method

(see Chapter 3). For these reasons, the CSM has significant deficiencies as a method for constructing

correlated multivariate Poisson processes that often appear in practice.

We note that our approach to constructing multivariate distributions is not a Copula based approach.

Our Extreme Joint Distribution approach (see the next section for a brief introduction and Chapter 2

for a detailed exposition) is a direct approach that generates joint distributions with prescribed marginal

distributions (that are not uniform distributions as would be the case for a Copula-based approach) and

prescribed correlations using Mathematical Programming.

Chapter 1. Introduction 8

1.4 Extreme Joint Distributions

First introduced by Kreinin [74] for the bivariate setting, the Extreme Joint Distribution (EJD) method-

ology is a pure probabilistic based approach for constructing discrete joint distributions having given

marginals and extreme correlations between their components. In the two-dimensional case, extreme

joint distributions are solutions to an infinite-dimensional Linear Program (2.3) where the objective

function is the bivariate joint expectation (2.3e) and the constraints are the marginals. Recall from

the discussion in the previous section that extremizing the bivariate joint expectation is equivalent to

extremizing the correlation coefficient ρ between two random variables X(1) and X(2). Extreme joint

distributions are useful for constructing multivariate discrete probability measures with given marginals

and having a prescribed correlation matrix. The intuition behind this is best illustrated in the bivari-

ate setting. To that end, note that in the two-dimensional case there are only two extremal bivariate

distributions P̂ (1) and P̂ (2), each having the specified marginals Q(1) and Q(2), P̂ (1) has the extremal cor-

relation Ĉ (1) and P̂ (2) has the extremal correlation Ĉ (2), where −1 ≤ Ĉ (1) ≤ Ĉ (2) ≤ 1, corresponding to

the extremal positive and extremal negative correlations attainable between two random variables X(1)

and X(2) distributed according to the specified marginals Q(1) and Q(2), respectively. The importance

of extremal correlations3 stems from the fact that, for any correlation C ∈ [Ĉ (1), Ĉ (2)], we can easily

find a w ∈ [0, 1] such that

C = w Ĉ (1) + (1− w) Ĉ (2). (1.10)

By itself, this convex combination is not significant. However, the w that satisfies (1.10) can be substi-

tuted into

P = w P̂ (1) + (1− w) P̂ (2) (1.11)

to obtain a bivariate probability measure P having the given marginals Q(1) and Q(2) and the associated

correlation coefficient C.

In the d-dimensional setting, extreme joint distributions are solutions to a multi-objective infinite-

dimensional Linear Program (2.37) and our approach to (1.10) and (1.11) holds with some modification.

Since there are n = 2d−1 extreme measures (see Section 2.4), (1.10) and (1.11) generalize to

C = w1Ĉ
(1) + · · ·+ wnĈ

(n) (1.12)

and

P (C) = w1P̂
(1) + · · ·+ wnP̂

(n), (1.13)

respectively, where wi ∈ [0, 1] for all i = 1, 2, . . . , n and
∑n

i=1 wi = 1. The solution (w1, . . . , wn) to (1.12)

can be substituted in (1.13) to obtain a multivariate probability measure P (C) having given marginals

Q(1), . . . , Q(d) and the associated correlation matrix C. Note that, in the d-dimensional setting, (1.12)

is system of linear equations having constraints on the {wi : i = 1, 2, . . . , n} that can be solved using

Mathematical Programming. (See Section 2.8.1.) If there is no solution to (1.12), then C is said to be

inadmissible; otherwise, it is admissible. (See Section 2.8.3.)

Thus, the EJD methodology can be used to construct joint distributions having an admissible pre-

scribed dependence structure and satisfy given marginal distributions Q(1), . . . , Q(d). As explained in

Section 2.9, for a multivariate Poisson process having univariate Poisson marginals, P (C) can be used

3The method still works if Ĉ (1) and Ĉ (2) were not extreme, but it would not be possible to calibrate to the full range
of admissible correlations. That is some admissible correlations would be considered as inadmissible.

Chapter 1. Introduction 9

to sample the (correlated) events from a multivariate Poisson distribution with correlation matrix C in

order to obtain the vector of events at terminal time T . This is used by Backward Simulation to exploit

the conditional uniformity property to generate the sample paths of a correlated multivariate Poisson

process. (See Chapters 3, 4, and 5.)

Chapter 1. Introduction 10

1.5 Simulation of Poisson Processes

There are two general approaches to the simulation of Poisson processes within a simulation interval

[0, T]: the forward approach and the backwards approach. To begin, we describe below both Forward

Simulation and Backward simulation in one dimension. Forward Simulation is the more intuitive ap-

proach of starting at time t = 0 and simulating the (exponentially-distributed) interarrival times until

the end of the simulation interval, t ≥ T , is reached. In contrast, Backward Simulation relies on the

conditional uniformity property (Proposition 1), also known as the order statistic property, of Poisson

processes: given the number of events, n, at terminal simulation time, T , the arrival moments of the

Poisson process are uniformly distributed. Thus, Backward Simulation consists of simulating the number

of terminal events, n, from a suitable distribution at the end of the simulation interval t = T , and then

sampling n uniform random variables in the interval [0, T]. Sorting the n uniform random variables

gives the arrival moments of the Poisson process within the simulation interval [0, T]4. In the univariate

setting, the Forward Simulation and Backward Simulation are quite similar in terms of the simplicity of

the methodology and the ease of implementation.

In multivariate settings, however, the two approaches differ significantly, with the backward approach

exhibiting many advantages over the forward approach. For example, in the bivariate setting, to the best

of our knowledge, only independence or extreme correlations are possible under Forward Simulation,

whereas, all admissible correlations can be obtained under the Backward Simulation approach. (See

Section 3.4 for a discussion comparing Forward and Backward Simulation.) Moreover, to the best of

our knowledge, no Forward approach is capable of generating correlated multivariate Poisson processes

for dimensions d > 2. In contrast, Backward Simulation extends naturally to the general d-dimensional

setting, for d ≥ 2, since Backward Simulation of a d-dimensional Poisson process simply consists of

Backward Simulation of each univariate component with the number of terminal events obtained from

a suitable joint distribution at terminal simulation time T .

This thesis explores the extension of the Backward Simulation approach to the general setting where

d ≥ 2 and also to more general Poisson process such as the mixed Poisson process (Chapter 4) and the

compound Poisson process (Chapter 5). A key property of Poisson processes under Backward Simulation

is that the correlation structure is a linear function of time

ρ(t) =
t

T
· ρ(T)

for t ∈ [0, T]. Moreover, the thesis also introduces a methodology for extending a Poisson process

simulated by Backward Simulation within the interval [0, T] to intervals [mT, (m+1)T] for any positive

integer m, where the correlation exhibits the asymptotic behavior

ρ(mT + τ) ≈ ρ(T)

for m sufficiently large and all τ ∈ [0, T]. This extension is known as the Forward Continuation of

Backward Simulation. Note that the first few intervals of the process simulated under the Forward

Continuation of Backward Simulation can be discarded, similar to a burn-in phase, so that the process

exhibits a near constant correlation structure.

4Ordered uniform random variables can be simulated directly using order statistics; see [3].

Chapter 1. Introduction 11

1.6 Thesis Outline

This thesis develops a unified framework for constructing and simulating correlated multivariate Poisson

processes that attain the full range of dependence structures, including extreme negative correlation.

We integrate the two pillars—Extreme Joint Distributions (EJD) and Backward Simulation (BS)—and

extend them substantially in both theoretical scope and computational applicability.

• Chapter 2 develops the theory of Extreme Joint Distributions. We extend the EJD approach

from the bivariate setting in [74] to the general d-dimensional case, characterize the associated

monotonicity structures, and construct extremal multivariate measures with Poisson marginals.

• Chapter 3 introduces Backward Simulation for Poisson processes. Using the extreme measures

constructed in Chapter 2, we calibrate joint distributions to target correlation matrices—including

those with negative entries—and derive the resulting correlation structures under BS and the

Forward Continuation of Backward Simulation.

• Chapter 4 generalizes the Backward Simulation-based framework to mixed Poisson processes and

characterizes the resulting correlation structures.

• Chapter 5 extends the Backward Simulation framework further to compound Poisson processes.

We establish how the dependence structure of the primary process interacts with the secondary

distribution and derive correlation structures under both Backward Simulation and Forward Con-

tinuation.

• Chapter 6 summarizes the theoretical developments, revisits the contributions of the thesis and

outlines directions for future work.

Chapter 1. Introduction 12

1.7 Summary of Contributions

The main contributions of this thesis are as follows:

1. A general d-dimensional EJD framework.

We develop extremal joint distributions for discrete distributions in the general d-dimensional set-

ting, providing the foundation for modeling extreme dependence in multivariate Poisson processes.

2. A calibration method for multivariate discrete distributions using EJD.

The proposed approach constructs joint distributions having prescribed discrete marginal distribu-

tions and admissible correlation matrices. In the case of Poisson marginals, this method overcomes

previous limitations of existing constructions that cannot accommodate negative dependence.

3. Extended Backward Simulation for multivariate mixed and compound Poisson processes.

We prove that mixed and compound Poisson processes simulated via Backwards Simulation remain

said processes. We show how Backwards Simulation can be applied component-wise, once an

appropriate joint distribution has been calibrated, while preserving the dependence structure.

4. A Forward-Backward Simulation scheme enabling process continuation.

After the simulation of Poisson processes within a target interval [0, T], it is natural to consider

extending the process to subsequent intervals [nT, (n+ 1)T]. We propose a method, the Forward

Continuation, that extends the process by keeping the distribution of the increments the same.

5. Theoretical analysis and numerical validation.

We establish correctness results not just for the EJD Theorem in d-dimension, but also for the

EJD algorithms. We numerically validate the behavior of the correlations described by the theory

using Monte Carlo analysis.

A more extensive list of contributions, with references to sections of the thesis, can be found in

Section 6.1.1

Chapter 2

Extreme Joint Distributions

This chapter forms one of the pillars of the thesis and describes, in detail, an important part in the

construction of multivariate Poisson processes with correlation—negative correlation in particular—

between their components. A necessary capability for calibrating a multivariate Poisson process at a

certain point in time to some data, is the ability to obtain a joint distribution that has prescribed marginal

distributions and a correlation structure consistent with the data. A calibrated joint distribution enables

the calculation of various statistics, but more importantly, it enables the generation of random vectors,

which are necessary for our Backward Simulation method (see Chapters 3, 4, and 5).

The problem of constructing joint distributions having prescribed marginal distributions and pos-

sessing a desired dependence structure has been given much consideration in the literature. Two of the

pioneering works are by Fréchet [49] and Hoeffding [64] who introduced the extremal cdfs H∗ and H∗

having maximal and minimal correlation coefficient, respectively, within the set Π(F,G) of all cdfs H

on R2 having F and G as marginal cdfs where F and G have positive finite variance. Later, Whitt [128]

studied extremal bivariate distributions and their correlations in a more general setting and Strassen

[119] considered the problem of existence of the bivariate problem but for general probability measures.

Hill et al. [63] continues the theme of partially specifying joint distributions through prescribed marginal

distributions and a prescribed correlation structure. Similar to Fréchet [49] and Whitt [128], Hill et al.

[63] is close in spirit to our Extreme Joint Distribution (EJD) method as they present a method for

determining the mixing probabilities of extremal joint probability mass functions (pmfs) to achieve a

certain correlation structure. Unlike our work, however, the work of Hill et al. [63] is limited to the

lower-dimensional setting d ≤ 3 and is unable to generate all feasible correlation matrices for a set of

marginals [53].

A separate but related body of work focuses on obtaining random vectors satisfying prescribed

marginal distributions and correlation structure directly, without explicitly specifying the joint distribu-

tion due to its difficulty; this is especially true for cases where the marginals do not come from the same

parametric family [27, 67]. Early works such as Li and Hammond [78] specified a method of constructing

a joint distribution that satisfies prescribed marginal distributions and correlations by applying nonlinear

transformations to normally distributed random variables. However, this method is computationally in-

efficient since it requires the inversion of a double integral where the integrand itself must be numerically

approximated. The nonlinear transformations make it difficult to specify an input correlation matrix

that will remain positive semidefinite after the transformation. Lurie and Goldberg [85] introduce a

13

Chapter 2. Extreme Joint Distributions 14

nonlinear optimization step in order to alleviate this very issue. A more recent and popular body of

work on the same theme is the NORmal To Anything (NORTA) method [14, 53, 54, 55] which generates

iid variates of a random vector X = (X(1), . . . , X(d)) where each component is distributed according

to prescribed marginal distributions Q(j) for j = 1, . . . , d and a prescribed correlation structure in the

form of a correlation matrix C. The NORTA method accomplishes this by first sampling a random

vector Z = (Z1, . . . , Zd) that is normally distributed with mean vector 0 and covariance matrix CZ .

Then, the nonlinear transformation Xi = F−1
i (ϕ(Zi)) is applied to each component, where, ϕ(·) is the

distribution function of a standard normal random variable, F (i) is the cumulative distribution function

corresponding to the marginal distribution Q(i) and

F−1
i (u) = inf{x : F (i)(x) ≥ u}

is the quantile function1 corresponding to marginal distribution Q(i). While the NORTA method is

simple and straightforward, it has many shortcomings. An example of this is that, similar to earlier

work in the literature [78, 85], the intermediate correlation matrix CZ must be chosen such that the

resulting correlation remains positive semidefinite, after the nonlinear transformations are applied. A

remedy for this was suggested in Ghosh and Henderson [54] by adding a Semidefinite Programming (SDP)

step in the initialization of the NORTA method; an obvious downside to this is the added computational

cost. A more serious shortcoming is that NORTA fails for the case d > 3 in that, as the dimensionality

of the random vector grows, NORTA becomes increasingly unable to match feasible correlation matrices

corresponding to a given set of prescribed marginal distributions; in particular, they become increasingly

unable to attain extreme correlations as the dimension increases [53, 55].

A result worth noting is that bivariate Poisson processes exhibiting negative correlations are not

infinitely divisible [59]. Thus, while bivariate Poisson distributions constructed using a “random elements

in common” decomposition [34], where (X, Y) is a bivariate Poisson distribution such that X = U + V

and Y = V +W where U, V,W are three independent Poisson random variables2 are infinitely divisible,

the extreme distributions constructed by the EJD method exhibiting negative correlations are not.

Let us now introduce the intuition behind our approach. Consider first the bivariate setting and

suppose we are given the extremal correlations Ĉ (1) and Ĉ (2) where −1 ≤ Ĉ (1) ≤ Ĉ (2) ≤ 13 corre-

sponding to the extremal positive and extremal negative correlations attainable between two random

variables X(1) and X(2) distributed according to Q(1) and Q(2), respectively. The extremal correlations

determine an admissible range [Ĉ (1), Ĉ (2)] from which any correlation, C, within the admissible range

can be attained by first solving the simple linear equation

C = w Ĉ (1) + (1− w) Ĉ (2) (2.1)

for w ∈ [0, 1]. Crucially, (2.1) relies on being able to generate the extreme correlations Ĉ (k), for

k ∈ {1, 2}, which can be obtained from the corresponding extreme distributions, P̂ (k), given by either

the Fréchet-Hoeffding theorem [49, 64] in the two-dimensional case or by our EJD method in Section

2.2. Each two-dimensional extreme distribution P̂ (k), for k = 1 or 2, has correlation Ĉ(k) and marginals

1This is also known as a generalized inverse; see [38] for details.
2This is the distribution version of the Common Shock Model (CSM) [82] which applies to processes.
3Note that there are cases where −1 < Ĉ(1) and Ĉ(2) < 1.

Chapter 2. Extreme Joint Distributions 15

Q(1) and Q(2). Key to our approach is that the solution w to (2.1), when plugged into

P = wP̂ (1) + (1− w)P̂ (2), (2.2)

specifies a probability distribution P having the marginal distributions Q(1) and Q(2) and correlation C.

The approach outlined in the paragraph above can be extended to higher dimensions. The Ĉ (k) are

no longer scalar values, but are (extreme) correlation matrices. There are n = 2d−1 extreme correlation

matrices in the d-dimensional case—see Lemma 15 in Section 2.4. Therefore, in the d-dimensional setting

(2.1) becomes

C = w1Ĉ
(1) + · · ·+ wnĈ

(n)

with the constraints wj ≥ 0 for j = 1, . . . , n and
∑

j wj = 1. We discuss ways to solve this equation

for the weights (w1, . . . , wn) in Section 2.8. The extreme correlation matrices Ĉ (k) are unique and

each Ĉ (k) is associated with a d-dimensional extreme probability measure P̂ (k) satisfying the marginal

distributions (Q(1),. . . ,Q(d)). A natural question that arises is how to define and compute P̂ (k); this

is the topic of Section 2.4. In the d-dimensional case, similar to the two-dimensional case, the weight

vector (w1, . . . , wn) when substituted into the multidimensional analogue of (2.2),

P = w1P̂
(1) + · · ·+ wnP̂

(n),

specifies the (multivariate) probability distribution P having marginal distributions Q(1), . . . , Q(d) and

correlation matrix C.

Kreinin in [74] introduced the EJD approach for the bivariate case, a pure probabilistic approach for

the computation of extreme measures and showed that it is equivalent to the Fréchet-Hoeffding theorem.

Our main contribution in this chapter is the extension of the EJD method from the bivariate setting to

the general d-dimensional setting for any d ≥ 3, which improves on many of the previous methods and

alleviates some of their shortcomings. In particular, our approach is able to:

1. Attain all admissible correlations corresponding to a set of marginal distributions

2. Efficiently compute extreme measures given marginal distributions

3. Compute d-dimensional extreme distributions for d ≤ 51, where the limitation on d is due to

memory [86]

4. Efficiently sample multivariate distributions constructed using the EJD approach

The closest body of work in the literature to ours is that of Tiit [122, 123, 124] who also considers the

idea of extremal joint distributions and their mixtures. However, we differ from Tiit in that we provide

an algorithm that constructs an extreme joint distribution directly without resorting to the construction

of conditional distributions and we provide a simple, more natural concept for keeping track of the

possible extremal dependencies.

Although the main impetus for the development of the EJD method stemmed from the need to

construct multivariate Poisson distributions, the EJD method is very general and applies to any discrete

marginal distribution with finite variance resulting in a general discrete multivariate distribution with

some extremal dependence structure between its components. A minor but important assumption we

make throughout this chapter is that the marginal distributions Q(j) have Q
(j)
k > 0 for k = 0, 1, . . . , n

Chapter 2. Extreme Joint Distributions 16

in the finite-dimensional case and k = 0, 1, . . . in the infinite-dimensional case; the extension to more

general marginal distributions that may have Q
(j)
k = 0, for some k, is straightforward, but makes the

statement and proof of our results a little messy.

2.0.1 Outline

The outline for this chapter is as follows. We begin, in Section 2.2, by discussing the problem setting

and introducing the EJD method in two-dimensions and the extreme measures it generates; much of

the intuition in the bivariate setting also holds true in the general setting. Section 2.3 describes in

detail the EJD algorithm, an efficient algorithm that simultaneously computes an extreme measure and

its support in the two-dimensional case. In preparation for extending the EJD method to the general

d-dimensional case, Section 2.4.1 introduces the notion of monotonicity structures which describe the

associated extreme measures and provide an ordering for them. Extreme measures in d-dimensions are

discussed in Section 2.4. We extend the EJD algorithm to the general case in Section 2.5. This is followed

by a numerical example in Section 2.7. Calibration of multivariate extreme distributions is discussed in

Section 2.8. Finally, sampling from extreme measures and multivariate extreme distributions constructed

from extreme measures is discussed in Section 2.9.

Chapter 2. Extreme Joint Distributions 17

2.1 Notation

We make use of the following notation in this chapter.

Symbol Definition

d Dimensionality of a multivariate distribution

n = 2 d−1 Number of extreme measures and correlation matrices for a d-

dimensional distribution

m = d(d− 1)/2 Number of entries in the strictly upper triangular part of a d× d

correlation matrix

k ∈ {1. . . . , d} Index of the dimension of the problem

j ∈ {1, . . . , n} Index of the extreme points of the problem

P General probability measure

Pi,j (i, j)th element of P in the two-dimensional case

N0 Set of non-negative integers {0,1,2,. . . }
X General discrete valued random variable

h(P) := E[X(1)X(2)] Joint expectation of the discrete bivariate probability measure P

in the two-dimensional case

Ik = {j : 1 ≤ j ≤ d, j ̸= k} Set of indices not equal to index k in the d-dimensional case

Ik,l = {j : 1 ≤ j ≤ d, j ̸= k, j ̸= l} Set of indices not equal to index k or index l in the d-dimensional

case

R+ The set {(x, y) ∈ R2 : x · y ≥ 0}
R− The set {(x, y) ∈ R2 : x · y ≤ 0}
Q

(k)
i ith element of the kth marginal probability distribution Q(k)

F (k) Cumulative distribution function associated with Q(k)

F̄
(k)
i = 1− F

(k)
i ith element of F̄ (k), the reversed cdf associated with F (k), in the

two-dimensional case where k ∈ {1, 2}
lmax The final iteration of an algorithm

l ∈ {0, 1, . . . , lmax} Iteration index of an algorithm

P̂ (j) Extreme measure in the two-dimensional case where j = {1, 2}
P̂

(j)
sl = P̂

(j)

s
(1)
l ,s

(2)
l

Probability corresponding to extreme measure j at the (l + 1)st

point of the S-path where j ∈ {1, 2} in the two-dimensional case

sl = (s
(1)
l , s

(2)
l) (l + 1)st point belonging to the S-path corresponding to P̂ (1) in

the two-dimensional case

s̄l = (s̄
(1)
l , s̄

(2)
l) (l + 1)st point belonging to the S-path corresponding to P̂ (2) in

the two-dimensional case

i
(k)
max Smallest integer such that Q

(k)
i = 0 for all i > i

(k)
max in the two-

dimensional case

Q̃(k) Finite dimensional approximation of Q(k)

Q̆
(2)

{Q(2)
jmax

, Q
(2)
jmax−1, . . . , Q

(2)
0 } in the two-dimensional case

F̆
(2)

Vector containing cumulative sum of Q̆
(2)

in the two-dimensional

case

Chapter 2. Extreme Joint Distributions 18

Symbol Definition

H
(1)
i,j = P(X(1) ≤ i,X(2) ≤ j) Bivariate cdf for the general random variables X(1) and X(2) in

the two-dimensional case

ΠX(k) = {F (k)
0 , · · · , F (k)

i
(k)
max

} Partition of the unit interval by the kth marginal cdf values

ΠZ = {z0, . . . , zlmax} Partition of the unit interval by the unique and ordered values of

the marginal cdfs F (1) and F (2) in the two-dimensional case

P̂
(1)

F̆
(2) Probability distribution computed in the comonotone case of

Algorithm 1 using F̆
(2)

instead of F (2) in the two-dimensional case

P̂
(1)

sl |F̆
(2) Value of P̂

(1)

F̆
(2) at the support point sl in the two-dimensional case

(X(1), . . . , X(d)) Random vector with associated distributions (Q(1), . . . , Q(d)) in

the d-dimensional case

P (d) General probability measure in d-dimensions

P (d;u,v) Projection of P (d) onto the uth and vth coordinates

P (d;v) Projection of P (d) onto the vth coordinate

P̂ (j,d) d-dimensional extreme measure with monotone structure e(j,d)

P̂
(j,d)
i1,...,id

(i1, . . . , id)
th element of P̂ (j,d)

Q(d;u) uth marginal distribution in the d-dimensional case

F (d;u) uth marginal cdf in the d-dimensional case

F
(d;u)

s
(j,d;u)

l(j,d)

Value of F (d;u) at s
(j,d;u)

l(j,d)

h
(j,d)
u,v (P (d)) := E [X(u)X(v)] Joint expectation of the uth and vth coordinate of P (d)

e(j,d) = (e
(j,d)
1 , . . . , e

(j,d)
d) jth monotone structure of a d-dimensional extreme measure

e(j,d;u,v) = (e
(j,d)
u , e

(j,d)
v) Projection of e(j,d) onto the uth and vth coordinates

l
(j,d)
max The final iteration of an algorithm in the d-dimensional case

l(j,d) ∈ {0, 1, . . . , l(j,d)max } Iteration index of an algorithm in the d-dimensional case

s(j,d) = (s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

) d-dimensional support corresponding to P̂ (j,d)

s
(j,d)

l(j,d)
= (s

(j,d;1)

l(j,d)
, . . . , s

(j,d;d)

l(j,d)
) (l(j,d) + 1)st d-dimensional support point corresponding to P̂ (j,d)

P̂
(j,d)

l(j,d)
= P̂

(j,d)

s
(j,d)

l(j,d)

(l(j,d) + 1)st element of P̂ (j,d)

ΠZ(j,d) = {z(j,d)0 , . . . , z
(j,d)

l
(j,d)
max

} Partition of the unit interval by the unique and ordered values of

the marginal cdfs F (j,1), . . . , F (j,d) in the d-dimensional case

P̂ (j,d;u,v) Projection of P̂ (j,d) onto the uth and vth coordinates

s(j,d;u,v) = (s
(j,d;u,v)
0 , . . . , s

(j,d;u,v)

l
(j,d)
max

) two-dimensional support corresponding to P̂ (j,d;u,v) possibly hav-

ing duplicates in the set

Q(j,d;k) kth marginal distribution in the d-dimensional case taking into

account its corresponding monotone structure e(j,d)

F (j,d;k) kth marginal cdf in the d-dimensional case taking into account its

corresponding monotone structure e(j,d)

P̃ (j,d) Probability measure computed by Algorithm 5

ŝ(j
′,2) = {ŝ(j

′,2)
0 , . . . , ŝ

(j′,2)

l
(j,d)
max

} Set constructed by duplicating points in {s(j
′,2)

0 , . . . , s
(j′,2)
l2max
} ac-

cording to Algorithm 25

Chapter 2. Extreme Joint Distributions 19

Symbol Definition

ẑ(j,2) = {ẑ(j,2)0 , . . . , ẑ
(j,2)

l
(j,d)
max

} Set constructed by duplicating points in {z(j,2)0 , . . . , z
(j,2)
l2max
} accord-

ing to Algorithm 25

{ẑ(j,d;u,v)0 , . . . , ẑ
(j,d;u,v)

l
(j,d)
max

} Set constructed by Algorithm 26 containing only values from

F (j,d;u) and F (j,d;v)

{z(j,2;u,v)0 , . . . , z
(j,2;u,v)

l
(j,d;u,v)
max

} Set constructed by taking only the unique elements of

{ẑ(j,d;u,v)0 , . . . , ẑ
(j,d;u,v)

l
(j,d)
max

}

s(j,d;u,v) = (s
(j,d;u,v)
0 , . . . , s

(j,d;u,v)

l
(j,d;u,v)
max

) Projection of s
(j,d)
l onto the uth and vth coordinates with dupli-

cates eliminated

s̃(j,d;u,v) = (s̃
(j,d;u,v)
0 , . . . , s̃

(j,d;u,v)

l
(j,d;u,v)
max

) Support corresponding to P̃ (j,d;u,v) before being post-processed

by Algorithm 6

s̃(j,d;u,v) = (s̃
(j,d;u,v)
0 , . . . , s̃

(j,d;u,v)

l
(j,d;u,v)
max

) Set {s̃(j,d;u,v)0 , . . . , s̃
(j,d;u,v)

l
(j,d)
max

} with duplicates removed

A = {p : Aw = b, w ≥ 0, p = Pw} Set of discrete probability measures having correlation

vector b that are a convex combination of extreme measures P

C General correlation matrix

Ĉ(1) Extremal positive correlation (scalar) in the two-dimensional case

Ĉ(2) Extremal negative correlation (scalar) in the two-dimensional case

Ĉ(j,d) j-th extreme correlation matrix corresponding to P̂ (j,d) in the d-

dimensional case

Ak Column vector containing the m entries of the upper triangular

part of Ĉ (j) plus an additional element equal to 1 at the bottom

of Ak

A Matrix of extreme correlation vectors having columns Ak

b Correlation vector containing them entries of the upper triangular

part of C plus an additional element equal to 1 at the bottom of

b

wk Weights of a convex combination, that must be solved for in the

calibration problem (2.106)

Chapter 2. Extreme Joint Distributions 20

2.2 Extreme Measures in two-dimensions

In this section we define extreme measures in two-dimensions and describe how they can be obtained

using the Extreme Joint Distribution (EJD) approach. We introduce two special classes of discrete,

bivariate distributions known as comonotone and antimonotone4 distributions and show that extreme

measures belong to these classes. The bivariate case is illustrative; much of the intuition also holds for

the general d-dimensional case (Section 2.4). Importantly, the EJD theorem in two-dimensions has been

shown to be equivalent to the Fréchet-Hoeffding theorem, a well known result. We note that the results

in the subsequent section (Section 2.2.1) are primarily for proving the correctness of the EJD algorithm

in Section 2.3.

In this section, we consider bivariate random vectors (X(1), X(2)) on the positive quadrant having

associated discrete probability distributions Q
(1)
i and Q

(2)
j with finite variance supported on N2

0, where

i = 0, 1, . . . and j = 0, 1, . . . and N2
0 is the set of non-negative integers on the bivariate lattice.

We begin by defining extreme measures.

Definition 14 (Extreme Measures in two-dimensions). Extreme Measures are solutions to the following

infinite-dimensional Linear Program (LP)

extremize h(P) (2.3a)

subject to

∞∑
j=0

Pi,j = Q
(1)
i , i = 0, 1, . . . (2.3b)

∞∑
i=0

Pi,j = Q
(2)
j , j = 0, 1, . . . (2.3c)

Pi,j ≥ 0 i, j = 0, 1, . . . (2.3d)

where Q
(1)
i ≥ 0 for i = 0, 1, 2, . . . , Q

(2)
j ≥ 0 for j = 0, 1, 2, . . . , and

∑∞
i=0 Q

(1)
i =

∑∞
j=0 Q

(2)
j = 1.

Extremize denotes either max or min and the objective function is

h(P) := E[X(1)X(2)] =

∞∑
i=0

∞∑
j=0

ij Pi,j (2.3e)

where Pi,j = P(X(1) = i,X(2) = j)

Remark 5. Definition 14 is consistent with finite-dimensional Q(1) and Q(2) having elements

Q
(1)
0 , . . . , Q

(1)
imax

and Q
(2)
0 , . . . , Q

(2)
jmax

, since they can be simply extended to the infinite-dimensional case

by setting Q
(1)
i = 0 for i = imax+1, imax+2, . . . and Q

(2)
j = 0 for j = jmax+1, jmax+2, . . . , respectively.

Remark 6. The optimization problem (2.3) is a semi-infinite linear program for which existence results

for a solution are well known [114].

Extreme measures are probability distributions that either maximize or minimize the joint expec-

tation (2.3e), which is the only quantity within the calculation of the Pearson correlation coefficient

that is not determined by the given marginal distributions. Therefore, the same distribution P that

maximizes (minimizes) h(P) also maximizes (minimizes) the correlation coefficient associated with P .

4Antimonotonicity is also known—more widely, in fact—as countermonotonicity in the literature. However, in this
thesis we will stick with the use of countermonotonicity.

Chapter 2. Extreme Joint Distributions 21

While extreme measures can be obtained by directly solving the LP (2.3), this approach is inefficient

compared to the EJD algorithm, as explained in Section 2.3.

Moreover, it follows from the discussion in Section 2.4 that the higher-dimensional analogue of (2.3)

precludes solving the optimization problem with standard software due to the complexity of converting

the problem to a form that modern solvers would accept. We mention that the LP (2.3) is also a Monge-

Kantorovich transportation problem (MKP) and thus the EJD method is a novel approach to solving a

special class of MKP; extreme measures in two-dimensions are optimal couplings [57]. The connections

to the MKP are not the focus of the thesis and will not be explored further.

2.2.1 Monotone Sets and Distributions

In this subsection, we introduce a special class of discrete bivariate distributions with given marginals

known as monotone distributions [49, 112] and explore some of their properties. In the next subsection,

we show that the distributions that maximize and minimize the h(P) given in (2.3e) are monotone

distributions. These bivariate discrete distributions P take the form

Pi,j for i = 0, 1, 2, . . . and j = 0, 1, 2, . . .

and satisfy the marginal equations (2.3b) and (2.3c)

To ease the burden in proving the results in the subsection, we make the following assumption

throughout this subsection.

Assumption 1. The distribution P has marginals Q(1) and Q(2), discrete distributions with finite

variance, satisfying the equations (2.3b) and (2.3c) and Q
(k)
i > 0 for i = 0, 1, 2, . . . and k ∈ {1, 2}.

Remark 7. The results in this subsection also hold for the assumption that the distribution P has

marginals Q(1) and Q(2), discrete distributions with finite variance, satisfying the equations (2.3b) and

(2.3c). Moreover, Q
(1)
i > 0 for i = 0, 1, 2, . . . , imax where imax is some finite integer, Q

(1)
i = 0 for all

i > imax. Similarly for Q
(2)
j and jmax.

That is, the results in this subsection hold true for the case that the marginals Q(1) and Q(2) are finite-

dimensional. This can be seen from the fact that the infinite sums of the bivariate discrete distributions

Pi,j in this subsection can instead be replaced by finite sums where the upper bound of summation is imax

if i is the index of summation; and similarly jmax when j is the index of summation. Note that imax and

jmax are the greatest integers such that Q
(1)
imax

> 0 and Q
(2)
jmax

> 0, respectively.

Remark 8. We believe the results in this subsection can be extended to the case where the distribution

P̂ has marginals Q(1) and Q(2), discrete distributions with finite variance, satisfying the equations (2.3b)

and (2.3c) and Q
(k)
i > 0 for i ∈ I(k) ⊂ N0 and Q

(k)
i = 0 for i ∈ N0 \ I(k) and k ∈ {1, 2}. However, note

that this extensions is not needed in this thesis, since the Poisson and mixed Poisson cases we focus on

in Chapters 3, 4, and 5 have Q
(1)
i > 0 for i = 0, 1, 2, . . . and Q

(2)
j > 0 for j = 0, 1, 2, Moreover, the

extension would complicate the proofs in this subsection significantly and detract from the main ideas.

Definition 15 (Monotone Sets). A set of points S = {sn : n ∈ N0}, where N0 = {0, 1, 2, . . . } and

sn = (xn, yn) ∈ R2, is called comonotone if ∀i, j ∈ N0, the vector sj − si ∈ R+ where R+ = {(x, y) ∈
R2 : x · y ≥ 0}. A set S is called antimonotone, if ∀i, j ∈ N0, the vector sj − si ∈ R−, where

R− = {(x, y) ∈ R2 : x · y ≤ 0}.

Chapter 2. Extreme Joint Distributions 22

Definition 16 (Monotone Distributions). A distribution P is said to be comonotone (antimonotone5)

if its support, supp(P), is a comonotone (antimonotone) set.

Comonotone Distributions

Lemma 1. Assume the distribution P is comonotonic and satisfies Assumption 1. Then the origin is

in the support of P .

Proof: We show, by contradiction, that (0, 0) is in the support of P . To this end, suppose (0, 0)

is not in the support of the comonotonic distribution P . Then, there must be a point (0, n) with n > 0

in the support of P , since the marginal assumption

∞∑
j=0

P0j = Q
(1)
0 > 0

implies that at least one P0n > 0 and the assumption that (0, 0) is not in the support of P (i.e., P00 = 0)

ensures that n > 0. Similarly, there must be a point (m, 0) with m > 0 is in the support of P . However,

the point

s = (0, n)− (m, 0) /∈ R+.

Therefore, P is not a comonotone distribution, contradicting our assumption that P is a comonotone

distribution. Hence, (0, 0) must be in the support of P . □

Remark 9. In fact, a comonotonic distribution in higher dimensions must include the origin. The

extension of Lemma 1 to the multivariate setting is straightforward.

Lemma 2. Assume the distribution P is comonotonic and satisfies Assumption 1. If (m,n) is in the

support of P , then at least one of (m,n + 1), (m + 1, n), (m + 1, n + 1) is also in the support of P . In

addition, (m,n+ 1) and (m+ 1, n) cannot both be in the support of P .

Proof: We begin by showing, using proof by contradiction, the first part of the lemma, namely

that, if (m,n) is in the support of P , then at least one of (m,n+1), (m+1, n), (m+1, n+1) must also

be in the support of P . To that end, suppose that none of (m,n + 1), (m + 1, n), (m + 1, n + 1) are in

the support of P . We first show that there must be a point (m+ 1, n′) where n′ > n+ 1 in the support

of P . To see this, note that the marginal assumption

∞∑
j=0

Pm+1,j = Q
(1)
m+1 > 0

implies that at least one Pm+1,n′ > 0. The assumption that both (m+ 1, n) and (m+ 1, n+ 1) are not

in the support of P implies that either n′ > n+1 or n′ < n. The latter cannot occur since, if (m+1, n′)

is in the support of P with n′ < n, then the point s = (m,n) − (m + 1, n′) /∈ R+, contradicting our

assumption that P is a comonotone distribution.

In a similar manner, there must be a point (m′, n + 1) where m′ > m + 1 in the support of P .

However, the point

s = (m+ 1, n′)− (m′, n+ 1) /∈ R+

5Also known as countermonotonicity in some of the literature

Chapter 2. Extreme Joint Distributions 23

if m′ > m+1 and n′ > n+1, which again contradicts our assumption that P is comonotone. Therefore,

at least one of (m,n+ 1), (m+ 1, n), (m+ 1, n+ 1) must be in the support of P .

That (m,n+ 1) and (m+ 1, n) cannot both be in the support of P can be shown, by contradiction,

in a similar manner. To this end, suppose that (m,n+ 1) and (m+ 1, n) are both in the support of P .

The point

s = (m,n+ 1)− (m+ 1, n) /∈ R+,

again contradicting our assumption that P is comonotone. Thus, (m,n+1) and (m+1, n) cannot both

be in the support of P . □

Remark 10. If the marginal distributions Q(1) and Q(2) are finite-dimensional, then there exist integers

m and n such that Q
(1)
m′ = 0 for any m′ > m and Q

(2)
n′ = 0 for any n′ > n. Therefore, no point of the

form (m′, n′) for any m′ > m or any n′ > n belongs to the support of P .

Lemma 3. Assume the distribution P is comonotonic and satisfies Assumption 1. If (m,n) is in the

support of P and (m,n) ̸= (0, 0), then at least one of the points (m,n− 1), (m− 1, n), (m− 1, n− 1) is

also in the support of P . In addition, (m,n− 1) and (m− 1, n) cannot both be in the support of P .

Remark 11. In the special case that m = 0 and n > 0 the points (m−1, n) = (−1, n) and (m−1, n−1) =
(−1, n − 1) are not in the domain of P and so cannot be support points of P . However, in this case,

the point (m,n− 1) = (0, n− 1) is always a support point of P . So, the conclusion of Lemma 3 remains

true.

Similarly, if m > 0 and n = 0, the points (m,n − 1) = (m,−1) and (m − 1, n − 1) = (m − 1,−1)
are not in the domain of P and so cannot be support points of P . However, in this case, the point

(m− 1, n) = (m− 1, 0) is always a support point of P . Again, the conclusion of Lemma 3 remains true.

Proof: We show that the lemma holds true for the following three cases:

1. both m > 0 and n > 0

2. m = 0 and n > 0

3. m > 0 and n = 0.

Case 1: both m > 0 and n > 0.

We use proof by contradiction to prove the first part of this lemma. To that end, suppose that none

of (m,n−1), (m−1, n), (m−1, n−1) are in the support of P . We first show that this implies that there

must be a point (m− 1, n′) where n′ < n− 1 in the support of P . To this end, note that the marginal

assumption
∞∑
j=0

Pm−1,j = Q
(1)
m−1 > 0

implies that at least one Pm−1,n′ > 0. The assumption that both (m−1, n) and (m−1, n−1) are not in

the support of P ensures that either n′ > n or n′ < n− 1. The former cannot occur since, if (m− 1, n′)

is in the support of P and n′ > n, then the point s = (m,n) − (m − 1, n′) /∈ R+, which contradicts

our assumption that P is a comonotone distribution. Similarly, there must be a point (m′, n− 1) where

m′ < m− 1 in the support of P . However, if n′ < n− 1 and m′ < m− 1, then the point

s = (m− 1, n′)− (m′, n− 1) /∈ R+

Chapter 2. Extreme Joint Distributions 24

contradicts, again, our assumption that P is a comonotone distribution. Therefore, if (m,n) is in the

support of P , then at least one of the points (m,n− 1), (m− 1, n), (m− 1, n− 1) is also in the support

of P .

The final statement of the lemma can also be shown by contradiction. To this end, suppose both

(m − 1, n) and (m,n − 1) are in the support of P . Then the point s = (m − 1, n) − (m,n − 1) /∈ R+

contradicting our assumption that P is a comonotone distribution. Hence, (m,n − 1) and (m − 1, n)

cannot both be in the support of P .

Case 2: m = 0 and n > 0.

If (m,n) = (0, n) where n > 0, the points (m − 1, n) = (−1, n) and (m − 1, n − 1) = (−1, n − 1) do

not belong to the domain of P and thus cannot be in its support. Thus, the second part of the lemma

follows immediately. Hence, all that remains to show is that, if the point (0, n) is in the support of P ,

then the point (0, n− 1) must also be in the support of P .

We prove this result by contradiction. To this end, suppose there exists an n ≥ 1 such that (0, n)

is in the support of P , but (0, n− 1) is not in the support of P . There must be a point (m′, n− 1) for

m′ > 0 in the support of P since the marginal assumption

∞∑
i=0

Pi,n−1 = Q
(2)
n−1 > 0

implies that at least one Pm′,n−1 > 0. That (0, n − 1) is not in the support of P ensures that m′ > 0.

However, the point s = (0, n)− (m′, n− 1) /∈ R+ for m′ > 0, contradicting our assumption that P is a

comonotone distribution. Therefore, if (0, n) is in the support of P , then (0, n− 1) must also be in the

support of P .

Case 3: m > 0 and n = 0.

If (m,n) = (m, 0) where m > 0, the points (m,n− 1) = (m,−1) and (m− 1, n− 1) = (m− 1,−1) do
not belong to the domain of P and thus cannot be in its support. Thus, the second part of the lemma

follows immediately. An argument similar to the one employed in Case 2 can be used to show that, if

(m, 0) is in the support of P , then (m− 1, 0) is in the support of P as well.

□

Lemma 1 tells us that comonotonic distributions P must start at the origin. Lemma 2 tells us that

given a point (m,n) belonging to the support of a comonotonic distribution P , then at least one of the

points (m,n + 1), (m + 1, n), (m + 1, n + 1) is also in the support of P , but not both (m,n + 1) and

(m+1, n). Note that it is possible that if (m,n) is in the support, then (m,n+1) and (m+1, n+1) or

(m+1, n) and (m+1, n+1) are both in the support of P . This allows us to introduce, in a well-defined

manner, the “subsequent point” of a point (m,n) in the support of P .

Definition 17 (Subsequent and Antecedent Points). Given some ith point si = (m,n) in the support

of a comonotonic distribution P , the subsequent point in the support of P , si+1, is defined to be one of

the points (m,n+ 1), (m+ 1, n), (m+ 1, n+ 1) in the support of P with the smallest Euclidean distance

to si. Similarly, the antecedent point si−1 of si is defined to be one of the points {(m− 1, n), (m− 1, n−
1), (m,n− 1)} in the support of P with the smallest Euclidean distance to si.

Remark 12. The subsequent point is well-defined because Lemma 2 ensures that the points (m,n + 1)

and (m + 1, n) cannot both be in the support of P . Hence, if either of these points is in the support of

Chapter 2. Extreme Joint Distributions 25

P , it is the subsequent point, since its Euclidean distance to the point (m,n) is less than the Euclidean

distance of (m + 1, n + 1) to (m,n). If neither (m,n + 1) nor (m + 1, n) is in the support of P, then

Lemma 2 ensures us that (m+ 1, n+ 1) is in the support of P and so it is the subsequent point.

Remark 13. Note that in the case where the marginal distributions Q(1) and Q(2) are finite, then there

exists a point (m,n) in the support of P for which there is no subsequent point; this point is known as

the terminal point of the support.

Now we have all the ingredients to characterize the support of a comonotonic distribution P .

Definition 18 (S-path). The S-path is a directed path of support points of P starting with s0 = (0, 0).

Moreover, if the point si = (s
(1)
i , s

(2)
i) is on the S-path for some i ≥ 0, then the next point, si+1 =

(s
(1)
i+1, s

(2)
i+1), on the path is the subsequent point of si.

Lemma 4. Suppose that the distribution P is comonotonic and satisfies Assumption 1. There is no

point (m,n) belonging to the support of P that is not on the S-path.

Proof: We prove this result by contradiction. To this end, suppose that there is a support point

(m,n) of P that is not on the S-path. Lemma 3 ensures that we can construct a path from (m,n) that

must lead back to the origin. However, by Lemmas 1, 2 and the definition of the S-path, the S-path
begins at the origin and must be unique. So, the support path starting from (m,n) and proceeding

backwards must be part of the S-path, contradicting our assumption that (m,n) is not on the S-path.
□

Remark 14. The support of comonotone distributions, by Definition 17 and Lemma 4, can also be

characterized by their monotonically increasing coordinates.

Remark 15 (Sparsity of Comonotone Distributions). Comonotone S-paths are directed paths that, by

Lemmas 1-4, are sparse. Every point on the comonotone S-path except the starting point (and the

terminal point in the case of finite marginals) has an in-degree and out-degree of 1.

Antimonotone Distributions

Lemma 5. Assume the distribution P is antimonotonic and satisfies Assumption 1. Then, there exists

integers m ≥ 0 and n ≥ 0 such that the points (0, n) and (m, 0) are in the support of P .

Proof: From Assumption 1, we know

∞∑
j=0

P0,j = Q
(1)
0 > 0.

Therefore, there must be an integer n ≥ 0 such that P0,n > 0. Hence, (0, n) is in the support of P .

Similarly, there must be an integer m ≥ 0 such that (m, 0) is in the support of P . □

Lemma 6. Assume the distribution P is antimonotonic and satisfies Assumption 1. If (m,n) is in the

support of P , then at least one of the points (m+ 1, n), (m,n− 1), (m+ 1, n− 1) is also in the support

of P . In addition, (m+ 1, n) and (m,n− 1) cannot both be in the support of P .

Remark 16. Note that in the case (m,n) = (m, 0), the points (m,n−1) = (m,−1) and (m+1, n−1) =

(m + 1,−1) are not in the domain of P and thus cannot be in its support. However, in this case, the

point (m+1, n) = (m+1, 0) is always in the support of P . So, the conclusion of Lemma 6 remains true.

Chapter 2. Extreme Joint Distributions 26

Proof:

Case 1: n > 0. We use proof by contradiction to prove the first part of the result. To this end,

suppose that none of the points (m + 1, n), (m,n − 1), (m + 1, n − 1) are in the support of P . We first

show that this implies that there must be a point (m+ 1, n′) where n′ < n− 1 in the support of P . To

this end, note that since the marginal assumption

∞∑
j=0

Pm+1,j = Q
(1)
m+1 > 0

implies that at least one Pm+1,n′ > 0. The assumption that both (m+ 1, n) and (m+ 1, n− 1) are not

in the support of P ensures that either n′ > n or n′ < n − 1. The former cannot occur since the point

s = (m,n)− (m+ 1, n′) /∈ R− for any n′ > n, contradicting our assumption that P is an antimonotone

distribution. Similarly, there must be a point (m′, n− 1) where m′ > m+ 1 in the support of P . To see

this, first note that the marginal assumption

∞∑
i=0

Pi,n−1 = Q
(2)
n−1 > 0

implies that at least one Pm′,n−1 > 0. The assumption that both (m,n− 1) and (m+ 1, n− 1) are not

in the support of P ensures that either m′ < m or m′ > m + 1. Here, there are two cases to consider:

m = 0 and m > 0. If m > 0, then m′ < m cannot occur since the point s = (m,n)− (m′, n− 1) /∈ R−

for any m′ < m, contradicting our assumption that P is an antimonotone distribution. In the case that

m = 0, there also cannot be a point (m′, n − 1) where m′ < 0 belonging to the support since it is not

even in the domain of P . Therefore m′ > m+ 1. However, the point

s = (m+ 1, n′)− (m′, n− 1) /∈ R−

for n′ < n− 1 and m′ > m+ 1, contradicting again our assumption that P is antimonotone. Therefore,

at least one of the points (m+ 1, n), (m,n− 1), (m+ 1, n− 1) is in the support of P .

Finally, we use proof by contradiction again to show that (m+ 1, n) and (m,n− 1) cannot both be

in the support of P . To this end, suppose (m+1, n) and (m,n− 1) are both in the support of P . Then

the point s = (m+1, n)− (m,n− 1) /∈ R−, contradicting again our assumption that P is antimonotone.

Therefore, (m+ 1, n) and (m,n− 1) cannot both be in the support of P .

Case 2: n = 0.

Then (m,n) = (m, 0) and the points (m,n− 1) = (m,−1) and (m+ 1, n− 1) = (m+ 1,−1) do not

belong in the domain of P and therefore cannot belong to the support of P . Therefore, the second part

of the lemma follows immediately.

We prove the first part of the lemma by contradiction. To this end, suppose that the point (m+1, n) =

(m+ 1, 0) does not belong in the support of P . Then there must be a point (m+ 1, n′) where n′ > 0 in

the support of P since the marginal assumption

∞∑
j=0

Pm+1,j = Q
(1)
m+1 > 0

Chapter 2. Extreme Joint Distributions 27

implies that at least one Pm+1,n′ > 0. The assumption that (m+1, 0) is not in the support of P ensures

that n′ > 0. However, the point s = (m, 0)− (m+ 1, n′) ̸∈ R− for n′ > 0, contradicting our assumption

that P is antimonotone. Therefore, the point (m+ 1, n) = (m+ 1, 0) belongs to the support of P .

□

Lemma 7. Assume the distribution P is antimonotonic and satisfies Assumption 1. If (m,n) is in the

support of P , then at least one of the points (m− 1, n), (m− 1, n+ 1), (m,n+ 1) is also in the support

of P . In addition, (m,n+ 1) and (m− 1, n) cannot both be in the support of P .

The proof of Lemma 7 is similar to that of Lemma 6 and is omitted.

Remark 17. Note that in the case (m,n) = (0, n), the points (m− 1, n) = (−1, n) and (m− 1, n+1) =

(−1, n + 1) are not in the domain of P and thus cannot be in its support. However, in this case, the

point (m,n + 1) = (0, n + 1) is always in the support of P. Hence, the conclusion of Lemma 7 remains

true.

Remark 18. Lemma 5 says that both (m, 0) and (0, n) must belong to the support of the antimonotone

distribution P , supp(P). Lemmas 6 and 7 tell us that if (m, 0) ∈ supp(P) then (m + 1, 0) ∈ supp(P)

and that if (0, n) ∈ supp(P) then (0, n + 1) ∈ supp(P), respectively. If the marginal distributions Q(1)

and Q(2) are finite, that is, there exists m′ and n′ such that Q
(1)
m′′ = 0 for all m′′ > m′ and Q

(2)
n′′ = 0

for all n′′ > n′, then the points (m′′, 0) and (0, n′′) for m′′ > m′ and n′′ > n′ cannot belong in supp(P)

in order for the marginal assumptions to be satisfied. However, note that the points (m′, 0) and (0, n′)

belong to the support of P .

We can now, in a manner similar to the comonotonic case, characterize the support of an antimono-

tonic distribution P .

Definition 19 (Subsequent and Antecedent Points). Given a point si = (m,n) in the support of an

antimonotonic distribution P , the subsequent point in the support of P , si+1, is defined to be one of the

points (m+ 1, n), (m,n− 1), (m+ 1, n− 1) in the support of P with the smallest Euclidean distance to

si. Similarly, the antecedent point si−1 of si is defined to be one of the points (m − 1, n), (m − 1, n +

1), (m,n+ 1) in the support of P with the smallest Euclidean distance to si.

Remark 19. As in the case of the comonotone distribution, both the subsequent point and the antecedent

point for an antimonotone distribution are well-defined. The proof of this is very similar to the proof

given for the comonotone case in Remark 12.

Definition 20 (S-path). Lemma 5 ensures that there is an integer n ≥ 0 such the point (0, n) is in

the support of the antimonotonic distribution P . Let n′ be the smallest integer such that (0, n′) is in the

support of P . The S-path is a directed path of support points of P containing the support point (0, n′).

Moreover, if si is a point in the S-path, then the subsequent point, si+1, of si is also a point in the

S-path. Similarly, if si is a point in the S-path, then the antecedent point, si−1, of si is also a point in

the S-path.

Remark 20. Note that in the infinite-dimensional case, Q
(j)
i > 0 for all i = 0, 1, 2, . . . and j ∈ {1, 2},

there is no first point on the S-path and we, therefore, cannot number the support points starting from

0. Note, however, that we can always re-number the support points.

Chapter 2. Extreme Joint Distributions 28

Lemma 8. Suppose that P is an antimonotone distribution and satisfies Assumption 1. There is no

point (m,n) belonging to the support of P that is not on the S-path.

Proof: The proof is by contradiction again. To that end, suppose that there is a point (m,n) in

the support of P that is not on the S-path. Using antecedent points, we can recursively construct a

unique path backwards from (m,n) as follows. The point s0 = (m,n) is on this path and, if a point

si is on the path, then the antecedent point, si−1 of si, is also on the path (Lemma 7). Note that this

process specifies a unique path, since the antecedent point, si−1 of si is unique (Definition 19).

There are two cases to consider:

1. The path starting from (m,n) eventually reaches a point (0, n′′) for some n′′ ≥ 0,

2. The path starting from (m,n) never reaches a point (0, n′′) for any n′′ ≥ 0.

Case 1: We can further break Case 1 into two subcases:

(1a) n′′ < n′,

(1b) n′′ ≥ n′,

where n′ is the smallest integer such that (0, n′) is on the S-path (Lemma 5). Consider case (1a) first.

Since n′′ < n′, we can extend the path that we constructed backwards starting from (m,n) further

backwards. In doing so, note that the antecedent point of (0, n′′) must be (0, n′′ + 1). Repeating

this observation, we see that the path starting from (m,n) must include the points (0, n′′), (0, n′′ +

1), (0, n′′ +2), . . . Hence, the path starting at (m,n) and proceeding backwards using antecedent points

at each step must eventually reach (0, n′). Therefore, the S-path and the path starting at (m,n) and

moving backwards using antecedent points at each step must have a point in common.

Next consider case (1b). Since n′′ ≥ n′ and the S-path includes the points (0, n′), (0, n′ + 1), (0, n′ +

2), ..., the S-path must also include the point (0, n′′) (Lemma 6). Again, we see that the S-path and the

path starting at (m,n) and moving backwards using antecedent points at each step must have a point

in common.

So, we have shown that in case (1), the S-path and the path starting at (m,n) and moving backwards

have a point in common. Call this common point (0, n̂). Now, if we start at (0, n̂) and construct a path

moving forwards using subsequent points, this path must include the path segment that we constructed

starting at (m,n) and moving backwards using antecedent points, since (m′, n′) is the antecedent point

of (m′′, n′′) if and only if (m′′, n′′) is the subsequent point of (m′, n′). Similarly, the path starting at

(0, n̂) moving forwards using subsequent points must be a segment of the S-path. However, this process

of constructing a path by moving forwards using subsequent points specifies a unique path, since each

subsequent point is unique. Hence, the path segment that we constructed starting at (m,n) and moving

backwards using antecedent points at each step must be a segment of the S-path. Therefore, (m,n) is

on the S-path, contradicting our original assumption that (m,n) is not on the S-path. Therefore, we

have shown in Case 1 that there is no point (m,n) belonging to the support of P that is not on the

S-path.

Case 2: Each time we move backwards on the path starting at (m,n) using antecedent points at each

step, we must either

Chapter 2. Extreme Joint Distributions 29

(a) decrease the first coordinate by 1, leaving the second coordinate unchanged,

(b) leave the first coordinate unchanged, increase the second coordinate by 1,

(c) decrease the first coordinate by 1 and increase the second coordinate by 1.

Note that we can execute (a) and (c) at most m-1 times, since, if we were to execute them m times we

would reach a point (0, n′′) for some n′′ ≥ n, which is not permitted in case (2). Therefore, if we take at

least max(m− 1+n−n′ +1, 0) steps on the path starting from (m,n) and, proceeding backwards using

antecedent points at each step, we must reach a point (m′′, n′′) with 0 < m′′ ≤ m and n′′ > n′, since our

assumption in case (2) is that all the points on this path have m′′ > 0. Now note that both (0, n′) and

(m′′, n′′) are support points of P and that (m′′, n′′) − (0, n′) /∈ R− contradicting our assumption that

P is an antimonotone distribution. Therefore, we have shown in Case 2 that there is no point (m,n)

belonging to the support of P that is not on the S-path.
□

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

Figure 2.1: Support of a bivariate comonotone distribution (left) and a bivariate antimonotone distri-
bution (right).

Figure 2.1 provides an illustration of the support of a bivariate comonotonic distribution and a bivariate

antimonotonic distribution. The characterization of the properties of these supports are detailed in

Lemmas 1-8.

Remark 21. If P is an antimonotone distribution with finite-dimensional marginal distributions Q(1)

and Q(2) that have support {0, 1, ..., imax} and {0, 1, ..., jmax}, respectively, then (0, jmax) and (imax, 0)

are always supports points of P . Moreover, we can take (0, jmax) to be the first point and (imax, 0) to be

the last point of the S-path associated with P .

Remark 22. By Definition 19 and Lemma 8, a graph of the support points of an antimonotone distri-

bution is monotonically decreasing (but not necessarily strictly monotonically decreasing).

Remark 23 (Sparsity of Antimonotone Distributions). Antimonotone S-paths are directed paths that,

by Lemmas 5-8, are sparse. Every point on the antimonotone S-path (except the points (imax, 0) and

(0, jmax) in the case of finite marginals) has an in-degree and out-degree of 1.

Chapter 2. Extreme Joint Distributions 30

More importantly, the properties of the support of a monotone distribution extend to their random

samples.

Lemma 9 (Monotonicity of the samples [74]). Consider a finite random sample Z = {Zn}Nn=1 of

independent two-dimensional vectors Zn = (X
(1)
n , X

(2)
n) from a bivariate comonotone (antimonotone)

distribution P . Then, Z is a comonotone (antimonotone) set. Conversely, if a random sample of N

independent two-dimensional vectors, Z, is a comonotone (antimonotone) set for any integer N ≥ 2,

then Z is a sample from a comonotone (antimonotone) distribution, almost surely.

Proof: Consider a finite random sample, Z = {Zn}Nn=1, of independent two-dimensional vectors

Zn = (X
(1)
n , X

(2)
n) from a bivariate comonotone distribution P . Since P is a comonotone distribution,

the support of P is a comonotone set and any two elements sk = (mk, nk) and sl = (ml, nl) of the

support satisfy the property sk−sl ∈ R+. Now note that there exists a permutation π ordering the first

component X(1) of the sample Z in a monotonically increasing order

X
(1)
π(1) ≤ X

(1)
π(2) ≤ · · · ≤ X

(1)
π(N)

where the subscript π(n), for n = 1, . . . , N , denotes the reordering of the samples under the permutation

π. If the permutation π, applied to the second coordinate X(2), reorders it such that it is also non-

decreasing, then we are done, since any two elements of the sample, Zk = (X
(1)
π(k), X

(2)
π(k)) and Zl =

(X
(1)
π(l), X

(2)
π(l)), satisfy the property that Zk − Zl ∈ R+. Suppose, however, that there are some indices

i < j such that X
(2)
π(i) > X

(2)
π(j). Then, the first coordinates of the sample corresponding to these indices

must satisfy X
(1)
π(i) = X

(1)
π(j).

To see why we must have X
(1)
π(i) = X

(1)
π(j), suppose this were not the case. Then we must have

X
(1)
π(i) < X

(1)
π(j), since we chose π so that X

(1)
π(i) ≤ X

(1)
π(j). In addition, since (X

(1)
π(i), X

(2)
π(i)) and (X

(1)
π(j), X

(2)
π(j))

occur in the sample, we must also have P
X

(1)

π(i)
,X

(2)

π(i)

> 0 and P
X

(1)

π(j)
,X

(2)

π(j)

> 0. Thus, (X
(1)
π(i), X

(2)
π(i)) and

(X
(1)
π(j), X

(2)
π(j)) are in the support of P . However, (X

(1)
π(i), X

(2)
π(i)) − (X

(1)
π(j), X

(2)
π(j)) /∈ R+, contradicting

our assumption that P is comonotone. Therefore, as noted above, if X
(2
π(i) > X

(2)
π(j), we must have

X
(1)
π(i) = X

(1)
π(j). Consequently, we introduce a new permutation π̂ such that

π̂(i) = π(j),

π̂(j) = π(i),

π̂(k) = π(k) if k ̸= i and k ̸= j.

Reordering (X
(1)
π̂(i), X

(2)
π̂(i)) and (X

(1)
π̂(j), X

(2)
π̂(j)) such that both coordinates are non-decreasing. This can

be repeated for a finite number of times to obtain a permutation τ that reorders the second coordinate

to ensure that it is non-decreasing while preserving the monotonicity of the first coordinate. Therefore,

Z is a comonotone set since any two samples, Zτ(i) = (X
(1)
τ(i), X

(2)
τ(i)) and Zτ(j) = (X

(1)
τ(j), X

(2)
τ(j)), satisfy

Zτ(i) − Zτ(j) ∈ R+.

We use proof by contradiction to prove the converse statement. To this end, we assume that the

support of the bivariate distribution is not comonotone. This implies that there exists two support

points (m,n) and (p, q) such that (m,n) − (p, q) /∈ R+. Since these two support points are associated

with positive probabilities Pm,n > 0 and Pp,q > 0, there exists N sufficiently large such that Zk =

Chapter 2. Extreme Joint Distributions 31

(X
(1)
k , X

(2)
k) = (m,n) and Zl = (X

(1)
l , X

(2)
l) = (p, q) is contained in an independent sampling of the

distribution, almost surely. Then, Z is not a comonotone set since Zk − Zl = (m,n)− (p, q) /∈ R+.

Similar arguments hold for the antimonotone case. □

2.2.2 Extreme Joint Distributions in two-dimensions

In the bivariate setting, there is a unique solution to the max (min) version of the extremal problem (2.3)

and that solution is a comonotonic (antimonotonic) distribution. As explained earlier, the max (min)

solution to problem (2.3) maximizes (minimizes) the correlation associated with the discrete distribution,

P , over all choices of P that satisfy the marginal equations (2.3b) and (2.3c). We show in Section 2.4

that the results for bivariate distributions can be extended to multivariate distributions.

In this section, we show that solutions of the extremal problem (2.3) must be comonotone (antimono-

tone) in case of maximization (minimization). We introduce the semi-analytic equations that comprise

the EJD theorem and show that any joint probability distribution that is a solution to the optimization

problem (2.3) must be a comonotone or antimonotone distribution, respectively, in the maximization or

minimization versions of (2.3). We take a probabilistic approach to proving the EJD theorem. Finally,

we mention the equivalence of the EJD theorem to a famous result by Fréchet and Hoeffding [49, 64].

Lemma 10. Suppose that the distribution P solves the optimization problem (2.3) for the case where

extremize denotes max, then P is comonotone.

Proof: We prove this result by contradiction. To that end, suppose that P solves the optimization

problem (2.3) for the case where extremize denotes max but P is not comonotone. Since P is not

comonotone, there must exist a pair of points (i1, j1) and (i2, j2) belonging to the support of P for which

(i1, j1)− (i2, j2) /∈ R+, whence (i1 − i2)(j1 − j2) < 0. So, we must have either

(a) i1 > i2 and j1 < j2, or

(b) i1 < i2 and j1 > j2.

In the proof below, we assume i1 > i2 and j1 < j2. The proof for i1 < i2 and j1 > j2 is similar;

therefore, for the sake of brevity, we omit it. Hence, assuming i1 > i2 and j1 < j2, we can take i2 = i

and i1 = i2 + (i1 − i2) = i +m, where i = i2 ≥ 0 and m = i1 − i2 ≥ 1. Similarly, we can take j1 = j

and j2 = j1 + (j2 − j1) = j + n, where j = j1 ≥ 0 and n = j2 − j1 ≥ 1. Hence, we have a pair of

points (i1, j1) = (i+m, j) and (i2, j2) = (i, j + n) in the support of P with i, j ≥ 0 and m,n ≥ 1. Since

(i+m, j) and (i, j + n) are in the support of P , Pi+m,j > 0 and Pi,j+n > 0.

Let t = min(Pi+m,j , Pi,j+n) and note that t > 0. Now consider P̂ such that

P̂i,j+n = Pi,j+n − t,

P̂i,j = Pi,j + t,

P̂i+m,j+n = Pi+m,j+n + t,

P̂i+m,j = Pi+m,j − t,

and P̂i,j = Pi,j for all other points where i, j ≥ 0. Note that P̂i,j ≥ 0 for all i, j = 0, 1, 2, . . . and

Chapter 2. Extreme Joint Distributions 32

∑∞
i

∑∞
j P̂i,j =

∑∞
i

∑∞
j Pi,j = 1. Therefore, P̂ is a probability distribution. Moreover,

h(P̂) =
∑
ij

ijP̂i,j

=
∑
ij

ijPi,j − t · i(j + n) + t · ij + t · (i+m)(j + n)− t · j(i+m)

=
∑
ij

ijPi,j + tmn

= h(P) + tmn,

thereby contradicting the maximality of P since tmn > 0. Therefore, if P solves the optimization

problem (2.3) for the case where extremize denotes max, then P must be comonotone. □

Lemma 11. Suppose that a distribution P solves the optimization problem (2.3) for the case where

extremize denotes min, then P is antimonotone.

The proof is similar to Lemma 10 and is omitted.

Theorem 1 (EJD Theorem in two-dimensions [74]). There exists a unique bivariate discrete distribution

P̂ (1) that satisfies Assumption 1 and solves the problem (2.3) in the maximization case and it satisfies

P̂
(1)
i,j = [min(F

(1)
i , F

(2)
j)−max(F

(1)
i−1, F

(2)
j−1)]

+ i, j = 0, 1, 2, . . . , (2.4)

where [x]+ = max(x, 0) and F (k) denotes the marginal cdf corresponding to Q(k), with F
(k)
−1 = 0, for

k ∈ {1, 2}.
There exists a unique bivariate discrete distribution P̂ (2) that solves the problem (2.3) in the mini-

mization case and it satisfies

P̂
(2)
i,j = [min(F

(1)
i , F̄

(2)
j−1)−max(F

(1)
i−1, F̄

(2)
j)]+ i, j = 0, 1, 2, . . . , (2.5)

where F̄
(2)
j = 1− F

(2)
j and F̄

(2)
−1 = 1.

Proof: Recall that, by Remark 6, a solution to (2.3) exists. Lemmas 12 and 13 below derive

equations (2.4) and (2.5) from which uniqueness also follows. Thus, Theorem 1 follows immediately

from Lemmas 12 and 13 below. □

The semi-analytic equations (2.4) and (2.5) take on a positive value only for points (i, j) belonging

to the support of P̂ (k), k ∈ {1, 2}; they take the value 0 otherwise. Thus, the EJD theorem provides

a method for checking whether a point (i, j) in the domain of an extreme measure (extreme joint

distribution) P̂ (k) belongs to its support. However, this is an inefficient use of Theorem 1 that is

impractical in higher dimensions (d ≥ 3) where the number of points to check increases exponentially

with d.

Remark 24. Note the generality of Theorem 1: we only assumed, from Assumption 1, that the marginal

distributions have finite variance and satisfy Q
(k)
i > 0 for i = 0, 1, 2, . . . and k ∈ {1, 2}

Our approach to the proof of the EJD theorem is a probabilistic argument based on Borel’s Law

of Large Numbers (LLN) [40]. The probabilistic approach also forms the basis for the extension of the

Chapter 2. Extreme Joint Distributions 33

EJD theorem to the general d-dimensional setting (Section 2.4). For the two-dimensional case that

we consider in this subsection, consider a sample {(X̂(1)
n , X̂

(2)
n)}Nn=1 from the extreme joint distribu-

tion P̂ (1) maximizing the correlation coefficient. Since P̂ (1) is a comonotone distribution, the samples

{(X̂(1)
n , X̂

(2)
n)}Nn=1 form a comonotonic set (Lemma 9) and, therefore, there exists a permutation π or-

dering the samples such that both coordinates X
(1)
n = X̂

(1)
π(n) and X

(2)
n = X̂

(2)
π(n) for n = 1, 2, . . . , N are

monotonically increasing. As N →∞ we obtain two sequences of increasing length,

X(1) :

N
X(1) (0)︷ ︸︸ ︷

0, 0, . . . , 0,

N
X(1) (1)︷ ︸︸ ︷

1, 1, . . . , 1,

N
X(1) (2)︷ ︸︸ ︷

2, 2, . . . , 2, . . .

N
X(1) (k)︷ ︸︸ ︷

k, k . . . , k, . . . (2.6)

X(2) : 0, . . . , 0︸ ︷︷ ︸
N

X(2) (0)

, 1, . . . , 1︸ ︷︷ ︸
N

X(2) (1)

, 2, . . . , 2︸ ︷︷ ︸
N

X(2) (2)

, . . . , k, k, k, . . . , k︸ ︷︷ ︸
N

X(2) (k)

, . . .

where NX(1)(k) is the number of times the value k occurs in the sequence {X(1)
n }Nn=1 and NX(2)(k) is

the number of times the value k occurs in the sequence {X(2)
n }Nn=1. By Borel’s LLN,

lim
N→∞

NX(1)(k)

N
= Q

(1)
k k = 0, 1, 2, . . . almost surely (2.7)

lim
N→∞

NX(2)(k)

N
= Q

(2)
k k = 0, 1, 2, . . . almost surely.

Denote

MX(1)(i) =

i∑
l=0

NX(1)(l) i = 0, 1, 2, . . . and MX(2)(j) =

j∑
l=0

NX(2)(l) j = 0, 1, 2, . . . (2.8)

and let MX(k)(−1) = 0 for k ∈ {1, 2}.
Let us define the cdfs F

(1)
i = P(X(1) ≤ i) and F

(2)
j = P(X(2) ≤ j) corresponding to the marginal

distributions Q(1) and Q(2), respectively, satisfying

F
(1)
i =

i∑
l=0

Q
(1)
l , F

(2)
j =

j∑
l=0

Q
(2)
l i, j = 0, 1, 2, (2.9)

In addition, set F
(k)
−1 = 0 for k ∈ {1, 2}. The following two lemmas prove (2.4) and (2.5).

Lemma 12 ([74]). Let Nij denote the number of times the pair of numbers (i, j) occurs in the sequence

{(X(1)
n , X

(2)
n)}Nn=1. The limits

P̂
(1)
i,j = lim

N→∞

Nij

N
(2.10)

exist almost surely for all i, j = 0, 1, 2 . . . , as N →∞. Moreover, P̂
(1)
i,j satisfies (2.4).

Remark 25. Note that the while the limit (2.10) exists almost surely, P̂
(1)
i,j satisfies (2.4) without the

almost surely qualifier, as is explained in the proof below.

Proof: The first part of the Lemma follows immediately from Borel’s Law of Large Num-

bers. Hence, all that remains is to show that P̂
(1)
i,j satisfies (2.4). To that end, consider a sample

{(X(1)
n , X

(2)
n)}Nn=1 from the extreme joint distribution P̂ (1) depicted in (2.6). We first show below that

Nij satisfies

Nij =
[
min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1))

]+
(2.11)

Chapter 2. Extreme Joint Distributions 34

where x+ := max(0, x).

To prove that (2.11) holds, we consider two cases:

(1) (i, j) does not occur in the sequence {(X(1)
n , X

(2)
n)}Nn=1, and

(2) (i, j) does occur in the sequence {(X(1)
n , X

(2)
n)}Nn=1.

To show that (2.11) holds in Case (1), we further divide Case (1) into three subcases:

(1a) i does not occur in the sequence {X(1)
n }Nn=1,

(1b) j does not occur in the sequence {X(2)
n }Nn=1, and

(1c) i occurs in the sequence {X(1)
n }Nn=1 and j occurs in the sequence {X(2)

n }Nn=1, but the pair (i, j) does

not occur in the sequence {(X(1)
n , X

(2)
n)}Nn=1.

Consider Case (1a) first. In this case, since i does not occur in the sequence {X(1)
n }Nn=1, the pair

(i, j) cannot occur in the sequence {(X(1)
n , X

(2)
n)}Nn=1. Therefore, Nij = 0. So, we need to show that the

right side of (2.11) is 0 too. To this end, note that, since i does not occur in the sequence {X(1)
n }Nn=1,

we must have NX(1)(i) = 0. Hence, from (2.8), MX(1)(i− 1) = MX(1)(i). Therefore,

min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1)) ≤MX(1)(i)−MX(1)(i− 1) = 0,

whence [
min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1))

]+
= 0.

Hence, we have shown that (2.11) holds in Case (1a).

The proof that (2.11) holds in Case (1b) is very similar to the proof that (2.11) holds in Case (1a).

So, for brevity, we omit it.

Now consider Case (1c). Since the pair (i, j) does not occur in the sequence {(X(1)
n , X

(2)
n)}Nn=1, we

again have that Nij = 0. So, we need to show that the right side of (2.11) is 0 in Case (1c) too.

However, in Case (1c), i does occur in the sequence {X(1)
n }Nn=1. Moreover, since we ordered the X

(1)
n

from smallest to largest, the X
(1)
n that are equal to i occur consecutively in the sequence {X(1)

n }Nn=1.

Therefore, there exist n
(1)
low and n

(1)
high such that X

(1)
n = i if and only if n satisfies n

(1)
low ≤ n ≤ n

(1)
high.

Similarly, since j does occur in the sequence {X(2)
n }Nn=1 and the X

(2)
n are also ordered from smallest to

largest, there exist n
(2)
low and n

(2)
high such that X

(2)
n = j if and only if n satisfies n

(2)
low ≤ n ≤ n

(2)
high. However,

in Case (1c), the pair (i, j) does not occur in the sequence {(X(1)
n , X

(2)
n)}Nn=1. Therefore, it must be that

either

(1cα) all the X
(1)
n = i occur before any of the X

(2)
n = j, or

(1cβ) all the X
(2)
n = j occur before any of the X

(1)
n = i.

In subcase (1cα), note that, since all the X
(1)
n = i occur before any of the X

(2)
n = j, we must have that

n
(1)
high < n

(2)
low. Similarly, in subcase (1cβ), we must have n

(2)
high < n

(1)
low. Now note that, from (2.6) and

Chapter 2. Extreme Joint Distributions 35

(2.8), it follows that

n
(1)
low = MX(1)(i− 1) + 1,

n
(1)
high = MX(1)(i),

n
(2)
low = MX(2)(j − 1) + 1,

n
(2)
high = MX(2)(j).

(2.12)

So, in subcase (1cα), it follows from n
(1)
high < n

(2)
low that MX(1)(i) < MX(2)(j − 1) + 1, whence MX(1)(i) ≤

MX(2)(j − 1). Therefore,

min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1)) ≤MX(1)(i)−MX(2)(j − 1) ≤ 0,

whence [
min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1))

]+
= 0.

That is, we have shown that, in subcase (1cα), the right side of (2.11) is 0 as required. Similarly, in

subcase (1cβ), it follows from n
(2)
high < n

(1)
low that MX(2)(j) < MX(1)(i − 1) + 1, whence MX(2)(j) ≤

MX(1)(i− 1). Therefore,

min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1)) ≤MX(2)(j)−MX(1)(i− 1) ≤ 0,

whence [
min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1))

]+
= 0.

That is, we have shown that, in subcase (1cβ), the right side of (2.11) is 0 as required. Hence, we have

completed the proof that (2.11) holds in Case (1c).

Now consider Case (2): (i, j) does occur in the sequence {(X(1)
n , X

(2)
n)}Nn=1. We use the notation

established in Case (1c) above to show that (2.11) holds in Case (2) too. To this end, note that, if

(X
(1)
n , X

(2)
n) = (i, j), then we must have X

(1)
n = i, whence n

(1)
low ≤ n ≤ n

(1)
high. Moreover, for the same

n, we also have X
(2)
n = j, whence n

(2)
low ≤ n ≤ n

(2)
high. Therefore, (X

(1)
n , X

(2)
n) = (i, j) if and only if

n ∈ [n
(1)
low, n

(1)
high] ∩ [n

(2)
low, n

(2)
high]. Moreover, since there is at least one n for which (X

(1)
n , X

(2)
n) = (i, j),

[n
(1)
low, n

(1)
high] ∩ [n

(2)
low, n

(2)
high] ̸= ∅.

If n
(1)
low ≤ n

(2)
low, then we must have n

(2)
low ≤ n

(1)
high, since otherwise we would have n

(1)
low ≤ n

(1)
high <

n
(2)
low ≤ n

(2)
high, whence [n

(1)
low, n

(1)
high] ∩ [n

(2)
low, n

(2)
high] = ∅, contradicting our result above that [n

(1)
low, n

(1)
high] ∩

[n
(2)
low, n

(2)
high] ̸= ∅. Therefore, in this subcase, we must have either

(2a) n
(1)
low ≤ n

(2)
low ≤ n

(2)
high ≤ n

(1)
high, or

(2b) n
(1)
low ≤ n

(2)
low ≤ n

(1)
high ≤ n

(2)
high.

On the other hand, if n
(2)
low ≤ n

(1)
low, then a similar argument shows that we must have either

(2c) n
(2)
low ≤ n

(1)
low ≤ n

(1)
high ≤ n

(2)
high, or

(2d) n
(2)
low ≤ n

(1)
low ≤ n

(2)
high ≤ n

(1)
high.

Consider Case (2a) first. Since

n
(1)
low ≤ n

(2)
low ≤ n

(2)
high ≤ n

(1)
high,

Chapter 2. Extreme Joint Distributions 36

it follows that

[n
(1)
low, n

(1)
high] ∩ [n

(2)
low, n

(2)
high] = [n

(2)
low, n

(2)
high].

Hence, the number of values of n for which (X
(1)
n , X

(2)
n) = (i, j) is

Ni,j = n
(2)
high − n

(2)
low + 1.

On the other hand, it follows in this case from (2.12) that the right side of (2.11) is[
min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1))

]+
=
[
min(n

(1)
high, n

(2)
high)−max(n

(1)
low − 1, n

(2)
low − 1)

]+
=
[
n
(2)
high − (n

(2)
low − 1)

]+
= n

(2)
high − n

(2)
low + 1.

Therefore, (2.11) holds in this case.

A similar argument shows that, in Cases (2b)–(2d), (2.11) also holds. Therefore, we have shown that

(2.11) holds in all cases.

To see that P̂i,j satisfies (2.4), divide both sides of (2.11) by N to get

Nij

N
=

1

N

[
min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1))

]+
=

[
1

N

(
min(MX(1)(i),MX(2)(j))−max(MX(1)(i− 1),MX(2)(j − 1))

)]+
=

[
min

(
MX(1)(i)

N
,
MX(2)(j)

N

)
−max

(
MX(1)(i− 1)

N
,
MX(2)(j − 1)

N

)]+
.

(2.13)

Now note that

lim
N→∞

MX(1)(i)

N
= F

(1)
i almost surely for i = 0, 1, 2, . . .

lim
N→∞

MX(2)(j)

N
= F

(2)
j almost surely for j = 0, 1, 2,

(2.14)

Therefore, taking limits in (2.13), using (2.10) and (2.14) and noting that max, min and [·]+ are contin-

uous functions, we get

P̂i,j = lim
N→∞

Nij

N

= lim
N→∞

[
min

(
MX(1)(i)

N
,
MX(2)(j)

N

)
−max

(
MX(1)(i− 1)

N
,
MX(2)(j − 1)

N

)]+
=

[
min

(
lim

N→∞

MX(1)(i)

N
, lim
N→∞

MX(2)(j)

N

)
−max

(
lim

N→∞

MX(1)(i− 1)

N
, lim
N→∞

MX(2)(j − 1)

N

)]+
=
[
min(F

(1)
i , F

(2)
j)−max(F

(1)
i−1, F

(2)
j−1)

]+
,

(2.15)

almost surely.

Thus, we have shown that P̂i,j satisfies (2.4) almost surely. Taking intersections of the sets of

Chapter 2. Extreme Joint Distributions 37

probability-one events on which (2.10) and (2.15) holds gives a set of full-measure for which both limits

(2.10) and (2.15) coincide. Since both the right side of (2.10) and the right side of (2.15) are constants

(independent of ω), equality on a set of measure one implies the equality of the constants themselves.

This implies that the deterministic identity (2.4) holds for all (i, j) and we can drop the “almost sure”

qualifier. □

The case of minimal correlations is similar. Consider a sample {(X̂(1)
n , X̂

(2)
n)}Nn=1 from the extreme

joint distribution P̂ (2) minimizing the correlation coefficient. Since P̂ (2) is an antimonotone distribution,

the samples {(X̂(1)
n , X̂

(2)
n)}Nn=1 also form an antimonotone set (Lemmas 9) and therefore there exists a

permutation π ordering the samples such that the first coordinate is monotonically increasing,

X1 ≤ X2 ≤ · · · ≤ XN where X(1)
n = X̂

(1)
π(n),

and the second coordinate is monotonically decreasing,

X1 ≥ X2 ≥ · · · ≥ XN where X(2)
n = X̂

(2)
π(n).

Taking N →∞, we obtain two sequences

X(1) :

N
X(1) (0)︷ ︸︸ ︷

0, 0, . . . , 0,

N
X(1) (1)︷ ︸︸ ︷

1, 1, . . . , 1,

N
X(1) (2)︷ ︸︸ ︷

2, 2, . . . , 2, . . .

N
X(1) (k)︷ ︸︸ ︷

k, k . . . , k, . . . (2.16)

X(2) : . . . , k, k, k, . . . , k︸ ︷︷ ︸
N

X(2) (k)

. . . k − 1, . . . , k − 1︸ ︷︷ ︸
N

X(2) (k−1)

, , 0, . . . , 0, 0︸ ︷︷ ︸
N

X(2) (0)

. . . .

Lemma 13 ([74]). Let Nij denote the number of times the pair of numbers (i, j) occurs in the sequence

{(X(1)
n , X

(2)
n)}Nn=1. The limits

P̂
(2)
i,j = lim

N→∞

Nij

N
(2.17)

exist almost surely for all i, j = 0, 1, 2 . . . , as N →∞. Moreover, P̂
(2)
i,j satisfies (2.5).

Remark 26. Note that the while the limit (2.17) exists almost surely, P̂
(1)
i,j satisfies (2.5) without the

almost surely qualifier, as explained in the proof of (2.4) in Lemma 12.

Proof: The proof is similar to that of Lemma 12 and is omitted for brevity. □

2.2.3 Equivalence to the Fréchet-Hoeffding Theorem

In the discrete case, the Fréchet-Hoeffding theorem can be formulated as follows. Consider the space

Π(Q(1), Q(2)) of discrete bivariate distributions that satisfy the marginal equations (2.3b) and (2.3c),

where Q(1) and Q(2) are the marginal distributions in (2.3b) and (2.3c), respectively.

Theorem 2 (Fréchet [49], Hoeffding [64]). The bivariate cdf H
(1)
i,j := P(X(1) ≤ i,X(2) ≤ j) maximizing

the correlation coefficient of X(1) and X(2) is

H
(1)
i,j = min(Q

(1)
i , Q

(2)
j) i, j = 0, 1, 2, (2.18)

Similarly, the bivariate cdf H
(2)
i,j minimizing the correlation coefficient of X(1) and X(2) is

H
(2)
i,j = max(0, Q

(1)
i +Q

(2)
j − 1) i, j = 0, 1, 2, (2.19)

Chapter 2. Extreme Joint Distributions 38

The EJD theorem in two-dimensions (Theorem 1) was shown to be equivalent to the Fréchet-

Hoeffding Theorem in Proposition 9.4 on page 216 of [74]. While the Fréchet-Hoeffding theorem is

a two-dimensional result and does not appear to extend easily to the general d-dimensional setting, our

EJD theorem, being equivalent in two-dimensions to Fréchet-Hoeffding, does.

Chapter 2. Extreme Joint Distributions 39

2.3 The EJD Algorithm in two-dimensions

While the Extreme Joint Distribution (EJD) theorem (Theorem 1) provides semi-analytical forms—

Equations (2.4) and (2.5)—to compute the probabilities of the extreme measure, P̂ (j), naive application

of this formula to compute the supports of P̂ (j) is inefficient in the two-dimensional setting and compu-

tationally prohibitive in the general d-dimensional setting (Section 2.5).

An alternative approach to solving the optimization problem (2.3) is the EJD algorithm6 listed on

page 45, introduced in [74] for the two-dimensional case, an efficient algorithm that simultaneously

computes each point belonging to the support of the extreme measure and its corresponding probability.

The key realization is that, while it is difficult to construct a joint probability distribution such that the

marginal distributions are satisfied, it is much easier to construct a joint cumulative distribution function

that satisfies the marginal cumulative distribution functions. Moreover, Lemmas 10 and 11 show that

any solution to the optimization problem (2.3) must be a comonotone or antimonotone distribution.

Hence, the main idea of the algorithm is to exploit our knowledge of the properties of the supports of

comonotone and antimonotone distributions and the fact that any solution P̂ (j) to (2.3) must satisfy the

marginal constraints (2.3b) and (2.3c).

This is accomplished by exploiting our knowledge of the key properties of the S-path that allows us

to efficiently compute the S-path and hence the support of P̂ (j), j = 1, 2. The marginal cdfs F (1) and

F (2) play a large role in the determination of the probability P̂
(j)
sl corresponding to the lth point of the

S-path. The set ΠZ = ΠX(1) ∨ ΠX(2) consisting of the unique ordered values of the marginal cdfs F (1)

and F (2) allows us to determine P̂
(j)
sl in a manner consistent with (2.4) in the comonotone case and (2.5)

in the antimonotone cases. Specifically, the starting point of the S-path is given by Lemma 1 in the

comonotone case and by Remark 21 in the antimonotone case. Then, the candidate subsequent points

are given by Lemma 2 and Lemma 6 in the comonotone and antimonotone cases, respectively. As the

S-path is determined, this also allows us to determine the relative ordering of the values of F (1) and

F (2) in ΠZ , which, in turn, allows us to compute P̂
(j)
sl .

In this section we provide a detailed exposition of the intuition and the mechanics of the EJD

algorithm in both the comonotone and antimonotone cases. We restrict our discussion of the algorithm

to finite discrete probability distributions. Although there are many ways to truncate an infinite discrete

distribution, we do so as follows. Given an infinite discrete probability distributionQ such thatQi > 0 for

i = 0, 1, 2, . . . , we denote by Q̃ a finite approximation ofQ supported on the set of integers {0, 1, . . . , imax}
such that

Q̃i =

Qi i = 0, 1, . . . , imax − 1

1−
∑imax−1

l=0 Q̃l i = imax.
(2.20)

Note that it is also possible to obtain discretized approximations of continuous probability distributions

(see, for example, [15] and [31]). While it is not necessary to truncate probability distributions so that

they are finite, we do so for practical purposes. We briefly sketch in Section 2.6 how the EJD algorithm

can be modified to operate directly (i.e., without truncation) on infinite discrete probability distributions.

Therefore, we make the following assumption for the rest of this section:

Assumption 2. The distribution P has marginals Q(1) and Q(2), discrete distributions with finite

support and finite variance, satisfying the equations (2.3b) and (2.3c), Q
(1)
i > 0 for i = 0, 1, . . . , imax

and Q
(2)
j > 0 for j = 0, 1, . . . , jmax.

6An open source C++ implementation is available at [16].

Chapter 2. Extreme Joint Distributions 40

It is also useful to expand the equations (2.9) for the cdfs F (1) and F (2) associated with probability

distributions Q(1) and Q(2), respectively, for the marginal constraints (2.3b) and (2.3c) as follows

i∑
l=0

jmax∑
j=0

Pl,j =

i∑
l=0

Q
(1)
l = F

(1)
i , i = 0, 1, . . . , imax, (2.21)

j∑
l=0

imax∑
i=0

Pi,l =

j∑
l=0

Q
(2)
l = F

(2)
j , j = 0, 1, . . . , jmax. (2.22)

Let us denote by s0 the 1st point on the S-path associated with P̂ (j), for j either 1 or 2. For finite-

dimensional marginal distributions Q(1) and Q(2), denote by imax and jmax the greatest integers such

that Q
(1)
imax

> 0 and Q
(2)
jmax

> 0. Let s0 = (0, 0) in the comonotone case (Lemma 1) and s0 = (0, jmax) in

the antimonotone case (Lemma 5 and Remark 21), respectively, be the 1st point on the S-path and if

sl−1 for l = 1, 2, . . . , is the lth point on the S-path, then the subsequent point, sl, to sl−1 is the (l+1)st

point on the S-path. Finally, let lmax denote the final iteration of Algorithm 1.

Remark 27 (Terminal points of the S-path). In the case of finite marginal distributions Q(1) and

Q(2) that have support {0, 1, . . . , imax} and {0, 1, . . . , jmax}, respectively, the point slmax
corresponding to

iteration lmax of Algorithm 1 is the terminal point on the S-path for P̂ (1) and takes the value

(s
(1)
lmax

, s
(2)
lmax

) = (imax, jmax) (2.23)

in the comonotone case (Remark 13) and the terminal point slmax takes the value

(s
(1)
lmax

, s
(2)
lmax

) = (imax, 0) (2.24)

in the antimonotone case (Remark 21) in order for the marginal constraints (2.3b) and (2.3c) to be

satisfied.

We show the correctness of Algorithm 1 through proof by induction in the comonotone case. For

the antimonotone case, we show that the preprocessing of one of the input marginal distributions and

postprocessing of the resultant S-path enables us to transform the problem into a comonotone problem,

thus enabling reuse of much of Algorithm 1.

2.3.1 The Comonotone Case

Let ΠX(1) = {F (1)
0 , F

(1)
1 , . . . , F

(1)
imax
} and ΠX(2) = {F (2)

0 , F
(2)
1 , . . . , F

(2)
jmax
} denote the ordered sets of the

cdfs of the marginal distributions Q(1) and Q(2) defined in (2.9). Note that the values of the cdfs partition

the unit interval and are strictly increasing

0 = F
(1)
−1 < F

(1)
0 < F

(1)
1 < · · · < F

(1)
imax

= 1

0 = F
(2)
−1 < F

(2)
0 < F

(2)
1 < · · · < F

(2)
jmax

= 1.
(2.25)

This follows immediately from (2.9), Assumption 2, the artificial values F
(1)
−1 = F

(2)
−1 = 0 and the finiteness

of the marginal probability distributions. Let us also define a joint partition of the unit interval as follows.

Definition 21 (Joint partition of the unit interval). Let ΠZ = ΠX(1) ∨ ΠX(2) = {z0, z1, . . . } denote a

partition of the unit interval where the points zi are the unique ordered values of the union of the sets

Chapter 2. Extreme Joint Distributions 41

ΠX(1) and ΠX(2) . The point zi is the (i+ 1)st smallest value in ΠZ . That is, z0 is the smallest element

in ΠZ , z1 is the second smallest element in ΠZ , z2 is the third smallest element in ΠZ , etc. Moreover,

we define z−1 = 0.

Remark 28. Note that there cannot be duplicates in ΠZ , that is zi ̸= zi+1 for all i, since the joint

partition is taken from the unique values of the union of the sets ΠX(1) and ΠX(2) .

ΠX(1)
0t s s - s

?

ss
?

F
(1)
0 F

(1)
1 F

(1)
2 F

(1)
3 . . .

1
F

(1)
imax

ΠX(2)

0t r r r r r - s

?

1
F

(2)
0 F

(2)
2F

(2)
1 F

(2)
3 . . . F

(2)
m . . . F

(2)
jmax

? ? ? ? ?? ? ?

?

?
ΠX(1) ∨ΠX(2)

0

z−1t r r r r r r - s1z0 z2 z3 z4 z5 zk+2rz1 rzk+3 . . . zlmax

Figure 2.2: Partitions of the unit interval in the comonotone case.

Figure 2.2 illustrates the fact that the joint partition ΠZ = ΠX(1)∨ΠX(2) = {z0, z1, . . . } is constructed
by taking the unique ordered values of the union of the sets ΠX(1) and ΠX(2) . The arrows in the figure

represent the partitions of unity corresponding to each marginal distribution. That the two arrows ΠX(1)

and ΠX(2) are oriented in the same direction indicates the comonotone relationship between the marginal

distributions.

The main result of this section is the following theorem which establishes the correctness of Algo-

rithm 1 in the comonotone case. The proof can be found in Appendix A.

Theorem 3. The probability P̂
(1)

s
(1)
l ,s

(2)
l

computed by Algorithm 1 is correct in the sense that it agrees with

(2.4).

Remark 29 (Staircase-like Property of the S-path in the Comonotone Case). Comonotone S-paths are
sparse (see Remark 15). That the comonotone S-path determined by Algorithm 1 exhibits a staircase-like

property can be seen from Lines 8-17 of Algorithm 1, where given the current point sl = (s
(1)
l , s

(2)
l) of

the S-path, determines the subsequent point sl+1 which, by Definition 17, must be one of (s
(1)
l +1, s

(2)
l),

(s
(1)
l , s

(2)
l + 1) or (s

(1)
l + 1, s

(2)
l + 1) with the smallest Euclidean distance.

Chapter 2. Extreme Joint Distributions 42

2.3.2 The Antimonotone Case

Algorithm 1 on page 45 in the antimonotone case only differs from the comonotone case in two places:

1. The construction of the input marginal cdf corresponding to Q(2) on Line 1 of Algorithm 1 which

calls Algorithm 3 on page 46.

2. Postprocessing7 of the second coordinate of the S-path on Line 20 of Algorithm 1 which calls

Algorithm 2 on page 45.

The main steps of Algorithm 1 (Lines 2-18) remain the same. We begin by first describing the prepro-

cessing and postprocessing steps.

The preprocessing of Q(2) is done in Lines 3-5 of Algorithm 3 on page 46 which is called by Line 1

of Algorithm 1. Algorithm 3 returns the vectors [F
(1)
0 , . . . , F

(1)
imax

] and [F
(2)
0 , . . . , F

(2)
jmax

] used in the rest

of Algorithm 1. In the antimonotone case of Algorithm 1, the if statement in Line 2 of Algorithm 3

evaluates to true. Then, Lines 3-5 of Algorithm 3 are executed with input vector

Q(2) = [Q
(2)
0 , Q

(2)
1 , . . . , Q

(2)
jmax

] (2.26)

and output vector

Q̆
(2)

= [Q
(2)
jmax

, Q
(2)
jmax−1, . . . , Q

(2)
0]. (2.27)

Algorithm 3 then takes a cumulative sum of the vector Q̆
(2)

in Line 7 to obtain

F̆
(2)

= [Q
(2)
jmax

, Q
(2)
jmax

+Q
(2)
jmax−1, . . . , Q

(2)
jmax

+Q
(2)
jmax−1 + · · ·+Q

(2)
jmax−n, . . . , 1]

= [F̆
(2)
0 , F̆

(2)
1 , . . . , F̆ (2)

n , . . . , F̆
(2)
jmax

].
(2.28)

Note that the marginal cdf corresponding to Q(1) is constructed normally. That is, given the vector

Q(1) = [Q
(1)
0 , . . . , Q

(1)
imax

]

as input, Line 6 of Algorithm 3 constructs

F(1) = [Q
(1)
0 , Q

(1)
0 +Q

(1)
1 , . . . , 1]

= [F
(1)
0 , F

(1)
1 , . . . , F

(1)
jmax

],

which is the cdf corresponding to Q(1). (See (2.9).)

The postprocessing of the S-path by reversing the second coordinate of sl is carried out by Algorithm 2

on page 45. For each sl, Algorithm 2 constructs s̄l by the following mapping

s̄l = (s̄
(1)
l , s̄

(2)
l)

= (s
(1)
l , jmax − s

(2)
l) for l = 0, 1, . . . , lmax.

(2.29)

We use Algorithm 1 to solve (2.3) in the minimization case with marginals Q(1) and Q̆(2), defined

above in (2.27), instead of Q(2). This returns a solution consisting of the probabilities P̂ (1) with corre-

7The postprocessing step is missing in the description of the EJD algorithm in [17]

Chapter 2. Extreme Joint Distributions 43

sponding S-path sl for l = 0, 1, . . . , lmax. (Recall that the S-path sl is the support of P̂ (1).) We denote

by P̂
(1)

F̆
(2) the probabilities obtained from Algorithm 1 in the maximization case when using marginals

Q(1) and Q̆(2), where F̆
(2)

is defined above in (2.28). The solution P̂
(1)

F̆
(2) is related to the solution

P̂ (2) of (2.3) in the minimization case with marginals Q(1) and Q(2) as follows. The S-path of P̂ (2) is

s̄l = (s
(1)
l , jmax − s

(2)
l) for l = 0, 1, . . . , lmax, where sl = (s

(1)
l , s

(2)
l) for l = 0, 1, . . . , lmax is the S-path for

P̂
(1)

F̆
(2) . Moreover, all the non-zero values of P̂ (2) for l = 0, 1, . . . , lmax are given by

P̂
(2)
s̄l = P̂

(1)

sl | F̆
(2) for l = 0, 1, . . . , lmax. (2.30)

Therefore, in this subsection we show that:

1. The probabilities P̂
(1)

F̆
(2) computed by using F̆

(2)
defined in (2.28) in the comonotone case of Algo-

rithm 1 is consistent with (2.5). In particular, we show that (2.30) holds.

2. The S-path computed using the comonotone case of Algorithm 1 with the second components

transformed according to (2.29) in Algorithm 2 is the S-path corresponding to P̂ (2)

We begin by proving the following Lemma from which (2.30) immediately follows.

Lemma 14. The probabilities P̂
(1)

i,j| F̆(2) that solve (2.3) in the maximization case using the marginal cdfs

F (1) and F̆ (2) are related to the probabilities P̂
(2)
i,j that solve (2.3) in the minimization case using the

marginal cdfs F (1) and F (2) by the equation

P̂
(2)
i,jmax−j = P̂

(1)

i,j | F̆(2) for i = 0, 1, 2, . . . , imax and j = 0, 1, 2, . . . , jmax. (2.31)

In particular, the point (i, j) is in the support of P̂
(1)

F̆
(2) if and only if the point (i, jmax − j) is in the

support of P̂ (2).

Proof: Recall from (2.5) that

P̂
(2)
i,jmax−j = [min(F

(1)
i , F̄

(2)
jmax−j−1)−max(F

(1)
i−1, F̄

(2)
jmax−j)]

+ (2.32)

for i = 0, 1, 2, . . . , imax, j = 0, 1, 2, . . . , jmax where F
(k)
−1 = 0 for k = 1, 2,

F̄
(2)
j = 1− F

(2)
j (2.33)

and F̄
(2)
−1 = 1. Similarly, recall from (2.4) and the fact that we use F̆

(2)
instead of F (2) that

P̂
(1)

i,j | F̆(2) = [min(F
(1)
i , F̆

(2)
j)−max(F

(1)
i−1, F̆

(2)
j−1)]

+. (2.34)

Therefore, in order to show that (2.31) is true, we need only to show that

F̆
(2)
j = F̄

(2)
jmax−j−1 (2.35)

and

F̆
(2)
j−1 = F̄

(2)
jmax−j (2.36)

Chapter 2. Extreme Joint Distributions 44

for all j = 0, 1, ..., jmax.

To this end, let us first show that (2.35) holds:

F̄
(2)
jmax−j−1 = 1− F

(2)
jmax−j−1

= 1−
jmax−j−1∑

i=0

Q
(2)
i

=

jmax∑
i=0

Q
(2)
i −

jmax−j−1∑
i=0

Q
(2)
i

=

jmax∑
i=jmax−j

Q
(2)
i

= F̆
(2)
j .

The proof that (2.36) holds is similar to the proof above that (2.35) holds. □

Next, we show that the S-path s̄l obtained from transforming the second coordinate of the S-path
sl computed by the comonotone case of Algorithm 1 according to (2.29) in Algorithm 2 is the correct

S-path that corresponds to P̂ (2). (Recall that in the antimonotone case, sl is the S-path that corresponds

to P̂
(1)

F̆
(2) .)

Proposition 2. For l = 0, 1, . . . , lmax, if sl = (s
(1)
l , s

(2)
l) is the (l + 1)st point on the S-path associated

with P̂
(1)

F̆
2 , then s̄l = (s

(1)
l , jmax − s

(2)
l) is the (l + 1)st point on the S-path associated with P̂ (2).

The proof of Proposition 2 can be found in Appendix A.

Since we have proved in Appendix A that Algorithm 1 correctly computes the S-path sl for l =

0, 1, . . . , lmax, associated with P̂ (1), it follows immediately from Proposition 2 and Algorithms 2 and 3

that Algorithm 1 correctly computes the S-path s̄l for l = 0, 1, . . . , lmax, associated with P̂ (2). To see that

Algorithm 1 also returns the correct probabilities P̂
(2)
s̄l for l = 0, 1, . . . , lmax, associated with the S-path

s̄l for l = 0, 1, . . . , lmax, note that Algorithm 1 computes the probabilities as P̂
(j)
l for l = 0, 1, . . . , lmax

and actually returns a vector of probabilities (P̂
(j)
0 , P̂

(j)
1 , . . . , P̂

(j)
lmax

). In the antimonotone case, these are

the probabilities

(P̂
(1)

s0|F̆
(2) , P̂

(1)

s1|F̆
(2) , . . . , P̂

(1)

slmax |F̆
(2)) = (P̂

(2)
s̄0 , P̂

(2)
s̄1 , . . . , P̂

(2)
s̄lmax

).

Therefore, Algorithm 1 also returns that correct probabilities P̂
(2)
s̄l for l = 0, 1, . . . , lmax, associated with

the S-path s̄l for l = 0, 1, . . . , lmax, for P̂
(2).

Remark 30 (Staircase-like Property of the S-path in the Antimonotone Case). Antimonotone S-paths
are sparse (see Remark 23). That the antimonotone S-path determined by Algorithm 1 exhibits a

staircase-like property can be seen from Lines 8-17 and Lines 19-20 of Algorithm 1, where, given the

current point sl = (s
(1)
l , s

(2)
l) of the S-path, Algorithm 1 determines the subsequent point sl+1, which,

by Definition 19, must be one of (s
(1)
l + 1, s

(2)
l), (s

(1)
l , s

(2)
l − 1) or (s

(1)
l + 1, s

(2)
l − 1) with the smallest

Euclidean distance.

Chapter 2. Extreme Joint Distributions 45

Algorithm 1 Extreme Joint Distribution Algorithm in two-dimensions

Require: [Q
(1)
0 , . . . , Q

(1)
imax

]

[Q
(2)
0 , . . . , Q

(2)
jmax

]

j = 1 for maximization and j = 2 for minimization

Output: Extreme measure [P̂
(j)
0 , . . . , P̂

(j)
lmax

] and its corresponding support [s0, . . . , slmax]

1: [F
(1)
0 , . . . , F

(1)
imax

], [F
(2)
0 , . . . , F

(2)
jmax

]

← Construct Marginal CDFs([Q
(1)
0 , . . . , Q

(1)
imax

], [Q
(2)
0 , . . . , Q

(2)
jmax

], j)

2: l← 0

3: s
(1)
0 ← 0 and s

(2)
0 ← 0

4: z0, . . . , zlmax
← Partition Unity([F

(1)
0 , . . . , F

(1)
imax

], [F
(2)
0 , . . . , F

(2)
jmax

])

5: P̂
(j)
0 ← z0

6: while zl ̸= 1 do

7: l← l + 1

8: if zl−1 == F
(1)

s
(1)
l−1

== F
(2)

s
(2)
l−1

then

9: s
(1)
l = s

(1)
l−1 + 1

10: s
(2)
l = s

(2)
l−1 + 1

11: else if zl−1 == F
(1)

s
(1)
l−1

and zl−1 ̸= F
(2)

s
(2)
l−1

then

12: s
(1)
l = s

(1)
l−1 + 1

13: s
(2)
l = s

(2)
(l−1)

14: else if zl−1 ̸= F
(1)

s
(1)
l−1

and zl−1 == F
(2)

s
(2)
l−1

then

15: s
(1)
l = s

(1)
(l−1)

16: s
(2)
l = s

(2)
l−1 + 1

17: Save the l-th support point sl = (s
(1)
l , s

(2)
l)

18: P̂
(j)
l ← zl − zl−1

19: if j == 2 then ▷ Antimonotone Case

20: [s0, . . . , slmax]← Reverse Support([s0, . . . , slmax])

21: return [P̂
(j)
0 , . . . , P̂

(j)
lmax

], [s0, . . . , slmax]

Remark 31. The Partition Unity subroutine referenced in Line 4 of Algorithm 1, above, is listed in

Algorithm 8.

Remark 32. Since Partition Unity sorts the unique elements of the union of the marginal cdfs in

ascending order and Algorithm 1, in Lines 8-17, increments the coordinate of the support according to

the ordering of {z0, z1, . . . , zlmax}, therefore, zl = min{F (1)

s
(1)
l

, F
(2)

s
(2)
l

}.

Algorithm 2 Subroutine: Reverse Support

1: procedure Reverse Support([s0, . . . , slmax])

2: for l← 0, . . . , lmax do

3: s̄
(1)
l ← s

(1)
l

4: s̄
(2)
l ← jmax − s

(2)
l

5: return [s̄0, . . . , s̄lmax
]

Chapter 2. Extreme Joint Distributions 46

Algorithm 3 Subroutine: Construct Marginal CDFs

1: procedure Construct Marginal CDFs([Q
(1)
0 , . . . , Q

(1)
imax

], [Q
(2)
0 , . . . , Q

(2)
jmax

], j)

2: if j == 2 then ▷ Antimonotonic Case

3: [t0, . . . , tjmax]← [Q
(2)
0 , . . . , Q

(2)
jmax

]

4: for i = 0, . . . , jmax do

5: Q
(2)
i ← tjmax−i

6: [F
(1)
0 , . . . , F

(1)
imax

]←cumsum([Q
(1)
0 , . . . , Q

(1)
imax

])

7: [F
(2)
0 , . . . , F

(2)
jmax

]←cumsum([Q
(2)
0 , . . . , Q

(2)
jmax

])

8: return [F
(1)
0 , . . . , F

(1)
imax

], [F
(2)
0 , . . . , F

(2)
jmax

]

Remark 33. Algorithm 1 is very sensitive to rounding errors; implementations of Algorithm 1 in

floating-point arithmetic need to account for rounding-errors. For simplicity, we assume in this thesis

that all computations are carried out in exact arithmetic.

Chapter 2. Extreme Joint Distributions 47

2.4 Extreme Measures in d-dimensions

In this section, we extend the Extreme Joint Distribution (EJD) approach to the general d-dimensional

setting for d ≥ 3. We consider random vectors (X(1), . . . , X(d)) on the positive quadrant of the d-

dimensional lattice, (i1, . . . , id) ∈ Nd
0, where each X(k), for k ∈ {1, . . . , d}, has the associated discrete

probability distribution Q
(k)
i , where i = 0, 1, . . . , having finite variance supported on N0. Note that N0

is the set of non-negative integers and Nd
0 is the d-dimensional integer lattice of non-negative integers. In

this section, the Q
(k)
i , for k ∈ {1, 2, . . . , d} and i = 0, 1, . . . , are the given marginal distributions, similar

to Q
(1)
i and Q

(2)
j in Definition 14 (the two-dimensional case of Definition 22 below). We also denote

by 0d = (0, . . . , 0) ∈ Rd the d-dimensional 0 vector. Note that we augment the notation in settings

where the dimensionality may be unclear. For example, P (d) refers to a general probability measure in

d-dimensions, P̂ (j,d) refers to the jth extreme measure in d-dimensions, and Q(d;u) and F (d;u) denote the

uth marginal distribution and marginal cdf in the d-dimensional case, respectively.

The following definition extends Definition 14 to d-dimensions. Note that j ∈ {1, . . . , n} in Defini-

tion 22 below, where n = 2 d−1 (see Lemma 15). For the two-dimensional case, j = 1 corresponds to

the max case and j = 2 corresponds to the min case of (2.3). For the general d-dimensional case, with

d ≥ 3, each e
(j,d)
k for k ∈ {1, . . . , d} and j ∈ {1, . . . , n} is associated with a monotonicity structure that

describes the extremal dependency structure, as discussed in Subsection 2.4.1.

Definition 22 (Extreme measures in d-dimensions). For each j = {1, . . . , n}, the extreme measure

P̂ (j,d) having associated monotone structure e(j,d) is the solution to the following multi-objective infinite-

dimensional LP

extremize h(j,d)
u,v (P (d)) 1 ≤ u < v ≤ d (2.37a)

subject to
∑
v∈Ik

∞∑
iv=0

P
(d)
i1,...ik−1,ik,ik+1,...,id

= Q
(k)
ik

k = 1, . . . ,d

ik = 0,1,. . .
(2.37b)

P
(d)
i1,...,id

≥ 0 (2.37c)

where

extremize h(j,d)
u,v (P (d)) =

maxh
(j,d)
u,v (P (d)) if e

(j,d)
u = e

(j,d)
v

minh
(j,d)
u,v (P (d)) if e

(j,d)
u ̸= e

(j,d)
v ,

(2.38)

Ik = {r : 1 ≤ r ≤ d, r ̸= k}, Q(k)
i ≥ 0, for i = 0, 1, 2, . . . and k = 1, 2, . . . , d and

∑∞
i=0 Q

(k)
i = 1 for

k = 1, . . . , d. Each objective function takes the form

h(j,d)
u,v (P (d)) := E [X(u)X(v)] =

∞∑
iu=0

∞∑
iv=0

iuiv P
(d;u,v)
iu,iv

1 ≤ u < v ≤ d (2.39)

where

P
(d;u,v)
iu,iv

=
∑

j∈Iu,v

∞∑
ij=0

P
(d)
i1,...iu−1,iu,iu+1,...,iv−1,iv,iv+1,...,id

(2.40)

with Iu,v = {r : 1 ≤ r ≤ d, r ̸= u, r ̸= v}.

Remark 34. Analogous to Remark 5, Definition 22 is consistent with finite-dimensional Q(k), since Q(k)

can be simply extended to the infinite-dimensional case by setting Q
(k)
i = 0 for i = i

(k)
max+1, i

(k)
,max+2,

Chapter 2. Extreme Joint Distributions 48

Remark 35. The multi-objective program (2.37) is, in fact, a multi-objective multi-marginal MKP, the

solutions of which determine extreme measures. Again, we mention the connection to mass transportation

for the sake of completeness; it is not a focus of this thesis.

Remark 36. There are m = d(d−1)/2 objective functions in (2.37a) where each h
(j,d)
u,v (P (d)) extremizes

the dependency between a pair of coordinates.

Analogous to the bivariate setting, extreme measures in the general setting are defined to be the

solutions of the (multi-objective) infinite-dimensional LP (2.37). Naturally, there are differences between

extreme measures in the general setting and extreme measures in the bivariate setting. The most

significant difference is the multi-objective nature of (2.37). For example, for each j ∈ {1, 2, . . . , n}, the
extreme measure P̂ (j,d) satisfies them constrained optimization problems (2.37a). In general, solutions to

multi-objective problems lie on a Pareto frontier; it is typical that no unique solution exists that satisfies

all the constituent sub-problems [2]. Standard techniques in multi-objective optimization are unable

to compute a solution that can satisfy all m constrained optimization problems (2.37a). A surprising

property of the structure of the multi-objective problem (2.37) is that the Pareto frontier of solutions to

the multi-objective problem is actually a single point (solution). In other words, each extreme measure

P̂ (j,d) for j ∈ {1, 2, . . . , d} actually extremizes h
(j,d)
u,v for each pair u, v satisfying 1 ≤ u < v ≤ d given the

constraints (2.37b) and (2.37c). We prove this in the course of showing the correctness of Algorithm 5.

Remark 37. We show in what follows that the m = d(d−1)/2 solutions to the two-dimensional LP (2.3)

are all embedded within the solution to the d-dimensional multi-objective LP (2.37). This is significant

since, in general, solutions to multi-objective optimization problems are not optimal solutions to all of the

constituent sub-problems of a multi-objective problem. Typically, solutions to multi-objective optimization

problems lie on a Pareto frontier (a d-dimensional curve) where different points of the frontier correspond

to different trade-offs between the optimality of the solution to each sub-problem.

Lemma 15. For any given set of marginal distributions Q(1), Q(2), . . . , Q(d) associated with the opti-

mization problem (2.37), the number of extreme measures is n = 2 d−1.

Proof: Let us prove this lemma for the case d ≥ 3, since the case d = 2 is obvious. Recall that

the set of marginal distributions Q(1), Q(2), . . . , Q(d) corresponds to the d-dimensional random vector

(X(1), . . . , X(d)). For each two-dimensional projection (X(u), X(v)), where u, v ∈ {1, . . . , d} and u ̸= v,

the corresponding joint distribution is either comonotone or antimonotone by the construction of the

optimization problem (2.37). Denote by dc the number of coordinates that are comonotone to X(1).

Then, the number of random variables antimonotone with X(1) satisfies

da = d− 1− dc.

The total number of partitions of the number d− 1 in the additive form, d− 1 = da + dc, is n = 2 d−1.

Clearly, n does not depend on the choice of the first random variable. □

In what follows, it is necessary to project random vectors and their corresponding multivariate

distributions down to two-dimensions. We define bivariate projections as follows.

Definition 23 (Bivariate Projections). Let (m1, . . . ,md) be a d-dimensional vector and, for any u, v ∈

Chapter 2. Extreme Joint Distributions 49

{1, 2, . . . , d} with u ̸= v, define its bivariate projection:

Proju,v(m1, . . . ,md) = (mu,mv). (2.41)

Similarly, let e(j,d;u,v) denote the projection of the d-dimensional monotone structure e(j,d) onto the uth

and vth coordinates:

e(j,d;u,v) = Proju,v e
(j,d) = (e(j,d)u , e(j,d)v). (2.42)

Let P (d) be a d-dimensional probability distribution. The projection of P (d) to the uth and vth coordinates

is given by the marginalization of all components l where l ̸= u, v, that is,

P
(d;u,v)
iu,iv

=
∑

l∈Iu,v

∞∑
il=0

P
(d)
i1,...,iu−1,iu,iu+1,...,iv−1,iv,iv+1,...,id

, (2.43)

where Iu,v = {l : 1 ≤ l ≤ d, l ̸= u, l ̸= v}. Similarly, define

P
(d;v)
iv

=
∑
l∈Iv

∞∑
il=0

P
(d)
i1,...iv−1,iv,iv+1,...,id

, (2.44)

where Iv = {l : 1 ≤ l ≤ d, l ̸= v}.

Remark 38. Note that (2.43) and (2.44) apply straightforwardly to P̂ (j,d;u,v) and P̂ (j,d;v), respectively.

Moreover, P̂ (j,d;u,v) is comonotone if e
(j,d)
u = e

(j,d)
v and antimonotone otherwise.

2.4.1 Monotonicity Structures

In the two-dimensional case, the components of a bivariate distribution can only exhibit extreme positive

and extremal negative dependence in the form of extremal positive and negative correlations, Ĉ (1) and

Ĉ (2), respectively. Note that both Ĉ (1) and Ĉ (2) are scalars. In the general d-dimensional case, each

component exhibits either extremal positive or extremal negative dependence relative to another compo-

nent, resulting in n = 2 d−1 possible combinations of pairwise dependencies (Lemma 15). Consequently,

there are n extremal d × d correlation matrices, Ĉ (j,d), for j = 1, 2, . . . , n. We introduce the notion of

monotonicity structures to describe the possible extremal dependencies between the components of a

random vector (X(1), . . . , X(d)).

Definition 24 (Monotonicity Structure). For j ∈ {1, 2, . . . , n}, the jth d-dimensional monotonicity

structure e(j,d) is a binary column vector

e(j,d) =


e
(j,d)
1

...

e
(j,d)
d

 (2.45)

describing the pairwise extremal dependency structure between the components of a random vector

(X(1), . . . , X(d)). The element e
(j,d)
k , for k ∈ {2, 3, . . . , d}, of the vector e(j,d), known as a monotonicity

Chapter 2. Extreme Joint Distributions 50

indicator, takes on binary values

e
(j,d)
k =

 0, if X(1) and X(k) are comonotone

1, if X(1) and X(k) are antimonotone .

By convention, we take e
(j,d)
1 = 0.

Figure 2.3 provides a graphical illustration of monotonicity structures. Note that the two monotonicity

structures describe the same extreme measure even though the arrows are pointing in different directions.

The important aspect here is the relative orientation of the arrows with respect to other arrows within

the same monotonicity structure.

X(1): 0 1

X(2): 0 1

X(d): 0 1

X̄(1): 0 1

X̄(2): 0 1

X̄(d): 0 1

Figure 2.3: Monotonicity structures of extreme measures. The direction of the arrows
indicates the direction of monotonically increasing support.

Monotonicity Structures as Binary Numbers

Monotonicity structures are useful not only in describing the extremal dependence structure between

the components of a multivariate process, but they are also useful as inputs to the d-dimensional version

of the EJD theorem (Subsection 2.4.2) and algorithm (Section 2.5) in order to compute the correct kth

extreme measure. Thus, we require a method to easily generate monotone structures. Fortunately, they

admit a representation as binary numbers. This is best illustrated through an example. To that end,

suppose that d = 3, resulting in the following monotone structure:

0 0 0 0

0 0 1 1

0 1 0 1

(2.46)

The 3×4 matrix in (2.46) indicates that there are 4 extreme measures (the number of columns), each of

dimension 3 (the number of rows). The first column corresponds to e(1,3) representing extreme positive

dependence between all marginals (comonotonicity). The remaining columns correspond to extreme

measures with two components exhibiting extreme negative dependence and one component exhibiting

extreme positive dependence. Moreover, note that for the jth column in (2.46), where j ∈ {1, 2, 3, 4},
the top element corresponds to e

(j,3)
1 , the second from the top element corresponds to e

(j,3)
2 , and the

bottom element corresponds to e
(j,3)
3 .

We show that (2.46) is easy to construct. The key realization is that the extremal structure repre-

sented by each column of the monotonicity structure is just the index of the column in binary, using d

bits to represent the column indices, where the columns are numbered 0, 1, . . . , d − 1, instead of being

numbered according to 1-indexing 1, 2, . . . , d, and the most significant bit of the binary number is at the

Chapter 2. Extreme Joint Distributions 51

top of the column. We rewrite (2.46) below in order to elucidate the relationship between the index of

the column and its monotonicity structure

0 1 2 3

0 0 0 0

0 0 1 1

0 1 0 1

. (2.47)

Algorithm 4 Generation of monotonicity structures

Require: Dimension of the problem: d

Output: Monotonicity structure matrix: E = [e(1,d), . . . , e(n,d)] ∈ Rd×n

1: n← 2(d−1)

2: for j = 1, . . . , n do

3: e(j,d) ← Binary Representation(j − 1, d) ▷ returns the binary representation, using d bits, of

the integer j − 1 as an integer vector

4: e(j,d) ← transpose(e(j,d)) ▷ so we get column vectors with the most significant bit in the first row

5: return E = [e(1,d), . . . , e(n,d)] ▷ concatenate column vectors into a matrix

2.4.2 Extreme Joint Distributions in d-dimensions

Theorem 4 (EJD Theorem in d-dimensions). If problem (2.37) has a solution P̂ (j,d), then the solution

must satisfy

P̂
(j,d)
i1,...,id

= [min(F̄1(i1 − e
(j,d)
1 ; e

(j,d)
1), . . . , F̄d(id − e

(j,d)
d ; e

(j,d)
d)) (2.48)

−max(F̄1(i1 + (e
(j,d)
1 − 1); e

(j,d)
1), . . . , F̄d(id + (e

(j,d)
d − 1); e

(j,d)
d))]+

where [·]+ = max(0, ·) and, for k ∈ {1, 2, . . . , d}, F̄k is defined as

F̄k(ik; e
(j,d)
k) =

 F
(k)
ik

if e
(j,d)
k = 0

1− F
(k)
ik

if e
(j,d)
k = 1

(2.49)

for ik = −1, 0, 1, . . . where F
(k)
−1 = 0 and, for ik = 0, 1, . . . , F

(k)
ik

denotes the ithk point of the marginal cdf

corresponding to Q(k), assuming that e
(j,d)
1 = 0. Moreover, if the problem (2.37) has a solution P̂ (j,d),

then P̂ (j,d) is unique.

Remark 39. While we need to assume the existence of a solution to (2.37) in the proof of Theorem 4

below—since the proof relies on sampling from P̂ (j,d) and the subsequent use of Borel’s Law of Large

Numbers to show convergence; see (2.54)–(2.58)—the correctness of Algorithm 5 proves that there is a

solution to (2.37). Therefore, the correctness of Algorithm 5 and Theorem 4 together imply that there is

a unique solution to the problem (2.37) and it satisfies (2.48).

Proof: We begin by defining two sets of integers

Ik = {j : 1 ≤ j ≤ d, j ̸= k, }

Chapter 2. Extreme Joint Distributions 52

and

Ik,l = {j : 1 ≤ j ≤ d, j ̸= k, j ̸= l}.

Let us first show that, if d = 2, then (2.48) is equivalent to (2.4) in the case of comonotonicity

and to (2.5) in the case of antimonotonicity. To this end, note that, in the bivariate comonotone case,

the monotone structure is e(1,2) = (0, 0) and thus F̄1(i, e
(1,2)
1) = F

(1)
i and F̄2(i, e

(1,2)
2) = F

(2)
i for all

i ≥ 0. In the antimonotone case, the monotone structure is e(2,2) = (0, 1) and thus F̄1(i, e
(2;2)
1) = F

(1)
i

but F̄2(i, e
(2;2)
2) = 1 − F

(2)
i for all i ≥ 0. Therefore, (2.48) is equivalent to (2.4) and (2.5) in the

two-dimensional case. Consequently, Theorem 1 shows that Theorem 4 holds in the case d = 2.

Let us now consider the general case d ≥ 3. There are two subsets of coordinates of (X(1), . . . , X(d)),

comonotone coordinates and antimonotone coordinates. Denote their indices by

IC = {r : e(j,d)r = 0} and IA = {r : e(j,d)r = 1}. (2.50)

Assume that a solution P̂ (j,d) to (2.37) exists and generate a sample of size N , {(X̂(1)
n , . . . , X̂

(d)
n)}Nn=1,

from P̂ (j,d). An extension of Lemma 9 (see Remark 40) to the d-dimensional case shows that there

exists a permutation π ordering the samples such that the first coordinate and the other comonotone

coordinates are monotonically increasing

X
(k)
1 ≤ X

(k)
2 ≤ · · · ≤ X

(k)
N where X(k)

n = X̂
(k)
π(n) for k ∈ IC (2.51)

and the antimonotone coordinates are monotonically decreasing

X
(k)
1 ≥ X

(k)
2 ≥ · · · ≥ X

(k)
N where X(k)

n = X̂
(k)
π(n) for k ∈ IA. (2.52)

Suppose that the indices 1 = k1 < k2 < k3 < · · · < kC ≤ d belong to IC and the complimentary set of

indices is IA = {l1, l2, . . . , lA}. A permuted sample is illustrated in (2.53) below,

X(1) :

N1(0)︷ ︸︸ ︷
0, . . . , 0, . . . ,

N1(i−1)︷ ︸︸ ︷
i− 1, . . . , i− 1,

N1(i)︷ ︸︸ ︷
i, i, . . . , i, . . .

N1(k)︷ ︸︸ ︷
k, k . . . , k, . . .

...

X(k2) : 0, 0, . . . , 0︸ ︷︷ ︸
Nk2

(0)

, . . . , i− 1, . . . , i− 1︸ ︷︷ ︸
Nk2

(i−1)

, i, . . . , i︸ ︷︷ ︸
Nk2

(i)

, . . . ,

... (2.53)

X(lA) : . . . i, i, . . . , i,︸ ︷︷ ︸
NlA

(i)

i− 1, . . . , i− 1︸ ︷︷ ︸
NlA

(i−1)

, . . . 2, 2, 2, . . . 2︸ ︷︷ ︸
NlA

(2)

, . . . ,

where Nk(m) denotes the number of realizations of m in the sample of the kth coordinate X(k). If

k ∈ IC , the first position, I C
k (m), where the number m appears in the sorted sample of the random

variable X(k) is

I C
k (m) = 1 +

m−1∑
i=0

Nk(i).

If k ∈ IC , the last position, E C
k (m), where the number m appears in the sorted sample of the random

Chapter 2. Extreme Joint Distributions 53

variable X(k) is

E C
k (m) =

m∑
i=0

Nk(i).

As the sample size N →∞, we have

lim
N→∞

Nk(m)

N
= P̂ (j,d;k)

m a.s. . (2.54)

Since P̂ (j,d) satisfies the constraints (2.37b), it follows from (2.44) that P̂
(j,d;k)
m = Q

(k)
m . Therefore, for

k ∈ IC ,

lim
N→∞

I C
k (m)

N
= F

(k)
m−1 a.s. (2.55)

and

lim
N→∞

E C
k (m)

N
= F (k)

m a.s. . (2.56)

In the case of the subset of antimonotone coordinates, l ∈ IA, the first index, I A
l (m), where a number

m appears in the sorted sample of the r.v. Xl is

I A
l (m) = 1 +N −

m∑
i=0

Nl(i), l ∈ IA.

The last position, E A
l (m), where a number m appears in the sorted sample of the r.v. X(l) is

E A
l (m) = N −

m−1∑
i=0

Nl(i), l ∈ IA.

As N →∞, we have for l ∈ IA
lim

N→∞

I A
l (m)

N
= 1− F (l)

m a.s. (2.57)

and

lim
N→∞

E A
l (m)

N
= 1− F

(l)
m−1 a.s. . (2.58)

Denote by mN({(X(1), . . . , X(d)) = (i1, . . . , id)}) the number of samples that take the value (i1, . . . , id).

The empirical measure of mN is the number of elements in the set

{m : (X(1)
m = i1, . . . , X

(d)
m = id)} =

{ ⋂
k∈IC

{m : X(k)
m = ik}

} ⋂ { ⋂
l∈IA

{m : X(l)
m = il}

}
. (2.59)

Observe that the right side of (2.59) coincides with the intersection of the intervals and can be written

as { ⋂
k∈IC

[I C
k (ik), E

C
k (ik)]

}⋂{ ⋂
l∈IA

[I A
l (il), E

A
l (il)]

}
. (2.60)

Now note that (2.60) can be rewritten as follows. The right end of the intersection of the intervals is

R = min
(
min
k∈IC

(E C
k (ik)), min

l∈IA
(E A

l (il))
)

(2.61)

Chapter 2. Extreme Joint Distributions 54

and the left end is

L = max
(
max
k∈IC

(I C
k (ik)),max

l∈IA
(I A

l (il))
)
. (2.62)

Now, let us define

µN =
mN

N
. (2.63)

Using (2.61) and (2.62), we can rewrite (2.63) as

µN({(X(1), . . . , X(d)) = (i1, . . . , id)}) =
(R−L)+

N
.

Note that the length of the intersection of intervals is 0 in the case R ≤ L. As N →∞, we obtain from

(2.55)–(2.58) that

lim
N→∞

µN({(X(1), . . . , X(d)) = (i1, . . . , id)}) =[
min(F̄1(i1 − e

(j,d)
1 ; e

(j,d)
1), . . . , F̄d(id − e

(j,d)
d ; e

(j,d)
d)) (2.64)

−max(F̄1(i1 + (e
(j,d)
1 − 1); e

(j,d)
1), . . . , F̄d(id + (e

(j,d)
d − 1); e

(j,d)
d))

]+
a.s. .

Finally, note that

lim
N→∞

µN({(X(1), . . . , X(d)) = (i1, . . . , id)}) = P̂
(j,d)
i1...,id

a.s. . (2.65)

Taking intersections of the sets of probability-one events on which (2.64) and (2.65) holds gives a set of

full-measure for which both limits (2.64) and (2.65) coincide. Since both the right side of (2.64) and the

right side of (2.65) are constants (independent of ω), equality on a set of measure one implies the equality

of the constants themselves. This implies the deterministic identity (2.48) holds for all (i1, . . . , id) and

we can drop the “a.s.” qualifier.

Thus (2.48) is derived and the first part of the theorem is proved. Moreover, if the problem (2.37)

has a solution P̂ (j,d), then, since we have shown above that P̂ (j,d) must satisfy (2.48), which specifies an

analytical form for the probabilities, P̂ (j,d) must be unique. □

Remark 40. As noted in the proof of Theorem 4 above, Lemma 9 can be extended in a straightforward

manner to the d-dimensional setting. That is, if {X̂(1)
m , . . . , X̂

(d)
m }Mm=1 is a sample of size M from P̂ (j,d),

then we can construct a permutation π such that

X
(k)
1 ≤ X

(k)
2 ≤ · · · ≤ X

(k)
M where X(k)

m = X̂
(k)
π(m) for k ∈ IC (2.66)

and

X
(k)
1 ≥ X

(k)
2 ≥ · · · ≥ X

(k)
M where X(k)

m = X̂
(k)
π(m) for k ∈ IA. (2.67)

where IC and IA are defined in (2.50). We sketch a proof of this result below. To that end, let us begin by

applying Lemma 9 to the first two components of the d-dimensional comonotonic case, e(1,d) = (0, . . . , 0),

resulting in X
(k)
1 , · · · , X(k)

M satisfying (2.66) for k = {1, 2}. We can apply the arguments in Lemma 9

again to the coordinates k = 1, 2, 3. As noted for k = 2 in Lemma 9, this may result in a permutation π

for which

X
(3)
π(m) > X

(3)
π(m+1) (2.68)

Chapter 2. Extreme Joint Distributions 55

for some m = {0, 1, 2, . . . ,M − 1}. However, we can construct a new permutation π̃ using the same

arguments as in Lemma 9 such that

X
(3)
π̃(m) ≤ X

(3)
π̃(m+1) (2.69)

for m = {0, 1, . . . ,M − 1}. As a result, taking π = π̃, we get that (2.66) is satisfied for k ∈ {1, 2, 3}.
Note that we can repeat this argument iteratively for each coordinate k ∈ {4, . . . , d}, ensuring that we

can find a permutation π̃ for which

X
(k)
π̃(m) ≤ X

(k)
π̃(m+1) (2.70)

for k = {1, 2, . . . , d} and m = {0, 1, . . . ,M − 1}. As a result, again taking π = π̃, we get that (2.66) is

satisfied for k ∈ {1, 2, . . . , d}. A similar argument holds for e(j,d) where j = {2, 3, . . . , n}.
Moreover, this implies that, for each k, l ∈ {1, 2, . . . , n} with k ̸= l, X

(k)
m and X

(l)
m are also correctly

ordered with respect to each other. That is,

(a) if e
(j,d)
k = e

(j,d)
l , then either both X(k) and X(l) satisfy (2.66) if e

(j,d)
k = e

(j,d)
l = 0 or they both

satisfy (2.67) if e
(j,d)
k = e

(j,d)
l = 1, whence in either case they are comonotone, and

(b) if e
(j,d)
k ̸= e

(j,d)
l , then either X

(k)
m satisfies (2.66) and X

(l)
m satisfies (2.67) if e

(j,d)
k = 0 and e

(j,d)
l = 1

or X
(k)
m satisfies (2.67) and X

(l)
m satisfies (2.66) if e

(j,d)
k = 1 and e

(j,d)
l = 0, whence in either case

they are antimonotone.

Remark 41. Since we showed in Remark 40 that, for each j ∈ {1, 2, . . . , n}, the permutation π not

only correctly orders the coordinates k = 2, 3, . . . , d with respect to the first coordinate, but also correctly

orders the coordinates with each other. Thus, if one of the h
(j,d)
u,v instead of being maximized is minimized,

or vice versa, then there may be no solution to (2.37) that simultaneously solves all of the h
(j,d)
u,v for all

u and v satisfying 1 ≤ u < v ≤ d.

Remark 42 (Embedding of the 2D optimization problem in the multi-objective optimization problem).

For j ∈ {1, 2, . . . , n}, the d-dimensional multi-objective optimization problem (2.37) with corresponding

monotone structure, e(j,d), consists of m = d(d − 1)/2 two-dimensional optimization problems of the

form (2.3) with the extremization determined by e(j,d;u,v). That is, the following two statements hold:

(1) For any u and v satisfying 1 ≤ u < v ≤ d, h
(j,d)
u,v (P (d)) = h(P (d;u,v)) where the extremization of

h
(j,d)
u,v on the left side depends on e(j,d), the h on the right side is the two-dimensional h function

from (2.3e) and P (d;u,v) is the two-dimensional probability measure obtained from the d-dimensional

probability distribution P (d) by (2.40).

To see this point, note that h
(j,d)
u,v (P (d)) in problem (2.37) corresponds directly to h(P (d;u,v)) in (2.3e),

as can be seen from the definition of the objective function (2.39).

(2) For each of the ik equations where k ∈ {u, v}, (2.37b) can be rewritten as

∞∑
il=0

P
(d;k,l)
ik,il

= Q
(k)
ik

ik = 0, 1, . . . (2.71)

∞∑
ik=0

P
(d;k,l)
ik,il

= Q
(l)
il

il = 0, 1, . . . (2.72)

Chapter 2. Extreme Joint Distributions 56

for all k ∈ {1, . . . , d} and all l ∈ {1, . . . , d}, excluding k = l, respectively. If k = u, then (2.71)

corresponds to (2.3b). Otherwise, if k = v, then (2.72) corresponds to (2.3c). Similarly, (2.37c)

reduces to (2.3d).

For a more detailed explanation of why point (2) holds, note that we can rewrite (2.37b) as

∞∑
il=0

∑
v∈Ik,l

∞∑
iv=0

P
(d)
i1,...,ik−1,ik,ik+1,...,id

= Q
(k)
ik

k = 1, . . . , d and ik = 0, 1, . . . (2.73)

and observe that

∑
v∈Ik,l

∞∑
iv=0

P
(d)
i1,...,ik−1,ik,ik+1,...,id

=
∑

v∈Ik,l

∞∑
iv=0

P
(d)
i1,...,ik−1,ik,ik+1,...,il−1,il,il+1,...,id

= P
(d;k,l)
ik,il

.

(2.74)

Therefore, substituting (2.74) into (2.73), we get

∞∑
il=0

P
(d;k,l)
ik,il

= Q
(k)
ik

ik = 0, 1, (2.75)

Note that (2.75) is the same as (2.71). Hence, we have shown that, if (2.37b) holds, then (2.71) holds

too. Similarly, if (2.37b) holds, then (2.72) holds too. Thus, we have shown the first statement in (2),

above. For the second statement in (2), a similar argument shows that (2.37c) reduces to (2.3d).

2.4.3 Monotonicity in Higher Dimensions

Comonotonicity and antimonotonicity, introduced in Section 2.2, are properties of bivariate distributions

that solve the optimization problem (2.3). Comonotone and antimonotone distributions exhibit extreme

positive and extreme negative dependence, respectively, between their components [103]. Comonotonic-

ity generalizes directly to the d-dimensional setting of random vectors (X(1), . . . , X(d)) and has been

well studied in the literature [29, 30]. In contrast, while there are measures of extremal negative de-

pendence that generalize antimonotonicity [126], it is well known that there is no direct extension of

antimonotonicity to the general d-dimensional setting [103].

Recall that, in the two-dimensional setting, our motivation for constructing bivariate distributions

with extremal dependence between its components was to obtain extreme positive and extreme negative

correlations, denoted Ĉ (1) and Ĉ (2), respectively. Then, any correlation C ∈ [Ĉ (1), Ĉ (2)] can be obtained

by solving the simple linear equation (2.1). This approach, which extends to the d-dimensional setting

and is described in Section 2.8, requires the d-dimensional notion of extremal positive and extremal

negative dependence. Since the Pearson correlation is inherently a pairwise concept, we define extremal

dependence in the general d-dimensional setting as follows.

Definition 25 (Pairwise Monotonicity). A random vector (X(1), . . . , X(d)) where each X(k) ∼ Q(k)

for k = 1, . . . , d, is considered pairwise monotone if all of its bivariate projections (X(u), X(v)) where

u, v ∈ {1, . . . , d} and u ̸= v are either comonotone or antimonotone.

Chapter 2. Extreme Joint Distributions 57

Pairwise monotonicity is a natural choice for the measure of extremal dependence in the general

d-dimensional setting for many reasons. From a modelling perspective, the dependence structure of

multivariate distributions with pairwise extremal dependence results in n = 2d−1 extreme measures

(Lemma 15), each having an associated extreme correlation matrix. The n extreme measures can be used

for efficient calibration (Section 2.8) and simulation (Section 2.9) of multivariate discrete distributions.

Pairwise monotonicity is also natural from the perspective of optimization since each objective function

(2.38) must either be minimized or maximized.

Similar to Subsection 2.2.1, we prove results on the properties of pairwise monotone distributions.

The development of these results relies heavily on projecting the multidimensional problem down to the

bivariate setting.

Figure 2.4: Different perspectives of the support of the 4 extreme measures for a three-dimensional joint
distribution.

We have defined extreme measures as solutions to the d-dimensional multi-objective optimization

problem (2.37) where each of the j = {1, . . . , n} for n = 2 d−1 (Lemma 15) bivariate expectations is

maximized or minimized (2.38).

Figure 2.4 illustrates all of the n = 2 3−1 = 4 extreme measures in the three-dimensional case from

different perspectives. Note the sparsity of the supports of each extreme measure. Note also the staircase

property seen in the bivariate setting is preserved in the general d-dimensional setting.

Chapter 2. Extreme Joint Distributions 58

2.5 The EJD Algorithm in d-dimensions

The EJD algorithm in d-dimensions, Algorithm 5 listed on page 70, is a generalization of the EJD

algorithm in the bivariate setting (Algorithm 1). This extension is non-trivial, not just computationally,

but notationally as well: the complexity of coherently representing various quantities across multiple

dimensions, due to the various projections, whilst keeping track of their associated extremal dependence

structures necessitates additional encumbrance of the notation on the monotone structure e(j,d) through

the extreme point index j. For example, in this chapter, the notation for marginal distributions now

highlights its associated monotone structure denoted by j

Q(j,d;k) =

 [Q
(j,d;k)
0 , . . . , Q

(j,d;k)

i
(d;k)
max −1

, Q
(j,d;k)

i
(d;k)
max

] if e
(j,d)
k = 0

[Q
(j,d;k)

i
(d;k)
max

, Q
(j,d;k)

i
(d;k)
max −1

, . . . , Q
(j,d;k)
0] if e

(j,d)
k = 1.

(2.76)

We also define, analogous to the bivariate case, associated random variables consistently: X(j,d;k) ∼
Q(j,d;k). The additional encumbrance of the marginal distributions on the monotone structure results in

a simpler and more consistent notation for marginal cdfs

F(j,d;k) = [Q
(j,d;k)
0 , . . . ,

n∑
i=0

Q
(j,d;k)
i , . . . , 1] where 0 ≤ n ≤ i(d;k)max . (2.77)

We also encumber the iteration counter, l(j,d), on the monotone structure e(j,d), again through the

extreme points index j, to reflect the dependence of the number of iterations, l
(j,d)
max , of Algorithm 5 on

the monotone structure in addition to the marginal distributions. Consequently, we denote the support

point l(j,d) computed by Algorithm 5 to be s
(j,d)

l(j,d)
= (s

(j,d;1)

l(j,d)
, . . . , s

(j,d;d)

l(j,d)
). We also index the extreme

measures by the index counter l(j,d) which is equivalent to indexing the probabilities by the support

points as they are themselves indexed by the iteration counter above. That is,

P̂
(j,d)

l(j,d)
= P̂

(j,d)

s
(j,d)

l(j,d)

= P̂
(j,d)

s
(j,d;1)

l(j,d)
,..., s

(j,d;d)

l(j,d)

. (2.78)

Remark 43. Note that, for a given j ∈ {1, . . . , n}, for each k ∈ {1, . . . , d} and each ik ∈ {0, . . . , i(d;k)max },

∑
v∈Ik

i(d;k)
max∑
iv=0

P̃
(d)
i1,...ik−1,ik,ik+1,...,id

=
∑

l∈Aik

P̃
(d)

s
(j,d;1)
l ,...,ik,...,s

(j,d;d)
l

+
∑

l /∈Aik

P̃
(d)

s
(j,d;1)
l ,...,ik,...,s

(j,d;d)
l

=
∑

{l :s(j,d;k)
l =ik}

P̃
(d)

s
(j,d;1)
l ,...,s

(j,d;d)
l

(2.79)

where

Aik = { l : P̃ (d)

s
(j,d;1)
l ,...,ik,...,s

(j,d;d)
l

> 0 }. (2.80)

From an intuitive and high-level perspective, Algorithm 5 exploits the structure of the problem by

traversing the d-dimensional S-path to simultaneously determine the support of P̂ (j,d) and its corre-

sponding probabilities. This is crucial since, in d-dimensions, the exponential increase in the number of

points in the domain as d increases precludes the brute force approach of repeatedly applying the EJD

Chapter 2. Extreme Joint Distributions 59

theorem in d-dimensions (Theorem 4) to each point in the domain to determine the probabilities (and

thereby the support) of P̂ (j,d).

In the bivariate setting, the two-dimensional version of the EJD algorithm was proved using the

properties of the S-path proved in Section 2.2. Recall that the S-path is defined as the directed path of

support points of a comonotonic or antimonotonic distribution P . While a similar definition can be made

in the d-dimensional setting, we neither prove detailed results on their properties nor on the properties of

multivariate discrete distributions that are coordinate-pairwise monotone. Such an approach is exceed-

ingly tedious and unnecessary. Instead, we exploit the structure of the multi-dimensional optimization

problem (2.37) and the results from the bivariate setting to prove the correctness of Algorithm 5. A

particular problem structure that we exploit is the embedding of the two-dimensional problem within

the d-dimensional problem. (See Remark 42.) Indeed, an analogous property holds true for the two-

dimensional and the d-dimensional EJD algorithms. (See Remark 49.)

Algorithm 5, similar to Algorithm 1, relies on the joint partition of unity to simultaneously determine

the probabilities and support of P̂ (j,d). The joint partition of unity extends to the d-dimensional setting

in a straightforward manner and is illustrated in Figure 2.5 wherein the lines represent the partitions of

unity corresponding to the marginal distributions and the joint partition (bottom-most line).

Definition 26 (Joint partition of the unit interval in d-dimensions). Let

ΠZ(j,d) = ΠX(j,d;1) ∨ ΠX(j,d;2) · · · ∨ ΠX(j,d;d) = {z(j,d)0 , z
(j,d)
1 , . . . , z

(j,d)

l
(j,d)
max

} denote a partition of the unit

interval corresponding to the monotone structure e(j,d) where the points z
(j,d)
i are the unique ordered val-

ues of the union of the sets ΠX(j,d;1) , · · · ,ΠX(j,d;d) where X(j,d;k) ∼ Q(j,d;k) for k = 1, . . . , d. The point

z
(j,d)
i is the (i + 1)st smallest value in ΠZ(j,d) . That is, z

(j,d)
0 is the smallest element in ΠZ(j,d;d) , z

(j,d)
1

is the second smallest element in ΠZ(j,d) , z
(j,d)
2 is the third smallest element in ΠZ(j,d) , etc. Moreover,

we define z
(j,d)
−1 = 0. If F

(j,d;u)
i = F

(j,d;v)
j , for some u ̸= v, then there is only one z

(j,d)

l(j,d)
∈ ΠZ(j,d) that

satisfies z
(j,d)

l(j,d)
= F

(j,d;u)
i = F

(j,d;v)
j . That is, there are no duplicate values in ΠZ(j,d) (i.e., there is no

z
(j,d)
k = z

(j,d)
l for k ̸= l).

Remark 44. For j ∈ {1, . . . , n} and k ∈ {1, 2, . . . , d}, ΠX(j,d;k) = {F (j,d;k)
0 , F

(j,d;k)
1 , . . . , F

(j,d;k)

i
(d;k)
max

}. It

follows directly from the definition of ΠZ(j,d) that z(j,d) = ∪dk=1{F
(j,d;k)
i : i = 0, 1, . . . , i

(d,k)
max }.

Remark 45. For every z
(j,2)
i in ΠZ2 there is a z

(j,d)
i′ in ΠZ(j,d) such that z

(j,2)
i = z

(j,d)
i′ . Moreover, note

that, from Remark 28 and Definition 26, there are no duplicate values in either ΠZ(j,2) or ΠZ(j,d) .

Algorithm 5 also works similarly to Algorithm 1 in that it begins with a preprocessing step (Al-

gorithm 7) that constructs the marginal cdfs F(j,d;1), . . . ,F(j,d;d) consistent with the given monotone

structure e(j,d). Next, the main body of Algorithm 5 proceeds as if all the marginal distributions pos-

sessed mutual comonotonic dependence. Finally, a postprocessing step (Algorithm 6) is applied to the

support {s(j,d)0 , . . . , s
(j,d)

l
(j,d)
max

} where the kth coordinate is reversed to restore the antimonotone relationship

between marginal distributions 1 and k if e
(j,d)
1 ̸= e

(j,d)
k . A notable difference between the d-dimensional

case and the bivariate case is that, if the kth and k′ th marginal distribution are both antimonotone in

relation to marginal distribution 1, then the kth and k′ th marginal distributions are comonotonic with

respect to each other. One way to see this is through Algorithm 6. Recall that comonotonic distributions

have monotonically increasing supports and that the postprocessing step in Algorithm 6 reverses both

the kth and k′ th coordinate as they are both antimonotone with respect to the 1st coordinate. After the

reversal, the kth and k′ th coordinates are monotonically increasing and, therefore, comonotone. This is

explained in greater detail in Lemma 24.

Chapter 2. Extreme Joint Distributions 60

ΠX(j,d;1)
0t s -sF

(j,d;1)
0 F

(j,d;1)
1 . . . 1

ΠX(j,d;2)

0t -b b b b 1F
(j,d;2)
0 F

(j,d;2)
1 F

(j,d;2)
m−1 F

(j,d;2)
m

? ? ? ? ?? ? ?

ΠZ(j,d)
0t b b b b b b -

1. . . z
(j,d)
n z

(j,d)
n+2 z

(j,d)
n+3 z

(j,d)
n+4 z

(j,d)
n+5 z

(j,d)
n+6bz(j,d)n+1 bz(j,d)n+7

...

ΠX(j,d;d)
0t s s -

F
(j,d;d)
0 F

(j,d;d)
1 F

(j,d;d)
3 . . .s 1

Figure 2.5: Partitions of the unit interval in the multivariate case

Our main result for this section is the correctness of the d-dimensional EJD algorithm (Algorithm 5),

encapsulated in Theorem 5. Similar to the discussion of Algorithm 1 in Section 2.3, we restrict our

discussion of the algorithm to finite discrete probability distributions; for each k ∈ {1, 2, . . . , d} there

is an i
(d;k)
max such that Q

(j,d;k)
i > 0 for i = 0, 1, . . . , i

(d;k)
max and Q

(j,d;k)
i = 0 for i > i

(d;k)
max . The finite-

dimensional approach can be extended to the case of infinite probability distributions and is sketched in

Section 2.6. In addition, as noted in Remark 8 for bivariate distributions, we believe that the assumption

that Q
(j,d;k)
i > 0 for i = 0, 1, . . . , i

(d;k)
max and for k = 1, 2, . . . , d, can also be relaxed for d-dimensional

distributions, whether i
(d;k)
max is finite or infinite. However, as noted in Remark 8, we do not pursue this

extension in this thesis.

For the remainder of the section, let the integers u and v satisfying 1 ≤ u < v ≤ d refer to the bivariate

subset of coordinates from the d-dimensional set {1, . . . , d} that the problem is projected onto and that

the uth and vth coordinates in the d-dimensional case correspond to the first and second coordinates in

the bivariate case. That is, the marginals Q(j,d;u) and Q(j,d;v) associated with P̂ (j,d;u,v) correspond to

the marginals Q(j′,2;1) and Q(j′,2;2) associated with P̂ (j′,2) where j′ ∈ {1, 2} is determined by e(j;d;u,v).

Definition 27 (Bivariate projections of the d-dimensional support). Denote by

s
(j,d;u,v)

l(j,d)
= Proju,v s

(j,d)

l(j,d)
= (s

(j,d;u)

l(j,d)
, s

(j,d;v)

l(j,d)
) =

((
s
(j,d)

l(j,d)

)
u
,
(
s
(j,d)

l(j,d)

)
v

)
(2.81)

the bivariate projection of s
(j,d)

l(j,d)
onto its uth and vth coordinates. Moreover, let

s(j,d;u,v) = {s(j,d;u,v)0 , . . . , s
(j,d;u,v)

l
(j,d)
max

} (2.82)

denote the bivariate projection of the d-dimensional support s(j,d) onto its uth and vth coordinates having

duplicates in the resulting set.

Finally, note that, for a given set of marginal distributions [Q
(j,d;k)
0 , . . . , Q

(j,d;k)

i
(d;k)
max

]dk=1 and for a given

monotone structure e(j,d), Algorithm 5 computes a d-dimensional probability distribution which we

Chapter 2. Extreme Joint Distributions 61

denote by P̃ (j,d) since we have not yet shown that Algorithm 5 computes the solution, P̂ (j,d), to (2.37).

In a similar vein, the support belonging to P̃ (j,d) should also be denoted as s̃(j,d) for consistency. However,

due to our encumbered notation which will become increasingly apparent throughout this section, we

use instead s(j,d) to denote the support computed by Algorithm 5 corresponding to P̃ (j,d).

We first sketch the proof Theorem 5: we must show that P̃ (j,d) is the solution to the multi-objective

problem (2.37), whence, P̃ (j,d) = P̂ (j,d). This can be accomplished by showing that the following

statements Si, for i = 0, 1, 2, 3, 4, hold.

S0: P̃ (j,d) is a probability distribution that satisfies the constraints (2.37b) and (2.37c).

S1: For every pair of integers u and v satisfying 1 ≤ u < v ≤ d,

P̃ (j,d;u,v) = P̂ (j′,2) (2.83)

where P̂ (j′, 2) is computed by Algorithm 1 using the marginals Q(j′,2;1) = Q(j,d;u) and Q(j′,2;2) =

Q(j,d;v) and j′ ∈ {1, 2} is determined by e(j,d;u,v).

S2: P̂ (j′, 2) solves the bivariate optimization problem (2.3) with Q(j′,2;1) = Q(j,d;u) and Q(j′,2;2) =

Q(j,d;v).

S3: For a given pair of integers u and v satisfying 1 ≤ u < v ≤ d, P̃ (j,d;u,v) solves the two-dimensional

optimization problem obtained from projecting (2.37) onto the uth and vth coordinates for the

given pair of integers u and v (see Remark 42) since P̃ (j,d;u,v) = P̂ (j′, 2) and P̂ (j′, 2) solves the

bivariate optimization problem (2.3).

S4: Since for each pair of integers u and v satisfying 1 ≤ u < v ≤ d, P̃ (j,d;u,v) solves the two-dimensional

problem obtained by projecting (2.37) onto the uth and vth coordinates for that pair of u and v,

P̃ (j,d) satisfies the multi-objective optimization problem (2.37). Moreover, Theorem 4 asserts that,

if problem (2.37) has a solution, it is unique, almost surely. Therefore, P̃ (j,d) = P̂ (j,d) almost

surely.

Remark 46. Note that this avoids the problems associated with the Pareto frontier, since P̃ (j,d) =

P̂ (j,d) gives the best solution possible to each of the m = d(d − 1)/2 optimization problems extremizing

h
(j,d)
u,v (P (j,d)) subject to the constraints (2.37b) and (2.37c) for each u and v satisfying 1 ≤ u < v ≤ d.

The rest of this section is as follows. We begin with some remarks on the structure of the solution

and the corresponding algorithm (Algorithm 5) in d-dimensions and its relation to the two-dimensional

setting. Then, we list a series of lemmas that both elucidate some aspect of the problem or some aspect

of the projected bivariate problem and are directly used in proving Theorem 5. For the majority of the

lemmas, their proofs can be found in Appendix B. These lemmas show that statements S1, . . . ,S4 hold.

We begin with some remarks on the lengths of the solution computed by Algorithm 5.

Remark 47. l
(j,d)
max ≥ l

(j,2)
max . Observe that there is the same number of z

(j,d)

l(j,d)
as there are unique values

in ∪dk=1{F
(j,d;k)
i : i = 0, 1, . . . , i

(d;k)
max } and, similarly, that there is the same number of z

(j,2)
l2 as there are

unique values in ∪2k=1{F
(j,2;k)
i : i = 0, 1, . . . , i

(2;k)
max } where F (j,d;u) = F (j,2;1) and F (j,d;v) = F (j,2;2), since

Chapter 2. Extreme Joint Distributions 62

Q(j,d;u) = Q(j,2;1) and Q(j,d;v) = Q(j,2;2). The result follows from the fact that

∪2k=1{F
(j,2;k)
i : i = 0, 1, . . . , i(2;k)max } = {F

(j,d;u)
i : i = 0, 1 . . . , i(d;u)max } ∪ {F

(j,d;v)
i : i = 0, 1 . . . , i(d;v)max }

⊆ ∪dk=1{F
(j,d;k)
i : i = 0, 1, . . . , i(d;k)max }.

Remark 48. If e(j,d;u,v) = (0, 0) and e(j
′,d;u,v) = (1, 1), then

l(j,d;u,v)max = l(j
′,d;u,v)

max , (2.84)

since there is a one-to-one correspondence between z(j,2;u,v) and z(j
′,2;u,v) by Lemma 16. For this reason,

we use the abbreviated notation l2max instead of l
(j,d;u,v)
max or l

(j′,d;u,v)
max throughout most of this section when

discussing the cases e(j,d;u,v) = (0, 0) and e(j
′,d;u,v) = (1, 1) and we use l2 ∈ {0, 1, . . . , l2max} to index the

sets s̃(j,d;u,v), s̃(j
′,d;u,v), s(j,d;u,v), s(j

′,d;u,v), z(j,2;u,v), and z(j
′,2;u,v). Moreover, we also use l2max in place

of l
(j,d;u,v)
max , in the case of e(j,d;u,v) = (0, 0), to simplify the notation whether or not the dual index j′ is

present.

The sets z(j,2;u,v), and z(j
′,2;u,v) are defined below on page 63. The sets s̃(j,d;u,v), s̃(j

′,d;u,v), s(j,d;u,v),

and s(j
′,d;u,v) are defined below on page 65.

Remark 49. Algorithm 5 reduces to Algorithm 1 in the case d = 2.

That Remark 49 holds can been seen as follows. The EJD algorithms 1 and 5 can each be divided

into three main phases: preprocessing, main body, and postprocessing. This corresponds to Lines 1-5,

Lines 6-18, and Lines 19-21 in Algorithm 1 and Lines 1-5, Lines 6-14, and Lines 15-16 in Algorithm 5. We

begin with the preprocessing steps. If d = 2, the inputs are equivalent in Algorithm 1 and Algorithm 5

and Lines 1-5 in Algorithm 5 are equivalent to Lines 1-5 in Algorithm 1.

Next, the main bodies of Algorithm 5 and Algorithm 1, while having a different form, are also

equivalent. To see this, first note that, if d = 2, Lines 13-14 of Algorithm 5 can be clearly seen to be

equivalent to Lines 17-18 of Algorithm 1. Consequently, it remains to show that Lines 8-16 of Algorithm 1

are equivalent to Lines 8-12 of Algorithm 5. Note that the conditions in the if statements on Lines 8,

11, and 14 of Algorithm 1 and their corresponding statement bodies can be refactored according to

the dimensions. For example, note that in Algorithm 1, if zl−1 == F
(1)

s
(j,2;1)
l−1

in any of the if statement

conditions, then s
(j,2;1)
l = s

(j,2;1)
l−1 +1 in each of the corresponding statement bodies. Similarly for F

(2)

s
(j,2;2)
l−1

and s
(j,2;2)
l . Then, note that, for the case d = 2 in Algorithm 5, for each iteration, l, of the algorithm,

there are two iterations of the for loop (Line 8). For k = 1, the if statement (Line 9) checks that

zl−1 == F
(1)

s
(1)
l−1

and if true, increments the corresponding support point, that is, s
(j,2;1)
l = s

(j,2;1)
l−1 + 1 is

executed (Line 10). Otherwise, the corresponding support point is not incremented (Line 12). Similarly

for F
(2)

s
(j,2;2)
l−1

and s
(j,2;2)
l . Therefore the main bodies of Algorithm 1 and Algorithm 5 are equivalent for

d = 2.

Finally, to see that the postprocessing stage of Algorithm 1 is equivalent to Algorithm 5, note that,

in Algorithm 1, the postprocessing subroutine, Algorithm 2, is only called in the antimonotone case

(Line 19). In contrast, Algorithm 5 calls the multidimensional postprocessing subroutine, Algorithm 6,

immediately after the main body has executed since, in the general case, each pair of components

Chapter 2. Extreme Joint Distributions 63

can either be comonotone or antimonotone. For each dimension, k, Line 4 of Algorithm 6 checks the

monotonic relationship between the pair of components (1, k); if d = 2, Line 4 of Algorithm 6 checks

whether it is the comonotone or antimonotone case, similar to Line 19 of Algorithm 1. If, for the pair

of components (1, k), the antimonotone case is true, Line 5 is executed, reversing the kth component

of the support similar to Line 4 of Algorithm 1. Otherwise, Line 7 is executed and the kth component

of the support is not reversed, similar to Line 3 of Algorithm 1. Therefore, the postprocessing phases

of Algorithm 5, with d = 2, is equivalent to Algorithm 1. Since, for d = 2, the preprocessing, main

body, and post processing phases of Algorithm 5 and Algorithm 1 are equivalent, Algorithm 5 reduces

to Algorithm 1 in the case d = 2.

Next, we consider an important partition of unity that will be needed later in the chapter: the

partition of unity corresponding to the two-dimensional joint probability distribution having monotone

structure e(j,d;u,v) = (0, 0)

z(j,2;u,v) = {z(j,2;u,v)0 , . . . , z
(j,2;u,v)
l2max

} (2.85)

where l2max = l
(j,d;u,v)
max was introduced in Remark 48 to simplify the notation in this section. Note that

z(j,2;u,v) can be constructed similarly to the set {z(j,d)
l̄0

, . . . , z
(j,d)

l̄max
} (which can be found in the setup of

the proof of Lemma 24 in Appendix B.7 on page 196) by choosing a set of indices {l̃0, . . . , l̃max} ⊂
{l(j,d)0 , . . . , l

(j,d)
max } such that the following hold

{z(j,2;u,v)0 , . . . , z
(j,2;u,v)
l2max

} = {z(j,d)
l̃0

, . . . , z
(j,d)

l̃max
} = ∪2k=1{F

(j,2;k)
i : i = 0, 1, . . . , i(2;k)max }. (2.86)

Clearly, we can assume that the subscripts on the z’s above are chosen so that, for all l2 ∈ {1, . . . , l2max},

z
(j,2;u,v)
l2−1 < z

(j,2;u,v)
l2 . (2.87)

Remark 50. Moreover, the set {z(j,2;u,v)0 , . . . , z
(j,2;u,v)
l2max

} is equivalent to the two-dimensional partition of

unity, z(j,2), constructed from F (j,d;u) and F (j,d;v) since (2.86) corresponds to Line 2 of Algorithm 8 for

d = 2, u = 1, and v = 2, and (2.87) corresponds to Line 4 of Algorithm 8. Taking only unique elements

of {z(j,d;u,v)0 , . . . , z
(j,d;u,v)

l
(j,d)
max

} is equivalent to Line 3 of Algorithm 8.

Remark 51. In some instances, it is useful to prepend the two-dimensional partition of unity (2.85)

with the element z
(j,2;u,v)
−1 = 0 = F

(j,2,d;u)
−1 = F

(j,2,d;v)
−1 . Then, we can write (2.86) as

z(j,2;u,v) = {F (j,d;u)
−1 , F

(j,d;u)
0 , . . . , F

(j,d;u)

i
(d;u)
max

} ∪ {F (j,d;v)
−1 , F

(j,d;v)
0 , . . . , F

(j,d;v)

i
(d;v)
max

} (2.88)

where F
(j,d;k)
−1 = 0 for k ∈ {u, v}. Note that this is consistent with how the d-dimensional partition of

unity is defined in Definition 26.

Remark 52. For all j ∈ {1, 2, . . . , n} and all u, v satisfying 1 ≤ u < v ≤ d, the set {z(j,2;u,v)0 , . . . , z
(j,2;u,v)
l2max

}
is embedded within the set {z(j,d)0 , . . . , z

(j,d)

l
(j,d)
max

}. More specifically, for all l2 ∈ {0, 1, . . . , l2max} there exists a

unique l(j,d) ∈ {0, 1, . . . , l(j,d)max } such that z
(j,2;u,v)
l2 = z

(j,d)

l(j,d)
. This can be seen easily from the construction

of the set z(j,2;u,v) in Remark 50 and from the definition of the set z(j,d) in Definition 26, which also

ensures that there are no duplicate values in the set z(j.d).

Chapter 2. Extreme Joint Distributions 64

Lemma 16. For any k ∈ {1, 2, . . . , d} and any i ∈ {−1, 0, 1, . . . , i(d;k)max },

1− F
(j′,d;k)
i = F

(j,d;k)

i
(d;k)
max −i−1

, (2.89)

where e
(j,d)
k = 0 and e

(j′,d)
k = 1.

The proof of Lemma 16 can be found in Appendix B.1.

Lemma 17. For any l ∈ {−1, 0, 1, . . . , l2max} and 1 ≤ u < v ≤ d,

1− z
(j′,2;u,v)
l = z

(j,2;u,v)
l2max−l−1, (2.90)

where e(j,d;u,v) = (0, 0), e(j
′,d;u,v) = (1, 1), and we have prepended z(j,2;u,v) with the element z

(j,2;u,v)
−1 = 0

and z(j
′,2;u,v) with the element z

(j′,2;u,v)
−1 = 0. (Remark 2.88.) Moreover, for each l ∈ {−1, 0, 1, . . . , l2max},

there exists a k ∈ {u, v} and an i ∈ {−1, 0, 1, . . . , i(d;k)max } such that

z
(j′,2;u,v)
l = F

(j′,d;k)
i (2.91)

and

z
(j,2;u,v)
l2max−l−1 = F

(j,d;k)

i
(d;k)
max −i−1

= 1− F
(j′,d;k)
i , (2.92)

where the k’s and the i’s are the same in (2.91) and (2.92) above.

The proof of Lemma 17 can be found in Appendix B.2

Lemma 18. The order in which F (j,d;u) and F (j,d;v) are matched in Algorithm 5 in the e(j,d;u,v) = (0, 0)

case is reversed in Algorithm 5 in the e(j
′,d;u,v) = (1, 1) case. That is, for each l2 ∈ {0, . . . , l2max}, at

least one of

z
(j,2;u,v)
l2 = F

(j,d;u)

i(d;u) (2.93)

or

z
(j,2;u,v)
l2 = F

(j,d;v)

i(d;v) (2.94)

holds for some i(d;u) ∈ {0, 1, . . . , i(d;u)max } or i(d;v) ∈ {0, 1, . . . , i(d;v)max }. Moreover, (2.93) holds iff

z
(j′,2;u,v)
l2max−l2−1 = F

(j′,d;u)

i
(d;u)
max −i(d;u)−1

(2.95)

holds, and (2.94) holds iff

z
(j′,2;u,v)
l2max−l2−1 = F

(j′,d;v)

i
(d;v)
max −i(d;v)−1

(2.96)

holds.

Proof: That at least one of (2.93) or (2.94) holds can be seen from the construction of z(j,2;u,v)

which, by (2.86) and Remark 50, ensures that it satisfies z(j,2;u,v) = F (j,d;u)
⋃

F (j,d;v).

Next, note that (2.90), which relates z
(j,2;u,v)
l2 to z

(j′,2;u,v)
l2max−l2−1, and (2.89) in Lemma 16, which relates

F
(j,d;k)
i and F

(j′,d;k)

i
(d;k)
max −i−1

where k ∈ {u, v}, can both be applied to obtain our desired result. To see this,

start by assuming that (2.93) holds for some l2 ∈ {0, 1, . . . , l2max} and some i(d;u) ∈ {0, 1, . . . , i(d;u)max }.
Subtracting both sides of (2.93) from 1 yields

1− z
(j,2;u,v)
l2 = 1− F

(j,d;u)

i(d;u) . (2.97)

Chapter 2. Extreme Joint Distributions 65

Making a suitable change of variable in (2.90), rearranging, and applying the result to the left side of

(2.97) and making a similar change of variable in (2.89), rearranging and applying the result to the right

side of (2.97) gives

z
(j′,2;u,v)
l2max−l2−1 = F

(j′,d;u)

i
(d;u)
max −i(d;u)−1

. (2.98)

Thus, we have shown that, if (2.93) holds, then (2.95) holds. A similar argument shows that, if (2.95)

holds, then (2.93) holds. Thus, (2.93) holds iff (2.95) holds.

A similar argument shows that (2.94) holds iff (2.96) holds. □

Next, we list some results on the support computed by Algorithm 5. Particularly useful is the

counting interpretation of the support.

Lemma 19. Given j ∈ {1, . . . , n}, for each k ∈ {1, . . . , d} and each i ∈ {0, . . . , i(d;k)max }, there exists an

integer w such that s
(j,d;k)
w = i.

Proof: Given j ∈ {1, . . . , n}, for each k ∈ {1, . . . , d}, s
(j,d;k)
0 = 0 by Line 4 of Algorithm 5.

Line 10 of Algorithm 5 increments s
(j,d;k)

l(j,d)
by 1 only if Line 9 of Algorithm 5 evaluates to true. For each

k = {1, . . . , d}, Line 9 of Algorithm 5, evaluates to true i
(d;k)
max + 1 times since the partition of unity,

computed by Algorithm 8 on Line 2 of Algorithm 5, is obtained by taking the unique elements of the

union of the marginal cdfs. Since, for l(j,d) ∈ {0, 1, . . . , l(j,d)max }, s(j,d;k)l(j,d)
must take on the values 0, . . . , i

(d;k)
max ,

therefore, there must exist an integer w such that s
(j,d;k)
w = i. □

Corollary 1. For each k ∈ {1, . . . , d} and each i ∈ {0, . . . , i(d;k)max }, let q be the smallest integer such

that s
(j,d;k)
q = i and w be the greatest integer such that s

(j,d;k)
w = i. If q < w, then s

(j,d;k)
l = i for all l

satisfying q ≤ l ≤ w.

Let us denote by s̃(j,d) the support corresponding to P̃ (j,d) before Algorithm 6 is applied. The

underline denotes when applied to a support set denotes removing the duplicates in the support set. Thus,

the set s̃(j,d) is equivalent to the set s̃(j,d) since there are no duplicates in the s̃(j,d). However, s(j,d;u,v) =

{s(j,d;u,v)0 , . . . , s
(j,d;u,v)
l2max

} is the support corresponding to P̃ (j,d;u,v) having monotone structure e(j,d;u,v) =

(0, 0) obtained by projecting each element of the support s(j,d) = {s(j,d)0 , . . . , s
(j,d)

l
(j,d)
max

} of P̃ (j,d) generated by

Algorithm 5 onto the uth and vth coordinates and eliminating duplicates, but retaining the order by which

the support points are generated by Algorithm 5. Similarly, let s(j
′,d;u,v) = {s(j

′,d;u,v)
0 , . . . , s

(j′,d;u,v)
l2max

}
denote the support corresponding to P̃ (j′,d;u,v) having monotone structure e(j

′,d;u,v) = (1, 1) obtained

by projecting each element of the support s(j
′,d) = {s(j

′,d)
0 , . . . , s

(j′,d)

l
(j,d)
max

} of P̃ (j′,d) onto the uth and vth

coordinates and eliminating duplicates, but retaining the order by which the support points are generated

by Algorithm 5.

Remark 53. For all j ∈ {1, 2, . . . , n}, for all u, v satisfying 1 ≤ u < v ≤ d, the endmost point in

the sets s̃(j,d;u,v) and s̃(j,d;u,v) must be the same since the set s̃(j,d;u,v) is obtained directly from the set

s̃(j,d;u,v) by eliminating duplicates, but retaining the order by which the support points are generated by

Algorithm 5. Whence, s̃
(j,d;u,v)

l
(j,d;u,v)
max

= s̃
(j,d;u,v)

l
(j,d)
max

. Moreover, it must also be that s̃
(j,d;u)

l
(j,d;u,v)
max

= i
(d;u)
max , since the set

{F (j,d;u)
0 , . . . , F

(j,d;u)

i
(d;u)
max

} ⊂ z(j,d) by Line 2 of Algorithm 5, whence Lines 6-12 of Algorithm 5 imply that

s̃
(j,d;u)

l
(j,d)
max

= i
(d;u)
max . Similarly, s̃

(j,d;v)

l
(j,d;u,v)
max

= i
(d;v)
max .

Lemma 20. For all j ∈ {1, 2, . . . , n}, all k ∈ {1, 2, . . . , d}, and all l(j,d) ∈ {0, 1, . . . , l(j,d)max }, s̃(j,d;k)l(j,d)
is the

number of i ∈ {0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,d)
l for some l ∈ {0, 1, . . . , l(j,d) − 1}.

Chapter 2. Extreme Joint Distributions 66

Proof: This is evident from the fact that Line 4 of Algorithm 5 initializes s̃
(j,d;k)
0 = 0 for all

j ∈ {1, 2, . . . , n} and for all k ∈ {1, 2, . . . , d} and Line 10 of Algorithm 5 executes if and only if Line 9 of

Algorithm 5 evaluates to true. □

A variant of Lemma 20 also applies to the set s̃(j,d;u,v) as it is obtained directly from the set s̃(j,d;u,v).

Corollary 2. For all j ∈ {1, 2, . . . , n}, all k ∈ {u, v}, where u, v are such that 1 ≤ u < v ≤ d, and all

l2 ∈ {0, 1, . . . , l(j,d;u,v)max }, s̃(j,d;k)l2 is the number of i ∈ {0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,2;u,v)
l for

some l ∈ {0, 1, . . . , l2 − 1}.

The proof of Corollary 2 can be found in Appendix B.4.

Remark 54. For all j ∈ {1, 2, . . . , n}, for all u, v satisfying 1 ≤ u < v ≤ d, and for each l2 ∈
{0, 1, . . . , l2max}, there is at least one l(j,d) ∈ {0, 1, . . . , l(j,d)max } such that

s̃
(j,d;u,v)
l2 = s̃

(j,d;u,v)

l(j,d)
(2.99)

since the set s̃(j,d;u,v) is obtained directly from the set s̃(j,d;u,v) by eliminating duplicates, but retaining

the order by which the support points are generated by Algorithm 5. Note that, in some cases, for a given

l2, (2.99) holds for more than one l(j,d).

Finally, the results that directly lead to the proof of our main result are as follows.

Lemma 21. If u and v are such that 1 ≤ u < v ≤ d and j and j′ ∈ {1, 2, . . . , n} are such that

e(j,d;u,v) = (0, 0) and e(j
′,d;u,v) = (1, 1), then for all l2 ∈ {0, 1, . . . , l2max}

s
(j,d;u,v)
l2 = s

(j′,d;u,v)
l2max−l2 . (2.100)

The proof of Lemma 21 can be found in Appendix B.6.

Lemma 22. For l2 ∈ {0, 1, . . . , l2max},

P̃
(j,d;u,v)
l2 = P̂

(j′,2)
l2 (2.101)

where j = 1 and j′ = 1 and where P̂
(j,d)
l2 is computed by Algorithm 5 and P̂

(j′,2)
l2 is computed by

Algorithm 1.

The proof of Lemma 22 can be found in Appendix B.5

Lemma 23. The P̃ (j,d) computed by Algorithm 5 is a probability distribution that satisfies the constraints

(2.37b) and (2.37c).

The proof of Lemma 23 can be found in Appendix B.3

Lemma 24. The bivariate probability distribution P̃ (j,d;u,v) obtained by marginalizing, according to

(2.43), the d-dimensional probability distribution P̃ (j,d) having the monotone structure e(j,d) obtained

from Algorithm 5 is identical to the bivariate extreme measure P̂ (j′,2) obtained from Algorithm 1 where j′

is determined by e(j,d;u,v). The marginals Q(j,d;u) and Q(j,d;v) associated with P̃ (j,d;u,v) and the marginals

Q(j′,2;1) and Q(j′,2;2) associated with P̂ (j′,2) satisfy Q(j,d;u) = Q(j′,2;1) and Q(j,d;v) = Q(j′,2;2).

Chapter 2. Extreme Joint Distributions 67

The proof of Lemma 24 can be found in Appendix B.7.

The results in the section up to this point prove our main result. We formalize this in Theorem 5

below.

Theorem 5. The probability P̃ (j,d) computed by Algorithm 5 is correct in the sense that it is the almost

sure unique solution to the optimization problem (2.37).

Proof: We can now show the correctness of Algorithm 5 by showing that all of the statements, Si
for i = 0, 1, 2, 3, 4, listed on page 61, near the beginning of this section, hold true.

We begin by noting that statements S0 and S1 follow directly from Lemma 23 and Lemma 24,

respectively.

Statement S2 states that the two-dimensional probability distribution, P̂ (j′,2), computed by Algo-

rithm 1 is a solution to the two-dimensional optimization problem (2.3), which was the main result

shown in Section 2.2.

Statement S3 holds true since P̂ (j′,2) solves the bivariate problem (2.3) and since (2.83) was shown

to be true in S1, P̃ (j,d;u,v) also solves (2.3). Since, by Remark 42, the two-dimensional optimization

problem obtained from projecting (2.37) onto the uth and vth coordinates for the given pair of integers u

and v is equivalent to the bivariate optimization problem, therefore, P̃ (j,d;u,v) solves the two-dimensional

optimization problem obtained from (2.37) by projection.

Finally, statement S4 states that the solution, P̃ (j,d), computed by Algorithm 5 is a solution to the

d-dimensional multi-objective problem (2.37) and that P̃ (j,d) is in fact the unique solution, almost surely.

That is, P̃ (j,d) = P̂ (j,d). The first part of statement S4 can be seen as follows. We know from S3 that, for

any pair of integers u and v satisfying 1 ≤ u < v ≤ d, P̃ (j,d) projected onto the uth and vth coordinates,

P̃ (j,d;u,v), is a solution to the corresponding two-dimensional problem (2.3). By the results in Section 2.3,

P̃ (j,d;u,v) is the unique solution. Since the multi-objective problem (2.37) consists of m = d(d − 1)/2

objective functions, all of which are satisfied, and since by statement S0, P̃ (j,d) satisfies the constraints

(2.37b) and (2.37c), the first part of statement S4 holds true. Since we have shown that P̃ (j,d) is a

solution to the multi-objective problem (2.37) and we know from Theorem 4 that the solution to (2.37)

is unique almost surely, the second part of S4 also holds true almost surely. Therefore, we have shown

the correctness of Algorithm 5.

□

Chapter 2. Extreme Joint Distributions 68

2.6 The Infinite Dimensional Case

The focus of the thesis is on developing the EJD approach in the practical setting of finite-dimensional

marginal distributions that are approximations, typically via truncations and ensuring the resulting

probability mass sums to one, of the true marginal distributions in the infinite (space) dimensional

setting. Two natural questions to consider are whether the EJD approach can be extended to the

setting of infinite-dimensional marginals and the effect of using the finite approximations (2.20) on the

precision of the resulting correlation structure. Since the focus of this thesis is on the finite-dimensional

setting, we leave the detailed analysis of the affect of finite approximations on the precision of correlation

structures as future work. Instead, we briefly outline below, at a high level, how Algorithm 1 can be

extended to the case of infinite marginal distributions. We believe that Algorithm 5 can also be extended

to the case of infinite marginal distributions, but we leave that task to future work.

The Comonotone Case

In the comonotone case, the extension of Algorithm 1 is straightforward. Since the initial point of the

S-path is (0, 0) by Lemma 1, we only have to determine a suitable stopping criteria. One such criteria

is to stop the algorithm at iteration l if

1− F
(1)
l < ϵ(1) and/or 1− F

(2)
l < ϵ(2) (2.102)

for some ϵ(j) ∈ R+ for j ∈ {1, 2}. In addition, instead of using finite approximations Q̂(1) and Q̂(2)

computed in (2.20) we use instead the infinite probability distributions Q(1) and Q(2), without truncating

or approximating them. However, since the infinite dimensional marginal distributions Q(1) and Q(2)

cannot be passed as arguments into Algorithm 1, Algorithm 1 must be modified such that Q
(1)
i and Q

(2)
j

can be computed as needed in Lines 2-18 of Algorithm 1. Similarly for the infinite dimensional marginal

cdfs F (1) and F (2) and the z′s in Line 4 of Algorithm 1.

The Antimonotone Case

The antimonotone case differs from the comonotone case in two main ways that complicate a direct

extension of Algorithm 1 to the case of infinite-dimensional marginal distributions. The first is the

fact that the antimonotone case has a preprocessing step (Lines 2-5 of Algoritm 3 called on Line 1

of Algorithm 1) that reverses the marginal distribution Q(2)—it is meaningless to “reverse” the full

infinite-dimensional marginal distribution. The second is the fact that the solution P̂ (2) to (2.3) has

antimonotonic support (Lemma 11) and that, by Lemma 5, there exists points (0, n) and (m, 0), for some

integers m and n, that belong to the S-path corresponding to an antimonotone distribution. Moreover,

we know by Remark 18 that, if (0, n) and (m, 0) belong to the S-path, then so must (0, n+1), (0, n+2), . . .

and (m+1, 0), (m+2, 0), . . . in the infinite-dimensional case. That is, all but a finite number of support

points reside on the axes in the infinite-dimensional antimonotone case. Thus, unlike the infinite-

dimensional extension of Algorithm 1 in the comonotone case, the infinite-dimensional extension in

the antimonotone case only needs to compute a finite number of points on the S-path similar to the

finite-dimensional case since any support point on either axis can be computed by using formula (2.5)

of Theorem 1 directly. In essence, there is no infinite-dimensional case for the antimonotone setting.

While it may be possible to modify Algorithm 1 such that it works in the antimonotone case without

Chapter 2. Extreme Joint Distributions 69

having to reverse a full infinite-dimensional (marginal) distribution and use infinitely manyQ(2) elements,

this extension, as mentioned in the beginning of this section, is not a focus of this thesis. However, as

an alternative, the following approach can be used for infinite-dimensional Q(1) and Q(2).

1. Start with a point (0, n) on the S-path. Note that this point can be found easily as follows. Pick

any point (0, n) and use formula (2.5) of Theorem 1 to determine if it is a support point. If not,

double the value of n, denote it by n′ and use Theorem 1 again to check if it is a support point.

This can be repeated until we find some point (0, n′) where n′ > n that is a support point.

2. If the point (m′, n′) is on the S-path, then we know from the results in Section 2.2 that one of

(m′ + 1, n′), (m′, n′ − 1), or (m′ + 1, n′ − 1) must be on the S-path. Moreover, (m′ + 1, n′) and

(m′, n′ − 1) cannot both be on the S-path. Therefore, the next point on the S-path is one of the

(m′ + 1, n′) or (m′, n′ − 1) if either of them is a support point. Otherwise, the next point on the

S-path is (m′ + 1, n′ − 1).

3. Determine the next point on the S-path and its associated probability, using formula (2.5) of

Theorem 1 to compute P̂
(2)
(m′+1,n′), P̂

(2)
(m′,n′−1) and/or P̂

(2)
(m′+1,n′−1) as needed.

(a) If P̂
(2)
(m′+1,n′) > 0, then (m′ + 1, n′) is the next point on the S-path, and P̂

(2)
(m′+1,n′) is the

associated probability.

(b) Else if P̂
(2)
(m′,n′−1) > 0, then (m′, n′ − 1) is the next point on the S-path, and P̂

(2)
(m′,n′−1) is the

associated probability.

(c) Otherwise, (m′+1, n′− 1) is the next point on the S-path, and P̂
(2)
(m′+1,n′−1) is the associated

probability.

4. Update the current point on the S-path to the newly determined point and repeat Steps 2–3.

5. Continue this procedure until the point (m, 0) is reached. By the results in Section 2.2, this

procedure must terminate at (m, 0) after finitely many steps.

Remark 55. For the computation of the correlation coefficient corresponding to P̂ (2), the probabilities

associated with axes support points need not be computed. To see this, note that the bivariate expectation

is computed as the sum
∑∞

i=0

∑∞
j=0 ijP̂

(2)
ij . Obviously, we only need to include in this sum the terms

ijP̂
(2)
i,j for which i, j and P̂

(2)
i,j are all nonzero. For anly point on the axes, either i = 0 or j = 0 and, for

any point not on the S-path, P̂ (2)
i,j = 0. Hence, we need to include in the sum only the points associated

with the S-path between (0, n) and (m, 0).

Chapter 2. Extreme Joint Distributions 70

Algorithm 5 Extreme Joint Distribution Algorithm in d -dimensions

Require: Marginal distributions: [Q
(d;k)
0 , . . . , Q

(d;k)

i
(d;k)
max

]dk=1

Monotonicity Structures: e(j,d) where j ∈ {1, . . . , n}
Output: Extreme measure [P̂

(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

] and its support [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

]

1: [F
(j,d;1)
0 , . . . , F

(j,d;1)

i
(d;1)
max

], [F
(j,d;2)
0 , . . . , F

(j,d;2)

i
(d;2)
max

], . . . ,

[F
(j,d;d)
0 , . . . , F

(j,d;d)

i
(d;d)
max

]← Construct Marginal CDFs D(

[Q
(d;k)
0 , . . . , Q

(d;k)

i
(d;k)
max

]dk=1, [e
(j,d;1), . . . , e(j,d;d)])

2: z
(j,d)
0 , . . . , z

(j,d)

l
(j,d)
max

← Partition Unity([F
(j,d;1)
0 , . . . , F

(j,d;1)

i
(d;1)
max

], [F
(j,d;2)
0 , . . . , F

(j,d;2)

i
(d;2)
max

], . . . ,

[F
(j,d;d)
0 , . . . , F

(j,d;d)

i
(d;d)
max

])

3: l(j,d) ← 0

4: (s
(j,d;1)
0 , . . . , s

(j,d;d)
0)← (0, . . . , 0)

5: P̂
(j,d)
0 ← z

(j,d)
0

6: while z
(j,d)

l(j,d)
̸= 1 do

7: l(j,d) ← l(j,d) + 1

8: for k = 1, . . . , d do

9: if z
(j,d)

l(j,d)−1
== F

(d;k)

s
(j,d;k)

(l(j,d)−1)

then

10: s
(j,d;k)

l(j,d)
← s

(j,d;k)

(l(j,d)−1)
+ 1

11: else

12: s
(j,d;k)

l(j,d)
← s

(j,d;k)

(l(j,d)−1)

13: Save the l-th support point s
(j,d)

l(j,d)
= (s

(j,d;1)

l(j,d)
, . . . , s

(j,d;d)

l(j,d)
)

14: P̂
(j,d)

l(j,d)
← z

(j,d)

l(j,d)
− z

(j,d)

l(j,d)−1

15: [s̄
(j,d)
0 , . . . , s̄

(j,d)

l
(j,d)
max

]← Reverse Support D([s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

], [e(j,d;1), . . . , e(j,d;d)])

16: return [P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

], [s̄
(j,d)
0 , . . . , s̄

(j,d)

l
(j,d)
max

]

Remark 56. Similar to Remark 32, Partition Unity sorts the unique elements of the union of the

marginal cdfs in ascending order and Line 9 of Algorithm 5 increments the coordinate of the support

according to the ordering of {z(j,d)0 , z
(j,d)
1 , . . . , z

(j,d)

l
(j,d)
max

}. Therefore, z
(j,d)

l(j,d)
= min{F (j,d;1)

s
(j,d;1)

l(j,d)

, . . . , F
(j,d;d)

s
(j,d;d)

l(j,d)

}.

Remark 57. Similar to Remark 33, Algorithm 5 is sensitive to rounding errors; implementations of

Algorithm 5 in floating-point arithmetic need to account for rounding-errors. We assume in this thesis

that all computations are carried out in exact arithmetic.

Remark 58. Note that the choice of X(1) does not matter in Algorithm 5. This can be seen from the

inner loop in Lines 8-12 of Algorithm 5. All coordinates are treated the same; ordering of the coordinates

does not affect accuracy or efficiency of the algorithm.

Chapter 2. Extreme Joint Distributions 71

Algorithm 6 Subroutine: Reverse support in d-dimensions

1: procedure Reverse Support D([s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

], [e
(j,d)
1 , . . . , e

(j,d)
d])

2: for l(j,d) ← 0, . . . , l
(j,d)
max do

3: for k = 1, . . . , d do

4: if e
(j,d)
k == 1 then

5: s̄
(j,d;k)

l(j,d)
← i

(d;k)
max − s

(j,d;k)

l(j,d)

6: else

7: s̄
(j,d;k)

l(j,d)
← s

(j,d;k)

l(j,d)

8: return [s̄
(j,d)
0 , . . . , s̄

(j,d)

l
(j,d)
max

]

Algorithm 7 Subroutine: Construct Marginal CDFs in d-dimensions

1: procedure Construct Marginals CDFs D([Q
(d;k)
0 , . . . , Q

(d;k)

i
(d;k)
max

]dk=1, [e
(j,d)
1 , . . . , e

(j,d)
d])

2: for k = 1, . . . , d do

3: if e
(j,d)
k == 1 then

4: [t0, . . . , ti(d;k)
max

]← [Q
(d;k)
0 , . . . , Q

(d;k)

i
(d;k)
max

]

5: for i = 0, . . . , i
(d;k)
max do

6: Q
(d;k)
i ← t

i
(d;k)
max −i

7: [F
(d;k)
0 , . . . , F

(d;k)

i
(d;k)
max

]← Cumsum([Q
(d;k)
0 , . . . , Q

(d;k)

i
(d;k)
max

])

8: return [F
(d;1)
0 , . . . , F

(d;1)

i
(d;1)
max

], . . . , [F
(d;k)
0 , . . . , F

(d;k)

i
(d;k)
max

]

Algorithm 8 Subroutine: Partition of Unity

1: procedure Partition Unity([F
(d;k)
0 , . . . , F

(d;k)

i
(d;k)
max

]dk=1)

2: F ← append([F
(d;1)
0 , . . . , F

(d;1)

i
(d;1)
max

], . . . , [F
(d;d)
0 , . . . , F

(d;d)

i
(d;d)
max

])▷ combine multiple vectors into a single

vector

3: F ← unique(F)▷ take only the unique elements of the input vector

4: F ← sort(F)▷ sort the vector in ascending order

5: return F

Chapter 2. Extreme Joint Distributions 72

2.7 Numerical Example

In this section, we provide a numerical example illustrating the Extreme Joint Distribution (EJD)

approach for d = 38 by constructing all n = 2 3−1 = 4 extreme measures (extreme joint distributions).

The prescribed marginal distributions are Poisson distributions with mean parameters (λ1, λ2, λ3) =

(3, 5, 7). Each of the marginal distributions are discretized by first truncating the probability distribution

at a point of support imax such that P(X ≤ imax) ≥ 1 − ϵ, where ϵ = 0.0001. Finally, the probability

weight, P(X = imax), corresponding to the last support point, imax, is adjusted such that
∑imax

i=0 P(X =

i) = 1.

2.7.1 Support

Figure 2.6 illustrates the supports of the n = 4 3-dimensional extreme measures. Each subfigure corre-

sponds to an extreme measure with the extremal dependency structure described by the monotonicity

structure at the top of the subfigure. The blue curve in each figure is the support of the multivariate

extreme measure. Note the sparsity and the staircase like property of the support (blue curve) of ex-

treme measures. The red, teal, and green curves are the projections of the support onto the xy, xz, and

yz coordinate planes, respectively. The projections are the extreme measures in d = 3 marginalized to

the bivariate setting. The monotonicity of the projections show that the solution to the bivariate case

is preserved in higher dimensions.

0
5
10
15
20
25

051015202530
0
5
10
15
20
25
30

[0,0,0]

0
5
10
15
20
25

051015202530
0
5
10
15
20
25
30

[0,1,0]

0 5 10 15 20 25

0
5

10
15

20
2530

0
5
10
15
20
25
30

[0,0,1]

0
5
10
15
20
25

051015202530
0
5
10
15
20
25
30

[0,1,1]

Figure 2.6: Supports of multivariate (d = 3) extreme measures with Poisson marginals having parameters
(λ1, λ2, λ3) = (3, 5, 7) under all possible combinations of extremal dependence between the coordinates.
The binary vector in square brackets on top of each figure indicates the corresponding monotonicity
structure.

8We chose to compute numerical examples in the 3-dimensional case since it is the only dimension greater than the
two-dimensional case that can be visualized.

Chapter 2. Extreme Joint Distributions 73

2.7.2 Marginal Distributions and the Joint Partition

Table 2.1 lists the joint partition for the extreme measure having the monotone structure [0, 0, 0] (the

comonotone case) having Poisson marginals with parameters (λ1, λ2, λ3) = (3, 5, 7). Also listed is the

support point corresponding to each point of the joint partition and the corresponding marginal cdf

value that the joint partition came from.

l zl sl Corresponding F l zl sl Corresponding F

0 0.0009 (0,0,0) F
(3)
0 26 0.9467 (0,0,0) F

(3)
11

1 0.0067 (0,0,1) F
(2)
0 27 0.9665 (0,0,1) F

(1)
6

2 0.0073 (0,1,1) F
(3)
1 28 0.9682 (0,1,1) F

(2)
9

3 0.0296 (0,1,2) F
(3)
2 29 0.9730 (0,1,2) F

(3)
12

4 0.0404 (0,1,3) F
(2)
1 30 0.9863 (0,1,3) F

(2)
10

5 0.0498 (0,2,3) F
(1)
0 31 0.9872 (0,2,3) F

(3)
13

6 0.0818 (1,2,3) F
(3)
3 32 0.9881 (1,2,3) F

(1)
7

7 0.1247 (1,2,4) F
(2)
2 33 0.9943 (1,2,4) F

(3)
14

8 0.1730 (1,3,4) F
(3)
4 34 0.9945 (1,3,4) F

(2)
11

9 0.1991 (1,3,5) F
(1)
1 35 0.9962 (1,3,5) F

(1)
8

10 0.2650 (2,3,5) F
(2)
3 36 0.9976 (2,3,5) F

(3)
15

11 0.3007 (2,4,5) F
(3)
5 37 0.9979 (2,4,5) F

(2)
12

12 0.4232 (2,4,6) F
(1)
2 38 0.9989 (2,4,6) F

(1)
9

13 0.4405 (3,4,6) F
(2)
4 39 0.9990 (3,4,6) F

(3)
16

14 0.4497 (3,5,6) F
(3)
6 40 0.9993 (3,5,6) F

(2)
13

15 0.5987 (3,5,7) F
(3)
7 41 0.99964 (3,5,7) F

(3)
17

16 0.6160 (3,5,8) F
(2)
5 42 0.99970 (3,5,8) F

(1)
10

17 0.6472 (3,6,8) F
(1)
3 43 0.99977 (3,6,8) F

(2)
14

18 0.7291 (4,6,8) F
(3)
8 44 0.99987 (4,6,8) F

(3)
18

19 0.7622 (4,6,9) F
(2)
6 45 0.99992 (4,6,9) F

(1)
11

20 0.8153 (4,7,9) F
(1)
4 46 0.99993 (4,7,9) F

(2)
15

21 0.8305 (5,7,9) F
(3)
9 47 0.99995 (5,7,9) F

(3)
19

22 0.8666 (5,7,10) F
(2)
7 48 0.99998 (5,7,10) F

(2)
16

23 0.9015 (5,8,10) F
(3)
10 49 0.999983 (5,8,10) F

(1)
12

24 0.9161 (5,8,11) F
(1)
5 50 0.999985 (5,8,11) F

(3)
20

25 0.9319 (6,8,11) F
(2)
8 51 1 (6,8,11) F

(1)
13

Table 2.1: Joint partition of the extreme measure corresponding to comonotone case and
the associated support and marginal cdf for each point.

2.7.3 Probability Weights

Tables 2.2 and 2.3 list the supports and the probabilities of all the n = 2d−1 = 4 extreme measures having

Poisson marginals with parameters (λ1, λ2, λ3) = (3, 5, 7). Note that the extremal dependency between a

pair of coordinates can also be deduced from whether the supports are both increasing or both decreasing

(comonotonicity) or whether one has increasing and the other decreasing support (antimonotonicity).

Chapter 2. Extreme Joint Distributions 74

l P̂
(1,3)

s
(1,3)
l

s
(1,3)
l

0 0.0009 (0,0,0) 38 0.0009 (9,13,16) 21 0.0265 (3,5,6)

1 0.0058 (0,0,1) 39 0.0001 (10,13,16) 22 0.1098 (3,5,7)

2 0.0006 (0,1,1) 40 0.0003 (10,13,17) 23 0.0392 (3,4,7)

3 0.0223 (0,1,2) 41 0.0003 (10,14,17) 24 0.0485 (3,4,8)

4 0.0108 (0,1,3) 42 6.947e-5 (10,14,18) 25 0.0819 (4,4,8)

5 0.0094 (0,2,3) 43 6.608e-5 (11,14,18) 26 0.0059 (4,4,9)

6 0.0320 (1,2,3) 44 9.640e-5 (11,15,18) 27 0.0803 (4,3,9)

7 0.0429 (1,2,4) 45 5.846e-5 (11,15,19) 28 0.0152 (5,3,9)

8 0.0483 (1,3,4) 46 2.378e-5 (12,15,19) 29 0.0449 (5,3,10)

9 0.0262 (1,3,5) 47 2.460e-5 (12,16,19) 30 0.0261 (5,2,10)

10 0.0659 (2,3,5) 48 2.453e-5 (12,16,20) 31 0.1460 (5,2,11)

11 0.0357 (2,4,5) 49 3.720e-5 (12,17,20) 32 0.0305 (6,2,11)

12 0.1225 (2,4,6) 50 1.654e-5 (13,17,20) 33 0.0129 (6,2,12)

13 0.0173 (3,4,6) 51 1.450e-5 (13,17,21) 34 0.0069 (6,1,12)

14 0.0092 (3,5,6) 35 0.0065 (7,1,12)

15 0.1490 (3,5,7) 36 0.0142 (7,1,13)

16 0.0172 (3,5,8) l P̂
(3,3)

s
(3,3)
l

s
(3,3)
l 37 0.0009 (7,1,14)

17 0.0313 (3,6,8) 0 1.987e-5 (0,17,0) 38 0.0052 (8,1,14)

18 0.0819 (4,6,8) 1 4.914e-5 (0,16,0) 39 0.0010 (8,0,14)

19 0.0331 (4,6,9) 2 0.0001 (0,15,0) 40 0.0019 (8,0,15)

20 0.0531 (4,7,9) 3 0.0004 (0,14,0) 41 0.0014 (9,0,15)

21 0.0152 (5,7,9) 4 0.0002 (0,13,0) 42 0.0013 (9,0,16)

22 0.0361 (5,7,10) 5 0.0011 (0,13,1) 43 0.0001 (10,0,16)

23 0.0349 (5,8,10) 6 0.0034 (0,12,1) 44 0.0005 (10,0,17)

24 0.0146 (5,8,11) 7 0.0018 (0,11,1) 45 6.945e-5 (10,0,18)

25 0.0158 (6,8,11) 8 0.0064 (0,11,2) 46 0.0001 (11,0,18)

26 0.0147 (6,9,11) 9 0.0159 (0,10,2) 47 5.845e-5 (11,0,19)

27 0.0198 (6,9,12) 10 0.0022 (0,10,3) 48 2.698e-5 (12,0,19)

28 0.0017 (7,9,12) 11 0.0180 (0,9,3) 49 2.823e-5 (12,0,20)

29 0.0048 (7,10,12) 12 0.0183 (1,9,3) 50 1.654e-5 (13,0,20)

30 0.0133 (7,10,13) 13 0.0137 (1,8,3) 51 1.449e-5 (13,0,21)

31 0.0008 (7,11,13) 14 0.0516 (1,8,4)

32 0.0009 (7,11,14) 15 0.0396 (1,7,4)

33 0.0062 (8,11,14) 16 0.0262 (1,7,5)

34 0.0003 (8,11,15) 17 0.0387 (2,7,5)

35 0.0017 (8,12,15) 18 0.0629 (2,6,5)

36 0.0014 (9,12,15) 19 0.0833 (2,6,6)

37 0.0004 (9,12,16) 20 0.0391 (2,5,6)

Table 2.2: Support and probabilities of three-dimensional extreme measures having Pois-
son marginals with parameters (λ1, λ2, λ3) = (3, 5, 7) corresponding to the monotone
structures (0, 0, 0) and (0, 1, 0).

Chapter 2. Extreme Joint Distributions 75

l P̂
(2,3)

s
(2,3)
l

s
(2,3)
l

0 1.445e-5 (0,0,21) 38 0.0046 (8,11,2) 21 0.0348 (1,8,10)

1 2.991e-5 (0,0,20) 39 0.0018 (8,11,1) 22 0.0361 (1,7,10)

2 8.545e-5 (0,0,19) 40 0.0017 (8,12,1) 23 0.0296 (1,7,9)

3 0.0002 (0,0,18) 41 0.0018 (9,12,1) 24 0.0386 (2,7,9)

4 0.0005 (0,0,17) 42 0.0009 (9,13,1) 25 0.0331 (2,6,9)

5 0.0014 (0,0,16) 43 0.0002 (10,13,1) 26 0.1131 (2,6,8)

6 0.0033 (0,0,15) 44 0.0004 (10,13,0) 27 0.0172 (2,5,8)

7 0.0010 (0,0,14) 45 0.0002 (10,14,0) 28 0.0219 (2,5,7)

8 0.0061 (0,1,14) 46 0.0005 (11,14,0) 29 0.1271 (3,5,7)

9 0.0142 (0,1,13) 47 6.608e-5 (11,15,0) 30 0.0092 (3,5,6)

10 0.0134 (0,1,12) 48 1.549-4 (12,15,0) 31 0.0877 (3,4,6)

11 0.0094 (0,2,12) 49 2.378e-6 (12,16,0) 32 0.0521 (4,4,6)

12 0.0036 (1,2,12) 50 4.914e-5 (12,17,0) 33 0.0357 (4,4,5)

13 0.0452 (1,2,11) 51 3.720e-6 (13,17,0) 34 0.0803 (4,3,5)

14 0.0261 (1,2,10) 35 0.0117 (5,3,5)

15 0.0449 (1,3,10) 36 0.0484 (5,3,4)

16 0.0296 (1,3,9) l P̂
(4,3)

s
(4,3)
l

s
(4,3)
l 37 0.0407 (5,2,4)

17 0.0659 (2,3,9) 0 1.449e-5 (0,17,21) 38 0.0022 (6,2,4)

18 0.0059 (2,4,9) 1 5.374e-6 (0,17,20) 39 0.0413 (6,2,3)

19 0.1304 (2,4,8) 2 2.453e-5 (0,16,20) 40 0.0069 (6,1,3)

20 0.0219 (2,4,7) 3 2.461e-5 (0,16,19) 41 0.0039 (7,1,3)

21 0.0173 (3,4,7) 4 6.084e-5 (0,15,19) 42 0.0177 (7,1,2)

22 0.1098 (3,5,7) 5 9.640e-5 (0,15,18) 43 0.0046 (8,1,2)

23 0.0657 (3,5,6) 6 0.0001 (0,14,18) 44 0.0006 (8,1,1)

24 0.0313 (3,6,6) 7 0.0003 (0,14,17) 45 0.0029 (8,0,1)

25 0.0521 (4,6,6) 8 0.0003 (0,13,17) 46 0.0027 (9,0,1)

26 0.0629 (4,6,5) 9 0.0011 (0,13,16) 47 0.0002 (10,0,1)

27 0.0531 (4,7,5) 10 0.0004 (0,12,16) 48 0.0006 (10,0,0)

28 0.0117 (5,7,5) 11 0.0030 (0,12,15) 49 0.0002 (11,0,0)

29 0.0396 (5,7,4) 12 0.0003 (0,11,15) 50 5.524e-5 (12,0,0)

30 0.0495 (5,8,4) 13 0.0071 (0,11,14) 51 1.615e-5 (13,0,0)

31 0.0022 (6,8,4) 14 0.0008 (0,11,13)

32 0.0137 (6,8,3) 15 0.0133 (0,10,13)

33 0.0035 (6,9,3) 16 0.0048 (0,10,12)

34 0.0017 (7,9,3) 17 0.0179 (0,9,12)

35 0.0022 (7,10,3) 18 0.0036 (1,9,12)

36 0.0159 (7,10,2) 19 0.0147 (1,9,11)

37 0.0018 (7,11,2) 20 0.0304 (1,8,11)

Table 2.3: Support and probabilities of three-dimensional extreme measures having Pois-
son marginals with parameters (λ1, λ2, λ3) = (3, 5, 7) corresponding to the monotone
structures (0, 0, 1) and (0, 1, 1).

Chapter 2. Extreme Joint Distributions 76

2.7.4 Extreme Correlations

Figure 2.7 below illustrates the extreme correlation matrices, Ĉ (j,d), corresponding to each extreme

measure, P̂ (j,d).

Ĉ (1,3) =

 1.0 0.93688 0.931861
0.93688 1.0 0.967188
0.931861 0.967188 1.0

 Ĉ (3,3) =

 1.0 −0.81193 0.931861
−0.81193 1.0 −0.90135
0.931861 −0.90135 1.0



Ĉ (2,3) =

 1.0 0.93688 −0.84624
0.93688 1.0 −0.90135
−0.84624 −0.90135 1.0

 Ĉ (4,3) =

 1.0 −0.81193 −0.84624
−0.81193 1.0 0.967188
−0.84624 0.967188 1.0


Figure 2.7: Extreme correlation matrices Ĉ (j,d) corresponding to extreme measures P̂ (j,d) with given
Poisson marginals having parameters (λ1, λ2, λ3) = (3, 5, 7).

Chapter 2. Extreme Joint Distributions 77

2.8 Calibration

Calibration is useful for many reasons. For example, in a practical context such as the motivating

problem from Operational Risk (see Figure ?? for an example of an observed correlation matrix of

operational events), calibration of a multivariate Poisson distribution to an observed correlation matrix

of operational events within a large financial institution is necessary for scenario generation of operational

events that are used in stochastic simulation to compute regulatory risk numbers such as VaR [96]. In

a more general context, calibration is useful since failure to calibrate (i.e., the optimization problem

(2.107) has no solution using the methodology described herein) means that no multivariate discrete

distribution with the specified parameters that can generate the observed data exists. This implies

that the parameter assumptions of the input marginal distributions are incorrect. Finally, calibration is

necessary for the Backward Simulation of correlated multivariate Poisson processes where it is used to

construct joint distributions having a specified correlation structure. (See Chapters 3, 4, and 5.)

Our approach to calibration is to find a representation of P (C) in terms of a finite mixture of extreme

measures P̂ (1), . . . , P̂ (n), where P (C) is the probability distribution P possessing some desired correlation

structure C. Note that since P (C) is a finite mixture of extreme measures, it also satisfies the marginal

constraints Q(1), . . . , Q(d). Previous work in the literature such as [70] have also used a finite mixture

model approach to construct multivariate Poisson distributions that are able to exhibit a limited amount

of negative correlation. However, their approach is unable to directly control the correlation of P (C),

whereas our linear algebraic approach uses constrained optimization to ensure that, if the correlation

structure is admissible—that is, within the convex hull of the extreme correlation matrices Ĉ (j) corre-

sponding to the extreme measures P̂ (j,d)—then the resulting multivariate probability distribution P (C)

obtained from calibration posses the desired correlation structure C.

The calibration problem is trivial in the two-dimensional setting. There are only two possible ex-

tremal dependencies between a pair of marginal distributions Q(1) and Q(2): extreme positive and

extreme negative dependence. Using Algorithm 1, we construct the extreme measures P̂ (1) and P̂ (2)

corresponding to probability distributions maximizing and minimizing, respectively, the joint expecta-

tion E [XY], leading to extreme positive and extreme negative values for the correlation coefficients Ĉ (1)

and Ĉ (2). To calibrate to a desired correlation coefficient, C, within the admissible correlation range

[Ĉ (2), Ĉ (1)], we only need to solve the following linear equation, reproduced below, from (2.1)

C = w Ĉ (1) + (1− w) Ĉ (2)

for the value of w ∈ [0, 1] that, when plugged into (2.2), also reproduced below,

P (C) = wP̂ (1) + (1− w)P̂ (2),

gives us the probability distribution P (C) having marginal distributions Q(1) and Q(2) and correlation

coefficient C. It is important to note that, while the motivating problem stems from the need to calibrate

multivariate Poisson distributions to observed correlation structures, the methods described herein apply

to general multivariate discrete extreme measures constructed using the EJD method.

In this section, we discuss the calibration problem in the d-dimensional setting and how it may be

Chapter 2. Extreme Joint Distributions 78

solved. To that end, recall that the d-dimensional analogue of (2.1) is:

C = w1Ĉ
(1,d) + · · ·+ wnĈ

(n,d) (2.103)

with the constraints that wj ≥ 0 for j = 1, . . . , n and
∑

j wj = 1. In Section 2.4.1, we showed that

there are n = 2 d−1 extreme measures, P̂ (j,d), each with a corresponding monotonicity structure e(j,d)

describing its dependency structure. The objective function (2.38) of each extreme measure, P̂ (j,d), takes

as input e(j,d) to determine whether to minimize or maximize each pairwise joint expectation. Therefore,

to each extreme measure P̂ (j,d) corresponds an extreme correlation matrix Ĉ (j,d). Thus, analogous to

the two-dimensional case, after w1, . . . , wn is determined from solving (2.103), it can be plugged into

P (C) = w1P̂
(1,d) + · · ·+ wnP̂

(n,d) (2.104)

to obtain a multivariate discrete distribution P (C) with correlation structure C.

2.8.1 A Linear Algebraic Approach

One approach in solving (2.103) is a linear algebraic approach. To this end, (2.103) must first be

converted to a constrained system of linear equations by flattening the strictly upper triangular part of

each extreme correlation matrix Ĉ (j,d) into a column vector Aj ∈ Rm where m = d(d − 1)/2. Since C

and all Ĉ (j,d) are symmetric with 1s on their diagonal, this can be done by taking each row in the strictly

upper triangular part of each Ĉ (j,d), appending them into a row vector and taking the transpose to be

Aj to obtain A = [A1, . . . , An] ∈ Rm×n, representing the extreme points of our problem in correlation

space. Similarly, we can flatten the strictly upper triangular part of the given correlation matrix C on

the left side of (2.103) to a vector b ∈ Rm. Then, (2.103) and the constraints wj ≥ 0 for j = 1, 2, ..., n

and
∑n

j=1 wj = 1 are equivalent to the constrained system of linear equations

Aw = b, (2.105a)

1Tw = 1, (2.105b)

wj ≥ 0 j = 1, 2, . . . , n. (2.105c)

There are many possible solutions to the constrained system of equations (2.105). One approach is

heuristic and relies on the context of the particular application in choosing a suitable objective function9

and then using (2.105) as the constraints for an optimization problem with that objective function.

However, if the goal is just to find any solution to (2.105), then a simpler approach is to reformulate

(2.105) as

Âw = b̂, (2.106a)

wj ≥ 0 j = 1, 2, . . . , n, (2.106b)

where Â is A with the row 1T appended to the bottom of it and b̂ is b with a 1 appended to the bottom of

it. Then, note that (2.106) has the form of the standard constraints for a Linear Programming Problem

(LPP). Moreover, the first stage of many LPP codes finds a solution to (2.106). As explained in Section

9This is also the subject of future work.

Chapter 2. Extreme Joint Distributions 79

13.5 of [93], a standard approach to finding a solution to (2.106) is to solve the LPP

min 1T z (2.107a)

subject to Âw + Ez = b̂ (2.107b)

(w, z) ≥ 0 (2.107c)

where z ∈ Rm+1 and E is a (m+1)× (m+1) diagonal matrix such that Eii = +1 if b̂i ≥ 0 and Eii = −1
if b̂i < 0. Clearly, w = 0 and z = | b | satisfies the constraints (2.107b) and (2.107c). So, we can use w = 0

and z = | b | as a staring point for the simplex method to solve (2.107). It’s clear from the constraint

z ≥ 0 that the solution satisfies 1T z ≥ 0. Moreover, if 1T z = 0 then z = 0. Hence, (2.107) has a solution

1T z = 0 if and only if Âw = b̂, w ≥ 0 has a solution. Hence, the simplex method applied to (2.107) will

find a solution to (2.105), if a solution exists.

Despite the fact that the problem size grows exponentially in d, due to the structure of the problem

(2.105) and the fact that the simplex method needs to explicitly access m + 1 columns of Â at a time

(assuming you have some clever way to decide which new vector to bring into the active set at at each

step of the simplex method without explicitly accessing all the columns of A that are in the inactive set)

the LP (2.107) can be solved for a surprisingly large d, e.g., d = 51, which corresponds to n = 250 ≈ 1015;

see [86].

Remark 59. While it is difficult to provide rigorous estimates on the run times and accuracy of solving

(2.107) numerically due to the nature of both the simplex algorithm and the input (marginal) distributions,

we remark that the typical run times of the problem in the six-dimensional case are roughly around thirty

minutes on an Apple laptop with an Intel Core i7-9750H processor. The approximation error is bounded

by 10−3.

2.8.2 The Independent Case

It is important to note that our approach, consisting of taking finite convex combinations of the extreme

measures (2.103), does not give all distributions P (C) having correlation structure C. This can be

seen from the fact that the finite convex combination in (2.103) does not include the zero correlation

matrix Ĉ(0,d). However, incorporating Ĉ(0,d) into the calibration process brings no benefits and, in fact,

completely destroys the sparsity inherited from the extreme measures (Remarks 15 and 23). To see this,

consider adding Ĉ (0,d) to the finite convex combination of extreme correlations (2.103) resulting in

C = w′
0Ĉ

(0,d) + w′
1Ĉ

(1,d) + · · ·+ w′
nĈ

(n,d) (2.108)

with the constraints w′
j ≥ 0 for j = 0, 1, . . . , n and

∑
j wj = 1. Since Ĉ (0,d) is an identity matrix, the

flattening process described in Section 2.8.1 necessary to convert (2.108) into a constrained system of

equations (2.105) flattens Ĉ (0,d) into a vector of 0s. Since having a column of 0s in A would make

it singular, it must be excluded from the construction of A. This makes intuitive sense, since the zero

correlation case does not provide additional information. Therefore, w′
0 must be specified so that instead

of the constraint (2.105b), we have the modified constraint

1Tw’ = 1− w′
0, (2.109)

Chapter 2. Extreme Joint Distributions 80

where w’ = (w′
1, . . . , w

′
n). Note that this has the effect of removing a degree of freedom from the solution

since the introduction of w′
0 and the constraint

w′
0 + w′

1 + · · ·+ w′
n = 1

constrains the possible values of w′
1, . . . , w

′
n. Clearly, the value of the weights w

′
1, . . . , w

′
n, differ from the

weights w1, . . . , wn obtained from solving (2.103). Plugging w′
0, . . . , w

′
n into

P̄ (C) = w′
0P̂

(0,d) + w′
1P̂

(1,d) + · · ·+ w′
nP̂

(n,d), (2.110)

where P̂ (j,d) corresponds to Ĉ (j,d) gives the probability distribution P̄ (C) having correlation C. Note

that since P̂ (0,d) is the (discrete) probability distribution corresponding to the independent case, Ĉ (0,d),

its support must be the larger than the support of the extreme measures, thus, the support of P̂ (0,d)

cannot be sparse. Hence, the support of P̄ (C) is also not sparse. Moreover, since w′
0 > 0 in order for

the independent case, Ĉ (0,d) to be included, P̄ (C) must also be supported on every point in its domain.

The inclusion of the independent case in our EJD methodology is detrimental to the numerical efficiency

of our approach, which is inherited from the sparsity of the extreme measures P̂ (1,d), · · · , P̂ (n,d). (See

Remarks 15 and 23.)

2.8.3 Admissible Correlations

If no solution to the optimization problem (2.107) exists, then the given correlation matrix, C, cannot

be generated by a joint distribution having marginal distributions Q(1), . . . , Q(d). We say that C is an

inadmissible correlation matrix. Similarly, if a solution to (2.107) exists for a given correlation matrix

C and a given set of marginal distributions Q(1), . . . , Q(d), we say that C is an admissible correlation

matrix. This is due to the fact that the optimization problem (2.107) generates all possible correlation

matrices of a joint distribution having a set of given marginals distributions. To see this, we first note

that (2.105) and (2.107) are equivalent and that the columns of the matrix A in (2.105) correspond

to the flattened correlation matrices associated with the extreme measures P̂ (1,d), . . . , P̂ (n,d). Recall

that each extreme measure, P̂ (j,d), has an associated monotone structure, e(j,d), describing the extreme

dependence between its components and that the monotonicity structure, e(j,d) = (e
(j,d)
1 , . . . , e

(j,d)
d),

describes all possible extreme dependence structures (see Section 2.4.1). That is, the extreme measures

P̂ (1,d), . . . , P̂ (n,d) are extreme points. Moreover, since to each extreme measure, P̂ (j,d), there is an

associated extreme correlation matrix Ĉ (j,d), the extreme correlation matrices Ĉ (1,d), . . . , Ĉ (n,d) are also

extreme points in the space of correlation matrices. The extreme correlation matrices Ĉ (1,d), . . . , Ĉ (n,d)

form a convex set since the set of all d×d correlation matrices form a compact convex set [77]. Since, by

Carathéodory’s theorem [35], any point in the convex hull of the extreme points Ĉ (1,d), . . . , Ĉ (n,d) can

be represented by at most d+1 points in the set {Ĉ (1,d), . . . , Ĉ (n,d)}, therefore, the constrained system

of linear equations (2.105) (and the optimization problem 2.107) generates all possible correlations for a

multivariate joint distribution satisfying a set of marginal distributions.

In the case of inadmissible correlation matrices, this typically means one of two things: 1) the as-

sumptions on the parameters of the marginal distributions are wrong; or 2) the desired correlation is

incorrect—there could be errors in its estimation. It is up to the practitioner to determine a suitable

course of action. If the practitioner believes that both the marginal distribution and the desired corre-

Chapter 2. Extreme Joint Distributions 81

lation matrix are correct, one possibility is to solve for the closest admissible matrix under some choice

of norm within the admissible set of correlation matrices. That is, solve

min
w∈Rn

∥Ĉ(w)− C∥

subject to wl ≥ 0, l = 1, . . . , n,

n∑
l=1

wl = 1,

(2.111)

where Ĉ(w) =
∑n

l=1 wlĈ
(l,d).

Chapter 2. Extreme Joint Distributions 82

2.8.4 Calibration Algorithm

Algorithm 9 Calibration of Extreme Measures

Require: Marginal distributions: [Q
(d;k)
0 , . . . , Q

(d;k)

i
(d;k)
max

]dk=1

Desired correlation matrix: C

Output: Extreme measures [P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

] and their supports [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

] where j = 1, . . . , n

Weights of the convex combination of extreme measures (w1, . . . , wn)

1: n← 2d−1 ▷ number of extreme points

2: m← d(d− 1)/2 ▷ number of elements in the strictly upper triangular part of a d× d correlation

matrix

3: A← zeros(m,n) ▷ construct matrix of extreme points of correlations

4: for j ← 1, . . . , n do

5: [P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

], [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

]← Algorithm 5 ([Q
(d;k)
0 , . . . , Q

(d;k)

i
(d;k)
max

]dk=1, e(j,d))

6: Ĉ (j,d) ← Algorithm 11([P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

], [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

])

7: Aj ← FLATTEN ABOVE DIAG(Ĉ (j,d))

8: A← [A;ones(1, n)] ▷ append vector of ones to the bottom row

9: b← FLATTEN ABOVE DIAG(C)

10: b← [b; 1]

11: (w1, . . . , wn), success← Solve (2.107)

12: if success then

13: return (w1, . . . , wn)

14: else

15: error: no solution to (2.107) exists for the given marginal distributions and correlation matrix

Algorithm 10 Subroutine: Flatten entries above diagonal of A

1: procedure Flatten Above Diag(A)

2: nRows, nCols ← size(A)

3: if nRows ̸= nCols then

4: error: A should be square

5: m← nRows · (nRows− 1)/2

6: [b0, . . . , bm−1]← zeros(1,m) ▷ row vector

7: k ← 0

8: for i← 0, . . . ,nRows− 2 do

9: for j ← i+ 1, . . . , nCols− 1 do

10: bk ← Ai,j

11: k ← k + 1

12: return [b0, . . . , bm−1]

Chapter 2. Extreme Joint Distributions 83

Algorithm 11 Compute Correlation Matrix from a d-dimensional Extreme Measures

Require: d-dimensional extreme measure [P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

] and its support [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

]

Output: Corresponding extreme correlation matrix Ĉ (j,d)

1: for u← 1, . . . , d do

2: Ĉ
(j,d)
u,u ← 1

3: for v ← u+ 1, . . . , d do

4: P̂ (j,d;u,v) , s(j,d;u,v) ← Algorithm 12([P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

] , [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

] , (u, v))

5: Ĉ
(j,d)
u,v ← Correlation(P̂ (j,d;u,v) , s(j,d;u,v))

6: Ĉ
(j,d)
v,u ← Ĉ

(j,d)
u,v

7: return Ĉ (j,d)

Algorithm 12 Marginalize d-dimensional Extreme Measure into a d′-dimensional Extreme Measure

Require: d-dimensional extreme measure [P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

], its support s(j,d) = [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

]

Coordinates (u1, . . . , ud′) to project onto by marginalization ▷ indices to keep

Output: d′-dimensional extreme measure [P̂
(j,d′)
0 , . . . , P̂

(j,d′)

l
(j,d′)
max

] and its support [s
(j,d′)
0 , . . . , s

(j,d′)

l
(j,d′)
max

]

1: ▷ marginalized support ◁

2: s(j,d
′) = s(j,d)([u1, . . . , ud′], :) ▷ each sdi is a column vector; sd

′
is also a column vector

3: s̃(j,d
′) = unique(s(j,d

′))

4: l = length(s̃(j,d
′))

5: ▷ marginalized weights ◁

6: P̂ (j,d′) = zeros(size(s̃(j,d
′),2))

7: for (count, cols) = enumerate(eachcol(s̃(j,d
′))) do ▷ iterates through the unique support points

8: indices = findall(x→x==cols, s(j,d
′)) ▷ returns indices of the duplicated columns

9: P̂
(j,d′)
count = sum(P̂ (j,d)[indices])

10: return ([P̂
(j,d′)
0 , . . . , P̂

(j,d′)
l] , [s̃

(j,d′)
0 , . . . , s̃

(j,d′)
l])

• enumerate has the behavior of the python function with the same name that alters the for-loop

such that at every iteration, the for-loop returns a tuple containing a count corresponding to the

loop number and the value from iterating over the (iterable) function argument.

• eachcol is a helper function that iterates over the columns of a matrix or an array

• findall takes in an anonymous function as its first argument and returns a vector of indices of

where the anonymous function applied to the array (second argument) returns true.

Chapter 2. Extreme Joint Distributions 84

Algorithm 13 Subroutine: Correlation Between Components of a Bivariate Extreme Measure

1: procedure Correlation(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

)

2: e← bivariate expectation(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

)

3: b1 ← dot(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

, 1)

4: b2 ← dot(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

, 2)

5: v1 ← variance(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

, 1)

6: v2 ← variance(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

, 2)

7: return (e− b1 · b2)/
√
v1 · v2

Algorithm 14 Subroutine: Expectation of a Bivariate Extreme Measure

1: procedure Bivariate Expectation(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

)

2: e← 0

3: for i← 0, . . . , l2max do

4: e← e+ s
(j,2;1)
i · s(j,2;2)i · P̂ (j,2)

i

5: return e

Algorithm 15 Subroutine: Variance of a Bivariate Extreme Measure

1: procedure Variance(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

, k)

2: v ← 0

3: e← dot(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

, k) ▷ mean of the extreme measure P̂ (j,2)

4: for i← 0, . . . , l2max do

5: v ← v + (s
(j,2;k)
i)2 · P̂ (j,2)

i

6: return v − (e)2

Algorithm 16 Subroutine: Dot Product Specialized to Birvariate Measures

1: procedure DOT(P̂
(j,2)
0 , . . . , P̂

(j,2)
l2max

, s
(j,2)
0 , . . . , s

(j,2)
l2max

, k)

2: e← 0

3: for i← 0, . . . , l2max do

4: e← e+ s
(j,2;k)
i · P̂ (j,2)

i

5: return e

Chapter 2. Extreme Joint Distributions 85

2.9 Sampling from Multivariate Extreme Measures

One of the main advantages of the EJD approach is that sampling from multivariate extreme measures,

P̂ (j,d), obtained by Algorithm 5 is equivalent to sampling from univariate probability distribution. This

is possible because of the sparsity of the supports which behaves like a univariate distribution. In

particular, the support of multivariate extreme measures are directed graphs that exhibit a staircase-like

property (Figure 2.4 provides an illustration) thereby enabling the use of the inverse CDF method. (See

Remarks 29 and 30.)

Algorithm 17 Sampling from Multivariate Extreme Measures

Require: Extreme Measure: [P̂
(j,d)
0 , . . . , P̂

(j,d)
lmax

], [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

]

Number of samples: n

Output: P̂ (j,d) distributed random vector [s̃0, . . . , s̃n−1] of size n

1: for r ← 0, . . . , n− 1 do

2: Generate a uniform random variable u

▷ Inverse cdf through sequential search

3: l← 0

4: q ← P̂
(j,d)
l

5: while u > q do

6: l← l + 1

7: q ← q + P̂
(j,d)
l

8: s̃r ← s
(j,d)

l(j,d)

9: return [s̃0, . . . , s̃n−1]

2.9.1 Sampling from Calibrated Measures

In Section 2.8, we discussed a linear algebraic approach to the construction of calibrated measures, P (C),

that are a convex combination of the extreme measures P̂ (1,d), . . . , P̂ (n,d) having correlation C. The

calibration algorithm, listed in Algorithm 9, returns a series of weights (w1, . . . , wn) that satisfies wj ≥ 0

for j = 1, 2, . . . , n and
∑n

j=1 wj = 1. When substituted into (2.104), the weights give a multivariate

probability distribution P (C) having correlation matrix C. Since the weights (w1, . . . , wn) are a convex

sum, they can be interpreted as probabilities when sampling from a correlated measure P (C). For each

draw, the wj for j = 1, 2, . . . , n, is the probability that the extreme measure P̂ (j,d) should be sampled

from. Having chosen the particular extreme measure to sample from, we can then apply Algorithm 17

to obtain samples from the extreme measure.

Chapter 2. Extreme Joint Distributions 86

Algorithm 18 Sampling from Calibrated Measures

Require: Extreme measures: [P̂
(j,d)
0 , . . . , P̂

(j,d)

l
(j,d)
max

]nj=1

Supports: [s
(j,d)
0 , . . . , s

(j,d)

l
(j,d)
max

]nj=1

Calibrated weights: w = [w1, . . . , wn] such that P (C) has correlation C

Number of samples: n

Output: P (C) distributed random vector, [s̃0, . . . , s̃n−1]

1: for r ← 0, . . . , n− 1 do

2: Generate a uniform random variable u1

3: l← 1

4: q1 ← wl

5: while u1 > q1 do

6: l← l + 1

7: q1 ← q1 + wl

8: Generate a uniform random variable u2

9: m← 0

10: q2 ← P̂
(l,d)
m

11: while u2 > q2 do

12: m← m+ 1

13: q2 ← q2 + P̂
(l,d)
m

14: s̃r ← s
(l,d)
m

15: return [s̃0, . . . , s̃n−1]

Chapter 2. Extreme Joint Distributions 87

2.10 Computational Complexity

2.10.1 EJD Construction

The EJD algorithms construct the set of discrete joint distributions {P̂ (j,d)}2d−1

j=1 satisfying given marginal

distributions according to a monotone structure. Recall that d denotes the problem dimension (i.e., the

correlation matrix C is d× d) , l
(j,d)
max denotes the number of iterations of Algorithm 5 and 1+ l

(j,d)
max is the

length of the S-path associated with P̂ (j,d), i
(k)
max denotes the length of the kth marginal distribution, A

is the matrix that has the columns that are the flattened strictly-upper-triangular part of the extreme

correlation matrix Ĉ(j,d) associated with the extreme measure P̂ (j,d) and has size m × n where m =

d(d− 1)/2 and n = 2d−1, and Â is the matrix A with the row 1T appended to the bottom of it.

Time Complexity

Algorithm 5, which generates each P̂ (j,d), iterates over d marginal dimensions for every iteration of the

algorithm. Therefore, the complexity for each EJD construction is

O(l(j,d)max · d). (2.112)

It is easy to see from Algorithm 5 that l
(j,d)
max ≤ i

(k)
max · d, where k is the index of the input marginal

distribution with the greatest length. Hence, the time complexity becomes O(i
(k)
max · d2). In the worst

case where all the 2d−1 extreme measures need to be computed, the total cost is O(2d−1 · l(j,d)max · d),
although, typically, only a small subset of the 2d−1 extreme measures need to be computed.

Memory Complexity

Each extreme measure P̂ (j,d) and its associated support points occupy

O(l(j,d)max · d) (2.113)

space. Recall again that, typically, only a small subset of the 2d−1 extreme measures have to be computed

and stored. In the worst case that all 2d−1 distributions have to be stored, then the total memory

complexity is O(2d−1 · l(j,d)max · d). Note that d is typically small for most applications.

Remark 60. The EJD construction is highly efficient in high-dimensional settings even though the

construction of each extreme measure has quadratic time complexity in d since d is small for most

applications. More importantly, the full set of n = 2d−1 extreme measures rarely need to be constructed

which prevents the complexity from being exponential in practice.

2.10.2 Extreme Correlation Matrix C(j,d) Construction

For each extreme measure P̂ (j,d) produced by Algorithm 5, we construct its associated extreme corre-

lation matrix Ĉ (j,d) by Algorithm 11. Recall that Algorithm 11 computes all strictly-upper-triangular

elements of the extreme correlation matrix Ĉ (j,d) (and sets the diagonal to 1) via numerical evaluation

of expectations and variances of bivariate components of the extreme measure. Let m = d(d − 1)/2

denote the the number of strictly-upper-triangular entries of a d× d correlation matrix.

Chapter 2. Extreme Joint Distributions 88

Time Complexity

The correlation, joint expectations, and variances are all arithmetic operations over the support of the

extreme measure P̂ (j,d). Therefore, the time complexity of constructing Ĉ (j,d) for a single extreme

measure is

O(m · l(j,d)max) = O(d2 · l(j,d)max). (2.114)

If we are constructing all the correlation matrices associated with all the extreme measures, then the

time complexity is O(2d−1 ·m · l(j,d)max) and is exponential in d. However, as noted throughout this section,

d is typically small and the full set of extreme measures (and their associated correlations) rarely need

to be constructed in full.

Memory Complexity

The correlation matrix Ĉ (j,d) requires O(d2) space. Storing only the strictly-upper-triangular part of

the matrix still requires O(m) = O(d2) space.

2.10.3 Calibration

The calibration problem (2.107) relies on the construction of the Â matrix in (2.107b), the complexity

of which is equal to O(2d−1 ·m · l(j,d)max) if the full matrix is constructed. We note that MacDonald’s thesis

[86] develops a modified simplex method that does not require the construction of the full Â matrix.

Rather, the method maintains an “active set” consisting of m+ 1 columns of [Â, E] and swaps columns

of [Â, E] in and out of the active set as needed. This drastically reduces the computational complexity

in practical settings. For this reason, we focus on the complexity of the mathematical programming

calibration problem itself and omit the cost of setting up the linear program.

Time Complexity

The simplex approach to solving linear programs is well-known to have an exponential worst-case time

complexity in n when the A matrix of the linear program is of size m × n. (This means that for our

problem, the complexity is double exponential in d.) The worst-case time complexity depends on the

solution methods themselves. Note however, that in practice, the simplex algorithm works quite well in

practice and simplex-based approaches like that of [86] can prevent the need for constructing the full Â

matrix.

Memory Complexity

If a simplex-like approach like [86] is used that doesn’t require constructing the full A matrix, then the

worst-case memory complexity is well-known to be O(m2).

Remark 61. Similar to Remark 60, in high-dimensional settings, the EJD calibration approach is

“usually” efficient due to the fact that simplex-based approaches like [86] do not need the construction

of the full set of n = 2d−1 extreme measures and associated correlation matrices and also because the

simplex algorithm is much faster, in practice, than its theoretical complexity.

Chapter 2. Extreme Joint Distributions 89

2.11 Summary

In this chapter, we introduced the Extreme Joint Distribution (EJD) approaching consisting of the EJD

theorem (Theorem 1) and the EJD algorithm (Algorithm 1). We proved rigorously the foundations of

the theory in the bivariate setting. Next, we extended both the theorem and algorithm to the general

d-dimensional setting (Theorem 4 and Algorithm 5, respectively). Having a method to construct multi-

variate extreme measures, we discussed the calibration of a joint distribution satisfying given marginal

distributions to a prescribed correlation using the multivariate measures generated by Algorithm 5.

Finally, we discussed sampling from extreme measures and calibrated measures.

Our contributions are summarized below:

• Proved, rigorously, various properties of comonotone and antimonotone distributions. (Subsec-

tion 2.2.1.)

• We proved the correctness of Algorithm 1. (Section 2.3.)

• Extended the notion of extreme measures to the d-dimensional setting (Section 2.4.)

• Extended the EJD algorithm to d-dimensions and proved its correctness. (Section 2.5.)

• Introduced a method for the calibration of multivariate discrete extreme measures to observed

correlation structures. (Section 2.8.)

Chapter 3

Backward Simulation of Poisson

Processes

This chapter discusses the core ideas of simulating a Poisson process backwards in time within a simu-

lation interval [0, T]. In general, there are two methods for the simulation of Poisson processes: forward

and backward simulation. A stochastic process Xt is simulated forwards in time by starting from time

t = 0 and then subsequently simulating the process at the next grid point, Xt+h, where h is the time

step, until the terminal time t = T is reached [27]. The prevalence of forward simulation is due to its

intuitive simplicity and universal applicability. In contrast, backward simulation of a stochastic pro-

cess Xt in an interval [0, T] requires the conditional distribution of the process given some terminal

value P(Xt |XT = n) be known or readily obtainable. Backward simulation is becoming increasingly

widespread [110] and has been applied to fields such as finance [6, 12, 13, 17, 25, 80], stochastic control

[115], stochastic simulation [9, 11, 50, 81], and Monte Carlo statistical inference [83].

Backward simulation of continuous processes is well known and is often referred to as bridge sampling

in the literature. The class of processes that bridge sampling applies to are known as bridge processes,

the most well known being the Brownian Bridge [13, 107]. Other bridge processes include the gamma

bridge [5, 108], the Ornstein-Uhlenbeck (OU) bridge [20], the Cox-Ingersoll-Ross (CIR) bridge [65], the

Bessel bridge processes [87, 101], and many others. Bridge processes for more general diffusions are know

as diffusion bridges [9, 11, 81]. In contrast, backward simulation for discrete valued stochastic processes,

to the best of our knowledge, is not as widely discussed. However, the crucial property that backward

simulation of Poisson processes depends is well known:

Proposition 3 (Conditional Uniformity [51]). The joint probability density function, f , of the arrival

moments T1, T2, . . . , Tn of the Poisson process, Nt, conditioned on the event Nt = n, is given by

f(T1,...,Tn|Nt=n)(x1, x2, . . . , xn) =

 n!
tn if 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ t

0 otherwise.
(3.1)

Thus, the conditional uniformity property of Poisson processes suggests a simulation method: draw

from a Poisson distribution at terminal time to obtain the number of events, n, at terminal time. Then,

draw n uniform variates U1, . . . , Un. Reordering the uniform variables U1, . . . , Un in increasing order

90

Chapter 3. Backward Simulation of Poisson Processes 91

gives the arrival moments T1, T2, . . . , Tn of the Poisson process. The conditional uniformity property

is an instance of the more general order statistic property [26, 39, 79, 104]. Briefly, the order statistic

property states that:

Definition 28 (Order Statistic Property [39]). For a point process {Mt; t ≥ 0} with right-continuous

paths, unit steps at times T1, T2, . . . , and the non decreasing mean value function mt = EMt < ∞,

t ≥ 0, the successive jump times {T1, . . . , Tn}, conditional on Mt −M0 = n are distributed as the order

statistics of n independent identically distributed random variables with distribution function F supported

on [0, t].

Indeed, the backward simulation method above is effectively a Poisson bridge, analogous to the well-

known Brownian bridge. Just as a Brownian bridge connects two endpoints with a Brownian path, the

Poisson bridge connects the initial state (typically zero events at t = 0) to a specific terminal count

at time T using conditional uniformity. However, our contribution extends significantly beyond the

standard univariate Poisson bridge. By combining the EJD methodology with backwards simulation, we

construct what can be seen as a multivariate Poisson bridge that not only results in a set of multivariate

Poisson paths, but also reproduces any desired admissible correlation structure at terminal time. This

is a substantial generalization of the classical Poisson bridge to the multivariate setting.

Although the backward simulation of multivariate Poisson processes is not discussed much in the

literature, the backward simulation of univariate Poisson processes is well known. One reason why the

multivariate case has not been discussed much might be that neither the reproducibility of the correlation

structure between the components of a multivariate Poisson process at the terminal simulation time nor

the time structure of the correlations between the components of a multivariate Poisson process within

the simulation interval have been explored—to the best of the author’s knowledge—in the literature

before [74], upon which our work builds. In contrast, our approach to backward simulation is able to

match any desired admissible correlation structure at the terminal simulation time. This relies heavily

on the EJD approach, discussed in Chapter 2, to generate extreme joint distributions that are used in

the calibration of a multivariate Poisson distribution possessing the desired correlation structure. Then,

since the backward simulation approach exploits the conditional uniformity property, the number of

terminal events required for the simulation of the process is simply obtained by sampling the calibrated

joint distribution. In addition, our analysis below shows that the time structure of correlation under

backward simulation is linear in time.

We also discuss the Forward Continuation (FC) of the Backward Simulation (BS), introduced in

[17], for continuing the process past the original simulation interval [0, T] to an integer multiple of the

original simulation length mT for some integer m. We demonstrate that the correlation structure under

the Forward Continuation of Backward Simulation reaches asymptotic stationarity.

It is important to note that while much of the exposition in this chapter and in Chapters 4 and 5 is

in the bivariate setting, the discussions generalize immediately to the multivariate setting.

3.0.1 Outline

The outline for this chapter is as follows. We introduce Backward Simulation in Section 3.1, where we

prove the main result (Theorem 6) enabling the Backward Simulation approach for Poisson processes

and provide an accompanying algorithm (Algorithm 19). Section 3.2 analyzes the correlation structure

under Backward Simulation. Section 3.3 introduces the Forward Continuation (FC) of the Backward

Chapter 3. Backward Simulation of Poisson Processes 92

Simulation (BS) for correlated multivariate Poisson processes. Having introduced Backward Simulation

and the Forward Continuation, we then compare the backward and the forward approaches in Section 3.4.

Section 3.6 concludes the chapter.

Chapter 3. Backward Simulation of Poisson Processes 93

3.0.2 Notation

We make use of the following notation in this chapter.

Symbol Definition

T End of the simulation interval

Ti ith arrival moment

∆Ti := Ti − Ti−1 ith inter-arrival time

T
(k)
i ith arrival moment corresponding to the kth component

N Poisson-distributed random variable

λ Mean parameter of a Poisson distribution

n Realization of a Poisson random variable

N = (N (1), . . . , N (d)) d-dimensional Poisson-distributed random vector

Nt Poisson process

Nt = (N
(1)
t , . . . , N

(d)
t) d-dimensional Poisson process

Xt Poisson process obtained from Backward Simulation
d
= Equal in distribution

Xt = (X
(1)
t , . . . , X

(d)
t) Multivariate Poisson process obtained from Backward Simulation

∆sXt The increment Xt+s −Xt of the process Xt in interval [t, t+ s]

ζ, ξ General integer valued random variables

pk := P(ξ = k) Probability of the random variable ξ taking on the value k

p̂(z) Generating function of the distribution of the random variable ξ

qk(x) Probability that depends on pk̂ for k̂ = k, k + 1, k + 2, . . .

q̂(z;x) Generating function of qk(x)

π(k;x) Probability distribution on the d-dimensional integer lattice

π̂(z;x) Generating function of π(k;x)

G(z) Generating function of a general discrete random variable X

pk,l = P(ζ1 = k, ζ2 = l) Bivariate probability distribution of the bivariate random variable

(ζ1, ζ2)

p̂(z, w) Generating function of pk,l

qk,l(x, y) Probability that depends on pk̂,l̂ for k̂ = k, k + 1, . . . and l̂ = l, l+ 1, . . .

q̂(z, w) Generating function of qk,l

κ = λ1/λ2 Ratio of the mean parameters of Poisson processes with intensities λ1t

and λ2t

ρ(t) = corr(X
(1)
t , X

(2)
t) Correlation at time t between X

(1)
t and X

(2)
t

Chapter 3. Backward Simulation of Poisson Processes 94

3.1 Backward Simulation

In this section, we prove the fundamental result, first given in [74], enabling the Backward Simulation

of Poisson processes. We consider, for the remainder of this section, a process, Xt for 0 ≤ t ≤ T , defined

as

Xt =

n∑
i=1

1(Ti ≤ t), (3.2)

where n is a realization of the random variable XT ∼ Pois(λT) and the random variables {Ti}ni=1 are

iid having a uniform conditional distribution

P(Ti ≤ t |XT = n) =
t

T
i = 1, 2, . . . , n and 0 ≤ t ≤ T (3.3)

in the interval [0, T]. Theorem 6 below is essentially the converse of the well-known conditional uniformity

result for Poisson distributions but adapted for Poisson processes, ensuring that discrete non-decreasing

processes constructed according to (3.2) and (3.3) are indeed Poisson processes. It is crucial to note

that, although Theorem 6 is formulated and proved in the univariate setting, the results extend directly

to the multivariate setting. That is, Theorem 6 extends directly to the case where Xt is a correlated

multivariate Poisson process. This is because of the fact that, while the dependence structure is specified

through the joint distribution, every coordinate (marginal) of a correlated multivariate Poisson process

is itself a (univariate) Poisson process1. Therefore, given the joint number of events sampled from a

suitable joint distribution2 at time T , the correlated multivariate Poisson process can be constructed

within the simulation interval [0, T] by applying Theorem 6 independently to each coordinate.

For the rest of the chapter, unless otherwise stated, N refers to a Poisson distributed random variable

and Nt refers to a Poisson process, whereas Xt refers to a Poisson process obtained through Backward

Simulation. Moreover, note that a bold typeface denotes the vector or multivariate counterpart. That is,

N = (N (1), . . . , N (d)) refers to a d-dimensional random vector that is multivariate Poisson distributed,

Nt = (N
(1)
t , . . . , N

(d)
t) denotes a multivariate Poisson process and Xt = (X

(1)
t , . . . , X

(d)
t) denotes a

multivariate Poisson process obtained through Backward Simulation.

Finally, we note that the results in this section can be applied directly to the multivariate setting

since the conditional uniformity property of Poisson processes ensures that, given the terminal vector

of (joint) events, each component’s arrival times are just the order statistics of i.i.d Unif(0, T) variables

which are conditionally independent across components. Therefore, simulation reduces to generating the

joint events (counts) and then simulating each component as a univariate Poisson process conditioned

on the number of terminal events. The dependence between components arises entirely through the joint

distribution by construction, each component of the multivariate Poisson process is a Poisson process

with independent increments in the interval [0, T].

The main result of this chapter is the following theorem.

Theorem 6 ([74]). For t ∈ [0, T], define the process Xt by

Xt =

n∑
i=1

1(Ti ≤ t), (3.4)

1See Definition 5.
2Recall that Chapter 2 is concerned with constructing extreme distributions that exhibit extreme correlations and

constructing distributions that exhibit any admissible correlation that is a convex combination of extreme correlations.

Chapter 3. Backward Simulation of Poisson Processes 95

where n is a realization of the random variable XT ∼ Pois(λT) and the random variables {Ti}ni=1 have

the uniform conditional distribution (3.3). Then, Xt is a Poisson process with intensity λ in the interval

[0, T].

To prove Theorem 6, we must show that:

1. For any interval (t, t+ s] ⊂ [0, T] of length s ≥ 0, the increments ∆sXt = Xt+s−Xt of the process

Xt are Poisson distributed, with ∆sXt = Xt+s −Xt ∼ Pois(λs). Moreover, the distribution of the

increments ∆sXt does not depend on t.

2. For any l = 2, 3, . . . disjoint sub-intervals (ti, ti+si] ⊂ [0, T] for i = 1, 2, . . . , l, the random variables

∆siXti = Xti+si −Xti , for i = 1, 2, . . . , l, are mutually independent.

We can prove points 1 and 2 above by applying Lemma 25 and Lemma 26, respectively, below.

Lemma 25 is a statement about discrete generating functions and Lemma 26 is the extension of Lemma 25

to the vector setting. For this reason, we only prove Lemma 26. We state Lemma 25 for clarity of

exposition.

Lemma 25 ([74]). Consider a discrete random variable, ξ, taking non-negative integer values with

probabilities pk = P(ξ = k), k = 0, 1, 2, . . . , and denote its generating function by

p̂(z) =

∞∑
k=0

pkz
k, | z | ≤ 1.

Consider a sequence

qk(x) =

∞∑
m=0

pk+m

(
k +m

k

)
xk(1− x)m, 0 ≤ x ≤ 1, k = 0, 1, 2, (3.5)

Then, for any fixed x ∈ [0, 1], the sequence {qk(x)}∞k=0 is a probability distribution and its generating

function q̂(z;x) takes the form

q̂(z;x) = p̂(1− x+ xz). (3.6)

To generalize Lemma 25 to the vector setting, we require some additional notation. For a general

d-dimensional vector3, k = (k1, k2, . . . , kd) ∈ Nd
0, with non-negative integer coordinates, kj ≥ 0, we

denote the norm of the vector by

∥k∥ =
d∑

j=1

kj .

For any d-dimensional vector, x = (x1, x2, . . . , xd), with non-negative real coordinates (xj ≥ 0 for

j = 1, . . . , d) and k ∈ Nd
0, we denote

xk :=

d∏
j=1

xj
kj .

3We emphasize that the d here and in Lemma 26, below, refers to the dimension of a generic vector and does not refer
to the dimensionality of multivariate Poisson processes.

Chapter 3. Backward Simulation of Poisson Processes 96

We also introduce the multinomial coefficient

(
k+ l

k

)
:=

(
l +

d∑
i=1

ki

)
!

l! ·
d∏

i=1

ki!

.

Lemma 26. Consider a discrete random variable, ξ, taking non-negative integer values with probabilities

pk = P(ξ = k), k = 0, 1, 2, . . . , and denote its generating function by p̂(z) =
∑∞

k=0 pkz
k, | z | ≤ 1. Let

k ∈ Nd
0 and consider the function π : Nd

0 → R defined by

π(k;x) =
∞∑
l=0

p∥k∥+l

(
k+ l

k

)
· x k · yl, (3.7)

where x = (x1, . . . , xd), xj ≥ 0,
∑d

j=1 xj ≤ 1 and y = 1−
∑d

j=1 xj. For any fixed x, {π(k;x)}k∈Nd
0
is a

probability distribution on the d-dimensional integer lattice. Furthermore, denote its generating function

by

π̂(z;x) :=
∑
k∈Nd

0

π(k;x)z k, (3.8)

where z = (z1, z2, . . . , zd) and max{|z1|, . . . , |zd|} ≤ 1, then

π̂(z;x) = p̂

(
1−

d∑
j=1

xj(1− zj)

)
. (3.9)

Proof: We first show (3.9) holds. To this end, note that the generating function (3.8) can be

rewritten, by substituting in (3.7), as

π̂(z;x) =

d∑
j=1

∞∑
kj=0

∞∑
l=0

p∥k∥+l · zk ·
(
k+ l

k

)
· xk · yl. (3.10)

Let n = l +
∑d

j=1 kj and introduce the partial sums

KJ =

J∑
j=1

kj , J = 1, 2, . . . , d (3.11)

and note that Kd = Kd−1 + kd.

Then, by expanding the multinomial coefficient, using the partial sum defined above, and substituting

y = 1−
∑d

j=1 xj in (3.10), we see that

π̂(z;x) =

∞∑
n=0

pn ·
n∑

k1=0

(
n

k1

)
(x1z1)

k1

n−k1∑
k2=0

(
n− k1
k2

)
(x2z2)

k2

n−K2∑
k3=0

(
n−K2

k3

)
(x3z3)

k3

· · ·
n−Kd−1∑
kd=0

(
n−Kd−1

kd

)
(xdzd)

kd ·
(
1−

d∑
j=1

xj

)n−Kd

. (3.12)

Chapter 3. Backward Simulation of Poisson Processes 97

Denote the last sum in (3.12) by

Sd =

n−Kd−1∑
kd=0

(
n−Kd−1

kd

)
(xdzd)

kd ·
(
1−

d∑
j=1

xj

)n−Kd

. (3.13)

Recall the binomial theorem:

(x+ y)n
′
=

n′∑
k=0

(
n′

k

)
xkyn

′−k

and note that by making the following substitutions

n′ = n−Kd−1,

k = kd,

n′ − k = n−Kd−1 − kd = n−Kd,

x = (xdzd),

y = 1−
d∑

j=1

xj ,

in (3.13), we can apply the binomial theorem to Sd, obtaining

Sd =

(
1−

d−1∑
j=1

xj − xd(1− zd)

)n−Kd−1

.

Applying this transformation recursively to the sums over kj for j = d− 1, d− 2, . . . , 1 in (3.12), we get

π̂(z;x) =

∞∑
n=0

pn ·
(
1−

d∑
j=1

xj(1− zj)

)n

= p̂

(
1−

d∑
j=1

xj(1− zj)

)

as required.

Having proved that the generating function π̂(z;x) takes the form in (3.9), we can now easily show

that, for any fixed x, {π(k;x)}k∈Nd
0
is a probability distribution on the d-dimensional integer lattice.

Firstly, it is clear from (3.7) that for any k ≥ 0, π(k;x) ≥ 0, since x ≥ 0, y ≥ 0 and all other terms

therein are non-negative. Next, we need to show that∑
k∈Nd

0

π(k;x) = 1.

To that end, recall that, for a generating function, G(z), of a discrete random variable X,

G(1) = P(X = 0) + P(X = 1) + · · · .

Therefore, it suffices to show that π̂(z;x) = 1 when z = (1, 1, . . . , 1) ∈ Rd for all admissible choices of

x. Indeed, this can be seen directly from (3.9), since p̂(1) = 1. Thus, {π(k;x)}k∈Nd
0
is a probability

Chapter 3. Backward Simulation of Poisson Processes 98

distribution on the d-dimensional integer lattice for any fixed x ∈ [0, 1]d satisfying
∑d

j=1 xj ≤ 1. □

Having proved Lemma 26 we can show the main result of this section.

Proof of Theorem 6

Proof: We begin by proving the first point of the Theorem. To this end, let us denote by ∆sXt =

Xt+s−Xt, the number of events occurring in the interval [t, t+s] of the process Xt. Then, the probability

that k events occur in the interval [t, t+s] of the process can be expressed, by the law of total probability,

in terms of the conditional probability, as

P(∆sXt = k) =

∞∑
m=0

P(∆sXt = k |XT = k +m) · P(XT = k +m). (3.14)

Now note that

P(∆sXt = k |XT = k +m) =

(
k +m

k

)(
s

T

)k(
1− s

T

)m

, m = 0, 1, . . . (3.15)

since the conditional probability of k events occurring in the sub-interval [t, t+ s] ⊂ [0, T] given a total

of XT = n = k+m independent, uniformly distributed events occurring in the full interval [0, T] is equal

to choosing k out of n = k+m total events in the interval [t, t+s] of length s, with the rest of the events

being in the remainder of the interval [0, T]. Moreover, since XT is Poisson distributed (and known at

terminal simulation time T), its generating function takes the form

p̂(z) := E [zXT] = exp(λT (z − 1)). (3.16)

We use Lemma 25 to show that the generating function of ∆sXt also takes the form (3.16), but

with T replaced by s. Thus, ∆sXt has a Poisson distribution with parameter λs. To this end, let

pk = P(XT = k), for any k ∈ N0, and x = s/T . Then, note that, by the law of total probability and

(3.15)

P(∆sXt = k) =

∞∑
m=0

P(∆sXt = k |XT = k +m) · P(XT = k +m)

=

∞∑
m=0

(
k +m

k

)(
s

T

)k(
1− s

T

)m

· P(XT = k +m)

=

∞∑
m=0

pk+m

(
k +m

k

)
xk(1− x)m.

Observe that the last line in the set of equations above has the form of qk(x) in Lemma 25. So, let

qk(x) =

∞∑
m=0

pk+m

(
k +m

k

)
xk(1− x)m = P(∆sXt = k), k = 0, 1, 2,

Since qk(x) = P(∆sXt = k), for k = 0, 1, 2, . . . , the generating function E [z∆sXt] of the random variable

∆sXt must be q̂(z;x), the generating function associated with qk(x), for k = 0, 1, 2, From this

Chapter 3. Backward Simulation of Poisson Processes 99

observation and Lemma 25, it follows that

E [z∆sXt] = q̂(z;x)

= p̂(1− x+ xz)

= p̂(1− s

T
+

s

T
z)

= p̂(1 +
s

T
(z − 1))

= exp(λT ((1 +
s

T
(z − 1))− 1))

= exp(λs(z − 1))

where, in the fourth line above, we substituted (3.16). The set of equations above shows that the

generating function of ∆sXt is exp(λs(z − 1)), which is the generating function of a Poisson random

variable with parameter λs. Therefore, the increments ∆sXt = Xt+s−Xt of the process Xt are Poisson

distributed with ∆sXt ∼ Pois(λs). Moreover, the distribution of the increments ∆sXt does not depend

on t.

Next, we prove the second point of the Theorem. To this end, for any l = 2, 3, . . . , consider any l

disjoint sub-intervals (ti, ti + si], for i = 1, 2, . . . , l, where each (ti, ti + si] ⊂ [0, T]. For i = 1, 2, . . . , l,

denote by ∆siXti = Xti+si −Xti the number of events occurring within the sub-interval (ti, ti+ si]. For

i = 1, 2, . . . , l, let xi = (ti + si − ti)/T = si/T ∈ [0, 1]. Also, let x = (x1, . . . , xl) and y = 1 −
∑l

i=1 xi.

Note that y ∈ [0, 1]. Since the intervals (ti, ti + si], for i = 1, 2, . . . , l, are disjoint and the events have

the uniform conditional distribution (3.3), it follows that

P
(
∆s1Xt1 = k1, . . . ,∆slXtl = kl |XT = m+

l∑
i=1

ki

)
=

(
k+m

k

)
· xk · ym. (3.17)

For any k ∈ N0, let pk = P(XT = k). Then, using (4.14) and the law of total probability, we see that

P
(
∆s1Xt1 = k1, . . . ,∆slXtl = kl

)
=

∞∑
m=0

P
(
∆s1Xt1 = k1, . . . ,∆slXtl = kl |XT = m+

l∑
i=1

ki

)
· P
(
XT = m+

l∑
i=1

ki

)

=

∞∑
m=0

(
k+m

k

)
· xk · ym · P(XT = ∥k∥+m)

=

∞∑
m=0

p∥k∥+m

(
k+m

k

)
· xk · ym.

Observe that the last line in the set of equations above has the form of π(k;x) in Lemma 26. So, for all

k = (k1, . . . , kl) ∈ Nl
0, let

π(k;x) =

∞∑
m=0

p∥k∥+m

(
k+m

k

)
· xk · ym = P

(
∆s1Xt1 = k1, . . . ,∆slXtl = kl

)
.

Since, for all k = (k1, . . . , kl) ∈ Nl
0, π(k;x) = P

(
∆s1Xt1 = k1, . . . ,∆slXtl = kl

)
, the generating function

E [z
∆s1

Xt1
1 · · · z∆sl

Xtl

l] of the joint probability distribution of the increments ∆s1Xt1 , . . . ,∆slXtl must be

Chapter 3. Backward Simulation of Poisson Processes 100

π̂(z;x), the generating function associated with the probabilities π(k;x), k ∈ Nl
0. From this observation

and Lemma 26 with p̂(z) = E [zXT] = exp(λT (z − 1)), it follows that

E
[
z
∆s1Xt1
1 · · · z∆sl

Xtl

l

]
= π̂(z;x)

= p̂

(
1−

l∑
i=1

xi(1− zi)

)

= exp

(
λT
(
1−

l∑
i=1

xi(1− zi)− 1
))

= exp

(l∑
i=1

λTxi(zi − 1)

)

=

l∏
i=1

exp(λTxi(zi − 1))

=

l∏
i=1

exp(λsi(zi − 1))

=

l∏
i=1

E
[
z
∆si

Xti
i

]
where the last line above follows from our proof of the first point of the Theorem, which implies that

E
[
z
∆si

Xti
i

]
= exp(λsi(zi − 1)) for i = 1, 2, . . . , l.

We see from the set of equations above that the generating function of the joint distribution of the

increments ∆s1Xt1 , . . . ,∆slXtl factors multiplicatively into the product of the generating functions of

the individual increments ∆siXti , i = 1, . . . , l. Therefore, the increments ∆siXti , i = 1, . . . , l, are

mutually independent. That is, the process Xt for 0 < t ≤ T has independent increments.

□

Chapter 3. Backward Simulation of Poisson Processes 101

3.1.1 Backward Simulation Algorithm in d-dimensions

Algorithm 19 Backward Simulation of correlated multivariate Poisson processes

Require: Vector of marginal Poisson distributions at terminal time T

Pois(λT) = (Pois(λ1T), . . . ,Pois(λdT))

Correlation matrix C

Output: Scenarios of the multivariate Poisson process in [0, T]

1: Construct Pois(λkT) distributed marginals [Q
(k)
0 , . . . , Q

(k)

i
(k)
max

] for k = 1, . . . , d

2: Generate the calibrated Poisson measure P (C) using Algorithm 9, which takes as input

[Q
(k)
0 , . . . , Q

(k)

i
(k)
max

]dk=1 and C

3: Generate samples (N (1), . . . , N (d)) ∼ P (C) using Algorithm 18 ▷ Get the number of events at terminal

time T

4: for k = 1, . . . , d do ▷ this can be done in parallel

5: Generate N (k) iid uniform random variables in the interval [0, T]: T(k) = (T
(k)
1 , . . . , T

(k)

N(k))
′

▷ column vector

6: Sort T(k) in ascending order

7: return T = (T(1), . . . ,T(d))

Remark 62. More sophisticated numerical methods, such as Quasi Monte Carlo (QMC) [45, 46], can

be used to implement the Backward Simulation of Poisson processes, to achieve a much faster rate of

convergence.

Chapter 3. Backward Simulation of Poisson Processes 102

3.2 Correlation Structure

The main result of this section (Theorem 7) describes, analytically, the behavior of the correlation coef-

ficient between a pair of Poisson processes generated using Backward Simulation within the simulation

interval [0, T]. The exposition in this section is in the bivariate setting since Pearson correlation is

inherently a bivariate concept. The results in this section extend directly to the multivariate setting by

application of the results to each pair of components of a multivariate Poisson process.

We prove Theorem 7 using generating functions. To that end, let us first prove Lemma 27 below,

which can be straightforwardly applied to show Theorem 7. For the remainder of the section, consider

a bivariate integer-valued random vector ζ = (ζ1, ζ2) and denote its probability distribution by

pk,l = P(ζ1 = k, ζ2 = l), k, l = 0, 1, 2, . . . (3.18)

and its generating function by

p̂(z, w) :=

∞∑
k=0

∞∑
l=0

pk,l · zkwl, |z| ≤ 1, |w| ≤ 1. (3.19)

Furthermore, consider another bivariate integer-valued random vector ξ = (ξ1, ξ2), such that, for all

k = 0, 1, 2, . . . , k′, k′ = 0, 1, 2, . . . , and l = 0, 1, 2, . . . , l′, l′ = 0, 1, 2, . . . , ξ has the conditional probability

distribution

P
(
ξ1 = k, ξ2 = l |ζ1 = k′, ζ2 = l′

)
=

(
k′

k

)
xk(1− x)k

′−k ·
(
l′

l

)
yl(1− y)l

′−l, (3.20)

where x and y are fixed values satisfying 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. By setting k′ = k+m and l′ = l+ n

in (3.20) and using (3.20) together with the law of total probability, for any k, l ∈ {0, 1, 2, . . . }, we can

write the unconditional joint probability of ξ = (ξ1, ξ2) as

P(ξ1 = k, ξ2 = l) =

∞∑
m=0

∞∑
n=0

P
(
ξ1 = k, ξ2 = l |ζ1 = k +m, ζ2 = l + n

)
· P(ζ1 = k +m, ζ2 = l + n)

=

∞∑
m=0

∞∑
n=0

pk+m,l+n

(
k +m

k

)
xk(1− x)k+m−k ·

(
l + n

l

)
yl(1− y)l+n−l, (3.21)

where pk+m,l+n = P(ζ1 = k +m, ζ2 = l + n). Note that the last line in the set of equations above has a

form analogous to qk(x) in Lemma 25 but in two-dimensions. Therefore, let

qk,l (x, y) = P(ξ1 = k, ξ2 = l)

=

∞∑
m=0

∞∑
n=0

pk+m,l+n ·
(
k +m

k

)
xk(1− x)m ·

(
l + n

l

)
yl(1− y)n k, l = 0, 1, (3.22)

Lemma 27 ([74]). Suppose that the variance and the first moment of the random variables ζ1 and ζ2

are equal, that is, E [ζi] = σ2(ζi) for i ∈ {1, 2}. Then, the generating function

q̂(z, w) :=

∞∑
k=0

∞∑
l=0

qk,l(x, y) z
kwl

Chapter 3. Backward Simulation of Poisson Processes 103

associated with the bivariate random vector ξ satisfies the relation

q̂(z, w) = p̂(1− x+ xz, 1− y + yw), |z| ≤ 1, |w| ≤ 1, (3.23)

where p̂(z, w) given in (3.19) is the generating function of the bivariate random vector ζ. Moreover, the

Pearson correlation coefficient of the random variables ξ1 and ξ2 satisfies

ρ(ξ1, ξ2) =
√
xy · ρ(ζ1, ζ2), (3.24)

where ρ(ξ1, ξ2) and ρ(ζ1, ζ2) denote the Pearson correlation coefficients between the components of the

bivariate random variables ξ and ζ, respectively.

Proof: The first part of the Lemma is analogous to Lemma 25. Therefore, for brevity, we omit its

proof. We focus on the second part of the Lemma and show (3.24).

To begin, since q̂(z, w) is the generating function of bivariate random vector ξ = (ξ1, ξ2), it follows

from the definition of a generating function that

q̂(z, w) = E
[
zξ1wξ2

]
. (3.25)

Differentiating (3.25), we get

∂q̂(z, w)

∂z
= E

[
ξ1 z

ξ1−1 wξ2
]
,

∂q̂(z, w)

∂w
= E

[
zξ1 ξ2 w

ξ2−1
]
,

∂2q̂(z, w)

∂z2
= E

[
ξ1(ξ1 − 1) zξ1−2 wξ2

]
,

∂2q̂(z, w)

∂z∂w
= E

[
ξ1 z

ξ1−1 ξ2 w
ξ2−1

]
,

∂2q̂(z, w)

∂w2
= E

[
zξ1 ξ2(ξ2 − 1)wξ2−2

]
.

Evaluating the equations above at z = w = 1, we get the well-know results

∂q̂(z, w)

∂z

∣∣∣∣
z=w=1

= E [ξ1] , (3.26)

∂q̂(z, w)

∂w

∣∣∣∣
z=w=1

= E [ξ2] , (3.27)

∂2q̂(z, w)

∂z2

∣∣∣∣
z=w=1

= E [ξ1(ξ1 − 1)] = E
[
ξ21
]
− E [ξ1] , (3.28)

∂2q̂(z, w)

∂z∂w

∣∣∣∣
z=w=1

= E [ξ1 ξ2] , (3.29)

∂2q̂(z, w)

∂w2

∣∣∣∣
z=w=1

= E [ξ2(ξ2 − 1)] = E
[
ξ22
]
− E [ξ2] . (3.30)

Chapter 3. Backward Simulation of Poisson Processes 104

On the other hand, differentiating (3.23) and using (3.19), we also get

∂q̂(z, w)

∂z
=

∂

∂z

(
p̂(1− x+ xz, 1− y + yw)

)
=

∂

∂z

(∞∑
k=0

∞∑
l=0

pk,l(1− x+ xz)k(1− y + yw)l
)

=

∞∑
k=0

∞∑
l=0

pk,l · k · (1− x+ xz)k−1 · x · (1− y + yw)l.

Similarly, we get

∂q̂(z, w)

∂w
=

∞∑
k=0

∞∑
l=0

pk,l · (1− x+ xz)k · l · (1− y + yw)l−1 · y,

∂2q̂(z, w)

∂z2
=

∞∑
k=0

∞∑
l=0

pk,l · k(k − 1) · (1− x+ xz)k−2 · x2 · (1− y + yw)l,

∂2q̂(z, w)

∂z∂w
=

∞∑
k=0

∞∑
l=0

pk,l · k · (1− x+ xz)k−1 · x · l · (1− y + yw)l−1 · y,

∂2q̂(z, w)

∂w2
=

∞∑
k=0

∞∑
l=0

pk,l · (1− x+ xz)k · l(l − 1) · (1− y + yw)l−2 · y2.

Evaluating the equations above at z = w = 1 and using (3.18), we get

∂q̂(z, w)

∂z

∣∣∣∣
z=w=1

= x

∞∑
k=0

∞∑
l=0

k · pk,l = xE [ζ1], (3.31)

∂q̂(z, w)

∂w

∣∣∣∣
z=w=1

= y

∞∑
k=0

∞∑
l=0

l · pk,l = y E [ζ2], (3.32)

∂2q̂(z, w)

∂z2

∣∣∣∣
z=w=1

= x2
∞∑
k=0

∞∑
l=0

k(k − 1) · pk,l = x2 E [ζ21]− x2 E [ζ1], (3.33)

∂2q̂(z, w)

∂z∂w

∣∣∣∣
z=w=1

= xy

∞∑
k=0

∞∑
l=0

k l · pk,l = xy E [ζ1 ζ2], (3.34)

∂2q̂(z, w)

∂w2

∣∣∣∣
z=w=1

= y2
∞∑
k=0

∞∑
l=0

l(l − 1) · pk,l = y2 E [ζ22]− y2 E [ζ2]. (3.35)

It follows from (3.26) and (3.31) that

E [ξ1] = xE [ζ1], (3.36)

from (3.27) and (3.32) that

E [ξ2] = y E [ζ2], (3.37)

and from (3.29) and (3.34) that

E [ξ1 ξ2] = xy E [ζ1 ζ2]. (3.38)

Chapter 3. Backward Simulation of Poisson Processes 105

Using (3.36), (3.37) and (3.38), we get that

Cov(ξ1, ξ2) = E [ξ1, ξ2]− E [ξ1]E [ξ2]

= (xy E [ζ1 ζ2])− (xE [ζ1]) (y E [ζ2])

= xy (E [ζ1 ζ2]− E [ζ1]E [ζ2])

= xy Cov(ζ1, ζ2).

(3.39)

Using (3.26), (3.28), (3.31), (3.33) and the assumption in the Lemma that E [ζ1] = σ2(ζ1), we get that

σ2(ξ1) = E [ξ21]− (E [ξ1])
2

=
(
E [ξ21]− E [ξ1]

)
+ E [ξ1]− (E [ξ1])

2

=
∂2q̂(z, w)

∂z2

∣∣∣∣
z=w=1

+
∂q̂(z, w)

∂z

∣∣∣∣
z=w=1

−
(
∂q̂(z, w)

∂z

∣∣∣∣
z=w=1

)2

=
(
x2 E [ζ21]− x2 E [ζ1]

)
+ xE [ζ1]− (xE [ζ1])

2

= x2
(
E [ζ21]− (E [ζ1])

2
)
+ (x− x2)E [ζ1]

= x2 σ2(ζ1) + (x− x2)σ2(ζ1)

= xσ2(ζ1).

(3.40)

Using an argument similar to that used to establish (3.40), we get that

σ2(ξ2) = y σ2(ζ2). (3.41)

From (3.39), (3.40) and (3.41), it follows that

ρ(ξ1, ξ2) =
Cov(ξ1, ξ2)

σ(ξ1)σ(ξ2)

=
xy Cov(ζ1, ζ2)√
xσ(ζ1)

√
y σ(ζ2)

=
√
xy

Cov(ζ1, ζ2)

σ(ζ1)σ(ζ2)

=
√
xy ρ(ζ1 ζ2).

Therefore, we have proven that (3.24) holds.

□

Chapter 3. Backward Simulation of Poisson Processes 106

Theorem 7 (Time Structure of the Correlation Coefficient [74]). Consider a bivariate Poisson process

(X
(1)
t , X

(2)
t) such that the sample paths of X

(1)
t and X

(2)
t are generated by Backward Simulation in

the interval [0, T]. Let the correlation coefficient at time T be ρ(T) := corr(X
(1)
T , X

(2)
T). Then ρ(t) =

corr(X
(1)
t , X

(2)
t) satisfies

ρ(t) = ρ(T) · t
T
, 0 < t ≤ T. (3.42)

Proof: Lemma 27 can be used to show Theorem 7 without much further work by setting ζ =

(N
(1)
T , N

(2)
T) and ξ = (N

(1)
t , N

(2)
t). The conditional probabilities P(N (1)

t = k,N
(2)
t = l |N (1)

T = k′, N
(2)
T =

l′) satisfy (3.20) with x = y = tT−1, ρ(ξ1, ξ2) = corr(N
(1)
t , N

(2)
t), and ρ(ζ1, ζ2) = corr(N

(1)
T , N

(2)
T).

Making these substitutions in (3.24) implies (3.42). □

Figure 3.1 depicts the correlation structure obtained from simulating a bivariate Poisson process

with intensities 3 and 5, calibrated to correlations of 0.7 and -0.9, respectively, at terminal time T = 5,

within the simulation interval [0, 5] under Backward Simulation. We used Backward Simulation with

1,000,000 Monte Carlo samples to compute the dashed black lines in Figure 3.1. The blue circles depict

the theoretical values according to Theorem 7. Note the good agreement between the theoretical and

the empirical results. Also note that the extreme positive and extreme negative correlations in this case

are 0.9955 and -0.9897, respectively, and that any correlation, at the terminal time T = 5, within the

interval [−0.9897, 0.9955] is attainable under our Backward Simulation approach.

Chapter 3. Backward Simulation of Poisson Processes 107

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
(t

)

Figure 3.1: The dashed black lines depict the correlation structure for two bivariate Poisson process,
each with intensities 3 and 5, calibrated to ρ(T) = 0.7 and ρ(T) = −0.9, respectively, computed by
Backward Simulation. The blue circles depict the theoretical values according to Theorem 7.

Chapter 3. Backward Simulation of Poisson Processes 108

3.3 Forward Continuation of the Backward Simulation

In Forward Simulation, the notion of continuing forward a process past the original simulation interval

[0, T] is natural and, for this reason, not given special consideration as this is simply accomplished by

continuing the Forward Simulation for another time step. In Backward Simulation, however, continuing

forward a process past the original simulation interval is not as natural and requires some consideration.

One approach to continuing forward a process past its original simulation interval, which we denote

the Forward Continuation of Backward Simulation4, is as follows. First, consider the case where a

bivariate Poisson process (X
(1)
t , X

(2)
t) has been simulated in the interval [0, T] using Backward Simulation

and assume that we wish to continue forward the process to the subsequent interval [T, 2T]. To begin,

we draw an independent sample from the joint distribution at time T :

(∆TX
(1)
T ,∆TX

(2)
T)

d
=(X

(1)
T , X

(2)
T). (3.43)

The bivariate random variable (∆TX
(1)
T ,∆TX

(2)
T) has the same prescribed Poisson marginals and pre-

scribed correlation C between its components as (X
(1)
T , X

(2)
T). Next, we set

(X
(1)
2T , X

(2)
2T) = (X

(1)
T , X

(2)
T) + (∆TX

(1)
T ,∆TX

(2)
T). (3.44)

As in Backward Simulation, we use (∆TX
(1)
T ,∆TX

(2)
T) and the conditional independence property (sim-

ilar to (3.3)) to generate the uniform arrival moments {T (1)
i }

∆TX
(1)
T

i=1 and {T (2)
i }

∆TX
(2)
T

i=1 in the interval

[T, 2T]. This process can be repeatedly applied to extend a bivariate Poisson process simulated by Back-

wards Simulation within the interval [0, T] to any subsequent interval [mT, (m+1)T] for any non-negative

integer m and is detailed in Algorithm 20 in Section 3.3.2. We call this algorithm Forward-Backward

Simulation since it starts with one step of Backward Simulation followed by m − 1 steps of Forward

Continuation of Backward Simulation.

We emphasize that the Forward Continuation method introduced here does not require the underlying

multivariate Poisson process to have independent increments. Backward Simulation relies solely on

the conditional uniformity of arrival times given the terminal count NT = n, a property that holds

irrespective of any increment-independence assumptions. While each component of the multivariate

Poisson process has independent increments across time (simulation) intervals, the dependence structure

across components is introduced explicitly through the calibrated joint distribution of increments rather

than imposed by a Lévy-type assumption. Therefore, the method does not implicitly construct a Lévy

process, since a Lévy process has independent increments, whereas in our construction the increments

between intervals may exhibit arbitrary dependence—including negative correlation—as determined by

the EJD based calibration.

Remark 63. Although the exposition in this section is in the bivariate setting, the results extend straight-

forwardly to the general d-dimensional setting.

3.3.1 Forward Correlation Structure

We analyze the behavior of the correlation coefficient under the Forward Continuation of Backward

Simulation by deriving an expression for ρ(mT + τ) = corr(X
(1)
mT+τ , X

(2)
mT+τ) as a function of ρ(T) =

4This work was published in [17]

Chapter 3. Backward Simulation of Poisson Processes 109

corr(X
(1)
T , X

(2)
T) for any non-negative integer m and any τ ∈ [0, T] in Theorem 8 below. That ρ(mT + τ)

attains asymptotic stationarity follows by Corollary 3 below.

Theorem 8. The correlation coefficient ρ(mT+τ) = corr(X
(1)
mT+τ , X

(2)
mT+τ) for any non-negative integer

m and any τ ∈ [0, T] as a function of ρ(T) = corr(X
(1)
T , X

(2)
T) takes the form

ρ(mT + τ) = ρ(T) · m+ τ2 · T−2

m+ τT−1
. (3.45)

Proof: First note that, for m = 0, (3.45) follows from Theorem 7. To show that (3.45) also holds

for all m ≥ 1, we begin by deriving an expression for ρ(T + τ). To this end, let ∆τX
(1)
T = X

(1)
T+τ −X

(1)
T

and ∆τX
(2)
T = X

(2)
T+τ −X

(2)
T and note that each of the increments ∆τX

(1)
T and ∆τX

(2)
T is independent

of both X
(1)
T and X

(2)
T . Therefore, the covariance of the bivariate Poisson process at time T + τ satisfies

Cov(X
(1)
T+τ , X

(2)
T+τ) = Cov(X

(1)
T +∆τX

(1)
T , X

(2)
T +∆τX

(2)
T)

= Cov(X
(1)
T , X

(2)
T) + Cov(∆τX

(1)
T ,∆τX

(2)
T)

(3.46)

and, for each i ∈ {1, 2}, the variance satisfies

σ2(X
(i)
T+τ) = σ2(X

(i)
T +∆τX

(i)
T)

= σ2(X
(i)
T) + σ2(∆τX

(i)
T).

(3.47)

Moreover, using an argument similar to that used to prove Lemma 27 and Theorem 7, it can be shown

that

Cov(∆τX
(1)
T ,∆τX

(2)
T) = Cov(X

(1)
T , X

(2)
T) · τ

2

T 2
(3.48)

and, for each i ∈ {1, 2},
σ2(∆τX

(i)
T) = σ2(X

(i)
T) · τ

T
. (3.49)

It follows from (3.46) and (3.48) that

Cov(X
(1)
T+τ , X

(2)
T+τ) = Cov(X

(1)
T , X

(2)
T) + Cov(∆τX

(1)
T ,∆τX

(2)
T)

= Cov(X
(1)
T , X

(2)
T)

(
1 +

τ2

T 2

) (3.50)

and, from (3.47) and (3.49), that

σ2(X
(i)
T+τ) = σ2(X

(i)
T) + σ2(∆τX

(i)
T)

= σ2(X
(i)
T)

(
1 +

τ

T

) (3.51)

for i ∈ {1, 2}. Dividing (3.50) through by σ(X
(1)
T+τ)σ(X

(2)
T+τ) and using (3.51), we get that

Cov(X
(1)
T+τ , X

(2)
T+τ)

σ(X
(1)
T+τ)σ(X

(2)
T+τ)

=
Cov(X

(1)
T , X

(2)
T)

σ(X
(1)
T)σ(X

(2)
T)
·
(1 + τ2

T 2)

1 + τ
T

Chapter 3. Backward Simulation of Poisson Processes 110

whence

ρ(T + τ) = ρ(T) · 1 + τ2 · T−2

1 + τT−1
. (3.52)

By induction on m and using arguments similar to those used to derive (3.46) and (3.47), we obtain

Cov(X
(1)
mT , X

(2)
mT) = m Cov(X

(1)
T , X

(2)
T),

σ2(X
(i)
mT) = mσ2(X

(i)
T)

for i ∈ {1, 2}. Similar arguments used to show (3.50) and (3.51) can also be used to show that

Cov(X
(1)
mT+τ , X

(2)
mT+τ) = Cov(X

(1)
T , X

(2)
T) ·

(
m+

τ2

T 2

)
,

σ2(X
(i)
mT+τ) = σ2(X

(i)
T) ·

(
m+

τ

T

)
for i ∈ {1, 2}, whence

ρ(mT + τ) = ρ(T) · m+ τ2 · T−2

m+ τT−1
. (3.53)

□

We show below how (3.45) leads to the asymptotic stationarity of the correlation coefficient.

Corollary 3 (Asymptotic Stationarity of Forward Continuation). The correlation ρ(mT + τ) achieves

asymptotic stationarity as m→∞. More specifically,

lim
m→∞

ρ(mT + τ) = ρ(T), for any τ ∈ [0, T] (3.54)

Proof: From (3.45) we have that

ρ(mT + τ) = ρ(T)
m+ τ2 · T−2

m+ τ · T−1
(3.55)

= ρ(T)
m(1 + τ2 · T−2 ·m−1)

m(1 + τ · T−1 ·m−1)

= ρ(T)
1 + τ2 · T−2 ·m−1

1 + τ · T−1 ·m−1
.

Passing to the limit as m→∞ in the standard manner, we obtain

lim
m→∞

ρ(mT + τ) = ρ(T) for all τ ∈ [0, T],

as was to be proved. □

Figure 3.2 depicts the correlation structure obtained from simulating a bivariate Poisson process with

intensities 3 and 5, calibrated to correlations of 0.7 and -0.9, respectively, within the simulation interval

[0, 5] using Backward Simulation on the interval [0, 1] and Forward Continuation of Backward Simulation

on each of the intervals [m,m+1] for m = 1, 2, 3, 4. We refer to this as the Forward-Backward Simulation

approach. We used 1,000,000 samples to compute the dashed black lines in Figure 3.2. The blue circles

depict the theoretical values according to (3.45). Note the good agreement between the theoretical and

Chapter 3. Backward Simulation of Poisson Processes 111

the empirical results. Also note that the first few intervals of the process simulated under the Forward-

Backward Simulation can be discarded, similar to a burn-in phase, so that the process exhibits a near

constant correlation structure.

Chapter 3. Backward Simulation of Poisson Processes 112

0
0

.5
1

1
.5

2
2

.5
3

3
.5

4
4

.5
5

t

-1

-0
.8

-0
.6

-0
.4

-0
.20

0
.2

0
.4

0
.6

0
.8

(t)

Figure 3.2: The dotted black lines depict the correlation structure for a bivariate Poisson process with
intensities 3 and 5, calibrated to ρ(T) = 0.7 and ρ(T) = −0.9, respectively, computed by the Forward-
Backward Simulation approach. The blue circles depict the theoretical values according to (3.45).

Chapter 3. Backward Simulation of Poisson Processes 113

3.3.2 Forward-Backward Simulation Algorithm in d-dimensions

Algorithm 20 Forward-Backward Simulation of correlated multivariate Poisson processes

Require: Vector of marginal Poisson distributions at time T

Pois(λT) = (Pois(λ1T), . . . ,Pois(λdT))

Correlation matrix C

The number of intervals m (i.e., [0, T], [T, 2T], · · · , [(m− 1)T,mT]) used in the Forward-

Backward Simulation Algorithm

Output: Scenarios of the multivariate Poisson process in the interval [0,mT]

1: Construct Pois(λkT) distributed marginals [Q
(k)
0 , . . . , Q

(k)

i
(k)
max

] for k = 1, . . . , d

2: Generate the Poisson calibrated measure P (C) using Algorithm 9, which takes as input

[Q
(k)
0 , . . . , Q

(k)

i
(k)
max

]dk=1 and C

3: for i = 1, . . . ,m do

4: Generate samples (N (1), . . . , N (d)) ∼ P (C) using Algorithm 18 ▷ Get the number of events in the

interval [(i− 1)T, iT]

5: for k = 1, . . . , d do ▷ this can be done in parallel

6: Generate N (k) iid uniform random variables in the interval [(i− 1)T, iT]: T
(k)
i =

(T
(k)
1 , . . . , T

(k)

N(k))
′ ▷ column vector

7: Sort T
(k)
i in ascending order

8: Append T
(k)
i to T(k)

9: return T = (T(1), . . . ,T(d))

Remark 64. Note that for most applications, especially in risk management, ρ(nT) for n ∈ {1, . . . ,m},
where m is the number of forward intervals as defined in Algorithm 20, should vary less than 3%.

Chapter 3. Backward Simulation of Poisson Processes 114

3.4 Forward versus Backward Simulation

We introduced Backward Simulation in Section 3.1, analyzed the correlation structure obtained under

Backward Simulation in Section 3.2 and showed that the correlation coefficient between the components

of a multivariate Poisson process obtained under Backward Simulation is a linear function of time within

the simulation interval [0, T]:

ρ(t) =
t

T
· ρ(T)

where ρ(T) is any admissible correlation matrix. Recall that an admissible correlation matrix is a

correlation matrix that can be the correlation matrix of a discrete multivariate Poisson distribution

with the specified intensities; see Section 2.8 for a discussion of admissible correlation matrices. Then,

in Section 3.3, we introduced Forward Continuation of Backward Simulation, a method for extending

a process constructed using Backward Simulation within [0, T] to an interval [mT, (m + 1)T] for any

positive integer m. A surprising result is that the correlation structure of a multivariate Poisson process

constructed using the Forward-Backward method attains asymptotic stationarity:

lim
m→∞

ρ(mT + τ) = ρ(T) for any τ ∈ [0, T].

In this section, we compare the Forward-Backward method with the well-known Forward Simulation

approach and discuss the advantages of the backward approach over the forward approach.

3.4.1 Forward Simulation

We begin by reviewing the forward approach in one dimension. Given a simulation interval [0, T],

stochastic processes are typically simulated forwards in time. This is due to the fact that it is both

conceptually natural and technically simpler to do so. Forward Simulation (FS) consists of starting at

the beginning of the simulation interval, t = 0, and advancing the process forward by some time-step, h,

by simulating the increments of the process until the end of the simulation interval, t = T , is reached. For

a univariate Poisson process having arrival moments T1, T2, . . . , the inter-arrival times, ∆Tk = Tk−Tk−1

for k = 1, 2, . . . , where T0 := 0, are exponentially distributed:

P(∆Tk ≤ t) = 1− e−λt. (3.56)

Thus, Forward Simulation of the univariate Poisson process

Nt =

∞∑
i=1

1(Ti ≤ t)

within [0, T] consists of repeated sampling of exponentially distributed random variables, ∆Tk, whilst∑
k ∆Tk ≤ T . This remains true for the case of uncorrelated multivariate Poisson processes since the

components are mutually independent—Forward Simulation of the multivariate process reduces to the

Forward Simulation of each individual component.

However, it is not as straightforward to simulate correlated multivariate Poisson processes. To see

why, consider first how a bivariate Poisson process (N
(1)
t , N

(2)
t), where N

(i)
t ∼ Pois(λit) for i ∈ {1, 2}, can

be constructed such that it exhibits extreme correlations under Forward Simulation. To accomplish this,

Chapter 3. Backward Simulation of Poisson Processes 115

we rely on the well known Fréchet-Hoeffding theorem5 [49, 64]. When applied to the Poisson setting,

the Fréchet-Hoeffding theorem says that the inter-arrival times {∆T
(i)
k }k≥1 for i ∈ {1, 2} must satisfy

λ1∆T
(1)
k = λ2∆T

(2)
k , k = 1, 2, . . . (3.57)

in the case of extreme positive correlation and

exp (−λ1 ·∆T
(1)
k) + exp (−λ2 ·∆T

(2)
k) = 1 , k = 1, 2, . . . (3.58)

in the case of extreme negative correlation. Thus, to forward simulate a bivariate Poisson process

with extreme correlations, one must first sample from the inter-arrival distribution (3.56) for one of

the components and then solve either (3.57) or (3.58) to obtain the inter-arrival time for the other

component.

3.4.2 Range of Correlations Restricted under FS

Extreme correlations in the two-dimensional case obtained by the Backward Simulation approach are

more extreme than the extreme correlations attained obtained by Forward Simulation. This can be

seen by the Monte Carlo experiment summarized in Figure 9.8 on page 223 of [74], where the extreme

correlations generated by Backward Simulation attain values close to 1 and -1, while the extreme cor-

relations generated by Forward Simulation do not attain values close to 1 and -1. Therefore, even if

we could find a method based upon Forward Simulation to compute bivariate Poisson processes with

correlations between the extreme correlations attainable by Forward Simulation, this method would not

be capable of simulating bivariate Poisson processes with as wide a range of correlations as is possible

with Backward Simulation coupled with Forward Continuation of Backward Simulation.

Expanding on the experimental result of [74] noted in the paragraph above, we show analytically,

below, that the extreme positive correlation for a bivariate Poisson process computed by Forward Simu-

lation is a constant determined by the ratio of the intensities of the processes. Moreover, if one intensity

is much larger than the other, this constant extreme positive correlation is much smaller than 1. A

similar analysis can be made for the extreme negative case.

Extreme positive correlations via Forward Simulation In the case of extreme positive correlation

under Forward Simulation, (3.57) implies that

λ1T
(1)
k = λ2T

(2)
k , k = 0, 1, 2, (3.59)

Define κ = λ1/λ2. Obviously, 0 < κ < ∞. To determine the correlation between the process

N
(1)
t associated with the events T

(1)
k , k = 1, 2, . . . , and the process N

(2)
t associated with the events

T
(2)
k , k = 1, 2, . . . , we begin by showing that, for all t > 0,

N
(1)
t = N

(2)
κt . (3.60)

5For discrete distributions, Fréchet-Hoeffding is equivalent to the EJD theorem in two-dimensions [74]

Chapter 3. Backward Simulation of Poisson Processes 116

To this end, choose any t > 0 and let N
(1)
t = n where n is a non-negative integer. This implies that the

arrival moments associated with N
(1)
t satisfies the inequality

T (1)
n ≤ t < T

(1)
n+1. (3.61)

It follows immediately from (3.59) that the arrival moments for N
(2)
t must satisfy

T
(2)
k = κT

(1)
k for all k = 0, 1, 2, (3.62)

Multiplying (3.61) through by κ and using (3.62), we see that T
(2)
n ≤ κt < T

(2)
n+1, which in turns implies

that N
(2)
κt = n. Hence, N

(1)
t = n = N

(2)
κt . We have shown (3.60) since t > 0 is arbitrary.

Now we compute the correlation coefficient of N
(1)
t and N

(2)
t in the case κ ≥ 1. To this end, write

N
(2)
κt as

N
(2)
κt = N

(2)
t +∆N

(2)
κt , (3.63)

where ∆N
(2)
κt = N

(2)
κt −N

(2)
t represents the increment of N

(2)
t in the interval [t, κt] and is independent of

N
(2)
t . Then, we obtain

Cov(N
(1)
t , N

(2)
t) = E [N

(1)
t N

(2)
t]− E [N

(1)
t]E [N

(2)
t]

= E [N
(2)
κt N

(2)
t]− E [N

(2)
κt]E [N

(2)
t]

= E [(N
(2)
t +∆N

(2)
κt)N

(2)
t]− E [N

(2)
t +∆N

(2)
κt]E [N

(2)
t]

= E [N
(2)
t N

(2)
t] + E [∆N

(2)
κt N

(2)
t]− E [N

(2)
t]E [N

(2)
t]− E [∆N

(2)
κt]E [N

(2)
t]

= E [N
(2)
t N

(2)
t] + E [∆N

(2)
κt]E [N

(2)
t]− E [N

(2)
t]E [N

(2)
t]− E [∆N

(2)
κt]E [N

(2)
t]

= E [(N
(2)
t)2]− E [N

(2)
t]E [N

(2)
t]

= σ2(N
(2)
t),

where we used (3.60) in the second line, (3.63) in the third line, and the independence of ∆N
(2)
κt and N

(2)
t

in the fifth line of the set of equations above. Since σ2(N
(1)
t) = λ1t, σ

2(N
(2)
t) = λ2t, and κ = λ1/λ2, the

set of equations above implies that

ρ(N
(1)
t , N

(2)
t) =

1√
κ
, where κ ≥ 1. (3.64)

Similar reasoning in the case 0 < κ < 1 leads to

ρ(N
(1)
t , N

(2)
t) =

√
κ. (3.65)

Therefore, we can see, from Equations (3.64) and (3.65), that the extreme positive correlation coef-

ficient obtained via Forward Simulation is a function of the ratios of the intensities of the components

of a bivariate Poisson process that does not depend on time. For example, if the correlated bivariate

Poisson with intensities 3 and 5 from Figure 3.1 was simulated to time T = 5 by Forward Simulation,

the attainable extreme positive correlation would only be
√

3/5 ≈ 0.7746, whereas the extreme positive

correlation is 0.9955 using Backward Simulation. Finally, consider a more extreme example of a bivariate

Poisson process with intensities 1 and 100. The attainable extreme positive correlation would only be 0.1

using Forward Simulation whereas the extreme positive correlation is 0.9193 using Backward Simulation.

Chapter 3. Backward Simulation of Poisson Processes 117

3.5 Computational Complexity

The computational complexity of the Backward Simulation algorithms for the more complicated Poisson

processes discussed in Chapters 4 and 5 are similar. For this reason, we omit repeating the discussion

here in those (more general) settings.

3.5.1 Backwards Simulation

The Backward Simulation method constructs multivariate Poisson sample paths having a dependence

structure specified by the joint distribution calibrated from the EJD approach. Each simulation consists

of, for each dimension, generation of a number of uniformly distributed random variables equal to the

terminal number of events. Let M denote the number of Monte Carlo simulations, T denote the terminal

simulation time, and N
(k)
T ∼ Pois(λkT) the number of uniform random variables we have to generate

per dimension.

Time Complexity

For a d-dimensional multivariate Poisson process and M Monte Carlo simulations, the pure time com-

plexity of the Backwards Simulation, ignoring the calibration and sampling of the EJD approach, is:

O(M · T ·
d∑

k=1

λk) (3.66)

since Backward Simulation does not generate a constant-sized vector per dimension. The time complexity

of the EJD approach can be found in Section 2.10.

Memory Complexity

Since the Backwards Simulation relies on the joint distribution of the process at terminal time T obtained

by calibration via the EJD approach, we refer the memory complexity of the EJD construction in

Section 2.10

Remark 65. The computational complexity per forward interval for the Forward Backward Simulation

is the same as that of Backwards Simulation, since each forward interval requires only one additional

draw from the calibrated joint distribution and a standard backward simulation step.

Chapter 3. Backward Simulation of Poisson Processes 118

3.6 Summary

In this chapter, we introduced the Backward Simulation method for Poisson processes that, in con-

junction with extreme joint distributions constructed using the EJD approach introduced in Chapter 2,

enables the simulation of correlated multivariate Poisson processes. In particular, Backward Simulation

is able to generate all admissible distributions at the endpoint T of the interval [0, T]. Forward Continu-

ation of Backward Simulation enables the process generated by Backward Simulation within the interval

[0, T] to be extended to intervals [mT, (m+1)T] for any positive integer m, where the correlation displays

the asymptotic behavior

ρ(mT + τ) ≈ ρ(T)

for all m sufficiently large, all τ in [0, T], and for any admissible correlation matrix ρ(T).

Our contributions are summarized below:

• We introduced the Forward Continuation of Backward Simulation for Poisson processes. This

enabled the continuation of correlated multivariate Poisson processes simulated using Backward

Simulation within [0, T] to simulation intervals [mT, (m + 1)T] for any non-negative integer m.

This was published in [17] for the Poisson case.

• We showed that the correlation structure of a correlated multivariate Poisson process attains

asymptotic stationarity.

• We showed formally that the extreme positive correlations attained under Forward Simulation in

the bivariate setting is constant and determined by the ratio of the intensities of the bivariate

Poisson process.

Chapter 4

Backward Simulation of Mixed

Poisson Processes

In Chapter 3, we introduced the Backward Simulation for multivariate Poisson processes that, in con-

junction with the Extreme Joint Distribution approach (Chapter 2) for constructing joint distributions

with prescribed marginal distributions and a prescribed dependence structure in the form of a corre-

lation matrix, enabled the construction of correlated multivariate Poisson processes. In particular, our

approach enables the construction of correlated multivariate Poisson processes capable of exhibiting ex-

treme positive and even extreme negative correlations between its components. A natural question to

ask next is whether the Backward Simulation methodology applies to more general Poisson processes

and, if so, to which generalizations does the methodology still apply. One generalization of the Poisson

process to consider is the mixed Poisson process, where the intensity of the Poisson process is a random

variable instead of a constant scalar value. Consequently, the increments of a mixed Poisson process

are no longer independent of each other [58]. However, the increments are conditionally independent,

a property that we exploit in showing that our Backward Simulation methodology can be applied to

mixed Poisson processes. Mixed Poisson processes are widely used in cases where Poisson processes are

deemed inadequate; some examples can be found in finance [19, 56], Operational Risk [37], physics [41],

and software reliability [62].

Similar to the Poisson setting, we note that while the majority of the exposition in this chapter is in

the bivariate setting, the discussions generalize immediately to the multivariate setting.

4.0.1 Outline

In Section 4.1, we review the basics of mixed Poisson processes and mixed Poisson distributions. The

Backward Simulation of mixed Poisson processes is discussed in Section 4.2. The correlation structure

of mixed Poisson processes simulated using Backward Simulation is discussed in Section 4.3. The For-

ward Continuation of the Backward Simulation for mixed Poisson processes is discussed in Section 4.4.

Section 4.5 closes and summarizes the chapter.

119

Chapter 4. Backward Simulation of Mixed Poisson Processes 120

4.0.2 Notation

We make use of the following notation in this chapter.

Symbol Definition

T End of the simulation interval

Ti ith arrival moment

∆Ti := Ti − Ti−1 ith inter-arrival time

T
(k)
i ith arrival moment corresponding to the kth component

λ Mean parameter of a Poisson distribution or the intensity parameter of

a Poisson process

Nt Poisson process

Nt = (N
(1)
t , . . . , N

(d)
t) d-dimensional Poisson process

N̂t Mixed Poisson process

N̂t = (N̂
(1)
t , . . . , N̂

(d)
t) d-dimensional mixed Poisson process

NBt Negative Binomial process

NBt = (NB
(1)
t , . . . ,NB

(d)
t) d-dimensional Negative Binomial process

n Realization of a Poisson, mixed Poisson, or Negative Binomial random

variable

U Structure distribution of a mixed Poisson process

Λ U -distributed non-negative random variable

λ̄ Mean of the intensity parameter of a mixed Poisson process

MP(U) Mixed Poisson distribution with structure distribution U

MP(t, U) Mixed Poisson distribution with structure distribution U at time t

MPP(U) Mixed Poisson processes with structure distribution U

ζ, ξ General integer valued random variables

Xt Mixed Poisson process obtained from Backward Simulation

Xt = (X
(1)
t , . . . , X

(d)
t) Multivariate mixed Poisson process obtained from Backward Simulation

∆sXt The increment Xt+s −Xt of the process Xt in interval [t, t+ s]

ĝ(t, z) Generating function of a mixed Poisson process

ĝNB(t, z) Generating function of a Negative Binomial process

Chapter 4. Backward Simulation of Mixed Poisson Processes 121

4.1 Mixed Poisson Process

We briefly review some properties of the mixed Poisson process. The main results of the theory of mixed

Poisson processes can be found in [58]. Recent results on the characterization of multivariate mixed

Poisson processes are in [130]. First consider a Poisson process

Nt =

∞∑
i=1

1 (Ti ≤ t) (4.1)

where the arrival moments of the process, {Ti}∞i=1, are iid. The inter-arrival times, ∆Ti := Ti− Ti−1 for

i = 1, 2, . . . and T0 = 0, form a sequence of independent identically distributed random variables having

an exponential distribution with parameter λ. It is well known that the number of events, Nt, in the

interval [0, t] has the Poisson distribution with parameter λt:

P(Nt = n) = e−λt (λt)
n

n!
, n = 0, 1, 2, . . . t > 0. (4.2)

A natural generalization of the Poisson distribution is to randomize the intensity parameter λ in (4.2),

leading to the mixed Poisson Distribution (MPD).

Definition 29 (Mixed Poisson Distribution [58]). A discrete random variable N is said to be mixed

Poisson distributed, MP(U), with structure distribution U, if

pn := P(N = n) = E
[(Λ)n

n!
e−Λ

]
=

∫ ∞

0−

(λ)n

n!
e−λdU(λ), n = 0, 1, 2, . . . (4.3)

where Λ is a random variable distributed according to U .

Remark 66. The structure distribution U can be viewed as a prior distribution, which allows us to view

(4.2) as a conditional distribution, given a realization of the intensity parameter Λ = λ and (4.3) as an

unconditional distribution.

Remark 67. Another interpretation of (4.3) is that it is a mixture of Poisson distributions.

Definition 30 (Mixed Poisson Process [58]). N̂t is a mixed Poisson process if it is MP(t, U)-distributed

for all t ≥ 0. That is,

P(N̂t = n) = E
[
(Λt)n

n!
e−Λt

]
=

∫ ∞

0−

(λt)n

n!
e−λtdU(λ), n = 0, 1, 2, (4.4)

The mixed Poisson process is a Poisson process with a non-negative random intensity.

Remark 68. Note that we use MP(t, U), instead of MP(U), when we want to make explicit the depen-

dence on t in an expression such as (4.4).

Lundberg also showed that there exists a mixed Poisson process for each structure distribution U

and that the process is uniquely defined [84]. In what follows, we denote by MPP(U) the class of mixed

Poisson processes with structure distribution U . It is not difficult to see that if N̂t ∈ MPP(U), then the

generating function takes the following form.

Chapter 4. Backward Simulation of Mixed Poisson Processes 122

Definition 31 (Generating function of a mixed Poisson process [58]).

ĝ(t; z) := E [zN̂t] =

∫ ∞

0

ext(z−1) dU(x). (4.5)

The moments take the following form.

Definition 32 (Moments of the mixed Poisson process [58]).

E [N̂t] = λ̄t, σ2(N̂t) = λ̄t+ σ2(Λ)t2, (4.6)

where

λ̄ = E [Λ] =

∫ ∞

0

λ dU(λ), σ2(Λ) =

∫ ∞

0

(λ− λ̄)2 dU(λ). (4.7)

Remark 69. When we construct multivariate mixed Poisson distributions using the EJD approach,

there is no direct dependence between the structure variables. The structure variables indirectly affect

the correlation structures since different realizations (draws) of structure variables results in different

marginal distributions altogether.

Crucially, the mixed Poisson process also posses the conditional uniformity property.

Proposition 4 (Conditional uniformity of the mixed Poisson process [89]). Let N̂t be a mixed Poisson

process defined on the interval [0, T] and suppose that the total number of events n is known at time T :

N̂t =

n∑
i=1

1 (Ti ≤ t) for t ∈ [0, T].

Then, the arrival moments {Ti}ni=1 are independent, identically distributed random variables having a

uniform conditional distribution

P(Ti ≤ t |n) = t

T
i = 1, 2, . . . , n and 0 ≤ t ≤ T. (4.8)

Chapter 4. Backward Simulation of Mixed Poisson Processes 123

4.2 Backward Simulation

In this section, we prove the fundamental result enabling the Backward Simulation for mixed Poisson

processes. That is, we consider, for the remainder of this section, a process, Xt for 0 ≤ t ≤ T , defined as

Xt =

n∑
i=1

1(Ti ≤ t), (4.9)

where n is a realization of the random variable XT ∼ MP(T,U) and the random variables {Ti}ni=1 are

iid having the uniform conditional distribution (4.8) in the interval [0, T]. We remind the reader that

although Theorem 9 below is formulated and proved in the univariate setting, the results extend directly

to the multivariate setting. That is, similar to Theorem 6 in Chapter 3, Theorem 9 extends directly

to the case where Xt is a correlated multivariate mixed Poisson process. This is because of the fact

that, while the dependence structure is specified through the joint distribution, XT , every coordinate

(marginal) of a correlated multivariate mixed Poisson process is itself a (univariate) mixed Poisson

process1. Therefore, given the joint number of events sampled from a suitable joint distribution2, XT ,

the correlated multivariate mixed Poisson process can be constructed within the simulation interval [0, T]

by applying Theorem 9 independently to each coordinate.

We begin by reviewing some notation to keep this chapter as self contained as possible. For a general

d-dimensional vector3, k = (k1, k2, . . . , kd) ∈ Nd
0, with non-negative integer coordinates, kj ≥ 0, we

denote the norm of the vector by

∥k∥ =
d∑

j=1

kj .

For any d-dimensional vector, x = (x1, x2, . . . , xd), with non-negative real coordinates, and k ∈ Nd
0, we

denote

xk :=

d∏
j=1

xj
kj

and introduce the multinomial coefficient

(
k+ l

k

)
:=

(
l +

d∑
i=1

ki

)
!

l! ·
d∏

i=1

ki!

.

The main result of the chapter is the following theorem.

Theorem 9. For t ∈ [0, T], define the process Xt by

Xt =

n∑
i=1

1(Ti ≤ t) (4.10)

where n is a realization of the random variable XT ∼ MP(T,U) and {Ti}ni=1 are independent, identically

1See Definition 9.
2Recall that Chapter 2 is concerned with constructing extreme distributions that exhibit extreme correlations and

constructing distributions that exhibit any admissible correlation that is a convex combination of extreme correlations.
3We emphasize that the d here refers to the dimension of a generic vector and does not refer to the dimensionality of

multivariate Poisson processes.

Chapter 4. Backward Simulation of Mixed Poisson Processes 124

distributed random variables having a uniform conditional distribution (4.8). Then, Xt is a mixed

Poisson process having distribution MP(t, U) in the interval [0, T].

Proof: We prove the following two statements.

1. For any interval (t, t+ s] ⊂ [0, T] of length s ≥ 0, the increments ∆sXt = Xt+s−Xt of the process

Xt are mixed Poisson distributed, with ∆sXt = Xt+s−Xt ∼ MP(s, U). Moreover, the distribution

of the increments ∆sXt does not depend on t.

2. For any l = 2, 3, . . . disjoint sub-intervals (ti, ti+si] ⊂ [0, T] for i = 1, 2, . . . , l, the random variables

∆siXti = Xti+si −Xti , for i = 1, 2, . . . , l, are mutually independent.

Similar to the proof for the Poisson case in Chapter 3, the theorem follows immediately from applying

Lemma 25 and Lemma 26. We begin by proving the first statement above. Note that, since the mixed

Poisson process also possesses the conditional uniformity property (see Proposition 4), the proof of the

first statement is very similar to the Poisson case. Nevertheless, we present the full details of the proof,

since this is the main result of this chapter and we want to keep the chapters as self-contained as possible.

To this end, denote by ∆sXt = Xt+s −Xt, the number of events occurring in the interval [t, t + s].

Then, the probability that k events occur in the interval [t, t+ s] of the process can be expressed, by the

law of total probability, in terms of the conditional probability, as

P(∆sXt = k) =

∞∑
m=0

P(∆sXt = k |XT = k +m) · P(XT = k +m). (4.11)

Since the conditional probability of k events occurring in the sub-interval [t, t+ s] ⊂ [0, T] given a total

of XT = n = k+m independent, uniformly distributed events occurring in the full interval [0, T] is equal

to choosing k out of n = k+m total events in the interval [t, t+s] of length s, with the rest of the events

being in the remainder of the interval [0, T], it follows that

P(∆sXt = k |XT = k +m) =

(
k +m

k

)(
s

T

)k(
1− s

T

)m

, m = 0, 1, (4.12)

Moreover, since XT is MP(T,U) distributed, its generating function takes the form

p̂(z) := E [zXT] =

∫ ∞

0

eλT (z−1) dU(λ). (4.13)

We use Lemma 25 to show that the generating function of ∆sXt also takes the form (4.13), but with T

replaced by s. Thus, ∆sXt is MP(s, U) distributed. To this end, let pk = P(XT = k), for any k ∈ N0,

and x = s/T . Then, note that, by (4.11) and (4.12),

P(∆sXt = k) =

∞∑
m=0

P(∆sXt = k |XT = k +m) · P(XT = k +m)

=

∞∑
m=0

(
k +m

k

)(
s

T

)k(
1− s

T

)m

· P(XT = k +m)

=

∞∑
m=0

pk+m

(
k +m

k

)
xk(1− x)m.

Chapter 4. Backward Simulation of Mixed Poisson Processes 125

Observe that the last line in the set of equations above has the form of qk(x) in Lemma 25. So, let

qk(x) =

∞∑
m=0

pk+m

(
k +m

k

)
xk(1− x)m = P(∆sXt = k), k = 0, 1, 2,

Since qk(x) = P(∆sXt = k), for k = 0, 1, 2, . . . , the generating function E [z∆sXt] of the random variable

∆sXt must be q̂(z;x), the generating function associated with qk(x), for k = 0, 1, 2, From this

observation and Lemma 25, it follows that

E [z∆sXt] = q̂(z;x)

= p̂(1− x+ xz)

= p̂(1− s

T
+

s

T
z)

= p̂(1 +
s

T
(z − 1))

=

∫ ∞

0

exp(λT ((1 +
s

T
(z − 1))− 1)) dU(λ)

=

∫ ∞

0

exp(λs(z − 1)) dU(λ)

where, in the fourth line above, we substituted (4.13). The set of equations above shows that the

generating function of ∆sXt is
∫∞
0

exp(λs(z − 1)) dU(λ), which is the generating function of a mixed

Poisson random variable distributed according to MP(s, U). Therefore, the increments ∆sXt = Xt+s−Xt

of the process Xt are mixed Poisson distributed with ∆sXt ∼ MP(s, U). Moreover, the distribution of

the increments ∆sXt does not depend on t.

Next, we prove the second statement listed at the start of the proof. To this end, for any l = 2, 3, . . . ,

consider any l disjoint sub-intervals (ti, ti + si], for i = 1, 2, . . . , l, where each (ti, ti + si] ⊂ [0, T]. For

i = 1, 2, . . . , l, denote by ∆siXti = Xti+si −Xti the number of events occurring within the sub-interval

(ti, ti + si]. For i = 1, 2, . . . , l, let xi = (ti + si − ti)/T = si/T ∈ [0, 1]. Also, let x = (x1, . . . , xl) and

y = 1−
∑l

i=1 xi. Note that y ∈ [0, 1]. Since the intervals (ti, ti + si], for i = 1, 2, . . . , l, are disjoint and

the events have the uniform conditional distribution (4.8), it follows that

P
(
∆s1Xt1 = k1, . . . ,∆slXtl = kl |XT = m+

l∑
i=1

ki

)
=

(
k+m

k

)
· xk · ym. (4.14)

For any k ∈ N0, let pk = P(XT = k). Then, using (4.14) and the law of total probability, we see that

P
(
∆s1Xt1 = k1, . . . ,∆slXtl = kl

)
=

∞∑
m=0

P
(
∆s1Xt1 = k1, . . . ,∆slXtl = kl |XT = m+

l∑
i=1

ki

)
· P
(
XT = m+

l∑
i=1

ki

)

=

∞∑
m=0

(
k+m

k

)
· xk · ym · P(XT = ∥k∥+m)

=

∞∑
m=0

p∥k∥+m

(
k+m

k

)
· xk · ym.

Observe that the last line in the set of equations above has the form of π(k;x) in Lemma 26. So, for all

Chapter 4. Backward Simulation of Mixed Poisson Processes 126

k = (k1, . . . , kl) ∈ Nl
0, let

π(k;x) =

∞∑
m=0

p∥k∥+m

(
k+m

k

)
· xk · ym = P

(
∆s1Xt1 = k1, . . . ,∆slXtl = kl

)
.

Since, for all k = (k1, . . . , kl) ∈ Nl
0, π(k;x) = P

(
∆s1Xt1 = k1, . . . ,∆slXtl = kl

)
, the generating function

E [z
∆s1

Xt1
1 · · · z∆sl

Xtl

l] of the joint probability distribution of the increments ∆s1Xt1 , . . . ,∆slXtl must be

π̂(z;x), the generating function associated with the probabilities π(k;x), k ∈ Nl
0. From this observation

and Lemma 26 with p̂(z) = E [zXT] =
∫∞
0

exp(λT (z − 1)) dU(λ), it follows that

E
[
z
∆s1

Xt1
1 · · · z∆sl

Xtl

l

]
= π̂(z;x)

= p̂

(
1−

l∑
i=1

xi(1− zi)

)

=

∫ ∞

0

exp

(
λT
(
1−

l∑
i=1

xi(1− zi)− 1
))

dU(λ)

=

∫ ∞

0

exp

(l∑
i=1

λTxi(zi − 1)

)
dU(λ)

=

∫ ∞

0

l∏
i=1

exp(λTxi(zi − 1)) dU(λ)

=

l∏
i=1

∫ ∞

0

exp(λsi(zi − 1)) dU(λ)

=

l∏
i=1

E
[
z
∆si

Xti
i

]
.

where the last line above follows from our proof of the first point of the Theorem, which implies that

E
[
z
∆si

Xti
i

]
=

∫ ∞

0

exp(λsi(zi − 1)) dU(λ) for i = 1, 2, . . . , l.

We see from the set of equations above that the generating function of the joint distribution of the

increments ∆s1Xt1 , . . . ,∆slXtl factors multiplicatively into the product of the generating functions of

the individual increments ∆siXti , i = 1, . . . , l. Therefore, the increments ∆siXti , i = 1, . . . , l, are

mutually independent. That is, the process Xt for 0 < t ≤ T has conditionally independent increments.

□

Chapter 4. Backward Simulation of Mixed Poisson Processes 127

4.2.1 Backward Simulation Algorithm for mixed Poisson processes in d-

dimensions

Algorithm 21 Backward Simulation of correlated multivariate mixed Poisson processes

Require: Vector of mixed Poisson distributions at terminal time T

MP(T,U) = (MP(T,U (1)), . . . ,MP(T,U (d)))

Correlation matrix C

Output: Scenarios of the multivariate mixed Poisson process in [0, T]

1: Construct MP(T,U (k)) distributed marginals [Q
(k)
0 , . . . , Q

(k)

i
(k)
max

] for k = 1, . . . , d

2: Generate the calibrated mixed Poisson measure P (C) using Algorithm 9, which takes as input

[Q
(k)
0 , . . . , Q

(k)

i
(k)
max

]dk=1 and C

3: Generate samples (N (1), . . . , N (d)) ∼ P (C) using Algorithm 18 ▷ Get the number of events at terminal

time T

4: for k = 1, . . . , d do ▷ this can be done in parallel

5: Generate N (k) iid uniform random variables in the interval [0, T]: T(k) = (T
(k)
1 , . . . , T

(k)

N(k))
′

▷ column vector

6: Sort T(k) in ascending order

7: return T = (T(1), . . . ,T(d))

Chapter 4. Backward Simulation of Mixed Poisson Processes 128

4.3 Correlation Structure

The main result of this section (Theorem 10) describes, analytically, the behavior of the correlation

coefficient between a pair of mixed Poisson processes generated using Backward Simulation within the

simulation interval [0, T]. The exposition in this section is in the bivariate setting since Pearson corre-

lation is inherently a bivariate concept. The results in this section extend directly to the multivariate

setting by application of the results to each pair of components of a multivariate mixed Poisson process.

Theorem 10. Consider a bivariate process (X
(1)
t , X

(2)
t) generated using Backward Simulation in the in-

terval [0, T], whence X
(1)
t and X

(2)
t possess the conditional uniformity property (4.8). Let the correlation

coefficient at time T , ρ(T) := corr(X
(1)
T , X

(2)
T), be known. Then ρ(t) = corr(X

(1)
t , X

(2)
t) takes the form

ρ(t) = ρ(T) · Z(T)

Z(t)
, 0 < t ≤ T, (4.15)

where

Z(t) =
σ(X

(1)
t)σ(X

(2)
t)

t2
, t > 0.

and σ2(X
(i)
t) denotes the variance of X

(i)
t for i ∈ {1, 2}.

Proof: Lemma 27 from Chapter 3 does not apply to the mixed Poisson setting since the mean and

the variance of the process are no longer equal. However, the derivation of (3.39) in Lemma 27 does not

rely on the assumption that the mean equals the variance and thus applies to the mixed Poisson setting.

Recall from (3.39) that

Cov(ξ1, ξ2) = xy Cov(ζ1, ζ2),

where ξ and ζ are bivariate integer-valued random variables. By substituting ζ = (X
(1)
T , X

(2)
T), ξ =

(X
(1)
t , X

(2)
t), and x = y = t/T we obtain

Cov(X
(1)
t , X

(2)
t) =

t2

T 2
Cov(X

(1)
T , X

(2)
T).

Dividing both sides of the equation above by σ(X
(1)
t)σ(X

(2)
t), we arrive at

ρ(t) =
Cov(X

(1)
t , X

(2)
t)

σ(X
(1)
t)σ(X

(2)
t)

=
t2

T 2
·
Cov(X

(1)
T , X

(2)
T)

σ(X
(1)
t)σ(X

(2)
t)

=
t2

T 2
·
Cov(X

(1)
T , X

(2)
T)

σ(X
(1)
t)σ(X

(2)
t)
·
σ(X

(1)
T)σ(X

(2)
T)

σ(X
(1)
T)σ(X

(2)
T)

= ρ(T) · t
2

T 2
·
σ(X

(1)
T)σ(X

(2)
T)

σ(X
(1)
t)σ(X

(2)
t)

= ρ(T) · Z(T)

Z(t)
,

(4.16)

as was to be proved. □

Chapter 4. Backward Simulation of Mixed Poisson Processes 129

Remark 70. Crucially, the correlation at terminal time is also preserved in the mixed Poisson case.

This can be seen by substituting T for t in (4.15), whereby the second term on the right side of the

equation cancels out.

Remark 71. In the Poisson case, the auxiliary function Z(T)/Z(t) in (4.15) reduces to tT−1, resulting

in a correlation structure that is linear in time within the simulation interval [0, T]. This is not true in

general for mixed Poisson processes. Consider, for example, the Negative Binomial processes, where the

auxiliary functions take the form

ρ(t) = ρ(T) · Z(T)

Z(t)

= ρ(T) · t
T
·

√
(λ̄(1) + σ2(λ1)T)(λ̄(2) + σ2(λ2)T)

(λ̄(1) + σ2(λ1)t)(λ̄(2) + σ2(λ2)t)
. (4.17)

The difference in the correlation structure between the Poisson and Negative Binomial case can be seen

in Figure 4.1. The square root term in (4.17) causes the correlation function in the Negative Binomial

case to display a convex behavior in comparison to the linear behavior displayed in the Poisson case.

The Negative Binomial (NB) process is a concrete instance of a mixed Poisson process where the

structure distribution, U , is gamma distributed [58]. Unlike the Poisson process, the Negative Binomial

process does not have the restriction that its mean equals its variance and, for this reason, is widely

used to model count data that exhibits overdispersion.

Figure 4.1 depicts the correlation structure obtained from simulating a bivariate Negative Binomial

process where the mean of the intensities are 3 and 5 and the variance of the intensities are 5 and 7,

respectively, calibrated to correlations of 0.7 and −0.9, respectively, at terminal time T = 5, within

the simulation interval [0, 5] under Backward Simulation. We used Backward Simulation with 1,000,000

Monte Carlo samples to compute the dashed black lines in Figure 4.1. The blue circles depict the

theoretical values according to (4.17). Note the good agreement between the theoretical and the empirical

results. Also note that the extreme positive and extreme negative correlations in this case are 0.9972

and −0.96, respectively, and that any correlation, at the terminal time T = 5, within the interval

[0.9972,−0.96] is attainable under our Backward Simulation approach. The red lines depict the Poisson

case from Figure 3.1 for comparison.

Chapter 4. Backward Simulation of Mixed Poisson Processes 130

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
(t

)

Figure 4.1: The dashed black lines depict the correlation structure for two bivariate Negative Binomial
process, with means 3 and 5 and variances 5 and 7, calibrated to ρ(T) = 0.7 and ρ(T) = −0.9, respec-
tively, computed by Backward Simulation. The blue circles depict the theoretical values according to
(4.17). The dashed red lines depict the Poisson case: two bivariate Poisson processes with intensities 3
and 5, calibrated to ρ(T) = 0.7 and ρ(T) = −0.9, respectively, computed by Backward Simulation.

Chapter 4. Backward Simulation of Mixed Poisson Processes 131

4.4 Forward Continuation of the Backward Simulation for Mixed

Poisson Processes

The conditional independence of the increments of a mixed Poisson process, as noted in Section 3.3,

presents a challenge in continuing forward a mixed Poisson process already simulated within an interval

[0, T]. Our particular approach, however, to Forward Continuation of a Poisson process extends naturally

to the mixed Poisson process setting. To be more specific, consider a bivariate mixed Poisson process

(X
(1)
t , X

(2)
t) already simulated within the interval [0, T] and suppose that we wish to continue forward

the process to the subsequent interval [T, 2T]. First, we draw an independent sample from the joint

distribution at time T :

(∆TX
(1)
T ,∆TX

(2)
T)

d
=(X

(1)
T , X

(2)
T),

where ∆TX
(i)
T = X

(i)
2T −X

(i)
T , for i ∈ {1, 2}. Note that the bivariate random variable (∆TX

(1)
T ,∆TX

(2)
T)

has the same prescribed mixed Poisson marginals and prescribed correlation, C, between its components

as (X
(1)
T , X

(2)
T). Then, we set

(X
(1)
2T , X

(2)
2T) = (X

(1)
T , X

(2)
T) + (∆TX

(1)
T ,∆TX

(2)
T)

and, as in Backward Simulation, we use (∆TX
(1)
T ,∆TX

(2)
T) and the conditional independence property

(similar to (4.8)) to generate the uniform arrival moments {T (1)
i }

∆TX
(1)
T

i=1 and {T (2)
i }

∆TX
(2)
T

i=1 in the interval

[T, 2T].

Note that the Forward Continuation method remains applicable in the mixed Poisson setting because

a mixed Poisson process is defined via a single structural variable Λ that is shared across all times.

Conditional on Λ, the process is a time-homogeneous Poisson process with independent and stationary

increments.

Forward Continuation, described above, can be repeatedly applied to extend a bivariate mixed

Poisson process simulated by Backwards Simulation on an interval [0, T] to any subsequent interval

[mT, (m + 1)T] for any non-negative integer m. Algorithm 22 in Section 4.4.2 below combines Back-

ward Simulation and Forward Continuation of Backward Simulation to generate arrival moments for a

d-dimensional mixed Poisson process on an interval [0,mT], for any positive integer m. We call this al-

gorithm Forward-Backward Simulation because it starts with one step of Backward Simulation followed

by m− 1 steps of Forward Continuation of Backward Simulation.

Finally, we note again that, although the exposition in this section is in the bivariate setting, the

results extend straightforwardly to the general d-dimensional setting.

4.4.1 Forward Correlation Structure

We analyze the behavior of the correlation coefficient under the Forward Continuation of Backward

Simulation by deriving an expression for ρ(mT + τ) = corr(X
(1)
mT+τ , X

(2)
mT+τ) as a function of ρ(T) =

corr(X
(1)
T , X

(2)
T) for any non-negative integer m and any τ ∈ [0, T] in Theorem 11 below. Similar to the

Poisson case, ρ(mT + τ) attains asymptotic stationarity follows by Corollary 4 below.

Theorem 11. The correlation coefficient ρ(mT + τ) = corr(X
(1)
mT+τ , X

(2)
mT+τ) for any non-negative

Chapter 4. Backward Simulation of Mixed Poisson Processes 132

integer m and any τ ∈ [0, T] as a function of ρ(T) = corr(X
(1)
T , X

(2)
T) takes the form

ρ(mT + τ) = ρ(T) · (m+
τ2

T 2
) ·

σ(X
(1)
T)σ(X

(2)
T)√

mσ2(X
(1)
T) + σ2(X

(1)
τ)

√
mσ2(X

(2)
T) + σ2(X

(2)
τ)

. (4.18)

Proof: First note that, for m = 0, (4.18) follows from Theorem 11. To show that (4.18) also holds

for all m ≥ 1, we begin by deriving an expression for ρ(T + τ). To this end, let ∆τX
(1)
T = X

(1)
T+τ −X

(1)
T

and ∆τX
(2)
T = X

(2)
T+τ −X

(2)
T and note that each of the increments ∆τX

(1)
T and ∆τX

(2)
T is independent

of both X
(1)
T and X

(2)
T . Therefore, the covariance of the bivariate mixed Poisson process satisfies

Cov(X
(1)
T+τ , X

(2)
T+τ) = Cov(X

(1)
T +∆τX

(1)
T , X

(2)
T +∆τX

(2)
T)

= Cov(X
(1)
T , X

(2)
T) + Cov(∆τX

(1)
T ,∆τX

(2)
T)

(4.19)

and, for each i ∈ {1, 2}, the variance satisfies

σ2(X
(i)
T+τ) = σ2(X

(i)
T +∆τX

(i)
T)

= σ2(X
(i)
T) + σ2(∆τX

(i)
T).

(4.20)

Unlike the Poisson case, Lemma 27 in Chapter 3 cannot be applied since for a mixed Poisson random

variable the mean is not equal to the variance. However, (3.39) holds true in the mixed Poisson setting.

By substituting ζ = (X
(1)
T , X

(2)
T), ξ = (∆τX

(1)
T ,∆τX

(2)
T), and x = y = τT−1 into (3.39), it can be shown

that

Cov(X
(1)
T+τ , X

(2)
T+τ) = (1 +

τ2

T 2
) · Cov(X(1)

T , X
(2)
T). (4.21)

Dividing both sides of (4.21) by σ(X
(1)
T+τ)σ(X

(2)
T+τ) and using arguments similar to those used to show

(4.16), we obtain

ρ(T + τ) = ρ(T) · (1 + τ2

T 2
) ·

σ(X
(1)
T)σ(X

(2)
T)

σ(X
(1)
T+τ)σ(X

(2)
T+τ)

.

By using induction on m and arguments similar those used in deriving (4.21), we obtain

Cov(X
(1)
mT+τ , X

(2)
mT+τ) = (m+

τ2

T 2
) · Cov(X(1)

T , X
(2)
T) (4.22)

whence

ρ(mT + τ) = ρ(T) · (m+
τ2

T 2
) ·

σ(X
(1)
T)σ(X

(2)
T)

σ(X
(1)
mT+τ)σ(X

(2)
mT+τ)

. (4.23)

Induction on m can be used to show that X
(i)
mT and ∆τX

(i)
mT are independent, similar to ∆τX

(i)
T and

X
(i)
T , for i ∈ {1, 2}. Therefore, we have that

σ2(X
(i)
mT +∆τX

(i)
mT) = σ2(X

(i)
mT) + σ2(∆τX

(i)
mT) (4.24)

for i ∈ {1, 2}. Furthermore, since our construction of the process at the end of the time interval

[T, 2T] consists of drawing another bivariate random variable (∆TX
(1)
T ,∆TX

(2)
T) that has the same joint

Chapter 4. Backward Simulation of Mixed Poisson Processes 133

distribution as (X
(1)
T , X

(2)
T), we have that σ2(X

(1)
T) = σ2(∆TX

(1)
T), whence

σ2(X
(1)
2T) = σ2(X

(1)
T +∆TX

(1)
T)

= σ2(X
(1)
T) + σ2(∆TX

(1)
T)

= 2σ2(X
(1)
T).

(4.25)

By induction on m and an argument similar to the one used in deriving (4.25), we get that

σ2(X
(1)
mT) = mσ2(X

(1)
T). (4.26)

Similarly,

σ2(X
(2)
mT) = mσ2(X

(2)
T). (4.27)

Then, by using (4.24), (4.26), and (4.27), we can derive from (4.23) that

ρ(mT + τ) = ρ(T)(m+
τ2

T 2
) ·

σ(X
(1)
T)σ(X

(2)
T)√

σ2(X
(1)
mT +∆τX

(1)
mT)

√
σ2(X

(2)
mT +∆τX

(2)
mT)

= ρ(T)(m+
τ2

T 2
) ·

σ(X
(1)
T)σ(X

(2)
T)√

σ2(X
(1)
mT) + σ2(∆τX

(1)
mT)

√
σ2(X

(2)
mT) + σ2(∆τX

(2)
mT)

= ρ(T)(m+
τ2

T 2
)

· σ(X
(1)
T)σ(X

(2)
T)√

mσ2(X
(1)
T) + σ2(X

(1)
τ)

√
mσ2(X

(2)
T) + σ2(X

(2)
τ)

. (4.28)

□

We show below how (4.28) leads to the asymptotic stationarity of the correlation coefficient.

Corollary 4 (Asymptotic Stationarity of the Forward Continuation). The correlation ρ(mT+τ) achieves

asymptotic stationarity as m→∞. More specifically,

lim
m→∞

ρ(mT + τ) = ρ(T), for any τ ∈ [0, T]. (4.29)

Proof: From (4.28) we have that

ρ(mT + τ) = ρ(T)(m+
τ2

T 2
) ·

σ(X
(1)
T)σ(X

(2)
T)√

mσ2(X
(1)
T) + σ2(X

(1)
τ)

√
mσ2(X

(2)
T) + σ2(X

(2)
τ)

= ρ(T)(m+
τ2

T 2
) · 1

m
·

σ(X
(1)
T)σ(X

(2)
T)√

σ2(X
(1)
T) + (1/m)σ2(X

(1)
τ)

√
σ2(X

(2)
T) + (1/m)σ2(X

(2)
τ)

.

Passing to the limit as m→∞ in the standard manner, we obtain that

lim
m→∞

ρ(mT + τ) = ρ(T),

Chapter 4. Backward Simulation of Mixed Poisson Processes 134

as was to be proved. □

Figure 4.2 depicts the correlation structure obtained from simulating a bivariate Negative Binomial

process where the mean of the intensities are 3 and 5 and the variance of the intensities are 5 and 7, re-

spectively, calibrated to correlations of 0.7 and -0.8, respectively, at terminal time T = 1 using Backward

Simulation on the interval [0, 1] within the simulation interval [0, 5] where Forward Continuation of the

Backward Simulation is used on each of the intervals [m,m + 1] for m = 1, 2, 3, 4. We used Backward

Simulation with 1,000,000 Monte Carlo samples to compute the dashed black lines in Figure 4.2. The

blue circles depict the theoretical values according to (4.28). Note the good agreement between the the-

oretical and the empirical results. The dashed red lines depict the Poisson case: two bivariate Poisson

processes with intensities 3 and 5, calibrated to ρ(T) = 0.7 and ρ(T) = −0.8, respectively, computed by

the Forward-Backward Simulation approach.

The extreme positive and extreme negative correlations are 0.9972 and -0.8010 in the Negative Bino-

mial case. Note the difference between these values and the extreme positive and negative correlations of

0.9972 and −0.96 from Figure 4.1 in Section 4.2. The difference in extreme negative correlations stems

from the fact that the bivariate process is calibrated to the terminal time T = 5 in Figure 4.1 but to a

terminal time of T = 1 in Figure 4.2, below.

Chapter 4. Backward Simulation of Mixed Poisson Processes 135

4.4.2 Forward-Backward Simulation Algorithm in d-dimensions

Algorithm 22 Forward-Backward Simulation of correlated multivariate mixed Poisson processes

Require: Vector of marginal mixed Poisson distributions at time T

MP(T,U) = (MP(T,U (1)), . . . ,MP(T,U (d)))

Correlation matrix C

The number of intervals m (i.e., [0, T], [T, 2T], · · · , [(m− 1)T,mT]) used in the Forward-

Backward Simulation Algorithm

Output: Scenarios of the multivariate Poisson process in the interval [0,mT]

1: Construct MP(T,U (k)) distributed marginals [Q
(k)
0 , . . . , Q

(k)

i
(k)
max

] for k = 1, . . . , d

2: Generate the calibrated mixed Poisson measure P (C) using Algorithm 9, which takes as input

[Q
(k)
0 , . . . , Q

(k)

i
(k)
max

]dk=1 and C

3: for i = 1, . . . ,m do

4: Generate samples (N (1), . . . , N (d)) ∼ P (C) using Algorithm 18 ▷ Get the number of events in the

interval [(i− 1)T, iT]

5: for k = 1, . . . , d do ▷ this can be done in parallel

6: Generate N (k) iid uniform random variables in the interval [(i− 1)T, iT]: T
(k)
i =

(T
(k)
1 , . . . , T

(k)

N(k))
′ ▷ column vector

7: Sort T
(k)
i in ascending order

8: Append T
(k)
i to T(k)

9: return T = (T(1), . . . ,T(d))

Chapter 4. Backward Simulation of Mixed Poisson Processes 136

4.5 Summary

In this chapter, we extended the Backward Simulation methodology to mixed Poisson processes. Similar

to the Poisson case, the extreme joint distributions, constructed using the EJD approach in Chapter 2,

enable the simulation of correlated multivariate mixed Poisson processes. In particular, Backward Sim-

ulation is able to generate all admissible distributions at the endpoint T of the interval [0, T]. Forward

Continuation of Backward Simulation enables the process generated by Backward Simulation within the

interval [0, T] to be extended to intervals [mT, (m+1)T] for any positive integer m, where the correlation

displays the asymptotic behavior

ρ(mT + τ) ≈ ρ(T)

for all m sufficiently large, all τ in [0, T], and for any admissible correlation matrix ρ(T).

Our contributions, published in [18], are summarized below:

• We showed rigorously that the Backward Simulation approach applies to mixed Poisson processes.

• We derived an analytic form for the correlation structure between bivariate mixed Poisson pro-

cesses. Note that this extends directly to multivariate settings since the Pearson correlation is

bivariate in nature.

• We extended the Forward Continuation of the Backward Simulation to mixed Poisson processes and

showed that the correlation structure under Forward Continuation attains asymptotic stationarity.

Chapter 4. Backward Simulation of Mixed Poisson Processes 137

0
0
.5

1
1
.5

2
2
.5

3
3
.5

4
4
.5

5

t

-1

-0
.8

-0
.6

-0
.4

-0
.20

0
.2

0
.4

0
.6

0
.8

(t)

Figure 4.2: The dashed black lines depict the correlation structure for two bivariate Negative Binomial
processes with means 3 and 5 and variances 5 and 7, calibrated to ρ(T) = 0.7 and ρ(T) = −0.8,
respectively, computed by the Forward-Backward Simulation approach. The blue circles depict the
theoretical values according to (4.28). The dashed red lines depict the Poisson case: two bivariate
Poisson processes with intensities 3 and 5, calibrated to ρ(T) = 0.7 and ρ(T) = −0.8, respectively,
computed by the Forward-Backward Simulation approach.

Chapter 5

Backward Simulation of Compound

Poisson Processes

The compound Poisson process is an important generalization of Poisson processes where the jump size

is a random variable instead of being unit size. Compound Poisson processes, having jump sizes that are

integer-valued, are known as discrete compound Poisson processes; they are known simply as compound

Poisson processes when the jump size is real-valued. Compound Poisson processes are widely used in

many areas related to applied probability. Some examples include Operational Risk [96], Insurance [36],

Change-point Theory [22] and Algorithmic Trading [52].

Backward Simulation and Forward Continuation of Backward Simulation can be extended to com-

pound Poisson processes. This is due to the special structure of the compound Poisson process which

our Backward Simulation approach exploits.

Similar to the Poisson and the mixed Poisson cases, previous work on correlating bivariate compound

Poisson distributions had restrictions on the attainable correlations and were unable to achieve the full

range of admissible correlations [28, 118]. In particular, negative correlation between the components

of a multivariate compound Poisson process, to the best of our knowledge, has been unattainable by

previous work in the literature.

Finally, we note that while the majority of the exposition in this chapter is in the bivariate setting,

the discussions generalize immediately to the multivariate setting. We also note that, while the results

in this chapter are discussed in the setting of compound Poisson processes for simplicity, the results

extend easily to compound mixed Poisson processes.

5.0.1 Outline

In Section 5.1, we review the basics of compound Poisson processes. The Backward Simulation of

compound Poisson processes is discussed in Section 5.2. The correlation structure of compound Poisson

processes generated by Backward Simulation is discussed in Section 5.3. The Forward Continuation of

the Backward Simulation for compound Poisson processes and its correlation structure are discussed in

Section 5.4. Section 5.5 closes and summarizes the chapter.

138

Chapter 5. Backward Simulation of Compound Poisson Processes 139

5.0.2 Notation

We make use of the following notation in this chapter.

Symbol Definition

Ti ith arrival moment

S Random variable representing a random sum

Sn Random variable representing a random sum consisting of n elements

n Realization of the random variable XT

Z Generic random variable or the jump variable for a compound Poisson process

FZ Secondary distribution of a compound Poisson process

FZ = (F
(1)
Z , . . . , F

(d)
Z) d-dimensional vector of secondary distributions

z Secondary matrix

Nt Poisson process

Nt = (N
(1)
t , . . . , N

(d)
t) d-dimensional Poisson process

Xt Poisson process obtained from Backward Simulation

Xt = (X
(1)
t , . . . , X

(d)
t) Multivariate Poisson process obtained from Backward Simulation

λ Mean parameter of a Poisson distribution or the intensity parameter of a Pois-

son process

λ = (λ1, . . . , λd) d-dimensional vector of intensities corresponding to Nt or Xt

Lt Compound Poisson process

Yt Compound Poisson process obtained from Backward Simulation

Yt = (Y
(1)
t , . . . , Y

(d)
t) d-dimensional compound Poisson process obtained from Backward Simulation

∆sYt The increment Yt+s − Yt of the process Yt in interval [t, t+ s]
d
= Equal in distribution

MZ(u) Moment generating function of the random variable Z

D Generic random variable

Di Random variable identically and independently distributed having the same

distribution as D

C Correlation matrix

Q(k) kth marginal probability distribution

Q
(k)
i kth marginal probability at point i of the domain

ρ(t) Correlation at time t between Y
(1)
t and Y

(2)
t

ρ̂(t) Correlation at time t between X
(1)
t and X

(2)
t

Chapter 5. Backward Simulation of Compound Poisson Processes 140

5.1 Compound Poisson Processes

We briefly review the basics of compound Poisson processes. Standard results for compound Poisson

processes can be found in [40, 58].

Definition 33 (Compound Poisson Distribution [40]). The random variable

S = Z1 + Z2 + · · ·+ ZN

is said to be compound Poisson distributed if N ∼ Pois(λ) and the random variables {Zi}∞i=1 are iden-

tically and independently distributed having the common distribution FZ which is independent of N and

has finite expectation and finite variance. N is known as the primary random variable having, in this

case, Pois(λ) as the primary distribution and FZ is known as the secondary distribution.

Remark 72. For the remainder of this chapter, we assume that the secondary distribution FZ has finite

expectation and variance.

Remark 73. It is well known that the moment generating function of the sum Sn = Z1 + · · · + Zn,

where Z1, . . . , Zn are iid with the common distribution FZ and n is fixed, is

MSn
(u) = MZ1

(u)MZ2
(u) · · ·MZn

(u)

= [MZ(u)]
n,

(5.1)

where MZ(u) = E [exp(uZ)] is the moment generating function of Z.

Definition 34 (Compound Poisson Process [40]). The process

Lt =

Nt∑
i=1

Zi (5.2)

is said to be a compound Poisson process if Nt, known as the primary process, is a Poisson process with

intensity λ and the random variables Zi, are identically and independently distributed having the common

distribution FZ which has finite expectation and finite variance and is independent of the primary process

Nt.

Remark 74. In Operational Risk, Nt in (5.2) is known as the frequency process and the secondary

distribution FZ is known as the loss distribution.

The mean and the variance of a compound Poisson process are given as follows.

Proposition 5 (Moments of a Compound Poisson Process [40]). The mean and variance of a compound

Poisson process Lt having Poisson primary process Nt with intensity λ and secondary distribution FZ

is given by

E [Lt] = λtE [Z] (5.3)

and

σ2(Lt) = λtE (Z2). (5.4)

Chapter 5. Backward Simulation of Compound Poisson Processes 141

Proposition 6 (Moment Generating Function of a Compound Poisson Process [40]). The moment

generating function for a compound Poisson process Lt is

MLt
(u) = E [exp(u ·

Nt∑
i=1

Zi)]

= exp(λt [MZ(u)− 1]).

(5.5)

Moreover, for an increment ∆sLt = Lt+s − Lt of the compound Poisson process Lt, the moment gener-

ating function takes the form

M∆sLt(u) = exp(λs [MZ(u)− 1]). (5.6)

Chapter 5. Backward Simulation of Compound Poisson Processes 142

5.2 Backward Simulation

In this section, we prove the fundamental result, enabling the Backward Simulation of compound Poisson

processes. That is, we consider, for the remainder of this section, a process Yt, for 0 ≤ t ≤ T , defined as

Yt =

n∑
i=1

1(Ti ≤ t) · Zi (5.7)

where n is a realization of the random variable XT ∼ Pois(λT), {Ti}ni=1 ⊂ [0, T] are independent and

identically distributed random variables having a uniform conditional distribution,

P(Ti ≤ t |XT = n) =
t

T
i = 1, 2, . . . , n and 0 ≤ t ≤ T (5.8)

and the Zi are independently and identically distributed random variables having the common distribu-

tion FZ and also independent of XT and Ti for i = 1, 2, . . . , n. We remind the reader that, similar to

the Poisson and the mixed Poisson cases, although Theorem 12 below is formulated and proved in the

univariate setting, the results extend directly to the case where Yt is a correlated multivariate compound

Poisson process. This is because of the fact that, while the dependence structure is specified through

the joint distribution of the multivariate Poisson random variable XT , every coordinate (marginal) of

a correlated multivariate compound Poisson process is itself a (univariate) compound Poisson process1.

Therefore, given the joint number of events sampled from a suitable joint distribution2 for XT , the cor-

related multivariate compound Poisson process can be constructed within the simulation interval [0, T]

by applying Theorem 12 independently to each coordinate. See Algorithm 23 below.

The main result of the chapter is the following theorem.

Theorem 12 (Backward Simulation of Compound Poisson Processes). For t ∈ [0, T], define the pro-

cesses Xt and Yt by

Xt =

n∑
i=1

1(Ti ≤ t), (5.9)

Yt =

n∑
i=1

1(Ti ≤ t), ·Zi (5.10)

where n is a realization of the random variable XT ∼ Pois(λT), {Ti}ni=1 are identically and independently

distributed random variables having the conditional uniform distribution

P (Ti ≤ t |XT = n) =
t

T
i = 1, 2, . . . , n, 0 ≤ t ≤ T (5.11)

and {Zi}ni=1 is a sequence of identically and independently distributed random variables having the com-

mon distribution FZ , which is independent of XT and Ti for i = 1, 2, . . . , n. Then, for t ∈ [0, T], Xt is

a Poisson process with intensity λ and Yt is a compound Poisson process having the primary process Xt

and the secondary distribution FZ .

Proof: To begin, note that we proved in Theorem 6 that, for t ∈ [0, T], the random process Xt

1See Definition 13.
2Recall that Chapter 2 is concerned with constructing extreme distributions that exhibit extreme correlations and

constructing distributions that exhibit any admissible correlation that is a convex combination of extreme correlations.

Chapter 5. Backward Simulation of Compound Poisson Processes 143

defined in (5.9) is a Poisson process with intensity λ. Therefore, for t ∈ [0, T], s ≥ 0 and [t, t+s] ⊂ [0, T],

∆sXt = Xt+s −Xt ∼ Pois(λs). Hence, for any non-negative integer k,

P(∆sXt = k) = e−λs (λs)k

k!
. (5.12)

Also, note that we can renumber the Ti, i = 1, 2, . . . , n, so that T1 ≤ T2 ≤ · · · ≤ Tn. Since the Ti are

uniformly distributed (5.11), we have that T1 < T2 < · · · < Tn, almost surely. This renumbering does

not affect the values of either of the sums (5.10) or (5.9) in Theorem 12, but it does allow us to rewrite

(5.10) as

Yt =

Xt∑
i=1

Zi. (5.13)

To use (5.13) in the proof below, assume that the Ti, i = 1, 2, . . . , n, are ordered from smallest to largest

for the remainder of this proof.

Since Y0 = 0 almost surely, it follows from Definition 3 and Proposition 6 that, to prove the Yt defined

in (5.10) is a compound Poisson process for t ∈ [0, T] having the primary process Xt, a Poisson process

with intensity λ generated by Backward Simulation on the interval [0, T], and having the secondary

distribution FZ , it is sufficient to prove that the following two statements hold.

1. For any interval (t, t+ s] ⊂ [0, T] of length s ≥ 0, the increment ∆sYt = Yt+s−Yt of the process Yt

has the moment generating function M∆sYt
(u) = exp(λs[MZ(u)−1]), where MZ(u) is the moment

generating function of the secondary distribution FZ . Moreover, the distribution of the increment

∆sYt does not depend on t.

2. For any l = 2, 3, . . . disjoint sub-intervals (ti, ti+si] ⊂ [0, T] for i = 1, 2, . . . , l, the random variables

∆siYti = Yti+si − Yti , for i = 1, 2, . . . , l, are mutually independent.

We begin by proving the first statement above. To this end, choose any t ≥ 0 and s ≥ 0 such that

(t, t+ s] ⊂ [0, T]. Using (5.13), we get that

∆sYt = Yt+s − Yt

=

Xt+s∑
i=1

Zi −
Xt∑
i=1

Zi

=

Xt+s∑
i=Xt+1

Zi

=

∆sXt∑
i=1

ZXt+i.

(5.14)

Using the definition of the moment generating function and (5.14), we get that

M∆sYt
(u) = E [exp(u∆sYt)]

= E

[
exp

(
u

∆sXt∑
i=1

ZXt+i

)]
.

(5.15)

Expanding the last line of (5.15) as a conditional expectation and using the property ex+y = ex ey of

Chapter 5. Backward Simulation of Compound Poisson Processes 144

the exp function, we get that

M∆sYt
(u) =

∞∑
k=0

E

[
exp

(
u

k∑
i=1

ZXt+i

)∣∣∆sXt = k

]
P(∆sXt = k)

=

∞∑
k=0

E

[
k∏

i=1

exp (uZXt+i)
∣∣∆sXt = k

]
P(∆sXt = k).

(5.16)

Since the ZXt+i, for i = 1, 2, . . . , k, are iid with the same distribution as the secondary distribution FZ ,

it follows from (5.16) that

M∆sYt(u) =

∞∑
k=0

(
k∏

i=1

E [exp (uZXt+i)]

)
P(∆sXt = k)

=

∞∑
k=0

(
E [exp (uZ)]

)k P(∆sXt = k).

(5.17)

Using MZ(u) = E [exp (uZ)] and (5.12), it follows from (5.17) that

M∆sYt
(u) =

∞∑
k=0

(
MZ(u)

)k P(∆sXt = k)

=

∞∑
k=0

(
MZ(u)

)k
e−λs (λs)k

k!

= e−λs
∞∑
k=0

(
λsMZ(u)

)k
k!

= e−λs eλsMZ(u)

= exp(λs[MZ(u)− 1]).

(5.18)

Therefore, we have shown that M∆sYt
(u) = exp(λs[MZ(u)−1]), where MZ(u) is the moment generating

function of the secondary distribution FZ . Moreover, the distribution of the increment ∆sYt does not

depend on t. Hence, we have shown that the first statement listed near the start of the proof holds.

Chapter 5. Backward Simulation of Compound Poisson Processes 145

Next, we prove the second statement listed near the start of the proof. To this end, for any l = 2, 3, . . . ,

consider any l disjoint sub-intervals (ti, ti + si], for i = 1, 2, . . . , l, where each (ti, ti + si] ⊂ [0, T]. Since

the intervals are disjoint, there is a permutation σ of the integers {1, 2, . . . , l} such that

tσ(1) ≤ tσ(1) + sσ(1) ≤ tσ(2) ≤ tσ(2) + sσ(2) ≤ · · · ≤ tσ(l) ≤ tσ(l) + sσ(l). (5.19)

To ease the notational burden, we assume for the remainder of the proof that the ti and si have been

renumbered in accordance with (5.19). That is,

t1 ≤ t1 + s1 ≤ t2 ≤ t2 + s2 ≤ · · · ≤ tl ≤ tl + sl. (5.20)

It follows from (5.20) and from our earlier stated assumption that the arrival moments are ordered that

Xt1 ≤ Xt1+s1 ≤ Xt2 ≤ Xt2+s2 ≤ · · · ≤ Xtl ≤ Xtl+sl . (5.21)

Denote by ∆siXti = Xti+si − Xti the number of events occurring within the sub-interval (ti, ti + si].

Note that (5.21) implies that the sets

{Xti+j : j = 1, 2, ...,∆siXti} for i = 1, 2, . . . , l (5.22)

are disjoint since the last element of the mth set is Xtm +∆smXtm = Xtm+sm , the first element of the

(m+1)st set isXtm+1
+1 form = 1, 2, . . . , l−1 and we have from (5.21) thatXtm+sm ≤ Xtm+1

< Xtm+1
+1.

The joint moment generating function of the l increments, ∆siYti , i = 1, . . . , l, takes the form

M∆s1
Yt1

···∆sl
Ytl

(u1, u2, . . . , ul) = E [exp(u1∆s1Ys1 + · · ·+ ul∆slYsl)]. (5.23)

Using (5.14), we can rewrite the right side of (5.23) as

E
[
exp

(
u1 ·

∆s1Xt1∑
i=1

ZXt1+i + · · ·+ ul ·
∆slXtl∑
i=1

ZXtl+i

)]
. (5.24)

By the law of iterated expectations, we can expand (5.24) into a joint conditional expectation:

E
[
E
[
exp

(
u1 ·

∆s1Xt1∑
i=1

ZXt1+i + · · ·+ ul ·
∆slXtl∑
i=1

ZXtl+i

) ∣∣∣∆s1Xt1 = k1, . . . ,∆slXtl = kl

]]
=

∞∑
k1=0

· · ·
∞∑

kl=0

E
[
exp(u1 ·

k1∑
i=1

ZXt1+i + · · ·+ ul ·
kl∑
i=1

ZXtl+i

)]
· P(∆s1Xt1 = k1, . . . ,∆slXtl = kl).

(5.25)

Since, by Theorem 6, the increments ∆siXti , for i = 1, 2, . . . , l, are independent, the joint probability in

(5.25) factors multiplicatively:

P(∆s1Xt1 = k1, . . . ,∆slXtl = kl) = P(∆s1Xt1 = k1) · · ·P(∆slXtl = kl). (5.26)

Moreover, using the basic property that ex+y = exey, we can rewrite the expectation term in the second

Chapter 5. Backward Simulation of Compound Poisson Processes 146

line of (5.25) as

E
[
exp(u1 ·

k1∑
i=1

ZXt1+i
+ · · ·+ ul ·

kl∑
i=1

ZXtl+i

)]
= E

[(k1∏
i=1

exp(u1ZXt1+i
)
)
· · ·
(kl∏

i=1

exp(ulZXtl+i
)
)]

.

(5.27)

Since, as noted above, the set of indices (5.22) corresponding to the sets {ZXti+j
: j = 1, 2, ...,∆siXti},

for i = 1, 2, . . . , l, are disjoint and non-decreasing (5.21), each ZXti
+j appears exactly once in the product

of exponential terms in the second line of (5.27). In addition, from the hypothesis of Theorem 12, the

ZXti
+j are iid. Therefore, we can factor the expectation of products in the second line of (5.27) into a

product of expectations:

E
[(k1∏

i=1

exp(u1ZXt1+i
)
)
· · ·
(kl∏

i=1

exp(ulZXtl+i
)
)]

=
(k1∏

i=1

E [exp(u1ZXt1+i
)]
)
· · ·
(kl∏

i=1

E [exp(ulZXtl+i
)]
)
.

(5.28)

Using again the property we used above to factor the expectation of a product of iid random variables

into a product of expectations of those random variables, but now in the reverse direction, as well as the

basic property that ex+y = exey, we can rewrite the last line of (5.28) as

(k1∏
i=1

E [exp(u1ZXt1+i
)]
)
· · ·
(kl∏

i=1

E [exp(ulZXtl+i
)]
)

= E
[k1∏
i=1

exp(u1ZXt1+i
)
]
· · ·E

[kl∏
i=1

exp(ulZXtl+i
)
]

= E
[
exp

(
u1 ·

k1∑
i=1

ZXt1+i

)]
· · ·E

[
exp

(
ul ·

kl∑
i=1

ZXtl+i

)]
.

(5.29)

Chapter 5. Backward Simulation of Compound Poisson Processes 147

Combining (5.23)–(5.29), we get that

M∆s1
Yt1

···∆sl
Ytl

(u1, u2, . . . , ul)

=

∞∑
k1=0

· · ·
∞∑

kl=0

E
[
exp

(
u1 ·

k1∑
i=1

ZXt1+i

)]
· · ·E

[
exp

(
ul ·

kl∑
i=1

ZXtl+i

)]
· P(∆s1Xt1 = k1) · · ·P(∆slXtl = kl)

=

(∞∑
k1=0

E
[
exp

(
u1 ·

k1∑
i=1

ZXt1+i

)]
· P(∆s1Xt1 = k1)

)

· · ·

(∞∑
kl=0

E
[
exp

(
ul ·

kl∑
i=1

ZXtl+i

)]
· P(∆slXtl = kl)

)

=

 ∞∑
k1=0

E
[
exp

(
u1 ·

∆s1Xt1∑
i=1

ZXt1+i

) ∣∣∣∆s1Xt1 = k1

]
· P(∆s1Xt1 = k1)


· · ·

 ∞∑
kl=0

E
[
exp

(
ul ·

∆slXtl∑
i=1

ZXtl+i

) ∣∣∣∆slXtl = kl

]
· P(∆slXtl = kl)


= E

[
exp

(
u1 ·

∆s1Xt1∑
i=1

ZXt1+i

)]
· · ·E

[
exp

(
ul ·

∆slXtl∑
i=l

ZXtl+i

)]
= E [exp(u1 ∆s1Yt1)] · · ·E [exp(ul ∆slYtl)]

= M∆s1Yt1
(u1) · · ·M∆sl

Ytl
(ul).

Hence, we have shown that

M∆s1
Yt1

···∆sl
Ytl

(u1, u2, . . . , ul) = M∆s1
Yt1

(u1) · · ·M∆sl
Ytl

(ul).

That is, the joint moment generating function for the increments ∆siYti , i = 1, . . . , l, factors into

a product of the moment generating functions for each increment. Therefore, the random variables

∆siYti , i = 1, . . . , l, are mutually independent. Consequently, we have shown that the second statement

listed near the start of the proof holds.

□

Remark 75. Theorem 12 is more general than Theorem 6 and Theorem 9 for the Poisson and mixed

Poisson case, respectively, as it applies to both general compound Poisson and discrete compound Poisson

processes.

Chapter 5. Backward Simulation of Compound Poisson Processes 148

5.2.1 Backward Simulation Algorithm for compound Poisson processes in

d-dimensions

Algorithm 23 Backward Simulation of correlated multivariate compound Poisson Processes

Require: Vector of marginal Poisson distributions at terminal time T

Pois(λT) = (Pois(λ1T), . . . ,Pois(λdT))

Correlation matrix C

Vector of secondary distributions FZ = (FZ(1) , . . . , FZ(d))

Output: Scenarios of the correlated multivariate compound Poisson process in [0, T]

1: Construct Pois(λkT) distributed marginals [Q
(k)
0 , . . . , Q

(k)

i
(k)
max

] for k = 1, . . . , d

2: Generate the Poisson calibrated measure P (C) using Algorithm 9, which takes as input

[Q
(k)
0 , . . . , Q

(k)

i
(k)
max

]dk=1 and C

3: Generate samples (N (1), . . . , N (d)) ∼ P (C) using Algorithm 18 ▷ Get the number of events at terminal

time T

4: for k = 1, . . . , d do ▷ this can be done in parallel

5: Generate N (k) iid uniform random variables in the interval [0, T]: T(k) = (T
(k)
1 , . . . , T

(k)

N(k))
′

▷ column vector

6: Sort T(k) in ascending order

7: Draw N (k) iid random variables having the distribution FZ(k) : z(k) = (z
(k)
1 , · · · , z(k)

N(k))
′ ▷ column

vector

8: return T = (T(1), . . . ,T(d)) and z = (z(1), . . . , z(d))

Chapter 5. Backward Simulation of Compound Poisson Processes 149

5.3 Correlation Structure

Theorem 13. Consider a bivariate compound Poisson process Y t = (Y
(1)
t , Y

(2)
t), having as its primary

process Xt = (X
(1)
t , X

(2)
t), a correlated bivariate Poisson process generated by Backward Simulation,

with correlation ρ̂(t) = corr(X
(1)
t , X

(2)
t), and having as its secondary distribution FZ = (FZ(1) , FZ(2)),

where the jump variables, Z(1) and Z(2), are mutually independent and also independent to the primary

process. Let ρ(t) = corr(Y
(1)
t , Y

(2)
t) denote the Pearson correlation coefficient of the bivariate compound

Poisson process. Then, ρ(t) satisfies

ρ(t) =
t

T
· ρ(T)

=
t

T
· E [Z(1)]E [Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· ρ̂(T).

(5.30)

Proof: Recall the well-known definition of the Pearson correlation coefficient

corr(Y
(1)
t , Y

(2)
t) =

Cov(Y
(1)
t , Y

(2)
t)

σ(Y
(1)
t)σ(Y

(2)
t)

. (5.31)

The covariance of a bivariate process (Y
(1)
t , Y

(2)
t) can be written as

Cov(Y
(1)
t , Y

(2)
t) = E [Y

(1)
t Y

(2)
t]− E [Y

(1)
t]E [Y

(2)
t]. (5.32)

As noted in the proof of Theorem 12, we can re-order the Ti, i = 1, 2, ..., n, from smallest to largest

thereby allowing us to rewrite (5.10) as (5.13). Applying the same approach here, we can rewrite the

first term to the right of the equal sign in (5.32) as

E [Y
(1)
t Y

(2)
t] = E

[X
(1)
t∑

i=1

Z
(1)
i ·

X
(2)
t∑

j=1

Z
(2)
j

]
. (5.33)

Then, by Wald’s identity [66], (5.33) can be written as

E [Y
(1)
t Y

(2)
t] = E [X

(1)
t X

(2)
t Z(1)Z(2)]. (5.34)

Since the jump variables (Z(1), Z(2)) are mutually independent as well as independent of X
(1)
t and X

(2)
t ,

we can rewrite (5.34) as

E [X
(1)
t X

(2)
t]E [Z(1)]E [Z(2)]. (5.35)

Using (5.3)3, (5.34) and E [X
(i)
t] = λit, which follows from Theorem 12, the covariance (5.32) can be

3Since we showed that Yt is also a compound Poisson process in Theorem 12.

Chapter 5. Backward Simulation of Compound Poisson Processes 150

written in terms of the covariance of the primary process

Cov (Y
(1)
t , Y

(2)
t) = E [X

(1)
t X

(2)
t]E [Z(1)]E [Z(2)]− (λ1t)E [Z(1)] · (λ2t)E [Z(2)]

= E [Z(1)]E [Z(2)] ·
(
E [X

(1)
t X

(2)
t]− (λ1t) (λ2t)

)
= E [Z(1)]E [Z(2)] ·

(
E [X

(1)
t X

(2)
t]− E [X

(1)
t]E [X

(2)
t]
)

= E [Z(1)]E [Z(2)] · Cov(X(1)
t , X

(2)
t).

(5.36)

Then, by using (5.36), (5.4)4, (5.31) and Theorem 7 in Chapter 3, we can derive

corr(Y
(1)
t , Y

(2)
t) =

E [Z(1)]E [Z(2)] · Cov(X(1)
t , X

(2)
t)√

λ1tE [(Z(1))2]
√

λ2tE [(Z(2))2]

=
E [Z(1)]E [Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· Cov(X

(1)
t , X

(2)
t)√

λ1t
√
λ2t

=
E [Z(1)]E [Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· corr(X(1)

t , X
(2)
t)

=
E [Z(1)]E [Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· t
T
· corr(X(1)

T , X
(2)
T)

=
E [Z(1)]E [Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· t
T
· ρ̂(T).

(5.37)

In going from the second to third line in (5.37), above, we used the fact that σ2(X
(k)
t) = λk t, for

k ∈ {1, 2}, since, as proven in Theorem 12, X
(k)
t , for k ∈ {1, 2}, is a Poisson process. It follows

immediately from (5.37) that

ρ(t) =
E [Z(1)]E [Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· t
T
· ρ̂(T), (5.38)

which proves that ρ(t) is equal to the second line of (5.30). To complete the proof of (5.30), note that

(5.38) implies that

ρ(T) =
E [Z(1)]E [Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· ρ̂(T). (5.39)

It follows immediately from (5.38) and (5.39) that

ρ(t) =
t

T
· ρ(T),

which completes the proof of (5.30). □

Remark 76. The compound Poisson process, Y t, inherits the correlation structure of the underlying

primary process, Xt as can be seen from (5.37).

Figure 5.1 depicts the correlation structure obtained from simulating a bivariate compound Poisson

process, Y t = (Y
(1)
t , Y

(2)
t), using Backward Simulation. The primary process, Xt = (X

(1)
t , X

(2)
t), is a

bivariate Poisson process having intensities 3 and 5, calibrated to correlations of 0.7 and -0.9, respectively,

4Since we showed that Yt is also a compound Poisson process in Theorem 12.

Chapter 5. Backward Simulation of Compound Poisson Processes 151

at terminal time T = 5, within the simulation interval [0, 5] computed by Backward Simulation. The

correlation of the primary processes, ρ̂(t) = corr(X
(1)
t , X

(2)
t), is depicted by the dashed red lines in

the figure. The jump sizes, Z(1) and Z(2), are lognormally distributed with parameters (2.1235, 0.5)

and (1.9449, 0.75), respectively; the corresponding correction factor in (5.37) takes a value of 0.6661.

We used Backward Simulation with 1,000,000 Monte Carlo samples to compute ρ(t) = corr(Y
(1)
t , Y

(2)
t),

depicted by the dashed black lines in Figure 5.1. The blue circles depict the theoretical values for

ρ(t) = corr(Y
(1)
t , Y

(2)
t), according to Theorem 13. Note the good agreement between the theoretical and

the empirical results.

Chapter 5. Backward Simulation of Compound Poisson Processes 152

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
(t

)

Figure 5.1: The dashed black lines depict the correlation structure, ρ(t) = corr(Y
(1)
t , Y

(2)
t), for a bivariate

compound Poisson process, Y t = (Y
(1)
t , Y

(2)
t), having a primary processes, Xt = (X

(1)
t , X

(2)
t), a bivariate

Poisson process with intensities 3 and 5, calibrated to ρ̂(5) = 0.7 and ρ̂(5) = −0.9, respectively, computed
by Backward Simulation. The jump sizes FZ(1) and FZ(2) are lognormally distributed with parameters
(2.1235, 0.5) and (1.9449, 0.75), respectively. The parameters for the jump distributions were selected for

illustrative purposes. The blue circles depict the theoretical values for ρ(t) = corr(Y
(1)
t , Y

(2)
t) according

to Theorem 13. The dashed red lines depict the correlation structure, ρ̂(t) = corr(X
(1)
t , X

(2)
t), of the

primary process, i.e., the bivariate Poisson process Xt = (X
(1)
t , X

(2)
t).

Chapter 5. Backward Simulation of Compound Poisson Processes 153

5.4 Forward Continuation of the Backward Simulation

Forward Continuation also applies to the compound Poisson setting. Suppose that a bivariate compound

Poisson process Y t = (Y
(1)
t , Y

(2)
t) has already been simulated in the interval [0, T] by Backward Sim-

ulation and that we wish to continue forward the process to the subsequent interval [T, 2T]. First, we

draw an independent sample of the joint frequency distribution at time T

(∆TX
(1)
T ,∆TX

(2)
T)

d
=(X

(1)
T , X

(2)
T).

Note that the bivariate random variable (∆TX
(1)
T ,∆TX

(2)
T) has the same prescribed marginal Poisson

distributions and prescribed correlation, C, between its components as (X
(1)
T , X

(2)
T). Then, we set

(X
(1)
2T , X

(2)
2T) = (X

(1)
T , X

(2)
T) + (∆TX

(1)
T ,∆TX

(2)
T)

and, as in Backward Simulation, we use (∆TX
(1)
T ,∆TX

(2)
T) and the conditional independence property

(similar to (3.3)) to generate the uniform arrival moments {T (1)
i }

∆TX
(1)
T

i=1 and {T (2)
i }

∆TX
(2)
T

i=1 in the interval

[T, 2T]. Unlike the Poisson case, since the jumps of the compound Poisson process are no longer of unit

size, we must also generate ∆TX
(i)
T number of Z(i) distributed variables for i ∈ {1, 2}.

The process described above can be repeatedly applied to extend a bivariate compound Poisson

process simulated within an interval [0, T] to any subsequent interval [mT, (m+1)T] for any non-negative

integer m. Moreover, similar to the Poisson and the mixed Poisson cases, although the exposition here

is in the bivariate setting, the results extend straightforwardly to the general d-dimensional setting.

Algorithm 24 in Section 5.4.2 below combines Backward Simulation and Forward Continuation of

Backward Simulation to generate arrival moments for a d-dimensional compound Poisson process on

an interval [0,mT], for any positive integer m. We call this algorithm Forward-Backward Simulation

because it starts with one step of Backward Simulation followed by m−1 steps of Forward Continuation

of Backward Simulation.

5.4.1 Forward Correlation Structure

We analyze the behavior of the correlation coefficient under the Forward Continuation of Backward

Simulation by deriving an expression for ρ(mT + τ) = corr(Y
(1)
mT+τ , Y

(2)
mT+τ) as a function of ρ(T) =

corr(Y
(1)
T , Y

(2)
T) for any non-negative integer m and any τ ∈ [0, T] in Theorem 14 below. That ρ(mT +τ)

attains asymptotic stationarity follows by Corollary 5 below.

Theorem 14. The correlation coefficient ρ(mT+τ) = corr(Y
(1)
mT+τ , Y

(2)
mT+τ) for any non-negative integer

m and any τ ∈ [0, T] as a function of ρ(T) = corr(Y
(1)
T , Y

(2)
T) takes the form

ρ(mT + τ) = ρ(T)
m+ τ2 · T−2

m+ τT−1
. (5.40)

Proof: First note that, for m = 0, (5.40) follows from Theorem 13. To show that (5.40) also holds

for all m ≥ 1, we begin by deriving an expression for ρ(T + τ). To that end, let ∆τY
(1)
T = Y

(1)
T+τ − Y

(1)
T

and ∆τY
(2)
T = Y

(2)
T+τ − Y

(2)
T and note that each of the increments ∆τY

(1)
T and ∆τY

(2)
T is independent

of both Y
(1)
T and Y

(2)
T . Therefore the covariance of the bivariate compound Poisson process (Y

(1)
t , Y

(2)
t)

Chapter 5. Backward Simulation of Compound Poisson Processes 154

satisfies

Cov(Y
(1)
T+τ , Y

(2)
T+τ) = Cov(Y

(1)
T , Y

(2)
T) + Cov(∆τY

(1)
T ,∆τY

(2)
T). (5.41)

Similar to the proof of Theorem 13, let us rewrite the covariance of the bivariate compound Poisson

process Y t = (Y
(1)
t , Y

(2)
t) in terms of its primary processes Xt = (X

(1)
t , X

(2)
t) and its secondary distri-

butions (FZ(1) , FZ(2)). Towards that end, we begin by considering the second term on the right side of

(5.41). Using an analysis similar to that used to derive (5.36), we can rewrite the second term on the

right side of (5.41) as a function of the covariance of its frequency process:

Cov(∆τY
(1)
T ,∆τY

(2)
T) = E [Z(1)]E [Z(2)] · Cov(∆τX

(1)
T ,∆τX

(2)
T). (5.42)

Since the primary process, Xt = (X
(1)
t , X

(2)
t), is a Poisson process, we can use (3.48) directly in (5.42)

to obtain

Cov(∆τY
(1)
T ,∆τY

(2)
T) = E [Z(1)]E [Z(2)] · Cov(X(1)

T , X
(2)
T) · τ

2

T 2
. (5.43)

Using (5.36) and (5.43), we can derive from (5.41) that

Cov(Y
(1)
T+τ , Y

(2)
T+τ) = E [Z(1)Z(2)] · T

2 + τ2

T 2
· Cov(X(1)

T , X
(2)
T). (5.44)

Dividing both sides of (5.44) by σ(Y
(1)
T+τ)σ(Y

(2)
T+τ) and using (5.4)5, we obtain

corr(Y
(1)
T+τ , Y

(2)
T+τ) =

E [Z(1)Z(2)]

σ(Y
(1)
T+τ)σ(Y

(2)
T+τ)

· T
2 + τ2

T 2
· Cov(X(1)

T , X
(2)
T)

=
E [Z(1)Z(2)]√

λ1(T + τ)E [(Z(1))2]
√
λ2(T + τ)E [(Z(2))2]

· T
2 + τ2

T 2
· Cov(X(1)

T , X
(2)
T)

=
E [Z(1)Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· 1√

λ1(T + τ)λ2(T + τ)
· T

2 + τ2

T 2
· Cov(X(1)

T , X
(2)
T)

=
E [Z(1)Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· 1√

λ1λ2

· T 2 + τ2

(T + τ)T 2
· Cov(X(1)

T , X
(2)
T)

=
T 2 + τ2

(τ + T)T
· E [Z(1)Z(2)]√

E [(Z(1))2]E [(Z(2))2]
· corr(X(1)

T , X
(2)
T)

=
T 2 + τ2

(τ + T)T
corr(Y

(1)
T , Y

(2)
T),

(5.45)

whence

ρ(T + τ) = ρ(T) · 1 + τ2 · T−2

1 + τT−1
. (5.46)

Using an argument similar to that used to derive (3.45) from (3.52) in Chapter 3, it follows from (5.46)

that

ρ(mT + τ) = ρ(T)
m+ τ2 · T−2

m+ τT−1
(5.47)

for any integer m ≥ 1 and any τ ∈ [0, T]. □

5Since we showed that Yt is also a compound Poisson process in Theorem 12.

Chapter 5. Backward Simulation of Compound Poisson Processes 155

Corollary 5 (Asymptotic Stationarity of the Forward Continuation). The correlation ρ(mT + τ) =

corr(Y
(1)
mT+τ , Y

(2)
mT+τ) achieves asymptotic stationarity as m→∞. More specifically,

lim
m→∞

ρ(mT + τ) = ρ(T) for any τ ∈ [0, T]. (5.48)

Proof: Note that (5.40) has the exact same form as (3.45) in Corollary 3 in Chapter 3. Therefore

the proof of Corollary 5 is the same as the proof in Corollary 3. □

Figure 5.2 depicts the correlation structure obtained from simulating a bivariate compound Poisson

process, Y t = (Y
(1)
t , Y

(2)
t), within the simulation interval [0, 5] using Backward Simulation on the interval

[0, 1] and Forward Continuation of the Backward Simulation on each of the intervals [m,m + 1] for

m = 1, 2, 3, 4. The primary process, Xt = (X
(1)
t , X

(2)
t), is a bivariate Poisson process having intensities

3 and 5, calibrated to correlations of 0.7 and -0.9, respectively, at terminal time T = 1. The correlation

of the primary processes, ρ̂(t) = corr(X
(1)
t , X

(2)
t), is depicted by the dashed red lines in the figure. The

secondary distributions, FZ(1) and FZ(2) , are lognormal distributions with parameters (2.1235, 0.5) and

(1.9449, 0.75), respectively; the corresponding correction factor in (5.45) takes a value of 0.6661. We

used Backward Simulation with 1,000,000 Monte Carlo samples to compute ρ(t) = corr(Y
(1)
t , Y

(2)
t), the

dashed black lines in Figure 5.2. The blue circles depict the theoretical values for ρ(t) = corr(Y
(1)
t , Y

(2)
t),

according to (5.40). Note the good agreement between the theoretical and the empirical results.

Chapter 5. Backward Simulation of Compound Poisson Processes 156

0
0

.5
1

1
.5

2
2

.5
3

3
.5

4
4

.5
5

t

-1

-0
.8

-0
.6

-0
.4

-0
.20

0
.2

0
.4

0
.6

0
.8

(t)

Figure 5.2: The dashed black lines depict the correlation structure, ρ(t) = corr(Y
(1)
t , Y

(2)
t), for a bivariate

compound Poisson process, Y t = (Y
(1)
t , Y

(2)
t), computed by the Forward-Backward Simulation approach.

The primary process Xt = (X
(1)
t , X

(2)
t), is a bivariate Poisson process with intensities 3 and 5, calibrated

to ρ̂(1) = 0.7 and ρ̂(1) = −0.9, respectively. The secondary distributions FZ(1) and FZ(2) are lognormal
distributions with parameters (2.1235, 0.5) and (1.9449, 0.75), respectively. The blue circles depict the

theoretical values for ρ(t) = corr(Y
(1)
t , Y

(2)
t) according to (5.40). The dashed red line depicts the

correlation structure, ρ̂(t) = corr(X
(1)
t , X

(2)
t), of the primary process, Xt = (X

(1)
t , X

(2)
t).

Chapter 5. Backward Simulation of Compound Poisson Processes 157

5.4.2 Forward-Backward Simulation Algorithm in d-dimensions

Algorithm 24 Forward-Backward Simulation of correlated multivariate compound Poisson processes

Require: Vector of marginal Poisson distributions at terminal time T

Pois(λT) = (Pois(λ1T), . . . ,Pois(λdT))

Correlation matrix C

Vector of secondary distributions FZ = (FZ(1) , . . . , FZ(d))

The number of intervals m (i.e., [0, T], [T, 2T], · · · , [(m− 1)T,mT]) used in the Forward-

Backward Simulation Algorithm

Output: Scenarios of the multivariate compound Poisson process in the interval [0,mT]

1: Construct Pois(λkT) distributed marginals {[Q(k)
0 , . . . , Q

(k)

i
(k)
max

]} for k = 1, . . . , d

2: Generate the Poisson calibrated measure P (C) using Algorithm 9, which takes as input

[Q
(k)
0 , . . . , Q

(k)

i
(k)
max

]dk=1 and C

3: for i = 1, . . . ,m do

4: Generate samples (N (1), . . . , N (d)) ∼ P (C) using Algorithm 18 ▷ Get the number of events in the

interval [(i− 1)T, iT]

5: for k = 1, . . . , d do ▷ this can be done in parallel

6: Generate N (k) iid uniform random variables in the interval [(i− 1)T, iT]: T
(k)
i =

(T
(k)
1 , . . . , T

(k)

N(k))
′ ▷ column vector

7: Sort T
(k)
i in ascending order

8: Draw N (k) iid uniform random variables having the distribution FZ(k) : z
(k)
i =

(z
(k)
1 , · · · , z(k)

N(k))
′

9: Append T
(k)
i to T(k)

10: Append z
(k)
i to z(k)

11: return T = (T(1), . . . ,T(d)) and z = (z(1), . . . , z(d))

Chapter 5. Backward Simulation of Compound Poisson Processes 158

5.5 Summary

In this chapter, we extended the Backward Simulation methodology to compound Poisson processes that,

in conjunction with the extreme joint distributions constructed using the EJD approach introduced in

Chapter 2, enables the simulation of correlated multivariate compound Poisson processes. In particular,

Backward Simulation can generate all admissible distributions at the endpoint T of the interval [0, T].

Forward Continuation of Backward Simulation also extends to the compound Poisson case and enables

the process generated by Backward Simulation within the interval [0, T] to be extended to intervals

[mT, (m+ 1)T] for any positive integer m, where the correlation also displays the asymptotic behavior

ρ(mT + τ) ≈ ρ(T)

for all m sufficiently large, all τ in [0, T], and for any admissible correlation matrix ρ(T).

Our contributions are summarized below:

• We showed rigorously that the Backward Simulation approach can be applied to the compound

Poisson process.

• We derived an analytic form for the correlation structure between bivariate compound Poisson

processes computed by Backward Simulation.

• We extended the Forward-Continuation of the Backward Simulation to the compound Poisson

process and derived an analytic form for the correlation structure between bivariate compound

Poisson processes computed by Forward-Continuation of the Backward Simulation.

Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we develop a methodology for constructing multivariate Poisson processes that exhibit

negative correlations between their components and satisfy given marginal constraints. Our methodology

relies on two pillars:

• The Extreme Joint Distribution (EJD) approach for constructing joint distributions having given

marginal distributions and a specified correlation structure.

• Backward Simulation of multivariate Poisson processes within a simulation interval [0, T].

First introduced in the bivariate setting [74], the EJD methodology is a pure probabilistic based approach

for constructing joint distributions having extreme correlation structures, referred to simply as extreme

joint distributions (or extreme measures) in this thesis. In the bivariate setting, which we review in

Chapter 2, there are only extreme positive and extreme negative correlations; we denote the associated

extreme joint distributions by P̂ (1) and P̂ (2) respectively. An extreme measure can be characterized

as the solution to an infinite-dimensional linear program where the objective function maximizes or

minimizes the joint expectation and where the constraints are the given marginal distributions that the

joint distribution must satisfy (Definition 14). The theoretical underpinnings for our approach is given

in Theorem 1 and in Algorithm 1. The importance of constructing extreme joint distributions is due

to the fact that, for each extreme joint distribution P̂ (i), there corresponds an extreme correlation Ĉ (i)

for i ∈ {1, 2} in the bivariate setting and that any correlation C ∈ [Ĉ (1), Ĉ (2)] can be obtained via the

solution of the linear equation

C = wĈ (1) + (1− w)Ĉ (2) (6.1)

where 0 ≤ w ≤ 1. By itself, the solution w to (6.1) is not significant. However, the w that satisfies (6.1)

can be substituted into

P = wP̂ (1) + (1− w)P̂ (2) (6.2)

to construct the probability distribution P having the given marginals and the associated correlation C.

Any correlation, C, that can be obtained from (6.1) with 0 ≤ w ≤ 1 is called admissible.

Chapter 2 also extends the EJD methodology to the general d-dimensional setting for d ≥ 3. We

show that both the EJD theorem and algorithm extend to d-dimensions. In higher dimensions, instead

159

Chapter 6. Conclusions and Future Work 160

of having only two extreme measures, with extreme positive and extreme negative dependence, there

are n = 2(d−1) extreme measures with varying extreme dependencies between their components. To

describe and keep track of the possible extreme dependence between pairs of components of a multivariate

distribution, we introduced the concept of monotone structures (Section 2.4.1). In d-dimensions, an

extreme measure can be characterized as the solution to a multi-objective infinite-dimensional linear

programming problem, where the (bivariate) objective functions, specified by the associated monotone

structure, minimize or maximize the joint expectation of a pair of components of the multivariate

distribution and where the constraints are the marginal distributions that the joint distribution must

satisfy (Definition 22). In addition, the extreme correlations Ĉ (1), . . . , Ĉ (n) are matrices, in this case.

In addition, our approach associated with (6.1) extends to d-dimensions with some modification:

since there are n extreme measures, the linear equation (6.1) becomes

C = w1Ĉ
(1) + · · ·+ wnĈ

(n) (6.3)

where 0 ≤ wi ≤ 1 for i = 1, . . . , n and
∑n

i=1 wi = 1. Similar to the bivariate setting, by solving (6.3) for

the weights (w1, . . . , wn) and substituting them into

P (C) = w1P̂
(1) + · · ·+ wnP̂

(n) (6.4)

we obtain a probability measure P (C) having the given marginals and the associated correlation matrix

C from (6.3). Note that (6.3) is a linear system of equations with constraints on the coefficients,

{wi : i = 1, 2, . . . , n}, that can be solved using techniques from Mathematical Programming, as explained

in Section 2.8.1. If there does not exist a solution to (6.3), then the desired correlation matrix C is

said to be inadmissible. That is, there is no joint distribution with the given marginals that has the

correlation matrix C (see Section 2.8.3). Otherwise, C is said to be admissible. The EJD methodology

is a crucial pillar of this thesis since it enables the construction of joint distributions with a prescribed

dependence structure satisfying given marginals, which are necessary inputs to the Backward Simulation

methodology.

The second pillar of this thesis is the Backward Simulation of correlated multivariate Poisson pro-

cesses. Backward Simulation relies on the conditional uniformity property of Poisson processes (Propo-

sition 3): given the number of events, n, at terminal simulation time T , the arrival moments of the

Poisson process are uniformly distributed. The conditional uniformity property suggests a (stochastic)

simulation method for a Poisson process within the simulation interval [0, T]: 1) compute a pseudo-

random variable that gives the number of events, n, at terminal time; 2) draw n iid uniform variables;

3) sort the n uniform variables. Note that the importance of the EJD method in this context is now

clear: the joint distribution obtained from the EJD algorithm is necessary for sampling the number

of events of the Poisson process at terminal time, T . A major advantage of Backward Simulation is

that the aforementioned procedure extends directly to the multivariate setting. Since a vector of ter-

minal events can be obtained from a suitable joint distribution, Backward Simulation of a multivariate

Poisson process simply consists of applying Backward Simulation to each univariate component using

the corresponding number of terminal events; the dependency information is contained within the joint

distribution. A key property of Backward Simulation is that the correlation structure is a linear function

of time (Theorem 3.42). That is,

ρ(t) =
t

T
· ρ(T)

Chapter 6. Conclusions and Future Work 161

We also introduced a method for extending a Poisson process simulated using Backward Simulation in

[0, T] to any subsequent interval [mT, (m+1)T] for any integer m ≥ 1, known as the Forward Continua-

tion of Backward Simulation. We refer to the combined Backward Simulation and Forward Continuation

of Backward Simulation as the Forward-Backward Simulation Algorithm (or the Forward-Backward ap-

proach). Consider extending a bivariate bivariate correlated Poisson process simulated using Backward

Simulation on [0, T] to [T, 2T]. Independently draw a bivariate random variable (∆TX
(1)
T ,∆TX

(2)
T)

having the same prescribed marginal Poisson distributions and prescribed correlation, C, between its

components as (X
(1)
T , X

(2)
T) from the joint distribution and define the number of terminal events at

t = 2T as follows:

(X
(1)
2T , X

(2)
2T) = (X

(1)
T , X

(2)
T) + (∆TX

(1)
T ,∆TX

(2)
T)

The process is filled in using Backward Simulation in [T, 2T). This Forward Continuation of Backward

Simulation can be extended to any interval [mT, (m + 1)T] for any integer m ≥ 1. Surprisingly, the

correlation structure of such a process that is simulated by the Forward-Backward approach attains

asymptotic stationarity (Corollary 3). We extend Backward Simulation and Forward Continuation of

Backward Simulation to the mixed Poisson processes (Chapter 4) and to the compound Poisson process

in Chapter 5. We also analyze their correlation structure in Chapters 4 and 5.

Before our work in this area, it was not possible to construct multivariate Poisson process having

extreme positive and negative correlation between their components. Our EJD approach, by construct-

ing joint distributions with extreme dependence between their components, in conjunction with the

Forward-Backward Simulation Algorithm is able to construct correlated multivariate Poisson processes

with extreme dependence between their components and simulate them within a simulation interval

[0,mT], for any integer m ≥ 1. Moreover, this approach works for any admissible correlation ma-

trix. In particular, this thesis enables the accurate modeling of counting processes that exhibit negative

correlation between their components.

6.1.1 Our Contributions

The work in this thesis builds on earlier work of Kreinin [74]. I list below the contributions that I made

to our research project.

1. Proved various properties of comonotone and antimonotone distributions. (Subsection 2.2.1.)

2. Proved the correctness of Algorithm 1. (Section 2.3.)

3. Extended the notion of extreme measures to the d-dimensional setting and proved that the EJD

theorem can be extended to the d-dimensional setting. (Section 2.4.)

4. Extended the EJD algorithm to d-dimensions and proved its correctness. (Section 2.5.)

5. Introduced a method for the calibration of multivariate discrete extreme measures to observed

correlation structures. (Section 2.8.)

6. Introduced a method for sampling extreme measures and calibrated measures. (Section 2.9.)

7. Introduced the Forward Continuation of Backward Simulation for Poisson processes. This enabled

the continuation of correlated multivariate Poisson processes simulated using Backward Simulation

Chapter 6. Conclusions and Future Work 162

within [0, T] to simulation intervals [mT, (m + 1)T] for any non-negative integer m. This was

published in [17] for the Poisson case. (Section 3.3.)

8. Showed that the correlation structure of a correlated multivariate Poisson process computed by

Forward Continuation of Backward Simulation attains asymptotic stationarity. (Section 3.3.)

9. Showed formally that the extreme positive correlations attained under Forward Simulation in the

bivariate setting is constant and determined by the ratio of the intensities of the bivariate Poisson

process. (Section 3.4.)

10. Extended the Backward Simulation approach to mixed Poisson processes (Section 4.2) and showed

that the correlation structure of a multivariate mixed Poisson process constructed by Backward

Simulation depends on the correlation at terminal time adjusted by a correction factor (Section 4.3).

11. Extended the Forward-Backward approach to mixed Poisson processes and showed that a multi-

variate mixed Poisson process constructed by the Forward-Backward approach attains asymptotic

stationarity (Section 4.4).

12. Extended the Backward Simulation approach to compound Poisson processes (Section 5.2) and

showed that the correlation structure of a multivariate compound Poisson process constructed by

Backward Simulation is a linear function of the correlation at time T , similar to the Poisson case

(Section 5.3).

13. Extended the Forward-Backward approach to compound Poisson processes and showed that a

multivariate compound Poisson process constructed by the Forward-Backward approach attains

asymptotic stationarity (Section 5.4).

6.2 Future Work

The problem studied in this thesis touches many fields of applied probability. We list some directions

for future work stemming from this thesis.

• Extending the Backward Simulation methodology to compound mixed-Poisson processes.

• A natural extension of our work that is worth investigating is whether Backward Simulation can

be applied to inhomogeneous Poisson processes1. Upon preliminary investigation, inhomogeneous

Poisson processes do satisfy an order statistic property [76]. Thus, it is very likely that Backward

Simulation can be applied to multivariate inhomogeneous Poisson processes. Investigating their

correlation structures should also be fruitful. We hope to investigate this in our future work.

• Antithetic variates, a popular variance reduction technique, is similar, in spirit, to the EJD ap-

proach. Both seek to generate objects with extreme dependence. It is worth studying whether the

EJD method of generating joint distributions can be used as a variance reduction technique.

• Studying whether or not the EJD algorithm can be extended to the continuous case.

• Section 2.8.1 proposes one approach to solving the calibration problem (2.105). It may be worth-

while investigating other approaches.

1This was also asked by some individuals from industry expressing interest in our work.

Chapter 6. Conclusions and Future Work 163

• The optimization formulation of our problem, given by equations (2.3)-(2.3e) in the bivariate case

and equations (2.37)-(2.39) in the general d-dimensional case, is broadly known as the “marginal

problem” or the problem of finding “distributions with given marginals and correlations” in the

literature. There has been much previous work in the dual problem associated with the optimiza-

tion problems mentioned above [72]. Dual problems often reveal the sensitivities of a problem and

allow for more efficient numerical methods. It may be worthwhile to see if there is a dual version

of the EJD algorithm based on the dual problems to (2.3)-(2.3e) or (2.37)-(2.39).

• Quasi Monte Carlo (QMC) has been applied to both the simulation of Poisson processes [45] and in

Backward Simulation methodologies [13], where it has been shown to be superior to crude Monte

Carlo, especially for problems in Finance [127]. It is worthwhile exploring how QMC can be applied

to the Backward Simulation of correlated multivariate Poisson and mixed Poisson processes.

Bibliography

[1] Operational Riskdata eXchange Association ORX. https://managingrisktogether.orx.org/

orx-membership/loss-data.

[2] In J. Branke, K. Deb, K. Miettinen, and R. Slowiński, editors, Multiobjective optimization: Inter-

active and evolutionary approaches, volume 5252 of Lecture Notes in Computer Science. Springer

Science & Business Media, 2008.

[3] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in Order Statistics. Wiley

Series in Probability and Mathematical Statistics. Wiley, New York, 1992.

[4] F. Aue and M. Kalkbrener. LDA at work: Deutsche Bank’s approach to quantifying operational

risk. Journal of Operational Risk, 1(4):49–93, 2006.

[5] A. N. Avramidis, P. L’Ecuyer, and P.-A. Tremblay. Efficient simulation of gamma and variance-

gamma processes. In S. Chick, P.J. Sánchez, D. Ferrin, and D.J. Morrice, editors, Proceedings of

the 2003 Winter Simulation Conference, pages 319–326, 2003.

[6] A. N. Avramidis and P. L’Ecuyer. Efficient Monte Carlo and quasi–Monte Carlo option pricing

under the variance gamma model. Management Science, 52(12):1930–1944, 2006.

[7] T. Bae and A. Kreinin. A backward construction and simulation of correlated Poisson processes.

Journal of Statistical Computation and Simulation, 87(8):1593–1607, 2017.

[8] T. Bae and M. Mazjini. Backward simulation of correlated negative binomial Lévy processes.

Mathematics and Statistics, 7(5):191–196, 2019.

[9] A. Beskos, G. Roberts, A. Stuart, and J. Voss. MCMC methods for diffusion bridges. Stochastics

and Dynamics, 8(03):319–350, 2008.

[10] M. Bladt, S. Finch, and M. Sørensen. Simulation of multivariate diffusion bridges. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 78(2):343–369, 2016.

[11] M. Bladt and M. Sørensen. Simple simulation of diffusion bridges with application to likelihood

inference for diffusions. Bernoulli, 20(2):645–675, 2014.

[12] G. Bormetti, G. Callegaro, G. Livieri, and A. Pallavicini. A backward Monte Carlo approach to

exotic option pricing. European Journal of Applied Mathematics, 29(1):146–187, 2018.

[13] R. E. Caflisch, W. Morokoff, and A. B. Owen. Valuation of mortgage backed securities using

Brownian bridges to reduce effective dimension. Journal of Computational Finance, 1(1):27–46,

1997.

164

https://managingrisktogether.orx.org/orx-membership/loss-data
https://managingrisktogether.orx.org/orx-membership/loss-data

Bibliography 165

[14] M. C. Cario and B. L. Nelson. Modeling and generating random vectors with arbitrary marginal

distributions and correlation matrix. Technical report, Department of Industrial Engineering and

Management Sciences, Northwester University, Illinois, 1997.

[15] S. Chakraborty. Generating discrete analogues of continuous probability distributions-A survey of

methods and constructions. Journal of Statistical Distributions and Applications, 2(6):1–30, 2015.

[16] M. Chiu. Implementation of the extreme joint distribution algorithm in C++. https://github.

com/chiumichael/ejd, 2019.

[17] M. Chiu, K. R. Jackson, and A. Kreinin. Correlated multivariate Poisson processes and extreme

measures. Model Assisted Statistics and Applications, 12(4):369–385, 2017.

[18] M. Chiu, K. R. Jackson, and A. Kreinin. Backward simulation of multivariate mixed Poisson

processes. Journal of Statistical Computation and Simulation, pages 3549–3572, 2021.

[19] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC Press,

2004.

[20] S. Corlay. Properties of the Ornstein-Uhlenbeck bridge. arXiv preprint arXiv:1310.5617, 2013.

[21] M. Cruz, G. W. Peters, and P. V. Shevchenko. Fundamental Aspects of Operational Risk and

Insurance Analytics: A Handbook of Operational Risk. Wiley Handbooks in Financial Engineering

and Econometrics. John Wiley & Sons, New Jersey, 2015.

[22] S. Dachian and I. Negri. On compound Poisson processes arising in change-point type statistical

models as limiting likelihood ratios. Statistical Inference for Stochastic Processes, 14(3):255–271,

2011.

[23] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Volume I:

Elementary Theory and Methods. Probability and Its Applications. Springer Science & Business

Media, New York, 2003.

[24] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Volume II:

General Theory and Structure. Probability and Its Applications. Springer Science & Business

Media, New York, 2007.

[25] M. Davis and M. Pistorius. Quantification of counterparty risk via Bessel bridges. Working paper,

Department of Mathematics, Imperial College, London, 2010.

[26] A. Deffner and E. Haeusler. A characterization of order statistic point processes that are mixed

Poisson processes and mixed sample processes simultaneously. Journal of Applied Probability,

22(2):314–323, 1985.

[27] L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

[28] D. K. Dey and Y. Chung. Compound Poisson distributions: Properties and estimation. Commu-

nications in Statistics-Theory and Methods, 21(11):3097–3121, 1992.

[29] J. Dhaene and M. Denuit. The safest dependence structure among risks. Insurance: Mathematics

and Economics, 25(1):11–21, 1999.

https://github.com/chiumichael/ejd
https://github.com/chiumichael/ejd

Bibliography 166

[30] J. Dhaene, M. Denuit, M. J. Goovaerts, R. Kaas, and D. Vyncke. The concept of comonotonicity in

actuarial science and finance: theory. Insurance: Mathematics and Economics, 31(1):3–33, 2002.

[31] Z. Drezner and D. Zerom. A simple and effective discretization of a continuous random variable.

Communications in Statistics-Simulation and Computation, 45(10):3798–3810, 2016.

[32] K. Duch, Y. Jiang, and A. Kreinin. New approaches to operational risk modeling. IBM Journal

of Research and Development, 58(4):3–1, 2014.

[33] F. Durante and J. F. Sánchez. On the approximation of copulas via shuffles of Min. Statistics &

Probability Letters, 82(10):1761–1767, 2012.

[34] M. Dwass and H. Teicher. On infinitely divisible random vectors. The Annals of Mathematical

Statistics, 28(2):461–470, 1957.

[35] H. G. Eggleston. Convexity. Cambridge Tracts in Mathematics. Cambridge University Press, 1958.

[36] P. Embrechts, R. Frey, and A. McNeil. Quantitative Risk Management: Concepts, Techniques,

and Tools. Princeton University Press, 2015.

[37] P. Embrechts, H. Furrer, and R. Kaufmann. Quantifying regulatory capital for operational risk.

Derivatives Use, Trading and Regulation, 9(3):217–233, 2003.

[38] P. Embrechts and M. Hofert. A note on generalized inverses. Mathematical Methods of Operations

Research, 77(3):423–432, 2013.

[39] P. D. Feigin. On the characterization of point processes with the order statistic property. Journal

of Applied Probability, 16(2):297–304, 1979.

[40] W. Feller. An Introduction to Probability Theory and its Applications, vol 1 & 2. John Wiley &

Sons, 2008.

[41] A. Ferrari, G. Letac, and J.-Y. Tourneret. Multivariate mixed Poisson distributions. In 2004 12th

European Signal Processing Conference, pages 1067–1070. IEEE, 2004.

[42] G. S. Fishman. Variance reduction in simulation studies. Journal of Statistical Computation and

Simulation, 1(2):173–182, 1972.

[43] G. S. Fishman and L. R. Moore III. Sampling from a discrete distribution while preserving

monotonicity. The American Statistician, 38(3):219–223, 1984.

[44] T. R. Fleming and D. P. Harrington. Counting Processes and Survival Analysis. Wiley Series in

Probability and Statistics. John Wiley & Sons, 2013.

[45] B. L. Fox. Generating Poisson processes by quasi-Monte Carlo. Technical report, Boulder CO:

SIM-OPT Consulting, 1996.

[46] B. L. Fox and P. W. Glynn. Computing Poisson probabilities. Communications of the ACM,

31(4):440–445, 1988.

[47] A. Frachot and T. Roncalli. Mixing internal and external data for managing operational risk.

Working paper, Group de Recherche Opérationnelle, Crédit Lyonnais, France, 2002.

Bibliography 167

[48] A. Frachot, T. Roncalli, and E. Salomon. The correlation problem in operational risk. MPRA

Paper 28052, University Library of Munich, Germany, 2004.

[49] M. Fréchet. Sur les tableaux dont les marges et des bornes sont données. Revue de l’Institut

international de statistique, A. 14:53–77, 1951.

[50] M. C. Fu. Variance-gamma and Monte Carlo. In M. C. Fu, R. A. Jarrow, J.-Y. J. Yen, and R. J.

Elliot, editors, Advances in Mathematical Finance, pages 21–34. Springer, 2007.

[51] R. G. Gallager. Stochastic Processes: Theory for Applications. Cambridge University Press, 2013.

[52] X. Gao and Y. Wang. Optimal market making in the presence of latency. Quantitative Finance,

20(9):1495–1512, 2020.

[53] S. Ghosh and S. G. Henderson. Chessboard distributions and random vectors with specified

marginals and covariance matrix. Operations Research, 50(5):820–834, 2002.

[54] S. Ghosh and S. G. Henderson. Properties of the NORTA method in higher dimensions. In

E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, editors, Proceedings of the 2002

Winter Simulation Conference, 2002.

[55] S. Ghosh and S. G. Henderson. Behavior of the NORTA method for correlated random vector

generation as the dimension increases. ACM Transactions on Modeling and Computer Simulation,

13(3):1–19, 2003.

[56] P. Glasserman and J. Li. Importance sampling for a mixed Poisson model of portfolio credit risk.

In S. Chick, P.J. Sánchez, D. Ferrin, and D.J. Morrice, editors, Proceedings of the 2003 Winter

Simulation Conference, pages 267–275, 2003.

[57] P. Glasserman and D. D. Yao. Optimal couplings are totally positive and more. Journal of Applied

Probability, 41:321–332, 2004.

[58] J. Grandell. Mixed Poisson Processes. CRC Press, 1997.

[59] R. C. Griffiths, R. K. Milne, and R. Wood. Aspects of correlation in bivariate Poisson distributions

and processes. Australian Journal of Statistics, 21(3):238–255, 1979.

[60] J. M. Hammersley and J. G. Mauldon. General principles of antithetic variates. Mathematical

proceedings of the Cambridge Philosophical Society, 52(3):476–481, 1956.

[61] G. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 1952.

[62] Y. Hayakawa and G. Telfar. Mixed Poisson-type processes with application in software reliability.

Mathematical and Computer Modelling, 31(10-12):151–156, 2000.

[63] R. R. Hill and C. H. Reilly. Composition for multivariate random variables. In J.D. Tew, S. Mani-

vannan, D.A. Sadowski, and A. F. Seila, editors, Proceedings of the 1994 Winter Simulation Con-

ference, pages 332–339, 1994.

[64] W. Hoeffding. Masstabinvariante korrelations-theorie. Schriften Math. Inst. Univ. Berlin., 2:181–

233, 1940.

Bibliography 168

[65] W. Hu and J. Zhou. Backward simulation methods for pricing American options under the CIR

process. Quantitative Finance, 17(11):1683–1695, 2017.

[66] J. Janssen and R. Manca. Applied Semi-Markov Processes. Springer Science & Business Media,

2006.

[67] M. E. Johnson. Multivariate Statistical Simulation: A Guide to Selecting and Generating Con-

tinuous Multivariate Distributions. Wiley Series in Probability and Mathematical Statistics. John

Wiley & Sons, 2013.

[68] N. L. Johnson, A. W. Kemp, and S. Kotz. Univariate Discrete Distributions. Wiley Series in

Probability and Statistics. John Wiley & Sons, 2005.

[69] N. L. Johnson, S. Kotz, and N. Balakrishnan. Discrete Multivariate Distributions. Wiley Series in

Probability and Statistics. John Wiley & Sons, 1996.

[70] D. Karlis and L. Meligkotsidou. Finite mixtures of multivariate Poisson distributions with appli-

cation. Journal of Statistical Planning and Inference, 137(6):1942–1960, 2007.

[71] A. Karr. Point Processes and Their Statistical Inference. Routledge, 2017.

[72] H. G. Kellerer. Duality theorems for marginal problems. Zeitschrift für Wahrscheinlichkeitstheorie

und verwandte Gebiete, 67(4):399–432, 1984.

[73] A. Kolesárová, R. Mesiar, and C. Sempi. Measure-preserving transformations, copulæ and com-

patibility. Mediterranean Journal of Mathematics, 5(3):325–339, 2008.

[74] A. Kreinin. Correlated Poisson processes and their applications in financial modeling. In A. N

Akansu, S. R Kulkarni, and D. M Malioutov, editors, Financial Signal Processing and Machine

Learning, chapter 9, pages 191–230. John Wiley & Sons, 2016.

[75] G. Last. Stochastic analysis for Poisson processes. In Stochastic analysis for Poisson point pro-

cesses, pages 1–36. Springer, 2016.

[76] P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes by thinning.

Naval Research Logistics Quarterly, 26(3):403–413, 1979.

[77] C.-K. Li and B.-S. Tam. A note on extreme correlation matrices. SIAM Journal on Matrix Analysis

and Applications, 15(3):903–908, 1994.

[78] S. T. Li and J. L. Hammond. Generation of pseudorandom numbers with specified univariate

distributions and correlation coefficients. IEEE Transactions on Systems, Man, and Cybernetics,

(5):557–561, 1975.

[79] U. Liberman. An order statistic characterization of the Poisson renewal process. Journal of Applied

Probability, 2(3):717–722, 1985.

[80] J. Lin and X. Wang. New Brownian bridge construction in quasi-Monte Carlo methods for com-

putational finance. Journal of Complexity, 24(2):109–133, 2008.

[81] M. Lin, R. Chen, and P. Mykland. On generating Monte Carlo samples of continuous diffusion

bridges. Journal of the American Statistical Association, 105(490):820–838, 2010.

Bibliography 169

[82] F. Lindskog and A. J. McNeil. Common Poisson shock models: Applications to insurance and

credit risk modelling. ASTIN Bulletin: The Journal of the IAA, 33(2):209–238, 2003.

[83] F. Lindsten and T. B. Schön. Backward simulation methods for Monte Carlo statistical inference.

Foundations and Trends in Machine Learning, 6(1):1–143, 2013.

[84] O. Lundberg. On Random Processes and their Application to Sickness and Accident Statistics.

PhD thesis, Almqvist & Wiksell, Uppsala., 1964.

[85] P. M. Lurie and M. S. Goldberg. An approximate method for sampling correlated random variables

from partially-specified distributions. Management Science, 44(2):149–283, 1998.

[86] Z. MacDonald. A modified simplex method for solving Ax = b, x ≥ 0, for very large A arising

from a calibration problem. MSc, University of Toronto, 2020.

[87] R. N. Makarov and D. Glew. Exact simulation of Bessel diffusions. Monte Carlo Methods and

Applications, 16(3-4):283–306, 2010.

[88] R. J. McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Mathemat-

ical Journal, 80(2):309–324, 1995.

[89] J. A. McFadden. The mixed Poisson process. Sankhyā: The Indian Journal of Statistics, Series

A, 25(1):83–92, 1965.

[90] G. J. Minty. On the monotonicity of the gradient of a convex function. Pacific Journal of Mathe-

matics, 14(1):243–247, 1964.

[91] M. Moscadelli. The modelling of operational risk: experience with the analysis of the data collected

by the Basel committee. Available at SSRN 557214, 2004.

[92] L. Nenna. Numerical Methods for Multi-Marginal Optimal Transportation. PhD thesis, PSL

Research University, 2016.

[93] G. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research and

Financial Engineering. Springer, 2006.

[94] Basel Committee on Banking Supervision. Basel II: International convergence of capital measure-

ment and capital standards: A revised framework - comprehensive version. https://www.bis.

org/publ/bcbs128.pdf, June 2006.

[95] E. S. Page. On Monte Carlo methods in congestion problems: II. simulation of queuing systems.

Operations Research, 13(2):300–305, 1965.

[96] H. H. Panjer. Operational Risk: Modeling Analytics, volume 620 of Wiley Series in Probability and

Statistics. John Wiley & Sons, 2006.

[97] B. Pass. Multi-marginal optimal transport: Theory and applications. ESAIM: Mathematical

Modelling and Numerical Analysis, 49(6):1771–1790, 2015.

[98] R. Pasupathy. Generating homogeneous Poisson processes. In J. J. Cochran, L. A. Cox, P. Ke-

skinocak, J.P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia of Operations Research

and Management Science, pages 1–11. John Wiley & Sons, 2011.

https://www.bis.org/publ/bcbs128.pdf
https://www.bis.org/publ/bcbs128.pdf

Bibliography 170

[99] H. Penikas. History of the Basel internal-ratings-based (irb) credit risk regulation. Model Assisted

Statistics and Applications, 15(1):81–98, 2020.

[100] V. V. Petrov. Sums of Independent Random Variables. De Gruyter, 1975.

[101] J. Pitman and M. Yor. A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitsthe-

orie und verwandte Gebiete, 59(4):425–457, 1982.

[102] M. Powojowski, D. Reynolds, and H. Tuenter. Dependent events and operational risk. Algo

Research Quarterly, 5(2):65–73, 2002.

[103] G. Puccetti and R. Wang. Extremal dependence concepts. Statistical Science, 30(4):485–517, 2015.

[104] P. S. Puri. On the characterization of point processes with the order statistic property without

the moment condition. Journal of Applied Probability, 19(1):39–51, 1982.

[105] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems: Volume I: Theory. Probability

and its Applications. Springer, 1998.

[106] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems: Volume II: Applications. Prob-

ability and its Applications. Springer, 1998.

[107] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, volume 293 of Grundlehren

der mathematischen Wissenchaften. Springer, 2013.

[108] C. Ribeiro and N. Webber. Valuing path-dependent options in the variance-gamma model by

Monte Carlo with a gamma bridge. Journal of Computational Finance, 7(2):81–100, 2004.

[109] L. Rüschendorf. Construction of multivariate distributions with given marginals. Annals of the

Institute of Statistical Mathematics, 37:225–233, 1985.

[110] P. Sabino. Forward or backward simulation? a comparative study. Quantitative Finance,

20(7):1213–1226, 2020.

[111] S. Santini. Analysis of traffic flow in urban areas using web cameras. In Proceedings Fifth IEEE

Workshop on Applications of Computer Vision, pages 140–145. IEEE, 2000.

[112] Juliana Schulz and Christian Genest. Comonotonicity and counter-monotonicity: Review and

implications for likelihood-based estimation. Communications in Statistics-Theory and Methods,

54(8):2482–2505, 2025.

[113] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley Series

in Probability and Statistics. John Wiley & Sons, 2015.

[114] T. C. Sharkey. Infinite linear programs. In J. J. Cochran, L. A. Cox, P. Keskinocak, J.P. Kharoufeh,

and J. C. Smith, editors, Wiley Encyclopedia of Operations Research and Management Science.

John Wiley & Sons, 2010.

[115] Z. Shen and C. Weng. A backward simulation method for stochastic optimal control problems.

Available at SSRN 3319160, 2019.

[116] P. V. Shevchenko. Modelling Operational Risk Using Bayesian Inference. Springer, 2011.

Bibliography 171

[117] P. Shi and E. A. Valdez. Multivariate negative binomial models for insurance claim counts. In-

surance: Mathematics and Economics, 55:18–29, 2014.

[118] D. Z. Stein and J. M. Juritz. Bivariate compound Poisson distributions. Communications in

Statistics-Theory and Methods, 16(12):3591–3607, 1987.

[119] V. Strassen. The existence of probability measures with given marginals. The Annals of Mathe-

matical Statistics, 36(2):423–439, 1965.

[120] H. Teicher. On the multivariate Poisson distribution. Scandinavian Actuarial Journal, 1:1–9, 1954.

[121] E.-M. Tiit. Random vectors with given arbitrary marginal and given correlation matrix. Acta et

Commentationes Universitatis Tartuensis, 733:14–39, 1986.

[122] E.-M. Tiit. Mixture of extremal distributions - a model alternative to the log-linear model. Prob.

Theory and Math. Stat, pages 703–714, 1994.

[123] E.-M. Tiit. Mixtures of multivariate quasi-extremal distributions having given marginals. In

Distributions with Fixed Marginals and Related Topics, IMS Lecture Notes - Monograph Series

Vol. 28, pages 337–357. Institute of Mathematical Statistics, 1996.

[124] E.-M. Tiit. Existence of multivariate distributions with given marginals. In Distributions With

Given Marginals and Statistical Modelling, pages 229–241. Springer, 2002.

[125] C. Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematischen

Wissenschaften. Springer, 2008.

[126] B. Wang and R. Wang. Joint mixability. Mathematics of Operations Research, 41(3):808–826,

2016.

[127] X. Wang and K.-T. Fang. The effective dimension and quasi-Monte Carlo integration. Journal of

Complexity, 19(2):101–124, 2003.

[128] W. Whitt. Bivariate distributions with given marginals. The Annals of Statistics, 4(6):1280–1289,

1976.

[129] K. C. Yuen, J. Guo, and X. Wu. On a correlated aggregate claims model with Poisson and Erlang

risk processes. Insurance: Mathematics and Economics, 31(2):205–214, 2002.

[130] M. Zocher. Multivariate Mixed Poisson Processes. PhD thesis, Technische Universitat Dresden,

2005.

Appendix A

Chapter 2.3 Proofs

A.1 Proof of Theorem 3

Proof: We prove Theorem 3 by induction on l.

We use S(i)l to stand for the ith statement below and refer to all three statements together as Sl for
the lth iteration of Algorithm 1.

S(1)l : The point sl = (s
(1)
l , s

(2)
l) computed by Algorithm 1 is the (l+1)st point on the S-path associated

with P̂ (1).

S(2)l : The value zl computed by Algorithm 1 satisfies

F
(1)

s
(1)
l −1

≤ zl−1 < zl ≤ F
(1)

s
(1)
l

,

F
(2)

s
(2)
l −1

≤ zl−1 < zl ≤ F
(2)

s
(2)
l

.
(A.1)

In addition, at least one of

F
(1)

s
(1)
l −1

= zl−1,

F
(2)

s
(2)
l −1

= zl−1

(A.2)

holds and at least one of

zl = F
(1)

s
(1)
l

,

zl = F
(2)

s
(2)
l

(A.3)

holds. Moreover, zl computed by Algorithm 1 is the (l+1)st smallest element in ΠZ = ΠX(1)∨ΠX(2) .

S(3)l : The probability P̂
(1)

s
(1)
l ,s

(2)
l

computed by Algorithm 1 is correct in the sense that it agrees with (2.7).

We begin by using induction on l to prove that Sl holds for l = 0, 1, 2, . . . , lmax.

172

Appendix A. Chapter 2.3 Proofs 173

For the base case of the induction we show that S0 holds true. To this end, note that Line 3 of Algorithm

1 gives

s0 = (0, 0).

From Lemma 1, the origin is always a support point for bivariate comonotonic distributions. Therefore,

s0 = (0, 0) is the 1st point on the S-path associated with P̂ (1). Thus, we have verified that S(1)0 holds.

Next, we show that S(2)0 holds. On Line 4, Algorithm 1 computes the partition of unity by calling

Algorithm 8. Therefore, we have that

z0 = min
(
F

(1)
0 , F

(2)
0

)
.

From the discussion above, the fact that the cdfs are increasingly ordered (2.25) and F
(1)
0 > 0 and

F
(2)
0 > 0, whence z0 > 0, we have that

0 = F
(1)
−1 = z−1 < z0 ≤ F

(1)
0 ,

0 = F
(2)
−1 = z−1 < z0 ≤ F

(2)
0 .

Hence, (A.1) holds for l = 0. In addition, for l = 0, both equations in (A.2) hold and at least one

of the equations in (A.3) holds. Moreover, from (2.25), it follows that the smallest element in ΠZ =

ΠX(1) ∨ ΠX(2) is the smaller of F
(1)
0 and F

(2)
0 . Hence, z0 = min

(
F

(1)
0 , F

(2)
0

)
computed by Algorithm 1

on Line 4 is the smallest element in ΠZ . That is, the value z0 computed by Algorithm 1 is consistent

with Definition 21. Therefore, we have verified that S(2)0 holds.

Finally, we show that S(3)0 holds. From Line 5 of Algorithm 1:

P̂
(1)

s
(1)
0 ,s

(2)
0

= z0.

Moreover, we have from Line 4 of Algorithm 1 that

z0 = min
(
F

(1)
0 , F

(2)
0

)
.

Therefore, Algorithm 1 gives

P̂
(1)

s
(1)
0 ,s

(2)
0

= min
(
F

(1)
0 , F

(2)
0

)
.

In addition, since s0 = (0, 0), min
(
F

(1)
0 , F

(2)
0

)
> 0, and F

(1)
−1 = F

(2)
−1 = 0, we see that

P̂
(1)

s
(1)
0 ,s

(2)
0

= z0

= min(F
(1)
0 , F

(2)
0)− 0

= min(F
(1)
0 , F

(2)
0)−max(F

(1)
−1 , F

(2)
−1)

=
[
min

(
F

(1)
0 , F

(2)
0

)
−max

(
F

(1)
−1 , F

(2)
−1

)]+
.

Thus, the value of P̂
(1)
0,0 computed on Line 5 of Algorithm 1 is consistent with the P̂

(1)
0,0 given by (2.4).

Therefore, we have verified that S(3)0 holds.

Consequently, the base case of the induction proof must be true since we have verified that all three

statements in S0 hold.

Appendix A. Chapter 2.3 Proofs 174

For the induction step, we choose any l ≥ 1 and assume that all three statements in Sl−1 hold. Our

goal is to prove that all three statements in Sl hold.
We break the proof into three cases depending on whether

(1) zl−1 = F
(1)

s
(1)
l−1

= F
(2)

s
(2)
l−1

(Line 8),

(2) zl−1 = F
(1)

s
(1)
l−1

and zl−1 ̸= F
(2)

s
(2)
l−1

(Line 11),

(3) zl−1 ̸= F
(1)

s
(1)
l−1

and zl−1 = F
(2)

s
(2)
l−1

(Line 14).

Note that exactly one of the cases above must be true, since from the construction of the partition

of unity in Line 4 of Algorithm 1, we must have that

zl−1 = min
(
F

(1)

s
(1)
l−1

, F
(2)

s
(2)
l−1

)
.

In what follows, it is helpful in the proof of the induction step to rewrite zl−1 using Lines 5 and 18 as

follows

zl−1 = P̂ (j)
sl−1

+ zl−2,

zl−1 = P̂ (j)
sl−1

+ P̂ (j)
sl−2

+ · · ·+ P̂ (j)
s0 . (A.4)

If we define the sets A(sl−1) = {(i, j) : 0 ≤ i ≤ s
(1)
l−1, 0 ≤ j ≤ s

(2)
l−1, P̂

(1)
i,j > 0} and Ac(sl−1) = {(i, j) :

0 ≤ i ≤ s
(1)
l−1, 0 ≤ j ≤ s

(2)
l−1, P̂

(1)
i,j = 0}, then we can see that zl−1 can also be written in terms of

the probabilities P̂
(1)
i,j associated with the points on the domain in the rectangle with one corner at the

origin, (0, 0), and the other corner at the point sl−1 = (s
(1)
l−1, s

(2)
l−1)

zl−1 =
∑

A(sl−1)

P̂
(1)
i,j +

∑
Ac(sl−1)

P̂
(1)
i,j

=

s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j .‘

′ (A.5)

Case 1: zl−1 = F
(1)

s
(1)
l−1

= F
(2)

s
(2)
l−1

(Line 8)

In this case, the condition in the if statement on Line 8 of Algorithm 1 is true and so Lines 9 and 10

of Algorithm 1 are executed. Hence, Algorithm 1 computes

s
(1)
l = s

(1)
l−1 + 1,

s
(2)
l = s

(2)
l−1 + 1.

(A.6)

To verify that S(1)l holds, we need to show that the point sl computed by Algorithm 1 on Lines 9 and

10 and specified above in (A.6) is the (l + 1)st point on the S-path associated with P̂ (1).

To this end, note that the induction hypothesis S(1)l−1 gives that the point sl−1 in (A.6) is the lth

point on the S-path associated with P̂ (1). So, if we can show that the point sl specified in (A.6) is the

subsequent point to sl−1, then it follows immediately that the point sl specified in (A.6) is the (l+ 1)st

point on the S-path associated with P̂ (1) and we are done.

Appendix A. Chapter 2.3 Proofs 175

To see that the point sl specified in (A.6) is the subsequent point to sl−1, note that, from Definition 17

and Remark 12, one of the three points (s
(1)
l−1 + 1, s

(2)
l−1), (s

(1)
l−1, s

(2)
l−1 + 1) or (s

(1)
l−1 + 1, s

(2)
l−1 + 1) must be

the subsequent point to sl−1. So, if we can show that (s
(1)
l−1+1, s

(2)
l−1) and (s

(1)
l−1, s

(2)
l−1+1) are not support

points of P̂ (1), then it follows that the point sl specified in (A.6) is the subsequent point to sl−1 on the

S-path associated with P̂ (1).

We show by proof by contradiction that the subsequent point to sl−1 on the S-path cannot be

(s
(1)
l−1 +1, s

(2)
l−1). To that end, assume that the subsequent point to sl−1 is (s

(1)
l−1 +1, s

(2)
l−1), which implies

that P̂
(1)

s
(1)
l−1+1,s

(2)
l−1

> 0. Now, since, in Case 1, zl−1 = F
(2)

s
(2)
l−1

we have from (A.5) that

s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j = F

(2)

s
(2)
l−1

.

However, as noted above, P̂
(1)

s
(1)
l−1+1,s

(2)
l−1

> 0. Therefore, (2.22) and the discussion above leads to the

contradiction

F
(2)

s
(2)
l−1

=

∞∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j =

s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j +

s
(2)
l−1∑
j=0

P̂
(1)

s
(1)
l−1+1,j

+

∞∑
i=s

(1)
l−1+2

s
(2)
l−1∑
j=0

P̂
(1)
i,j

≥
s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j + P̂

(1)

s
(1)
l−1+1,s

(2)
l−1

= F
(2)

s
(2)
l−1

+ P̂
(1)

s
(1)
l−1+1,s

(2)
l−1

> F
(2)

s
(2)
l−1

.

Hence, the subsequent point to sl−1 cannot be (s
(1)
l−1 + 1, s

(2)
l−1).

A similar argument shows that the subsequent point to sl−1 cannot be (s
(1)
l−1, s

(2)
l−1+1). Therefore, by

Lemma 2, the subsequent point must be (s
(1)
l−1+1, s

(2)
l−1+1). Hence, the point sl computed by Algorithm 1

on Lines 9 and 10 and specified above in (A.6) is the (l+1)st point on the S-path associated with P̂ (1).

Therefore, we have verified that S(1)l holds.

Next, we verify that S(2)l holds. To this end, recall that, in Case 1, zl−1 = F
(1)

s
(1)
l−1

and zl−1 = F
(2)

s
(2)
l−1

.

Also, in Case 1, Lines 9 and 10 of Algorithm 1 are executed. Hence, sl satisfies

s
(1)
l = s

(1)
l−1 + 1,

s
(2)
l = s

(2)
l−1 + 1.

Therefore,

F
(1)

s
(1)
l −1

= F
(1)

s
(1)
l−1

= zl−1 = F
(2)

s
(2)
l−1

= F
(2)

s
(2)
l −1

,

whence

F
(1)

s
(1)
l −1

= zl−1,

F
(2)

s
(2)
l −1

= zl−1.
(A.7)

Appendix A. Chapter 2.3 Proofs 176

Line 4 of Algorithm 1 calls Algorithm 8 to compute the partition of unity. Therefore,

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
.

Since

zl−1 = F
(1)

s
(1)
l−1

= F
(2)

s
(2)
l−1

and

F
(1)

s
(1)
l−1

= F
(1)

s
(1)
l −1

< F
(1)

s
(1)
l

,

F
(2)

s
(2)
l−1

= F
(2)

s
(2)
l −1

< F
(2)

s
(2)
l

since F
(1)
i and F

(2)
j are strictly increasing (see (2.25)), it follows that

zl−1 = F
(1)

s
(1)
l−1

= F
(2)

s
(2)
l−1

< min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
= zl. (A.8)

Putting (A.7) and (A.8) together with

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
≤ F

(1)

s
(1)
l

,

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
≤ F

(2)

s
(2)
l

we get

F
(1)

s
(1)
l −1

= zl−1 < zl ≤ F
(1)

s
(1)
l

,

F
(2)

s
(2)
l −1

= zl−1 < zl ≤ F
(2)

s
(2)
l

.
(A.9)

That is, we have shown that (A.1) holds. Moreover, from (A.9), we see that both the equations in

(A.2) hold. In addition, since zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
, at least one of the equations in (A.3) must hold.

Furthermore, since we know from the induction hypothesis S(2)l−1 that zl−1 is the lth smallest element

in ΠZ = ΠX(1) ∨ ΠX(2) , it follows from (A.9) that the smaller of F
(1)

s
(1)
l

and F
(2)

s
(2)
l

must be the (l + 1)st

smallest element in ΠZ . Hence, zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
is the (l + 1)st smallest element in ΠZ . That is,

the value zl computed by Algorithm 1 is consistent with Definition 21. Therefore, we have verified that

S(2)l holds.

Finally, we verify that S(3)l holds. The value of P̂
(1)

s
(1)
l ,s

(2)
l

computed on Line 18 of Algorithm 1 is

P̂
(1)

s
(1)
l ,s

(2)
l

= zl − zl−1. (A.10)

We know from Line 4 of Algorithm 1 which calls Algorithm 8 to compute the partition of unity that

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
. (A.11)

Appendix A. Chapter 2.3 Proofs 177

Substituting l − 1 for l in (A.11), we see that, if l ≥ 2, on the previous iteration

zl−1 = min
(
F

(1)

s
(1)
l−1

, F
(2)

s
(2)
l−1

)
. (A.12)

If l = 1, we see that Line 4 of Algorithm 1 also implies that (A.12) holds. Now, recall again that, in

Case 1, zl−1 = F
(1)

s
(1)
l−1

and zl−1 = F
(2)

s
(2)
l−1

, whence F
(1)

s
(1)
l−1

= F
(2)

s
(2)
l−1

. Therefore,

zl−1 = min
(
F

(1)

s
(1)
l−1

, F
(2)

s
(2)
l−1

)
= max

(
F

(1)

s
(1)
l−1

, F
(2)

s
(2)
l−1

)
.

(A.13)

From (A.8), it follows that

zl − zl−1 > 0. (A.14)

Combining (A.10), (A.11), (A.13) and (A.14) together with

s
(1)
l = s

(1)
l−1 + 1,

s
(2)
l = s

(2)
l−1 + 1,

which follows from Lines 9 and 10 of Algorithm 1 in Case 1, we get

P̂
(1)

s
(1)
l ,s

(2)
l

= zl − zl−1

= min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
−max

(
F

(1)

s
(1)
l−1

, F
(2)

s
(2)
l−1

)
= min

(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
−max

(
F

(1)

s
(1)
l −1

, F
(2)

s
(2)
l −1

)
=

[
min

(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
−max

(
F

(1)

s
(1)
l −1

, F
(2)

s
(2)
l −1

)]+
.

Therefore, the probability P̂
(1)

s
(1)
l ,s

(2)
l

computed on Line 18 of Algorithm 1 is correct in the sense that it

agrees with (2.7) and we have verified that S(3)l holds.

Thus, we have shown that all three statements in Sl hold in Case 1.

Case 2: zl−1 = F
(1)

s
(1)
l−1

and zl−1 ̸= F
(2)

s
(2)
l−1

(Line 11)

In this case, the condition in the if statement in Line 11 is true and so Lines 12 and 13 of Algorithm 1

are executed. Hence, Algorithm 1 computes

s
(1)
l = s

(1)
l−1 + 1,

s
(2)
l = s

(2)
l−1.

(A.15)

We begin by showing that S(1)l is true. Thus, our goal is to show that the sl specified in (A.15) is the

subsequent point of sl−1 on the S-path associated with P̂ (1). It follows from this that sl is the (l+ 1)st

point on the S-path, since, by the induction hypothesis, S(1)l−1, sl−1 is the lth point on the S-path.
To see that the sl specified in (A.15) is the subsequent point to sl−1 on the S-path associated with

P̂ (1), first note that, by Lemma 2, the subsequent point to sl−1 must be one of (s
(1)
l−1+1, s

(2)
l−1), (s

(1)
l−1, s

(2)
l−1+

Appendix A. Chapter 2.3 Proofs 178

1) or (s
(1)
l−1 + 1, s

(2)
l−1 + 1). We show below that the subsequent point cannot be either (s

(1)
l−1, s

(2)
l−1 + 1) or

(s
(1)
l−1 + 1, s

(2)
l−1 + 1). Therefore, the subsequent point must be (s

(1)
l−1 + 1, s

(2)
l−1) computed by Algorithm 1

in Lines 12 and 13.

We first show by proof by contradiction that the subsequent point to sl−1 cannot be (s
(1)
l−1, s

(2)
l−1 +1).

To that end, suppose that the subsequent point of sl−1 is (s
(1)
l−1, s

(2)
l−1 + 1), then, P̂

(1)

s
(1)
l−1,s

(2)
l−1+1

> 0. Since,

in Case 2, zl−1 = F
(1)

s
(1)
l−1

, this together with (A.5) implies that:

s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j = zl−1 = F

(1)

s
(1)
l−1

. (A.16)

However, as noted above, P̂
(1)

s
(1)
l−1,s

(2)
l−1+1

> 0. Therefore, (2.21) and the discussion above leads to the

contradiction

F
(1)

s
(1)
l−1

=

s
(1)
l−1∑
i=0

∞∑
j=0

P̂
(1)
i,j =

s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j +

s
(1)
l−1∑
i=0

P̂
(1)

i,s
(2)
l−1+1

+

s
(1)
l−1∑
i=0

∞∑
j=s

(2)
l−1+2

P̂
(1)
i,j (A.17)

≥
s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j + P̂

(1)

s
(1)
l−1,s

(2)
l−1+1

= F
(1)

s
(1)
l−1

+ P̂
(1)

s
(1)
l−1,s

(2)
l−1+1

> F
(1)

s
(1)
l−1

.

Therefore, the subsequent point of sl−1 on the S-path cannot be (s
(1)
l−1, s

(2)
l−1 + 1).

Next, we show, again by proof by contradiction, that the subsequent point of sl−1 on the S-path
cannot be (s

(1)
l−1 + 1, s

(2)
l−1 + 1). To that end, suppose that the subsequent point of sl−1 on the S-path

is (s
(1)
l−1 + 1, s

(2)
l−1 + 1), which implies that (s

(1)
l−1 + 1, s

(2)
l−1) cannot also be on the S-path, since if both

(s
(1)
l−1 + 1, s

(2)
l−1 + 1) and (s

(1)
l−1 + 1, s

(2)
l−1) are on the S-path then, by Definition 17, (s

(1)
l−1 + 1, s

(2)
l−1) is the

subsequent point of (s
(1)
l−1, s

(2)
l−1). Moreover, since (s

(1)
l−1 + 1, s

(2)
l−1) is not on the S-path associated with

P̂ (1), by Lemma 4, (s
(1)
l−1 + 1, s

(2)
l−1) is not a support point of P̂ (1), whence P̂

(1)

s
(1)
l−1+1,s

(2)
l−1

= 0. Now note

that (2.22) and (A.16) imply that

F
(2)

s
(2)
l−1

=

∞∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j =

s
(1)
l−1∑
i=0

s
(2)
l−1∑
j=0

P̂
(1)
i,j +

s
(2)
l−1∑
j=0

P̂
(1)

s
(1)
l−1+1,j

+

∞∑
i=s

(1)
l−1+2

s
(2)
l−1∑
j=0

P̂
(1)
i,j (A.18)

= F
(1)

s
(1)
l−1

+

s
(2)
l−1∑
j=0

P̂
(1)

s
(1)
l−1+1,j

+

∞∑
i=s

(1)
l−1+2

s
(2)
l−1∑
j=0

P̂
(1)
i,j .

We first show that
s
(2)
l−1∑
j=0

P̂
(1)

s
(1)
l−1+1,j

= 0. (A.19)

Appendix A. Chapter 2.3 Proofs 179

To this end, note that, in our proof by contradiction, we assumed above that P̂
(1)

s
(1)
l−1+1,s

(2)
l−1

= 0. In

addition, note that, from the induction hypothesis S(1)l−1, sl−1 = (s
(1)
l−1, s

(2)
l−1) is on the S-path associated

with P̂ (1), whence sl−1 = (s
(1)
l−1, s

(2)
l−1) is a support point of P̂ (1). Therefore, none of the points (s

(1)
l−1+1, j)

for 0 ≤ j < s
(2)
l−1 can be a support point of P̂ (1), since, if they were, this would violate the comonotonicity

of P̂ (1). Consequently, P̂
(1)

s
(1)
l−1+1,j

= 0 for all j = 0, 1, ..., s
(2)
l−1 − 1. Hence, (A.19) must hold.

Next we show that
∞∑

i=s
(1)
l−1+2

s
(2)
l−1∑
j=0

P̂
(1)
i,j = 0. (A.20)

To this end, note that in our proof by contradiction, we assumed above that (s
(1)
l−1 + 1, s

(2)
l−1 + 1) is the

subsequent point to sl−1 = (s
(1)
l−1, s

(2)
l−1) on the S-path associated with P̂ (1), whence (s

(1)
l−1+1, s

(2)
l−1+1) is

a support point of P̂ (1). Therefore, none of the points (i, j) for i ≥ s
(1)
l−1 + 2 and j ∈ {0, 1, ..., s(2)l−1} can

be a support point of P̂ (1), since, if they were, this would violate the comonotonicity of P̂ (1). Hence,

(A.20) must hold.

Combining (A.18) with (A.19) and (A.20), we get that F
(2)

s
(2)
l−1

= F
(1)

s
(1)
l−1

. However, in Case 2, zl−1 =

F
(1)

s
(1)
l−1

and zl−1 ̸= F
(2)

s
(2)
l−1

, whence F
(2)

s
(2)
l−1

̸= F
(1)

s
(1)
l−1

. Hence, we have arrived at a contradiction. Therefore,

(s
(1)
l−1 + 1, s

(2)
l−1 + 1) cannot be the subsequent point to sl−1 = (s

(1)
l−1, s

(2)
l−1) on the S-path associated with

P̂ (1). Ergo, the subsequent point to sl−1 on the S-path associated with P̂ (1) must be sl = (s
(1)
l−1+1, s

(2)
l−1)

computed on Lines 12 and 13 of Algorithm 1 and specified by (A.15). From the induction hypothesis

S(1)l−1, it follows that the point sl−1 computed by Algorithm 1 is the lth point on the S-path associated

with P̂ (1). Therefore, sl, the subsequent point to sl−1 on the S-path associated with P̂ (1), is the (l+1)st

point on the S-path associated with P̂ (1). Therefore, we have verified that S(1)l holds.

Next, we verify that S(2)l holds. To this end, note that, from (A.15), s
(1)
l−1 = s

(1)
l − 1 and, in Case 2,

zl−1 = F
(1)

s
(1)
l−1

, whence

F
(1)

s
(1)
l −1

= F
(1)

s
(1)
l−1

= zl−1.

Also, F
(1)

s
(1)
l −1

< F
(1)

s
(1)
l

, since, as noted above, the marginal cdfs F (1) and F (2) are strictly increasing (see

(2.25)). Therefore,

F
(1)

s
(1)
l −1

= zl−1 < F
(1)

s
(1)
l

. (A.21)

Since the induction hypothesis S(2)l−1 holds, we can replace l by l − 1 in the second line of (A.1) to get

F
(2)

s
(2)
l−1−1

≤ zl−2 < zl−1 ≤ F
(2)

s
(2)
l−1

.

However, in Case 2, zl−1 ̸= F
(2)

s
(2)
l−1

. Therefore, we must have

F
(2)

s
(2)
l−1−1

≤ zl−2 < zl−1 < F
(2)

s
(2)
l−1

.

Dropping the zl−2 from the line above, we have

F
(2)

s
(2)
l−1−1

< zl−1 < F
(2)

s
(2)
l−1

.

Appendix A. Chapter 2.3 Proofs 180

From (A.15), s
(2)
l = s

(2)
l−1. Therefore,

F
(2)

s
(2)
l −1

< zl−1 < F
(2)

s
(2)
l

. (A.22)

Now note that Line 18 of Algorithm 1 computes

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
.

Since, from (A.21) and (A.22),

zl−1 < F
(1)

s
(1)
l

and zl−1 < F
(2)

s
(2)
l

,

it follows that

zl−1 < min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
= zl. (A.23)

Moreover,

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
≤ F

(1)

s
(1)
l

,

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
≤ F

(2)

s
(2)
l

.
(A.24)

Therefore, it follows from (A.21), (A.22) (A.23) and (A.24) that

F
(1)

s
(1)
l −1

= zl−1 < zl ≤ F
(1)

s
(1)
l

,

F
(2)

s
(2)
l −1

< zl−1 < zl ≤ F
(2)

s
(2)
l

.
(A.25)

Therefore, (A.1) holds. Moreover, from (A.25), it follows that the first equation in (A.2) holds. In

addition, since

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
,

zl must be equal to at least one of F
(1)

s
(1)
l

or F
(2)

s
(2)
l

. Hence, at least one of the equations in (A.3) holds.

Furthermore, since, from the induction hypothesis S(2)l−1, we know that zl−1 is the lth smallest element

in ΠZ = ΠX(1) ∨ ΠX(2) , it follows from (A.25) that the smaller of F
(1)

s
(1)
l

and F
(2)

s
(2)
l

must be the (l + 1)st

smallest element in ΠZ . Hence, zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
is the (l+1)st smallest element in ΠZ . Therefore,

we have verified that S(2)l holds.

Now we verify that S(3)l holds. The value of P̂
(1)

s
(1)
l ,s

(2)
l

computed on Line 18 of Algorithm 1 is

P̂
(1)

s
(1)
l ,s

(2)
l

= zl − zl−1. (A.26)

We know from Line 4 of Algorithm 1 which calls Algorithm 2 to compute the partition of unity that

zl = min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
. (A.27)

Appendix A. Chapter 2.3 Proofs 181

In addition, we proved above that S(2)l holds. Therefore, we have from (A.1) that

F
(1)

s
(1)
l −1

≤ zl−1 and F
(2)

s
(2)
l −1

≤ zl−1

and from (A.2) that at least one of

F
(1)

s
(1)
l −1

= zl−1 and F
(2)

s
(2)
l −1

= zl−1

holds. Therefore,

zl−1 = max
(
F

(1)

s
(1)
l −1

, F
(2)

s
(2)
l −1

)
. (A.28)

Since we verified above that S(2)l holds, we also have zl−1 < zl, whence zl − zl−1 > 0. Combining

zl − zl−1 > 0 with (A.26), (A.27) and (A.28), we get

P̂
(1)

s
(1)
l ,s

(2)
l

= zl − zl−1

= min
(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
−max

(
F

(1)

s
(1)
l −1

, F
(2)

s
(2)
l −1

)
=

[
min

(
F

(1)

s
(1)
l

, F
(2)

s
(2)
l

)
−max

(
F

(1)

s
(1)
l −1

, F
(2)

s
(2)
l −1

)]+
.

(A.29)

Therefore, the probability P̂
(1)

s
(1)
l ,s

(2)
l

computed on Line 18 of Algorithm 1 is correct in the sense that it

agrees with (2.7). Therefore, we have verified that S(3)l holds.

Thus, we have verified that all three statements in Sl hold in Case 2.

Case 3: zl−1 ̸= F
(1)

s
(1)
l−1

and zl−1 = F
(2)

s
(2)
l−1

(Line 14)

The proof that Algorithm 1 is correct in this case is very similar to the proof in Case 2. Therefore,

for the sake of brevity, we omit the proof in this case.

Since we have shown that for each l = 0, 1, 2, . . . , lmax, Sl holds true for all three cases, we have shown
that Theorem 3 holds true.

□

A.2 Proof of Proposition 2

Proof: We prove Proposition 2 by induction on l.

To begin, we prove the base case of the induction. We know from Lemma 1 that s0 = (s
(1)
0 , s

(2)
0) =

(0, 0) is the 1st point on the S-path associated with P̂
(1)

F̆
2 and we know from Remark 21 that s̄0 = (0, jmax),

is the 1st point on the S-path associated with P̂ (2). Therefore, we have that s̄0 = (s
(1)
0 , jmax − s

(2)
0), as

required.

For the induction step, choose any l ∈ {1, 2, . . . , lmax} and, for the induction hypothesis, assume that

Proposition 2 holds for l − 1. That is, for the induction hypothesis, assume that, if sl−1 = (s
(1)
l−1, s

(2)
l−1)

is the lth point on the S-path associated with P̂
(1)

F̆
(2) , then s̄l−1 = (s

(1)
l−1, jmax − s

(2)
l−1) is the lth point on

the S-path associated with P̂ (2). Our goal is to show that, if sl = (s
(1)
l , s

(2)
l) is the (l+1)st point on the

Appendix A. Chapter 2.3 Proofs 182

S-path associated with P̂
(1)

F̆
(2) , then s̄l = (s

(1)
l , jmax − s

(2)
l) is the (l+ 1)st point on the S-path associated

with P̂ (2).

To this end, suppose sl is the (l + 1)st point on the S-path associated with P̂
(1)

F̆
(2) . By the induction

hypothesis, sl−1 is the l
th point on the S-path associated with P̂

(1)

F̆
(2) . Therefore, sl must be the subsequent

point to sl−1 on the S-path associated with P̂
(1)

F̆
(2) . Hence, by Definition 17 and Remark 12, sl must be

one of the three points

(s
(1)
l−1 + 1, s

(2)
l−1), (s

(1)
l−1, s

(2)
l−1 + 1), or (s

(1)
l−1 + 1, s

(2)
l−1 + 1). (A.30)

To complete the proof, consider three cases depending on which of the three points in (A.30) is equal to

sl.

Case 1: sl = (s
(1)
l−1 + 1, s

(2)
l−1)

Since sl = (s
(1)
l−1 + 1, s

(2)
l−1) is the subsequent point to sl−1 = (s

(1)
l−1, s

(2)
l−1) on the S-path associated

with P̂
(1)

F̆
(2) , it follows that

P̂
(1)

s
(1)
l−1+1,s

(2)
l−1|F̆

(2) > 0.

Consequently, it follows from Lemma 14 that

P̂
(2)

s
(1)
l−1+1,jmax−s

(2)
l−1

> 0.

Therefore, s̄l = (s
(1)
l−1 + 1, jmax − s

(2)
l−1) is the subsequent point to s̄l−1 = (s

(1)
l−1, jmax − s

(2)
l−1) on

the S-path associated with P̂ (2). From the induction hypothesis, s̄l−1 = (s
(1)
l−1, jmax − s

(2)
l−1) is the

lth point on the S-path associated with P̂ (2). Hence, s̄l = (s
(1)
l−1 + 1, jmax − s

(2)
l−1) is the (l + 1)st

point on the S-path associated with P̂ (2). To complete the proof in this case, note that, since

sl = (s
(1)
l−1 + 1, s

(2)
l−1), s̄l = (s

(1)
l , jmax − s

(2)
l), as required.

Case 2: sl = (s
(1)
l−1, s

(2)
l−1 + 1)

The proof in this case is very similar to the proof in Case 1. Therefore, for brevity, we omit it.

Case 3: sl = (s
(1)
l−1 + 1, s

(2)
l−1 + 1)

Since sl = (s
(1)
l−1+1, s

(2)
l−1+1) is the subsequent point to sl−1 = (s

(1)
l−1, s

(2)
l−1) on the S-path associated

with P̂
(1)

F̆
(2) , it follows that

P̂
(1)

s
(1)
l−1+1,s

(2)
l−1+1|F̆(2) > 0.

However, in this case, we must also have

P̂
(1)

s
(1)
l−1+1,s

(2)
l−1|F̆

(2) = 0,

P̂
(1)

s
(1)
l−1,s

(2)
l−1+1|F̆(2) = 0

since otherwise one of the points (s
(1)
l−1+1, s

(2)
l−1) or (s

(1)
l−1, s

(2)
l−1+1) would be the subsequent point to

sl−1 = (s
(1)
l−1, s

(2)
l−1) on the S-path associated with P̂

(1)

F̆
(2) . Consequently, it follows from Lemma 14

Appendix A. Chapter 2.3 Proofs 183

that

P̂
(2)

s
(1)
l−1+1,jmax−s

(2)
l−1−1

> 0,

P̂
(2)

s
(1)
l−1+1,jmax−s

(2)
l−1

= 0,

P̂
(2)

s
(1)
l−1,jmax−s

(2)
l−1−1

= 0.

Therefore, s̄l = (s
(1)
l−1 + 1, jmax − s

(2)
l−1 − 1) is the subsequent point to s̄l−1 = (s

(1)
l−1, jmax − s

(2)
l−1)

on the S-path associated with P̂ (2). From the induction hypothesis, s̄l−1 = (s
(1)
l−1, jmax − s

(2)
l−1) is

the lth point on the S-path associated with P̂ (2). Hence, s̄l = (s
(1)
l−1 + 1, jmax − s

(2)
l−1 − 1) is the

(l + 1)st point on the S-path associated with P̂ (2). To complete the proof in this case, note that,

since sl = (s
(1)
l−1 + 1, s

(2)
l−1 + 1), s̄l = (s

(1)
l + 1, jmax − s

(2)
l − 1), as required.

□

Appendix B

Chapter 2.5 Proofs

B.1 Proof of Lemma 16

Proof: To begin, we consider the two special cases: i = −1 and i = i
(d;k)
max . For any k ∈ {1, 2, . . . , d}

and i = −1, (2.89) reduces to
1− F

(j′,d;k)
−1 = F

(j,d;k)

i
(d;k)
max

(B.1)

which is clearly true, since F
(j′,d;k)
−1 = 0 and F

(j,d;k)
imax

= 1.

Similarly, for any k ∈ {1, 2, . . . , d} and i = i
(d;k)
max , (2.89) reduces to

1− F
(j′,d;k)

i
(d;k)
max

= F
(j,d;k)
−1 (B.2)

which is clearly true, since F
(j,d;k)
−1 = 0 and F

(j′,d;k)

i
(d;k)
max

= 1.

Now consider the remaining general case i ∈ {0, 1, . . . , i(d;k)max − 1}. From (2.76) and (2.77), it follows

that, for any k ∈ {1, 2, . . . , d} and any i ∈ {0, 1, . . . , i(d;k)max − 1},

1− F
(j′,d;k)
i = 1−

i∑
n=0

Q(j′,d;k)
n

= 1−
i(d;k)
max∑

n= i
(d;k)
max −i

Q(j,d;k)
n

= 1− (Q
(j,d;k)

i
(d;k)
max

+ · · ·+Q
(j,d;k)

i
(d;k)
max −i

)

= (Q
(j,d;k)

i
(d;k)
max

+ · · ·+Q
(j,d;k)

i
(d;k)
max −i

+Q
(j,d;k)

i
(d;k)
max −i−1

+ · · ·+Q
(j,d;k)
0)− (Q

(j,d;k)

i
(d;k)
max

+ · · ·+Q
(j,d;k)

i
(d;k)
max −i

)

= Q
(j,d;k)
0 + · · ·+Q

(j,d;k)

i
(d;k)
max −i−1

= F
(j,d;k)

i
(d;k)
max −i−1

.

□

184

Appendix B. Chapter 2.5 Proofs 185

B.2 Proof of Lemma 17

Proof: Before we begin the proof, note that z
(j,2;u,v)
−1 = 0 is the smallest element in z(j,2;u,v) and

z
(j,2;u,v)
0 is the second smallest element in z(j,2;u,v), and so on. Similarly, z

(j′,2;u,v)
−1 = 0 and z

(j′,2;u,v)
0 are

the smallest element and second smallest element, respectively, in z(j
′,2;u,v).

We begin by showing that (2.90) is true. To this end, choose any l ∈ {−1, 0, 1, . . . , l2max − 1, l2max}.
By the construction of the partition of unity, z

(j′,2;u,v)
l is the (l + 2)th element from the left in the

sequence z(j′,2;u,v) and must equal F
(j′,d;k)
i for some k ∈ {u, v} and some i ∈ {−1, 0, 1, . . . , i(d;k)max }. That

is, z
(j′,2;u,v)
l = F

(j′,d;k)
i for some k ∈ {u, v} and some i ∈ {−1, 0, 1, . . . , i(d;k)max }. Thus, there must be

(l+1) values in the set ∪k∈{u,v}{F
(j′,d;k)
i : i = −1, 0, . . . , i(d;k)max } smaller than F

(j′,d;k)
i and l2max− l values

in the set ∪k∈{u,v}{F
(j′,d;k)
i : i = −1, 0, . . . , i(d;k)max } larger than F

(j′,d;k)
i . Moreover, 1− F

(j′,d;k)
i must be

the (l+2)th element from the right in the set ∪k∈{u,v}{1−F
(j′,d;k)
i : i = −1, 0, . . . , i(d;k)max }. That is, there

must be l2max − l values in the set ∪k∈{u,v}{1− F
(j′,d;k)
i : i = −1, 0, . . . , i(d;k)max } smaller than 1− F

(j′,d;k)
i

and l + 1 items greater than 1− F
(j′,d;k)
i . By Lemma 16, we must have that 1− F

(j′,d;k)
i = F

(j,d;k)

i
(d;k)
max −i−1

,

whence, F
(j,d;k)

i
(d;k)
max −i−1

must also be the (l + 2)th element from the right in the set ∪k∈{u,v}{F
(j,d;k)
i : i =

−1, 0, . . . , i(d;k)max }. Therefore, it must be that z
(j,2;u,v)
l2max−l−1 = F

(j,d;k)

i
(d;k)
max −i−1

= 1 − F
(j′,d;k)
i = 1 − z

(j′,2;u,v)
l ,

since z
(j,2;u,v)
lmax−l−1 is the (l + 2)th element from the right in the set z(j

′,2;u,v) = ∪k∈{u,v}{F
(j,d;k)
i : i =

−1, 0, . . . , i(d;k)max }. Therefore, (2.90) holds true.
Finally, note that, in the argument in the paragraph above, the same dimension index, k, and the

same iteration index, i, are used in the proof of both z
(j′,2;u,v)
l = F

(j′,d;k)
i and z

(j,2;u,v)
l2max−l−1 = F

(j,d;k)

i
(d;k)
max −i−1

=

1 − F
(j′,d;k)
i Therefore, both (2.91) and (2.92) above hold true, where the k’s and i’s are the same in

(2.91) and (2.92).

□

B.3 Proof of Lemma 23

Proof: We begin by showing that P̃ (j,d) is a probability distribution. That is,

P̃
(j,d)
i1,...,id

≥ 0 (B.3)

for all k ∈ {1, . . . , d} and all ik ∈ {0, 1, . . . , i(d;k)max }, and that

i(d;1)max∑
i1=0

· · ·
i(d;d)max∑
id=0

P̃
(j,d)
i1,...,id

= 1. (B.4)

We start with (B.4) by noting that the left side can be written as

i(d;1)max∑
i1=0

· · ·
i(d;d)max∑
id=0

P̃
(j,d)
i1,...,id

=

l(j,d)max∑
l=0

P̃
(j,d)

s
(j,d;1)

l(j,d)
,...,s

(j,d;d)

l(j,d)

=

l(j,d)max∑
l=0

P̃
(j,d)

l(j,d)
(B.5)

since Algorithm 5 computes all the points, {s(j,d;1)
l(j,d)

, . . . , s
(j,d;d)

l(j,d)
}l

(j,d)
max

l(j,d)=0
, belonging to the support of P̃ (j,d)

and all other points in the domain are defined to be 0 since they do not belong to the support. Since

we have that P̃
(j,d)
0 = z

(j,d)
0 by Line 8 of Algorithm 5 and P̃

(j,d)

l(j,d)
= z

(j,d)

l(j,d)
− z

(j,d)

l(j,d)−1
for l(j,d) ≥ 1 from

Appendix B. Chapter 2.5 Proofs 186

Line 14 of Algorithm 5, the right-most sum in (B.5) satisfies

l(j,d)max∑
l(j,d)=0

P̃
(j,d)
l = z

(j,d)
0 + (z

(j,d)
1 − z

(j,d)
0) + · · ·+ (z

(j,d)

l
(j,d)
max

− z
(j,d)

l
(j,d)
max −1

)

= z
(j,d)

l
(j,d)
max

. (B.6)

Therefore, by (B.5), (B.6), and the fact that z
(j,d)

l
(j,d)
max

= 1, (B.4) holds true.

Next, we show that (B.3) is valid. To this end, choose any point (i1, ..., id) in the domain of P̃ (j,d)

and note that (i1, ..., id) must satisfy either

(a) (i1, ..., id) = s
(j,d)

l(j,d)
for some l(j,d) ∈ {0, 1, ..., l(j,d)max }, or

(b) (i1, ..., id) ̸= s
(j,d)

l(j,d)
for any l(j,d) ∈ {0, 1, ..., l(j,d)max }.

In case (a), P̃
(j,d)
i1,...,id

= P̃
(j,d)

s
(j,d)

l(j,d)

= P̃
(j,d)

l(j,d)
. Also, by Algorithm 5, P̃

(j,d)
0 = z

(j,d)
0 and P̃

(j,d)

l(j,d)
= z

(j,d)

l(j,d)
−z

(j,d)

l(j,d)−1

for l(j,d) > 0. In addition, by Algorithm 8, {z(j,d)0 , z
(j,d)
1 , ..., z

(j,d)

l
(j,d)
max

} is a strictly increasing sequence of

positive values. Hence, P̃
(j,d)
0 = z

(j,d)
0 > 0 and P̃

(j,d)

l(j,d)
= z

(j,d)

l(j,d)
− z

(j,d)

l(j,d)−1
> 0 for l(j,d) > 0. Therefore,

P̃
(j,d)
i1,...,id

= P̃
(j,d)

s
(j,d)

l(j,d)

= P̃
(j,d)

l(j,d)
> 0. On the other hand, in case (b), (i1, ..., id) is not in the support of

P̃ (j,d), since Algorithm 5 computes all the support points, s
(j,d)

l(j,d)
, of P̃ (j,d) and (i1, ..., id) ̸= s

(j,d)

l(j,d)
for any

l(j,d) ∈ {0, 1, ..., l(j,d)max }. Hence, P̃
(j,d)
i1,...,id

= 0. Therefore, whether case (a) or case (b) holds, P̃
(j,d)
i1,...,id

≥ 0,

whence (B.3) is valid.

Since (B.3) and (B.4) hold true, we have shown that P̃ (j,d) is a probability distribution and that it

satisfies (2.37c).

All that remains is to show that P̃ (j,d) satisfies (2.37b). To this end, we note that, by Remark 43, for

each k ∈ {1, . . . , d} and each ik ∈ {0, 1, . . . , i(d;k)max }, we can rewrite the equation on the left of (2.37b) as

∑
v∈Ik

i(d;v)
max∑
iv=0

P̃
(j,d)
i1,...ik−1,ik,ik+1,...,id

=
∑

{l :s(j,d;k)

l(j,d)
= ik}

P̃
(j,d)

s
(j,d;1)

l(j,d)
,...,s

(j,d;d)

l(j,d)

(B.7)

because, while (2.37b) is written assuming that P̃ (j,d) is an infinite-dimensional distribution, it applies

equally well, with minor modifications, to finite dimensional distributions. Lemma 19 and Corollary 1

guarantee the existence of the integers q and w, where q is the smallest integer such that s
(j,d;k)
q = ik

and w is the largest integer such that s
(j,d;k)
w = ik, enabling us to write (B.7) as

∑
v∈Ik

i(d;v)
max∑
iv=0

P̃
(j,d)
i1,...ik−1,ik,ik+1,...,id

=

w∑
l(j,d)=q

P̃
(j,d)

s
(j,d;1)

l(j,d)
,...,s

(j,d;d)

l(j,d)

=

w∑
l(j,d)=q

P̃
(j,d)

l(j,d)
= P̃ (j,d)

q + · · ·+ P̃ (j,d)
w . (B.8)

Since we have that P̃
(j,d)

l(j,d)
= z

(j,d)

l(j,d)
− z

(j,d)

l(j,d)−1
from Line 14 of Algorithm 5, we can rewrite (B.8) as

P̃ (j,d)
q + · · ·+ P̃ (j,d)

w = (z(j,d)q − z
(j,d)
q−1) + · · ·+ (z(j,d)w − z

(j,d)
w−1)

= z(j,d)w − z
(j,d)
q−1 . (B.9)

Note that (B.9) holds true in the edge case q = 0, since P̃
(j,d)
0 = z

(j,d)
0 by Line 5 of Algorithm 5 and

Appendix B. Chapter 2.5 Proofs 187

z
(j,d)
0 = z

(j,d)
0 − z

(j,d)
−1 , since z

(j,d)
−1 = 0 by Definition 26, whence P̃

(j,d)
0 = z

(j,d)
0 − z

(j,d)
−1 . It follows from

Lines 8-12 of Algorithm 5 that either s
(j,d;k)
w+1 = s

(j,d;k)
w + 1 or s

(j,d;k)
w+1 = s

(j,d;k)
w . Therefore, if w is the

greatest integer such that s
(j,d;k)
w = ik, then it must be that s

(j,d;k)
w+1 = s

(j,d;k)
w +1 = ik +1. Consequently,

Line 10 must get executed in the subsequent iteration of the algorithm. In order for Line 10 to get

executed, the condition in Line 9 must evaluate to true, from which we can deduce that

z(j,d)w = F
(j,d;k)

s
(j,d;k)
w

= F
(j,d;k)
ik

. (B.10)

Similarly, since q is the smallest integer such that s
(j,d;k)
q = ik, we can also deduce that

z
(j,d)
q−1 = F

(j,d;k)

s
(j,d;k)
q −1

= F
(j,d;k)
ik−1 . (B.11)

Note that (B.11) holds for the edge case q = 0 since s
(j,d;k)
0 = 0 by Line 4 of Algorithm 5 and by

definition F
(j,d;k)
−1 = 0. (See the beginning of this section.) Therefore, we have from (B.8), (B.9), (B.10),

and (B.11) that

∑
v∈Ik

i(d;v)
max∑
iv=0

P̃
(j,d)
i1,...ik−1,ik,ik+1,...,id

=

w∑
l(j,d)=q

P̃
(j,d)

s
(j,d;1)

l(j,d)
,...,s

(j,d;d)

l(j,d)

= F
(d;k)
ik

− F
(d;k)
ik−1 = Q

(d;k)
ik

. (B.12)

Note that (B.12) holds true for the edge case ik = 0 since F
(j,d;k)
−1 = 0 and, by definition, Q

(j,d;k)
0 =

F
(j,d;k)
0 . Therefore, the probability distribution P̃ (j,d) satisfies the constraint (2.37b). □

B.4 Proof of Corollary 2

Proof: Choose any j ∈ {1, 2, . . . , n}, u, v such that 1 ≤ u < v ≤ d, any k ∈ {u, v}, and any

l2 ∈ {0, 1, . . . , l(j,d;u,v)max }. By Remark 52, there exists a unique l(j,d) ∈ {0, 1, . . . , l(j,d)max } such that

z
(j,2;u,v)
l2 = z

(j,d)

l(j,d)
. (B.13)

By Remark 54, there is at least one l(j,d) ∈ {0, 1, . . . , l(j,d)max } such that

s̃
(j,d;u,v)
l2 = s̃

(j,d;u,v)

l(j,d)
. (B.14)

For a given l2, the unique l(j,d) that satisfies (B.13) also satisfies (B.14). We prove this preliminary result

by induction on l2 ∈ {0, 1, . . . , l(j,d;u,v)max } and use it in the proof of the corollary.

We begin the induction proof with the base case l2 = 0. First note that s̃
(j,d;u,v)
0 = (0, 0) from the

construction of the set s̃(j,d;u,v) from the set s̃(j,d) and the initialization of s̃
(j,d)
0 to (0, 0, . . . , 0) on Line 4

of Algorithm 5. Next note that, for l2 = 0, there exists, by Remark 52, a unique l(j,d) satisfying (B.13).

Denote this l(j,d) by l
(j,d)
0 . From the construction of the set z(j,2;u,v), z

(j,2;u,v)
0 must be an element of

either F(j,d;u) or F(j,d;v). Hence, (B.13) implies that z
(j,d)

l
(j,d)
0

must also belong to either F(j,d;u) or F(j,d;v).

However, since z(j,2;u,v) ⊂ z(j,d), l
(j,d)
0 may not necessarily be 0. If l

(j,d)
0 = 0, it follows from Line 4

of Algorithm 5 that s̃
(j,d;u,v)

l
(j,d)
0

= s̃
(j,d;u,v)
0 = (0, 0). Thus, l

(j,d)
0 satisfies both (B.13) and (B.14). On the

other hand, if l
(j,d)
0 ̸= 0, (B.13) implies that z

(j,d)

l
(j,d)
0

is the first element of the set z(j,d) that belongs to

Appendix B. Chapter 2.5 Proofs 188

either F(j,d;u) or F(j,d;v). Then, Lines 9-12 of Algorithm 5 further imply that s̃
(j,d)

l
(j,d)
0 +1

is the first element

of the set s̃(j,d) where either the uth or the vth coordinate is incremented. Therefore, it follows that

s̃
(j,d;u,v)

l
(j,d)
0

= (0, 0). Thus, l
(j,d)
0 satisfies both (B.13) and (B.14).

Next, for the induction step, choose any l2 ∈ {0, 1, . . . , l(j,d;u,v)max −1} and, for the induction hypothesis,

assume that there exists an l(j,d) ∈ {0, 1, . . . , l(j,d)max } that satisfies both (B.13) and (B.14). Denote this

l(j,d) by l
(j,d)
l2 . Then, note that, by Remark 52, there exists a unique l(j,d) ∈ {0, 1, . . . , l(j,d)max } corresponding

to l2 + 1, denoted l
(j,d)
l2+1, such that

z
(j,2;u,v)
l2+1 = z

(j,d)

l
(j,d)

l2+1

. (B.15)

To complete the induction proof, we show below that the same l
(j,d)
l2+1 must also satisfy

s̃
(j,d;u,v)
l2+1 = s̃

(j,d;u,v)

l
(j,d)

l2+1

. (B.16)

Towards that end, note that, by the generation of the set s̃(j,d) in Algorithm 5 and by the construction

of the set s̃(j,d;u,v) from the set s̃(j,d), s̃
(j,d;u,v)
l2+1 must be one of (s̃

(j,d;u)
l2 + 1, s̃

(j,d;v)
l2), (s̃

(j,d;u)
l2 , s̃

(j,d;v)
l2 + 1),

or (s̃
(j,d;u)
l2 + 1, s̃

(j,d;v)
l2 + 1). Moreover, note that z

(j,2;u,v)
l2 = z

(j,d)

l
(j,d)

l2

implies that z
(j,d)

l
(j,d)

l2

must be an element

of either F(j,d;u) or F(j,d;v) which, along with Lines 8-12 of of Algorithm 5, implies that s̃
(j,d;u,v)

l
(j,d)

l2
+1

must

be one of (s̃
(j,d;u)

l
(j,d)

l2

+ 1, s̃
(j,d;v)

l
(j,d)

l2

), (s̃
(j,d;u)

l
(j,d)

l2

, s̃
(j,d;v)

l
(j,d)

l2

+ 1), or (s̃
(j,d;u)

l
(j,d)

l2

+ 1, s̃
(j,d;v)

l
(j,d)

l2

+ 1).

Case 1: s̃
(j,d;u,v)

l
(j,d)

l2
+1

= (s̃
(j,d;u)

l
(j,d)

l2

+ 1, s̃
(j,d;v)

l
(j,d)

l2

)

The induction hypothesis, z
(j,2;u,v)
l2 = z

(j,d)

l
(j,d)

l2

, along with our assertion (B.15) above that z
(j,2;u,v)
l2+1 =

z
(j,d)

l
(j,d)

l2+1

imply that there is no z
(j,d)

l̂(j,d)
with l̂(j,d) satisfying l

(j,d)
l2 < l̂(j,d) < l

(j,d)
l2+1 that belongs to

either F(j,d;u) or F(j,d;v). Hence, for iterations l
(j,d)
l2 + 2 to l

(j,d)
l2+1, Line 9 of Algorithm 5 evaluates

to false for k ∈ {u, v}, which leads to Line 12 of Algorithm 5 being executed. It then follows

that s̃
(j,d;u,v)

l
(j,d)

l2
+1

= · · · = s̃
(j,d;u,v)

l
(j,d)

l2+1

, which enables us to rewrite the left side of the equation in our

assumption for this case as

s̃
(j,d;u,v)

l
(j,d)

l2+1

= (s̃
(j,d;u)

l
(j,d)

l2

+ 1, s̃
(j,d;v)

l
(j,d)

l2

). (B.17)

Then, since (B.14) holds for the same l
(j,d)
l2 that satisfies (B.13) by the induction hypothesis,

substituting (B.14) into the right side of (B.17) gives

s̃
(j,d;u,v)

l
(j,d)

l2+1

= (s̃
(j,d;u)
l2 + 1, s̃

(j,d;v)
l2). (B.18)

Finally, since in this case we have that s̃
(j,d;u,v)

l
(j,d)

l2
+1

= (s̃
(j,d;u)

l
(j,d)

l2

+ 1, s̃
(j,d;v)

l
(j,d)

l2

) = s̃
(j,d;u,v)

l
(j,d)

l2+1

and the set

s̃(j,d;u,v) is constructed from the set s̃(j,d) by removing duplicates and retaining the order in which

the support points were generated, it must then also be that s̃
(j,d;u,v)

l
(j,d)

l2+1

= (s̃
(j,d;u)
l2 + 1, s̃

(j,d;v)
l2) =

s̃
(j,d;u,v)
l2+1 , as required.

Case 2: s̃
(j,d;u,v)

l
(j,d)

l2
+1

= (s̃
(j,d;u)

l
(j,d)

l2

, s̃
(j,d;v)

l
(j,d)

l2

+ 1)

Appendix B. Chapter 2.5 Proofs 189

In this case, it can be shown that s̃
(j.d;u,v)

l
(j,d)

l2+1

= (s̃
(j,d;u)
l2 , s̃

(j,d;v)
l2 + 1) = s̃

(j,d;u,v)
l2+1 . Since the proof is

very similar to the proof in Case 1, we omit it for the sake of brevity.

Case 3: s̃
(j,d;u,v)

l
(j,d)

l2
+1

= (s̃
(j,d;u)

l
(j,d)

l2

+ 1, s̃
(j,d;v)

l
(j,d)

l2

+ 1)

In this case, it can be shown that s̃
(j.d;u,v)

l
(j,d)

l2+1

= (s̃
(j,d;u)
l2 + 1, s̃

(j,d;v)
l2 + 1) = s̃

(j,d;u,v)
l2+1 . Since the proof

is very similar to the proof in Case 1, we omit it for the sake of brevity.

Therefore, we have shown that (B.16) holds in all three cases above, which completes the induction

step. Hence, we have shown by induction that, for any l2 ∈ {0, 1, . . . , l(j,d;u,v)max }, the unique l(j,d) ∈
{0, 1, . . . , l(j,d)max } that satisfies (B.13) also satisfies (B.14).

Next, recall that, by Lemma 20, for every l(j,d) ∈ {0, 1, . . . , l(j,d)max }, s̃
(j,d;k)

l(j,d)
is the number of i ∈

{0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,d)
l for some l ∈ {0, 1, . . . , l(j,d)−1}. Moreover, given the fact that

we have shown above that, for every l2 there exists a corresponding l(j,d) such that both (B.13) and (B.14)

hold and the fact that we have fixed an l2 at the beginning of this proof, (B.14) implies that s̃
(j,d;k)
l2 must

also be the number of i ∈ {0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,d)
l for some l ∈ {0, 1, . . . , l(j,d) − 1}.

Thus, it remains to be shown that the number of i ∈ {0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,d)
l for some

l ∈ {0, 1, . . . , l(j,d)− 1} must be equal to the number of i ∈ {0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,2;u,v)
l

for some l ∈ {0, 1, . . . , l2 − 1}, where l2 was chosen in the first line of the proof and l(j,d) is such that

(B.13) and (B.14) hold.

Towards that end, we first show that for any i ∈ {0, 1, . . . , i(d;k)max }, all j ∈ {1, 2, . . . , n}, all k ∈ {u, v},
where u, v are such that 1 ≤ u < v ≤ d,

F
(j,d;k)
i = z

(j,d)
l (B.19)

for some l ∈ {0, 1, . . . , l(j,d) − 1} iff
F

(j,d;k)
i = z

(j,2;u,v)
l (B.20)

for some l ∈ {0, 1, . . . , l2 − 1}.
We begin by showing the ⇐= case. Towards this end, fix some i ∈ {0, 1, . . . , i(d;k)max } and assume that

(B.20) holds for some l ∈ {0, 1, . . . , l2 − 1}. Note that there can only be one such l ∈ {0, 1, . . . , l2 − 1}
that satisfies (B.20) since there are no duplicate elements in the set z(j,2;u,v). Further note that the

z
(j,2;u,v)
l in (B.20) must also be in the set z(j,d) since z(j,2;u,v) ⊂ z(j,d) by the construction of z(j,2;u,v) in

Remark 50. That is, there exists an l̂ ∈ {0, 1, . . . , l(j,d)max } such that

z
(j,d)

l̂
= z

(j,2;u,v)
l . (B.21)

Then, (B.20) and (B.21) imply that F
(j,d;k)
i = z

(j,d)

l̂
. It remains to show that l̂ ∈ {0, 1, . . . , l(j,d) − 1}.

To see this, note that

z
(j,2;u,v)
l < z

(j,2;u,v)
l2 (B.22)

since l < l2 and the set z(j,2;u,v) is strictly increasing. Next, substituting (B.13) in the right side of

(B.22) and substituting (B.21) in the left side of (B.22) gives

z
(j,d)

l̂
< z

(j,d)

l(j,d)
. (B.23)

Appendix B. Chapter 2.5 Proofs 190

Since z(j,d) is also a strictly increasing set, (B.23) implies that l̂ < l(j,d). Therefore, (B.19) holds for l = l̂

and l̂ ∈ {0, 1, . . . , l(j,d) − 1}, as required.

The =⇒ case is similar and for this reason we omit its proof. Finally, since we have shown that, for

any i ∈ {0, 1, . . . , i(d;k)max }, (B.19) holds if and only if (B.20) holds, it must then be that the number of

i ∈ {0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,d)
l for some l ∈ {0, 1, . . . , l(j,d) − 1} is equal to the number of

i ∈ {0, 1, . . . , i(d;k)max } such that F
(j,d;k)
i = z

(j,2;u,v)
l for some l ∈ {0, 1, . . . , l2 − 1}. □

B.5 Proof of Lemma 22

Proof: We begin by showing that (2.101) holds true for l2 = 0. Recall from Lines 3-5 of Algorithm 1

that

s
(j′,2)
0 = (0, 0), z

(j′,2)
0 = min(F

(j′,2;1)
0 , F

(j′,2;2)
0), and P̂

(j′,2)
0 = z

(j′,2)
0 . (B.24)

Similarly, from Lines 2-5 of Algorithm 5 and from Algorithm 8, we must also have that

s
(j,d)
0 = (0, . . . , 0), z

(j,d)
0 = min(F

(j,d;1)
0 , . . . , F

(j,d;d)
0), and P̃

(j,d)
0 = z

(j,d)
0 . (B.25)

Case 1: F
(j′,2;1)
0 ≤ F

(j′,2;2)
0

In this case, (B.24) implies that

P̂ (j′,2) = F
(j′,2;1)
0 . (B.26)

From our assumption in this case that F
(j′,2;1)
0 ≤ F

(j′,2;2)
0 , the fact that F (j,d;u) = F (j′,2;1) and

F (j,d;v) = F (j′,2;2), we also have that

F
(j,d;u)
0 ≤ F

(j,d;v)
0 . (B.27)

By Lemma 19, let m and n be the smallest integers such that

s(j,d;u)m = s(j,d;v)n = 1. (B.28)

Note that we assume here that i
(d;u)
max > 0 and i

(d;v)
max > 0 and treat various edge cases at the end of

the proof for l2 = 0. We must have that m ≤ n since (B.27) implies, by Lines 9-12 of Algorithm 5,

that s
(j,d;u)
m is incremented before s

(j,d;v)
n . Then, either

z
(j,d)
m−1 = F

(j,d;u)
0 or z

(j,d)
m−1 = F

(j,d;v)
0 (B.29)

since for (B.28) to hold in Algorithm 5, each coordinate is incremented if and only if the previous

z value is equal to the corresponding cdf with the same coordinate. In fact, we must have that

z
(j,d)
m−1 = min{F (j,d;u)

0 , F
(j,d;v)
0 } (B.30)

since the partition of unity is constructed in ascending order by Algorithm 8. Using (B.27) in

(B.30), we have that

z
(j,d)
m−1 = F

(j,d;u)
0 . (B.31)

Appendix B. Chapter 2.5 Proofs 191

We also have, from (B.28), m ≤ n, and Algorithm 5, that

s
(j,d;u,v)
l = (0, 0) for l ∈ {0, . . . ,m− 1}. (B.32)

Using (2.43), we compute

P̃
(j,d;u,v)
0 = P̃

(j,d;u,v)
(0,0) =

∑
j∈Iu,v

∞∑
ij=0

P̃
(j,d)
i1,...iu−1,0,iu+1,...,iv−1,0,iv+1,...,id

=

m−1∑
l(j,d)=0

P̃
(j,d)

l(j,d)
. (B.33)

Note that the second line in (B.33) follows from the first line by Remark 43. Then, recall from

Line 5 of Algorithm 5 that

P̃
(j,d)
0 = z

(j,d)
0 (B.34)

and from Line 14 of Algorithm 5 that

P̃
(j,d)

l(j,d)
= z

(j,d)

l(j,d)
− z

(j,d)

l(j,d)−1
(B.35)

for l(j,d) > 0. Using (B.31), (B.34) and (B.35) to rewrite (B.33), we have that

P̃
(j,d;u,v)
0 = z

(j,d)
0 + (z

(j,d)
1 − z

(j,d)
0) + · · ·+ (z

(j,d)
m−1 − z

(j,d)
m−2)

= z
(j,d)
m−1 = F

(j,d;u)
0 . (B.36)

Therefore, (2.101) holds true for the case l2 = 0 by (B.26) and (B.36), since F
(j,d;u)
0 = F

(j′,2;1)
0 .

Case 2: F
(j′,2;1)
0 ≥ F

(j′,2;2)
0

The proof in this case is very similar to Case 1. We omit the proof in this case for the sake of

brevity.

Note that in the edge case i
(d;u)
max = i

(2;1)
max > 0 and i

(d;v)
max = i

(2;2)
max = 0, we have that F

(j,d;v)
0 = 1 =

F
(j′,2;2)
0 . Since, by Line 6 of Algorithm 5, the vth coordinate of the support does not get incremented,

therefore, the n in (B.28) cannot exist. However, them in (B.28) does exist. Consequently, we must have,

from (B.30), that z
(j,d)
m−1 = F

(j,d;u)
0 . Similar arguments to those in (B.31)-(B.36) allow us to conclude

that, for the edge case i
(d;u)
max = i

(2;1)
max > 0 and i

(d;v)
max = i

(2;2)
max = 0, (2.101) also holds true. A similar

argument holds for the edge case i
(d;u)
max = i

(2;1)
max = 0 and i

(d;v)
max = i

(2;2)
max > 0.

In the edge case i
(d;u)
max = i

(2;1)
max = 0 and i

(d;v)
max = i

(2;2)
max = 0, however, neither m nor n in (B.28) exist.

Since F
(j,d;u)
0 = F

(j,d;v)
0 = 1, we must have that z

(j,d)

l
(j,d)
max

= 1 = F
(j,d;u)
0 = F

(j,d;v)
0 which implies that in

order to compute P̃
(j,d;u,v)
(0,0) , the upper limit of summation (B.33) must be l

(j,d)
max . Therefore, we have that

P̃
(j,d;u,v)
(0,0) = z

(j,d)
0 + (z

(j,d)
1 − z

(j,d)
0) + · · ·+ (z

(j,d)

l
(j,d)
max

− z
(j,d)

l
(j,d)
max −1

) = z
(j,d)

l
(j,d)
max

= 1. (B.37)

Since P̂
(j′,2)
0 = 1, (2.101) also holds true for the case l2 = 0, in the edge case i

(d;u)
max = i

(2;1)
max = 0 and

i
(d;v)
max = i

(2;2)
max = 0.

Therefore, (2.101) holds true for the case l2 = 0.

Appendix B. Chapter 2.5 Proofs 192

Next, we show that (2.101) holds true for any l2 ∈ {1, 2, . . . , l2max}. By Line 18 of Algorithm 1,

P̂
(j′,2)
l2 = z

(j′,2)
l2 − z

(j′,2)
l2−1

= min{F (j′,2;1)

s
(j′,2;1)
l2

, F
(j′,2;2)

s
(j′,2;2)
l2

} −min{F (j′,2;1)

s
(j′,2;1)
l2−1

, F
(j′,2;2)

s
(j′,2;2)
l2−1

}. (B.38)

since, by Remark 32, we have that z
(j′,2)
l2 = min{F (j′,2;1)

s
(2;1)

l2

, F
(j′,2;2)

s
(2;2)

l2

}.

Let l
(j,d)
− be the smallest iteration index in Algorithm 5 corresponding to the index l2 such that

(s
(j,d;u)

l
(j,d)
−

, s
(j,d;v)

l
(j,d)
−

) = (s
(j′,2;1)
l2 , s

(j′,2;2)
l2). (B.39)

Note that l
(j,d)
− must exist due to (B.61), which we have shown above. Then, either

z
(j,d)

l
(j,d)
− −1

= F
(j,d;u)

s
(j,d;u)

l
(j,d)
− −1

or z
(j,d)

l
(j,d)
− −1

= F
(j,d;v)

s
(j,d;v)

l
(j,d)
− −1

(B.40)

since l
(j,d)
− is the smallest index such that (B.39) holds and for (s

(j,d;u)

l
(j,d)
−

, s
(j,d;v)

l
(j,d)
−

) to be the current support

point, either the uth or the vth coordinate must be incremented. Within Algorithm 5, a coordinate is

incremented if and only if the previous z value is equal to the corresponding cdf from the same coordinate.

In fact, we must have that

z
(j,d)

l
(j,d)
− −1

= min{F (j,d;u)

s
(j,d;u)

l
(j,d)
− −1

, F
(j,d;v)

s
(j,d;v)

l
(j,d)
− −1

} (B.41)

since the partition of unity is constructed in ascending order by Algorithm 8.

Now, let l
(j,d)
+ be the greatest iteration index such that

(s
(j,d;u)

l
(j,d)
+

, s
(j,d;v)

l
(j,d)
+

= (s
(j′,2;1)
l2 , s

(j′,2;2)
l2). (B.42)

We assume here that l
(j,d)
+ > l

(j,d)
− , l

(j,d)
− ̸= l

(j,d)
max , and that l

(j,d)
+ ̸= l

(j,d)
max . We handle the edge cases at the

end of the proof. Then, either

s
(j,d;u)

l
(j,d)
+ +1

= s
(j,d;u)

l
(j,d)
+

+ 1 or s
(j,d;v)

l
(j,d)
+ +1

= s
(j,d;v)

l
(j,d)
+

+ 1, (B.43)

which in turn implies that

z
(j,d)

l
(j,d)
+

= min{F (j,d;u)

s
(j,d;u)

l
(j,d)
+

, F
(j,d;u)

s
(j,d;v)

l
(j,d)
+

} (B.44)

from similar arguments to those used above for l
(j,d)
− . We then use (2.43) to compute

P̃
(j,d;u,v)
l2 = P̃

(j,d;u,v)

(s
(j′,2;1)
l2

,s
(j′,2;2)
l2

)
=
∑

j∈Iu,v

∞∑
ij=0

P̃
(j,d)

i1,...iu−1,s
(j′,2;1)
l2

,iu+1,...,iv−1,s
(j′,2;2)
l2

,iv+1,...,id

=

l
(j,d)
+∑

l=l
(j,d)
−

P̃
(j,d)
l = P̃

(j,d)

l
(j,d)
−

+ · · ·+ P̃
(j,d)

l
(j,d)
+

. (B.45)

Note that the second line in (B.45) follows from the first line by Remark 43. We can rewrite (B.45)

Appendix B. Chapter 2.5 Proofs 193

using (B.35) as

P̃
(j,d;u,v)
l2 = (z

(j,d)

l
(j,d)
−
− z

(j,d)

l
(j,d)
− −1

) + · · ·+ (z
(j,d)

l
(j,d)
+

− z
(j,d)

l
(j,d)
+ −1

)

= z
(j,d)

l
(j,d)
+

− z
(j,d)

l
(j,d)
− −1

. (B.46)

Using (B.41) and (B.44) to rewrite (B.46), we arrive at

P̃
(j,d;u,v)
l2 = min{F (j,d;u)

s
(j,d;u)

l
(j,d)
+

, F
(j,d;v)

s
(j,d;v)

l
(j,d)
+

} −min{F (j,d;u)

s
(j,d;u)

l
(j,d)
− −1

, F
(j,d;v)

s
(j,d;v)

l
(j,d)
− −1

} (B.47)

= min{F (j′,2;1)

s
(j′,2;1)
l2

, F
(j′,2;2)

s
(j′,2;2)
l2

} −min{F (j′,2;1)

s
(j′,2;1)
l2−1

, F
(j′,2;2)

s
(j′,2;2)
l2−1

}. (B.48)

The first min in (B.48) follows from the first min in (B.47) since (s
(j,d;u)

l
(j,d)
+

, s
(j,d;v)

l
(j,d)
+

) = (s
(j′,2;1)
l2 , s

(j′,2;2)
l2)

by the definition of l
(j,d)
+ and the fact that F (j,d;u) = F (j′,2;1) and F (j,d;v) = F (j′,2;2). To see that the

second min in (B.48) follows from the second min in (B.47), first note that, from (B.39), we have that

(s
(j,d;u)

l
(j,d)
−

, s
(j,d;v)

l
(j,d)
−

) = (s
(j′,2;1)
l2 , s

(j′,2;2)
l2)

and l
(j,d)
− is the smallest value for which this holds. Since we know from Statement 1 at the start of the

proof of Lemma 24 (which has already been proved above) that the support of P̃ (j,d;u,v) is identical to

the support of P̂ (j′,2), it follows that

(s
(j,d;u)

l
(j,d)
− −1

, s
(j,d;v)

l
(j,d)
− −1

) = (s
(j′,2;1)
l2−1 , s

(j′,2;2)
l2−1).

Finally, recall that F (j,d;u) = F (j′,2;1) and F (j,d;v) = F (j′,2;2). Therefore, (B.38) and (B.48) imply that

(2.101) holds in the general case.

Let us now handle the edge cases. In the edge case l
(j,d)
+ = l

(j,d)
− , (B.45) reduces to a single term

P̃
(j,d;u,v)
l2 = P̃

(j,d)

l
(j,d)
−

= z
(j,d)

l
(j,d)
−
− z

(j,d)

l
(j,d)
− −1

. (B.49)

Using an argument similar to that used to derive (B.44) and (B.41), we can rewrite (B.49) as

P̃
(j,d;u,v)
l2 = min{F (j,d;u)

s
(j,d;u)

l
(j,d)
−

, F
(j,d;v)

s
(j,d;v)

l
(j,d)
−

} −min{F (j,d;u)

s
(j,d;u)

l
(j,d)
− −1

, F
(j,d;v)

s
(j,d;v)

l
(j,d)
− −1

}. (B.50)

Similar reasoning to that used above in showing the equivalence between (B.47) and (B.38) can be used

to show the equivalence of (B.50) and (B.38), thereby showing that (2.101) holds in this case too.

In the edge case l
(j,d)
− = l

(j,d)
max , it is clear that we must also have that l

(j,d)
+ = l

(j,d)
− = l

(j,d)
max . We omit

the proof of this case since the arguments are similar to the edge case l
(j,d)
+ = l

(j,d)
− considered in the

paragraph above.

In the edge case l
(j,d)
− < l

(j,d)
+ = l

(j,d)
max , it is clear that

z
(j,d)

l
(j,d)
+

= z
(j,d)

l
(j,d)
max

= 1 (B.51)

Appendix B. Chapter 2.5 Proofs 194

and that (B.46) takes the form

P̃
(j,d;u,v)
l2 = z

(j,d)

l
(j,d)
+

− z
(j,d)

l
(j,d)
− −1

= 1− z
(j,d)

l
(j,d)
− −1

= 1−min{F (j,d;u)

s
(j,d;u)

l
(j,d)
− −1

, F
(j,d;v)

s
(j,d;v)

l
(j,d)
− −1

}. (B.52)

Note that if l
(j,d)
+ = l

(j,d)
max , we must also have that l2 = l2max, otherwise, we would have, by (B.39), that

(s
(j,d;u)

l
(j,d)
max

, s
(j,d;v)

l
(j,d)
max

) = (s
(j′,2;1)

l̂2
, s

(j′,2;2)

l̂2
), where l̂2 ̸= l2max, which would contradict the first statement of

Lemma 24 which we have already shown above.

Therefore, we have that

P̂
(j′,2)
l2max

= z
(j′,2)
l2max

− z
(j′,2)
l2max−1 = 1− z

(j′,2)
l2max−1

= 1−min{F (j′,2;1)

s
(2;1)

l2max−1

, F
(j′,2;2)

s
(2;2)

l2max−1

}. (B.53)

It only remains to show that the two min terms in (B.52) and (B.53) are equal. Since F (j,d;u) = F (j′,2;1)

and F (j,d;v) = F (j′,2;2), we only need to show that (s
(j,d;u)

l
(j,d)
− −1

, s
(j,d;v)

l
(j,d)
− −1

) = (s
(j′,2;1)
l2max−1, s

(j′,2;2)
l2max−1). The arguments

to show this is very similar to those, above, used in showing that the second min in (B.47) is equal to

(B.48); we omit the proof for the sake of brevity.

Thus, we have shown that (2.101) holds true for l2 = 0, 1, . . . , l2max. □

B.6 Proof of Lemma 21

Proof: Since l
(j,d;u,v)
max = l

(j′,d;u,v)
max = l2max by Remark 48, we can alleviate the notational burden by

simply using throughout this proof l2max instead of l
(j,d;u,v)
max and l

(j′,d;u,v)
max and l2 ∈ {0, 1, . . . , l2max} to

index the sets s(j,d;u,v), s(j
′,d;u,v), s̃(j,d;u,v), s̃(j

′,d;u,v), z(j,2;u,v), and z(j
′,2;u,v).

Consider first the u component of the left side of (2.100). By Corollary 2, s̃
(j,d;u)
l2 is the number of

i ∈ {0, 1, . . . , i(d;u)max } such that F
(j,d;u)
i = z

(j,2;u,v)
l for some l ∈ {0, 1, . . . , l2 − 1}. Since Algorithm 6 is

not invoked in the e(j,d;u,v) = (0, 0) case, it must be that s̃
(j,d;u)
l2 = s

(j,d;u)
l2 . Whence, s

(j,d;u)
l2 must be the

number of i ∈ {0, 1, . . . , i(d;u)max } such that F
(j,d;u)
i = z

(j,2;u,v)
l for some l ∈ {0, 1, . . . , l2 − 1}.

Next, consider the right side of (2.100). For any l2 ∈ {0, 1, . . . , l2max}, there exists, by arguments

similar to those made in Remark 54, at least one l(j
′,d) ∈ {0, 1, . . . , l(j

′,d)
max } such that

s
(j′,d;u,v)
l2max−l2 = s

(j′,d;u,v)

l
(j′,d)
max −l(j′,d)

. (B.54)

Since Line 5 of Algorithm 6 is invoked in the e(j
′,d;u,v) = (1, 1) case, we can rewrite the u component of

the right side of (B.54) as

s
(j′,d;u)

l
(j′,d)
max −l(j′,d)

= i(d;u)max − s̃
(j′,d;u)

l
(j′,d)
max −l(j′,d)

. (B.55)

Applying Remark 54 to the right side of (B.55) and substituting that into the right side of (B.54),

considering only the u component, gives

s
(j′,d;u)
l2max−l2 = i(d;u)max − s̃

(j′,d;u)
l2max−l2 . (B.56)

Note that, since the l(j
′,d) in both sides of (B.55) are the same, the l2 in both sides of (B.56) must also

Appendix B. Chapter 2.5 Proofs 195

be the same. Next, we show that s̃
(j′,d;u)
l2max−l2 in the right side of (B.56) can be written as

s̃
(j′,d;u)
l2max−l2 = i(d;u)max − s

(j,d;u)
l2 . (B.57)

By Corollary 2, s̃
(j′,d;u)
l2max−l2 in the left side of (B.57) is the total number of i ∈ {0, 1, . . . , i(d;u)max } such that

F
(j′,d;u)
i = z

(j′,2;u,v)
l for some l ∈ {0, 1, . . . , l2max − l2 − 1}.

Next, we can use the fact that i
(d;u)
max = s̃

(j,d;u)
l2max

by Remark 53 and the fact that s̃
(j,d;u,v)
l2 = s

(j,d;u,v)
l2 in

the e(j,d;u,v) = (0, 0) case to rewrite the right side of (B.57) as

i(d;u)max − s
(j,d;u)
l2 = s̃

(j,d;u)
l2max

− s̃
(j,d;u)
l2 . (B.58)

Then, it is clear by Corollary 2 that the right side of (B.58) is the total number of i ∈ {0, 1, . . . , i(d;u)max }
such that F

(j,d;u)
i = z

(j,2;u,v)
l for some l ∈ {l2, . . . , l2max − 1}. Since, by Lemma 18, the order in which

the F (j,d;u) is matched in Algorithm 5 for the e(j,d;u,v) = (0, 0) case is reversed in Algorithm 5 for

the e(j
′,d;u,v) = (1, 1) case, the number of i ∈ {0, 1, . . . , i(d;u)max } such that F

(j,d;u)
i = z

(j,2;u,v)
l for some

l ∈ {l2, l2 + 1, . . . , l2max − 1} must be equal to the number of i ∈ {0, 1, . . . , i(d;u)max } such that F
(j′,d;u)
i =

z
(j′,2;u,v)
l for some l ∈ {0, 1, . . . , l2max− l2−1}. Therefore, we have shown that both the left side and right

side of (B.57) equal the total number of i ∈ {0, 1, . . . , i(d;u)max } such that F
(j′,d;u)
i = z

(j′,2;u,v)
l for some

l ∈ {0, 1, . . . , l2max − l2 − 1}, whence, (B.57) holds true. Finally, substituting (B.57) into (B.56) gives

s
(j′,d;u)
l2max−l2 = i(d;u)max − (i(d;u)max − s

(j,d;u)
l2)

= s
(j,d;u)
l2 . (B.59)

as required.

Therefore, we have shown that (2.100) holds true for the u component. Since the proof that (2.100)

holds true for the v component is similar, we omit it for brevity. Because (2.100) holds true for both u

and v components, we must have that (2.100) holds true. □

B.7 Lemma 24

Before we prove Lemma 24, we show some auxiliary results that will make the exposition in the

proof easier to follow. We begin by introducing the sets {ŝ(j
′,2)

0 , . . . , ŝ
(j′,2)

l
(j,d)
max

}, {ẑ(j
′,2)

0 , . . . , ẑ
(j′,2)

l
(j,d)
max

}, and

{ẑ(j,d;u,v)0 , . . . , ẑ
(j,d;u,v)

l
(j,d)
max

}. The sets {ŝ(j
′,2)

0 , . . . , ŝ
(j′,2)

l
(j,d)
max

} and {ẑ(j
′,2)

0 , . . . , ẑ
(j′,2)

l
(j,d)
max

} are constructed by dupli-

cating (where appropriate) points in the set of support points {s(j,2)0 , . . . , s
(j,2)
l2max
} and in the partition of

unity {z(j
′,2)

0 , . . . , z
(j′,2)
l2max
}, respectively, according to Algorithm 25 below.

Algorithm 25 Subroutine: Extend sets constructed in the l2max setting to l
(j,d)
max

1: ŝ
(j′,2)
0 ← s

(j′,2)
0 , ẑ

(j′,2)
0 = z

(j′,2)
0

2: i← 0
3: for l(j,d) ← 1 : l

(j,d)
max do

4: if Proju,v s
(j,d)

l(j,d)
̸= Proju,v s

(j,d)

l(j,d)−1
then

5: i← i+ 1
6: ŝ

(j′,2)

l(j,d)
= s

(j′,2)
i , ẑ

(j′,2)

l(j,d)
= z

(j′,2)
i

Appendix B. Chapter 2.5 Proofs 196

Clearly, from Algorithm 25, the sets {s(j,d)0 , . . . , s
(j,d)

l
(j,d)
max

}, {ŝ(j
′,2)

0 , . . . , ŝ
(j′,2)

l
(j,d)
max

}, and {ẑ(j
′,2)

0 , . . . , ẑ
(j′,2)

l
(j,d)
max

}

have the same length. Note that we extend the set {s(j
′,2)

0 , . . . , s
(j′,2)
l2max
} by duplicating points s

(j′,2)
l2

corresponding to s
(j,d)

l(j,d)
if the uth and vth coordinates of s

(j,d)

l(j,d)
are unchanged from s

(j,d)

l(j,d)−1
; similarly for

{z(j
′,2)

0 , . . . , z
(j′,2)
l2max
}.

Note, however, that the d-dimensional partition of unity, {z(j,d)0 , . . . , z
(j,d)

l
(j,d)
max

}, is not directly compa-

rable to neither {z(j
′,2)

0 , . . . , z
(j′,2)
l2max
} nor {ẑ(j

′,2)
0 , . . . , ẑ

(j′,2)

l
(j,d)
max

} since it may contain values from {F (j,d;k)
i :

k = 1, . . . , d and i = 0, 1, . . . , i
(d;k)
max } that do not exist in the two-dimensional setting. Therefore, we

must construct a set comparable to {ẑ(j
′,2)

0 , . . . , ẑ
(j′,2)

l
(j,d)
max

} for the induction statement. To this end, let

{l̄0, . . . , l̄max} ⊆ {l(j,d)0 , . . . , l
(j,d)
max } be a set of indices such that l̄i < l̄i+1 and

{z(j,d)
l̄0

, . . . , z
(j,d)

l̄max
} = ∪2k=1{F

(j′,2;k)
i : i = 0, 1, . . . , i(2;k)max }, (B.60a)

z
(j,d)

l̄i
< z

(j,d)

l̄i+1
. (B.60b)

Note that l̄max = l
(j,d)
max , since 1 is in the set on the right side of (B.60a) and z

(j,d)

l
(j,d)
max

is the unique value in

{z(j,d)0 , . . . , z
(j,d)

l
(j,d)
max

} that is equal to 1.

Now Algorithm 26 below uses the sets {l̄0, . . . , l̄max} and {z(j,d)
l̄0

, . . . , z
(j,d)

l̄max
} to construct the set

{ẑ(j,d;u,v)0 , . . . , ẑ
(j,d;u,v)

l
(j,d)
max

}.

Algorithm 26 Subroutine: Construct ẑ(j,d;uv) from z(j,d)

1: Set each ẑ
(j,d;u,v)
0 , . . . , ẑ

(j,d;u,v)

l̄0
← z

(j,d)

l̄0

2: lr ← l̄0

3: for l̄← l̄1 : l̄max do

4: Set each ẑ
(j,d;u,v)
lr+1 , . . . , ẑ

(j,d;u,v)

l̄
← z

(j,d)

l̄

5: lr ← l̄

The set {ẑ(j,d;u,v)0 , . . . , ẑ
(j,d;u,v)

l
(j,d)
max

} has length l
(j,d)
max and only contains values from the partition of unity

∪2k=1{F
(j′,2;k)
i : i = 0, 1, . . . , i

(2;k)
max }, where F (j′,2;1) = F (j,d;u) and F (j′,2;2) = F (j,d;v).

We prove the following key result concerning the sequences {s(j,d)0 , . . . , s
(j,d)

l
(j,d)
max

} and {ŝ(j
′,2)

0 , . . . , ŝ
(j′,2)

l
(j,d)
max

}

and the sequences {ẑ(j,d;u,v)0 , . . . , ẑ
(j,d;u,v)

l
(j,d)
max

} and {ẑ(j
′,2)

0 , . . . , ẑ
(j′,2)

l
(j,d)
max

}.

Lemma 28. For l(j,d) ∈ {0, 1, . . . , l(j,d)max }

Proju,v s
(j,d)

l(j,d)
= s

(j,d;u,v)

l(j,d)
= ŝ

(j′,2)

l(j,d)
, (B.61a)

ẑ
(j,d;u,v)

l(j,d)
= ẑ

(j′,2)

l(j,d)
. (B.61b)

Proof: We prove that (B.61) holds for all l(j,d) ∈ {0, 1, . . . , l(j,d)max } by induction on l(j,d), beginning

with the base case, l(j,d) = 0. We have that s
(j,d)
0 = (0, . . . , 0) from Line 4 of Algorithm 5 and s

(j′,2)
0 =

(0, 0) from Line 3 of Algorithm 1. Moreover, since ŝ
(j′,2)
0 = s

(j′,2)
0 from Line 1 of Algorithm 25, (B.61a)

holds true for l(j,d) = 0.

Appendix B. Chapter 2.5 Proofs 197

To see that (B.61b) also holds true for l(j,d) = 0, note that the two-dimensional partition of unity,

{z(j
′,2)

0 , . . . , z
(j′,2)
l2max
}, is computed on Line 4 of Algorithm 1 and therefore that

z
(j′,2)
0 = min{F (j′,2;1)

0 , F
(j′,2;2)
0 }. From Line 1 of Algorithm 26, we have that ẑ

(j,d;u,v)
0 = z

(j,d)

l̄0
. From

(B.60b), we can conclude that z
(j,d)

l̄0
is the smallest element in the set on the right side of (B.60a),

whence ẑ
(j,d;u,v)
0 = z

(j,d)

l̄0
= min{F (j′,2;1)

0 , F
(j′,2;2)
0 }. Since ẑ

(j′,2)
0 = z

(j′,2)
0 = min{F (j′,2,1)

0 , F
(j′,2,2)
0 } from

Algorithm 25, ẑ
(j,d;u,v)
0 = ẑ

(j′,2)
0 . Hence, (B.61b) also holds true for l(j,d) = 0.

For the induction step, choose any l(j,d) ∈ {1, 2, . . . , l(j,d)max } and, for the induction hypothesis, assume

that (B.61) holds for l(j,d)−1. That is, that Proju,v s
(j,d)

l(j,d)−1
= ŝ

(j′,2)

l(j,d)−1
and ẑ

(j,d;u,v)

l(j,d)−1
= ẑ

(j′,2)

l(j,d)−1
. Given the

current support point s
(j,d)

l(j,d)−1
, Lines 6-13 of Algorithm 5 increments the uth and/or the vth coordinates

of s
(j,d)

l(j,d)−1
if and only if

z
(j,d)

l(j,d)−1
= F

(j,d;u)

s
(j,d;u)

l(j,d)−1

and/or z
(j,d)

l(j,d)−1
= F

(j,d;v)

s
(j,d;v)

l(j,d)−1

.

Consequently, there are four cases to consider:

Case 1: z
(j,d)

l(j,d)−1
== F

(j,d;u)

s
(j,d;u)

l(j,d)−1

and z
(j,d)

l(j,d)−1
== F

(j,d;v)

s
(j,d;v)

l(j,d)−1

In this case, Line 9 of Algorithm 5 evaluates to true for both the uth and the vth coordinates,

leading to Line 10 being executed for both k = u and k = v. Therefore,

s
(j,d;u)

l(j,d)
= s

(j,d;u)

l(j,d)−1
+ 1, (B.62a)

s
(j,d;v)

l(j,d)
= s

(j,d;v)

l(j,d)−1
+ 1. (B.62b)

By the induction hypothesis (B.61), Algorithm 25, and Algorithm 26, we have that

s
(j,d;u,v)

l(j,d)−1
= ŝ

(j′,2)

l(j,d)−1
= s

(j′,2)
i−1 , (B.63a)

z
(j,d)

l(j,d)−1
= ẑ

(j,d;u,v)

l(j,d)−1
= ẑ

(j′,2)

l(j,d)−1
= z

(j′,2)
i−1 (B.63b)

where i − 1 is the most recent iteration for Algorithm 1. In the case of (B.63b), note also that

z
(j,d)

l(j,d)−1
= ẑ

(j,d;u,v)

l(j,d)−1
from the assumptions in Case 1, (B.60a), and Definition 26.

From the assumption for Case 1 that z
(j,d)

l(j,d)−1
= F

(j,d;u)

s
(j,d;u)

l(j,d)−1

= F
(j,d;v)

s
(j,d;v)

l(j,d)−1

, the fact that F
(j,d;u)

s
(j,d;u)

l(j,d)−1

=

F
(j′,2;1)

ŝ
(j′,2;1)
l(j,d)−1

= F
(j′,2;1)

s
(j′,2;1)
i−1

and F
(j,d;v)

s
(j,d;v)

l(j,d)−1

= F
(j′,2;2)

ŝ
(j′,2;2)
l(j,d)−1

= F
(j′,2;2)

s
(j′,2;2)
i−1

, the induction hypothesis (B.61), and

(B.63b), we must also have that

z
(j′,2)
i−1 = F

(j′,2;1)

s
(j′,2;1)
i−1

and z
(j′,2)
i−1 = F

(j′,2;2)

s
(j′,2;2)
i−1

.

Consequently, Line 8 of Algorithm 1 must evaluate to true, leading to the execution of Lines 9 and

10 of Algorithm 1. Therefore,

s
(j′,2)
i = (s

(j′,2;1)
i−1 + 1, s

(j′,2;2)
i−1 + 1). (B.64)

In this case, since Line 4 of Algorithm 25 evaluates to true, Line 5 gets executed and we have that

Appendix B. Chapter 2.5 Proofs 198

ŝ
(j′,2)

l(j,d)
= s

(j′,2)
i−1+1 = s

(j′,2)
i , (B.65a)

ẑ
(j′,2)

l(j,d)
= z

(j′,2)
i−1+1 = z

(j′,2)
i . (B.65b)

Therefore, by (B.62), (B.63), (B.64), and (B.65), (B.61) holds true for l(j,d) as well.

Case 2: z
(j,d)

l(j,d)−1
== F

(j,d;u)

s
(j,d;u)

l(j,d)−1

and z
(j,d)

l(j,d)−1
̸= F

(j,d;v)

s
(j,d;v)

l(j,d)−1

In this case, Line 9 of Algorithm 5 evaluates to true for the uth coordinate, but not for the vth

coordinate, leading to Line 10 being executed for the uth coordinate, but Line 13 being executed

for the vth coordinate. Therefore,

s
(j,d;u)

l(j,d)
= s

(j,d;u)

l(j,d)−1
+ 1, (B.66a)

s
(j,d;v)

l(j,d)
= s

(j,d;v)

l(j,d)−1
. (B.66b)

By the induction hypothesis, Algorithm 25 and Algorithm 26, we have that

s
(j,d;u,v)

l(j,d)−1
= ŝ

(j′,2)

l(j,d)−1
= s

(j′,2)
i−1 , (B.67a)

z
(j,d)

l(j,d)−1
= ẑ

(j,d;u,v)

l(j,d)−1
= ẑ

(j′,2)

l(j,d)−1
= z

(j′,2)
i−1 (B.67b)

where i − 1 is the most recent iteration for Algorithm 1. In the case of (B.67b), note also that

z
(j,d)

l(j,d)−1
= z

(d;u,v)

l(j,d)−1
from the assumptions in Case 2, (B.60a), and Definition 26.

From the assumption for Case 2 that z
(j,d)

l(j,d)−1
== F

(j,d;u)

s
(j,d;u)

l(j,d)−1

and z
(j,d)

l(j,d)−1
̸= F

(j,d;v)

s
(j,d;v)

l(j,d)−1

, the fact that

F
(j,d;u)

s
(j,d;u)

l(j,d)−1

= F
(j′,2;1)

ŝ
(j′,2;1)
l(j,d)−1

= F
(j′,2;1)

s
(j′,2;1)
i−1

and F
(j,d;v)

s
(j,d;v)

l(j,d)−1

= F
(j′,2;2)

ŝ
(j′,2;2)
l(j,d)−1

= F
(j′,2;2)

s
(j′,2;2)
i−1

, the induction hypothesis

(B.61), and (B.67b), we must also have that

z
(j′,2)
i−1 = F

(j′,2;1)

ŝ
(j′,2;1)
i−1

and z
(j′,2)
i−1 ̸= F

(j′,2;2)

ŝ
(j′,2;2)
i−1

.

Consequently, Line 11 of Algorithm 1 must hold true, leading to the execution of Lines 12 and 13

of Algorithm 1. Therefore,

s
(j′,2)
i = (s

(j′,2;1)
i−1 + 1, s

(j′,2;2)
i−1). (B.68)

In this case, since Line 4 of Algorithm 25 evaluates to true, Line 5 gets executed and we have that

ŝ
(j′,2)

l(j,d)
= s

(j′,2)
i−1+1 = s

(j′,2)
i , (B.69a)

ẑ
(j′,2)

l(j,d)
= z

(j′,2)
i−1+1 = z

(j′,2)
i . (B.69b)

Therefore, by (B.66), (B.67), (B.68), and (B.69), (B.61) holds true for l(j,d) as well.

Case 3: z
(j,d)

l(j,d)−1
̸= F

(j,d;u)

s
(j,d;u)

l(j,d)−1

and z
(j,d)

l(j,d)−1
== F

(j,d;v)

s
(j,d;v)

l(j,d)−1

The proof that (B.61) holds true in this case is very similar to the proof in Case 2. For the sake

of brevity, we omit the proof in this case.

Appendix B. Chapter 2.5 Proofs 199

Case 4: z
(j,d)

l(j,d)−1
̸= F

(j,d;u)

s
(j,d;u)

l(j,d)−1

and z
(j,d)

l(j,d)−1
̸= F

(j,d;v)

s
(j,d;v)

l(j,d)−1

In this case, Line 9 of Algorithm 5 does not hold true for neither the uth nor the vth coordinate.

Hence,

s
(j,d;u)

l(j,d)
= s

(j,d;u)

l(j,d)−1
, (B.70a)

s
(j,d;v)

l(j,d)
= s

(j,d;v)

l(j,d)−1
. (B.70b)

By the induction hypothesis, Algorithm 25, and Algorithm 26, we have that

s
(j,d;u,v)

l(j,d)−1
= ŝ

(j′,2)

l(j,d)−1
= s

(j′,2)
i−1 , (B.71a)

ẑ
(j,d;u,v)

l(j,d)−1
= ẑ

(j′,2)

l(j,d)−1
= z

(j′,2)
i−1 . (B.71b)

where i− 1 is the most recent iteration for Algorithm 1.

From the assumption for Case 4 that z
(j,d)

l(j,d)−1
̸= F

(j,d;u)

s
(j,d;u)

l(j,d)−1

and z
(j,d)

l(j,d)−1
̸= F

(j,d;v)

s
(j,d;v)

l(j,d)−1

, the fact that

F
(j,d;u)

s
(j,d;u)

l(j,d)−1

= F
(j′,2;1)

ŝ
(j′,2;1)
l(j,d)−1

= F
(j′,2;1)

s
(j′,2;1)
i−1

and F
(j,d;v)

s
(j,d;v)

l(j,d)−1

= F
(j′,2;2)

ŝ
(j′,2;2)
l(j,d)−1

= F
(j′,2;2)

s
(j′,2;2)
i−1

, the induction hypothesis

(B.61), and (B.71), we must also have that

z
(j′,2)
i−1 ̸= F

(j′,2;1)

s
(j′,2;1)
i−1

and z
(j′,2)
i−1 ̸= F

(j′,2;2)

s
(j′,2;2)
i−1

. (B.72)

Note that there is no corresponding condition in Algorithm 1 to (B.72). However, in this case,

the projection condition in Line 4 of Algorithm 25 evaluates to false and Line 5 is not executed.

Therefore, we have that

ŝ
(j′,2)

l(j,d)
= s

(j′,2)
i−1 , (B.73a)

ẑ
(j′,2)

l(j,d)
= z

(j′,2)
i−1 . (B.73b)

Therefore, by (B.70), (B.71), and (B.73), (B.61) holds true for l(j,d) as well.

We have shown by induction on l(j,d) that (B.61) holds true for all l(j,d) ∈ {0, . . . , l(j,d)max }. □

B.7.1 Proof of Lemma 24

Proof: To prove the lemma, we show the following two statements:

1. The support of P̃ (j,d;u,v) is identical to the support of P̂ (j′,2).

2. The probabilities at each point of support are equal. That is, for l2 ∈ {0, 1, . . . , l2max},

P̃
(j,d;u,v)
l2 = P̂

(j′,2)
l2 .

We note that, for the remainder of the proof of Lemma 24, we assume that d > 2 since we have

already shown the two-dimensional case in Section 2.3 and since, for d = 2, Algorithm 5 reduces to

Algorithm 1. (See Remark 49.) There are four cases to consider.

Appendix B. Chapter 2.5 Proofs 200

The e(1,d) = (0, . . . , 0) and e(1,2) = (0, 0) case

We begin proving Lemma 24 for the d-dimensional case j = 1 and the corresponding two-dimensional

case j′ = 1. The case j = 1 is the d-dimensional analogue of the comonotone case in the bivariate setting

with corresponding monotone structure e(1,d) = (0, . . . , 0) describing the dependence structure where all

coordinates exhibit extreme positive dependence to one another. It follows easily from e(1,d) that the

case j = 1 in d-dimensions corresponds to the case j′ = 1 in two-dimensions.

We begin by proving the first statement listed at the start of the proof of Lemma 24 by induc-

tion. Note that Lemma 28 shows that the support computed by Algorithm 5 projected onto (u, v),

{s(j,d;u,v)0 , . . . , s
(j,d;u,v)

l
(j,d)
max

} (having duplicate points within the set), is equal to the augmented support set

ŝ(j
′,2) = {ŝ(j

′,2)
0 , . . . , ŝ

(j′,2)

l
(j,d)
max

}. Moreover, since the augmented support, ŝ(j
′,2), with the repeated points

removed is the set {s(j
′,2)

0 , . . . , s
(j′,2)
l2max
}, the set {s(j,d;u,v)0 , . . . , s

(j,d;u,v)
l2max

} with the repeated points removed

is equal to the set of support points {s(j
′,2)

0 , . . . , s
(j′,2)
l2max
} obtained from Algorithm 1. Therefore, the first

statement at the start of the proof of Lemma 24 follows from Lemma 28 and holds true for the case

j = 1 and j′ = 1.

The second statement of the proof of the lemma was shown directly in Lemma 22.

Therefore, Lemma 24 follows from Lemma 28 and Lemma 22 for the case e(1,d) = (0, . . . , 0) and

e(1,2) = (0, 0) case.

The e(j,d;u,v) = (0, 0) and e(j
′,d;u,v) = (1, 1) case

In the two-dimensional case, there are two extreme joint distributions: the comonotone case e(1,2) = (0, 0)

and the antimonotone case e(2,2) = (0, 1). In the general d-dimensional case, however, there may be

monotone structures such that their bivariate projections take the form e(j,d;u,v) = (1, 1) or e(j,d;u,v) =

(1, 0). We show in this subsection that the bivariate joint probability distribution P̃ (j,d;u,v) having the

monotone structure e(j,d;u,v) = (0, 0) is equivalent to the bivariate joint probability distribution P̃ (j′,d;u,v)

having the monotone structure e(j
′,d;u,v) = (1, 1) by showing again that the two statements hold for this

case. Later, on page 201, we discuss the e(j,d;u,v) = (0, 1) and e(j,d;u,v) = (1, 0) case.

Lemma 21 directly shows the first statement of the proof of Lemma 24 in the e(j,d;u,v) = (0, 0) and

e(j
′,d;u,v) = (1, 1) case.

Next, we show the second statement of the proof also holds true in this special case. That is, for all

l2 ∈ {0, 1, . . . , l2max},
P̃

(j,d;u,v)
l2 = P̃

(j′,d;u,v)
l2max−l2 . (B.74)

We rewrite the left side of (B.74) using Line 18 of Algorithm 1 as

P̃
(j,d;u,v)
l2 = z

(j,2)
l2 − z

(j,2)
l2−1. (B.75)

Since there is a correspondence, by Remark 50, between the sets z(j,2;u,v) and z(j,2), we can rewrite

(B.75) as

P̃
(j,d;u,v)
l2 = z

(j,2)
l2 − z

(j,2)
l2−1 = z

(2;u,v)
l2 − z

(2;u,v)
l2−1 . (B.76)

Appendix B. Chapter 2.5 Proofs 201

Using (2.90) from Lemma 17, we can rewrite (B.76) as

P̃
(j,d;u,v)
l2 = z

(j,2;u,v)
l2 − z

(j,2;u,v)
l2−1

= (1− z
(j′,2;u,v)
l2max−l2−1)− (1− z

(j′,2;u,v)
l2max−l2)

= z
(j′,2;u,v)
l2max−l2 − z

(j′,2;u,v)
l2max−l2−1

= P̃
(j′,d;u,v)
l2max−l2 .

Therefore, we have shown that (B.74) holds for all l2 ∈ {0, 1, . . . , l2max}.

Since s
(j,d;u,v)
l2 is the support point corresponding to P̃

(j,d;u,v)
l2 and s

(j′,d;u,v)
l2max−l2 is the support point cor-

responding to P̃
(j′,d;u,v)
l2max−l2 , it follows from (B.74) that P̃

(j,d;u,v)

s
(j,d;u,v)

l2

= P̃
(j′,d;u,v)

s
(j′,d;u,v)

l2max−l2

for all l2 ∈ {0, 1, 2, . . . , l2max}.

This together with Lemma 21 shows that the probability distributions P̃ (j,d;u,v) and P̃ (j′,d;u,v) are

equal. Therefore, we have shown that Lemma 24 holds true for the special case e(j,d;u,v) = (0, 0)

and e(j
′,d;u,v) = (1, 1).

The e(j,d;u,v) = (0, 1) and e(j
′,d;u,v) = (1, 0) case

This case can be proved using arguments similar to the e(j,d;u,v) = (0, 0) and e(j
′,d;u,v) = (1, 1) case

shown above. For this reason, we omit its proof.

The general 1 < j ≤ n setting

Pick a j ∈ {2, . . . , n} and choose a bivariate set of antimonotone coordinates (u, v) where 1 ≤ u < v ≤ d

from the corresponding monotone structure e(j,d). Recall that to construct the antimonotone distribution

P̂ (2,2) in Algorithm 1, a preprocessing step is applied to the marginal distribution Q(2;2). The modified

Q(2;2) is then used to construct F (2;2) (Lines 3-5 of Algorithm 3). After the execution of the main loop

(Lines 6-18), a postprocessing step is applied to the support of P̂ (2,2) (Lines 19-20). As we have already

shown that (B.61) and (2.101) hold true for the comonotone case j = j′ = 1, we only need to show that

the preprocessing of the marginal distributions and the postprocessing of the antimonotone supports in

Algorithm 5 is the same as the postprocessing in Algorithm 1. This can be clearly seen by comparing

Algorithm 3 and Algorithm 7 for the preprocessing steps and Algorithm 2 and Algorithm 6 for the

postprocessing steps. Therefore, Lemma 24 holds true for j ∈ {2, . . . , d}.
□

	Introduction
	Outline
	Operational Risk
	Poisson Processes
	Mixed Poisson Processes
	Compound Poisson Processes

	Correlated Multivariate Poisson Processes
	Extreme Joint Distributions
	Simulation of Poisson Processes
	Thesis Outline
	Summary of Contributions

	Extreme Joint Distributions
	Outline
	Notation
	Extreme Measures in two-dimensions
	Monotone Sets and Distributions
	Extreme Joint Distributions in two-dimensions
	Equivalence to the Fréchet-Hoeffding Theorem

	The EJD Algorithm in two-dimensions
	The Comonotone Case
	The Antimonotone Case

	Extreme Measures in d-dimensions
	Monotonicity Structures
	Extreme Joint Distributions in d-dimensions
	Monotonicity in Higher Dimensions

	The EJD Algorithm in d-dimensions
	The Infinite Dimensional Case
	Numerical Example
	Support
	Marginal Distributions and the Joint Partition
	Probability Weights
	Extreme Correlations

	Calibration
	A Linear Algebraic Approach
	The Independent Case
	Admissible Correlations
	Calibration Algorithm

	Sampling from Multivariate Extreme Measures
	Sampling from Calibrated Measures

	Computational Complexity
	EJD Construction
	Extreme Correlation Matrix C(j,d) Construction
	Calibration

	Summary

	Backward Simulation of Poisson Processes
	Outline
	Notation

	Backward Simulation
	Backward Simulation Algorithm in d-dimensions

	Correlation Structure
	Forward Continuation of the Backward Simulation
	Forward Correlation Structure
	Forward-Backward Simulation Algorithm in d-dimensions

	Forward versus Backward Simulation
	Forward Simulation
	Range of Correlations Restricted under FS

	Computational Complexity
	Backwards Simulation

	Summary

	Backward Simulation of Mixed Poisson Processes
	Outline
	Notation

	Mixed Poisson Process
	Backward Simulation
	Backward Simulation Algorithm for mixed Poisson processes in d-dimensions

	Correlation Structure
	Forward Continuation of the Backward Simulation for Mixed Poisson Processes
	Forward Correlation Structure
	Forward-Backward Simulation Algorithm in d-dimensions

	Summary

	Backward Simulation of Compound Poisson Processes
	Outline
	Notation

	Compound Poisson Processes
	Backward Simulation
	Backward Simulation Algorithm for compound Poisson processes in d-dimensions

	Correlation Structure
	Forward Continuation of the Backward Simulation
	Forward Correlation Structure
	Forward-Backward Simulation Algorithm in d-dimensions

	Summary

	Conclusions and Future Work
	Summary and Conclusions
	Our Contributions

	Future Work

	Bibliography
	Appendices
	Chapter 2.3 Proofs
	Proof of Theorem 3
	Proof of Proposition 2

	Chapter 2.5 Proofs
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 23
	Proof of Corollary 2
	Proof of Lemma 22
	Proof of Lemma 21
	Lemma 24
	Proof of Lemma 24

