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Abstract

Construction and Simulation of Correlated Multivariate Poisson Processes

Michael Tsz-Chun Chiu
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto
2026

Poisson processes are the canonical stochastic processes for modelling counts. In practice, counting
phenomena are primarily multivariate in nature. A motivating example for this thesis is the modelling
of operational events of different business lines within a financial institution as a multivariate Poisson
process where the observed correlation matrices have been found to exhibit negative correlation; similar
behavior has been observed in geophysics. Standard approaches to constructing multivariate Poisson
processes are unable to correctly model the observed negative dependence between the components of
the multivariate Poisson process. We extend an approach introduced by Kreinin consisting of two pillars:
Extreme Joint Distributions (EJD) and Backward Simulation (BS).

The EJD approach is a pure probabilistic-based approach for constructing joint distributions satis-
fying given marginals and possessing extreme dependence between its components, known as extreme
joint distributions, which are used in calibrating a (bivariate) joint distribution satisfying given marginal
constraints to a desired correlation matrix. We extend the EJD approach to the general d-dimensional
setting.

Backward Simulation exploits the conditional uniformity property of Poisson processes for its simu-
lation within an interval [0, T]. Given the number of the terminal events of the Poisson process, n, the
arrival moments are uniformly distributed and can be obtained by sampling. Backward Simulation is an
attractive simulation method for multivariate Poisson processes since, given a vector of terminal events,
Backward Simulation of the multivariate Poisson process consists of applying Backward Simulation to
each univariate component using the corresponding terminal event. The EJD approach is crucial for
constructing the appropriate multivariate joint distributions with the desired correlation matrix. We
also introduce a methodology for extending a multivariate Poisson process simulated within an interval
[0, T] using Backward Simulation to any subsequent interval [mT, (m + 1)T'] for any integer m > 1. We

extend Backward Simulation to mixed Poisson and compound Poisson processes.
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Chapter 1

Introduction

Poisson processes are the canonical stochastic processes used to model counts of random events and
are broadly used in fields such as Insurance, Finance, Machine Learning, Operational Risk, Extreme
Value Theory, Geophysics, and many others, where they are most commonly used in a univariate set-
ting. Poisson processes are also often used in multivariate settings without correlation, i.e., multivariate
Poisson processes with independent components. There are, however, many instances, in fields such as
Geophysics [7] and Operational Risk [32], where events have been found to be correlated—even nega-
tively correlated—with each other. An example of a correlation matrix exhibiting negative correlation
that arises in Operational Risk [32] is reproduced below in Figure 1.1. This correlation matrix describes
the realized dependence between operational events within a financial institution; note the strong neg-

ative correlations highlighted in red. Negative correlations between events have also been observed in

earthquakes [7].

CB-CP CB-EF CB-IF RB-CP RB-EF RB-IF RK-CP RK-EF RK-IF A
CB-CP 1 7.31
CB-EF 0.14 1 13.73
CB-IF 0.29 0.55 1 11.62
RB-CP 0.32 -0.12 0.11 1 16.59
RB-EF 0.15 0.49 0.27 -0.12 1 14.38
RB-IF 0.16 0.52 0.17 -0.23 0.49 1 22.68
RK-CP 0.03 -0.16 -0.31 0.19 -0.17 -0.02 1 14.78
RK-EF 0.05 0.2 0.05 -0.18 0.44 0.13 0.32 1 1.1
RK-IF -0.06 0.02 0.08 -0.11 -0.03 0.29 0.5 0.16 1 8.17

Figure 1.1: Realized correlations (in the main body of the table above) and estimated intensities (in
the right most column of the table above) associaed with the events listed in the top row and left most
column of the table above. [32].

Multivariate models arise from modeling random vectors and are completely described by their joint
distributions. For example, in the case of Operational Risk, losses are categorized by the tuple (event
type, business line) and are known as risk cells. Let d be the number of Operational Risks that an
institution is susceptible to. Then, we can denote the loss at each time ¢ due to the k" risk cell, by Lgk),
where k = 1,...,d. The total losses, at time ¢, of the d possible Operational Risks can be modeled as
a d-dimensional vector L; = (Lgl)7 e ,Lgd)). Summing the component losses of the total Operational

Risk random vector, L, gives the aggregate loss ZZ:1 Lgk) at time ¢ [90].
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In general, correctly estimating the joint distribution of a multivariate model given empirical data,
also known as calibration, is a difficult problem [113]. One approach in determining a joint distribution
that corresponds to some given data is to estimate the marginal distributions and the dependence
structure! separately. Then, suitable joint distributions satisfying the given marginals and possessing the
desired dependence structure can be determined by methods such as Mathematical Programming. (See,
for example, Section 2.8.) Note that there are many possible joint distributions even when the marginals
are given and the dependence structure—usually measured by a correlation matrix—is specified, since
higher order interactions and moments are not specified [53, , ].

A natural question to ask is then:

Is it possible to construct correlated multivariate Poisson processes with given marginals and a spec-

ified dependency structure, including negative correlations?

The answer to this question is—thankfully—a yes. Previous work in the literature on this topic
include: the works by Fréchet [19] and Hoeffding [64] from which the EJD algorithm was inspired;
the works by Tiit [121, , ]; the NORmal To Anything (NORTA) approach [54]; the approach
by Li et al. [78]; and the approach by Karlis [70]. This problem, more generally, has a long history,
being related to what has classically been known as problems of “Distributions with Given Marginals”
[64, , , , ] or the problem of “Extremal Distributions” [122] in the literature and also has
rich connections to Optimal Transport? and Mathematical Programming [105].

This thesis introduces a novel approach for the construction and simulation of correlated multi-
variate Poisson processes and is based on two pillars: the Extreme Joint Distribution (EJD) approach
(Chapter 2) and Backward Simulation (Chapters 3-5).

The EJD approach, first introduced in the bivariate setting [74] and subsequently extended to the mul-
tivariate setting [17], is a pure probabilistic approach for the computation of discrete extreme measures—
probability measures having specified marginals that exhibit extremal dependency in the form of extreme
values for the correlation coefficient; indeed there is a one-to-one relationship between an extreme mea-
sure and an extreme dependence structure (correlation coefficient in the bivariate setting and correlation
matrix in the multivariate setting). Convex combinations of extreme measures are used to construct a
multivariate measure having specified marginals and a specified correlation coefficient in the bivariate
setting or a specified correlation matrix in the multivariate setting. The EJD approach provides an
efficient algorithm for computing extreme measures.

Backward Simulation is a method of simulating Poisson processes that, at a high level, starts from the
end of interval [0,7T] and works backwards in time to simulate the Poisson process. This is possible by
exploiting the well-known conditional uniformity property of univariate Poisson processes: conditional
on the total number of events n at time T, the n arrival moments are uniformly distributed in the
interval [0,7]. Crucially, Backward Simulation extends straightforwardly to the multivariate setting
since Backward Simulation of a multivariate Poisson process consists of applying Backward Simulation
to each univariate Poisson process component of the multivariate Poisson process. This requires a vector
of terminal events at time 7', which is sampled from a suitable joint distribution; the EJD approach is

used to construct the joint distribution with given marginals and a specified dependence structure.

LIf there is no dependence structure, i.e., the components of the multivariate process are independent, the joint distri-
bution factorizes multiplicatively and is completely specified by the product of the marginal distributions.
2We only mention this in passing for the sake of completeness; this connection is not the focus of our thesis.
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1.0.1 Outline

The outline for this chapter is as follows. We begin in Section 1.1 by reviewing the motivating problem
originating from Operational Risk. In Section 1.2, we briefly recapitulate the basics of Poisson pro-
cesses to review notations and definitions. Section 1.3 reviews some constructions of correlated Poisson
processes. Section 1.4 introduces the Extreme Joint Distribution approach. Section 1.5 discusses the
general approaches to the simulation of Poisson processes. Section 1.6 provides an outline of the thesis.

Section 1.7 summarizes the contributions of this thesis.

1.1 Operational Risk

Operational Risk (OpRisk) within a financial institution is broadly defined as the risk of loss resulting
from inadequate or failed internal processes, people, systems, or from external events [21, 94, 96, ].
Historically, OpRisk was managed implicitly, often subsumed under credit or market risk, until the
introduction of the Basel II regulatory framework [94], which required financial institutions to explicitly
quantify and provision capital against such risks.

A widely adopted modeling framework for OpRisk is the Loss Distribution Approach (LDA) [4].
In the LDA, total losses over a fixed horizon are modeled as the aggregation of losses across risk cells,
where the loss in each cell is represented as a compound-type process consisting of a frequency component
and a severity component. Specifically, the number of events in each risk cell is modeled as a counting
process—most commonly a Poisson or mixed Poisson process—while individual loss amounts are modeled
separately via a severity distribution. The frequency and severity components are typically assumed to

be independent and are calibrated independently. More formally, let
Ly=LM ...+ 1 (1.1)
where the ng), for j =1,2,...,d, model the annual loss at time ¢ in risk cell j. Each ng) is given by

N
L =%z (1.2)
i=1

where each ZY ), random variables drawn from a corresponding severity distribution, models the i*" loss

i
in risk cell j. The Zi(j ) are usually assumed to be iid. Nt(j ) describes the number of events occurring
within risk cell j up until time ¢ and is known as the frequency process, typically modelled as a Poisson
process or a Negative Binomial process [96]. The random variables Zi(j ) and the frequency processes
Nt(j ) are generally assumed to be independent and are estimated separately.

From the perspective of frequency modeling, the LDA reduces the OpRisk problem to the construction
and simulation of multivariate counting processes with given marginal distributions and a prescribed
dependence structure across components. Dependence between risk cells enters primarily through the
joint behavior of the frequency processes, and it is precisely at this level that negative correlations have
been observed empirically. Accurately modeling such dependence is critical, as it directly impacts the
distribution of aggregate losses obtained by summing across risk cells.

While the LDA provides a concrete applied context in which correlated multivariate Poisson processes

naturally arise, the scope of this thesis is not restricted to Operational Risk modeling. The constructions
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and simulation techniques developed herein address the general problem of generating multivariate count
processes with specified marginals and flexible dependence structures, including negative correlations.
As such, the OpRisk and LDA frameworks serve primarily as motivating examples, illustrating the prac-
tical relevance of the theoretical developments, rather than as recurring applications in the subsequent

chapters.

1.2 Poisson Processes

We briefly review basics properties of the Poisson processes discussed in this thesis—Poisson, mixed
Poisson, and compound Poisson—and introduce some related notation. See standard references such as
[23, 24, 51, 58, 71, 75] for more in-depth discussions on Poisson processes. We begin by recalling the

definition of a counting process.

Definition 1 (Counting Process [14]). A counting process {Ny; t > 0} is a stochastic process such that
1. N; >0,
2. N is an integer,
3. If s <t then Ny < N;.

Counting processes are a very general class of integer-valued non-decreasing processes that are well
suited for modelling counts of random events. One of the most important counting processes is the

Poisson process.

Definition 2 (Poisson Distribution). A random variable N is said to be Poisson distributed with pa-
rameter X, Pois(}), if

)\TL
P(N:n):e*)‘—' for n=0,1,2,... and X>0. (1.3)
n!
Definition 3 (Poisson Process [51]). A counting process {Ny; t > 0} is a Poisson process with intensity
\if
1. Ny =0,

2. Ny has independent increments,

3. N — Ns ~ Pois(A(t — s)) for s <t.

where Pois(A(t—s)) denotes a Poisson distribution with parameter A(t—s), defined above. The conditions
listed in Definition 3 are one characterization of Poisson processes and are derived from the more general

theory of Point processes [23, 24].

Remark 1. Generalizations of Poisson processes, such as the mized Poisson and compound Poisson
processes, can be characterized similarly to Definition 3, but the increments are mizxed Poisson and

compound Poisson distributed, respectively. See Sections 1.2.1 and 1.2.2 for more details.

Poisson processes posses an important property known as conditional uniformity.



CHAPTER 1. INTRODUCTION 5

Proposition 1 (Conditional Uniformity [51]). The joint probability density function, f, of the arrival

moments 11,75, ..., T, of the Poisson process, Ny, conditioned on the event Ny = n, is given by
n! ;
i if 0<z;<wy<---<uw,<t
f(Tl,..A,Tnth:’rL)(xlaIQ?"'7'r'n) = K ) (14)
0 otherwise.

The conditional uniformity property is what enables the Backwards Simulation of Poisson processes;
mixed Poisson and compound Poisson processes also posses this crucial property [58].
There are many ways to construct and define multivariate Poisson distributions [53, 69, ]. We

define the extensions of Definitions 2 and 3 to the multivariate setting below.

Definition 4 (Multivariate Poisson Distribution). A multivariate random variable N = (N ... N(4)
is said to be Poisson distributed with parameter X = (A1, ..., Aq) if every component N&®) for1<k<d

is a Poisson random variable with parameter Ag.

Remark 2. Definition 4 implies that the d-dimensional Poisson probability function P(Y ~ N satisfies

marginal constraints of the form

— p(d) NG
Z Z Pz'l,...ik,l,ik,ikJrl,...,z'd =Q;, (1.5)

VETy iy =0

where k=1,...,d, i, =0,1,..., T ={r: 1 <r <d,r £k}, and ng) is element iy, of the k'™ Poisson
probability distribution Q*) ~ N,

Definition 5 (Multivariate Poisson Process). A multivariate Poisson process Ny = (Nt(l), . 7Nt(d)) is
a stochastic process such that every component Nt(k) for1 <k <d is a univariate Poisson process having

intensity A\, and that, at each time t, Ny is multivariate Poisson distributed.

1.2.1 Mixed Poisson Processes

The mixed Poisson process is one generalization of the Poisson process used in many settings where the

empirical data displays overdispersion.

Definition 6 (Mixed Poisson Distribution [58]). A discrete random variable N is said to be mized
Poisson distributed, MP(U), with structure distribution U, if

IP’(N =n)=E [(I:L)'” e*A}
- m@e*AdU(A), n=0,1,2,... (1.6)
o n!

where A is a random variable distributed according to U.

Definition 7 (Mixed Poisson Process). Ny is a mized Poisson process if it is MP(t, U)-distributed for
all t > 0. That is,

P(N, = n) :/ (Ai,) e MAU(N), n=0,1,2,.... (L.7)
0— .

The mized Poisson process is a Poisson process with a non-negative random intensity.
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Definition 8 (Multivariate Mixed Poisson Distribution). A multivariate mized Poisson distribution
N = (ND, ... ND) is o multivariate distribution such that every component N®) € MP(UW®) for

1 <k <d is a univariate mized Poisson distribution having structure distribution U

Remark 3. Definition 8 implies that the d-dimensional mized Poisson distribution, similar to Remark 2,
satisfies marginal constraints of the form (1.5) where the marginals Q%) on the right side of (1.5) are
now mized Poisson distributions rather than Poisson distributions.

Definition 9 (Multivariate Mixed Poisson Process). A multivariate mized Poisson process
N, = (Nt(l), cee Nt(d)) is a stochastic process such that every component Nt(k) € MP(t,U®) for1 <k <d
is a univariate mized Poisson process with structure distribution U®) and that, at each time t, N, is

multivariate mixzed Poisson distributed.

1.2.2 Compound Poisson Processes

Definition 10 (Compound Poisson Distribution [10]). The random variable
S=Zi+Zy+ + 2y

is said to be compound Poisson distributed if N ~ Pois(\) and the random variables {Z;}32, are iden-
tically and independently distributed having the common distribution Fy which is independent of N and
has finite expectation and finite variance. N is known as the primary random variable having, in this

case, Pois(\) as the primary distribution and Fyz is known as the secondary distribution.

Definition 11 (Compound Poisson Process [10]). The process

Ny
L, = ZZi (1.8)
i=1

is said to be a compound Poisson process if Ny, known as the primary process, is a Poisson process with
intensity A and the random variables Z; are identically and independently distributed having the common

distribution Fy which has finite expectation and finite variance and is independent of the primary process
N;.

Definition 12 (Multivariate Compound Poisson Distribution). A multivariate compound Poisson dis-
tribution S = (S(l), ceey S(d)) is a multivariate distribution with univariate compound Poisson marginals

having Poisson primary distributions with parameters A = (A1, ..., q) and secondary distribution Fy.

Remark 4. Definition 12 implies that the d-dimensional compound Poisson distribution, similar to
Remark 2, satisfies marginal constraints of the form (1.5) where the marginals Q¥ on the right side of

(1.5) are now compound Poisson distributions rather than Poisson distributions.

Definition 13 (Multivariate Compound Poisson Process). A multivariate compound Poisson process
N; = (Nt(l), ceey Nt(d)) is a stochastic process such that every component Nt(l) for1 <i < dis a univariate
compound Poisson process having a Poisson primary process with intensity A\; and secondary distribution

Fz and that, at each time t, Ny is multivariate compound Poisson distributed.
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1.3 Correlated Multivariate Poisson Processes

In this thesis, we use the Pearson correlation as the measure of dependency in the multivariate setting.
The Pearson correlation for a bivariate Poisson process, (Nt(l), Nt(2)), with intensities (A1, A2) at time ¢
is

E (NN — E[NUJE [N,

A= N o) )

Here, 0?(X) denotes the variance of the random variable X, defined by 0%(X) = Var(X) = E[(X —
E[X])?]. In particular, for a Poisson process N; with intensity \, 02(N;) = A\t. We can see from (1.9)

that the only term that is not determined by the distributional parameters of the Poisson processes is
the joint expectation, E [Nt(l)Nt@)]. Therefore, extremizing p(t) is equivalent to extremizing the joint
expectation, E [Nt(l)Nt(z)}. This realization guides the choice of the objective function in the optimization
problems (2.3) in the two-dimensional case and (2.37) in the d-dimensional case.

One of the early attempts in introducing dependency between Poisson processes originated from actu-
arial modelling, known as the Common Shock Model (CSM) [32, , 116], wherein a third Poisson pro-
cess is used to couple two otherwise independent Poisson processes. To illustrate this, let (l/t(l), 1/152), ut(s))
be three independent Poisson processes with intensities (A1, A2, A3) We can obtain two correlated Poisson

processes from the three independent Poisson processes through superposition:
1 1 2
Nt( ) = (I/t( )+Vt( ))
and
2 2 3
N — (o + o)

having intensities 1 = A1 + A2 and gz = Ao + A3. The correlation coefficient between the Poisson
processes Nt(l) and Nt(z) in the CSM satisfies [32]

L
Vi iz

The latter relation immediately implies that

min(uh N?)

0<p< .
=P= max(p1, p2)

It is clear that, in the CSM, correlations do not depend on time and do not allow for negative cor-
relations. Therefore the CSM cannot reproduce the negative correlations exhibited in Figure 1.1. In
addition, the upper bound on the p, above, is in some cases less than that attainable by our method
(see Chapter 3). For these reasons, the CSM has significant deficiencies as a method for constructing
correlated multivariate Poisson processes that often appear in practice.

We note that our approach to constructing multivariate distributions is not a Copula based approach.
Our Extreme Joint Distribution approach (see the next section for a brief introduction and Chapter 2
for a detailed exposition) is a direct approach that generates joint distributions with prescribed marginal
distributions (that are not uniform distributions as would be the case for a Copula-based approach) and

prescribed correlations using Mathematical Programming.
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1.4 Extreme Joint Distributions

First introduced by Kreinin [74] for the bivariate setting, the Extreme Joint Distribution (EJD) method-
ology is a pure probabilistic based approach for constructing discrete joint distributions having given
marginals and extreme correlations between their components. In the two-dimensional case, extreme
joint distributions are solutions to an infinite-dimensional Linear Program (2.3) where the objective
function is the bivariate joint expectation (2.3e) and the constraints are the marginals. Recall from
the discussion in the previous section that extremizing the bivariate joint expectation is equivalent to
extremizing the correlation coefficient p between two random variables X and X (). Extreme joint
distributions are useful for constructing multivariate discrete probability measures with given marginals
and having a prescribed correlation matrix. The intuition behind this is best illustrated in the bivari-
ate setting. To that end, note that in the two-dimensional case there are only two extremal bivariate
distributions P and ]5(2), each having the specified marginals Q") and Q®, PO has the extremal cor-
relation C' M) and P® has the extremal correlation 0(2), where -1 < CM <@ <1, corresponding to
the extremal positive and extremal negative correlations attainable between two random variables X (1)
and X @ distributed according to the specified marginals Q") and Q(?, respectively. The importance
of extremal correlations® stems from the fact that, for any correlation C' € [C’ N, (2], we can easily
find a w € [0,1] such that

C=wlCW4+1-w)C?, (1.10)

By itself, this convex combination is not significant. However, the w that satisfies (1.10) can be substi-
tuted into
P=wPW 4 (1 -w)P? (1.11)

to obtain a bivariate probability measure P having the given marginals Q(*) and Q) and the associated
correlation coefficient C.

In the d-dimensional setting, extreme joint distributions are solutions to a multi-objective infinite-
dimensional Linear Program (2.37) and our approach to (1.10) and (1.11) holds with some modification.

Since there are n = 2971 extreme measures (see Section 2.4), (1.10) and (1.11) generalize to
C=uwCY 4. ... 4w,C™ (1.12)

and
P :wlfa(l) +---+wn1—:’("), (1.13)

respectively, where w; € [0,1] foralli =1,2,...,nand >~ ; w; = 1. The solution (w1, ..., w,) to (1.12)
can be substituted in (1.13) to obtain a multivariate probability measure P(©) having given marginals
QW,...,Q and the associated correlation matrix C. Note that, in the d-dimensional setting, (1.12)
is system of linear equations having constraints on the {w; : ¢ = 1,2,...,n} that can be solved using
Mathematical Programming. (See Section 2.8.1.) If there is no solution to (1.12), then C' is said to be
inadmissible; otherwise, it is admissible. (See Section 2.8.3.)

Thus, the EJD methodology can be used to construct joint distributions having an admissible pre-
scribed dependence structure and satisfy given marginal distributions Q™) ..., Q¥ . As explained in

Section 2.9, for a multivariate Poisson process having univariate Poisson marginals, P(©) can be used

3The method still works if ¢ (1) and € (2) were not extreme, but it would not be possible to calibrate to the full range
of admissible correlations. That is some admissible correlations would be considered as inadmissible.
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to sample the (correlated) events from a multivariate Poisson distribution with correlation matrix C' in
order to obtain the vector of events at terminal time 7. This is used by Backward Simulation to exploit
the conditional uniformity property to generate the sample paths of a correlated multivariate Poisson

process. (See Chapters 3, 4, and 5.)
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1.5 Simulation of Poisson Processes

There are two general approaches to the simulation of Poisson processes within a simulation interval
[0,T7]: the forward approach and the backwards approach. To begin, we describe below both Forward
Simulation and Backward simulation in one dimension. Forward Simulation is the more intuitive ap-
proach of starting at time ¢ = 0 and simulating the (exponentially-distributed) interarrival times until
the end of the simulation interval, ¢ > T, is reached. In contrast, Backward Simulation relies on the
conditional uniformity property (Proposition 1), also known as the order statistic property, of Poisson
processes: given the number of events, n, at terminal simulation time, T, the arrival moments of the
Poisson process are uniformly distributed. Thus, Backward Simulation consists of simulating the number
of terminal events, n, from a suitable distribution at the end of the simulation interval ¢ = T, and then
sampling n uniform random variables in the interval [0,7]. Sorting the n uniform random variables
gives the arrival moments of the Poisson process within the simulation interval [0, 7]%. In the univariate
setting, the Forward Simulation and Backward Simulation are quite similar in terms of the simplicity of

the methodology and the ease of implementation.

In multivariate settings, however, the two approaches differ significantly, with the backward approach
exhibiting many advantages over the forward approach. For example, in the bivariate setting, to the best
of our knowledge, only independence or extreme correlations are possible under Forward Simulation,
whereas, all admissible correlations can be obtained under the Backward Simulation approach. (See
Section 3.4 for a discussion comparing Forward and Backward Simulation.) Moreover, to the best of
our knowledge, no Forward approach is capable of generating correlated multivariate Poisson processes
for dimensions d > 2. In contrast, Backward Simulation extends naturally to the general d-dimensional
setting, for d > 2, since Backward Simulation of a d-dimensional Poisson process simply consists of
Backward Simulation of each univariate component with the number of terminal events obtained from

a suitable joint distribution at terminal simulation time T'.

This thesis explores the extension of the Backward Simulation approach to the general setting where
d > 2 and also to more general Poisson process such as the mixed Poisson process (Chapter 4) and the
compound Poisson process (Chapter 5). A key property of Poisson processes under Backward Simulation

is that the correlation structure is a linear function of time

t
t) == p(T
pt) = 7 - o(T)
for t € [0,7]. Moreover, the thesis also introduces a methodology for extending a Poisson process
simulated by Backward Simulation within the interval [0, T] to intervals [mT, (m + 1)T] for any positive

integer m, where the correlation exhibits the asymptotic behavior
p(mT + 1) =~ p(T)

for m sufficiently large and all 7 € [0,7]. This extension is known as the Forward Continuation of
Backward Simulation. Note that the first few intervals of the process simulated under the Forward
Continuation of Backward Simulation can be discarded, similar to a burn-in phase, so that the process

exhibits a near constant correlation structure.

40rdered uniform random variables can be simulated directly using order statistics; see [3].
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1.6 Thesis Outline

This thesis develops a unified framework for constructing and simulating correlated multivariate Poisson
processes that attain the full range of dependence structures, including extreme negative correlation.
We integrate the two pillars—Extreme Joint Distributions (EJD) and Backward Simulation (BS)—and

extend them substantially in both theoretical scope and computational applicability.

e Chapter 2 develops the theory of Extreme Joint Distributions. We extend the EJD approach
from the bivariate setting in [74] to the general d-dimensional case, characterize the associated

monotonicity structures, and construct extremal multivariate measures with Poisson marginals.

e Chapter 3 introduces Backward Simulation for Poisson processes. Using the extreme measures
constructed in Chapter 2, we calibrate joint distributions to target correlation matrices—including
those with negative entries—and derive the resulting correlation structures under BS and the

Forward Continuation of Backward Simulation.

e Chapter 4 generalizes the Backward Simulation-based framework to mixed Poisson processes and

characterizes the resulting correlation structures.

e Chapter 5 extends the Backward Simulation framework further to compound Poisson processes.
We establish how the dependence structure of the primary process interacts with the secondary
distribution and derive correlation structures under both Backward Simulation and Forward Con-

tinuation.

e Chapter 6 summarizes the theoretical developments, revisits the contributions of the thesis and

outlines directions for future work.



CHAPTER 1. INTRODUCTION 12

1.7 Summary of Contributions
The main contributions of this thesis are as follows:

1. A general d-dimensional EJD framework.
We develop extremal joint distributions for discrete distributions in the general d-dimensional set-
ting, providing the foundation for modeling extreme dependence in multivariate Poisson processes.
2. A calibration method for multivariate discrete distributions using EJD.

The proposed approach constructs joint distributions having prescribed discrete marginal distribu-
tions and admissible correlation matrices. In the case of Poisson marginals, this method overcomes

previous limitations of existing constructions that cannot accommodate negative dependence.

3. Extended Backward Simulation for multivariate mixed and compound Poisson processes.

We prove that mixed and compound Poisson processes simulated via Backwards Simulation remain
said processes. We show how Backwards Simulation can be applied component-wise, once an

appropriate joint distribution has been calibrated, while preserving the dependence structure.

4. A Forward-Backward Simulation scheme enabling process continuation.

After the simulation of Poisson processes within a target interval [0,T7], it is natural to consider
extending the process to subsequent intervals [nT, (n + 1)T]. We propose a method, the Forward

Continuation, that extends the process by keeping the distribution of the increments the same.

5. Theoretical analysis and numerical validation.

We establish correctness results not just for the EJD Theorem in d-dimension, but also for the
EJD algorithms. We numerically validate the behavior of the correlations described by the theory

using Monte Carlo analysis.

A more extensive list of contributions, with references to sections of the thesis, can be found in
Section 6.1.1



Chapter 2

Extreme Joint Distributions

This chapter forms one of the pillars of the thesis and describes, in detail, an important part in the
construction of multivariate Poisson processes with correlation—negative correlation in particular—
between their components. A necessary capability for calibrating a multivariate Poisson process at a
certain point in time to some data, is the ability to obtain a joint distribution that has prescribed marginal
distributions and a correlation structure consistent with the data. A calibrated joint distribution enables
the calculation of various statistics, but more importantly, it enables the generation of random vectors,

which are necessary for our Backward Simulation method (see Chapters 3, 4, and 5).

The problem of constructing joint distributions having prescribed marginal distributions and pos-
sessing a desired dependence structure has been given much consideration in the literature. Two of the
pioneering works are by Fréchet [49] and Hoeffding [64] who introduced the extremal cdfs H* and H,
having maximal and minimal correlation coefficient, respectively, within the set II(F, G) of all cdfs H
on R? having F and G as marginal cdfs where ' and G have positive finite variance. Later, Whitt [125]
studied extremal bivariate distributions and their correlations in a more general setting and Strassen
[119] considered the problem of existence of the bivariate problem but for general probability measures.
Hill et al. [63] continues the theme of partially specifying joint distributions through prescribed marginal
distributions and a prescribed correlation structure. Similar to Fréchet [19] and Whitt [128], Hill et al.
[63] is close in spirit to our Extreme Joint Distribution (EJD) method as they present a method for
determining the mixing probabilities of extremal joint probability mass functions (pmfs) to achieve a
certain correlation structure. Unlike our work, however, the work of Hill et al. [63] is limited to the
lower-dimensional setting d < 3 and is unable to generate all feasible correlation matrices for a set of
marginals [53].

A separate but related body of work focuses on obtaining random vectors satisfying prescribed
marginal distributions and correlation structure directly, without explicitly specifying the joint distribu-
tion due to its difficulty; this is especially true for cases where the marginals do not come from the same
parametric family [27, 67]. Early works such as Li and Hammond [78] specified a method of constructing
a joint distribution that satisfies prescribed marginal distributions and correlations by applying nonlinear
transformations to normally distributed random variables. However, this method is computationally in-
efficient since it requires the inversion of a double integral where the integrand itself must be numerically
approximated. The nonlinear transformations make it difficult to specify an input correlation matrix

that will remain positive semidefinite after the transformation. Lurie and Goldberg [85] introduce a

13



CHAPTER 2. EXTREME JOINT DISTRIBUTIONS 14

nonlinear optimization step in order to alleviate this very issue. A more recent and popular body of

work on the same theme is the NORmal To Anything (NORTA) method [14, 53, 54, 55] which generates
iid variates of a random vector X = (X W X (d)) where each component is distributed according
to prescribed marginal distributions QU) for j = 1,...,d and a prescribed correlation structure in the

form of a correlation matrix C. The NORTA method accomplishes this by first sampling a random
vector Z = (Zy,...,Z4) that is normally distributed with mean vector 0 and covariance matrix CZ.
Then, the nonlinear transformation X; = Fi_l(gi)(Zi)) is applied to each component, where, ¢(-) is the
distribution function of a standard normal random variable, F(¥ is the cumulative distribution function
corresponding to the marginal distribution Q) and
F7 N (u) = inf{z : F9(2) > u}

is the quantile function! corresponding to marginal distribution Q. While the NORTA method is
simple and straightforward, it has many shortcomings. An example of this is that, similar to earlier
work in the literature [7%, 85], the intermediate correlation matrix CZ must be chosen such that the
resulting correlation remains positive semidefinite, after the nonlinear transformations are applied. A
remedy for this was suggested in Ghosh and Henderson [54] by adding a Semidefinite Programming (SDP)
step in the initialization of the NORTA method; an obvious downside to this is the added computational
cost. A more serious shortcoming is that NORTA fails for the case d > 3 in that, as the dimensionality
of the random vector grows, NORTA becomes increasingly unable to match feasible correlation matrices
corresponding to a given set of prescribed marginal distributions; in particular, they become increasingly

unable to attain extreme correlations as the dimension increases [53, 55].

A result worth noting is that bivariate Poisson processes exhibiting negative correlations are not
infinitely divisible [59]. Thus, while bivariate Poisson distributions constructed using a “random elements
in common” decomposition [34], where (X, Y) is a bivariate Poisson distribution such that X =U +V
and Y = V + W where U, V,W are three independent Poisson random variables? are infinitely divisible,

the extreme distributions constructed by the EJD method exhibiting negative correlations are not.

Let us now introduce the intuition behind our approach. Consider first the bivariate setting and
suppose we are given the extremal correlations CD and ¢ @ where —1 < c < c® < 13 corre-
sponding to the extremal positive and extremal negative correlations attainable between two random
variables X and X® distributed according to Q") and Q)| respectively. The extremal correlations
determine an admissible range [é @, C (2)] from which any correlation, C', within the admissible range

can be attained by first solving the simple linear equation
CowC® 4 (1—w) O (2.1)

for w € [0,1]. Crucially, (2.1) relies on being able to generate the extreme correlations C'*), for
k € {1,2}, which can be obtained from the corresponding extreme distributions, P(k), given by either
the Fréchet-Hoeffding theorem [19, 64] in the two-dimensional case or by our EJD method in Section

2.2. Each two-dimensional extreme distribution p(k), for £ =1 or 2, has correlation C™® and marginals

IThis is also known as a generalized inverse; see [38] for details.
2This is the distribution version of the Common Shock Model (CSM) [82] which applies to processes.
3Note that there are cases where —1 < C(1) and C(® < 1.
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QW and Q®. Key to our approach is that the solution w to (2.1), when plugged into
P =wPW 4+ (1 —w)P?, (2.2)

specifies a probability distribution P having the marginal distributions Q") and Q) and correlation C.
The approach outlined in the paragraph above can be extended to higher dimensions. The C®) are
no longer scalar values, but are (extreme) correlation matrices. There are n = 29! extreme correlation
matrices in the d-dimensional case—see Lemma 15 in Section 2.4. Therefore, in the d-dimensional setting
(2.1) becomes
C=wCY +...4w,C™

with the constraints w; > 0 for j = 1,...,n and Zj w; = 1. We discuss ways to solve this equation
for the weights (wi,...,w,) in Section 2.8. The extreme correlation matrices C® are unique and
each C'(® is associated with a d-dimensional extreme probability measure P satisfying the marginal
distributions (Q™,..., Q). A natural question that arises is how to define and compute P®); this
is the topic of Section 2.4. In the d-dimensional case, similar to the two-dimensional case, the weight

vector (wy,...,w,) when substituted into the multidimensional analogue of (2.2),
P=w P ... 4w, PM

specifies the (multivariate) probability distribution P having marginal distributions QW,...,QY and
correlation matrix C.

Kreinin in [74] introduced the EJD approach for the bivariate case, a pure probabilistic approach for
the computation of extreme measures and showed that it is equivalent to the Fréchet-Hoeffding theorem.
Our main contribution in this chapter is the extension of the EJD method from the bivariate setting to
the general d-dimensional setting for any d > 3, which improves on many of the previous methods and

alleviates some of their shortcomings. In particular, our approach is able to:
1. Attain all admissible correlations corresponding to a set of marginal distributions
2. Efficiently compute extreme measures given marginal distributions

3. Compute d-dimensional extreme distributions for d < 51, where the limitation on d is due to

memory [36]
4. Efficiently sample multivariate distributions constructed using the EJD approach

The closest body of work in the literature to ours is that of Tiit [122, , ] who also considers the
idea of extremal joint distributions and their mixtures. However, we differ from Tiit in that we provide
an algorithm that constructs an extreme joint distribution directly without resorting to the construction
of conditional distributions and we provide a simple, more natural concept for keeping track of the
possible extremal dependencies.

Although the main impetus for the development of the EJD method stemmed from the need to
construct multivariate Poisson distributions, the EJD method is very general and applies to any discrete
marginal distribution with finite variance resulting in a general discrete multivariate distribution with
some extremal dependence structure between its components. A minor but important assumption we
make throughout this chapter is that the marginal distributions Q) have Q,(Cj ) >0 for k = 0,1,...,n
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in the finite-dimensional case and k = 0,1,... in the infinite-dimensional case; the extension to more

general marginal distributions that may have Q,(j ) = 0, for some k, is straightforward, but makes the

statement and proof of our results a little messy.

2.0.1 Outline

The outline for this chapter is as follows. We begin, in Section 2.2, by discussing the problem setting
and introducing the EJD method in two-dimensions and the extreme measures it generates; much of
the intuition in the bivariate setting also holds true in the general setting. Section 2.3 describes in
detail the EJD algorithm, an efficient algorithm that simultaneously computes an extreme measure and
its support in the two-dimensional case. In preparation for extending the EJD method to the general
d-dimensional case, Section 2.4.1 introduces the notion of monotonicity structures which describe the
associated extreme measures and provide an ordering for them. Extreme measures in d-dimensions are
discussed in Section 2.4. We extend the EJD algorithm to the general case in Section 2.5. This is followed
by a numerical example in Section 2.7. Calibration of multivariate extreme distributions is discussed in
Section 2.8. Finally, sampling from extreme measures and multivariate extreme distributions constructed

from extreme measures is discussed in Section 2.9.
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2.1 Notation

We make use of the following notation in this chapter.

Symbol Definition

d Dimensionality of a multivariate distribution

n =241 Number of extreme measures and correlation matrices for a d-
dimensional distribution

m=d(d—1)/2 Number of entries in the strictly upper triangular part of a d x d
correlation matrix

kEe{l....,d} Index of the dimension of the problem

je{l,...,n} Index of the extreme points of the problem

P General probability measure

P; ; (i, 7)™ element of P in the two-dimensional case

Ny Set of non-negative integers {0,1,2,...}

X General discrete valued random variable

Joint expectation of the discrete bivariate probability measure P

in the two-dimensional case

Iy={j:1<j<dj#k}

Set of indices not equal to index k in the d-dimensional case

Ty =4j:1<j<d,j#k,j#l}

Set of indices not equal to index k or index [ in the d-dimensional

case
R,y The set {(z,y) € R? : z-y > 0}

R_ The set {(z,y) € R? 1z -y <0}

ng) ith element of the k*" marginal probability distribution Q*)

F&) Cumulative distribution function associated with Q)

FR —1— Fi(k) ith element of F(®), the reversed cdf associated with F*) in the

3

two-dimensional case where k € {1,2}

l max

The final iteration of an algorithm

1€{0,1,... lmax}

Iteration index of an algorithm

j20)

Extreme measure in the two-dimensional case where j = {1,2}

Ps(z]) = Ps(gjl))’sl(z)

Probability corresponding to extreme measure j at the (I 4 1)

point of the S-path where j € {1,2} in the two-dimensional case

sp = (sl(l), 51(2)) (I 4+ 1)** point belonging to the S-path corresponding to P in
the two-dimensional case

5 = (El(l), §l(2)) (I 4+ 1)** point belonging to the S-path corresponding to P in
the two-dimensional case

ik, Smallest integer such that ng) =0 for all i > i), in the two-
dimensional case

Q™) Finite dimensional approximation of Q*)

Q(z) {Q§i}ax, Qg‘il)ax—l’ ce Q(()Q)} in the two-dimensional case

]?‘<2) Vector containing cumulative sum of Q(Q) in the two-dimensional

case
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Symbol

Definition

HY =P(xM <i,X® <)

Bivariate cdf for the general random variables X and X® in

the two-dimensional case

Oxw = {Fék), ((’22 }

tma

Partition of the unit interval by the k" marginal cdf values

HZ = {ZOa N '7Zlmax}

Partition of the unit interval by the unique and ordered values of

the marginal cdfs F(!) and F®) in the two-dimensional case

Probability distribution computed in the comonotone case of

= Algorithm 1 using F(Q) instead of F(? in the two-dimensional case
Ps(;i}”«“(?) Value of I:’IS(;) at the support point s; in the two-dimensional case
(XM X (D) Random vector with associated distributions (Q™),..., Q@) in
the d-dimensional case
P General probability measure in d-dimensions
pldiu,v) Projection of P(®) onto the u*" and v** coordinates
pldv) Projection of P9 onto the v coordinate
pGd) d-dimensional extreme measure with monotone structure e?>%)
Ai(lj”.c.liid (i1,...,iq)™ element of PU-D)
Qdw) u™ marginal distribution in the d-dimensional case
Fldu) ut™ marginal cdf in the d-dimensional case
({fj.}?;)u) Value of F(44) at 74
hgf;’lfl)(P(d)) =E[X®XxO) Joint expectation of the u*® and v*™® coordinate of P(%)
elhd) = (egj ’d), R Eij d)) 4 monotone structure of a d-dimensional extreme measure
el diu) — (egj’d), 1(,3 d)) Projection of e onto the u™™ and v*® coordinates
lfﬁ;{f? The final iteration of an algorithm in the d-dimensional case
104 € {0,1,.. Srjla‘i)} Iteration index of an algorithm in the d-dimensional case
s(d) = (séj’d) sl(é‘?)) d-dimensional support corresponding to pl.d)
l((jfa = (sl((jff,’)l), e sl(z;f;)d)) (1G4 4+ 1)s* d-dimensional support point corresponding to P
]%%"j? P(J7L?) (10D 4 1)t element of pU.d)
jd
649 = {;OJ ‘)i), ey l“ d)} Partition of the unit interval by the unique and ordered values of
the marginal cdfs FUU . FU-4 in the d-dimensional case
PUdiuw) Projection of PU% onto the u® and v coordinates
stdiuv) — (sgj’d;u’”)7 o sl(éi)u v)) two-dimensional support corresponding to PU-4:%:?) possibly hav-
ing duplicates in the set
QUdk) k" marginal distribution in the d-dimensional case taking into
account its corresponding monotone structure eld)
Fi:dik) k™™ marginal cdf in the d-dimensional case taking into account its
corresponding monotone structure elrd)
pl-d) Probability measure computed by Algorithm 5
8" = {ééj/’Q) AI((JJ 3))} Set constructed by duplicating points in {séj,’m, o l(g ’2)} ac-

max

cording to Algorithm 25
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Symbol Definition
202 = é(j’Q) . A(]Zd Set constructed by duplicating points in z(] 2) ey 2(2’2) accord-
0 l(J ) l
ing to Algorithm 25
{ééj’d;u’v),...,él(fj.”i;)u’v)} Set constructed by Algorithm 26 containing only values from
Flduw) ang Flidv)
{zéj ’Q;WJ),. ., l((g72du'u)) } Set constructed by taking only the unique elements of

{ééj,d;u,v) A(J d,u,v)}

yr l(]d)

Gdiu0)

.d)

sUdiwv) — (§(()j’d;u’7j), . §z“ 2w ) | Projection of s, onto the u*™ and v** coordinates with dupli-
cates eliminated

slidiww) — (§gj’d;u’”)7. 555121?(1:752) Support corresponding to P:%u:?) hefore being post-processed
by Algorithm 6

gldwe) = (g duw) ,él(gé;qi”?) Set {354 ,5&2)””)} with duplicates removed

A={p: Aw=">b,w >0, p=Pw}

Set of discrete probability measures having correlation

vector b that are a convex combination of extreme measures P

General correlation matrix

Extremal positive correlation (scalar) in the two-dimensional case

Extremal negative correlation (scalar) in the two-dimensional case

j-th extreme correlation matrix corresponding to PUD in the d-

dimensional case

Column vector containing the m entries of the upper triangular
part of C'¥) plus an additional element equal to 1 at the bottom
of Ak

Matrix of extreme correlation vectors having columns Ay

Correlation vector containing the m entries of the upper triangular
part of C plus an additional element equal to 1 at the bottom of
b

Weights of a convex combination, that must be solved for in the
calibration problem (2.106)
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2.2 Extreme Measures in two-dimensions

In this section we define extreme measures in two-dimensions and describe how they can be obtained
using the Extreme Joint Distribution (EJD) approach. We introduce two special classes of discrete,
bivariate distributions known as comonotone and antimonotone* distributions and show that extreme
measures belong to these classes. The bivariate case is illustrative; much of the intuition also holds for
the general d-dimensional case (Section 2.4). Importantly, the EJD theorem in two-dimensions has been
shown to be equivalent to the Fréchet-Hoeffding theorem, a well known result. We note that the results
in the subsequent section (Section 2.2.1) are primarily for proving the correctness of the EJD algorithm
in Section 2.3.

In this section, we consider bivariate random vectors (X W, X (2)) on the positive quadrant having
associated discrete probability distributions Ql(-l) and Q;Z) with finite variance supported on N3, where
i=0,1,... and j = 0,1,... and N3 is the set of non-negative integers on the bivariate lattice.

We begin by defining extreme measures.

Definition 14 (Extreme Measures in two-dimensions). Extreme Measures are solutions to the following

infinite-dimensional Linear Program (LP)

extremize h(P) (2.3a)
subject to ZPM = QEI), i=0,1,... (2.3b)
7=0
S pP;=0Q%, j=01,... (2.3¢)
i=0
Pij=20 4,5=0,1,... (2.3d)

where Q" > 0 for i = 0,1,2,..., Q%Y >0 for j = 0,1,2,..., and 177, Q" = ¥ QP = 1.

Extremize denotes either max or min and the objective function is

h(P) :=EXDXP]=3"N"ijP; (2.3¢)
i=0 j=0

where P, j = P(XM =i X® =)

Remark 5. Definition 14 is consistent with finite-dimensional QW and Q@ having elements
Qél), e Q(»l) and Qéz), ceey Qé.i)ax, since they can be simply extended to the infinite-dimensional case

Tmax

by setting le) =0 fori=timax+1,%max+2,... and Q;z) =0 for j = jmax+ 1, jmax +2, - . ., Tespectively.

Remark 6. The optimization problem (2.3) is a semi-infinite linear program for which existence results

for a solution are well known [11/].

Extreme measures are probability distributions that either maximize or minimize the joint expec-
tation (2.3e), which is the only quantity within the calculation of the Pearson correlation coefficient
that is not determined by the given marginal distributions. Therefore, the same distribution P that

maximizes (minimizes) h(P) also maximizes (minimizes) the correlation coefficient associated with P.

4 Antimonotonicity is also known—more widely, in fact—as countermonotonicity in the literature. However, in this
thesis we will stick with the use of countermonotonicity.
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While extreme measures can be obtained by directly solving the LP (2.3), this approach is inefficient
compared to the EJD algorithm, as explained in Section 2.3.

Moreover, it follows from the discussion in Section 2.4 that the higher-dimensional analogue of (2.3)
precludes solving the optimization problem with standard software due to the complexity of converting
the problem to a form that modern solvers would accept. We mention that the LP (2.3) is also a Monge-
Kantorovich transportation problem (MKP) and thus the EJD method is a novel approach to solving a
special class of MKP; extreme measures in two-dimensions are optimal couplings [57]. The connections
to the MKP are not the focus of the thesis and will not be explored further.

2.2.1 Monotone Sets and Distributions

In this subsection, we introduce a special class of discrete bivariate distributions with given marginals
known as monotone distributions [19, ] and explore some of their properties. In the next subsection,
we show that the distributions that maximize and minimize the h(P) given in (2.3e) are monotone

distributions. These bivariate discrete distributions P take the form
P for i=0,1,2,... and j=0,1,2,...
and satisfy the marginal equations (2.3b) and (2.3c)

To ease the burden in proving the results in the subsection, we make the following assumption

throughout this subsection.

Assumption 1. The distribution P has marginals Q) and QP discrete distributions with finite
variance, satisfying the equations (2.3b) and (2.3¢) and ng) >0 fori=0,1,2,... and k € {1,2}.

Remark 7. The results in this subsection also hold for the assumption that the distribution P has
marginals Q) and QP discrete distributions with finite variance, satisfying the equations (2.3b) and
(2.3¢). Moreover, le) >0 fori=0,1,2,... inax wWhere igmax 15 Some finite integer, le) = 0 for all
1> tmax. Stmalarly for Q§2) and Jmax-

That is, the results in this subsection hold true for the case that the marginals Q) and Q) are finite-
dimensional. This can be seen from the fact that the infinite sums of the bivariate discrete distributions
P; ; in this subsection can instead be replaced by finite sums where the upper bound of summation is imax
if © is the index of summation; and similarly jmax when j is the index of summation. Note that iyax and

Jmax are the greatest integers such that Qz('i)ax >0 and Q;-i)ax > 0, respectively.

Remark 8. We believe the results in this subsection can be extended to the case where the distribution
P has marginals QM) and Q?), discrete distributions with finite variance, satisfying the equations (2.3b)
and (2.3¢) and ng) >0 forieI® c Ny and ng) =0 foric Ng\Z® and k € {1,2}. However, note
that this extensions is not needed in this thesis, since the Poisson and mized Poisson cases we focus on
in Chapters 3, 4, and 5 have le) >0 fori=0,1,2,... and Qgg) >0 for j =0,1,2,.... Moreover, the

extension would complicate the proofs in this subsection significantly and detract from the main ideas.

Definition 15 (Monotone Sets). A set of points S = {s, : n € Nyo}, where Ng = {0,1,2,...} and
Sn = (Tn,yn) € R?, is called comonotone if Vi,j € Ny, the vector s; — s; € Ry where Ry = {(z,y) €
R? : z-y > 0}. A set S is called antimonotone, if ¥i,j € Ny, the vector s; —s; € R_, where
R_={(z,y) eR? :z-y <0}.
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Definition 16 (Monotone Distributions). A distribution P is said to be comonotone (antimonotone®)

if its support, supp(P), is a comonotone (antimonotone) set.

Comonotone Distributions

Lemma 1. Assume the distribution P is comonotonic and satisfies Assumption 1. Then the origin is

in the support of P.

PROOF: We show, by contradiction, that (0,0) is in the support of P. To this end, suppose (0,0)
is not in the support of the comonotonic distribution P. Then, there must be a point (0,n) with n > 0

in the support of P, since the marginal assumption
(oo}
1
Z POj = Q(() ) >0
j=0

implies that at least one Py, > 0 and the assumption that (0,0) is not in the support of P (i.e., Pyo = 0)
ensures that n > 0. Similarly, there must be a point (m,0) with m > 0 is in the support of P. However,
the point

s=(0,n) — (m,0) ¢ Ry.

Therefore, P is not a comonotone distribution, contradicting our assumption that P is a comonotone
distribution. Hence, (0,0) must be in the support of P. O

Remark 9. In fact, a comonotonic distribution in higher dimensions must include the origin. The

extension of Lemma 1 to the multivariate setting is straightforward.

Lemma 2. Assume the distribution P is comonotonic and satisfies Assumption 1. If (m,n) is in the
support of P, then at least one of (m,n+ 1),(m+ 1,n),(m+ 1,n + 1) is also in the support of P. In
addition, (m,n + 1) and (m + 1,n) cannot both be in the support of P.

PRrROOF: We begin by showing, using proof by contradiction, the first part of the lemma, namely
that, if (m, n) is in the support of P, then at least one of (m,n+ 1), (m+1,n), (m+ 1,n+ 1) must also
be in the support of P. To that end, suppose that none of (m,n + 1), (m+ 1,n),(m + 1,n+ 1) are in
the support of P. We first show that there must be a point (m + 1,n’) where n’ > n + 1 in the support

of P. To see this, note that the marginal assumption
(oo}
1
ZPm-i-l,j = anl—l >0
j=0

implies that at least one P41, > 0. The assumption that both (m + 1,n) and (m + 1,n + 1) are not
in the support of P implies that either n’ > n+1 or n’ < n. The latter cannot occur since, if (m+1,n’)
is in the support of P with n’ < n, then the point s = (m,n) — (m + 1,n') ¢ R, contradicting our
assumption that P is a comonotone distribution.
In a similar manner, there must be a point (m’,n + 1) where m’ > m + 1 in the support of P.
However, the point
s=m+1,n)—(m' ,n+1)¢ R4

5Also known as countermonotonicity in some of the literature
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if m’ >m-+1andn' > n+1, which again contradicts our assumption that P is comonotone. Therefore,
at least one of (m,n+1),(m + 1,n),(m+ 1,n+ 1) must be in the support of P.
That (m,n + 1) and (m + 1,n) cannot both be in the support of P can be shown, by contradiction,
in a similar manner. To this end, suppose that (m,n + 1) and (m + 1,n) are both in the support of P.
The point
s=mn+1)—(m+1,n) ¢ Ry,

again contradicting our assumption that P is comonotone. Thus, (m,n+ 1) and (m+ 1,n) cannot both
be in the support of P. O

Remark 10. If the marginal distributions Q) and Q2 are finite-dimensional, then there exist integers
m and n such that Qg? =0 for any m' > m and Qilz,) =0 for any n’ > n. Therefore, no point of the

form (m/,n’) for any m’ > m or any n' > n belongs to the support of P.

Lemma 3. Assume the distribution P is comonotonic and satisfies Assumption 1. If (m,n) is in the
support of P and (m,n) # (0,0), then at least one of the points (m,n —1),(m —1,n),(m—1,n—1) is
also in the support of P. In addition, (m,n — 1) and (m — 1,n) cannot both be in the support of P.

Remark 11. In the special case that m = 0 and n > 0 the points (m—1,n) = (—1,n) and (m—1,n—1) =
(=1,n — 1) are not in the domain of P and so cannot be support points of P. However, in this case,
the point (m,n—1) = (0,n — 1) is always a support point of P. So, the conclusion of Lemma 8 remains
true.

Similarly, if m > 0 and n = 0, the points (m,n —1) = (m,—1) and (m —1,n—1) = (m —1,-1)
are not in the domain of P and so cannot be support points of P. However, in this case, the point

(m—1,n) = (m—1,0) is always a support point of P. Again, the conclusion of Lemma 3 remains true.
PrOOF: We show that the lemma holds true for the following three cases:
1. bothm >0and n >0
2.m=0andn>0

3. m>0andn=0.

Case 1:  both m >0 and n > 0.

We use proof by contradiction to prove the first part of this lemma. To that end, suppose that none
of (m,n—1),(m—1,n),(m—1,n—1) are in the support of P. We first show that this implies that there
must be a point (m — 1,n’) where n’ < n — 1 in the support of P. To this end, note that the marginal

assumption

S P =@, >0
=0

implies that at least one P,,_1 s > 0. The assumption that both (m —1,n) and (m —1,n—1) are not in
the support of P ensures that either n’ > n or n’ <n — 1. The former cannot occur since, if (m —1,n’)
is in the support of P and n’ > n, then the point s = (m,n) — (m — 1,n’) ¢ R4, which contradicts
our assumption that P is a comonotone distribution. Similarly, there must be a point (m’,n — 1) where

m' < m — 1 in the support of P. However, if n’ <n — 1 and m’ < m — 1, then the point

s=m—-1,n")—(m',n—-1)¢ Ry
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contradicts, again, our assumption that P is a comonotone distribution. Therefore, if (m,n) is in the
support of P, then at least one of the points (m,n — 1), (m — 1,n),(m —1,n — 1) is also in the support
of P.

The final statement of the lemma can also be shown by contradiction. To this end, suppose both
(m —1,n) and (m,n — 1) are in the support of P. Then the point s = (m —1,n) — (m,n—1) ¢ Ry
contradicting our assumption that P is a comonotone distribution. Hence, (m,n — 1) and (m — 1,n)

cannot both be in the support of P.

Case 22 m=0andn > 0.

If (m,n) = (0,n) where n > 0, the points (m — 1,n) = (=1,n) and (m—1,n—1) = (-1,n—1) do
not belong to the domain of P and thus cannot be in its support. Thus, the second part of the lemma
follows immediately. Hence, all that remains to show is that, if the point (0,n) is in the support of P,
then the point (0,7 — 1) must also be in the support of P.

We prove this result by contradiction. To this end, suppose there exists an n > 1 such that (0,n)
is in the support of P, but (0,n — 1) is not in the support of P. There must be a point (m’,n — 1) for

m’ > 0 in the support of P since the marginal assumption
oo
2
ZPi,nfl = le,)l >0
i=0

implies that at least one Py, ,—1 > 0. That (0,7 — 1) is not in the support of P ensures that m’ > 0.
However, the point s = (0,n) — (m/,n — 1) ¢ R4 for m’ > 0, contradicting our assumption that P is a
comonotone distribution. Therefore, if (0,n) is in the support of P, then (0,7 — 1) must also be in the

support of P.

Case 3: m>0and n=0.

If (m,n) = (m,0) where m > 0, the points (m,n—1) = (m,—1) and (m—1,n—1) = (m—1,-1) do
not belong to the domain of P and thus cannot be in its support. Thus, the second part of the lemma
follows immediately. An argument similar to the one employed in Case 2 can be used to show that, if
(m,0) is in the support of P, then (m — 1,0) is in the support of P as well.

O

Lemma 1 tells us that comonotonic distributions P must start at the origin. Lemma 2 tells us that
given a point (m,n) belonging to the support of a comonotonic distribution P, then at least one of the
points (m,n + 1), (m + 1,n),(m + 1,n 4+ 1) is also in the support of P, but not both (m,n + 1) and
(m+1,n). Note that it is possible that if (m,n) is in the support, then (m,n+1) and (m+1,n+ 1) or
(m+1,n) and (m+1,n+1) are both in the support of P. This allows us to introduce, in a well-defined

manner, the “subsequent point” of a point (m,n) in the support of P.

Definition 17 (Subsequent and Antecedent Points). Given some i** point s; = (m,n) in the support
of a comonotonic distribution P, the subsequent point in the support of P, s;11, is defined to be one of
the points (m,n+1),(m+1,n),(m+ 1,n+ 1) in the support of P with the smallest Euclidean distance
to s;. Similarly, the antecedent point s;—1 of s; is defined to be one of the points {(m —1,n),(m—1,n—

1), (m,n — 1)} in the support of P with the smallest Euclidean distance to s;.

Remark 12. The subsequent point is well-defined because Lemma 2 ensures that the points (m,n + 1)

and (m + 1,n) cannot both be in the support of P. Hence, if either of these points is in the support of
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P, it is the subsequent point, since its Euclidean distance to the point (m,n) is less than the Fuclidean
distance of (m + 1,n + 1) to (m,n). If neither (m,n + 1) nor (m + 1,n) is in the support of P, then

Lemma 2 ensures us that (m + 1,n + 1) is in the support of P and so it is the subsequent point.

Remark 13. Note that in the case where the marginal distributions Q) and Q@ are finite, then there
exists a point (m,n) in the support of P for which there is no subsequent point; this point is known as

the terminal point of the support.
Now we have all the ingredients to characterize the support of a comonotonic distribution P.

Definition 18 (S-path). The S-path is a directed path of support points of P starting with so = (0,0).
1 (2
87,8,

Moreover, if the point s; = (s;’,s;”) is on the S-path for some i > 0, then the next point, s;41 =

(85}317 55_231), on the path is the subsequent point of s;.

Lemma 4. Suppose that the distribution P is comonotonic and satisfies Assumption 1. There is no

point (m,n) belonging to the support of P that is not on the S-path.

PRrROOF: We prove this result by contradiction. To this end, suppose that there is a support point
(m,n) of P that is not on the S-path. Lemma 3 ensures that we can construct a path from (m,n) that
must lead back to the origin. However, by Lemmas 1, 2 and the definition of the S-path, the S-path
begins at the origin and must be unique. So, the support path starting from (m,n) and proceeding
backwards must be part of the S-path, contradicting our assumption that (m,n) is not on the S-path.
O

Remark 14. The support of comonotone distributions, by Definition 17 and Lemma 4, can also be

characterized by their monotonically increasing coordinates.

Remark 15 (Sparsity of Comonotone Distributions). Comonotone S-paths are directed paths that, by
Lemmas 1-4, are sparse. FEuvery point on the comonotone S-path except the starting point (and the

terminal point in the case of finite marginals) has an in-degree and out-degree of 1.

Antimonotone Distributions

Lemma 5. Assume the distribution P is antimonotonic and satisfies Assumption 1. Then, there exists

integers m > 0 and n > 0 such that the points (0,n) and (m,0) are in the support of P.

PrOOF: From Assumption 1, we know
o0
1
S Ry=q >0
j=0

Therefore, there must be an integer n > 0 such that Py, > 0. Hence, (0,n) is in the support of P.
Similarly, there must be an integer m > 0 such that (m,0) is in the support of P. O

Lemma 6. Assume the distribution P is antimonotonic and satisfies Assumption 1. If (m,n) is in the
support of P, then at least one of the points (m + 1,n), (m,n —1),(m + 1,n — 1) is also in the support
of P. In addition, (m + 1,n) and (m,n — 1) cannot both be in the support of P.

Remark 16. Note that in the case (m,n) = (m,0), the points (m,n—1) = (m,—1) and (m+1,n—1) =
(m + 1,—1) are not in the domain of P and thus cannot be in its support. However, in this case, the

point (m+1,n) = (m+1,0) is always in the support of P. So, the conclusion of Lemma 6 remains true.
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PRrROOF:

Case 1: n > 0. We use proof by contradiction to prove the first part of the result. To this end,
suppose that none of the points (m + 1,n), (m,n — 1), (m 4+ 1,n — 1) are in the support of P. We first
show that this implies that there must be a point (m + 1,n’) where n’ < n — 1 in the support of P. To

this end, note that since the marginal assumption
o]
1
> Prtig = Qihy >0
j=0

implies that at least one P41, > 0. The assumption that both (m + 1,n) and (m + 1,n — 1) are not
in the support of P ensures that either n’ > n or n’ < n — 1. The former cannot occur since the point
s=(m,n) — (m+1,n') ¢ R_ for any n’ > n, contradicting our assumption that P is an antimonotone
distribution. Similarly, there must be a point (m’,n — 1) where m’ > m + 1 in the support of P. To see

this, first note that the marginal assumption
oo
2
Zpi,nfl = lell >0
i=0

implies that at least one Py, ,,—1 > 0. The assumption that both (m,n — 1) and (m + 1,n — 1) are not
in the support of P ensures that either m’ < m or m’ > m + 1. Here, there are two cases to consider:
m =0 and m > 0. If m > 0, then m’ < m cannot occur since the point s = (m,n) — (m’,n—1) ¢ R_
for any m’ < m, contradicting our assumption that P is an antimonotone distribution. In the case that
m = 0, there also cannot be a point (m/,n — 1) where m’ < 0 belonging to the support since it is not

even in the domain of P. Therefore m’ > m + 1. However, the point
s=m+1,n)—(m' ,n-1)¢R_

for n’ <n—1and m' > m + 1, contradicting again our assumption that P is antimonotone. Therefore,
at least one of the points (m + 1,n),(m,n —1),(m+ 1,n — 1) is in the support of P.

Finally, we use proof by contradiction again to show that (m + 1,n) and (m,n — 1) cannot both be
in the support of P. To this end, suppose (m + 1,n) and (m,n — 1) are both in the support of P. Then
the point s = (m+1,n) — (m,n—1) ¢ R_, contradicting again our assumption that P is antimonotone.

Therefore, (m + 1,n) and (m,n — 1) cannot both be in the support of P.

Case 2: n=0.

Then (m,n) = (m,0) and the points (m,n — 1) = (m,—1) and (m+1,n — 1) = (m +1,—1) do not
belong in the domain of P and therefore cannot belong to the support of P. Therefore, the second part
of the lemma follows immediately.

We prove the first part of the lemma by contradiction. To this end, suppose that the point (m+1,n) =
(m+ 1,0) does not belong in the support of P. Then there must be a point (m + 1,n’) where n’ > 0 in

the support of P since the marginal assumption

Y Py = Q4 >0
§=0
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implies that at least one Py,41,,, > 0. The assumption that (m+1,0) is not in the support of P ensures
that n’ > 0. However, the point s = (m,0) — (m+1,n') € R_ for n’ > 0, contradicting our assumption
that P is antimonotone. Therefore, the point (m + 1,n) = (m + 1,0) belongs to the support of P.

(Il

Lemma 7. Assume the distribution P is antimonotonic and satisfies Assumption 1. If (m,n) is in the
support of P, then at least one of the points (m — 1,n),(m —1,n+ 1), (m,n + 1) is also in the support
of P. In addition, (m,n + 1) and (m — 1,n) cannot both be in the support of P.

The proof of Lemma 7 is similar to that of Lemma 6 and is omitted.

Remark 17. Note that in the case (m,n) = (0,n), the points (m —1,n) = (=1,n) and (m—1,n+1) =
(=1,n + 1) are not in the domain of P and thus cannot be in its support. However, in this case, the
point (m,n + 1) = (0,n + 1) is always in the support of P. Hence, the conclusion of Lemma 7 remains

true.

Remark 18. Lemma 5 says that both (m,0) and (0,n) must belong to the support of the antimonotone
distribution P, supp(P). Lemmas 6 and 7 tell us that if (m,0) € supp(P) then (m + 1,0) € supp(P)
and that if (0,n) € supp(P) then (0,n + 1) € supp(P), respectively. If the marginal distributions Q)
and Q3 are finite, that is, there exists m’ and n' such that QE}I?/ =0 for allm"” > m' and Qgﬁ? =0
for all n” > n', then the points (m”,0) and (0,n”) for m” >m’ and n” > n’ cannot belong in supp(P)
in order for the marginal assumptions to be satisfied. However, note that the points (m',0) and (0,n’)

belong to the support of P.

We can now, in a manner similar to the comonotonic case, characterize the support of an antimono-

tonic distribution P.

Definition 19 (Subsequent and Antecedent Points). Given a point s; = (m,n) in the support of an
antimonotonic distribution P, the subsequent point in the support of P, s;y1, is defined to be one of the
points (m+ 1,n), (m,n — 1), (m + 1,n — 1) in the support of P with the smallest Euclidean distance to
s;. Similarly, the antecedent point s;—1 of s; is defined to be one of the points (m — 1,n),(m — 1,n +

1), (m,n + 1) in the support of P with the smallest Euclidean distance to s;.

Remark 19. As in the case of the comonotone distribution, both the subsequent point and the antecedent
point for an antimonotone distribution are well-defined. The proof of this is very similar to the proof

given for the comonotone case in Remark 12.

Definition 20 (S-path). Lemma 5 ensures that there is an integer n > 0 such the point (0,n) is in
the support of the antimonotonic distribution P. Let n' be the smallest integer such that (0,n') is in the
support of P. The S-path is a directed path of support points of P containing the support point (0,n').
Moreover, if s; is a point in the S-path, then the subsequent point, s;11, of s; is also a point in the
S-path. Similarly, if s; is a point in the S-path, then the antecedent point, s;_1, of s; is also a point in
the S-path.

Remark 20. Note that in the infinite-dimensional case, Ql(-j) >0 foralli=0,1,2,... and j € {1,2},
there is no first point on the S-path and we, therefore, cannot number the support points starting from

0. Note, however, that we can always re-number the support points.
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Lemma 8. Suppose that P is an antimonotone distribution and satisfies Assumption 1. There is no

point (m,n) belonging to the support of P that is not on the S-path.

PrOOF: The proof is by contradiction again. To that end, suppose that there is a point (m,n) in
the support of P that is not on the S-path. Using antecedent points, we can recursively construct a
unique path backwards from (m,n) as follows. The point sy = (m,n) is on this path and, if a point
s; is on the path, then the antecedent point, s;_; of s;, is also on the path (Lemma 7). Note that this
process specifies a unique path, since the antecedent point, s;_; of s; is unique (Definition 19).

There are two cases to consider:
1. The path starting from (m,n) eventually reaches a point (0,n") for some n” > 0,

2. The path starting from (m,n) never reaches a point (0,n”) for any n” > 0.

Case 1:  We can further break Case 1 into two subcases:
(la) n” < n/,
(Ib) n" > n/,

where n' is the smallest integer such that (0,n') is on the S-path (Lemma 5). Consider case (1la) first.
Since n” < n’, we can extend the path that we constructed backwards starting from (m,n) further
backwards. In doing so, note that the antecedent point of (0,n”) must be (0,n” + 1). Repeating
this observation, we see that the path starting from (m,n) must include the points (0,n”),(0,n"” +
1), (0,n” +2),... Hence, the path starting at (m,n) and proceeding backwards using antecedent points
at each step must eventually reach (0,n’). Therefore, the S-path and the path starting at (m,n) and
moving backwards using antecedent points at each step must have a point in common.

Next consider case (1b). Since n” > n’ and the S-path includes the points (0,7n'), (0,n’ 4+ 1), (0,n’ +
2), ..., the S-path must also include the point (0,n”) (Lemma 6). Again, we see that the S-path and the
path starting at (m,n) and moving backwards using antecedent points at each step must have a point
in common.

So, we have shown that in case (1), the S-path and the path starting at (m,n) and moving backwards
have a point in common. Call this common point (0,7). Now, if we start at (0,7) and construct a path
moving forwards using subsequent points, this path must include the path segment that we constructed
starting at (m,n) and moving backwards using antecedent points, since (m',n’) is the antecedent point
of (m”,n”) if and only if (m”,n") is the subsequent point of (m’,n’). Similarly, the path starting at
(0,7) moving forwards using subsequent points must be a segment of the S-path. However, this process
of constructing a path by moving forwards using subsequent points specifies a unique path, since each
subsequent point is unique. Hence, the path segment that we constructed starting at (m,n) and moving
backwards using antecedent points at each step must be a segment of the S-path. Therefore, (m,n) is
on the S-path, contradicting our original assumption that (m,n) is not on the S-path. Therefore, we
have shown in Case 1 that there is no point (m,n) belonging to the support of P that is not on the
S-path.

Case 2:  Each time we move backwards on the path starting at (m, n) using antecedent points at each

step, we must either
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(a) decrease the first coordinate by 1, leaving the second coordinate unchanged,
(b) leave the first coordinate unchanged, increase the second coordinate by 1,
(¢) decrease the first coordinate by 1 and increase the second coordinate by 1.

Note that we can execute (a) and (c¢) at most m-1 times, since, if we were to execute them m times we
would reach a point (0,n”) for some n” > n, which is not permitted in case (2). Therefore, if we take at
least max(m — 1+mn —n'+1,0) steps on the path starting from (m,n) and, proceeding backwards using
antecedent points at each step, we must reach a point (m”,n”) with 0 < m” < m and n” > n/, since our
assumption in case (2) is that all the points on this path have m” > 0. Now note that both (0,n') and
(m”,n'") are support points of P and that (m”,n"”) — (0,n") ¢ R_ contradicting our assumption that
P is an antimonotone distribution. Therefore, we have shown in Case 2 that there is no point (m,n)
belonging to the support of P that is not on the S-path.

([l

Figure 2.1: Support of a bivariate comonotone distribution (left) and a bivariate antimonotone distri-
bution (right).

Figure 2.1 provides an illustration of the support of a bivariate comonotonic distribution and a bivariate
antimonotonic distribution. The characterization of the properties of these supports are detailed in

Lemmas 1-8.

Remark 21. If P is an antimonotone distribution with finite-dimensional marginal distributions Q™)
and QP that have support {0,1,....imax} and {0,1, ..., jmax}, respectively, then (0, jmax) and (imax,0)
are always supports points of P. Moreover, we can take (0, jmax) to be the first point and (imax,0) to be
the last point of the S-path associated with P.

Remark 22. By Definition 19 and Lemma 8, a graph of the support points of an antimonotone distri-

bution is monotonically decreasing (but not necessarily strictly monotonically decreasing).

Remark 23 (Sparsity of Antimonotone Distributions). Antimonotone S-paths are directed paths that,
by Lemmas 5-8, are sparse. Fvery point on the antimonotone S-path (except the points (imax,0) and

(0, jmax) in the case of finite marginals) has an in-degree and out-degree of 1.
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More importantly, the properties of the support of a monotone distribution extend to their random

samples.

Lemma 9 (Monotonicity of the samples [74]). Consider a finite random sample Z = {Z,})_, of
independent two-dimensional vectors Z, = (X,(ll)7 Xn ) from a bivariate comonotone (antimonotone)
distribution P. Then, Z is a comonotone (antimonotone) set. Conversely, if a random sample of N
independent two-dimensional vectors, Z, is a comonotone (antimonotone) set for any integer N > 2,

then Z is a sample from a comonotone (antimonotone) distribution, almost surely.

ProoF: Consider a finite random sample, Z = {Z,})_,, of independent two-dimensional vectors
Ty = (Xfll), X,(LQ)) from a bivariate comonotone distribution P. Since P is a comonotone distribution,
the support of P is a comonotone set and any two elements s = (myg,ng) and s; = (my,n;) of the
support satisfy the property sy —s; € R4. Now note that there exists a permutation 7 ordering the first

component X of the sample Z in a monotonically increasing order

x @) 1) (1)
Xy = Xe) = = Xow
where the subscript w(n), forn = 1,..., N, denotes the reordering of the samples under the permutation

7. If the permutation 7, applied to the second coordinate X (?), reorders it such that it is also non-

decreasing, then we are done, since any two elements of the sample, Z; = (Xfrl(;c) Xf&)) and Z; =
(Xfrl(g) Xff&))7 satisfy the property that Z, — Z; € R4. Suppose, however, that there are some indices

1 < j such that XT(FZ(Z) > Xfrz(}). Then, the first coordinates of the sample corresponding to these indices
1)

must satisfy X(l(),) = X((.).
O _ x®

To see why we must have X (i) (j)» Suppose this were not the case. Then we must have

XT(rl(z) < XT(F(;), since we chose 7 so that Xfrl(z) < X(l()) In addition, since (X(l(z), X7(r2(2)) and ( WB), Xf(;))
occur in the sample, we must also have P M @ > 0 and P M @ > 0. Thus, (X(l(z),XT(rz(z)) and
Xy Xa(i) Xy Xa i

(X(l) x@ ) are in the support of P. However, (X (()),X@())) (X(l). X(z() ) ¢ Ry, contradicting

m(3)? " (4)
our assumption that P is comonotone. Therefore, as noted above, if X (() > X ((

1) _ (D)
Xr@y = Xa(s)-

) we must have

Consequently, we introduce a new permutation 7 such that

#k)y=m(k) if k#i and k#j.

Reordering (X((z) X(Q())) and (Xil(z),X(Q())) such that both coordinates are non-decreasing. This can
be repeated for a finite number of times to obtain a permutation 7 that reorders the second coordinate
to ensure that it is non-decreasing while preserving the monotonicity of the first coordinate. Therefore,
Z is a comonotone set since any two samples, Z,;) = (Xﬁz),ng)) and Z,(;) = (XS;.), Xﬁ;)), satisfy
Zr(i) ~ Zr() € By

We use proof by contradiction to prove the converse statement. To this end, we assume that the
support of the bivariate distribution is not comonotone. This implies that there exists two support
points (m,n) and (p,q) such that (m,n) — (p,q) ¢ R. Since these two support points are associated

with positive probabilities P, ,, > 0 and P, , > 0, there exists N sufficiently large such that 7, =



CHAPTER 2. EXTREME JOINT DISTRIBUTIONS 31

(Xlgl),XIEQ)) = (m,n) and Z; = (Xl(l),Xl(z)) = (p,q) is contained in an independent sampling of the
distribution, almost surely. Then, Z is not a comonotone set since Z, — Z; = (m,n) — (p,q) ¢ R+.

Similar arguments hold for the antimonotone case. O

2.2.2 Extreme Joint Distributions in two-dimensions

In the bivariate setting, there is a unique solution to the max (min) version of the extremal problem (2.3)
and that solution is a comonotonic (antimonotonic) distribution. As explained earlier, the max (min)
solution to problem (2.3) maximizes (minimizes) the correlation associated with the discrete distribution,
P, over all choices of P that satisfy the marginal equations (2.3b) and (2.3¢). We show in Section 2.4
that the results for bivariate distributions can be extended to multivariate distributions.

In this section, we show that solutions of the extremal problem (2.3) must be comonotone (antimono-
tone) in case of maximization (minimization). We introduce the semi-analytic equations that comprise
the EJD theorem and show that any joint probability distribution that is a solution to the optimization
problem (2.3) must be a comonotone or antimonotone distribution, respectively, in the maximization or
minimization versions of (2.3). We take a probabilistic approach to proving the EJD theorem. Finally,

, 64].

we mention the equivalence of the EJD theorem to a famous result by Fréchet and Hoeffding |

Lemma 10. Suppose that the distribution P solves the optimization problem (2.3) for the case where

extremize denotes max, then P is comonotone.

PRrROOF: We prove this result by contradiction. To that end, suppose that P solves the optimization
problem (2.3) for the case where extremize denotes max but P is not comonotone. Since P is not
comonotone, there must exist a pair of points (i1, j1) and (i2, j2) belonging to the support of P for which

(i1,41) — (i2, j2) ¢ Ry, whence (i1 — i2)(j1 — j2) < 0. So, we must have either
(a) i1 > iy and j; < ja, Or
(b) i1 < io and J1 > Jo.

In the proof below, we assume iy > io and j; < jo. The proof for i; < is and j; > jo is similar;
therefore, for the sake of brevity, we omit it. Hence, assuming i; > i and j; < j2, we can take io =@
and i1 = is + (i1 — 92) = i +m, where i = i3 > 0 and m = i; — i > 1. Similarly, we can take j; = j
and jo = j1 + (jo —j1) = j + n, where j = j3 > 0 and n = jo — j; > 1. Hence, we have a pair of
points (i1,71) = (i +m, j) and (i2, j2) = (i,7 + n) in the support of P with ¢, > 0 and m,n > 1. Since
(¢ +m,j) and (4, j + n) are in the support of P, Piip, ; > 0 and P; j1,, > 0.

Let t = min(PHm’j, P; j1+n) and note that ¢t > 0. Now consider P such that

Pijin = Pijn —t,
Pj=Pij+t,
Piym,j+n = Pitm j+n + 1,

Piym,j = Pitmj —t,

and If’” = P, ; for all other points where ¢,7 > 0. Note that Pi,j > 0 for all 7,7 = 0,1,2,... and



CHAPTER 2. EXTREME JOINT DISTRIBUTIONS 32

SR =% 325 Pij = 1. Therefore, P is a probability distribution. Moreover,

i J
h(P) =Y ijP;;
]

= ijPj—t-i(j4+n)+teijtt-(i+m)(+n)—t-ji+m)
]
j

= h(P) + tmn,

thereby contradicting the maximality of P since tmn > 0. Therefore, if P solves the optimization

problem (2.3) for the case where extremize denotes max, then P must be comonotone. O

Lemma 11. Suppose that a distribution P solves the optimization problem (2.3) for the case where

extremize denotes min, then P is antimonotone.
The proof is similar to Lemma 10 and is omitted.

Theorem 1 (EJD Theorem in two-dimensions [74]). There exists a unique bivariate discrete distribution
PO that satisfies Assumption 1 and solves the problem (2.3) in the mazimization case and it satisfies

A1 . 1 2 1 2 .

Py = min(F", ) - max(F, B2 4,5 =0,1,2,..., (2.4)
where [x]T = max(z,0) and F*) denotes the marginal cdf corresponding to Q®), with Fﬁkl) =0, for
ke {1,2}.

There exists a unique bivariate discrete distribution P®?) that solves the problem (2.3) in the mini-

mization case and it satisfies
PE = min(F", F{?)) — max(F, F)T i,j=0,1,2,..., (2.5)

where F;z) =1- F]@) and Fg) = 1.

PROOF: Recall that, by Remark 6, a solution to (2.3) exists. Lemmas 12 and 13 below derive
equations (2.4) and (2.5) from which uniqueness also follows. Thus, Theorem 1 follows immediately

from Lemmas 12 and 13 below. O

The semi-analytic equations (2.4) and (2.5) take on a positive value only for points (4,j) belonging
to the support of p(k),k € {1,2}; they take the value 0 otherwise. Thus, the EJD theorem provides
a method for checking whether a point (7,j) in the domain of an extreme measure (extreme joint
distribution) pk) belongs to its support. However, this is an inefficient use of Theorem 1 that is
impractical in higher dimensions (d > 3) where the number of points to check increases exponentially
with d.

Remark 24. Note the generality of Theorem 1: we only assumed, from Assumption 1, that the marginal
distributions have finite variance and satisfy ng) >0 fori=0,1,2,... and k € {1,2}

Our approach to the proof of the EJD theorem is a probabilistic argument based on Borel’s Law

of Large Numbers (LLN) [10]. The probabilistic approach also forms the basis for the extension of the
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EJD theorem to the general d-dimensional setting (Section 2.4). For the two-dimensional case that
we consider in this subsection, consider a sample {(X,(LU,X (2)) , from the extreme joint distribu-
tion P maximizing the correlation coefficient. Since PO g g comonotone distribution, the samples
{ (X#),X,?)) N_, form a comonotonic set (Lemma 9) and, therefore, there exists a permutation 7 or-
dering the samples such that both coordinates Xfll) = )A(frl()) and X( ) = (2) for n=12...,N are
monotonically increasing. As N — oco we obtain two sequences of increasing length,
Ny (0) Ny (@) Ny (2) Ny (k)
1) —N— —— — —
xM:0,0,...,0, 1,1,...,1, 2,2,...,2,.. . k... K, ... (2.6)
X@.0,...,0,1,...,1,2,....,2, ..k kKK,
——— —— N — —_———

Ny2)(0) Ny2)(1) Ny(2)(2) Ny (2 (k)

where Ny (k) is the number of times the value k occurs in the sequence {X( )} _, and Nx@ (k) is

the number of times the value k occurs in the sequence {Xq(L By Borel’s LLN,

n=1"
i Nxo (k) O 1 !
i —= =Q, =0,1,2,... almost surely (2.7)
. Nxe (k) )
]\}gnoo N =Q, k=0,1,2,... almost surely.
Denote
My (i ZNX(U i=0,1,2,... and Myx(j ZNx(Q) 7=0,1,2,... (2.8)

and let Mxx) (—=1) =0 for k € {1,2}.
Let us define the cdfs Fi(l) =P(X™ < i) and Fj(2) = P(X® < j) corresponding to the marginal
distributions Q") and Q®), respectively, satisfying

FU =Y b, B - ZQZ ij=01,2,.... (2.9)

In addition, set FE’? =0 for k € {1,2}. The following two lemmas prove (2.4) and (2.5).

Lemma 12 ([71]). Let N;; denote the number of times the pair of numbers (i,j) occurs in the sequence
{(Xél),X,(Lz))}ﬁf:l. The limits

. N

PY = lim =Y (2.10)

exist almost surely for all i,7 =0,1,2..., as N = co. Moreover, P satzsﬁes (2.4).

Remark 25. Note that the while the limit (2.10) exists almost surely, If’z(j) satisfies (2.4) without the

almost surely qualifier, as is explained in the proof below.

PRrOOF: The first part of the Lemma follows immediately from Borel’s Law of Large Num-
bers. Hence, all that remains is to show that ]51(? satisfies (2.4). To that end, consider a sample
{(X,S”,X,(LZ))}T]Y:l from the extreme joint distribution P(*) depicted in (2.6). We first show below that
N;j satisfies

Nij = [min(Mya) (i), My () — max(Mya) (i — 1), My (5 — 1)) (2.11)
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where 7 := max(0, z).

To prove that (2.11) holds, we consider two cases:

(1) (4,4) does not occur in the sequence {(X,(LD,XT(?)) N |, and

(2) (i,4) does occur in the sequence {(X,(Ll), X,(LQ)) N
To show that (2.11) holds in Case (1), we further divide Case (1) into three subcases:

(1a) 4 does not occur in the sequence {Xr(ll)}ﬁ[:l,

1b) j does not occur in the sequence X,(LQ) N and
n=1

(1c¢) 4 occurs in the sequence {X,(Ll)}fv\,]:1 and j occurs in the sequence {XT(?)}TIYZD but the pair (i, j) does
N

not occur in the sequence {(X,(LU,XQ)) e
Consider Case (la) first. In this case, since i does not occur in the sequence {Xr(ll)}ivzl, the pair
(i,7) cannot occur in the sequence {(X,gl)7 XfLQ))},]Ll. Therefore, N;; = 0. So, we need to show that the
right side of (2.11) is 0 too. To this end, note that, since ¢ does not occur in the sequence {Xﬁl)}ﬁ[:l,
we must have Ny (i) = 0. Hence, from (2.8), Mx) (i — 1) = Mx ) (i). Therefore,

min(Mx o (i), Mxe (7)) — max(Mx o (i — 1), Mxe (j — 1)) < Mxw (i) — Mxw (i —1) =0,

whence
[min(My (i), Mxe (7)) — max(Mxa (i — 1), Mxe (j — 1)] T = 0.

Hence, we have shown that (2.11) holds in Case (1a).

The proof that (2.11) holds in Case (1b) is very similar to the proof that (2.11) holds in Case (1a).
So, for brevity, we omit it.
Now consider Case (1c). Since the pair (4, j) does not occur in the sequence {(X,Sl),X,(f)) N, we

again have that NV;; = 0. So, we need to show that the right side of (2.11) is 0 in Case (1c) too.

However, in Case (1c), ¢ does occur in the sequence {X,(LI)}Q’:l. Moreover, since we ordered the X"
from smallest to largest, the XV that are equal to ¢ occur consecutively in the sequence {Xﬁl)}ﬁzl.

Therefore, there exist nl(jgv and nflli;h such that X,(ll) = ¢ if and only if n satisfies nl(;gv <n< nl(lli;h.

Similarly, since j does occur in the sequence {X,(f)};v:l and the X are also ordered from smallest to

largest, there exist nl(zv)v and ng;h such that X,(Lz) = j if and only if n satisfies nl(f‘zv <n< nffi;h. However,

in Case (1c), the pair (4, j) does not occur in the sequence {(Xf«bl)7 Xﬁ?)},fy:l. Therefore, it must be that

either

(lcar) all the Xfll) = ¢ occur before any of the X,(LQ) =7, or

(1cB) all the Xff) = j occur before any of the X,(zl) = 1.

In subcase (lca), note that, since all the X,(LU = i occur before any of the Xr(bz) = 7, we must have that

”Si;;h < nl(gv)v Similarly, in subcase (1c¢8), we must have ngéh < nl(;‘l Now note that, from (2.6) and
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(2.8), it follows that

(2.12)

So, in subcase (1ca), it follows from nflli;h < nl(gv)v that My (i) < Mx@ (j —1) + 1, whence My (i) <
Mx @ (j — 1). Therefore,

min(Mxa) (i), Mx @ (§)) —max(Mxa (i — 1), Mx@ (j —1)) < Mxa (i) = Mxe (j —1) <0,

whence
[min(My (i), Mxe (7)) — max(Mxa (i — 1), Mxe (5 — 1)] T = 0.

That is, we have shown that, in subcase (lca), the right side of (2.11) is 0 as required. Similarly, in
subcase (1cf), it follows from n}(féh < nl(;‘?v that Mx@) (j) < Mxm (i — 1) + 1, whence Mx@ (j) <
Mx @) (i — 1). Therefore,

min(Mx o (i), Mxe (7)) — max(Mxa (i — 1), Mxe (j — 1)) < Mxe (§) — Mxm(i—1) <0,

whence
[min(MXu)(i), Mx 2 (j)) —max(Mxa (i — 1), Mxe (j — 1))]+ =0.

That is, we have shown that, in subcase (1c¢8), the right side of (2.11) is 0 as required. Hence, we have
completed the proof that (2.11) holds in Case (1c).

Now consider Case (2): (4,7) does occur in the sequence {(szl),Xr(LQ)) N

n=1"
established in Case (1c) above to show that (2.11) holds in Case (2) too. To this end, note that, if

(X511)7X7(12)) = (4,7), then we must have X7(11) = 4, whence n(Y <n< nflli)h. Moreover, for the same

low
n, we also have x? = 7, whence nl(g‘l <n< n? Therefore, (Xr(Ll),Xle)) = (i,7) if and only if

high*
n € [nl(;‘zv,nfllléh} N [nl(f‘l,,ngéh] Moreover, since there is at least one n for which (X", X)) = (i, ),

1 2 2
[ o] 0 14 ] # 0.

low?

We use the notation

lowr? 1(33v < n}(ﬁ;h, since otherwise we would have nl(iv)v < nflli;h <
) < n? | whence [n(l) nt) In [n(2) n?) | = 0, contradicting o It above that [n'") n{) 1
w — "high» low? "high low> Thighl = ¥» g our result above tha [nlowv”high]

[nl(f‘?v, ngéh] # (). Therefore, in this subcase, we must have either

If nl(;w < n(Q) then we must have n

(2
N

(2a) niy), < nio, < nifhy <nflor

1 2 1 2
(2b) njg) < nioh < nib < ni

On the other hand, if nl(Q) <nM

o <y, then a similar argument shows that we must have either

(20) mid) < nigl < iy, < miy,, or

2 1 2 1
(2d) nl(()\?v < nl(o\zv < nﬁli;h < nfli;h'

Consider Case (2a) first. Since

(1) (2) (2) (1)
Mow = Mow = Mhigh <= Mhighs



CHAPTER 2. EXTREME JOINT DISTRIBUTIONS 36

it follows that
n @ 2) (2 2) (2
[nl(ov)va ngi;h} N [nl(ox?v’ nf}ig);h] = [nl(ov)va nﬁi;h]'
Hence, the number of values of n for which (Xél), X,(lz)) = (i,7) is

Nij = ng;h —njo +1.

On the other hand, it follows in this case from (2.12) that the right side of (2.11) is

[min(Mya) (i), My () — max(Mya (i = 1), My (5 — 1)] "

. 1 2 1 2 +
= [mln(ngiéh, ngi;h) - max(nl(ov)v -1 ”l(ov)v —1)]
2 2 +
= [nign — (mioe = 1)]

= i~ w1

Therefore, (2.11) holds in this case.

A similar argument shows that, in Cases (2b)—(2d), (2.11) also holds. Therefore, we have shown that
(2.11) holds in all cases.

To see that P; ; satisfies (2.4), divide both sides of (2.11) by N to get

= < [min(Moccw (8), Mo (7)) — max(Mya i — 1), My (G~ 1))
+
= H,(min(qu)(i% Mx @ (j)) —max(Mx o (i — 1), Mxe (j — 1)))} (2.13)
_ [min (Mxm(i) My (j)> S (Mxm(i —1) My (- 1)>]+
N ’ N N ’ N '

Now note that

im almost surely for i =0,1,2,...
N—o0
My (j) (2.14)
x@(J (2) .
1\}1_>OO N = F} almost surely for j =0,1,2,... .

Therefore, taking limits in (2.13), using (2.10) and (2.14) and noting that max, min and []* are contin-

uous functions, we get

- . Ny
B = Z\}E)noo W
. . Mxa (i) Mxe(5) My (i—1) Mxe(G—1)\]"
= [mm( N ' N ax N N
[ Mxo() . Mxe () . Myw(—1) . Myo(G-1\]"
- {mm <J\}E>noo N am TN max | lim/ N oA N

+
= {min(Fi(1)7Fg'(2)) - maX(Fi(i)lvFj(z)l)} ’

(2.15)

almost surely.

Thus, we have shown that 15” satisfies (2.4) almost surely. Taking intersections of the sets of
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probability-one events on which (2.10) and (2.15) holds gives a set of full-measure for which both limits
(2.10) and (2.15) coincide. Since both the right side of (2.10) and the right side of (2.15) are constants
(independent of w), equality on a set of measure one implies the equality of the constants themselves.
This implies that the deterministic identity (2.4) holds for all (7, ) and we can drop the “almost sure”

qualifier. O

N

1 from the extreme

The case of minimal correlations is similar. Consider a sample {(X,(Ll), X}(Lz))
joint distribution P® minimizing the correlation coefficient. Since P®@) is an antimonotone distribution,
the samples {(X,S”, Xf))},fy:l also form an antimonotone set (Lemmas 9) and therefore there exists a
permutation 7 ordering the samples such that the first coordinate is monotonically increasing,

X1 <Xy << Xy where XV =Xx0)

n n(n)

and the second coordinate is monotonically decreasing,

X, >X,>---> Xy where X2 - x®

m(n)’
Taking N — oo, we obtain two sequences
Ny Nym(@D) Ny () Ny (k)
(1) —N— —— ——— —
XY :0,0,...,0, 1,1,...,1, 2)2,...,2,.. .k, k... k,... (2.16)
X® . kkk, koo k=1, k—1,...... ,0,...,0,0....
———
N (2) (k) Ny (2)(k=1) N, (2)(0)

Lemma 13 ([71]). Let N;; denote the number of times the pair of numbers (i,j) occurs in the sequence
(D, XN, The limits

n=1-

. N
P® = lim =Y (2.17)

exist almost surely for all i,7 =0,1,2..., as N — co. Moreover, [3(3,) satisfies (2.5).

l,

Remark 26. Note that the while the limit (2.17) exists almost surely, Pl(i) satisfies (2.5) without the

almost surely qualifier, as explained in the proof of (2.4) in Lemma 12.

PRrROOF: The proof is similar to that of Lemma 12 and is omitted for brevity. O

2.2.3 Equivalence to the Fréchet-Hoeffding Theorem

In the discrete case, the Fréchet-Hoeffding theorem can be formulated as follows. Consider the space
I(QW, Q®) of discrete bivariate distributions that satisfy the marginal equations (2.3b) and (2.3c),
where QM) and Q) are the marginal distributions in (2.3b) and (2.3c), respectively.

Theorem 2 (Fréchet [19], Hoeffding [64]). The bivariate cdf Hi(’lj) =P(XW <4, X? < j) mazimizing
the correlation coefficient of X and X @ is

HY =min(@Q”, Q)  ij=o0,12.... (2.18)
Similarly, the bivariate cdf HZ(ZJ) mianimizing the correlation coefficient of XV and X3 is

(2 _ &Y 2 C
H;; = max(0, Q; +Q; -1) ,j=0,1,2,.... (2.19)
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The EJD theorem in two-dimensions (Theorem 1) was shown to be equivalent to the Fréchet-
Hoeffding Theorem in Proposition 9.4 on page 216 of [74]. While the Fréchet-Hoeffding theorem is
a two-dimensional result and does not appear to extend easily to the general d-dimensional setting, our

EJD theorem, being equivalent in two-dimensions to Fréchet-Hoeffding, does.
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2.3 The EJD Algorithm in two-dimensions

While the Extreme Joint Distribution (EJD) theorem (Theorem 1) provides semi-analytical forms—
Equations (2.4) and (2.5)—to compute the probabilities of the extreme measure, P(), naive application
of this formula to compute the supports of PU) is inefficient in the two-dimensional setting and compu-
tationally prohibitive in the general d-dimensional setting (Section 2.5).

An alternative approach to solving the optimization problem (2.3) is the EJD algorithm® listed on
page 45, introduced in [74] for the two-dimensional case, an efficient algorithm that simultaneously
computes each point belonging to the support of the extreme measure and its corresponding probability.
The key realization is that, while it is difficult to construct a joint probability distribution such that the
marginal distributions are satisfied, it is much easier to construct a joint cumulative distribution function
that satisfies the marginal cumulative distribution functions. Moreover, Lemmas 10 and 11 show that
any solution to the optimization problem (2.3) must be a comonotone or antimonotone distribution.
Hence, the main idea of the algorithm is to exploit our knowledge of the properties of the supports of
comonotone and antimonotone distributions and the fact that any solution PU) to (2.3) must satisfy the
marginal constraints (2.3b) and (2.3c).

This is accomplished by exploiting our knowledge of the key properties of the S-path that allows us
to efficiently compute the S-path and hence the support of PU ), j =1,2. The marginal cdfs F(") and
F® play a large role in the determination of the probability If’s(lj ) corresponding to the I*! point of the
S-path. The set Il = IIxa) V Il x ) consisting of the unique ordered values of the marginal cdfs FO
and F() allows us to determine 155(,3 ) in a manner consistent with (2.4) in the comonotone case and (2.5)
in the antimonotone cases. Specifically, the starting point of the S-path is given by Lemma 1 in the
comonotone case and by Remark 21 in the antimonotone case. Then, the candidate subsequent points
are given by Lemma 2 and Lemma 6 in the comonotone and antimonotone cases, respectively. As the
S-path is determined, this also allows us to determine the relative ordering of the values of F(!) and
F® in T, which, in turn, allows us to compute P,

In this section we provide a detailed exposition of the intuition and the mechanics of the EJD
algorithm in both the comonotone and antimonotone cases. We restrict our discussion of the algorithm
to finite discrete probability distributions. Although there are many ways to truncate an infinite discrete
distribution, we do so as follows. Given an infinite discrete probability distribution @ such that @; > 0 for
1=0,1,2,..., we denote by Q a finite approximation of Q supported on the set of integers {0, 1, ..., imax}
such that

0, = Qi - 1=0,1,... imaz — 1 (2.20)

i N
Note that it is also possible to obtain discretized approximations of continuous probability distributions
(see, for example, [15] and [31]). While it is not necessary to truncate probability distributions so that
they are finite, we do so for practical purposes. We briefly sketch in Section 2.6 how the EJD algorithm
can be modified to operate directly (i.e., without truncation) on infinite discrete probability distributions.

Therefore, we make the following assumption for the rest of this section:
Assumption 2. The distribution P has marginals QM) and QP discrete distributions with finite
support and finite variance, satisfying the equations (2.3b) and (2.3c), Ql(»l) >0 fori=0,1,...,%max
and Q;Q) >0 forj=0,1,..., jmax-

6An open source C++ implementation is available at [16].
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Tt is also useful to expand the equations (2.9) for the cdfs F) and F® associated with probability
distributions Q") and Q®), respectively, for the marginal constraints (2.3b) and (2.3c) as follows

7 Jmax 7
DY b= QY =FY, =01, imax, (2.21)
=0 j=0 =0
J  imax J
S Pu=Y QP =F? =01, jmx (2.22)
=0 =0 =0

Let us denote by s¢ the 15° point on the S-path associated with P for j either 1 or 2. For finite-
dimensional marginal distributions Q") and Q®, denote by imax and jmax the greatest integers such
that Qz(l)ax > 0 and an)ax > 0. Let sop = (0,0) in the comonotone case (Lemma 1) and s = (0, jimax) in
the antimonotone case (Lemma 5 and Remark 21), respectively, be the 15¢ point on the S-path and if
s;_1 for 1 =1,2,..., is the I*® point on the S-path, then the subsequent point, s;, to s;_; is the (I+1)t
point on the S-path. Finally, let I, denote the final iteration of Algorithm 1.

Remark 27 (Terminal points of the S-path). In the case of finite marginal distributions Q") and
Q@ that have support {0,1,. .. imax} and {0,1,. .., jmax}, respectively, the point s, corresponding to
iteration lyax of Algorithm 1 is the terminal point on the S-path for P and takes the value

(8(1) 75(2) ) = (imaxmjmax) (223)

lmax’ “lmax
in the comonotone case (Remark 13) and the terminal point s, takes the value

R

Imax

(8(1)

Imax ) = (imaXv 0) (2.24)

)

in the antimonotone case (Remark 21) in order for the marginal constraints (2.3b) and (2.3c) to be
satisfied.

We show the correctness of Algorithm 1 through proof by induction in the comonotone case. For
the antimonotone case, we show that the preprocessing of one of the input marginal distributions and
postprocessing of the resultant S-path enables us to transform the problem into a comonotone problem,

thus enabling reuse of much of Algorithm 1.

2.3.1 The Comonotone Case

Let Iy = {Fél)7 Fl(l)7 ol Fz(nlix} and Iy@ = {FO(Q), F1(2)7 ... ,Fj(iix} denote the ordered sets of the
cdfs of the marginal distributions QY and Q(®) defined in (2.9). Note that the values of the cdfs partition

the unit interval and are strictly increasing

0=FY <RV <FY <. <FY =1 (2.25)
0:F£21><F0(2)<F1(2)<-~-<F-(2) =1. .

Fmax
This follows immediately from (2.9), Assumption 2, the artificial values FEll) = Fg) = 0 and the finiteness
of the marginal probability distributions. Let us also define a joint partition of the unit interval as follows.

Definition 21 (Joint partition of the unit interval). Let Iy = Iy V I x@) = {20, 21,...} denote a

partition of the unit interval where the points z; are the unique ordered values of the union of the sets
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Iy and Mx@. The point z; is the (i + 1)%° smallest value in 1. That is, 2o s the smallest element
in Iz, 21 is the second smallest element in Iz, zo is the third smallest element in 11z, etc. Moreover,

we define z_1 = 0.

Remark 28. Note that there cannot be duplicates in Iz, that is z; # z;41 for all i, since the joint

partition is taken from the unique values of the union of the sets lxy and Iy (2.

(1) (1) (1) (1) F,(l)
HX<1) 0 FO Fl F2 F lxn;x
(2)
IO Pl F? B Y. N F
My 41
Y Yy Y Yy Y Yy Y 2 Y
zZ_ Z z1 2 V4 z 2 z V4 3. max
Oyo Ve o 1 0 21 22 3 4 5 k+2 Zk+3 o
0

Figure 2.2: Partitions of the unit interval in the comonotone case.

Figure 2.2 illustrates the fact that the joint partition IIz = Iy VIIx@) = {20, 21, ... } is constructed
by taking the unique ordered values of the union of the sets IIxa) and Iy ). The arrows in the figure
represent the partitions of unity corresponding to each marginal distribution. That the two arrows Il y )
and IIy(2) are oriented in the same direction indicates the comonotone relationship between the marginal
distributions.

The main result of this section is the following theorem which establishes the correctness of Algo-

rithm 1 in the comonotone case. The proof can be found in Appendix A.

Theorem 3. The probability ]5((11)> @ computed by Algorithm 1 is correct in the sense that it agrees with
ERh
(2.4).

Remark 29 (Staircase-like Property of the S-path in the Comonotone Case). Comonotone S-paths are
sparse (see Remark 15). That the comonotone S-path determined by Algorithm 1 exhibits a staircase-like
property can be seen from Lines 8-17 of Algorithm 1, where given the current point s; = (sl(l),sl(z)) of
the S-path, determines the subsequent point s;+1 which, by Definition 17, must be one of (sl(l) +1, 31(2)),

(sl(l), sl(z) +1) or (sl(l) +1, sl(Z) + 1) with the smallest Euclidean distance.
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2.3.2 The Antimonotone Case
Algorithm 1 on page 45 in the antimonotone case only differs from the comonotone case in two places:

1. The construction of the input marginal cdf corresponding to Q?) on Line 1 of Algorithm 1 which

calls Algorithm 3 on page 46.

2. Postprocessing” of the second coordinate of the S-path on Line 20 of Algorithm 1 which calls
Algorithm 2 on page 45.

The main steps of Algorithm 1 (Lines 2-18) remain the same. We begin by first describing the prepro-

cessing and postprocessing steps.

The preprocessing of Q(?) is done in Lines 3-5 of Algorithm 3 on page 46 which is called by Line 1
of Algorithm 1. Algorithm 3 returns the vectors [Fo(l), ce Fl(nlzx] and [FéQ), ce Fj(jlx] used in the rest

of Algorithm 1. In the antimonotone case of Algorithm 1, the if statement in Line 2 of Algorithm 3

evaluates to true. Then, Lines 3-5 of Algorithm 3 are executed with input vector

Q(2 [QO ’ 1 a R jS)dx] (226)
and output vector
% (2)
Q = [Q§il)ax7 Q;i])ax 1o Q(()Z)] (227)
Algorithm 3 then takes a cumulative sum of the vector Q @ in Line 7 to obtain
= (2)
=7 QP +Q? QP QP QP ] .

=[P, B, FP, . F(” ).

Jmax

Note that the marginal cdf corresponding to Q) is constructed normally. That is, given the vector

QW =1Q",....Q" |

Tmax
as input, Line 6 of Algorithm 3 constructs

FO = [0, 0M 4 ... 1]
_ [0, O, ED )

Jmax

which is the cdf corresponding to Q™). (See (2.9).)

The postprocessing of the S-path by reversing the second coordinate of s; is carried out by Algorithm 2
on page 45. For each s;, Algorithm 2 constructs 5; by the following mapping

(
l
(2.29)
= (5", jmax — s for 1=0,1,. ., lnax-

We use Algorithm 1 to solve (2.3) in the minimization case with marginals Q") and Q®, defined

above in (2.27), instead of Q(®). This returns a solution consisting of the probabilities PO with corre-

7The postprocessing step is missing in the description of the EJD algorithm in [17]
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sponding S-path s; for I =0,1,...,lhax. (Recall that the S-path s; is the support of ]5(1).) We denote
by ]5];2) the probabilities obtained from Algorithm 1 in the maximization case when using marginals
QW and Q@ where o is defined above in (2.28). The solution Pé‘l(g) is related to the solution

P®@ of (2.3) in the minimization case with marginals QM and Q@ as follows. The S-path of P®@ s
5 = (sl(l), Jmax — 552)) for | =0,1,...,lnhax, Where s; = (sl(l), 31(2)) for | =0,1,...,lnax is the S-path for

15;1(2) Moreover, all the non-zero values of P for [ =0,1,. .., Lnax are given by
PP =P o for 1=01 L (2.30)

Therefore, in this subsection we show that:

1. The probabilities If’lgg) computed by using ]?‘(2) defined in (2.28) in the comonotone case of Algo-

rithm 1 is consistent with (2.5). In particular, we show that (2.30) holds.

2. The S-path computed using the comonotone case of Algorithm 1 with the second components

transformed according to (2.29) in Algorithm 2 is the S-path corresponding to P®
We begin by proving the following Lemma from which (2.30) immediately follows.

Lemma 14. The probabilities ]5(1)‘ 5@ that solve (2.3) in the mazimization case using the marginal cdfs
i,J

FO and F® are related to the probabilities pe

w) that solve (2.3) in the minimization case using the

marginal cdfs FY and F3) by the equation

Pi(j?mx—j:Pi(;)lp(m for i=0,1,2,. . imax and j=0,1,2,. .. jmax- (2.31)

In particular, the point (i,j) is in the support of Plv(?g) if and only if the point (i, jmax — j) 1S in the
support of P,

PRrROOF: Recall from (2.5) that

PO = min(FY, F) ) - max(RY, F) ) (2:32)

4 Jmax —J ? 7 Jmax—j—1 =17 7 jmax—J
fori=0,1,2,...,%max, = 0,1,2,. .., jmax Where Fﬁl) =0for k=1,2,

#(2) _ 2)
F® =1-F) (2.33)

and F'Ezl) = 1. Similarly, recall from (2.4) and the fact that we use F(Q) instead of F(®) that

(1 . 1 (2 1 (2
P;]?‘ oo = min(F) F) —max(FL, F2)]T. (2.34)

Therefore, in order to show that (2.31) is true, we need only to show that

F" 2 F* 2 235

j( ) ](m )ax —Jj—1 ( ' )
and

F" 2 F 2 2.36

j(*)l j(m)ax J ( ’ )
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forall 7 =0,1, ..., jmax-
To this end, let us first show that (2.35) holds:
F® F®

]max_j_l - 1 ]xnax j—1
Jmax—j—1

=1- Y QY
=0

jmax .jmax 7j71

N @)
2. Q7= ) @
=0

=0

Jmax

= Y Q?

1=Jmax—J

_ 7).
The proof that (2.36) holds is similar to the proof above that (2.35) holds. O

Next, we show that the S-path 5; obtained from transforming the second coordinate of the S-path
s; computed by the comonotone case of Algorithm 1 according to (2.29) in Algorithm 2 is the correct
S-path that corresponds to pP@), (Recall that in the antimonotone case, s; is the S-path that corresponds
to P];l(g) )

Proposition 2. Forl =0,1,...,lhax, if 5§ = (sl(l), 81(2)) is the (I +1)% point on the S-path associated
with Pf(g), then 5 (Sl(l),jmax — 81(2)) is the (I 4+ 1) point on the S-path associated with P?).

The proof of Proposition 2 can be found in Appendix A.

Since we have proved in Appendix A that Algorithm 1 correctly computes the S-path s; for [ =
0,1,...,lnhax, associated with ]5(1), it follows immediately from Proposition 2 and Algorithms 2 and 3
that Algorithm 1 correctly computes the S-path §; for I = 0,1, ..., lax, associated with P® . To see that
Algorithm 1 also returns the correct probabilities Pg(lz ) for | = 0,1,...,lnax, associated with the S-path
5y for 1 = 0,1,...,lhax, note that Algorithm 1 computes the probabilities as Pl(j) for I =0,1,...,lhax
5(5)

and actually returns a vector of probabilities (Péj ), Py . Pl(njix) In the antimonotone case, these are

the probabilities

H(1 (1 (1 2 2
(PjoiF(Q) : Ps(1 |>F(2) S Ps(l ) ) = (B2, PP, P2 .
Therefore, Algorithm 1 also returns that correct probabilities P( ) for | = 0,1,...,lnax, associated with

the S-path 5; for 1 = 0,1, .., Lyax, for P®.

Remark 30 (Staircase-like Property of the S-path in the Antimonotone Case). Antimonotone S-paths
are sparse (see Remark 23). That the antimonotone S-path determined by Algorithm 1 exhibits a
staircase-like property can be seen from Lines 8-17 and Lines 19-20 of Algorithm 1, where, given the
current point s; = (sl(l) (2) ) of the S-path Algorithm 1 determines the subsequent point s;y+1, which,
by Definition 19, must be one of (sl +1 51(2)), (sl(l) l(2) 1) or (s, M4, 8(2) 1) with the smallest

Fuclidean distance.
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Algorithm 1 Extreme Joint Distribution Algorithm in two-dimensions

Require: [Q b ,lex]
Q,....Q%) |
j = 1 for maximization and j = 2 for minimization
Output: Extreme measure [Péj), ol I:’l(iix] and its corresponding support [sg, ..., Si,...]
(R ED LR ED
< CONSTRUCT_-MARGINAL_CDFs(] (()1), ces Qgi])ax] [Q[()Q), cee Qﬁ)ax] 7)
2: [+ 0
3: (1)<—0and30 0
4 20,y Bl PARTITION,UNITY([F(E”, . .,Fi(nllix], [FéQ), . .,Fj(jix])
5. P 2
6: while z; # 1 do
7 l+—1+1
8: if z;_1 == F(<11)) == F((QQ)) then
s, s,
9 s(l) = Sl(i)l +1
10: 352) = sﬁ)l +1
11: else if z;_1 == F:;l))l and z_1 # Fs(l(z.z))1 then
12: ( ) = sl(l)l +1
13: 81(2) SEIQ) 1)
14: else if 2,1 # o (1> and z;_1 == F((2> then
15: (1) = 88) 1
16: (2) Sl(z)l +1
17: gave the [-th support point s; = (sl(l), 51(2))
18: [:’()<—zl—zll
19: 1f j == 2then > Antimonotone Case
20: t [50, - - - Slyay] <~ REVERSE_SUPPORT([S0; - - -, Sipay])
21: return [Péj), e P(iix]’ (505« -+ Slpar)

Remark 31. The PARTITION_UNITY subroutine referenced in Line 4 of Algorithm 1, above, is listed in
Algorithm 8.

Remark 32. Since PARTITION_UNITY sorts the unique elements of the union of the marginal cdfs in
ascending order and Algorithm 1, in Lines 8-17, increments the coordinate of the support according to
the ordering of {z0,21,...,21,.,}, therefore, z; = mln{F((l), (?2))

Imax

Algorithm 2 Subroutine: Reverse Support

1: procedure REVERSE_SUPPORT([sq, - . -, Si,...])
2 for [ <+ 0,...,lmax do

3 ( ) — Sl(l)

4: L g1(2) < Jmax — 81(2)

5 return [So,...,5, . ]




CHAPTER 2. EXTREME JOINT DISTRIBUTIONS 46

Algorithm 3 Subroutine: Construct Marginal CDF's

1: procedure CONSTRUCT_MARGINAL_CDFs([QF",..., Q" 1,1Q8,...,Q'> 1,5)
2: if j == 2 then > Antimonotonic Case

5 b0+ L] < 18- Q)]

4: forz:O,...,jmaXdo

5: t Q(2 — tjmaxfl

6 (R FL) ] ecumsou(| f)”, Q) )

7: [Fo(z), . ,Fj(i)ax] <—CUMSUM([ . Qgiax])

8: | return [Fo(l), . Z(riix], [FO(Q), ... ](j)dx}

Remark 33. Algorithm 1 is very sensitive to rounding errors; implementations of Algorithm 1 in
floating-point arithmetic need to account for rounding-errors. For simplicity, we assume in this thesis

that all computations are carried out in exact arithmetic.
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2.4 Extreme Measures in d-dimensions

In this section, we extend the Extreme Joint Distribution (EJD) approach to the general d-dimensional
setting for d > 3. We consider random vectors (X WX (d)) on the positive quadrant of the d-
dimensional lattice, (i1, .. zd) € N¢, where each X®)_ for k € {1,...,d}, has the associated discrete
probability distribution QZ— , where ¢ = 0,1, ..., havmg finite variance supported on Njy. Note that Ny
is the set of non-negative integers and Ng is the d-dimensional integer lattice of non-negative integers. In
this section, the ng), for k€ {1,2,...,d} and i =0, 1,..., are the given marginal distributions, similar
to QZ(-I) and Q§-2) in Definition 14 (the two-dimensional case of Definition 22 below). We also denote
by 0¢ = (0,...,0) € R? the d-dimensional 0 vector. Note that we augment the notation in settings
where the dimensionality may be unclear. For example, P(?) refers to a general probability measure in
d-dimensions, PUA) refers to the §™ extreme measure in d-dimensions, and Q%) and F(%%) denote the
u*™ marginal distribution and marginal cdf in the d-dimensional case, respectively.

The following definition extends Definition 14 to d-dimensions. Note that j € {1,...,n} in Defini-
tion 22 below, where n = 2971 (see Lemma 15). For the two-dimensional case, j = 1 corresponds to
the max case and j = 2 corresponds to the min case of (2.3). For the general d-dimensional case, with
d > 3, each e,(j’d) for k € {1,...,d} and j € {1,...,n} is associated with a monotonicity structure that

describes the extremal dependency structure, as discussed in Subsection 2.4.1.

Definition 22 (Extreme measures in d-dimensions). For each j = {1,...,n}, the extreme measure
pl.d) having associated monotone structure e® is the solution to the following multi-objective infinite-

dimensional LP

extremize h(j’ji) (P@D) 1<u<ov<d (2.37a)
k=1,...,d
. d k ) ’
subject to Z Z li) St bt 1 yoensd Q( ) o0 (2.37b)
VETLy 1,=0 k e
PY >y (2.37¢)

11,0000 —
where ' . 4
max hgqui) (P (d)) if e(J,d) _ (]vd)

extremize hU:d (P (@) = _
’ min b, (P (@) if 9D £ D,

(2.38)

Iy ={r:1<r <dr#k} ng) >0, fori=0,1,2,... and k =1,2,...,d and ZinQl(,k) =1 for
k=1,...,d. Each objective function takes the form

RID(P @Dy = E[XxWx )] = Z Z iuiy P 1 <u<v<d (2.39)

Tuyly
10 =01,=0

where

(du,v d)
P\ ) = E E ( P o , (2.40)
wsto u—1:%ustut1s--3lv—1,%0,0041,---52d

JE€Lu,v» 1;=0

with Ly, , ={r:1<r<d,r#u,r#v}.

Remark 34. Analogous to Remark 5, Definition 22 is consistent with finite-dimensional Q%) , since Q¥)

can be simply extended to the infinite-dimensional case by setting ng) =0 fori= ZI(TQX +1, i,(r];)ax +2,....
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Remark 35. The multi-objective program (2.37) is, in fact, a multi-objective multi-marginal MKP, the
solutions of which determine extreme measures. Again, we mention the connection to mass transportation

for the sake of completeness; it is not a focus of this thesis.

Remark 36. There are m = d(d—1)/2 objective functions in (2.37a) where each hg;’{,i)(P (D) extremizes

the dependency between a pair of coordinates.

Analogous to the bivariate setting, extreme measures in the general setting are defined to be the
solutions of the (multi-objective) infinite-dimensional LP (2.37). Naturally, there are differences between
extreme measures in the general setting and extreme measures in the bivariate setting. The most
significant difference is the multi-objective nature of (2.37). For example, for each j € {1,2,...,n}, the
extreme measure PU9 gatisfies the m constrained optimization problems (2.37a). In general, solutions to
multi-objective problems lie on a Pareto frontier; it is typical that no unique solution exists that satisfies
all the constituent sub-problems [2]. Standard techniques in multi-objective optimization are unable
to compute a solution that can satisfy all m constrained optimization problems (2.37a). A surprising
property of the structure of the multi-objective problem (2.37) is that the Pareto frontier of solutions to
the multi-objective problem is actually a single point (solution). In other words, each extreme measure
PUD for je{1,2,...,d} actually extremizes h,(fvd) for each pair u, v satisfying 1 < u < v < d given the
constraints (2.37b) and (2.37c¢). We prove this in the course of showing the correctness of Algorithm 5.

Remark 37. We show in what follows that the m = d(d—1)/2 solutions to the two-dimensional LP (2.3)
are all embedded within the solution to the d-dimensional multi-objective LP (2.37). This is significant
since, in general, solutions to multi-objective optimization problems are not optimal solutions to all of the
constituent sub-problems of a multi-objective problem. Typically, solutions to multi-objective optimization
problems lie on a Pareto frontier (a d-dimensional curve) where different points of the frontier correspond

to different trade-offs between the optimality of the solution to each sub-problem.

Lemma 15. For any given set of marginal distributions QM) QP ... Q¥ associated with the opti-

mization problem (2.37), the number of extreme measures is n = 2971,

PrOOF: Let us prove this lemma for the case d > 3, since the case d = 2 is obvious. Recall that
the set of marginal distributions QW,Q®, ... Q@ corresponds to the d-dimensional random vector
(XM, ..., XD), For each two-dimensional projection (X X)) where u,v € {1,...,d} and u # v,
the corresponding joint distribution is either comonotone or antimonotone by the construction of the
optimization problem (2.37). Denote by d. the number of coordinates that are comonotone to X R

Then, the number of random variables antimonotone with X ) satisfies
de=d—1-d..

The total number of partitions of the number d — 1 in the additive form, d — 1 = d, + d,, is n = 2971,
Clearly, n does not depend on the choice of the first random variable. O
In what follows, it is necessary to project random vectors and their corresponding multivariate

distributions down to two-dimensions. We define bivariate projections as follows.

Definition 23 (Bivariate Projections). Let (mq,...,mq) be a d-dimensional vector and, for any u,v €
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{1,2,...,d} with u # v, define its bivariate projection:
Proju,v (mh o 7md) = (mua mv)~ (241)

Similarly, let e9%w?) denote the projection of the d-dimensional monotone structure e9® onto the ut™
and v** coordinates:

elddiusv) — Proj, , eldd) — (eg’d), ef,j’d)). (2.42)

Let P9 be a d-dimensional probability distribution. The projection of P(D to the u™ and v coordinates

is given by the marginalization of all components | where | # u, v, that is,

(d u v) (d)
Zuvl'u z : z : U1y fu—150usbudt 15 lo— 1,80 8u41,---58d (243)
€Ty, » 11=0

where L, , = {1 :1 <1 <d,l # u,l #v}. Similarly, define

(dy) ZZ (d o1y i1 id” (2.44)

leT, iy=

where T, = {l: 1 <1 <d,l #v}.

Remark 38. Note that (2.43) and (2.44) apply straightforwardly to PUdww) gng PUAR) - respectively.

(4,d) _ 7(Jj7d)

Moreover, PUdwv) g comonotone if ey and antimonotone otherwise.

2.4.1 Monotonicity Structures

In the two-dimensional case, the components of a bivariate distribution can only exhibit extreme positive
and extremal negative dependence in the form of extremal positive and negative correlations, C® and
C (2), respectively. Note that both C® and €@ are scalars. In the general d-dimensional case, each
component exhibits either extremal positive or extremal negative dependence relative to another compo-
nent, resulting in n = 2971 possible combinations of pairwise dependencies (Lemma 15). Consequently,
there are n extremal d X d correlation matrices, C’(j’d), for j =1,2,...,n. We introduce the notion of
monotonicity structures to describe the possible extremal dependencies between the components of a

random vector (X1 ... X (D),

Definition 24 (Monotonicity Structure). For j € {1,2,...,n}, the j'" d-dimensional monotonicity

structure €99 is a binary column vector
(4,d)
i = | (2.45)

G

describing the pairwise extremal dependency structure between the components of a random wvector
(XD X D), The element 6(]’ , for k€ {2,3,...,d}, of the vector €99, known as a monotonicity
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indicator, takes on binary values

L) _ 0, if XM and X are comonotone
Y=
1, if XM and X*®) are antimonotone .

By convention, we take egj’d) =0.

Figure 2.3 provides a graphical illustration of monotonicity structures. Note that the two monotonicity
structures describe the same extreme measure even though the arrows are pointing in different directions.
The important aspect here is the relative orientation of the arrows with respect to other arrows within

the same monotonicity structure.

X, 0 1 x® 01
X, 0o— 1  X®: 01
X @, g—— 1 X, 0—1

Figure 2.3: Monotonicity structures of extreme measures. The direction of the arrows
indicates the direction of monotonically increasing support.

Monotonicity Structures as Binary Numbers

Monotonicity structures are useful not only in describing the extremal dependence structure between
the components of a multivariate process, but they are also useful as inputs to the d-dimensional version
of the EJD theorem (Subsection 2.4.2) and algorithm (Section 2.5) in order to compute the correct k'
extreme measure. Thus, we require a method to easily generate monotone structures. Fortunately, they
admit a representation as binary numbers. This is best illustrated through an example. To that end,

suppose that d = 3, resulting in the following monotone structure:

(2.46)

o o O
= o O
o = O
= o= O

The 3 x 4 matrix in (2.46) indicates that there are 4 extreme measures (the number of columns), each of
dimension 3 (the number of rows). The first column corresponds to e(13) representing extreme positive
dependence between all marginals (comonotonicity). The remaining columns correspond to extreme
measures with two components exhibiting extreme negative dependence and one component exhibiting

extreme positive dependence. Moreover, note that for the j*" column in (2.46), where j € {1,2,3,4},

the top element corresponds to egj ’3), the second from the top element corresponds to eéj ’3), and the
bottom element corresponds to eéj 3)

We show that (2.46) is easy to construct. The key realization is that the extremal structure repre-
sented by each column of the monotonicity structure is just the index of the column in binary, using d
bits to represent the column indices, where the columns are numbered 0,1,...,d — 1, instead of being

numbered according to 1-indexing 1,2,...,d, and the most significant bit of the binary number is at the
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top of the column. We rewrite (2.46) below in order to elucidate the relationship between the index of

the column and its monotonicity structure

01 2 3
0000 (2.47)
0 011
01 01
Algorithm 4 Generation of monotonicity structures
Require: Dimension of the problem: d
Output: Monotonicity structure matrix: E = [e(l’d), . 7e(”’d)] € RIxn
1: n 201
2: for j=1,...,ndo
3: eld) BINARY_REPRESENTATION(j — 1,d) > returns the binary representation, using d bits, of

the integer j — 1 as an integer vector

elid) transpose(e(j’d)) > so we get column vectors with the most significant bit in the first row

>

5: return E = [e(l’d), . ,e(”’d)] > concatenate column vectors into a matriz

2.4.2 Extreme Joint Distributions in d-dimensions
Theorem 4 (EJD Theorem in d-dimensions). If problem (2.37) has a solution PUD | then the solution
must satisfy
PO = [min(F (i — ;0D L Falia — 75 ef)) (2.48)
—max(Fy (i + (" = D:ef™), ... Falia + (e = Dsef ™))

where [-]T = max(0,-) and, for k € {1,2,...,d}, F}, is defined as
_ ; r® 1 e(Jd =0
Fi(ig;ed™y =4 ™ / (2.49)
1-F® if e =

1k

forix =—1,0,1,... where Fikl) =0 and,l forixy=0,1,..., Fi(kk) denotes the it™ point of the marginal cdf
corresponding to Q®), assuming that eg]’d) = 0. Moreover, if the problem (2.37) has a solution pld)

then PG4 s unique.

Remark 39. While we need to assume the existence of a solution to (2.37) in the proof of Theorem 4
below—since the proof relies on sampling from PUD and the subsequent use of Borel’s Law of Large
Numbers to show convergence; see (2.54)—(2.58) —the correctness of Algorithm 5 proves that there is a
solution to (2.37). Therefore, the correctness of Algorithm 5 and Theorem 4 together imply that there is
a unique solution to the problem (2.37) and it satisfies (2.48).

PROOF: We begin by defining two sets of integers

Iy={j:1<j<d, j#k}
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and
Tha={j:1<j<d, j#k, j#Il}

Let us first show that, if d = 2, then (2.48) is equivalent to (2.4) in the case of comonotonicity
and to (2.5) in the case of antimonotonicity. To this end, note that, in the bivariate comonotone case,
the monotone structure is e? = (0,0) and thus Fl(i,e(ll’g)) = Fi(l) and Fg(i,e(;’g)) = Fl@) for all

i > 0. In the antimonotone case, the monotone structure is e(>2 = (0,1) and thus F} (i, e{*?) = FV

but FQ(i,@éQ;Q)) =1- Fl-(Q) for all ¢ > 0. Therefore, (2.48) is equivalent to (2.4) and (2.5) in the

two-dimensional case. Consequently, Theorem 1 shows that Theorem 4 holds in the case d = 2.

Let us now consider the general case d > 3. There are two subsets of coordinates of (X1, ... X (@),

comonotone coordinates and antimonotone coordinates. Denote their indices by
Te={r:e0d =0} and ZT4={r:el?d =1} (2.50)

Assume that a solution PU4) to (2.37) exists and generate a sample of size N, {(Xr(bl), e ,X,Sd)) N,
from PU:® . An extension of Lemma 9 (see Remark 40) to the d-dimensional case shows that there
exists a permutation 7 ordering the samples such that the first coordinate and the other comonotone

coordinates are monotonically increasing

XV <xP <o <X where X =X for kelc (2.51)
and the antimonotone coordinates are monotonically decreasing
XM > x> > X§) where X®) = XU for ke Za (2.52)

Suppose that the indices 1 = k1 < ko < k3 < -+ < k¢ < d belong to Z¢ and the complimentary set of
indices is Z4 = {l1,12,...,la}. A permuted sample is illustrated in (2.53) below,

N1(0) N1(i—1) N1 (i) N1 (k)

—— ——f
X000, =1, i—1, G0,k kK

X®2)000,...,0,...0—1,...0—1, 4 ...,4, ...,
—— —_—— ——
NkQ(O) Nk2(i—1) N;Q(i)
(2.53)
XU =1, i —1,...2,2,2,...2, ..,
N—_——
INO Ny, (i—1) N, (2)

where Nj(m) denotes the number of realizations of m in the sample of the k*" coordinate X (). If
k € Z¢, the first position, I kc(m), where the number m appears in the sorted sample of the random
variable X %) is

LE(m) =14 > Ni(i).

If k € T¢, the last position, E,C(m), where the number m appears in the sorted sample of the random
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variable X *) ig

By (m) = ZNk(Z)
i=0
As the sample size N — oo, we have
. Ne(m) — 5i.am)
ngnoo N = Py a.s.. (2.54)

Since PU-9) satisfies the constraints (2.37b), it follows from (2.44) that PY*™ = Q¥ . Therefore, for

kele,
L8 (m)

Jim =F%  as. (2.55)
and o
E
lim %:F},ﬁ) a.s.. (2.56)
— 00

In the case of the subset of antimonotone coordinates, | € 74, the first index, I, lA(m)7 where a number

m appears in the sorted sample of the r.v. X is

IA(m) =1+ N =Y _Ni), 1€
=0

The last position, EZA(m), where a number m appears in the sorted sample of the r.v. X® is

m—1
B (m)=N->_ N{i), l€Ia
=0
As N — oo, we have for | € T4
[A
im 20 R0 (2.57)
N—o0
and A
E
m 20 FV | as.. (2.58)
N—o0

Denote by my ({(X™),..., X)) = (i,...,iq)}) the number of samples that take the value (i1, ...,iq).

The empirical measure of my; is the number of elements in the set

(m: (XD =4p,..., XD :id)}:{ N (m:xP :ik}} ﬂ{ M {(m:x® :il}}. (2.59)

kelc ISy

Observe that the right side of (2.59) coincides with the intersection of the intervals and can be written

as

{ N G BE @O N 1 G0, BA - (2.60)

k€lc €T 4

Now note that (2.60) can be rewritten as follows. The right end of the intersection of the intervals is

R = min ( min (ES (ix)). min (i) (2.61)
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and the left end is

_ Co. Ayg;
£ = max ( max(5 ix), max(1* @) ). (2.62)
Now, let us define
m
= (2.63)

Using (2.61) and (2.62), we can rewrite (2.63) as

(R-L)*

NN({(X(1)7"'7X(d)):(ilawwid)}): N

Note that the length of the intersection of intervals is 0 in the case R < L. As N — oo, we obtain from
(2.55)—(2.58) that

lim un({(XD, ., X D) = (iy,...,ig)}) =

N—o0
[ min(Fy(i; — egj’d); egj’d)), oy Fylia — e&j’d); eff"d))) (2.64)
—max(Fy (i + (€7 —1);eP), L Faig + (5P = 1);e99)]T as..

Finally, note that

. ) . 50j.d

dim (XD, X D) = (6, da))) = PUD as.. (2.65)
Taking intersections of the sets of probability-one events on which (2.64) and (2.65) holds gives a set of
full-measure for which both limits (2.64) and (2.65) coincide. Since both the right side of (2.64) and the
right side of (2.65) are constants (independent of w), equality on a set of measure one implies the equality
of the constants themselves. This implies the deterministic identity (2.48) holds for all (i1, ...,i4) and

we can drop the “a.s.” qualifier.

Thus (2.48) is derived and the first part of the theorem is proved. Moreover, if the problem (2.37)
has a solution PU 4) | then, since we have shown above that PUAD must satisfy (2.48), which specifies an

analytical form for the probabilities, PO must be unique. O

Remark 40. As noted in the proof of Theorem 4 above, Lemma 9 can be extended in a straightforward
manner to the d-dimensional setting. That is, if {X,(,P, . ,X}(qf)}%:l is a sample of size M from P(j’d),

then we can construct a permutation © such that

XP <X << XW where XP = XU for kelc (2.66)
and

XM > x> > X)) where X =X for ke a. (2.67)
where Ze and La are defined in (2.50). We sketch a proof of this result below. To that end, let us begin by
applying Lemma 9 to the first two components of the d-dimensional comonotonic case, e® = 0,...,0),
resulting in Xl(k), e ,X](\f[) satisfying (2.66) for k = {1,2}. We can apply the arguments in Lemma 9

again to the coordinates k = 1,2,3. As noted for k = 2 in Lemma 9, this may result in a permutation 7
for which

x® > x® (2.68)

(m) w(m+1)
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for some m = {0,1,2,...,M — 1}. However, we can construct a new permutation 7 using the same
arguments as in Lemma 9 such that
(3) (3)
Xeom) < Xaiman (2.69)
form ={0,1,...,M — 1}. As a result, taking m = 7, we get that (2.66) is satisfied for k € {1,2,3}.
Note that we can repeat this argument iteratively for each coordinate k € {4,...,d}, ensuring that we
can find a permutation 7w for which
(k) (k)
Xaom) < Xa(men) (2.70)

fork={1,2,...,d} and m = {0,1,...,M — 1}. As a result, again taking m = T, we get that (2.66) is
satisfied for k € {1,2,...,d}. A similar argument holds for €99 where j = {2,3,... n}.
Moreover, this implies that, for each k,l € {1,2,...,n} with k #1, Xy(,lf) and Xy(,ll) are also correctly

ordered with respect to each other. That is,

(a) if e,(j’d) = (J d) then either both X®) and X satisfy (2.66) if ejd) = el(J D =0 or they both

satisfy (2.67) if e,(f] D l(j’d) =1, whence in either case they are comonotone, and

b) if e(j’d =+ e(j’d) then either an satisfies (2.66) and qui satisfies (2.67) if eV =0 and e =1
& 1
or Xy(n satisfies (2.67) and xU satisfies (2.66) if e Ud) — 1 and el(j’d) = 0, whence in either case

they are antimonotone.

Remark 41. Since we showed in Remark 40 that, for each j € {1,2,...,n}, the permutation 7™ not
only correctly orders the coordinates k = 2,3, ...,d with respect to the first coordinate, but also correctly
orders the coordinates with each other. Thus, zf one of the h(j’ instead of being maximized is minimized,
or vice versa, then there may be no solution to (2.37) that simultaneously solves all of the h(J’ for all

u and v satisfying 1 <u < v <d.

Remark 42 (Embedding of the 2D optimization problem in the multi-objective optimization problem).
For j € {1,2,...,n}, the d-dimensional multi-objective optimization problem (2.37) with corresponding
monotone structure, €99, consists of m = d(d — 1)/2 two-dimensional optimization problems of the

form (2.3) with the extremization determined by e¥%%?)  That is, the following two statements hold:

(1) For any u and v satisfying 1 < u < v < d, h(] ) (P (D) = h(Pw)) where the extremization of
hgfj) on the left side depends on €99, the h on the right side is the two-dimensional h function
from (2.3e) and P(4%Y) is the two-dimensional probability measure obtained from the d-dimensional

probability distribution PP by (2.40).

To see this point, note that h(j d)(P( )Y in problem (2.37) corresponds directly to h(P@%?)) in (2.3¢),

as can be seen from the definition of the objective function (2.39).

(2) For each of the iy, equations where k € {u,v}, (2.37b) can be rewritten as

SPE=Q i=0,1,. (2.71)
;=0

= (d;k,l 1)

SRS =) u=o01,.. (2.72)

1, =0
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for allk € {1,...,d} and alll € {1,...,d}, excluding k = 1, respectively. If k = u, then (2.71)
corresponds to (2.3b). Otherwise, if k = v, then (2.72) corresponds to (2.3c). Similarly, (2.37c)
reduces to (2.3d).

For a more detailed explanation of why point (2) holds, note that we can rewrite (2.37b) as

SN S P i =0 k=1, dandiy=0,1,... (2.73)

11=0 vETy,; i, =0

and observe that

oo
> pY ,
U155tk —15%k s k+15--+5%d

V€LY, 1,=0

o0
D S (2.74)
lseeyllo— 150k b 1seesll— 1520524 150-4,0d

V€T, =0

(d;k,1)
Tyt

Therefore, substituting (2.74) into (2.73), we get

o0
> Pi(ﬁ;i]f’l) = ng) ik =0,1,.... (2.75)
i1=0
Note that (2.75) is the same as (2.71). Hence, we have shown that, if (2.37b) holds, then (2.71) holds
too. Similarly, if (2.37b) holds, then (2.72) holds too. Thus, we have shown the first statement in (2),

above. For the second statement in (2), a similar argument shows that (2.37¢) reduces to (2.3d).

2.4.3 Monotonicity in Higher Dimensions

Comonotonicity and antimonotonicity, introduced in Section 2.2, are properties of bivariate distributions
that solve the optimization problem (2.3). Comonotone and antimonotone distributions exhibit extreme
positive and extreme negative dependence, respectively, between their components [103]. Comonotonic-
ity generalizes directly to the d-dimensional setting of random vectors (X W X (d)) and has been
well studied in the literature [29, 30]. In contrast, while there are measures of extremal negative de-
pendence that generalize antimonotonicity [126], it is well known that there is no direct extension of
antimonotonicity to the general d-dimensional setting [103].

Recall that, in the two-dimensional setting, our motivation for constructing bivariate distributions
with extremal dependence between its components was to obtain extreme positive and extreme negative
correlations, denoted C® and ¢ (2)| respectively. Then, any correlation C' € [C’ @, C (2)] can be obtained
by solving the simple linear equation (2.1). This approach, which extends to the d-dimensional setting
and is described in Section 2.8, requires the d-dimensional notion of extremal positive and extremal
negative dependence. Since the Pearson correlation is inherently a pairwise concept, we define extremal

dependence in the general d-dimensional setting as follows.

Definition 25 (Pairwise Monotonicity). A random vector (XM, ... XD} where each X*) ~ Q®)
for k =1,...,d, is considered pairwise monotone if all of its bivariate projections (X(“),X(”)) where

u,v € {1,...,d} and u # v are either comonotone or antimonotone.
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Pairwise monotonicity is a natural choice for the measure of extremal dependence in the general
d-dimensional setting for many reasons. From a modelling perspective, the dependence structure of

24—l oxtreme measures

multivariate distributions with pairwise extremal dependence results in n =
(Lemma 15), each having an associated extreme correlation matrix. The n extreme measures can be used
for efficient calibration (Section 2.8) and simulation (Section 2.9) of multivariate discrete distributions.
Pairwise monotonicity is also natural from the perspective of optimization since each objective function
(2.38) must either be minimized or maximized.

Similar to Subsection 2.2.1, we prove results on the properties of pairwise monotone distributions.
The development of these results relies heavily on projecting the multidimensional problem down to the

bivariate setting.

Figure 2.4: Different perspectives of the support of the 4 extreme measures for a three-dimensional joint
distribution.

We have defined extreme measures as solutions to the d-dimensional multi-objective optimization
problem (2.37) where each of the j = {1,...,n} for n = 297! (Lemma 15) bivariate expectations is
maximized or minimized (2.38).

Figure 2.4 illustrates all of the n = 237! = 4 extreme measures in the three-dimensional case from
different perspectives. Note the sparsity of the supports of each extreme measure. Note also the staircase

property seen in the bivariate setting is preserved in the general d-dimensional setting.
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2.5 The EJD Algorithm in d-dimensions

The EJD algorithm in d-dimensions, Algorithm 5 listed on page 70, is a generalization of the EJD
algorithm in the bivariate setting (Algorithm 1). This extension is non-trivial, not just computationally,
but notationally as well: the complexity of coherently representing various quantities across multiple
dimensions, due to the various projections, whilst keeping track of their associated extremal dependence
structures necessitates additional encumbrance of the notation on the monotone structure e"% through
the extreme point index j. For example, in this chapter, the notation for marginal distributions now

highlights its associated monotone structure denoted by j

[Qéﬂ"“%...,@({fkf ,Q<{d‘i§“} if e =0

(Godsk) ) (iodik) Gadik)] - (4.d) _
[Qim;k)v Jam) o &0 ] if e =1

QU — (2.76)

We also define, analogous to the bivariate case, associated random variables consistently: X U:dk) ~
Q%) The additional encumbrance of the marginal distributions on the monotone structure results in

a simpler and more consistent notation for marginal cdfs

FUdk) — [Qéj’d;k), R Z ng’d;k), ...,1] where 0<n< zfg;f() (2.77)
i=0

We also encumber the iteration counter, {4, on the monotone structure e’»%), again through the
extreme points index j, to reflect the dependence of the number of iterations, lr(mx, of Algorithm 5 on
the monotone structure in addition to the marginal distributions. Consequently, we denote the support
point 1¥% computed by Algorithm 5 to be sl((j]i) = ( l((j]?i;>1), . .,sl(fjffj)d))

measures by the index counter 19 which is equivalent to indexing the probabilities by the support

. We also index the extreme

points as they are themselves indexed by the iteration counter above. That is,

.d d d
Pl(<]J d>) P(J ) = P(JJ d)1> Grdid) * (2.78)

l<7 d) 1Gad) 0 5 Gd)

Remark 43. Note that, for a given j € {1,...,n}, for each k € {1,...,d} and each iy, € {0,.. Zfﬁla]f()},

(i)
Lmax
§ : E : ~(d) _ § : (d) § : (d)
Gyl 1,k kg 1yeerbd P J ED J d;d) + P J ED e, sGdD
VEZLY 1, =0 leA;, L¢gA;, !

= Z p::ij),d;m S(ndsd) (2.79)
{l:s;j‘d;k):ik} i seerS)

where
A, ={1l: Pﬁ,)d;l) Guasay > 0} (2.80)
( )

y ..,ik,...,Sl

From an intuitive and high-level perspective, Algorithm 5 exploits the structure of the problem by
traversing the d-dimensional S-path to simultaneously determine the support of PUA) and its corre-
sponding probabilities. This is crucial since, in d-dimensions, the exponential increase in the number of

points in the domain as d increases precludes the brute force approach of repeatedly applying the EJD
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theorem in d-dimensions (Theorem 4) to each point in the domain to determine the probabilities (and
thereby the support) of pUd),

In the bivariate setting, the two-dimensional version of the EJD algorithm was proved using the
properties of the S-path proved in Section 2.2. Recall that the S-path is defined as the directed path of
support points of a comonotonic or antimonotonic distribution P. While a similar definition can be made
in the d-dimensional setting, we neither prove detailed results on their properties nor on the properties of
multivariate discrete distributions that are coordinate-pairwise monotone. Such an approach is exceed-
ingly tedious and unnecessary. Instead, we exploit the structure of the multi-dimensional optimization
problem (2.37) and the results from the bivariate setting to prove the correctness of Algorithm 5. A
particular problem structure that we exploit is the embedding of the two-dimensional problem within
the d-dimensional problem. (See Remark 42.) Indeed, an analogous property holds true for the two-
dimensional and the d-dimensional EJD algorithms. (See Remark 49.)

Algorithm 5, similar to Algorithm 1, relies on the joint partition of unity to simultaneously determine
the probabilities and support of PUD The joint partition of unity extends to the d-dimensional setting
in a straightforward manner and is illustrated in Figure 2.5 wherein the lines represent the partitions of

unity corresponding to the marginal distributions and the joint partition (bottom-most line).

Definition 26 (Joint  partition of the unit interval in  d-dimensions). Let
Uy = Uxgay V xgaz -V Hxgaa = {z(j’d) z(J’d) z(é?)} denote a partition of the unit

iy (4,d)

interval corresponding to the monotone structure e where the points z; are the unique ordered val-

ues of the union of the sets My .any, -, MxGaa where X0 ~ QUER) for b =1,...,d. The point

zgj’d) is the (i + l)St smallest value in 1l 5,q0y. That is, z(]’ ) is the smallest element in 11, a:a), zgj’d)

is the second smallest element in I, a), zéj’ ) is the third smallest element in Il 4.4, etc. Moreover,

we define z(j’d) =0. If Fi(j’d;u) = Fj(j’d;v , for some u # v, then there is only one zl((jj’i)) € i that
satisfies zl((j] (f,)) = FUdv = Fj(J’d;v).

z,(cj’d) = l] 4 fork #1).

That is, there are no duplicate values in M ;.0 (i-e., there is no

Remark 44. For j € {1,...,n} and k € {1,2,....d}, Hxgan = {F(j’d?’”,Fl(j’d?’“) Fﬁ@i)’“ Yoot
follows directly from the definition of 11 ;;.a) that z(J d) = Ud_l{F(J ik =0,1,. zfﬁld]f()},
Remark 45. For every z(]’ ) in Ilz2 there is a ZE/ d) in I 5.0 such that 257’2) = zi(,]’d). Moreover, note

that, from Remark 28 and Definition 26, there are no duplicate values in either 11,2y or Il ;¢.a).

Algorithm 5 also works similarly to Algorithm 1 in that it begins with a preprocessing step (Al-
gorithm 7) that constructs the marginal cdfs FU4Y  FU4D congistent with the given monotone
structure e"? . Next, the main body of Algorithm 5 proceeds as if all the marginal distributions pos-

sessed mutual comonotonic dependence. Finally, a postprocessing step (Algorithm 6) is applied to the

support {S(J . l((]]?)} where the k" coordinate is reversed to restore the antimonotone relationship

(4,d)

between marginal distributions 1 and k if egj ) #* ek . A notable difference between the d-dimensional

case and the bivariate case is that, if the k™" and &’*" marginal distribution are both antimonotone in

relation to marginal distribution 1, then the k* and &’tP

marginal distributions are comonotonic with
respect to each other. One way to see this is through Algorithm 6. Recall that comonotonic distributions
have monotonically increasing supports and that the postprocessing step in Algorithm 6 reverses both
the k™ and k'*" coordinate as they are both antimonotone with respect to the 15 coordinate. After the

k/th

reversal, the k™" and coordinates are monotonically increasing and, therefore, comonotone. This is

explained in greater detail in Lemma 24.



CHAPTER 2. EXTREME JOINT DISTRIBUTIONS 60

(4,d;1) (4,d;1)
My O= Ey Fy e o1
j,d;2 j,d;2 j,d;2 j,d;2
0‘ Fé] ) Fl(J ) Ffr(rffl) F}y{ ) . 1
Mxgaz ® >
j,d;d j,d;d j,d;d
HX(jd-d)O. lfo(j ) F.‘1(J ) F?S] ) - 1
Yy Y Y Yy v
j,d d d d d d j,d j,d
Hz6.0 e R e e i i 2iie 2 1

Figure 2.5: Partitions of the unit interval in the multivariate case

Our main result for this section is the correctness of the d-dimensional EJD algorithm (Algorithm 5),
encapsulated in Theorem 5. Similar to the discussion of Algorithm 1 in Section 2.3, we restrict our
discussion of the algorithm to finite discrete probability distributions; for each k € {1,2,...,d} there
is an Zr(néx) such that ng’d;k) > 0 for i = 0,1,.. zﬁﬁai) and ng’d;k) 0 for i > zEﬁai). The finite-
dimensional approach can be extended to the case of infinite probability distributions and is sketched in
Section 2.6. In addition, as noted in Remark 8 for bivariate distributions, we believe that the assumption
that Ql(j’d;k) > 0 for i = 0,1,.. zgnax and for £k = 1,2,...,d, can also be relaxed for d-dimensional
distributions, whether zsﬁla’f() is finite or infinite. However, as noted in Remark 8, we do not pursue this
extension in this thesis.

For the remainder of the section, let the integers u and v satisfying 1 < u < v < d refer to the bivariate
subset of coordinates from the d-dimensional set {1,...,d} that the problem is projected onto and that
the '™ and v*" coordinates in the d-dimensional case correspond to the first and second coordinates in
the bivariate case. That is, the marginals Q%% and Q%) associated with PU-dsuv) correspond to

the marginals Q(j"m) and Q(j/’z;Q) associated with PU"2) where j € {1,2} is determined by elisdiuv)
Definition 27 (Bivariate projections of the d-dimensional support). Denote by

(G.dsu,0)

j,dsu, . j,d j,d; j,d; j,d j,d
81G,d) = PrOJu,U Sl((]j,d)) = (Sl((jj,d)U)vsl((jj,d)v)) = ((Sl((ijd)))u7 (Sl(gj,d?))v> (2'81)

the bivariate projection of sl((JJ’ & onto its uth and v coordinates. Moreover, let

j,diu,v j,diu,v j,diu,v
st diu) — {sé] ). "’Sl(fjﬁai) )} (2.82)

denote the bivariate projection of the d-dimensional support s9 onto its u™ and v*™® coordinates having

duplicates in the resulting set.

Finally, note that, for a given set of marginal distributions [Qéj s k) Q(fddkf ] _, and for a given

monotone structure e*® Algorithm 5 computes a d-dimensional probablhty d1str1bution which we
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denote by PG4 gince we have not yet shown that Algorithm 5 computes the solution, PUD o (2.37).
In a similar vein, the support belonging to PU-9) should also be denoted as sU4 for consistency. However,
due to our encumbered notation which will become increasingly apparent throughout this section, we
use instead sU'% to denote the support computed by Algorithm 5 corresponding to pU-d)

We first sketch the proof Theorem 5: we must show that P is the solution to the multi-objective
problem (2.37), whence, PG4 = pUd)  This can be accomplished by showing that the following
statements S;, for ¢ = 0, 1,2, 3,4, hold.

So: PU4) is a probability distribution that satisfies the constraints (2.37b) and (2.37c).
S1: For every pair of integers u and v satisfying 1 < u < v < d,
plduv) _ p'2) (2.83)

where PU"2 is computed by Algorithm 1 using the marginals QU 21 = QU:diw) and QU %2) =
QU%v) and j' € {1,2} is determined by es%%v),

Se: PU"2) solves the bivariate optimization problem (2.3) with Q(j/’Q;l) = QU4 and Q(j/’2;2) =
QU-d:v).

S3: For a given pair of integers u and v satisfying 1 < u < v < d, PU:diwv) golves the two-dimensional

th and vt coordinates for the

optimization problem obtained from projecting (2.37) onto the u
given pair of integers u and v (see Remark 42) since PU:diuv) — PU"2) and PU"2) solves the

bivariate optimization problem (2.3).

S4: Since for each pair of integers u and v satisfying 1 < u < v < d, PU-du:v) golyes the two-dimensional
problem obtained by projecting (2.37) onto the u' and v*® coordinates for that pair of u and v,
PU) gatisfies the multi-objective optimization problem (2.37). Moreover, Theorem 4 asserts that,
if problem (2.37) has a solution, it is unique, almost surely. Therefore, PG = pGd) almost

surely.

Remark 46. Note that this avoids the problems associated with the Pareto frontier, since pUd) —
Pl gives the best solution possible to each of the m = d(d — 1)/2 optimization problems extremizing
hq(f,’,fi)(P(j’d)) subject to the constraints (2.37b) and (2.37¢) for each u and v satisfying 1 <u <wv <d.

The rest of this section is as follows. We begin with some remarks on the structure of the solution
and the corresponding algorithm (Algorithm 5) in d-dimensions and its relation to the two-dimensional
setting. Then, we list a series of lemmas that both elucidate some aspect of the problem or some aspect
of the projected bivariate problem and are directly used in proving Theorem 5. For the majority of the
lemmas, their proofs can be found in Appendix B. These lemmas show that statements Sy, ...,Ss hold.

We begin with some remarks on the lengths of the solution computed by Algorithm 5.

Remark 47. lfg;{i) > lgfx) Observe that there is the same number of z(j’d) as there are unique values

) 10,4 ‘
mn ngl{Fi(j’d;k) 1=0,1,... ,zgr(,ial;)} and, similarly, that there is the same number of zfg’Q) as there are

unique values in Uizl{Fi(j’g;k) 1 =0,1,... ,zgé@} where FU-4w) = pG:21) gnd FU4v) = FG:22)  gince
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QUEW) = QU gnd QU = QU22) | The result follows from the fact that

W {FP = 0,1, i) = (FO5) ci= 0,1 @Y U{FEDEY i = 0,150}

) max st max

CUl_ {FO™ ci=o0,1,...,i@E0,

tt max

Remark 48. If eU-4%?) = (0,0) and e 4%?) = (1,1), then

1,5 = 1 ), (2.84)
since there is a one-to-one correspondence between zU:2%Y) gnd 2" 23u) by Lemma 16. For this reason,
we use the abbreviated notation [2,,. instead oflr(ﬁ;,l(u ) op lmaf ) throughout most of this section when

discussing the cases %) = (0,0) and e 4% = (1,1) and we use 12 € {0,1,...,12,.} to index the

sets §0dw) gl duw) - gGdiuw) g1 diuw) | H02uw) | gnd 52w Moreover, we also use 12, in place
of 19w v), in the case of e%%) = (0,0), to simplify the notation whether or not the dual index j' is
present.

The sets z24) and z("2%) are defined below on page 63. The sets gUhdiwv) 50"*“7“), sl-diuv)

"\ d;u,v)

and s/ are defined below on page 65.

Remark 49. Algorithm 5 reduces to Algorithm 1 in the case d = 2.

That Remark 49 holds can been seen as follows. The EJD algorithms 1 and 5 can each be divided
into three main phases: preprocessing, main body, and postprocessing. This corresponds to Lines 1-5,
Lines 6-18, and Lines 19-21 in Algorithm 1 and Lines 1-5, Lines 6-14, and Lines 15-16 in Algorithm 5. We
begin with the preprocessing steps. If d = 2, the inputs are equivalent in Algorithm 1 and Algorithm 5
and Lines 1-5 in Algorithm 5 are equivalent to Lines 1-5 in Algorithm 1.

Next, the main bodies of Algorithm 5 and Algorithm 1, while having a different form, are also
equivalent. To see this, first note that, if d = 2, Lines 13-14 of Algorithm 5 can be clearly seen to be
equivalent to Lines 17-18 of Algorithm 1. Consequently, it remains to show that Lines 8-16 of Algorithm 1
are equivalent to Lines 8-12 of Algorithm 5. Note that the conditions in the if statements on Lines 8,
11, and 14 of Algorithm 1 and their corresponding statement bodies can be refactored according to

the dimensions. For example, note that in Algorithm 1, if z;_; == F ((11_)2.1) in any of the if statement

conditions, then sl(j D sl(j 21 + 1 in each of the corresponding statement bodies. Similarly for F ( 7)2 2)

and sl(j’M). Then, note that, for the case d = 2 in Algorithm 5, for each iteration, [/, of the algomthrn7

there are two iterations of the for loop (Line 8). For k = 1, the if statement (Line 9) checks that

Zi_1 == F((l)) and if true, increments the corresponding support point, that is, 51(]'72;1) (3’2’1) +1is

executed (Llne 10) Otherwise, the corresponding support point is not incremented (Line 12). Similarly

2 3,2;2
for FS(EJ_)?Q) and Sl )
d=2.

Finally, to see that the postprocessing stage of Algorithm 1 is equivalent to Algorithm 5, note that,

. Therefore the main bodies of Algorithm 1 and Algorithm 5 are equivalent for

in Algorithm 1, the postprocessing subroutine, Algorithm 2, is only called in the antimonotone case
(Line 19). In contrast, Algorithm 5 calls the multidimensional postprocessing subroutine, Algorithm 6,

immediately after the main body has executed since, in the general case, each pair of components
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can either be comonotone or antimonotone. For each dimension, k, Line 4 of Algorithm 6 checks the
monotonic relationship between the pair of components (1,k); if d = 2, Line 4 of Algorithm 6 checks
whether it is the comonotone or antimonotone case, similar to Line 19 of Algorithm 1. If, for the pair
of components (1,k), the antimonotone case is true, Line 5 is executed, reversing the k" component
of the support similar to Line 4 of Algorithm 1. Otherwise, Line 7 is executed and the £** component
of the support is not reversed, similar to Line 3 of Algorithm 1. Therefore, the postprocessing phases
of Algorithm 5, with d = 2, is equivalent to Algorithm 1. Since, for d = 2, the preprocessing, main
body, and post processing phases of Algorithm 5 and Algorithm 1 are equivalent, Algorithm 5 reduces
to Algorithm 1 in the case d = 2.

Next, we consider an important partition of unity that will be needed later in the chapter: the
partition of unity corresponding to the two-dimensional joint probability distribution having monotone

structure e(-4%v) = (0,0)

z(j,2;u,v) _ {Z(()L?%uav), o l5727u U)} (2.85)
where 12, = 1030 was introduced in Remark 48 to simplify the notation in this section. Note that
zU:2%%) can be constructed similarly to the set {z(J d), ..,zl@d)} (which can be found in the setup of

the proof of Lemma 24 in Appendix B.7 on page 196) by choosing a set of indices {ly,...,lmax} C
(59199} such that the following hold

{6 g ) = 22D = (T i = 0,1, B0 (2.86)

Clearly, we can assume that the subscripts on the 2’s above are chosen so that, for all 12 € {1,...,12_},
2B <SG, (2.87)
Remark 50. Moreover, the set {z(()j’Q;u’v), ey zl(gniuv)} is equivalent to the two-dimensional partition of

unity, 292, constructed from FU-%%) and FU-4v) gipce (2.86) corresponds to Line 2 of Algorithm 8 for
d=2,u=1, and v =2, and (2.87) corresponds to Line 4 of Algorithm 8. Taking only unique elements

of {z(()j’d;u’v),. ,zl((jj i)u Y is equivalent to Line 3 of Algorithm 8.

Remark 51. In some instances, it is useful to prepend the two-dimensional partition of unity (2.85)
with the element 297" = 0 = FU»%% = pU2%0)  Then we can write (2.86) as

L, 25u) {Fijlad;u)’FéLd;u) F((Jd’i)u T U {Fijl,d;v)’FéLd;v) F(&”f)”)} (2.88)

tmax

where FEjl’d;k)

unity is defined in Definition 26.

=0 for k € {u,v}. Note that this is consistent with how the d-dimensional partition of

Remark 52. Forallj € {1,2,...,n} and all u, v satisfying 1 < u < v < d, the set {z(gj’zm’”)7 o lg 25, 7J)}
is embedded within the set {z(j’d), . l((]7 i)} More specifically, for all 1> € {0,1,...,12,..} there exists a
unique 199 € {0,1,.. lga(i)} such that zl(J Zu) zl((]]‘?) This can be seen easily from the construction

of the set 20:%%?) in Remark 50 and from the definition of the set 299 in Definition 26, which also

ensures that there are no duplicate values in the set 20D,
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Lemma 16. For any k € {1,2,...,d} and anyi € {-1,0,1,... ,iﬁr?;i)},

1— O - pladh (2.89)

imax —t—1

where e,(vj’d) =0 and e,(j/’d) =1.
The proof of Lemma 16 can be found in Appendix B.1.

Lemma 17. For anyl € {—1,0,1,...,12  } and 1 <u < v < d,

1— Zl(j’,2;u,v) — Zl(gﬂﬂflv_)l’ (2.90)

max

where 944 = (0,0), el diuw) — (1,1), and we have prepended 29:%%?) with the element z(_jiz;u’v) =0
and 2924 with the element z(_jl’z;u’v) = 0. (Remark 2.88.) Moreover, for eachl € {—1,0,1,...,12. .},
there exists a k € {u,v} and an i € {-1,0,1,... ,z’fﬁ;@} such that

27 B) = ) (2.91)
and
j,25u,v j,d;k i’ dik
Zl(?]nax—l—)l = Fi(é;g)_)i_l =1- Fi(] ) (2.92)

where the k’s and the i’s are the same in (2.91) and (2.92) above.
The proof of Lemma 17 can be found in Appendix B.2

Lemma 18. The order in which FU-%% and FU%Y) are matched in Algorithm 5 in the e94%v) = (0,0)
case is reversed in Algorithm 5 in the eU"%wv) = (1,1) case. That is, for each 1> € {0,...,12,.}, at

least one of

232" = QY (2.93)
or
23 = B (2.94)
holds for some i'%%) € {0,1,. .. Jfﬁlgf()} or i) € {0,1,... ,lfﬁldi)} Moreover, (2.93) holds iff
i, 2;5u, i d;
Zl(gnfful?vll = Fi(é;z)ii(d:u),l (2'95)
holds, and (2.94) holds iff
(7",25u0) (5 ,dsv)
2ot = Py (2.96)

holds.

PROOF: That at least one of (2.93) or (2.94) holds can be seen from the construction of z(2%:v)
which, by (2.86) and Remark 50, ensures that it satisfies z(/:%%?) = pG.div) | pl.dv),
Next, note that (2.90), which relates zl(zj’%u’v) to 29 %Y and (2.89) in Lemma 16, which relates

l?nax_l2_17
Fi(j’d;k) and F.((j.;,;’,g;k). . where k € {u,v}, can both be applied to obtain our desired result. To see this,
K3 —1—

max

start by assuming that (2.93) holds for some /2 € {0,1,...,12,.} and some (%" ¢ {0,1,... ,ifﬁlgf()}.
Subtracting both sides of (2.93) from 1 yields

S ) (2.97)

3(dsu)



CHAPTER 2. EXTREME JOINT DISTRIBUTIONS 65

Making a suitable change of variable in (2.90), rearranging, and applying the result to the left side of
(2.97) and making a similar change of variable in (2.89), rearranging and applying the result to the right
side of (2.97) gives

,25u,v d;u
zl(g 12 ) 1 F((Jd “)_1@ u) _ (298)

Thus, we have shown that, if (2.93) holds, then (2.95) holds. A similar argument shows that, if (2.95)
holds, then (2.93) holds. Thus, (2.93) holds iff (2.95) holds.
A similar argument shows that (2.94) holds iff (2.96) holds. O
Next, we list some results on the support computed by Algorithm 5. Particularly useful is the

counting interpretation of the support.

Lemma 19. Given j € {1,. n}, for each k € {1,...,d} and each i € {0,.. Zmax)} there exists an

integer w such that 8(] k) _

PrOOF: Given j € {1,...,n}, for each k € {1,...,d}, s (j k) — by Line 4 of Algorithm 5.

Line 10 of Algorithm 5 increments sl({] ry *) by 1 only if Line 9 of Algorlthm 5 evaluates to true. For each

k = {1,...,d}, Line 9 of Algorithm 5, evaluates to true zr(néx) + 1 times since the partition of unity,
computed by Algorithm 8 on Line 2 of Algorithm 5, is obtained by taking the unique elements of the

union of the marginal cdfs. Since, for 10D € {0,1,..., 1531, l(]](i)k) must take on the values 0, . .., iG5|

therefore, there must exist an integer w such that S(J ’d’k) =1. O

Corollary 1. For each k € {1,...,d} and each i € {0,. z,ﬁa’f()}, let q be the smallest integer such
that s (]’d M — i and w be the greatest integer such that s(J’d k) =14. If ¢ < w, then Sl(]’d;k) =1 for alll
satzsfymg q<Il<w.

Let us denote by 50D the support corresponding to PG pefore Algorithm 6 is applied. The
underline denotes when applied to a support set denotes removing the duplicates in the support set. Thus,

the set V% is equivalent to the set §UD since there are no duplicates in the sU), However, s(:duv) —

{§6j’d;u’v), . ,§§§’d?“’”)} is the support corresponding to PU%%?) having monotone structure el:&u:v) =
(0, 0) obtained by projecting each element of the support st@ = {s(()j S Z(Ji) } of PU) generated by

Algorithm 5 onto the u'" and v** coordinates and eliminating duplicates, but retaining the order by which

the support points are generated by Algorithm 5. Similarly, let (@’ duv) = {§(()jl’d;u’”) sl(g du’y)}

denote the support corresponding to PU"diuv) having monotone structure el diuw) — (1,1) obtained
by projecting each element of the support st’ 4 = {s(()J D l(] ’d)} of PU"d) onto the u™ and vth
coordinates and eliminating duplicates, but retaining the order by which the support points are generated

by Algorithm 5.

Remark 53. For all j € {1,2,...,n}, for all u,v satisfying 1 < u < v < d, the endmost point in

3l diuv) 30 dwY) st be the same since the set s(j diu,v)

the sets § and § is obtained directly from the set
gl i) by eliminating duplicates, but retaining the order by which the support points are generated by
Algorithm 5. Whence, sl(ffff: UZ = ~l((]]‘i)u v) Moreover, it must also be that § (jjdd’[:)v) i&i;f{), since the set
{F(J’d’u) F((jdi)u } € 20D by Line 2 of Algorithm 5, whence Lines 6-12 of Algorithm 5 imply that
S04 80 Simitarty, s =i,

Lemma 20. For all j € {1,2,...,n}, allk € {1,2,...,d}, and all 19¥ € {0,1, .. gD }, s §9ER) s the

. l(J d)
number of i € {0,1,.. zmax)} such that F(J’d = l(]’d) for some l € {0,1,...,1 J’d) -1}
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ProoF: This is evident from the fact that Line 4 of Algorithm 5 initializes §E)j’d;k) = 0 for all
j€4{1,2,...,n} and for all k € {1,2,...,d} and Line 10 of Algorithm 5 executes if and only if Line 9 of
Algorithm 5 evaluates to true. O

dju,v) dju,v)

A variant of Lemma 20 also applies to the set s as it is obtained directly from the set sU

Corollary 2. For all j € {1,2,...,n}, all k € {u,v}, where u,v are such that 1 < u < v < d, and all
2 € {0,1,.. .,lﬁ{{gfé“)}, gl(ﬁ’d;’” is the number of i € {0,1,... ,z‘ﬁ‘f;’f()} such that Fi(j’d;k) = zl(j’zu’v) for
some | € {0,1,...,1%> —1}.

The proof of Corollary 2 can be found in Appendix B.4.

Remark 54. For all j € {1,2,...,n}, for all u, v satisfying 1 < u < v < d, and for each 1> €
{0,1,...,12,.}, there is at least one 1% € {0,1,..., lr(ﬂ;g()} such that

~(4,d;u,v ~(4,d;u,v
) = sl (2.99)

dyu,v)

since the set 3V is obtained directly from the set 39°%%Y) by eliminating duplicates, but retaining

the order by which the support points are generated by Algorithm 5. Note that, in some cases, for a given
12, (2.99) holds for more than one 164,

Finally, the results that directly lead to the proof of our main result are as follows.

Lemma 21. If u and v are such that 1 < u < v < d and j and j' € {1,2,...,n} are such that
e@dw) — (0,0) and e -4wv) = (1,1), then for all 12 € {0,1,...,12,.}

ﬁl(gvd?uvv) — §l(g/7d1,u7271). (2100)

lnaxil
The proof of Lemma 21 can be found in Appendix B.6.

Lemma 22. For? € {0,1,...,12,..},
Pt _ pl'd (2.101)

where 7 = 1 and 7' = 1 and where 15;?"‘) is computed by Algorithm 5 and Pl(gjlg) is computed by

Algorithm 1.
The proof of Lemma 22 can be found in Appendix B.5

Lemma 23. The PUD computed by Algorithm 5 is a probability distribution that satisfies the constraints
(2.37b) and (2.37c).

The proof of Lemma 23 can be found in Appendix B.3

Lemma 24. The bivariate probability distribution PU-%%) obtained by marginalizing, according to
(2.43), the d-dimensional probability distribution PUY having the monotone structure €9® obtained
from Algorithm 5 is identical to the bivariate extreme measure PU"2) obtained from Algorithm 1 where 5’
is determined by e9%%?) . The marginals QU-%%) and QU-%) associated with PUdu2) gnd the marginals
QU2 and QU"22) gssociated with PU'2 satisfy QUdw) = QU %Y gnd QU-dv) = QU 2%2),
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The proof of Lemma 24 can be found in Appendix B.7.
The results in the section up to this point prove our main result. We formalize this in Theorem 5

below.

Theorem 5. The probability pl-d) computed by Algorithm 5 is correct in the sense that it is the almost

sure unique solution to the optimization problem (2.37).

PROOF: We can now show the correctness of Algorithm 5 by showing that all of the statements, S;
for i =0,1,2,3,4, listed on page 61, near the beginning of this section, hold true.

We begin by noting that statements Sy and S; follow directly from Lemma 23 and Lemma 24,
respectively.

Statement So states that the two-dimensional probability distribution, P(j,’Q), computed by Algo-
rithm 1 is a solution to the two-dimensional optimization problem (2.3), which was the main result
shown in Section 2.2.

Statement Ss holds true since PU"2) solves the bivariate problem (2.3) and since (2.83) was shown
to be true in S;, PUW%uv) also solves (2.3). Since, by Remark 42, the two-dimensional optimization
problem obtained from projecting (2.37) onto the u'" and v*® coordinates for the given pair of integers u

J:diuv) golves the two-dimensional

and v is equivalent to the bivariate optimization problem, therefore, P
optimization problem obtained from (2.37) by projection.

Finally, statement S, states that the solution, pUd) computed by Algorithm 5 is a solution to the
d-dimensional multi-objective problem (2.37) and that PG4 is in fact the unique solution, almost surely.
That is, PU4) = PUA)_ The first part of statement S, can be seen as follows. We know from S5 that, for
any pair of integers u and v satisfying 1 < u < v < d, PU% projected onto the u™ and v coordinates,
PU:diuv) g g golution to the corresponding two-dimensional problem (2.3). By the results in Section 2.3,
PUdw0) s the unique solution. Since the multi-objective problem (2.37) consists of m = d(d — 1)/2
objective functions, all of which are satisfied, and since by statement Sg, P9 satisfies the constraints
(2.37b) and (2.37c), the first part of statement S, holds true. Since we have shown that PU® is a
solution to the multi-objective problem (2.37) and we know from Theorem 4 that the solution to (2.37)
is unique almost surely, the second part of S4 also holds true almost surely. Therefore, we have shown

the correctness of Algorithm 5.
O
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2.6 The Infinite Dimensional Case

The focus of the thesis is on developing the EJD approach in the practical setting of finite-dimensional
marginal distributions that are approximations, typically via truncations and ensuring the resulting
probability mass sums to one, of the true marginal distributions in the infinite (space) dimensional
setting. Two natural questions to consider are whether the EJD approach can be extended to the
setting of infinite-dimensional marginals and the effect of using the finite approximations (2.20) on the
precision of the resulting correlation structure. Since the focus of this thesis is on the finite-dimensional
setting, we leave the detailed analysis of the affect of finite approximations on the precision of correlation
structures as future work. Instead, we briefly outline below, at a high level, how Algorithm 1 can be
extended to the case of infinite marginal distributions. We believe that Algorithm 5 can also be extended

to the case of infinite marginal distributions, but we leave that task to future work.

The Comonotone Case

In the comonotone case, the extension of Algorithm 1 is straightforward. Since the initial point of the
S-path is (0,0) by Lemma 1, we only have to determine a suitable stopping criteria. One such criteria

is to stop the algorithm at iteration [ if
1-FY <e® andfor 1-F? <® (2.102)

for some €V) € R, for j € {1,2}. In addition, instead of using finite approximations QW and Q@)
computed in (2.20) we use instead the infinite probability distributions QW and Q@ without truncating
or approximating them. However, since the infinite dimensional marginal distributions Q") and Q)
cannot be passed as arguments into Algorithm 1, Algorithm 1 must be modified such that QZ(-I) and QE-Q)
can be computed as needed in Lines 2-18 of Algorithm 1. Similarly for the infinite dimensional marginal
cdfs FM and F® and the 2’s in Line 4 of Algorithm 1.

The Antimonotone Case

The antimonotone case differs from the comonotone case in two main ways that complicate a direct
extension of Algorithm 1 to the case of infinite-dimensional marginal distributions. The first is the
fact that the antimonotone case has a preprocessing step (Lines 2-5 of Algoritm 3 called on Line 1
of Algorithm 1) that reverses the marginal distribution Q) —it is meaningless to “reverse” the full
infinite-dimensional marginal distribution. The second is the fact that the solution P® to (2.3) has
antimonotonic support (Lemma 11) and that, by Lemma 5, there exists points (0,n) and (m, 0), for some
integers m and n, that belong to the S-path corresponding to an antimonotone distribution. Moreover,
we know by Remark 18 that, if (0,n) and (m, 0) belong to the S-path, then so must (0, n+1), (0,n+2),...
and (m+1,0),(m~+2,0),... in the infinite-dimensional case. That is, all but a finite number of support
points reside on the axes in the infinite-dimensional antimonotone case. Thus, unlike the infinite-
dimensional extension of Algorithm 1 in the comonotone case, the infinite-dimensional extension in
the antimonotone case only needs to compute a finite number of points on the S-path similar to the
finite-dimensional case since any support point on either axis can be computed by using formula (2.5)
of Theorem 1 directly. In essence, there is no infinite-dimensional case for the antimonotone setting.

While it may be possible to modify Algorithm 1 such that it works in the antimonotone case without
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having to reverse a full infinite-dimensional (marginal) distribution and use infinitely many Q(® elements,
this extension, as mentioned in the beginning of this section, is not a focus of this thesis. However, as

an alternative, the following approach can be used for infinite-dimensional Q") and Q2.

1. Start with a point (0,n) on the S-path. Note that this point can be found easily as follows. Pick
any point (0,n) and use formula (2.5) of Theorem 1 to determine if it is a support point. If not,
double the value of n, denote it by n’ and use Theorem 1 again to check if it is a support point.

This can be repeated until we find some point (0,n’) where n’ > n that is a support point.

2. If the point (m',n’) is on the S-path, then we know from the results in Section 2.2 that one of
(m' 4+ 1,n), (m',n' — 1), or (m +1,n" — 1) must be on the S-path. Moreover, (m’ 4+ 1,n’) and
(m/,n’ — 1) cannot both be on the S-path. Therefore, the next point on the S-path is one of the
(m' 4+ 1,n") or (m’,n’ — 1) if either of them is a support point. Otherwise, the next point on the
S-path is (m' +1,n’ —1).

3. Determine the next point on the S-path and its associated probability, using formula (2.5) of

Theorem 1 to compute p® p? ) and/or p? ) as needed.

(m’4+1,n')? © (m/,n'—1 (m’4+1,n'—1
(a) If ]5((31),“7”,) > 0, then (m' + 1,n’) is the next point on the S-path, and ]5((2,“’“,) is the
associated probability.
(b) Else if ]5((31), 1) > 0, then (m/,n’ — 1) is the next point on the S-path, and ]5((:1), 1) is the

associated probability.

(¢) Otherwise, (m'+1,n' —1) is the next point on the S-path, and pe

(m/+1,n—1) 18 the associated

probability.
4. Update the current point on the S-path to the newly determined point and repeat Steps 2-3.

5. Continue this procedure until the point (m,0) is reached. By the results in Section 2.2, this

procedure must terminate at (m,0) after finitely many steps.

Remark 55. For the computation of the correlation coefficient corresponding to 15(2), the probabilities
associated with axres support points need not be computed. To see this, note that the bivariate expectation
is computed as the sum Z;}io Z;io ijpg). Obuviously, we only need to include in this sum the terms
1]]51(3) for which i,j and ]31(3) are all nonzero. For anly point on the azes, either i =0 or j = 0 and, for
any point not on the S-path, If’i(? = 0. Hence, we need to include in the sum only the points associated
with the S-path between (0,n) and (m,0).
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Algorithm 5 Extreme Joint Distribution Algorithm in d-dimensions

Require: Marginal distributions: [ ((Jd;k), Q((dd?)]k 1
Monotonicity Structures: €4 where j € {1,...,n}
Output: Extreme measure [péj ) Pz(‘jf Zl)) ] and its support [s; G- sl(f]’cg]

max

max

(P-4 Ffd(i)d)} + CONSTRUCT-MARGINAL_CDFs_D(

Tmax

L: [Fé%d;l) F((Jdcf)l ] [F(jd;z) F((JdZ)Q)]v ceey
(

d;k d;k j,d; j,d;
(@™, QU Ty 04D, eli)

(d:k)
2: z(()j’d), .. l(f]‘?) <+ PARTITION_ UNITY([F(Jdl) i ,Fv(fdff')l)], [F()(j’d"’2) F((Jdg)z)],...,
jodid did
F L F)
3: 10D 0
4 (s$§40 Uy (0, 0)
s PO LG
6: while zl((JJCi)) #1do
7 1Gd)  1Gd) 41
8: for k=1,...,ddo
e (jd dik
9: if zl((]j,d))i1 == Fs(<j*d:)"') then
@(d:d) 1)
j,d;k j,d;k
10: sl((]j,d) ) sg(j,d))_l) +1
11: else
(4,ds;k) (4,ds5k)
12: L S s(f(j,dhl)
13: Save the [-th support point sl((j;i)) = (Sl((];i;)l), ce sl({;fj)d))
d d j,d
14: P(<]Jd>) A z(gjd% - l((]Jd)) 1
15: 359, .. ‘l(f]’ “1 + REVERSE_SUPPORT_D([s (]’d),...,sl(f]’ D1, [eldD) | eldid)])
16 return [BFD U] [0 509

max

Remark 56. Similar to Remark 32, PARTITION_UNITY sorts the unique elements of the union of the
marginal cdfs in ascending order and Line 9 of Algorithm 5 increments the coordinate of the support

Gd) Gd)  (d) (g d) _ (5,d;1) (4,d;d)
according to the ordering of {z; ,z1 b 20 ‘o }- Therefore, 2,77 ;) = min{F o ;), L F G}
Sh b ey

Remark 57. Similar to Remark 33, Algorithm 5 is sensitive to rounding errors; implementations of
Algorithm 5 in floating-point arithmetic need to account for rounding-errors. We assume in this thesis

that all computations are carried out in exact arithmetic.

Remark 58. Note that the choice of XV does not matter in Algorithm 5. This can be seen from the
inner loop in Lines 8-12 of Algorithm 5. All coordinates are treated the same; ordering of the coordinates

does not affect accuracy or efficiency of the algorithm.
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Algorithm 6 Subroutine: Reverse support in d-dimensions

1

S U 4

: procedure REVERSE,SUPPORT,D([séj’d)7 cee sl({;z))], [egj"d), ce egj’d)])
for 109 « 0,...,1%% do
for k=1,...,ddo
it ¢” == 1 then
_(4,d;k .(d;k j,d;k
| s ) — s
else
_(7,d;k j,d;k
L t '?Z((Jj,d) ' Sl(fj,@ )
return [5(()]"1), o ’l(ggg)]

Algorithm 7 Subroutine: Construct Marginal CDFs in d-dimensions

o

1
2
3:
4

: procedure CONSTRUCT,MARGINALS,CDFS,D([Q(()d;k),...,Q(,Ei;i))]zzl, [egj’d),...

for k=1,...,ddo
if eg’d) == 1 then
[tos- sty ] = [Q6™ .. QUG
for i =0,...,i%" do
QY et

z max

[Féd;k), e Fi((ii’,fg] — CUMSUM([Qéd;k)7 A Q(d;k) )

-(d;k)

L Zmax
(ds1) (ds1) (d;k) (dsk)
return [F| ,...,Fl_<d;1>],...,[FO ""’Fi“?"‘)]

b

)

)

Algorithm 8 Subroutine: Partition of Unity

(dsk)

1: procedure ParTrTION Uty ([F\4% . F(&M1d_ )
3

2:

F « append([FO(d;l)7 o Fi((fjl;j))]7 o [Fo(d-,d)7 -

max max

F(d?d)

vector

F « unique(F)> take only the unique elements of the input vector
F + sort(F)> sort the vector in ascending order

return F

. i<d‘d)])> combine multiple vectors into a single
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2.7 Numerical Example

In this section, we provide a numerical example illustrating the Extreme Joint Distribution (EJD)
approach for d = 3% by constructing all n = 237! = 4 extreme measures (extreme joint distributions).
The prescribed marginal distributions are Poisson distributions with mean parameters (A1, Ao, A\3) =
(3,5,7). Each of the marginal distributions are discretized by first truncating the probability distribution
at a point of support imax such that P(X < ipax) > 1 — €, where e = 0.0001. Finally, the probability
weight, P(X = imax), corresponding to the last support point, imax, is adjusted such that ZZZ%X P(X =
1) =1.

2.7.1 Support

Figure 2.6 illustrates the supports of the n = 4 3-dimensional extreme measures. Each subfigure corre-
sponds to an extreme measure with the extremal dependency structure described by the monotonicity
structure at the top of the subfigure. The blue curve in each figure is the support of the multivariate
extreme measure. Note the sparsity and the staircase like property of the support (blue curve) of ex-
treme measures. The red, teal, and green curves are the projections of the support onto the xy, xz, and
yz coordinate planes, respectively. The projections are the extreme measures in d = 3 marginalized to
the bivariate setting. The monotonicity of the projections show that the solution to the bivariate case

is preserved in higher dimensions.
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Figure 2.6: Supports of multivariate (d = 3) extreme measures with Poisson marginals having parameters
(A1, A2, A3) = (3,5,7) under all possible combinations of extremal dependence between the coordinates.
The binary vector in square brackets on top of each figure indicates the corresponding monotonicity
structure.

8We chose to compute numerical examples in the 3-dimensional case since it is the only dimension greater than the
two-dimensional case that can be visualized.
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2.7.2 Marginal Distributions and the Joint Partition

73

Table 2.1 lists the joint partition for the extreme measure having the monotone structure [0,0, 0] (the

comonotone case) having Poisson marginals with parameters (A1, A2, A3) = (3,5,7). Also listed is the

support point corresponding to each point of the joint partition and the corresponding marginal cdf

value that the joint partition came from.

l z sy Corresponding F' | [ z Sy Corresponding F’
0 0.0009 (0,0,0) 7% 26 0.9467  (0,0,0) F®
100067 (0,0,1) oS 27 0.9665  (0,0,1) FY
2 0.0073 (0,1,1) ) 28 0.9682  (0,1,1) F?
300206 (0,1,2) oSy 29 09730  (0,1,2) sy
4 0.0404 (0,1,3) r? 30 09863  (0,1,3) r?
5 0.0498 (0,2,3) S 31 09872 (0,2,3) r®
6 0.0818 (1,2,3) £ 32 09881  (1,2,3) FY
701247  (1,24) 7? 3309943 (1,2,4) F®
8 01730 (1,3,4) s 3409945  (1,34) F?
9 01991 (1,3,5) Y 35 0.9962  (1,3,5) FY
10 0.2650  (2,3,5) F? 36 0.9976  (2,3,5) FY
1103007  (2,4,5) oS 37 09979 (24,5) F?
1204232 (2,4,6) oS 38 0.9989  (2,4,6) Y
13 0.4405  (3,4,6) r? 39 0.9990  (3,4,6) FY
14 04497  (3,5,6) £ 40 0.9993  (3,5,6) F2
15 0.5987  (3,5,7) S 41 099964  (3,5,7) F%
16 0.6160 (3,5,8) 72 42 0.99970  (3,5.8) rY
17 0.6472  (3,6,8) 7Y 43 0.99977  (3,6,8) F?
18 0.7291  (4.,6,8) 7 44 0.99987  (4,6,8) FY
19 0.7622  (4,6,9) 72 45 0.99992  (4,6,9) Y
20 0.8153  (4,7,9) Y 46 0.99993  (4,7,9) r®
21 0.8305 (5,7,9) £ A7 0.99995  (5,7,9) FY
22 0.8666 (5,7,10) 7? 48 0.99998  (5,7,10) F?
23 0.9015 (5,8,10) %Y 49 0.999983  (5,8,10) F
24 09161 (5,8,11) 7Y 50 0.999985  (5,8,11) F
25 0.9319 (6,8,11) F? 51 1 (6,8,11) FY

Table 2.1: Joint partition of the extreme measure corresponding to comonotone case and
the associated support and marginal cdf for each point.

2.7.3 Probability Weights

Tables 2.2 and 2.3 list the supports and the probabilities of all the n = 2¢~! = 4 extreme measures having

Poisson marginals with parameters (A1, A2, A3) = (3,5, 7). Note that the extremal dependency between a

pair of coordinates can also be deduced from whether the supports are both increasing or both decreasing

(comonotonicity) or whether one has increasing and the other decreasing support (antimonotonicity).
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o~

A (1,3 1,3
Ps(u,s)) Sl( )
l

0 0.0009 (0,0,0) 38 0.0009 (9,13,16) 21  0.0265  (3,5,6)
100058 (0,01) 39 0.0001 (10,13,16) 22 0.1098  (3,57)
2 0.0006 (0,1,1) 40 0.0003 (10,13,17) 23  0.0392  (3.4,7)
300223  (0,1,2) 41 0.0003 (10,14,17) 24  0.0485  (3,4,8)
400108 (0,1,3) 42 6.947e5 (10,14,18) 25 0.0819  (4,4,8)
5 00094 (0,23) 43 6.608e5 (11,14,18) 26  0.0059  (4,4,9)
6 0.0320 (1,2,3) 44 9.640e5 (11,15,18) 27  0.0803  (4,3.9)
700420 (1,24) 45 5.846e5 (11,1519) 28 0.0152  (5,3.9)
8 0.0483 (1,34) 46 23785 (12,1519) 29  0.0449  (5,3,10)
9 0022 (1,35) 47 24605 (12,16,19) 30  0.0261  (5,2,10)
10 00659 (2,3,5) 48 2453e5 (12,1620) 31  0.1460  (5,2,11)
1100357 (245) 49 3.720e5 (12,17,20) 32  0.0305  (6,2,11)
1201225  (24,6) 50 1.654e5 (13,17,20) 33  0.0120  (6,2,12)
13 00173  (34,6) 51 1.450e5 (13,17,21) 34  0.0069  (6,1,12)
14 0.0092  (3,5,6) 35 00065  (7,1,12)
15 0.1490  (3,5,7) 36 00142 (7,1,13)
16 00172 (358 1 158(;’?) s®3 37 0.0009  (7,1,14)
17 00313 (3,6,8) 0 1987e5 (0,17,0) 38 0.0052  (8,1,14)
18 00819 (4,68 1 4914e5 (0,160) 39 0.0010  (8,0,14)
19 00331 (469 2 00001  (0,150) 40 0.0019  (8,0,15)
20 0.0531 (47,9 3 00004  (0,14,0) 41 0.0014  (9,0,15)
21 0.0152 (579 4 00002  (0,13,0) 42 0.0013  (9,0,16)
22 0.0361 (57,10) 5 00011  (0,13,1) 43 0.0001  (10,0,16)
23 0.0349 (5810) 6 00034  (0,12,1) 44 0.0005 (10,0,17)
24 0.0146 (5811) 7 00018  (0,11,1) 45 6.945¢-5 (10,0,18)
95 0.0158 (6,811) 8 00064  (0,11,2) 46 0.0001  (11,0,18)
26 0.0147 (6,9,11) 9 00159  (0,10,2) 47 5.845¢5 (11,0,19)
27 0.0198 (6,9,12) 10 0.0022  (0,10,3) 48 2.698¢5 (12,0,19)
28 0.0017 (7,9,12) 11 00180  (0,9,3) 49 2.823e5 (12,0,20)
20 0.0048 (7,10,12) 12 0.0183  (1,9,3) 50 1.654e-5 (13,0,20)
30 00133 (7,10,13) 13  0.0137  (1,8,3) 51 14495 (13,0,21)
31 0.0008 (7,11,13) 14 0.0516  (1,8,4)

32 0.0009 (7,11,14) 15 0.0396  (1,7.4)

3300062 (8,11,14) 16 0.0262  (1,7.,5)

34 0.0003 (8,11,15) 17 0.0387  (2,7.,5)

35 00017 (8,12,15) 18 0.0629  (2.6,5)

36 0.0014 (9,12,15) 19 0.0833  (2,6.6)

3700004 (9,12,16) 20 0.0391  (2,5,6)

Table 2.2: Support and probabilities of three-dimensional extreme measures having Pois-
son marginals with parameters (A1, A2, A3) = (3,5,7) corresponding to the monotone
structures (0,0,0) and (0, 1,0).
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Loy )
l

0 14455 (0,0,21) 38 0.0046  (8,11,2) 21  0.0348 (1,8,10)
1 2.99le5 (0,020) 39 0.0018 (8,11,1) 22 0.0361 (1,7,10)
2 8545e-5 (0,0,19) 40 00017  (8,12,1) 23 00296  (1,7,9)
300002 (0,0,18) 41 00018  (9,12,1) 24 0038  (2,7.9)
4 00005 (0,017) 42 0.0009 (9,13,1) 25 0.0331  (2,6,9)
5 00014 (0,0,16) 43 0.0002 (10,13,1) 26 0.1131  (2,6,8)
6 00033 (0,015 44 00004 (10,13,0) 27 00172  (2,5.8)
700010 (0,0,14) 45 00002 (10,14,0) 28 00219 (2,57
8 00061 (0,1,14) 46 00005 (11,14,0) 29 01271 (3,57
9 00142 (0,1,13) 47 6.608e-5 (11,150) 30  0.0092  (3,5,6)
10 00134 (0,1,12) 48 15494 (12,150) 31  0.0877  (3,4,6)
11 00094 (0,2,12) 49 23786 (12,16,0) 32  0.0521  (4,4,6)
1200036 (1,212) 50 4.91de5 (12,17,0) 33  0.0357  (4,4,5)
13 0.0452  (1,211) 51 3.720e-6 (13,17,0) 34 0.0803  (4,3,5)
14 00261 (1,2,10) 35 00117 (53,5)
15 0.0449  (1,3,10) 36 0.0484  (534)
16 00206 (139 1 PEY s 37 00407 (5,24)
S

17 00659  (2,39) 0 14495 (0,17,21) 38 0.0022  (6,2,4)
18 0.0059 (249) 1 537e6 (0,17,20) 39 0.0413  (6,2,3)
19 01304 (24.8) 2 24535 (0,1620) 40 0.0069  (6,1,3)
20 0.0219 (247 3 246le5 (0,16,19) 41  0.0039  (7,1,3)
21 00173 (347 4 6.084e5 (0,15,19) 42 00177  (7,12)
22 01098  (3,57) 5 9.640e-5 (0,15,18) 43  0.0046  (8,1,2)
23 0.0657  (3,56) 6 00001 (0,14,18) 44  0.0006  (8,1,1)
24 0.0313  (3,66) 7 00003 (0,14,17) 45 0.0029  (8,0,1)
25  0.0521 (4,66) 8  0.0003 (0,1317) 46 0.0027  (9,0,1)
26 0.0629 (4,65 9 00011 (0,13,16) 47  0.0002  (10,0,1)
27 0.0531  (4,7,5) 10 0.0004 (0,12,16) 48  0.0006  (10,0,0)
28 0.0117  (57,5) 11 00030 (0,12,15) 49  0.0002  (11,0,0)
20 0.0396 (574) 12 00003 (0,11,15) 50 5.52de-5 (12,0,0)
30 00495  (584) 13 00071 (0,11,14) 51 1615e-5 (13,0,0)
31 00022 (684) 14 0.0008 (0,11,13)

3200137 (683) 15 00133  (0,10,13)

3300035  (693) 16 00048  (0,10,12)

3400017 (7.93) 17 00179  (0,9,12)

35 00022 (7,10,3) 18 0.0036  (1,9,12)

36 00159 (7,10,2) 19 00147  (1,9,11)

37 00018 (7,11,2) 20 0.0304  (1,8,11)

Table 2.3: Support and probabilities of three-dimensional extreme measures having Pois-
son marginals with parameters (A1, A2, A3) = (3,5,7) corresponding to the monotone
structures (0,0, 1) and (0,1, 1).
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2.7.4 Extreme Correlations

Figure 2.7 below illustrates the extreme correlation matrices, C U corresponding to each extreme
measure, PU-d),

1.0 0.93688  0.931861 1.0 —0.81193  0.931861

C (13 = [ 0.93688 1.0 0.967188 33 = [ -0.81193 1.0 —0.90135
0.931861 0.967188 1.0 0.931861 —0.90135 1.0

1.0 0.93688  —0.84624 1.0 —0.81193 —0.84624

C 23 = [ 0.93688 1.0 —0.90135 C 3 = [ —0.81193 1.0 0.967188
—0.84624 —0.90135 1.0 —0.84624 0.967188 1.0

Figure 2.7: Extreme correlation matrices C U:d) corresponding to extreme measures PUA) with given
Poisson marginals having parameters (A1, A2, A3) = (3,5,7).
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2.8 Calibration

Calibration is useful for many reasons. For example, in a practical context such as the motivating
problem from Operational Risk (see Figure ?? for an example of an observed correlation matrix of
operational events), calibration of a multivariate Poisson distribution to an observed correlation matrix
of operational events within a large financial institution is necessary for scenario generation of operational
events that are used in stochastic simulation to compute regulatory risk numbers such as VaR [96]. In
a more general context, calibration is useful since failure to calibrate (i.e., the optimization problem
(2.107) has no solution using the methodology described herein) means that no multivariate discrete
distribution with the specified parameters that can generate the observed data exists. This implies
that the parameter assumptions of the input marginal distributions are incorrect. Finally, calibration is
necessary for the Backward Simulation of correlated multivariate Poisson processes where it is used to

construct joint distributions having a specified correlation structure. (See Chapters 3, 4, and 5.)

(©) in terms of a finite mizture of extreme

Our approach to calibration is to find a representation of P
measures 1—2’(1)7 . ,]5("), where P(©) is the probability distribution P possessing some desired correlation
structure C. Note that since P(©) is a finite mixture of extreme measures, it also satisfies the marginal
constraints QM) ..., Q@ . Previous work in the literature such as [70] have also used a finite mixture
model approach to construct multivariate Poisson distributions that are able to exhibit a limited amount
of negative correlation. However, their approach is unable to directly control the correlation of P(),
whereas our linear algebraic approach uses constrained optimization to ensure that, if the correlation
structure is admissible—that is, within the convex hull of the extreme correlation matrices C' @) corre-
sponding to the extreme measures PUD__then the resulting multivariate probability distribution P()

obtained from calibration posses the desired correlation structure C.

The calibration problem is trivial in the two-dimensional setting. There are only two possible ex-
tremal dependencies between a pair of marginal distributions Q") and Q(®: extreme positive and
extreme negative dependence. Using Algorithm 1, we construct the extreme measures PM and P@
corresponding to probability distributions maximizing and minimizing, respectively, the joint expecta-
tion E [XY], leading to extreme positive and extreme negative values for the correlation coefficients c®
and C'@. To calibrate to a desired correlation coefficient, C', within the admissible correlation range

[é @ ¢ (1], we only need to solve the following linear equation, reproduced below, from (2.1)
C=wCW+(1-w)C®
for the value of w € [0, 1] that, when plugged into (2.2), also reproduced below,
PO = wPW 4 (1 —w)PP,

gives us the probability distribution P(©) having marginal distributions Q") and Q® and correlation
coefficient C. It is important to note that, while the motivating problem stems from the need to calibrate
multivariate Poisson distributions to observed correlation structures, the methods described herein apply

to general multivariate discrete extreme measures constructed using the EJD method.

In this section, we discuss the calibration problem in the d-dimensional setting and how it may be
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solved. To that end, recall that the d-dimensional analogue of (2.1) is:
C=w,CHD ... 4o, 0D (2.103)

with the constraints that w; > 0 for j = 1,...,n and Zj w; = 1. In Section 2.4.1, we showed that
there are n = 2971 extreme measures, PU9 each with a corresponding monotonicity structure eld:®
describing its dependency structure. The objective function (2.38) of each extreme measure, pPU ) takes
as input €% to determine whether to minimize or maximize each pairwise joint expectation. Therefore,
to each extreme measure PU) corresponds an extreme correlation matrix C U, Thus, analogous to

the two-dimensional case, after wy,...,w, is determined from solving (2.103), it can be plugged into
PO = PAD oo gy, P D) (2.104)

to obtain a multivariate discrete distribution P(©) with correlation structure C.

2.8.1 A Linear Algebraic Approach

One approach in solving (2.103) is a linear algebraic approach. To this end, (2.103) must first be
converted to a constrained system of linear equations by flattening the strictly upper triangular part of
each extreme correlation matrix C' % into a column vector A; € R™ where m = d(d — 1)/2. Since C
and all C' @9 are symmetric with 1s on their diagonal, this can be done by taking each row in the strictly
upper triangular part of each C (:d) " appending them into a row vector and taking the transpose to be
Aj to obtain A = [A4,...,A4,] € R™*", representing the extreme points of our problem in correlation
space. Similarly, we can flatten the strictly upper triangular part of the given correlation matrix C' on
the left side of (2.103) to a vector b € R™. Then, (2.103) and the constraints w; > 0 for j = 1,2,...,n

and 22‘;1 w; = 1 are equivalent to the constrained system of linear equations

Aw =5, (2.105a)
17w =1, (2.105b)
w; >0 j=1,2,...,n. (2.105¢)

There are many possible solutions to the constrained system of equations (2.105). One approach is
heuristic and relies on the context of the particular application in choosing a suitable objective function®
and then using (2.105) as the constraints for an optimization problem with that objective function.
However, if the goal is just to find any solution to (2.105), then a simpler approach is to reformulate
(2.105) as

Aw (2.106a)

i=1,2,....n, (2.106b)

AVARI]
o o

Wy

where A is A with the row 17 appended to the bottom of it and bis b with a 1 appended to the bottom of
it. Then, note that (2.106) has the form of the standard constraints for a Linear Programming Problem
(LPP). Moreover, the first stage of many LPP codes finds a solution to (2.106). As explained in Section

9This is also the subject of future work.
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13.5 of [93], a standard approach to finding a solution to (2.106) is to solve the LPP

min 17z (2.107a)
subject to  Aw+ Ez =b (2.107b)
(w,2) >0 (2.107c¢)

where z € R™*! and F is a (m+1) x (m+ 1) diagonal matrix such that E;; = +1 if b; >0and E;; = —1
if b; < 0. Clearly, w = 0 and z = | b| satisfies the constraints (2.107b) and (2.107¢). So, we can use w = 0
and z = | b| as a staring point for the simplex method to solve (2.107). It’s clear from the constraint
z > 0 that the solution satisfies 172 > 0. Moreover, if 172z = 0 then z = 0. Hence, (2.107) has a solution
17z = 0 if and only if Aw = b, w > 0 has a solution. Hence, the simplex method applied to (2.107) will
find a solution to (2.105), if a solution exists.

Despite the fact that the problem size grows exponentially in d, due to the structure of the problem
(2.105) and the fact that the simplex method needs to explicitly access m + 1 columns of A at a time
(assuming you have some clever way to decide which new vector to bring into the active set at at each
step of the simplex method without explicitly accessing all the columns of A that are in the inactive set)
the LP (2.107) can be solved for a surprisingly large d, e.g., d = 51, which corresponds to n = 2°0 ~ 10'?;

see [36].

Remark 59. While it is difficult to provide rigorous estimates on the run times and accuracy of solving
(2.107) numerically due to the nature of both the simplex algorithm and the input (marginal) distributions,
we remark that the typical run times of the problem in the siz-dimensional case are roughly around thirty
minutes on an Apple laptop with an Intel Core i7-9750H processor. The approrimation error is bounded
by 1073,

2.8.2 The Independent Case

It is important to note that our approach, consisting of taking finite convex combinations of the extreme
measures (2.103), does not give all distributions P(®) having correlation structure C. This can be
seen from the fact that the finite convex combination in (2.103) does not include the zero correlation

matrix C(©% . However, incorporating C©9 into the calibration process brings no benefits and, in fact,
completely destroys the sparsity inherited from the extreme measures (Remarks 15 and 23). To see this,

consider adding C (%9 to the finite convex combination of extreme correlations (2.103) resulting in
C =whCOD L) C D 4oy O D (2.108)

with the constraints w; >0for j=0,1,...,n and Zj w; = 1. Since C 0D ig an identity matrix, the
flattening process described in Section 2.8.1 necessary to convert (2.108) into a constrained system of
equations (2.105) flattens €' (9 into a vector of 0s. Since having a column of 0s in A would make
it singular, it must be excluded from the construction of A. This makes intuitive sense, since the zero
correlation case does not provide additional information. Therefore, w( must be specified so that instead

of the constraint (2.105b), we have the modified constraint

17w’ =1 — wy, (2.109)
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where w” = (wf,...,w},). Note that this has the effect of removing a degree of freedom from the solution

since the introduction of w(; and the constraint

wo+wy + - +w, =1

constrains the possible values of wf,...,w),. Clearly, the value of the weights wi, ..., w/, differ from the
weights wy, ..., w, obtained from solving (2.103). Plugging wy, ..., w,, into
PO =y POD ) POED o gy PO (2.110)

where P04 corresponds to C U:d) gives the probability distribution P(©) having correlation C. Note
that since P4 is the (discrete) probability distribution corresponding to the independent case, C' (04,
its support must be the larger than the support of the extreme measures, thus, the support of plo.d)
cannot be sparse. Hence, the support of P(©) is also not sparse. Moreover, since w( > 0 in order for
the independent case, C (0:4) 46 be included, P(©) must also be supported on every point in its domain.
The inclusion of the independent case in our EJD methodology is detrimental to the numerical efficiency
of our approach, which is inherited from the sparsity of the extreme measures P(l’d), e ,I:’(”’d). (See

Remarks 15 and 23.)

2.8.3 Admissible Correlations

If no solution to the optimization problem (2.107) exists, then the given correlation matrix, C', cannot
be generated by a joint distribution having marginal distributions Q(V), ..., Q9. We say that C is an
inadmissible correlation matriz. Similarly, if a solution to (2.107) exists for a given correlation matrix
C and a given set of marginal distributions Q). ..., Q(?, we say that C is an admissible correlation
matriz. This is due to the fact that the optimization problem (2.107) generates all possible correlation
matrices of a joint distribution having a set of given marginals distributions. To see this, we first note
that (2.105) and (2.107) are equivalent and that the columns of the matrix A in (2.105) correspond
to the flattened correlation matrices associated with the extreme measures P(l’d), ..., P4 Recall
that each extreme measure, If’(j’d), has an associated monotone structure, e"%  describing the extreme
dependence between its components and that the monotonicity structure, %) = (egj ’d), . 7e((ij’d))7
describes all possible extreme dependence structures (see Section 2.4.1). That is, the extreme measures
p(l’d),...,fD(”’d) are extreme points. Moreover, since to each extreme measure, P(j’d), there is an
associated extreme correlation matrix €' 4 the extreme correlation matrices C L C (9 are also
extreme points in the space of correlation matrices. The extreme correlation matrices C Qd) ¢ (n.d)
form a convex set since the set of all d x d correlation matrices form a compact convex set [77]. Since, by
Carathéodory’s theorem [35], any point in the convex hull of the extreme points C’(l’d), ceey C (9 can
be represented by at most d 4+ 1 points in the set {C’ Ld) C ("’d)}, therefore, the constrained system
of linear equations (2.105) (and the optimization problem 2.107) generates all possible correlations for a
multivariate joint distribution satisfying a set of marginal distributions.

In the case of inadmissible correlation matrices, this typically means one of two things: 1) the as-
sumptions on the parameters of the marginal distributions are wrong; or 2) the desired correlation is
incorrect—there could be errors in its estimation. It is up to the practitioner to determine a suitable

course of action. If the practitioner believes that both the marginal distribution and the desired corre-
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lation matrix are correct, one possibility is to solve for the closest admissible matrix under some choice
of norm within the admissible set of correlation matrices. That is, solve

min  ||C(w) — O

weR™

subject to  w; >0, I=1,...,n, (2.111)
D =1,
=1

where C(w) = 31, w, O,
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2.8.4 Calibration Algorithm

Algorithm 9 Calibration of Extreme Measures

d;k) 14

Require: Marginal distributions: [Q((Jd;k), . Q((d old_,

Tmax

Desired correlation matrix: C
(J7d) (4,d)

Output: Extreme measures [If’éj’d) P((J](j))} and their supports [s5"", 8,0, +] where j=1,...,n
Weights of the convex comblnatlorr of extreme measures (wq, ..., wn) i

10:
11:
12:
13:
14:
15:

n < 2971 & number of extreme points
m « d(d — 1)/2 > number of elements in the strictly upper triangular part of a d x d correlation
matriz
A + zeros(m,n) > construct matriz of extreme points of correlations
for j«1,...,ndo
B, PE? L Ls6™ s D] Algorithm 5 Q6™ QUGN €U
€04« Algorithm 11([P"" ..., PO, 155" sl((jj"?)])
Aj FLATTEN,ABOVE,DIAG((J(J )
A « [A;omes(1,n)] > append vector of ones to the bottom row
b+« FLATTEN_ABOVE_DIAG(C)
b« [b;1]
(w1, ..., wy,),success < Solve (2.107)
if success then
‘ return (ws,...,w,)
else

t error: no solution to (2.107) exists for the given marginal distributions and correlation matrix

Algorithm 10 Subroutine: Flatten entries above diagonal of A

—_

e e
M» 22

© % N > Tk W

procedure FLATTEN_ABOVE_DIAG(A)
nRows, nCols < size(A)
if nRows # nCols then
t error: A should be square
m + nRows - (nRows — 1)/2
[bo, . .., bm—1] < zeros(1l,m) > row vector
k<0
for i + 0,...,nRows — 2 do
for j«i+1,...,nCols —1 do
L b — A;
k+—Fk+1

return [by, ..., bmy_1]
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Algorithm 11 Compute Correlation Matrix from a d-dimensional Extreme Measures

Require: d-dimensional extreme measure [Péj S Pl(fjﬂé?] and its support [s; Gd) - Sl(iﬂjfi))]
Output: Corresponding extreme correlation matrix ¢ G:d)

1: foru<+1,...,ddo

2 COD

3: forveu—i—l,...,ddo

4 PUduw) | gGdiuw) o Algorithm 12([]5(§j’d) P(fj ff))] [s (()j’d) sl((]f?)] (u,v))

5: 59D CORRELATION(PU-diuv) | glidiuv))

6: | v(ju — C (J )

7. return C U9

Algorithm 12 Marginalize d-dimensional Extreme Measure into a d’-dimensional Extreme Measure

. . . % , j,d d
Require: d-dimensional extreme measure [Péj ). Pl((j] d?] its support % = [s (()j ). , sl((J] d))]
Coordinates (u1,...,uq ) to project onto by marginalization & indices to l.up
. . A ,d d d' d
Output: d'-dimensional extreme measure [Pé] 4 P((JJ d,)] and its support [s; 0 Sl((JJ d,))]
Lk i
> marginalized support N
. / . . / .
: s0d) = S(J’d)([ul, cooyug]y 1) > oeach ,s-‘,-/ is a column vector; s is also a column vector

. 5004 = yunique(s@4))

. [ = length(5(:4))

: > marginalized weights N
PGd) = geros(size(30:4) 2))

. for (count, cols) = enumerate(eachcol(394))) do i iterates through the unique support points
indices = findall(x—x==cols, s(j’d')) > returns indices of the duplicated columns

P(]’dt) = sum(PU-% [indices))

coun

. return ((BY?) .. PO 50 50

R R A - > v

—_
=]

e enumerate has the behavior of the python function with the same name that alters the for-loop
such that at every iteration, the for-loop returns a tuple containing a count corresponding to the

loop number and the value from iterating over the (iterable) function argument.

e cachcol is a helper function that iterates over the columns of a matrix or an array

e findall takes in an anonymous function as its first argument and returns a vector of indices of

where the anonymous function applied to the array (second argument) returns true.
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Algorithm 13 Subroutine: Correlation Between Components of a Bivariate Extreme Measure

1: procedure CORRELATION(péj’Z), e ,Pl(zji) ) Séﬂ)v ) S(gif

2: e BIVARIATE,EXPECTATION(Péj’z), e ,151(53 ’ Séj’z)’ R Sl(gi))
3 b por(PP Y L PPl )

b b por(PIP B G2 G o)

5. v + VARIANCE(RY? .| ,Pl(éi) I ~,Sl(§:2» 1)

6: vy + VARIANCE(RY? .| ,ngfQ) 5P 31(5’_2)» 2)

7. return (e — by - bg)/\/U1 - U2 o o

Algorithm 14 Subroutine: Expectation of a Bivariate Extreme Measure

1. procedure Bivariate_Expectation(PY? . PY? 0 502

Gax R
2 e+ 0
3 for i« 0,...,02,, do
& t e et ng;l) . ng,m) . pi(m
5 return e

Algorithm 15 Subroutine: Variance of a Bivariate Extreme Measure

1: procedure VARIANCE(1—:’()@’2)7 ceey ]%92) ) séj’z), ceey sl(g’?), k)

2: v+ 0 o o

3: e+ DOT(I:’éj’z), . ,Isl(zj’Q) ) séj’2), . sfif’z), k) > mean of the extreme measure PU2)
4: fori<«0,...,012,. do "

5. t Ve v+ (85172%))2 . ﬁ)i(jﬂ)

6:  return v — (e)?

Algorithm 16 Subroutine: Dot Product Specialized to Birvariate Measures

1: procedure DOT(Péj’2), . ,]5l(zj’2) ) séj’z), e 555’2), k)

max max

e+ 0
for i+ 0,...,12, . do

2

3 74 max .
4: t e+ e+ 8(372§k) . .P;LQ)
5 return e

i
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2.9 Sampling from Multivariate Extreme Measures

One of the main advantages of the EJD approach is that sampling from multivariate extreme measures,
PG4 obtained by Algorithm 5 is equivalent to sampling from univariate probability distribution. This
is possible because of the sparsity of the supports which behaves like a univariate distribution. In
particular, the support of multivariate extreme measures are directed graphs that exhibit a staircase-like
property (Figure 2.4 provides an illustration) thereby enabling the use of the inverse CDF method. (See
Remarks 29 and 30.)

Algorithm 17 Sampling from Multivariate Extreme Measures

Require: Extreme Measure: [péj’d), ... ,P(]i)], [séj’d)7 . l((J]dd))]
Number of samples: n -
Output: PUD distributed random vector [S0,...,8n—1] of size n
1: forr«0,...,n—1do
2: Generate a uniform random variable u

> Inverse cdf through sequential search

3: [+ 0
1 g« PP
5: while u > ¢ do
6: l+—1+1

) A(.d)
7 g+ q+ P

o (1d)

8 | S Sl(jj‘d)
9: return [5g,...,5,_1]

2.9.1 Sampling from Calibrated Measures

In Section 2.8, we discussed a linear algebraic approach to the construction of calibrated measures, P(C),

that are a convex combination of the extreme measures P49 . P(d) having correlation C. The
calibration algorithm, listed in Algorithm 9, returns a series of weights (w1, ..., wy) that satisfies w; > 0
for j =1,2,...,n and 2?21 w; = 1. When substituted into (2.104), the weights give a multivariate
probability distribution P(®) having correlation matrix C. Since the weights (wi,...,w,) are a convex
sum, they can be interpreted as probabilities when sampling from a correlated measure P(¢). For each
draw, the w; for j = 1,2,...,n, is the probability that the extreme measure PG4 ghould be sampled
from. Having chosen the particular extreme measure to sample from, we can then apply Algorithm 17

to obtain samples from the extreme measure.
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Algorithm 18 Sampling from Calibrated Measures

Require: Extreme measures: [Po(j’d), e ’Pz(injf:;é))];;l
Supports: [s(()j’d), cey sif}i%]?zl
Calibrated weights: w r:X[wl, ...,wy] such that P(©) has correlation C
Number of samples: n
Output: P(©) distributed random vector, [3o, ..., 8,_1]
1: forr < 0,...,n—1do
2: Generate a uniform random variable uq
3: l+1
4: q1 < wy
5: while u; > ¢; do
6: L l+<1l+1
& q1 < q1+w
8: Generate a uniform random variable uo
9: m <+ 0
10: | go < PO
11: while wus > g2 do
12: L m<m+1
13: g2 < G2 + i
14: | §p « Sgyl{d)
15: return [Sp, ..., 5,_1]
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2.10 Computational Complexity

2.10.1 EJD Construction

The EJD algorithms construct the set of discrete joint distributions {P(j’d)}?:ll satisfying given marginal
distributions according to a monotone structure. Recall that d denotes the problem dimension (i.e., the
correlation matrix C'is d x d) , l,(g;fi) denotes the number of iterations of Algorithm 5 and 1+ lﬁ{z;i) is the
length of the S-path associated with P(jvd), zgfgx denotes the length of the kth marginal distribution, A
is the matrix that has the columns that are the flattened strictly-upper-triangular part of the extreme
correlation matrix CU-9) associated with the extreme measure P04 and has size m x n where m =

d(d—1)/2 and n = 241 and A is the matrix A with the row 17 appended to the bottom of it.

Time Complexity
Algorithm 5, which generates each PG terates over d marginal dimensions for every iteration of the
algorithm. Therefore, the complexity for each EJD construction is

oD . d). (2.112)

max

It is easy to see from Algorithm 5 that lg;;i) < zEff;X - d, where k is the index of the input marginal

distribution with the greatest length. Hence, the time complexity becomes O(igfgx -d?). In the worst

case where all the 29! extreme measures need to be computed, the total cost is O(2¢71 . lﬁg;{i) - d),

2d—1

although, typically, only a small subset of the extreme measures need to be computed.

Memory Complexity

Each extreme measure P09 and its associated support points occupy

oD . ) (2.113)
space. Recall again that, typically, only a small subset of the 2¢~1 extreme measures have to be computed
and stored. In the worst case that all 2¢=1 distributions have to be stored, then the total memory

complexity is O(2¢71 . lr(g?(g() -d). Note that d is typically small for most applications.

Remark 60. The EJD construction is highly efficient in high-dimensional settings even though the
construction of each extreme measure has quadratic time complexity in d since d is small for most
applications. More importantly, the full set of n = 2971 extreme measures rarely need to be constructed

which prevents the complexity from being exponential in practice.

2.10.2 Extreme Correlation Matrix CU% Construction

For each extreme measure PU-4) produced by Algorithm 5, we construct its associated extreme corre-
lation matrix C (-4) by Algorithm 11. Recall that Algorithm 11 computes all strictly-upper-triangular
elements of the extreme correlation matrix ¢ () (and sets the diagonal to 1) via numerical evaluation
of expectations and variances of bivariate components of the extreme measure. Let m = d(d — 1)/2

denote the the number of strictly-upper-triangular entries of a d x d correlation matrix.
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Time Complexity

The correlation, joint expectations, and variances are all arithmetic operations over the support of the
extreme measure P9, Therefore, the time complexity of constructing CUD for a single extreme
measure is

O(m - 109y = 0(d? - 1U:4)). (2.114)

max max

If we are constructing all the correlation matrices associated with all the extreme measures, then the
time complexity is O(2¢~1-m - lfﬁ;{?) and is exponential in d. However, as noted throughout this section,
d is typically small and the full set of extreme measures (and their associated correlations) rarely need

to be constructed in full.

Memory Complexity

The correlation matrix C' 9 requires O(d?) space. Storing only the strictly-upper-triangular part of

the matrix still requires O(m) = O(d?) space.

2.10.3 Calibration

The calibration problem (2.107) relies on the construction of the A matrix in (2.107b), the complexity
of which is equal to O(2¢71 . m - lﬁ{g‘f?) if the full matrix is constructed. We note that MacDonald’s thesis
[36] develops a modified simplex method that does not require the construction of the full A matrix.
Rather, the method maintains an “active set” consisting of m + 1 columns of [/1, E] and swaps columns
of [A, E] in and out of the active set as needed. This drastically reduces the computational complexity
in practical settings. For this reason, we focus on the complexity of the mathematical programming

calibration problem itself and omit the cost of setting up the linear program.

Time Complexity

The simplex approach to solving linear programs is well-known to have an exponential worst-case time
complexity in n when the A matrix of the linear program is of size m x n. (This means that for our
problem, the complexity is double exponential in d.) The worst-case time complexity depends on the
solution methods themselves. Note however, that in practice, the simplex algorithm works quite well in
practice and simplex-based approaches like that of [36] can prevent the need for constructing the full A

matrix.

Memory Complexity

If a simplex-like approach like [80] is used that doesn’t require constructing the full A matrix, then the

worst-case memory complexity is well-known to be O(m?).

Remark 61. Similar to Remark 60, in high-dimensional settings, the EJD calibration approach is
“usually” efficient due to the fact that simplex-based approaches like [S0] do not need the construction
of the full set of n = 2971 extreme measures and associated correlation matrices and also because the

simplex algorithm is much faster, in practice, than its theoretical complexity.
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2.11 Summary

In this chapter, we introduced the Extreme Joint Distribution (EJD) approaching consisting of the EJD
theorem (Theorem 1) and the EJD algorithm (Algorithm 1). We proved rigorously the foundations of
the theory in the bivariate setting. Next, we extended both the theorem and algorithm to the general
d-dimensional setting (Theorem 4 and Algorithm 5, respectively). Having a method to construct multi-
variate extreme measures, we discussed the calibration of a joint distribution satisfying given marginal
distributions to a prescribed correlation using the multivariate measures generated by Algorithm 5.

Finally, we discussed sampling from extreme measures and calibrated measures.

Our contributions are summarized below:

e Proved, rigorously, various properties of comonotone and antimonotone distributions. (Subsec-
tion 2.2.1.)

e We proved the correctness of Algorithm 1. (Section 2.3.)
e Extended the notion of extreme measures to the d-dimensional setting (Section 2.4.)
e Extended the EJD algorithm to d-dimensions and proved its correctness. (Section 2.5.)

e Introduced a method for the calibration of multivariate discrete extreme measures to observed

correlation structures. (Section 2.8.)



Chapter 3

Backward Simulation of Poisson

Processes

This chapter discusses the core ideas of simulating a Poisson process backwards in time within a simu-
lation interval [0,T]. In general, there are two methods for the simulation of Poisson processes: forward
and backward simulation. A stochastic process X; is simulated forwards in time by starting from time
t = 0 and then subsequently simulating the process at the next grid point, X, where h is the time
step, until the terminal time ¢t = T is reached [27]. The prevalence of forward simulation is due to its
intuitive simplicity and universal applicability. In contrast, backward simulation of a stochastic pro-
cess X; in an interval [0,7] requires the conditional distribution of the process given some terminal
value P(X; | X1t = n) be known or readily obtainable. Backward simulation is becoming increasingly
widespread [110] and has been applied to fields such as finance [6, 12, 13, 17, 25, 80], stochastic control
[115], stochastic simulation [9, 11, 50, 81], and Monte Carlo statistical inference [33].

Backward simulation of continuous processes is well known and is often referred to as bridge sampling
in the literature. The class of processes that bridge sampling applies to are known as bridge processes,
the most well known being the Brownian Bridge [13, ]. Other bridge processes include the gamma
bridge [5, 108], the Ornstein-Uhlenbeck (OU) bridge [20], the Cox-Ingersoll-Ross (CIR) bridge [65], the
Bessel bridge processes [87, |, and many others. Bridge processes for more general diffusions are know
as diffusion bridges [9, 11, 81]. In contrast, backward simulation for discrete valued stochastic processes,
to the best of our knowledge, is not as widely discussed. However, the crucial property that backward

simulation of Poisson processes depends is well known:

Proposition 3 (Conditional Uniformity [51]). The joint probability density function, f, of the arrival

moments 11,15, ..., T, of the Poisson process, Ny, conditioned on the event Ny = n, is given by
n! .
i if 0<z1 <2< <x, <t
Sty 1 M=) (T1, T2,y ) = 4 . (3.1)
0 otherwise.

Thus, the conditional uniformity property of Poisson processes suggests a simulation method: draw
from a Poisson distribution at terminal time to obtain the number of events, n, at terminal time. Then,

draw n uniform variates Uy, ...,U,. Reordering the uniform variables Uy,...,U, in increasing order

90
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gives the arrival moments 77,75, ..., T, of the Poisson process. The conditional uniformity property
is an instance of the more general order statistic property [26, 39, 79, ]. Briefly, the order statistic

property states that:

Definition 28 (Order Statistic Property [39]). For a point process {My;t > 0} with right-continuous
paths, unit steps at times 11,15, ..., and the non decreasing mean value function my; = EM; < oo,
t >0, the successive jump times {T1,..., Ty}, conditional on My — My = n are distributed as the order
statistics of n independent identically distributed random variables with distribution function F supported
on [0, ].

Indeed, the backward simulation method above is effectively a Poisson bridge, analogous to the well-
known Brownian bridge. Just as a Brownian bridge connects two endpoints with a Brownian path, the
Poisson bridge connects the initial state (typically zero events at ¢ = 0) to a specific terminal count
at time T using conditional uniformity. However, our contribution extends significantly beyond the
standard univariate Poisson bridge. By combining the EJD methodology with backwards simulation, we
construct what can be seen as a multivariate Poisson bridge that not only results in a set of multivariate
Poisson paths, but also reproduces any desired admissible correlation structure at terminal time. This
is a substantial generalization of the classical Poisson bridge to the multivariate setting.

Although the backward simulation of multivariate Poisson processes is not discussed much in the
literature, the backward simulation of univariate Poisson processes is well known. One reason why the
multivariate case has not been discussed much might be that neither the reproducibility of the correlation
structure between the components of a multivariate Poisson process at the terminal simulation time nor
the time structure of the correlations between the components of a multivariate Poisson process within
the simulation interval have been explored—to the best of the author’s knowledge—in the literature
before [74], upon which our work builds. In contrast, our approach to backward simulation is able to
match any desired admissible correlation structure at the terminal simulation time. This relies heavily
on the EJD approach, discussed in Chapter 2, to generate extreme joint distributions that are used in
the calibration of a multivariate Poisson distribution possessing the desired correlation structure. Then,
since the backward simulation approach exploits the conditional uniformity property, the number of
terminal events required for the simulation of the process is simply obtained by sampling the calibrated
joint distribution. In addition, our analysis below shows that the time structure of correlation under
backward simulation is linear in time.

We also discuss the Forward Continuation (FC) of the Backward Simulation (BS), introduced in
[17], for continuing the process past the original simulation interval [0,7] to an integer multiple of the
original simulation length mT for some integer m. We demonstrate that the correlation structure under
the Forward Continuation of Backward Simulation reaches asymptotic stationarity.

It is important to note that while much of the exposition in this chapter and in Chapters 4 and 5 is

in the bivariate setting, the discussions generalize immediately to the multivariate setting.

3.0.1 Outline

The outline for this chapter is as follows. We introduce Backward Simulation in Section 3.1, where we
prove the main result (Theorem 6) enabling the Backward Simulation approach for Poisson processes
and provide an accompanying algorithm (Algorithm 19). Section 3.2 analyzes the correlation structure

under Backward Simulation. Section 3.3 introduces the Forward Continuation (FC) of the Backward



CHAPTER 3. BACKWARD SIMULATION OF POISSON PROCESSES 92

Simulation (BS) for correlated multivariate Poisson processes. Having introduced Backward Simulation
and the Forward Continuation, we then compare the backward and the forward approaches in Section 3.4.

Section 3.6 concludes the chapter.
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3.0.2 Notation

We make use of the following notation in this chapter.

93

Symbol Definition

T End of the simulation interval

T; i*™ arrival moment

AT, =T, —T;_ i*® inter-arrival time

T i(k) it? arrival moment corresponding to the k' component
N Poisson-distributed random variable

A Mean parameter of a Poisson distribution

n Realization of a Poisson random variable

N=(ND, . N d-dimensional Poisson-distributed random vector

Ny Poisson process

d-dimensional Poisson process

Poisson process obtained from Backward Simulation

Equal in distribution

Multivariate Poisson process obtained from Backward Simulation

The increment X;4s — X; of the process X in interval [t, ¢ + s

¢, & General integer valued random variables

pr =P =k) Probability of the random variable £ taking on the value k

p(2) Generating function of the distribution of the random variable &

qr () Probability that depends on p; for k=kk+1,k+2,...

4(z;x) Generating function of g (x)

7(k;x) Probability distribution on the d-dimensional integer lattice

7(z; %) Generating function of 7(k;x)

G(2) Generating function of a general discrete random variable X

pri =P(¢1 =k, =1) | Bivariate probability distribution of the bivariate random variable
(C1,Ca)

Pz, w) Generating function of py

a1 (z,y) Probability that depends on p; ; for k=kk+1,...andl=11+1,...

4(z,w) Generating function of gy

K= MA/A2 Ratio of the mean parameters of Poisson processes with intensities Aqt

and Agt

p(t) = corr(X{V, x{V)

Correlation at time ¢ between Xt(l) and Xt(Z)
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3.1 Backward Simulation

In this section, we prove the fundamental result, first given in [74], enabling the Backward Simulation
of Poisson processes. We consider, for the remainder of this section, a process, X; for 0 <t < T, defined

as

X, = z": 1T, < t), (3.2)

where n is a realization of the random variable X7 ~ Pois(AT') and the random variables {T;}? ; are

iid having a uniform conditional distribution

P(Ti§t|XT:n):% i=1,2...n and 0<t<T (3.3)
in the interval [0, T]. Theorem 6 below is essentially the converse of the well-known conditional uniformity
result for Poisson distributions but adapted for Poisson processes, ensuring that discrete non-decreasing
processes constructed according to (3.2) and (3.3) are indeed Poisson processes. It is crucial to note
that, although Theorem 6 is formulated and proved in the univariate setting, the results extend directly
to the multivariate setting. That is, Theorem 6 extends directly to the case where X; is a correlated
multivariate Poisson process. This is because of the fact that, while the dependence structure is specified
through the joint distribution, every coordinate (marginal) of a correlated multivariate Poisson process
is itself a (univariate) Poisson process'. Therefore, given the joint number of events sampled from a
suitable joint distribution? at time T, the correlated multivariate Poisson process can be constructed
within the simulation interval [0, T| by applying Theorem 6 independently to each coordinate.

For the rest of the chapter, unless otherwise stated, N refers to a Poisson distributed random variable
and V; refers to a Poisson process, whereas X; refers to a Poisson process obtained through Backward
Simulation. Moreover, note that a bold typeface denotes the vector or multivariate counterpart. That is,
N=(N @ N (d)) refers to a d-dimensional random vector that is multivariate Poisson distributed,
N, = (Nt(l),...,Nt(d)) denotes a multivariate Poisson process and X; = (Xt(l),...,Xt(d)) denotes a
multivariate Poisson process obtained through Backward Simulation.

Finally, we note that the results in this section can be applied directly to the multivariate setting
since the conditional uniformity property of Poisson processes ensures that, given the terminal vector
of (joint) events, each component’s arrival times are just the order statistics of i.i.d Unif(0,T) variables
which are conditionally independent across components. Therefore, simulation reduces to generating the
joint events (counts) and then simulating each component as a univariate Poisson process conditioned
on the number of terminal events. The dependence between components arises entirely through the joint
distribution by construction, each component of the multivariate Poisson process is a Poisson process

with independent increments in the interval [0, 7.

The main result of this chapter is the following theorem.

Theorem 6 ([71]). Fort € [0,T], define the process X; by

X, = i 1T < 1), (3.4)

1See Definition 5.
2Recall that Chapter 2 is concerned with constructing extreme distributions that exhibit extreme correlations and
constructing distributions that exhibit any admissible correlation that is a convex combination of extreme correlations.
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where n is a realization of the random variable Xp ~ Pois(AT') and the random variables {T;}?_, have
the uniform conditional distribution (3.3). Then, Xy is a Poisson process with intensity X\ in the interval
[0, T7].

To prove Theorem 6, we must show that:

1. For any interval (¢,¢+ s] C [0,T] of length s > 0, the increments A;X; = X; s — X; of the process
X, are Poisson distributed, with A X; = X;4s — X ~ Pois(As). Moreover, the distribution of the

increments Az X; does not depend on ¢.

2. For any [ = 2,3,... disjoint sub-intervals (¢;, t;+s;] C [0,T] fori = 1,2,...,[, the random variables
Ag, Xy, = Xiy4s, — Xy, for i =1,2,...,1, are mutually independent.

We can prove points 1 and 2 above by applying Lemma 25 and Lemma 26, respectively, below.
Lemma 25 is a statement about discrete generating functions and Lemma 26 is the extension of Lemma 25
to the vector setting. For this reason, we only prove Lemma 26. We state Lemma 25 for clarity of

exposition.

Lemma 25 ([74]). Consider a discrete random wvariable, &, taking non-negative integer values with

probabilities pr, = P(§ = k), k=0,1,2,..., and denote its generating function by
o0
Pz) = pz, |z <1.
k=0
Consider a sequence

qr(z) = Zpk+m<k_;m>xk(1 —z)", 0<z<1, k=0,1,2,.... (3.5)

m=0

Then, for any fizred x € [0,1], the sequence {qi(x)}32, is a probability distribution and its generating
function §(z;x) takes the form
G(z;2) =p(1 — x + x2). (3.6)

To generalize Lemma 25 to the vector setting, we require some additional notation. For a general
d-dimensional vector®, k = (ki,ko,...,kq) € Ng, with non-negative integer coordinates, k; > 0, we

denote the norm of the vector by
d
Ikl =D k-
j=1

For any d-dimensional vector, x = (x1,%2,...,%q), with non-negative real coordinates (z; > 0 for
j=1,...,d) and k € NZ, we denote

d

k,_H k

X = J}j 7.
j=1

3We emphasize that the d here and in Lemma 26, below, refers to the dimension of a generic vector and does not refer
to the dimensionality of multivariate Poisson processes.
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We also introduce the multinomial coefficient

- (+$0)r

k d
-] k!
=1

Lemma 26. Consider a discrete random variable, &, taking non-negative integer values with probabilities
pe =P =k),k=0,1,2,..., and denote its generating function by p(z) = Y peoprz®, |2| < 1. Let
ke N¢ and consider the function m: Nd — R defined by

> k+1
(k; z) =Zp|k||+z( X ) -zt oy, (3.7)
=0

where © = (x1,...,2%q4), ; >0, ijl z;<landy=1- Z;l=1 zj. For any fived x, {m(k; ®)}rena is a
probability distribution on the d-dimensional integer lattice. Furthermore, denote its generating function
by

#(z @) == Z m(k; )2, (3.8)

keNd

where z= (21,22, ..., 24) and max{|z1|,...,|zd|} <1, then

iz @) = [)(1 - ixj(l - zj)). (3.9)

Proor: We first show (3.9) holds. To this end, note that the generating function (3.8) can be
rewritten, by substituting in (3.7), as

d co oo
#(zx) =D DD P2 (kl—f l) -xkylh (3.10)

j=1k;=01=0

Let n =1+ Z;l:l k; and introduce the partial sums
J
K;=Y kj, J=12....d (3.11)

and note that K; = K4_1 + kq.

Then, by expanding the multinomial coefficient, using the partial sum defined above, and substituting
y=1-— 2?21 x; in (3.10), we see that

n=0 k1=0 k2=0

S (" E e (1-3) (3.12)

kq=0 j=1
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Denote the last sum in (3.12) by

’andfl n — Kd_l kd d n—Kd
Sa= > 5, (waza)* - (1= a; : (3.13)
kq=0 j=1

and note that by making the following substitutions

n'=n—-Kq_1,
k:kdv
n’—k‘:n—del—de’n—Kd,

x = (xq24),
d

y= 1- ij7
j=1

in (3.13), we can apply the binomial theorem to Sy, obtaining
d—1 n—Kq—1
Sd: <1—ij—xd(l—zd)) .
j=1

Applying this transformation recursively to the sums over k; for j =d—1,d—2,...,11in (3.12), we get
[eS) d n
7(z;x) = an . (1 — ij(l — z]))
n=0 j=1
d
= 15(1 =y (- Zj))
j=1

as required.

Having proved that the generating function 7(z;x) takes the form in (3.9), we can now easily show
that, for any fixed x, {W(k;X)}keNg is a probability distribution on the d-dimensional integer lattice.
Firstly, it is clear from (3.7) that for any k > 0, w(k;x) > 0, since x > 0, y > 0 and all other terms

therein are non-negative. Next, we need to show that

Z m(k;x) = 1.

keNg
To that end, recall that, for a generating function, G(z), of a discrete random variable X,
G)=PX=0)+PX=1)+---

Therefore, it suffices to show that 7(z;x) = 1 when z = (1,1,...,1) € R? for all admissible choices of

x. Indeed, this can be seen directly from (3.9), since p(1) = 1. Thus, {m(k;x)}cng is a probability
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distribution on the d-dimensional integer lattice for any fixed x € [0, 1]¢ satisfying Z?Zl z; < 1. O

Having proved Lemma 26 we can show the main result of this section.

Proof of Theorem 6

PROOF: We begin by proving the first point of the Theorem. To this end, let us denote by A;X; =
Xtts— X¢, the number of events occurring in the interval [t, £+ s] of the process X;. Then, the probability
that k events occur in the interval [t, t+ s] of the process can be expressed, by the law of total probability,

in terms of the conditional probability, as

P(AX,=k) =Y PAX, =k| Xy =k+m) P(Xy =k+m). (3.14)

m=0

Now note that

k m
P(ASXt:MXT:k—s—m):(k—;m>(;) (1—;) . m=0,1,... (3.15)

since the conditional probability of k events occurring in the sub-interval [t,¢ + s] C [0, 7] given a total
of X7 = n = k+m independent, uniformly distributed events occurring in the full interval [0, T is equal
to choosing k out of n = k+m total events in the interval [t,t+ s] of length s, with the rest of the events
being in the remainder of the interval [0,T]. Moreover, since Xr is Poisson distributed (and known at

terminal simulation time T'), its generating function takes the form
p(2) == E[2%7] = exp(AT(z — 1)). (3.16)

We use Lemma 25 to show that the generating function of A;X; also takes the form (3.16), but
with T replaced by s. Thus, A;X; has a Poisson distribution with parameter As. To this end, let
pr = P(Xp = k), for any k € Ng, and x = s/T. Then, note that, by the law of total probability and
(3.15)

3

P(AX, =k) =Y P(AX; =k| Xy =k+m) P(Xp =k +m)
m=0
= (k+m s k s\™
_mg_;o( 1 )(T) <1_T) P(Xr = k +m)
- k+
:Zkarm( km)xk(l_x) :
m=0

Observe that the last line in the set of equations above has the form of g (x) in Lemma 25. So, let

> E+m m
Qk(x): Zpk-‘rm( k )ij(l—l') :P(AéXt:k)a k:O71a2a"' .

m=0

Since gy (z) = P(AsX; = k), for k = 0,1,2, ..., the generating function E [z2+%¢] of the random variable
A X; must be §(z;x), the generating function associated with g (z), for ¥ = 0,1,2,.... From this
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observation and Lemma 25, it follows that

= exp(As(z — 1))

where, in the fourth line above, we substituted (3.16). The set of equations above shows that the
generating function of A X is exp(As(z — 1)), which is the generating function of a Poisson random
variable with parameter As. Therefore, the increments AgX; = X1 s — X of the process X; are Poisson
distributed with A X; ~ Pois(As). Moreover, the distribution of the increments A;X; does not depend

on t.

Next, we prove the second point of the Theorem. To this end, for any [ = 2,3, ..., consider any I
disjoint sub-intervals (¢;,t; + s;], for ¢ = 1,2,...,1, where each (¢;,t; + s;] C [0,T]. For ¢ =1,2,...,1,
denote by Ag, Xt, = Xi, 45, — X, the number of events occurring within the sub-interval (¢;,t; 4+ s;]. For
i=1,2,....0 let @i = (t; + s, — t;)/T = s;/T € [0,1]. Also, let x = (z1,...,2;) and y =1 — 22:1 x;.
Note that y € [0,1]. Since the intervals (¢;,t; + s;], for i = 1,2,...,1, are disjoint and the events have
the uniform conditional distribution (3.3), it follows that

l
k +
IP’(ASlth =ki,..., Ay Xy, = ki | X7 :m+Zki) = ( km> xKym, (3.17)
i=1

For any k € Ny, let pp = P(X1 = k). Then, using (4.14) and the law of total probability, we see that

P(Ag Xi, = k1yeo s Ay Xoy = ki)

) l l
= ZP(ASlth = ki, A Xy, :leT:erZki) ~IP’<XT:m+ZkZ—)

m=0 i=1 i=1
= (k+m m
=3 (M) P = i )

m=0

= k+m Kk m
= Zp\lkIHm Kk Xy

m=0

Observe that the last line in the set of equations above has the form of 7(k;x) in Lemma 26. So, for all
k = (ki,...,k;) € N}, let

= k+m m
W(k;X) = Zp|k|+m( Kk ) 'Xk Yy = P(Aletl = k1;~-~aAletl = k‘l)

m=0

Since, for all k = (ki,...,k;) € Ni, m(k;x) = P(Aletl =ki,..., Ay Xy, = kl), the generating function

Ag X - o o . .
E [zlASlXt1 -+ 2, 7" of the joint probability distribution of the increments Ay, Xy, ..., Ay, Xy, must be
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#(z;x), the generating function associated with the probabilities 7(k;x), k € Nj. From this observation
and Lemma 26 with p(z) = E [2%7] = exp(AT(z — 1)), it follows that

A, X Ay, X R
E[zl‘l g tl:|:7T(Z'X)

Il
3>
N
—
|
1]~
&
_

I
&
SN—
N———

i=1
~ exp ()\T(l _ gmi(l - 1))
— exp (me(% - 1))

= Hexp()\T%‘(Zi -1))

=1

!
= Hexp()\si(zi -1))
i=1

l
_ A X,
= [T =5

where the last line above follows from our proof of the first point of the Theorem, which implies that

E [ziAsiX”] =exp(Asi(z; — 1))  fori=1,2,...,1
We see from the set of equations above that the generating function of the joint distribution of the
increments Ag, Xy, ..., Ag, Xy, factors multiplicatively into the product of the generating functions of
the individual increments Ag, Xy, ¢ = 1,...,l. Therefore, the increments Ag, Xy, ¢ = 1,...,[, are

mutually independent. That is, the process X; for 0 < ¢ < T has independent increments.
O
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3.1.1 Backward Simulation Algorithm in d-dimensions

Algorithm 19 Backward Simulation of correlated multivariate Poisson processes

Require: Vector of marginal Poisson distributions at terminal time 7’

Pois(AT) = (Pois(MT),...,Pois(A\yT))

Correlation matrix C

Output: Scenarios of the multivariate Poisson process in [0, 7]

1:

2:

Construct Pois(A\;T) distributed marginals [ ék), ce, Qifg) |for k=1,...,d
Generate the calibrated Poisson measure P(©) using Algrgarxithm 9, which takes as input
Q4. Q') i, and C
Generate sarrx:gies (N(l), ceey N(d)) ~ P(©) using Algorithm 18 > Get the number of events at terminal
time T
for k=1,...,d do > this can be done in parallel
Generate N®) iid uniform random variables in the interval [0, T]: T®) = (Tl(k)7 . ,T](\f()k))’
> column vector
Sort T®) in ascending order

return T = (TW .. T@)

Remark 62. More sophisticated numerical methods, such as Quasi Monte Carlo (QMC) [/5, /0], can

be used to implement the Backward Simulation of Poisson processes, to achieve a much faster rate of

convergence.
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3.2 Correlation Structure

The main result of this section (Theorem 7) describes, analytically, the behavior of the correlation coef-
ficient between a pair of Poisson processes generated using Backward Simulation within the simulation
interval [0,7]. The exposition in this section is in the bivariate setting since Pearson correlation is
inherently a bivariate concept. The results in this section extend directly to the multivariate setting by

application of the results to each pair of components of a multivariate Poisson process.

We prove Theorem 7 using generating functions. To that end, let us first prove Lemma 27 below,
which can be straightforwardly applied to show Theorem 7. For the remainder of the section, consider

a bivariate integer-valued random vector ¢ = ((1,(2) and denote its probability distribution by
Pkl :]P(Cl :k,Cg :l), ]{),l :0,1,2,... (318)

and its generating function by
[ee] o0
pz,w) == ZZ])W Rl 2] <1, w| < 1. (3.19)
k=0 1=0

Furthermore, consider another bivariate integer-valued random vector ¢ = (&1,&2), such that, for all
k=0,1,2,....k', ¥ =0,1,2,...,and 1 = 0,1,2,...,0', I’ =0,1,2,..., £ has the conditional probability

distribution

Pl =ké&=1|G=FK,=1)= <’Z> (1= )V k. <ll/> g1 =)t (3.20)

where z and y are fixed values satisfying 0 <z <1and 0 <y < 1. By setting ¥ =k+mandl' =1+n
in (3.20) and using (3.20) together with the law of total probability, for any k,I € {0,1,2,...}, we can
write the unconditional joint probability of £ = (£1,&2) as

P =ké&=0)=> > Pla=k&=IlG=k+tmG=1+n) P =k+m,C=1+n)
m=0n=0

2 - k+m — l+n e
= 3 S (et (e

m=0n=0

where piym. i+n = P((1 = k+m, (s =1+ n). Note that the last line in the set of equations above has a

form analogous to gx(x) in Lemma 25 but in two-dimensions. Therefore, let

& kE+m m (LN "
=Zzpk+m,l+n~< 1 )xku—w ( l >yl<1—y> BI=01...  (322)

Lemma 27 ([74]). Suppose that the variance and the first moment of the random variables {; and (o
are equal, that is, E[¢;] = 0%((;) fori € {1,2}. Then, the generating function

4(z,w) = Z Z Qk,z(ﬂﬁ, ) 2ot

k=0 1=0
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associated with the bivariate random vector £ satisfies the relation
(z,w)=p(l—z+zz,1 —y+yw), |z|<1, |w| <1, (3.23)

where p(z,w) given in (3.19) is the generating function of the bivariate random vector (. Moreover, the

Pearson correlation coefficient of the random variables &1 and &5 satisfies

p(&1,82) = vy - p(Cr, C2), (3.24)

where p(&1,&2) and p(C1,(2) denote the Pearson correlation coefficients between the components of the

bivariate random variables & and (, respectively.

PRrROOF: The first part of the Lemma is analogous to Lemma 25. Therefore, for brevity, we omit its

proof. We focus on the second part of the Lemma and show (3.24).

To begin, since §(z,w) is the generating function of bivariate random vector £ = (£1,&2), it follows

from the definition of a generating function that

i(z,w) =E [25w®] . (3.25)
Differentiating (3.25), we get
U= g [ 01w,
% =E [&(& 1) 222w,
825’52,1010) -E [51 La—1 & wgrl} 7
762‘25;“’) =E [5 &(& — 1) w® 2],

Evaluating the equations above at z = w = 1, we get the well-know results

04(z,w) _

0z |yl E &, (3.26)
W __ TEll (3.27)
Taew) —Efae -1 =E [ -Elel, (3.29)
% __ “Eke&l (3.29)
Taev)  —ElaE-1)=E ] -Elel. (3.30)
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On the other hand, differentiating (3.23) and using (3.19), we also get

Similarly, we get

8/\ , o) (o) B
a(zw) :ZZka~(1—x+mz)k-l-(1—y+yw)l Loy,

Ow k=0 1=0
%4(z,0) = k-2 2 !
PUC) S (1 w2 s
z k=0 1=0
9%4(z, w) ii k1 -1
= Pri- k- (1—2+x2) cxl-(1—y4yw) ™ -y,
0z0w Pt
82/\27/{‘0 o0 o0
o) oSS g (b a2) U= 1) (1=t )22

Evaluating the equations above at z = w = 1 and using (3.18), we get

a[j(g,;w) = Z Z k-prp =z E[G], (3.31)
Z=w= k=0 1=0
94(z,w) = =
o =y Y > l-pra=yE[G], (3.32)
z=w=1 k=0 =0
82Cj(2’, U)) 2
T2 =z sz —1) - pry = 2?E[(F] - 2” B[], (3.33)
z=w=1 k=0 1=0
2 A SIS
% =ay Y Y kl-prs=ayE[( Gl (3.34)
z=w=1 k=0 1=0
q(z,w) 2 S 2 2 2
57 = SN pea =P EICE] - 42E G (3.35)
z=w= k=0 1=0
It follows from (3.26) and (3.31) that
E[&] =2E[C], (3.36)
from (3.27) and (3.32) that
E[&] =yE[(], (3.37)

and from (3.29) and (3.34) that
E [ &) = 2y E[G Gl (3.38)



CHAPTER 3. BACKWARD SIMULATION OF POISSON PROCESSES 105

Using (3.36), (3.37) and (3.38), we get that

Cov(&1,82) =E[1, 8] — E[&] E (&
= (2yE[G G]) — E[G]) (vE[¢])
=2y (E[G G —E[GIE[G])
= zy Cov((1, (o).

(3.39)

Using (3.26), (3.28), (3.31), (3.33) and the assumption in the Lemma that E[(;] = 0%((1), we get that

o*(¢) =E[¢]] - (E[&)?
= (E[7] - E[&]) +El&] - (E[&)

_ Pz, w) L 04z, w) _ (9a(zw) i
9z* z=w=1 0z z=w=1 0z z=w=1

(@?E[¢?] - 2*E[¢1]) + 2E[¢] - (zE[¢))? (3.40)
=o? (B¢ - BL0])?) + (@ -2 ELG
=22 %((1) + (¢ = 2%)0%(Q1)

=x20%((1).

[
]

Using an argument similar to that used to establish (3.40), we get that

o?(&2) = yo(Ga) (3.41)
From (3.39), (3.40) and (3.41), it follows that

_ COV(§1a€2)
Pe8) = e o ley)
_ Ty COV(ClaCZ)
Vra(l)yo(le)
GGG
=V ) o(&)

= Vxy p(C1 G2).

Therefore, we have proven that (3.24) holds.
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Theorem 7 (Time Structure of the Correlation Coefficient [74]). Consider a bivariate Poisson process
(Xt(l),Xt(Q)) such that the sample paths of Xt(l) and Xt(z) are generated by Backward Simulation in
the interval [0,T]. Let the correlation coefficient at time T be p(T) := corr(Xél),X(Tm). Then p(t) =
corr(Xt(l), Xt(z)) satisfies

o) = p(T) - % 0<t<T. (3.42)

PrROOF: Lemma 27 can be used to show Theorem 7 without much further work by setting { =
(N%l), N%z)) and £ = (Nt(l)7 Nt(2)). The conditional probabilities ]P’(Nt(l) =k, Nt@) =1 Nq(}) =K, N;z) =
I') satisfy (3.20) with @ = y = tT71, p(&,&) = corr(Nt(l),Nt@)), and p((1,¢) = corr(N§1)7N7(12)).
Making these substitutions in (3.24) implies (3.42). O

Figure 3.1 depicts the correlation structure obtained from simulating a bivariate Poisson process
with intensities 3 and 5, calibrated to correlations of 0.7 and -0.9, respectively, at terminal time T = 5,
within the simulation interval [0,5] under Backward Simulation. We used Backward Simulation with
1,000,000 Monte Carlo samples to compute the dashed black lines in Figure 3.1. The blue circles depict
the theoretical values according to Theorem 7. Note the good agreement between the theoretical and
the empirical results. Also note that the extreme positive and extreme negative correlations in this case
are 0.9955 and -0.9897, respectively, and that any correlation, at the terminal time T' = 5, within the
interval [—0.9897,0.9955] is attainable under our Backward Simulation approach.
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Figure 3.1: The dashed black lines depict the correlation structure for two bivariate Poisson process,
each with intensities 3 and 5, calibrated to p(T') = 0.7 and p(T) = —0.9, respectively, computed by
Backward Simulation. The blue circles depict the theoretical values according to Theorem 7.
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3.3 Forward Continuation of the Backward Simulation

In Forward Simulation, the notion of continuing forward a process past the original simulation interval
[0, 7] is natural and, for this reason, not given special consideration as this is simply accomplished by
continuing the Forward Simulation for another time step. In Backward Simulation, however, continuing
forward a process past the original simulation interval is not as natural and requires some consideration.

One approach to continuing forward a process past its original simulation interval, which we denote
the Forward Continuation of Backward Simulation?®, is as follows. First, consider the case where a
bivariate Poisson process (Xt(l)7 Xt(2)) has been simulated in the interval [0, T'] using Backward Simulation
and assume that we wish to continue forward the process to the subsequent interval [T, 2T]. To begin,

we draw an independent sample from the joint distribution at time T
(Arxi, Ar X £ (X5, X)), (3.43)

The bivariate random variable (ATX:(FI)7 Ar Xy (2 )) has the same prescribed Poisson marginals and pre-

scribed correlation C' between its components as (XT(}), Xég)). Next, we set

(X, X5 = (X, X2 + (Arx Y Arx P, (3.44)

As in Backward Simulation, we use (ATXQ(}), ArX (2)) and the Conditional independence property (sim-
ilar to (3.3)) to generate the uniform arrival moments {T(l)}ATX and {7 2)}L\‘TX in the interval
[T,2T)]. This process can be repeatedly applied to extend a bivariate Poisson process simulated by Back-
wards Simulation within the interval [0, T] to any subsequent interval [mT, (m+1)T] for any non-negative
integer m and is detailed in Algorithm 20 in Section 3.3.2. We call this algorithm Forward-Backward
Simulation since it starts with one step of Backward Simulation followed by m — 1 steps of Forward
Continuation of Backward Simulation.

We emphasize that the Forward Continuation method introduced here does not require the underlying
multivariate Poisson process to have independent increments. Backward Simulation relies solely on
the conditional uniformity of arrival times given the terminal count Np = n, a property that holds
irrespective of any increment-independence assumptions. While each component of the multivariate
Poisson process has independent increments across time (simulation) intervals, the dependence structure
across components is introduced explicitly through the calibrated joint distribution of increments rather
than imposed by a Lévy-type assumption. Therefore, the method does not implicitly construct a Lévy
process, since a Lévy process has independent increments, whereas in our construction the increments
between intervals may exhibit arbitrary dependence—including negative correlation—as determined by

the EJD based calibration.

Remark 63. Although the exposition in this section is in the bivariate setting, the results extend straight-

forwardly to the general d-dimensional setting.

3.3.1 Forward Correlation Structure

We analyze the behavior of the correlation coefficient under the Forward Continuation of Backward

Simulation by deriving an expression for p(mT + 7) = COI“I'(X(l) x@

T+ Xm74r) as a function of p(T) =

4This work was published in [17]
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(1

corr( Xy ,Xz(?)) for any non-negative integer m and any 7 € [0, 7] in Theorem 8 below. That p(mT + )

attains asymptotic stationarity follows by Corollary 3 below.

Theorem 8. The correlation coefficient p(mT+7) = corr(X$%+T, Xv(s%"-l—r

m and any 7 € [0,T] as a function of p(T) = corr(Xj(}), X(T2)) takes the form

) for any non-negative integer

m4 72 T2

T = T.
pmT +7) = p(T) - "

(3.45)

PRrROOF: First note that, for m = 0, (3.45) follows from Theorem 7. To show that (3.45) also holds
for all m > 1, we begin by deriving an expression for p(T + 7). To this end, let ATX;D = X}?T — X;l)
and ATX(Tz) = X(TQJ)FT — X;z) and note that each of the increments ATX(TI) and ATX(TQ) is independent

of both X:(Fl) and X:(Fz). Therefore, the covariance of the bivariate Poisson process at time T + 7 satisfies

Cov(X{,, X§) = Cov(X{" + A X, X 4+ A X[

(3.46)
— Cov(X, X2 + cov(a, xV, A x)
and, for each i € {1,2}, the variance satisfies
o ( Xy, ) =07 (X + A X
(X74r) (X7 7) (3.47)

= 2(X\) + (A, X)),

Moreover, using an argument similar to that used to prove Lemma 27 and Theorem 7, it can be shown
that

Cov(A, X, A, x ) = Cov(xV), x12)y. %22 (3.48)
and, for each i € {1,2},
o2(A X)) = o2(x )y . % (3.49)
It follows from (3.46) and (3.48) that
Cov(X$) X2 ) = Cov(X{, X&) + Cov(a, X, A, XP)
_ Cov(Xél),X(Tz)) <1 n ;Z) (3.50)
and, from (3.47) and (3.49), that
P (Xh) = (X)) + (A, X))
_ 2(x) <1 N ;) (3.51)

for i € {1,2}. Dividing (3.50) through by J(Xj(}lT) O’(Xé?l,r) and using (3.51), we get that

Cov(X{), X{PL)  Cov(xi! X)) (1+2)
o(X9) )o(XP) ) o(XS (X)) 1+ %
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whence
14+72.72

p(T+7) = plT) - s

(3.52)

By induction on m and using arguments similar to those used to derive (3.46) and (3.47), we obtain

Cov(ngp,ijgp) =m COV(Xé}),Xég)),
o (X)) = mo* (X))

for ¢ € {1,2}. Similar arguments used to show (3.50) and (3.51) can also be used to show that

2
-
Cov(X{fp X.) = Cov X2) - (mo+ 7).
2y (4 _ 2,y (D) T
g (XWT-H') =0 (XT ) : (m+ T)

for i € {1,2}, whence
m+712. T2

T =p(T) -
pmT +7) = p(T) - "

(3.53)

We show below how (3.45) leads to the asymptotic stationarity of the correlation coefficient.

Corollary 3 (Asymptotic Stationarity of Forward Continuation). The correlation p(mT + T) achieves

asymptotic stationarity as m — co. More specifically,

lim p(mT +7)=p(T), forany 7€]0,T] (3.54)

m—o0

PRrROOF: From (3.45) we have that

m+ 712 T2
T =p(T)————— 3.55
plnT +7) = p(1) 2T (355)
m(l+72-T72.-m™!
= pry A T L)
m(l+7-T-1-m=1)
1+72.T72.m7!
=p(T) -
1+7-T7t-m
Passing to the limit as m — oo in the standard manner, we obtain
lim p(mT +7)=p(T) forall 7€][0,T],
m—o0
as was to be proved. O

Figure 3.2 depicts the correlation structure obtained from simulating a bivariate Poisson process with
intensities 3 and 5, calibrated to correlations of 0.7 and -0.9, respectively, within the simulation interval
[0, 5] using Backward Simulation on the interval [0, 1] and Forward Continuation of Backward Simulation
on each of the intervals [m, m+1] for m = 1,2, 3,4. We refer to this as the Forward-Backward Simulation
approach. We used 1,000,000 samples to compute the dashed black lines in Figure 3.2. The blue circles
depict the theoretical values according to (3.45). Note the good agreement between the theoretical and
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the empirical results. Also note that the first few intervals of the process simulated under the Forward-
Backward Simulation can be discarded, similar to a burn-in phase, so that the process exhibits a near

constant correlation structure.
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Figure 3.2: The dotted black lines depict the correlation structure for a bivariate Poisson process with
intensities 3 and 5, calibrated to p(T) = 0.7 and p(T") = —0.9, respectively, computed by the Forward-
Backward Simulation approach. The blue circles depict the theoretical values according to (3.45).
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3.3.2 Forward-Backward Simulation Algorithm in d-dimensions

Algorithm 20 Forward-Backward Simulation of correlated multivariate Poisson processes

Require: Vector of marginal Poisson distributions at time T’
Pois(AT) = (Pois(AT),. .., Pois(A\yT))
Correlation matrix C
The number of intervals m (i.e., [0,7T],[T,2T7],- - ,[(m — 1)T,mT]) used in the Forward-
Backward Simulation Algorithm
Output: Scenarios of the multivariate Poisson process in the interval [0, mT]
1: Construct Pois(A,T') distributed marginals [Qék), ce Q(fk)) Jfork=1,...,d

2: Generate the Poisson calibrated measure P(©) using Alzgorithm 9, which takes as input
Q47 -, Q) Ji_, and C
:fori=1,...,mdo
4: Generate samples (N, ..., N(D) ~ P(©) using Algorithm 18 > Cet the number of events in the
interval [(i — 1)T,iT)|
5: for k=1,...,d do > this can be done in parallel

w

6: Generate N®) iid uniform random variables in the interval [(i — 1)T,iT7: TZ(.k) =
(Tl(k), e ,TJ(\;V(),C))’ > column vector

7 Sort Tgk) in ascending order

8 | Append Tgk) to T®)

9: return T = (TW, ..., T®)

Remark 64. Note that for most applications, especially in risk management, p(nT) forn € {1,...,m},

where m. is the number of forward intervals as defined in Algorithm 20, should vary less than 3%.
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3.4 Forward versus Backward Simulation

We introduced Backward Simulation in Section 3.1, analyzed the correlation structure obtained under
Backward Simulation in Section 3.2 and showed that the correlation coefficient between the components
of a multivariate Poisson process obtained under Backward Simulation is a linear function of time within

the simulation interval [0, T']:

where p(T') is any admissible correlation matrix. Recall that an admissible correlation matrix is a
correlation matrix that can be the correlation matrix of a discrete multivariate Poisson distribution
with the specified intensities; see Section 2.8 for a discussion of admissible correlation matrices. Then,
in Section 3.3, we introduced Forward Continuation of Backward Simulation, a method for extending
a process constructed using Backward Simulation within [0,7] to an interval [mT, (m + 1)T] for any
positive integer m. A surprising result is that the correlation structure of a multivariate Poisson process
constructed using the Forward-Backward method attains asymptotic stationarity:
mliLHm p(mT + 1) =p(T) forany 7 €][0,T].
In this section, we compare the Forward-Backward method with the well-known Forward Simulation

approach and discuss the advantages of the backward approach over the forward approach.

3.4.1 Forward Simulation

We begin by reviewing the forward approach in one dimension. Given a simulation interval [0, 7],
stochastic processes are typically simulated forwards in time. This is due to the fact that it is both
conceptually natural and technically simpler to do so. Forward Simulation (FS) consists of starting at
the beginning of the simulation interval, ¢t = 0, and advancing the process forward by some time-step, h,
by simulating the increments of the process until the end of the simulation interval, ¢ = T', is reached. For
a univariate Poisson process having arrival moments 17,75, . .., the inter-arrival times, ATy, = T, — Tk 1

for k=1,2,..., where Ty := 0, are exponentially distributed:
P(AT), <t)=1—e . (3.56)

Thus, Forward Simulation of the univariate Poisson process

o0

Ny => UTi < t)

i=1
within [0, 7] consists of repeated sampling of exponentially distributed random variables, ATy, whilst
> AT, < T. This remains true for the case of uncorrelated multivariate Poisson processes since the
components are mutually independent—Forward Simulation of the multivariate process reduces to the

Forward Simulation of each individual component.
However, it is not as straightforward to simulate correlated multivariate Poisson processes. To see
why, consider first how a bivariate Poisson process (Nt(l), Nt(Z)), where Nt(i) ~ Pois(\;t) for i € {1,2}, can

be constructed such that it exhibits extreme correlations under Forward Simulation. To accomplish this,
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we rely on the well known Fréchet-Hoeffding theorem® [10, 64]. When applied to the Poisson setting,

the Fréchet-Hoeffding theorem says that the inter-arrival times {ATéi)}kzl for i € {1, 2} must satisfy
MATY = AT k=12, (3.57)
in the case of extreme positive correlation and
exp (=1 - ATk(l)) +exp(—Az- ATk(z)) =1, k=12,... (3.58)

in the case of extreme negative correlation. Thus, to forward simulate a bivariate Poisson process
with extreme correlations, one must first sample from the inter-arrival distribution (3.56) for one of
the components and then solve either (3.57) or (3.58) to obtain the inter-arrival time for the other

component.

3.4.2 Range of Correlations Restricted under FS

Extreme correlations in the two-dimensional case obtained by the Backward Simulation approach are
more extreme than the extreme correlations attained obtained by Forward Simulation. This can be
seen by the Monte Carlo experiment summarized in Figure 9.8 on page 223 of [74], where the extreme
correlations generated by Backward Simulation attain values close to 1 and -1, while the extreme cor-
relations generated by Forward Simulation do not attain values close to 1 and -1. Therefore, even if
we could find a method based upon Forward Simulation to compute bivariate Poisson processes with
correlations between the extreme correlations attainable by Forward Simulation, this method would not
be capable of simulating bivariate Poisson processes with as wide a range of correlations as is possible

with Backward Simulation coupled with Forward Continuation of Backward Simulation.

Expanding on the experimental result of [74] noted in the paragraph above, we show analytically,
below, that the extreme positive correlation for a bivariate Poisson process computed by Forward Simu-
lation is a constant determined by the ratio of the intensities of the processes. Moreover, if one intensity
is much larger than the other, this constant extreme positive correlation is much smaller than 1. A

similar analysis can be made for the extreme negative case.

Extreme positive correlations via Forward Simulation In the case of extreme positive correlation

under Forward Simulation, (3.57) implies that

MTD =01 k=0,1,2,... . (3.59)
Define Kk = A;/A2. Obviously, 0 < & < oo. To determine the correlation between the process
Nt(l)associated with the events Tlgl), k = 1,2,..., and the process Nt(z) associated with the events

T,§2), k=1,2,..., we begin by showing that, for all t > 0,

NV =N®. (3.60)

Kt

5For discrete distributions, Fréchet-Hoeffding is equivalent to the EJD theorem in two-dimensions [74]
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To this end, choose any ¢t > 0 and let Nt(l) = n where n is a non-negative integer. This implies that the

(1)

arrival moments associated with N,/ satisfies the inequality

M <t <1, (3.61)
It follows immediately from (3.59) that the arrival moments for Nt(2) must satisfy
T = kT forall k=0,1,2,.... (3.62)

Multiplying (3.61) through by x and using (3.62), we see that T2 < Kt < T(ﬁl, which in turns implies
that N,g) = n. Hence, Nt(l) =n= N,g). We have shown (3.60) since ¢ > 0 is arbitrary.

Now we compute the correlation coefficient of Nt(l) and Nt@) in the case K > 1. To this end, write
N,g) as
NS =N + AN, (3.63)

where AN, (2) =N, ,g) — Nt@) represents the increment of Nt(Z) in the interval [t, kt] and is independent of
Nt(Q). Then, we obtain

Cov(N D, NPy =E[NV NP - E[NYE [N
=ENG N -ENDIEN)]
=E[(N” + AN,E%NP] B[N+ AN (N
=E[NI NP1+ EANG NP -ENPEIN?] - E[ANG | E [N
=EINO NP +EANDIEIN?] - ENPIEIN®] - E[ANDE [N
=E[(N?)?] - E[N?)E [N
=0t (V).

where we used (3.60) in the second line, (3.63) in the third line, and the independence of AN, t ) and N
in the fifth line of the set of equations above. Since o (Nt( )) =Mt, o (Nt(2)) = Aot, and kK = A1 /)y, the

set of equations above implies that

1
p(Nt(l),Nt(Q)) = 75 where £ > 1. (3.64)
Similar reasoning in the case 0 < k < 1 leads to
PN NP = V. (3.65)

Therefore, we can see, from Equations (3.64) and (3.65), that the extreme positive correlation coef-
ficient obtained via Forward Simulation is a function of the ratios of the intensities of the components
of a bivariate Poisson process that does not depend on time. For example, if the correlated bivariate
Poisson with intensities 3 and 5 from Figure 3.1 was simulated to time 7" = 5 by Forward Simulation,
the attainable extreme positive correlation would only be \/?7 = 0.7746, whereas the extreme positive
correlation is 0.9955 using Backward Simulation. Finally, consider a more extreme example of a bivariate
Poisson process with intensities 1 and 100. The attainable extreme positive correlation would only be 0.1

using Forward Simulation whereas the extreme positive correlation is 0.9193 using Backward Simulation.
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3.5 Computational Complexity

The computational complexity of the Backward Simulation algorithms for the more complicated Poisson
processes discussed in Chapters 4 and 5 are similar. For this reason, we omit repeating the discussion

here in those (more general) settings.

3.5.1 Backwards Simulation

The Backward Simulation method constructs multivariate Poisson sample paths having a dependence
structure specified by the joint distribution calibrated from the EJD approach. Each simulation consists
of, for each dimension, generation of a number of uniformly distributed random variables equal to the
terminal number of events. Let M denote the number of Monte Carlo simulations, T denote the terminal
simulation time, and N:(Fk) ~ Pois(A;T) the number of uniform random variables we have to generate

per dimension.

Time Complexity

For a d-dimensional multivariate Poisson process and M Monte Carlo simulations, the pure time com-

plexity of the Backwards Simulation, ignoring the calibration and sampling of the EJD approach, is:
OM-T-Y A) (3.66)

since Backward Simulation does not generate a constant-sized vector per dimension. The time complexity

of the EJD approach can be found in Section 2.10.

Memory Complexity

Since the Backwards Simulation relies on the joint distribution of the process at terminal time T" obtained
by calibration via the EJD approach, we refer the memory complexity of the EJD construction in
Section 2.10

Remark 65. The computational complexity per forward interval for the Forward Backward Simulation
is the same as that of Backwards Simulation, since each forward interval requires only one additional

draw from the calibrated joint distribution and a standard backward simulation step.
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3.6 Summary

In this chapter, we introduced the Backward Simulation method for Poisson processes that, in con-
junction with extreme joint distributions constructed using the EJD approach introduced in Chapter 2,
enables the simulation of correlated multivariate Poisson processes. In particular, Backward Simulation
is able to generate all admissible distributions at the endpoint T' of the interval [0, T]. Forward Continu-
ation of Backward Simulation enables the process generated by Backward Simulation within the interval
[0, T] to be extended to intervals [mT, (m+1)T] for any positive integer m, where the correlation displays
the asymptotic behavior
p(mT +7)  p(T)

for all m sufficiently large, all 7 in [0, 7], and for any admissible correlation matrix p(T).

Our contributions are summarized below:

e We introduced the Forward Continuation of Backward Simulation for Poisson processes. This
enabled the continuation of correlated multivariate Poisson processes simulated using Backward
Simulation within [0,7] to simulation intervals [mT, (m + 1)T] for any non-negative integer m.

This was published in [17] for the Poisson case.

e We showed that the correlation structure of a correlated multivariate Poisson process attains

asymptotic stationarity.

e We showed formally that the extreme positive correlations attained under Forward Simulation in
the bivariate setting is constant and determined by the ratio of the intensities of the bivariate

Poisson process.



Chapter 4

Backward Simulation of Mixed

Poisson Processes

In Chapter 3, we introduced the Backward Simulation for multivariate Poisson processes that, in con-
junction with the Extreme Joint Distribution approach (Chapter 2) for constructing joint distributions
with prescribed marginal distributions and a prescribed dependence structure in the form of a corre-
lation matrix, enabled the construction of correlated multivariate Poisson processes. In particular, our
approach enables the construction of correlated multivariate Poisson processes capable of exhibiting ex-
treme positive and even extreme negative correlations between its components. A natural question to
ask next is whether the Backward Simulation methodology applies to more general Poisson processes
and, if so, to which generalizations does the methodology still apply. One generalization of the Poisson
process to consider is the mixed Poisson process, where the intensity of the Poisson process is a random
variable instead of a constant scalar value. Consequently, the increments of a mixed Poisson process
are no longer independent of each other [58]. However, the increments are conditionally independent,
a property that we exploit in showing that our Backward Simulation methodology can be applied to
mixed Poisson processes. Mixed Poisson processes are widely used in cases where Poisson processes are
deemed inadequate; some examples can be found in finance [19, 56], Operational Risk [37], physics [41],
and software reliability [62].

Similar to the Poisson setting, we note that while the majority of the exposition in this chapter is in

the bivariate setting, the discussions generalize immediately to the multivariate setting.

4.0.1 Outline

In Section 4.1, we review the basics of mixed Poisson processes and mixed Poisson distributions. The
Backward Simulation of mixed Poisson processes is discussed in Section 4.2. The correlation structure
of mixed Poisson processes simulated using Backward Simulation is discussed in Section 4.3. The For-
ward Continuation of the Backward Simulation for mixed Poisson processes is discussed in Section 4.4.

Section 4.5 closes and summarizes the chapter.
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4.0.2 Notation

120

We make use of the following notation in this chapter.

Symbol Definition
T End of the simulation interval
T, i*™ arrival moment

™™ inter-arrival time

Ti(k) it? arrival moment corresponding to the k' component

A Mean parameter of a Poisson distribution or the intensity parameter of
a Poisson process

Ny Poisson process

N; = (Nt(l)7 ,Nt(d)) d-dimensional Poisson process

N, Mixed Poisson process

N, = (Nt(l), . ,Nt(d)) d-dimensional mixed Poisson process

NB; Negative Binomial process

NB,; = (NBEI)7 7NBEUD) d-dimensional Negative Binomial process

n Realization of a Poisson, mixed Poisson, or Negative Binomial random
variable

U Structure distribution of a mixed Poisson process

A U-distributed non-negative random variable

A Mean of the intensity parameter of a mixed Poisson process

MP(U) Mixed Poisson distribution with structure distribution U

MP(t,U) Mixed Poisson distribution with structure distribution U at time ¢

MPP(U) Mixed Poisson processes with structure distribution U

¢, €& General integer valued random variables

X Mixed Poisson process obtained from Backward Simulation

X; = (Xt(l), ,Xt(d)) Multivariate mixed Poisson process obtained from Backward Simulation

A X, The increment X, — X; of the process X; in interval [t,t + s]
Generating function of a mixed Poisson process

Generating function of a Negative Binomial process
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4.1 Mixed Poisson Process

We briefly review some properties of the mixed Poisson process. The main results of the theory of mixed

Poisson processes can be found in [58]. Recent results on the characterization of multivariate mixed
Poisson processes are in [130]. First consider a Poisson process
oo
Ny=> 1(T; < t) (4.1)
i=1

where the arrival moments of the process, {T;}$2,, are iid. The inter-arrival times, AT; := T; — T;_; for
i=1,2,... and Ty = 0, form a sequence of independent identically distributed random variables having
an exponential distribution with parameter \. It is well known that the number of events, ¢, in the

interval [0,¢] has the Poisson distribution with parameter At:

(A"

n!

P(N; =n) = e M , n=0,1,2,... t>0. (4.2)

A natural generalization of the Poisson distribution is to randomize the intensity parameter A in (4.2),
leading to the mixed Poisson Distribution (MPD).

Definition 29 (Mixed Poisson Distribution [58]). A discrete random variable N is said to be mized
Poisson distributed, MP(U), with structure distribution U, if
"
pni=P(N=n)=E]| ¢ A]
oo A n
= / %e—*dU(A), n=0,1,2,... (4.3)
0— n!

where A is a random variable distributed according to U.

Remark 66. The structure distribution U can be viewed as a prior distribution, which allows us to view
(4.2) as a conditional distribution, given a realization of the intensity parameter A = X and (4.3) as an

unconditional distribution.
Remark 67. Another interpretation of (4.3) is that it is a mixture of Poisson distributions.

Definition 30 (Mixed Poisson Process [7%]). Ny is a mized Poisson process if it is MP(t, U)-distributed
for allt > 0. That is,

P(N, =n) = E [(At)"e—“] - / T vapn), =012, (4.4)
0—

n! n!
The mixed Poisson process is a Poisson process with a non-negative random intensity.

Remark 68. Note that we use MP(t,U), instead of MP(U), when we want to make explicit the depen-

dence on t in an expression such as (4.4).

Lundberg also showed that there exists a mixed Poisson process for each structure distribution U
and that the process is uniquely defined [34]. In what follows, we denote by MPP(U) the class of mixed
Poisson processes with structure distribution U. Tt is not difficult to see that if N; € MPP(U), then the

generating function takes the following form.
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Definition 31 (Generating function of a mixed Poisson process [58]).

9t 2) = E [N = /0 gt dU (z). (4.5)

The moments take the following form.

Definition 32 (Moments of the mixed Poisson process [58]).
E[N,] =X, o2(N;) = Xt + o?(A)E2, (4.6)

where
A=E[A] :/ AAU(N), aQ(A):/ (A= X)2dU(N). (4.7)

Remark 69. When we construct multivariate mixed Poisson distributions using the EJD approach,
there is no direct dependence between the structure variables. The structure variables indirectly affect
the correlation structures since different realizations (draws) of structure variables results in different

marginal distributions altogether.
Crucially, the mixed Poisson process also posses the conditional uniformity property.

Proposition 4 (Conditional uniformity of the mixed Poisson process [39]). Let Ny be a mized Poisson

process defined on the interval [0, T] and suppose that the total number of events n is known at time T':
Ny => 1(T;<t) for t€[0,T).
i=1

Then, the arrival moments {T;}7_, are independent, identically distributed random variables having a

uniform conditional distribution

t

P(Tigt\n)zf 1=1,2,...,n and 0<t<T. (4.8)
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4.2 Backward Simulation

In this section, we prove the fundamental result enabling the Backward Simulation for mixed Poisson

processes. That is, we consider, for the remainder of this section, a process, X; for 0 < t < T, defined as
n

Xy => WT; <t), (4.9)
i=1

where n is a realization of the random variable X7 ~ MP(T,U) and the random variables {T;}!_, are
iid having the uniform conditional distribution (4.8) in the interval [0,T]. We remind the reader that
although Theorem 9 below is formulated and proved in the univariate setting, the results extend directly
to the multivariate setting. That is, similar to Theorem 6 in Chapter 3, Theorem 9 extends directly
to the case where X; is a correlated multivariate mixed Poisson process. This is because of the fact
that, while the dependence structure is specified through the joint distribution, X7, every coordinate
(marginal) of a correlated multivariate mixed Poisson process is itself a (univariate) mixed Poisson
process'. Therefore, given the joint number of events sampled from a suitable joint distribution?, X,
the correlated multivariate mixed Poisson process can be constructed within the simulation interval [0, 7]
by applying Theorem 9 independently to each coordinate.

We begin by reviewing some notation to keep this chapter as self contained as possible. For a general
d-dimensional vector®, k = (ki,ko,...,kq) € Nd, with non-negative integer coordinates, k; > 0, we

denote the norm of the vector by
d
el =D k.
j=1

For any d-dimensional vector, x = (1, %2, ..., %4), with non-negative real coordinates, and k € N&, we

denote
d
xK = H :vjkj
Jj=1

and introduce the multinomial coefficient

- (+$0)r

k - d
- H k;!
i=1

The main result of the chapter is the following theorem.

Theorem 9. Fort € [0,T], define the process X by
n
Xy=> WT; <t) (4.10)
i=1

where n is a realization of the random variable X ~ MP(T,U) and {T;}?_, are independent, identically

1See Definition 9.

2Recall that Chapter 2 is concerned with constructing extreme distributions that exhibit extreme correlations and
constructing distributions that exhibit any admissible correlation that is a convex combination of extreme correlations.

3We emphasize that the d here refers to the dimension of a generic vector and does not refer to the dimensionality of
multivariate Poisson processes.
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distributed random wvariables having a uniform conditional distribution (4.8). Then, X; is a mized

Poisson process having distribution MP(¢,U) in the interval [0,T).
PrOOF: We prove the following two statements.

1. For any interval (¢,t+ s] C [0, T] of length s > 0, the increments A;X; = Xy, s — X; of the process
X, are mixed Poisson distributed, with A; Xy = X;ys— Xy ~ MP(s,U). Moreover, the distribution

of the increments A;X; does not depend on ¢.

2. For any l = 2,3,... disjoint sub-intervals (¢;, t;+s;] C [0,T] fori = 1,2,...,[, the random variables
Ag, Xy, = Xy, 45, — Xy, for i =1,2,... .1, are mutually independent.

Similar to the proof for the Poisson case in Chapter 3, the theorem follows immediately from applying
Lemma 25 and Lemma 26. We begin by proving the first statement above. Note that, since the mixed
Poisson process also possesses the conditional uniformity property (see Proposition 4), the proof of the
first statement is very similar to the Poisson case. Nevertheless, we present the full details of the proof,
since this is the main result of this chapter and we want to keep the chapters as self-contained as possible.

To this end, denote by A;X; = Xy1 s — Xy, the number of events occurring in the interval [t, ¢ + s].
Then, the probability that k& events occur in the interval [¢, ¢+ s] of the process can be expressed, by the

law of total probability, in terms of the conditional probability, as

P(AX: =k) =Y PAX, =k|Xr =k+m) -P(Xp =k +m). (4.11)
m=0

Since the conditional probability of k events occurring in the sub-interval [¢,¢+ s] C [0,T] given a total
of Xp = n = k+m independent, uniformly distributed events occurring in the full interval [0, T] is equal
to choosing k out of n = k+m total events in the interval [¢,¢+ s] of length s, with the rest of the events

being in the remainder of the interval [0, T], it follows that

k+m s\" s\™
P(AX; =k|Xr=k+m)= ( i )(T) (1T> , m=0,1,.... (4.12)
Moreover, since X is MP (T, U) distributed, its generating function takes the form
p(z) = E[2XT] = / ATE=D AU (). (4.13)
0
We use Lemma 25 to show that the generating function of A X, also takes the form (4.13), but with T

replaced by s. Thus, A;X; is MP(s,U) distributed. To this end, let py = P(X7 = k), for any k € N,
and z = s/T. Then, note that, by (4.11) and (4.12),

P(AX, =k) =Y P(AX; =k| Xy =k +m) P(Xp =k +m)

_ i (’“};m (;)k<1—;)m~P(XT:k+m)
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Observe that the last line in the set of equations above has the form of g (z) in Lemma 25. So, let
- k
qx(z) = Z p;Hm( —l:m)xk(l — )" =P(A X = k), k=0,1,2,....
m=0

Since qx(r) = P(A X = k), for k = 0,1,2, ..., the generating function E [z2+%¢] of the random variable
A;X; must be §(z;x), the generating function associated with g (z), for k¥ = 0,1,2,.... From this

observation and Lemma 25, it follows that

exp(AT((1 + %(z — 1)) — 1)) dU(\)
0

= /OOO exp(As(z — 1)) dU(N)

where, in the fourth line above, we substituted (4.13). The set of equations above shows that the
generating function of A, Xy is [;° exp(As(z — 1)) dU(X), which is the generating function of a mixed
Poisson random variable distributed according to MP(s, U). Therefore, the increments A; Xy = X4 s—X;
of the process X; are mixed Poisson distributed with A;X; ~ MP(s,U). Moreover, the distribution of
the increments Ay X; does not depend on .

Next, we prove the second statement listed at the start of the proof. To this end, for any [ = 2,3, ...,
consider any ! disjoint sub-intervals (¢;,t; + s;], for ¢ = 1,2,...,1, where each (¢;,¢; + s;] C [0,T]. For
1=1,2,...,1, denote by A;, X;, = X4, +s, — Xt, the number of events occurring within the sub-interval
(tisti + 85]. Fori=1,2,....1, let x; = (t; + 8, — t;)/T = s;/T € [0,1]. Also, let x = (z1,...,2;) and
y=1- 22:1 x;. Note that y € [0,1]. Since the intervals (t;,¢; + s;], for i = 1,2,...,1, are disjoint and

the events have the uniform conditional distribution (4.8), it follows that

l
k
IP(ASIth =ki,..., 00 Xs, =k | Xp :m—l—iji) = ( ;m> SxkLym, (4.14)
i=1

For any k € Ny, let p, = P(X1 = k). Then, using (4.14) and the law of total probability, we see that

P(Ay, X, = k1, Ay Xy, = ki)

o l l
= Z]P’(ASIth = klv"'7Aletl =k ‘XT :m—FZkl) 'P(XT :m—|—Zk‘z>
m=0 .

=1
— (k
= ( 1m> Xy P(Xr = |K]| +m)
m=0

> k+m k m
:Zpulem K Xy

m=0

Observe that the last line in the set of equations above has the form of 7(k;x) in Lemma 26. So, for all
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k= (kl,...,kl) € Né, let

— k—"_m m
F(k;x) == Zp|k|+m( Kk ) ~Xk Yy = P(Aletl = kl,...,Aletl = kl).

m=0

Since, for all k = (k1,..., k) € Ni, n(k;x) = P(Ay, Xy, = ky,...,A,, Xy, = k), the generating function
JAVD, ¢* Ag, Xt

E[le 1'”Zl l l}

7(z; %), the generating function associated with the probabilities 7 (k; x), k € N). From this observation

and Lemma 26 with p(z) = E [zX7] = [ exp(AT(z — 1)) dU()), it follows that

of the joint probability distribution of the increments A;, Xy, , ..., Az Xy, must be

A, Xt Ag, Xyt N
E [zl g fl]:’]T(Z'

3

l

= /Ooo exp | Y ATwi(z — 1)) dU(A)

i=1

= H /000 exp(Asi(z; — 1)) dU(N)

[T [

where the last line above follows from our proof of the first point of the Theorem, which implies that

o0

A Xy, .

E [zl "X“} = / exp(As;(z; — 1)) dU(N) fori=1,2,...,1.
0

We see from the set of equations above that the generating function of the joint distribution of the

increments Ay, Xy, ..., Ay, Xy, factors multiplicatively into the product of the generating functions of

the individual increments Ay, Xy, ¢ = 1,...,l. Therefore, the increments A, Xy, i = 1,...,[, are

mutually independent. That is, the process X; for 0 < ¢ < T has conditionally independent increments.
O
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4.2.1 Backward Simulation Algorithm for mixed Poisson processes in d-

dimensions

Algorithm 21 Backward Simulation of correlated multivariate mixed Poisson processes

Require: Vector of mixed Poisson distributions at terminal time 7'

MP(T,U) = (MP(T,UM), ... MP(T,U®))

Correlation matrix C

Output: Scenarios of the multivariate mixed Poisson process in [0, T

1:
2:

Construct MP(T, U®) distributed marginals [Q%”,..., Q) Jfor k=1,...,d

max

Generate the calibrated mixed Poisson measure P(©) using Algorithm 9, which takes as input
k E
Q®,...,Q" 19_, and C

()
Generate sa;rnl];;ies (N(l), ce N(d)) ~ P(©) using Algorithm 18 > Get the number of events at terminal
time T
for k=1,...,d do > this can be done in parallel
Generate N®) iid uniform random variables in the interval [0, T]: T®) = (Tl(k)7 . ,T](\f()k))’
> column vector
Sort T™* in ascending order

return T = (TW ... T@)
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4.3 Correlation Structure

The main result of this section (Theorem 10) describes, analytically, the behavior of the correlation
coefficient between a pair of mixed Poisson processes generated using Backward Simulation within the
simulation interval [0,7]. The exposition in this section is in the bivariate setting since Pearson corre-
lation is inherently a bivariate concept. The results in this section extend directly to the multivariate

setting by application of the results to each pair of components of a multivariate mixed Poisson process.

Theorem 10. Consider a bivariate process (Xt(l), Xt(2)) generated using Backward Simulation in the in-
terval [0,T), whence Xt(l) and Xt(2) possess the conditional uniformity property (4.8). Let the correlation
coefficient at time T, p(T) := corr(X(Tl),X;Q)), be known. Then p(t) = corr(Xt(l),Xt@)) takes the form

p(t) = p(T) - ZZ((11;))’ 0<t<T, (4.15)
where @ @
Z(t) = %’ t>0.

and UQ(Xt(i)) denotes the variance of Xt(i) forie {1,2}.

PrOOF: Lemma 27 from Chapter 3 does not apply to the mixed Poisson setting since the mean and
the variance of the process are no longer equal. However, the derivation of (3.39) in Lemma 27 does not
rely on the assumption that the mean equals the variance and thus applies to the mixed Poisson setting.
Recall from (3.39) that

Cov(&1,&2) = zy Cov(Ci, (2),

where £ and ( are bivariate integer-valued random variables. By substituting { = (X:(pl),X:(FZ))7 & =

(X15(1)7Xt(2))7 and = = Y= t/T we obtain

t2
Cov(xV, x¥) = = Cov(Xx{, x 1.

Dividing both sides of the equation above by O’(Xt(l)) J(Xt(2)), we arrive at

_ Cov(xV, x?)

A= X))

o(X)o(X) (4.16)

2 o(xM)o(x®

as was to be proved. O
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Remark 70. Crucially, the correlation at terminal time is also preserved in the mized Poisson case.
This can be seen by substituting T for t in (4.15), whereby the second term on the right side of the

equation cancels out.

Remark 71. In the Poisson case, the auxiliary function Z(T)/Z(t) in (4.15) reduces to tT 1, resulting
in a correlation structure that is linear in time within the simulation interval [0, T]. This is not true in
general for mized Poisson processes. Consider, for example, the Negative Binomial processes, where the
auxiliary functions take the form

plt) = p(1) 7

(4.17)

_ t AW+ a2(\)T)AP + 02(N)T)
=) 7 \/ D + 2(A)H AP + a2(A)t)

The difference in the correlation structure between the Poisson and Negative Binomial case can be seen
in Figure /.1. The square root term in (4.17) causes the correlation function in the Negative Binomial

case to display a convex behavior in comparison to the linear behavior displayed in the Poisson case.

The Negative Binomial (NB) process is a concrete instance of a mixed Poisson process where the
structure distribution, U, is gamma distributed [58]. Unlike the Poisson process, the Negative Binomial
process does not have the restriction that its mean equals its variance and, for this reason, is widely

used to model count data that exhibits overdispersion.

Figure 4.1 depicts the correlation structure obtained from simulating a bivariate Negative Binomial
process where the mean of the intensities are 3 and 5 and the variance of the intensities are 5 and 7,
respectively, calibrated to correlations of 0.7 and —0.9, respectively, at terminal time 7' = 5, within
the simulation interval [0, 5] under Backward Simulation. We used Backward Simulation with 1,000,000
Monte Carlo samples to compute the dashed black lines in Figure 4.1. The blue circles depict the
theoretical values according to (4.17). Note the good agreement between the theoretical and the empirical
results. Also note that the extreme positive and extreme negative correlations in this case are 0.9972
and —0.96, respectively, and that any correlation, at the terminal time 7" = 5, within the interval
[0.9972, —0.96] is attainable under our Backward Simulation approach. The red lines depict the Poisson

case from Figure 3.1 for comparison.
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Figure 4.1: The dashed black lines depict the correlation structure for two bivariate Negative Binomial
process, with means 3 and 5 and variances 5 and 7, calibrated to p(T') = 0.7 and p(T) = —0.9, respec-
tively, computed by Backward Simulation. The blue circles depict the theoretical values according to
(4.17). The dashed red lines depict the Poisson case: two bivariate Poisson processes with intensities 3
and 5, calibrated to p(T") = 0.7 and p(7T") = —0.9, respectively, computed by Backward Simulation.
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4.4 Forward Continuation of the Backward Simulation for Mixed

Poisson Processes

The conditional independence of the increments of a mixed Poisson process, as noted in Section 3.3,
presents a challenge in continuing forward a mixed Poisson process already simulated within an interval
[0, T]. Our particular approach, however, to Forward Continuation of a Poisson process extends naturally
to the mixed Poisson process setting. To be more specific, consider a bivariate mixed Poisson process
(Xt(l)7 Xt(2)) already simulated within the interval [0, T] and suppose that we wish to continue forward
the process to the subsequent interval [T, 27]. First, we draw an independent sample from the joint

distribution at time 7'
d
(Arx () ArxP) £ (x5, x1),

where ApX$) = XQ(zT) — X¥), for i € {1,2}. Note that the bivariate random variable (ATX(TI)7 ATX;Q))
has the same prescribed mixed Poisson marginals and prescribed correlation, C, between its components
as (X(Tl),X;Q)). Then, we set

1 2 1 2 1 2
(X5, X5 = (X, XP) + (Ar X Arx )

and, as in Backward Simulation, we use (ATX:(FU, ATX:S?)) and the conditional independence property
(similar to (4.8)) to generate the uniform arrival moments {Ti(l)}iA:Tlx(Tl) and {T, i(z)}f:TlX(Tm in the interval
[T,2T).

Note that the Forward Continuation method remains applicable in the mixed Poisson setting because
a mixed Poisson process is defined via a single structural variable A that is shared across all times.
Conditional on A, the process is a time-homogeneous Poisson process with independent and stationary

increments.

Forward Continuation, described above, can be repeatedly applied to extend a bivariate mixed
Poisson process simulated by Backwards Simulation on an interval [0,T] to any subsequent interval
[mT, (m + 1)T] for any non-negative integer m. Algorithm 22 in Section 4.4.2 below combines Back-
ward Simulation and Forward Continuation of Backward Simulation to generate arrival moments for a
d-dimensional mixed Poisson process on an interval [0, mT], for any positive integer m. We call this al-
gorithm Forward-Backward Simulation because it starts with one step of Backward Simulation followed

by m — 1 steps of Forward Continuation of Backward Simulation.

Finally, we note again that, although the exposition in this section is in the bivariate setting, the

results extend straightforwardly to the general d-dimensional setting.

4.4.1 Forward Correlation Structure

We analyze the behavior of the correlation coefficient under the Forward Continuation of Backward

Simulation by deriving an expression for p(mT + 7) = corr(Xfy})T+T,Xﬁfgp+T) as a function of p(T) =

corr(X:S}), Xj(?)) for any non-negative integer m and any 7 € [0, 7] in Theorem 11 below. Similar to the

Poisson case, p(mT + 7) attains asymptotic stationarity follows by Corollary 4 below.

Theorem 11. The correlation coefficient p(mT + 7) = corr(X2%+T,Xfrf%+T) for any non-negative



CHAPTER 4. BACKWARD SIMULATION OF MIXED POISSON PROCESSES 132

integer m and any T € [0,T) as a function of p(T) = corr(X:S}),Xz(?)) takes the form

LA (X )o(X3?)
2/ :
T mer(xW) + o2(x W)y /m o> (XP) + 02(x?)

pmT +71)=p(T) - (m + (4.18)

PRrROOF: First note that, for m = 0, (4.18) follows from Theorem 11. To show that (4.18) also holds

for all m > 1, we begin by deriving an expression for p(T + 7). To this end, let ATXF}I) = X:(Fl_)w — X:(Fl)

and ATXg) = X7(12+)T — X?) and note that each of the increments ATXT(}) and ATX;Q) is independent

of both Xél) and X(T2). Therefore, the covariance of the bivariate mixed Poisson process satisfies

Cov(X{,, X{7,) = Cov(X (" + A, X, X 4 A X[7)

(4.19)
= Cov(XW, X)) + Cov(a, xV, A x2)
and, for each 7 € {1, 2}, the variance satisfies
2y (3) 20y (9) (4)
(X =0(X; + A X
( T+‘r) ( T T ) (420)

= (X)) + oA X).

Unlike the Poisson case, Lemma 27 in Chapter 3 cannot be applied since for a mixed Poisson random
variable the mean is not equal to the variance. However, (3.39) holds true in the mixed Poisson setting.
By substituting ¢ = (X\, X)), ¢ = (A, XV, A, X)), and 2 = y = 77 into (3.39), it can be shown
that )

Cov(x{)_ x@ y=(1+ %) - Cov(xW, X)), (4.21)

Dividing both sides of (4.21) by J(Xj(}lT) O’(Xé?l,r) and using arguments similar to those used to show
(4.16), we obtain

2 (1) (2)
p(T+71)=p(T) 1+ L) - o(Xgp)o(Xg7)

2 1 2 :
2 o(x ) )e(X{))

By using induction on m and arguments similar those used in deriving (4.21), we obtain

1 2 T 1 2

Cov (X g s X jypr) = (m 4 775) - Cov(Xg, X17) (4.22)

whence @ @)

2 X X

p(mT +7) = p(T) - (m + ) - — 22 )7 ) (4.23)

T2 1) (2)

(XmT+T)U(XmT+T)
Induction on m can be used to show that Xf,?T and ATXﬁ)T are independent, similar to ATX¥ ) and
X(Ti)7 for i € {1,2}. Therefore, we have that

oA(X 0+ A X)) = (X[ + a2 (A- X)) (4.24)

for ¢ € {1,2}. Furthermore, since our construction of the process at the end of the time interval

T, 2T consists of drawing another bivariate random variable (Ar X (1), ArX (%)) that has the same joint
g T T J
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distribution as (er,}),X:(f)), we have that UQ(X:E})) = 02(ATX§F1)), whence

(X)) = 2(x + Apx D)

= (X + o2 (Arx i) (4.25)
= 202(X{M).

By induction on m and an argument similar to the one used in deriving (4.25), we get that

22Xy =ma2(x{V). (4.26)
Similarly,
2(X2)) = ma?(X2). (4.27)

Then, by using (4.24), (4.26), and (4.27), we can derive from (4.23) that

2 o xW O'(X(z))
pmT +7) = p(T)m 4 ) - Cr Jothr ) 2
Vor XD+ A, x W) /02(x 3, 4+ 8, x2))
2 o X(l) o X(2)
=D+ 75 ) : <T1> - )<2> @
\/02 (XmT) + 02(ATXmT)\/U2 (XmT) + 02(ATXmT)
2
.
= p(D)(m+ )
: o (X )o(X;?) . (4.28)
Vo2 (60) + 02 (X fm 2 (X2 + 0262
0

We show below how (4.28) leads to the asymptotic stationarity of the correlation coefficient.

Corollary 4 (Asymptotic Stationarity of the Forward Continuation). The correlation p(mT+7) achieves

asymptotic stationarity as m — oco. More specifically,

lim p(mT +71)=p(T), forany 7€]l0,T). (4.29)

m— 00

PRrROOF: From (4.28) we have that

o(Xi)o(Xf?)
p(mT +71) = p(T) T2 \/ma2 n aQ(Xﬁl))\/m UQ(X(Tz)) +o2(xP)
72 o(X)o (X))
= p(T)(m + :
’ m ¢ + (1/m)e2(X D) Jo2 (X)) + (1/m)o2(x?)

Passing to the limit as m — oo in the standard manner, we obtain that

lim p(mT + 1) = p(T),

m— 00
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as was to be proved. O

Figure 4.2 depicts the correlation structure obtained from simulating a bivariate Negative Binomial
process where the mean of the intensities are 3 and 5 and the variance of the intensities are 5 and 7, re-
spectively, calibrated to correlations of 0.7 and -0.8, respectively, at terminal time T" = 1 using Backward
Simulation on the interval [0, 1] within the simulation interval [0, 5] where Forward Continuation of the
Backward Simulation is used on each of the intervals [m,m + 1] for m = 1,2,3,4. We used Backward
Simulation with 1,000,000 Monte Carlo samples to compute the dashed black lines in Figure 4.2. The
blue circles depict the theoretical values according to (4.28). Note the good agreement between the the-
oretical and the empirical results. The dashed red lines depict the Poisson case: two bivariate Poisson
processes with intensities 3 and 5, calibrated to p(T") = 0.7 and p(T') = —0.8, respectively, computed by
the Forward-Backward Simulation approach.

The extreme positive and extreme negative correlations are 0.9972 and -0.8010 in the Negative Bino-
mial case. Note the difference between these values and the extreme positive and negative correlations of
0.9972 and —0.96 from Figure 4.1 in Section 4.2. The difference in extreme negative correlations stems
from the fact that the bivariate process is calibrated to the terminal time 7" = 5 in Figure 4.1 but to a

terminal time of T' = 1 in Figure 4.2, below.
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4.4.2 Forward-Backward Simulation Algorithm in d-dimensions

Algorithm 22 Forward-Backward Simulation of correlated multivariate mixed Poisson processes

Require: Vector of marginal mixed Poisson distributions at time T’
MP(T,U) = (MP(T,U®M),... MP(T,U®))
Correlation matrix C
The number of intervals m (i.e., [0,7T],[T,2T],- - ,[(m — 1)T,mT]) used in the Forward-
Backward Simulation Algorithm
Output: Scenarios of the multivariate Poisson process in the interval [0, mT]
1: Construct MP (T, U®)) distributed marginals [ (()k), ... ,Qifk)) Jfork=1,...,d

max

2. Generate the calibrated mixed Poisson measure P(©) using Algorithm 9, which takes as input
Q47 -, Q) Ji_, and C
:fori=1,...,mdo
4: Generate samples (N, ..., N(D) ~ P(©) using Algorithm 18 > Cet the number of events in the
interval [(i — 1)T,iT)|
5: for k=1,...,d do > this can be done in parallel

w

6: Generate N®) iid uniform random variables in the interval [(i — 1)T,iT7: TZ(.k) =
(Tl(k), e ,TJ(\;V(),C))’ > column vector

7 Sort Tgk) in ascending order

8 | Append Tgk) to T®)

9: return T = (TW, ..., T®)
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4.5 Summary

In this chapter, we extended the Backward Simulation methodology to mixed Poisson processes. Similar
to the Poisson case, the extreme joint distributions, constructed using the EJD approach in Chapter 2,
enable the simulation of correlated multivariate mixed Poisson processes. In particular, Backward Sim-
ulation is able to generate all admissible distributions at the endpoint T" of the interval [0, T]. Forward
Continuation of Backward Simulation enables the process generated by Backward Simulation within the
interval [0, T'] to be extended to intervals [mT, (m+1)T] for any positive integer m, where the correlation
displays the asymptotic behavior
p(mT +7)  p(T)

for all m sufficiently large, all 7 in [0, 7], and for any admissible correlation matrix p(T).

Our contributions, published in [18], are summarized below:

e We showed rigorously that the Backward Simulation approach applies to mixed Poisson processes.

e We derived an analytic form for the correlation structure between bivariate mixed Poisson pro-
cesses. Note that this extends directly to multivariate settings since the Pearson correlation is

bivariate in nature.

o We extended the Forward Continuation of the Backward Simulation to mixed Poisson processes and

showed that the correlation structure under Forward Continuation attains asymptotic stationarity.
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Figure 4.2: The dashed black lines depict the correlation structure for two bivariate Negative Binomial
processes with means 3 and 5 and variances 5 and 7, calibrated to p(T) = 0.7 and p(T) = —0.8,
respectively, computed by the Forward-Backward Simulation approach. The blue circles depict the
theoretical values according to (4.28). The dashed red lines depict the Poisson case: two bivariate

Poisson processes with intensities 3 and 5, calibrated to p(T) = 0.7 and p(T)

computed by the Forward-Backward Simulation approach.

0.8, respectively,



Chapter 5

Backward Simulation of Compound

Poisson Processes

The compound Poisson process is an important generalization of Poisson processes where the jump size
is a random variable instead of being unit size. Compound Poisson processes, having jump sizes that are
integer-valued, are known as discrete compound Poisson processes; they are known simply as compound
Poisson processes when the jump size is real-valued. Compound Poisson processes are widely used in
many areas related to applied probability. Some examples include Operational Risk [96], Insurance [36],
Change-point Theory [22] and Algorithmic Trading [52].

Backward Simulation and Forward Continuation of Backward Simulation can be extended to com-
pound Poisson processes. This is due to the special structure of the compound Poisson process which
our Backward Simulation approach exploits.

Similar to the Poisson and the mixed Poisson cases, previous work on correlating bivariate compound
Poisson distributions had restrictions on the attainable correlations and were unable to achieve the full
range of admissible correlations [28, ]. In particular, negative correlation between the components
of a multivariate compound Poisson process, to the best of our knowledge, has been unattainable by
previous work in the literature.

Finally, we note that while the majority of the exposition in this chapter is in the bivariate setting,
the discussions generalize immediately to the multivariate setting. We also note that, while the results
in this chapter are discussed in the setting of compound Poisson processes for simplicity, the results

extend easily to compound mixed Poisson processes.

5.0.1 Outline

In Section 5.1, we review the basics of compound Poisson processes. The Backward Simulation of
compound Poisson processes is discussed in Section 5.2. The correlation structure of compound Poisson
processes generated by Backward Simulation is discussed in Section 5.3. The Forward Continuation of
the Backward Simulation for compound Poisson processes and its correlation structure are discussed in

Section 5.4. Section 5.5 closes and summarizes the chapter.

138
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5.0.2 Notation

BACKWARD SIMULATION OF COMPOUND P0OI1SSON PROCESSES

139

We make use of the following notation in this chapter.

Symbol Definition

T, i arrival moment

S Random variable representing a random sum

Shn Random variable representing a random sum consisting of n elements

n Realization of the random variable X¢

7 Generic random variable or the jump variable for a compound Poisson process
Fy Secondary distribution of a compound Poisson process

d-dimensional vector of secondary distributions

Secondary matrix

Poisson process

d-dimensional Poisson process

Poisson process obtained from Backward Simulation

Multivariate Poisson process obtained from Backward Simulation

Mean parameter of a Poisson distribution or the intensity parameter of a Pois-

son process

A=A, .0, N) d-dimensional vector of intensities corresponding to Ny or X,
L, Compound Poisson process
Compound Poisson process obtained from Backward Simulation
,Y;(d)) d-dimensional compound Poisson process obtained from Backward Simulation

The increment Y4 — Y; of the process Y; in interval [, ¢ + s]

Equal in distribution

Mz(u) Moment generating function of the random variable Z

D Generic random variable

D, Random variable identically and independently distributed having the same
distribution as D

C Correlation matrix

Q") k'™ marginal probability distribution

ka) kth marginal probability at point i of the domain

p(t) Correlation at time ¢ between Yt(l) and Yiw

Correlation at time ¢ between Xt(l) and Xt(Q)
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5.1 Compound Poisson Processes

We briefly review the basics of compound Poisson processes. Standard results for compound Poisson

processes can be found in [40, 58].

Definition 33 (Compound Poisson Distribution [40]). The random variable
S=Z1+Zy+-+2Zn

is said to be compound Poisson distributed if N ~ Pois(\) and the random variables {Z;}32, are iden-
tically and independently distributed having the common distribution Fy which is independent of N and
has finite expectation and finite variance. N is known as the primary random variable having, in this

case, Pois(\) as the primary distribution and Fyz is known as the secondary distribution.

Remark 72. For the remainder of this chapter, we assume that the secondary distribution Fy has finite

expectation and variance.

Remark 73. It is well known that the moment generating function of the sum S, = Z1 + -+ + Z,,

where Z1, ..., Z, are tid with the common distribution Fy and n is fized, is

Ms, (u) = Mz, (u)Mz,(u) - Mz, (u) (5.1)
= [MZ(U)]nv

where Mz (u) = E [exp(uZ)] is the moment generating function of Z.

Definition 34 (Compound Poisson Process [10]). The process

Ny
Li=> 7 (5.2)
=1

is said to be a compound Poisson process if Ny, known as the primary process, is a Poisson process with
intensity A and the random variables Z;, are identically and independently distributed having the common
distribution F'z which has finite expectation and finite variance and is independent of the primary process
N;.

Remark 74. In Operational Risk, Ny in (5.2) is known as the frequency process and the secondary
distribution Fz is known as the loss distribution.

The mean and the variance of a compound Poisson process are given as follows.

Proposition 5 (Moments of a Compound Poisson Process [10]). The mean and variance of a compound
Poisson process Ly having Poisson primary process Ny with intensity A and secondary distribution Fyz
is given by

E[L] =ME[Z] (5.3)

and
o?(Ly) = ME(Z?). (5.4)
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Proposition 6 (Moment Generating Function of a Compound Poisson Process [10]). The moment

generating function for a compound Poisson process Ly is

Ny

= exp(At [Mz(u) — 1]).

Moreover, for an increment AgLy = Ly s — Ly of the compound Poisson process Ly, the moment gener-

ating function takes the form

Mn, 1, (u) = exp(As [Mz(u) — 1]). (5.6)



CHAPTER 5. BACKWARD SIMULATION OF COMPOUND POISSON PROCESSES 142

5.2 Backward Simulation

In this section, we prove the fundamental result, enabling the Backward Simulation of compound Poisson

processes. That is, we consider, for the remainder of this section, a process Y, for 0 <t < T, defined as

n

V=Y WL, <t)-Z (5.7)

i=1

where n is a realization of the random variable X1 ~ Pois(AT), {3}, C [0,T] are independent and

identically distributed random variables having a uniform conditional distribution,

P(Ti§t|XT:n):% i=1,2,...,n and 0<t<T (5.8)
and the Z; are independently and identically distributed random variables having the common distribu-
tion Fz and also independent of X and T; for ¢ = 1,2,...,n. We remind the reader that, similar to
the Poisson and the mixed Poisson cases, although Theorem 12 below is formulated and proved in the
univariate setting, the results extend directly to the case where Y; is a correlated multivariate compound
Poisson process. This is because of the fact that, while the dependence structure is specified through
the joint distribution of the multivariate Poisson random variable Xr, every coordinate (marginal) of
a correlated multivariate compound Poisson process is itself a (univariate) compound Poisson process!.
Therefore, given the joint number of events sampled from a suitable joint distribution? for X7, the cor-
related multivariate compound Poisson process can be constructed within the simulation interval [0, 7]
by applying Theorem 12 independently to each coordinate. See Algorithm 23 below.

The main result of the chapter is the following theorem.

Theorem 12 (Backward Simulation of Compound Poisson Processes). For t € [0,T], define the pro-
cesses Xy and Y; by

X, = Zn:n(n <), (5.9)
Y, = zn:]l(TZ— <t),-Z (5.10)
i=1

where n is a realization of the random variable Xp ~ Pois(AT), {T;}7_, are identically and independently

distributed random variables having the conditional uniform distribution

t
P(T;<t|Xpr=n)=z7 i=12..n, 0<t<T (5.11)
and {Z;}_, is a sequence of identically and independently distributed random variables having the com-
mon distribution Fyz, which is independent of X and T; fori=1,2,...,n. Then, fort € [0,T], X; is
a Poisson process with intensity A and Y; is a compound Poisson process having the primary process X

and the secondary distribution Fy.

PRrROOF: To begin, note that we proved in Theorem 6 that, for ¢ € [0, 7], the random process X;

1See Definition 13.
2Recall that Chapter 2 is concerned with constructing extreme distributions that exhibit extreme correlations and
constructing distributions that exhibit any admissible correlation that is a convex combination of extreme correlations.
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defined in (5.9) is a Poisson process with intensity A. Therefore, for t € [0,T], s > 0 and [¢,t+s] C [0,T],
A Xy = Xiqs — Xi ~ Pois(As). Hence, for any non-negative integer k,

(As)*
k!

P(A X, = k) =e (5.12)

Also, note that we can renumber the T;, 1 = 1,2,...,n, so that T} < T, < --- < T,. Since the T; are
uniformly distributed (5.11), we have that T3 < Tp < --- < T},, almost surely. This renumbering does

not affect the values of either of the sums (5.10) or (5.9) in Theorem 12, but it does allow us to rewrite
(5.10) as

Xy
i=Y Z. (5.13)
i=1
To use (5.13) in the proof below, assume that the T;, i = 1,2,...,n, are ordered from smallest to largest

for the remainder of this proof.

Since Yy = 0 almost surely, it follows from Definition 3 and Proposition 6 that, to prove the Y; defined
in (5.10) is a compound Poisson process for ¢t € [0,7] having the primary process X;, a Poisson process
with intensity A generated by Backward Simulation on the interval [0,7], and having the secondary

distribution Fz, it is sufficient to prove that the following two statements hold.

1. For any interval (¢, + s] C [0,T] of length s > 0, the increment A;Y; = Y; s —Y; of the process Y;
has the moment generating function Ma_y, (u) = exp(As[Mz(u)—1]), where Mz (u) is the moment
generating function of the secondary distribution Fz. Moreover, the distribution of the increment

AY; does not depend on t.

2. For any [ = 2,3,... disjoint sub-intervals (¢;, t;+s;] C [0,T] fori = 1,2,...,[, the random variables
A Y, =Y 45, — Yy, for i =1,2,...,1, are mutually independent.

We begin by proving the first statement above. To this end, choose any ¢ > 0 and s > 0 such that
(t,t+ s] C [0,T]. Using (5.13), we get that

AY, = Yrt-&-s -Y;

Xitys X,
E Z; — E Z;
i=1 i=1

Kits (5.14)
>, 4

=X +1

A Xy

> Zxees
i=1

Using the definition of the moment generating function and (5.14), we get that

Ma,y,(u) = E [exp(ul;Y;)]

ALX, (5.15)
exp (u Z ZXf,+i>‘| .

i=1

Expanding the last line of (5.15) as a conditional expectation and using the property e*™¥ = e¥e¥ of

=E




CHAPTER 5. BACKWARD SIMULATION OF COMPOUND POISSON PROCESSES 144

the exp function, we get that

oo k
Ma,y, (u) = Z]E exp <UZZXt+i> |A3Xt =k|P(AsX; = k)
S (5.16)
=3 E [[]exp (uZx, 1) | A X = k] P(AX, = k).
k=0  Li=1
Since the Zx,4i, for i =1,2,...,k, are iid with the same distribution as the secondary distribution F,
it follows from (5.16) that
0 k
s0) = 3 (T2 o a2 (2% = 1
0 et (5.17)
=" (E [exp (u2)]) " P(A X, = k).
k=0
Using Mz(u) = E [exp (uZ)] and (5.12), it follows from (5.17) that
> k
Ma,y,(u) = (Mz(u)" P(AX, = k)
k=0
S Eooae (A8)*
w0 (5.18)
) k .
ef/\s Z ()\SMZ(U))
k!
k=0
—As JAsMz(u)

— exp(As[My () — 1]).

Therefore, we have shown that Ma v, (u) = exp(As[Mz(u) —1]), where Mz (u) is the moment generating
function of the secondary distribution Fz. Moreover, the distribution of the increment A,Y; does not

depend on t. Hence, we have shown that the first statement listed near the start of the proof holds.
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Next, we prove the second statement listed near the start of the proof. To this end, for any [ = 2,3, ...,
consider any [ disjoint sub-intervals (¢;,¢; + s;], for i = 1,2,...,1, where each (¢;,¢; + s;] C [0,T]. Since
the intervals are disjoint, there is a permutation o of the integers {1,2,...,1} such that

to(1) Sto) +80(1) Sto2) Sto@) T 8S02) <0 S to) S o)  So()- (5.19)

To ease the notational burden, we assume for the remainder of the proof that the ¢; and s; have been

renumbered in accordance with (5.19). That is,
t1<ti+s1 <ta<ty+sy<--- <t <t +s. (5.20)
It follows from (5.20) and from our earlier stated assumption that the arrival moments are ordered that
Xty < Xpypsy S Xoy S Xiggsy <00 S Xy < Xy (5.21)

Denote by Ag, X;, = Xi,4s, — Xt, the number of events occurring within the sub-interval (¢;,¢; + s;].
Note that (5.21) implies that the sets

(X d=1,2..,A00X,} for i=1,2,...,1 (5.22)

are disjoint since the last element of the m'" set is X, + A, X; = X, s, , the first element of the
(m+1)% setis Xy, +1form =1,2,...,l—1 and we have from (5.21) that Xy 4, < X, < Xy, +1.

The joint moment generating function of the [ increments, Ay, Y;,, i = 1,...,[, takes the form
s1Yeq By Yy (ul’ u2, - .- 7ul) =E [eXp(u1A81 Yo £+ ulASl)/Sl)]' (523)

Using (5.14), we can rewrite the right side of (5.23) as

Aletl Aletl

{exp( Z Xyt ; ZX”H)}. (5.24)

By the law of iterated expectations, we can expand (5.24) into a joint conditional expectation:

Asy1 Xy, As Xy,
E[ [exp (u1 Z Zx, 0t Z Zx, +1) ‘Aletl =ki,...,A8Xy zkl”
> > ol 5.25
= Z ZE[exp ZZXt1+1 ...—|-ul-ZZth+i>} ( )
k1=0 k=0 i=1

P(Aletl = kl, ey Aletl = kl)

Since, by Theorem 6, the increments Ag, X;,, for i =1,2,...,1, are independent, the joint probability in
(5.25) factors multiplicatively:

P(As1 Xy, = k1, ..., A5 Xy, = ki) = P(As1Xy, = k1) P(As Xy, = k). (5.26)

Moreover, using the basic property that e**¥ = e%e¥, we can rewrite the expectation term in the second
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line of (5.25) as

I ARSI |
- (oo, ) ([, ).

i=1 i=1

(5.27)

Since, as noted above, the set of indices (5.22) corresponding to the sets {Zx, ., :j=1,2,..., A, Xy, },
fori=1,2,...,l, are disjoint and non-decreasing (5.21), each Zx, ; appears exactly once in the product
of exponential terms in the second line of (5.27). In addition, from the hypothesis of Theorem 12, the
Zx,,+j are iid. Therefore, we can factor the expectation of products in the second line of (5.27) into a

product of expectations:

E [( ﬁexp(mzxtlﬂ)) e (ﬁ eXp(ulZth“)ﬂ
i—1 . 1=1 N (5.28)
— (HIE [exp(mZXtW)]) (HE [eXp(ulZth“)D'
i=1 i=1

Using again the property we used above to factor the expectation of a product of iid random variables
into a product of expectations of those random variables, but now in the reverse direction, as well as the

basic property that e*¥ = e%e¥, we can rewrite the last line of (5.28) as

(ﬁ E [exp(ulZthJri)]) cee (ﬁE [exp(ulZth+i)])
i=1 =1
=FE {ﬁexp(ulZXtﬁi)} K [ﬁexp(ulZXtﬁi)} (5.29)

o (352, )] B o (32,0
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Combining (5.23)—(5.29), we get that

MAletl---AsLYt, (ul,u27...,ul)
Z ZE[exp (u1 ZZXM-H)} . {exp (ul ZZthJrl)]
k1=0 k= i=1

P(Aletl = kl) N 'P(ASlXtL == k’l)

<§;E [exp( ZZXW)} P(As1X;, = k1)>
: <§: [exp( ZZXW)} P(As X, = kl)>

k=0
[e'e) Aletl
= Z [eXp ( Z ZthJrL) ’Aletl = k‘1:| . P(Aletl = kil)
k}l 0

fe's) AS],X”

Z E {exp (ul . Z Zth+i) ‘ASthl = k/’l} -P(As Xy, = ki)
k;=0 =1

As1 Xy Aalth

=Elow (i 3 Zx, )] Blew (ue 3 2x,,)]

= Efexp(ui A, Y4, )] -+ E [exp(u Ay, Yy,)]
= Ma,, v, (u1) - Ma, v, (w).

Hence, we have shown that

Ma, Yoy i v (un, ug, o w) = Ma vy, (un) - Ma,y,, (u).

That is, the joint moment generating function for the increments A, Y;,, i = 1,...,l, factors into
a product of the moment generating functions for each increment. Therefore, the random variables
Ag Yy, i=1,...,1, are mutually independent. Consequently, we have shown that the second statement
listed near the start of the proof holds.

O

Remark 75. Theorem 12 is more general than Theorem 6 and Theorem 9 for the Poisson and mized
Poisson case, respectively, as it applies to both general compound Poisson and discrete compound Poisson

processes.
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5.2.1 Backward Simulation Algorithm for compound Poisson processes in

d-dimensions

Algorithm 23 Backward Simulation of correlated multivariate compound Poisson Processes

Require: Vector of marginal Poisson distributions at terminal time 7’
Pois(AT) = (Pois(MT),. .., Pois(AsT))
Correlation matrix C
Vector of secondary distributions Fz = (Fyq), ..., Fyw)

Output: Scenarios of the correlated multivariate compound Poisson process in [0, T
1: Construct Pois(A\;T') distributed marginals [Q(()k), cey QEZ% Jfork=1,...,d
2: Generate the Poisson calibrated measure P(©) using Algorithm 9, which takes as input
[Q(()k), R Qifk)) 19_, and C

max

3: Generate samples (N(l), e ,N(d)) ~ P(©) using Algorithm 18 > Get the number of events at terminal
time T’

4: for k=1,...,d do > this can be done in parallel
5: Generate N®) iid uniform random variables in the interval [0, T]: T*) = (Tl(k), . 7TJ(\,]C(),C))’
> column vector
6: Sort T in ascending order
7: Draw N(*) iid random variables having the distribution Fyu): z(*) = (zik), . 7z](\]:()k))’ > column

vector

s: return T = (TW, ... TW) and z = (zV), ..., z®)
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5.3 Correlation Structure

Theorem 13. Consider a bivariate compound Poisson process Y = (Yt(l), Y,;(Z)), having as its primary
process X, = (Xt(l),Xt(Q)), a correlated bivariate Poisson process generated by Backward Simulation,
with correlation p(t) = corr(Xt(l),Xt@)), and having as its secondary distribution Fz = (Fyu), Fze)),
where the jump variables, Z1) and Z?, are mutually independent and also independent to the primary

(2))

process. Let p(t) = corr(Y;(l), Y,;™) denote the Pearson correlation coefficient of the bivariate compound

Poisson process. Then, p(t) satisfies

E[ZW]E[Z?)] A (5.30)
VEzomEzen

PrROOF: Recall the well-known definition of the Pearson correlation coefficient

_ Cov (V¥

corr(v,V, y,P) = ot T (5.31)

o (i) o (v,?)

The covariance of a bivariate process (Yt(l)7 Yt(Q)) can be written as
Cov(y ", v ) =B,V v - E[yVE[Y®)]. (5.32)

As noted in the proof of Theorem 12, we can re-order the T;,i = 1,2,...,n, from smallest to largest
thereby allowing us to rewrite (5.10) as (5.13). Applying the same approach here, we can rewrite the
first term to the right of the equal sign in (5.32) as

Xfl) Xf2)

B0y - E {Z Z0. 3" Z]@)]_ (5.33)
i=1 j=1

Then, by Wald’s identity [66], (5.33) can be written as
EyN Y =g xMNxPz0 7). (5.34)

Since the jump variables (Z W,z (2)) are mutually independent as well as independent of Xt(l) and Xt(z),

we can rewrite (5.34) as
ExMXP)E[ZWIE[Z23). (5.35)

Using (5.3)%, (5.34) and E [Xt(i)] = \;t, which follows from Theorem 12, the covariance (5.32) can be

3Since we showed that Y; is also a compound Poisson process in Theorem 12.
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written in terms of the covariance of the primary process

Cov (Y1, ¥?) = E[X{VXP|E[ZVIE 2] — (M) E[Z2M] - Qo) E[Z2)]
=E[ZWE[Z?] (XX - (ut) (A1) - a
_ (1) 2) 1) x(2) (1) (2) (5.36)
E[ZWVE[ZP]- (E[X,'X,”] -E[X,1E[X;”])
:E[Z(l)]E[ ] COV(X(I) (2))
Then, by using (5.36), (5.4)%, (5.31) and Theorem 7 in Chapter 3, we can derive
oy Dy @y _ E[ZVEZ®)] - Cov(XV, X;?)
T = VAMEE[(ZM)2]\/ At E[(Z2))?]
_ E[ZWIE[Zz®]  Cov(X] M x2)
= VEZOIEZTE Vit
(1) (2)
mE[Z))SE[Z( ] @)2] corr(X;, X7 (5.37)
E[Z(”]E[Z(2)] t 1) ¢
\/IE ))2} Zo) T«:orr(XT ,X7)
E[Z <1>]E[Z<2>] t
= VEzomEzon 1

In going from the second to third line in (5.37), above, we used the fact that UQ(Xt(k)) = A t, for
k € {1,2}, since, as proven in Theorem 12, Xt(k), for k € {1,2}, is a Poisson process. It follows
immediately from (5.37) that

[(1)1 Z®) ¢

A= JEZoEZeR T

- p(T), (5.38)

which proves that p(t) is equal to the second line of (5.30). To complete the proof of (5.30), note that
(5.38) implies that

(1)
It follows immediately from (5.38) and (5.39) that
t
o(t) = % p(T),
which completes the proof of (5.30). O

Remark 76. The compound Poisson process, Y, inherits the correlation structure of the underlying

primary process, X as can be seen from (5.37).

Figure 5.1 depicts the correlation structure obtained from simulating a bivariate compound Poisson
process, Y, = (Yt(l),Yt(g)), using Backward Simulation. The primary process, X; = (Xt(l),Xt(Q)), is a

bivariate Poisson process having intensities 3 and 5, calibrated to correlations of 0.7 and -0.9, respectively,

4Since we showed that Y; is also a compound Poisson process in Theorem 12.
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at terminal time T = 5, within the simulation interval [0,5] computed by Backward Simulation. The
correlation of the primary processes, p(t) = corr(Xt(l),Xt(Q)), is depicted by the dashed red lines in
the figure. The jump sizes, Z() and Z(?), are lognormally distributed with parameters (2.1235,0.5)
and (1.9449,0.75), respectively; the corresponding correction factor in (5.37) takes a value of 0.6661.
We used Backward Simulation with 1,000,000 Monte Carlo samples to compute p(t) = corr(Yt(l), Y,;(2)),
depicted by the dashed black lines in Figure 5.1. The blue circles depict the theoretical values for
p(t) = corr(Yt(l), Yt(2))7 according to Theorem 13. Note the good agreement between the theoretical and

the empirical results.
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Figure 5.1: The dashed black lines depict the correlation structure, p(t) = corr(Y;(l), Yt@)), for a bivariate
compound Poisson process, Y; = (Yt(l)7 Yt(2)), having a primary processes, X; = (Xt(l), Xt(2)), a bivariate
Poisson process with intensities 3 and 5, calibrated to p(5) = 0.7 and p(5) = —0.9, respectively, computed
by Backward Simulation. The jump sizes F 1) and F2) are lognormally distributed with parameters

(2.1235,0.5) and (1.9449,0.75), respectively. The parameters for the jump distributions were selected for
illustrative purposes. The blue circles depict the theoretical values for p(t) = corr(Yt(l), Y;(Q)) according
to Theorem 13. The dashed red lines depict the correlation structure, j(t) = corr(Xt(l),Xt@))7 of the
primary process, i.e., the bivariate Poisson process X; = (Xt(l), Xt(z)).
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5.4 Forward Continuation of the Backward Simulation

Forward Continuation also applies to the compound Poisson setting. Suppose that a bivariate compound

(2))

Poisson process Y; = (Y;(l) has already been simulated in the interval [0,7] by Backward Sim-

ulation and that we wish to continue forward the process to the subsequent interval [T, 2T)]. First, we

draw an independent sample of the joint frequency distribution at time T°
d
(Arxy, Arx?) £ (X0, XD).

Note that the bivariate random variable (ATX A X (2)) has the same prescribed marginal Poisson

distributions and prescribed correlation, C, between its components as (Xj(})7 X;z)). Then, we set
1 2 1 2 1 2
(X3, X57) = (X0, X)) + (Ar Xz, ArX (D)

and, as in Backward Simulation, we use (A7 Xy (1), ArX (2)) and the conditional independence property
) ()
ATX d {T }ATX

[T,2T). Unlike the Poisson case, since the jumps of the compound P01sson process are no longer of unit

(similar to (3.3)) to generate the uniform arrival moments {T(l)} in the interval
size, we must also generate ATXT@ number of Z() distributed variables for i € {1,2}.

The process described above can be repeatedly applied to extend a bivariate compound Poisson
process simulated within an interval [0, T'] to any subsequent interval [mT, (m+1)T] for any non-negative
integer m. Moreover, similar to the Poisson and the mixed Poisson cases, although the exposition here
is in the bivariate setting, the results extend straightforwardly to the general d-dimensional setting.

Algorithm 24 in Section 5.4.2 below combines Backward Simulation and Forward Continuation of
Backward Simulation to generate arrival moments for a d-dimensional compound Poisson process on
an interval [0, mT], for any positive integer m. We call this algorithm Forward-Backward Simulation
because it starts with one step of Backward Simulation followed by m —1 steps of Forward Continuation

of Backward Simulation.

5.4.1 Forward Correlation Structure

We analyze the behavior of the correlation coefficient under the Forward Continuation of Backward

Simulation by deriving an expression for p(mT + 7) = corr(Yn(Tl% +T,Y,£L2% +-) as a function of p(T) =

corr(YT(l), Y(Q)) for any non-negative integer m and any 7 € [0, 7] in Theorem 14 below. That p(mT +7)

attains asymptotic stationarity follows by Corollary 5 below.
Theorem 14. The correlation coefficient p(mT +7) = corr(YﬁT)+T, YSTLT) for any non-negative integer
m and any T € [0,T] as a function of p(T) = corr(YT(l),YT(2)) takes the form

m+ 712 T2

pmT +7) = p(T) "

(5.40)

PRrROOF: First note that, for m = 0, (5.40) follows from Theorem 13. To show that (5.40) also holds
for all m > 1, we begin by deriving an expression for p(T + 7). To that end, let ATYT(U Yz(“i)r — Yj(})
and ATYT(Q) YT(i)T YT(z) and note that each of the increments ATYT(U and ATYT( ) is independent
of both ng ) and Y:ﬁ ). Therefore the covariance of the bivariate compound Poisson process (Yt(l), Yt(Q))
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satisfies
Cov(Y ) Y2 ) = Cov(Vi? ¥2) + Cov(A YD, AL Y. (5.41)

Similar to the proof of Theorem 13, let us rewrite the covariance of the bivariate compound Poisson
process Y, = (Yt(l)7 Yt(2)) in terms of its primary processes X, = (Xt(l)7 Xt(z)) and its secondary distri-
butions (Fy), Fy ). Towards that end, we begin by considering the second term on the right side of
(5.41). Using an analysis similar to that used to derive (5.36), we can rewrite the second term on the

right side of (5.41) as a function of the covariance of its frequency process:
Cov(A, Y, A Y P) =E[ZWIE 2] - Cov(A, X, A, x[2). (5.42)

Since the primary process, X; = (Xt(l), Xt(z)), is a Poisson process, we can use (3.48) directly in (5.42)

to obtain )
Cov(A YV A YD) =E[ZOE[2?)] - Cov(x P, X)) . % (5.43)
Using (5.36) and (5.43), we can derive from (5.41) that
T2 2
Cov(Vi!), ¥i2,) = E[20 7). — T cov(x{), X{2). (5.44)
Dividing both sides of (5.44) by U(YT@T) J(YT(i)T) and using (5.4)°, we obtain
W 3o E(zWz®] T+ 1 )
corr(Yp [ Y ) = . 5 Cov(X;7, X77)
(Vi) Yo i) T
_ E[zMZ3)] T4  Cov(XV), X))
VAT +DE[ZOPN (T +DE[(Z®)7] 17 o
= E[z02%)] . ! : "7 : COV(X;D Xq(?))
VE[(ZDOPE[Z®)Y] VT +1)x(T+7) 17 (5.45)
1) 7(2 2 2
_ E[zMZz®)] L T o x ), x @)
VE(ZO)YE[(Z@)?2] VAixe (T+7)T? =T
T2 2 E Z(1)2(2)
= T [ ] . corr(X;l)7 X(TQ))
(r+DT VE[(ZD)PE[(Z®)32]
T? + 12
= T corr(YT(l), YT(2)),
whence T
T .
T =pT) ————— A4
p(T+7) = p(1)- = (5.46)

Using an argument similar to that used to derive (3.45) from (3.52) in Chapter 3, it follows from (5.46)

that
m+72- T2

T =p(T
pmT +7) = p(T) "

(5.47)

for any integer m > 1 and any 7 € [0, 7. O

5Since we showed that Y; is also a compound Poisson process in Theorem 12.
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Corollary 5 (Asymptotic Stationarity of the Forward Continuation). The correlation p(mT + 7) =

corr(YTfllT)JrT, YTST)+T) achieves asymptotic stationarity as m — oo. More specifically,

lim p(mT + 1) = p(T) for any T € [0,T]. (5.48)

m—r oo

ProOOF: Note that (5.40) has the exact same form as (3.45) in Corollary 3 in Chapter 3. Therefore
the proof of Corollary 5 is the same as the proof in Corollary 3. (]

Figure 5.2 depicts the correlation structure obtained from simulating a bivariate compound Poisson
process, Y; = (Yt(l), Yt@)), within the simulation interval [0, 5] using Backward Simulation on the interval
[0,1] and Forward Continuation of the Backward Simulation on each of the intervals [m,m + 1] for
m =1,2,3,4. The primary process, X; = (Xt(l)7 Xt(z)), is a bivariate Poisson process having intensities
3 and 5, calibrated to correlations of 0.7 and -0.9, respectively, at terminal time T' = 1. The correlation
of the primary processes, p(t) = corr(Xt(l), Xt(Q)), is depicted by the dashed red lines in the figure. The
secondary distributions, F;) and F2), are lognormal distributions with parameters (2.1235,0.5) and
(1.9449,0.75), respectively; the corresponding correction factor in (5.45) takes a value of 0.6661. We
used Backward Simulation with 1,000,000 Monte Carlo samples to compute p(t) = corr(Yt(l)7 Yt(2)), the
dashed black lines in Figure 5.2. The blue circles depict the theoretical values for p(t) = corr(Y;(l), th),

according to (5.40). Note the good agreement between the theoretical and the empirical results.
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Figure 5.2: The dashed black lines depict the correlation structure, p(t) = corr(Yt(l), Yt(z) ), for a bivariate
compound Poisson process, Y; = (Yt(l), Yt(2)), computed by the Forward-Backward Simulation approach.

The primary process X; = (Xt(l), Xt(g)), is a bivariate Poisson process with intensities 3 and 5, calibrated
to p(1) = 0.7 and p(1) = —0.9, respectively. The secondary distributions F1) and Fy) are lognormal
distributions with parameters (2.1235,0.5) and (1.9449,0.75), respectively. The blue circles depict the

theoretical values for p(t) = corr(Yt(l),Yt@)) according to (5.40). The dashed red line depicts the
correlation structure, p(t) = corr(Xt(l),Xt(z))7 of the primary process, X; = (Xt(l),Xt@)).
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5.4.2 Forward-Backward Simulation Algorithm in d-dimensions

Algorithm 24 Forward-Backward Simulation of correlated multivariate compound Poisson processes

Require: Vector of marginal Poisson distributions at terminal time 7’
Pois(AT) = (Pois(AT),. .., Pois(A\yT))
Correlation matrix C'
Vector of secondary distributions Fz = (Fyq), ..., Fyw)
The number of intervals m (i.e., [0, T}, [T, 2T],--- ,[(m — 1)T, mT]) used in the Forward-
Backward Simulation Algorithm
Output: Scenarios of the multivariate compound Poisson process in the interval [0, mT]
1: Construct Pois(A\,T") distributed marginals {] (()k), ce Qiﬁ)) [} fork=1,...,d
2: Generate the Poisson calibrated measure P(©) using Algol;ia’)c‘hm 9, which takes as input
[ (()k), ey Ql(,gjéx]g:l and C

3: fori=1,...,mdo

4: Generate samples (N ... ,N(d)) ~ P©) using Algorithm 18 = Get the number of events in the
interval [(1 — 1)T, 4T

5: for k=1,...,d do > this can be done in parallel

6: Generate N®) iid uniform random variables in the interval [(i — 1)T,iT7: Tgk) =
(Tl(k), .. 7T](Vk(),c))’ > column vector

7: Sort TZ(-k) in ascending order

8: Draw N iid uniform random variables having the distribution F&): zgk) =
(Z(k) ) )

1 > YU N (k)
9: Append T to T®)
10: | Append ng) to z(k)

11: return T = (TW, ... . T@W) and z = (z, ..., 2D)
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5.5 Summary

In this chapter, we extended the Backward Simulation methodology to compound Poisson processes that,
in conjunction with the extreme joint distributions constructed using the EJD approach introduced in
Chapter 2, enables the simulation of correlated multivariate compound Poisson processes. In particular,
Backward Simulation can generate all admissible distributions at the endpoint T of the interval [0, 7.
Forward Continuation of Backward Simulation also extends to the compound Poisson case and enables
the process generated by Backward Simulation within the interval [0,7] to be extended to intervals

[mT, (m + 1)T] for any positive integer m, where the correlation also displays the asymptotic behavior
p(mT +7) = p(T)
for all m sufficiently large, all 7 in [0, 7], and for any admissible correlation matrix p(7T').

Our contributions are summarized below:

e We showed rigorously that the Backward Simulation approach can be applied to the compound

Poisson process.

e We derived an analytic form for the correlation structure between bivariate compound Poisson

processes computed by Backward Simulation.

e We extended the Forward-Continuation of the Backward Simulation to the compound Poisson
process and derived an analytic form for the correlation structure between bivariate compound

Poisson processes computed by Forward-Continuation of the Backward Simulation.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we develop a methodology for constructing multivariate Poisson processes that exhibit
negative correlations between their components and satisfy given marginal constraints. Our methodology

relies on two pillars:

e The Extreme Joint Distribution (EJD) approach for constructing joint distributions having given

marginal distributions and a specified correlation structure.
e Backward Simulation of multivariate Poisson processes within a simulation interval [0, T].

First introduced in the bivariate setting [74], the EJD methodology is a pure probabilistic based approach
for constructing joint distributions having extreme correlation structures, referred to simply as extreme
joint distributions (or extreme measures) in this thesis. In the bivariate setting, which we review in
Chapter 2, there are only extreme positive and extreme negative correlations; we denote the associated
extreme joint distributions by PM and P@ respectively. An extreme measure can be characterized
as the solution to an infinite-dimensional linear program where the objective function maximizes or
minimizes the joint expectation and where the constraints are the given marginal distributions that the
joint distribution must satisfy (Definition 14). The theoretical underpinnings for our approach is given
in Theorem 1 and in Algorithm 1. The importance of constructing extreme joint distributions is due
to the fact that, for each extreme joint distribution P(i), there corresponds an extreme correlation c®
for i € {1,2} in the bivariate setting and that any correlation C' € [C'"),C(?)] can be obtained via the
solution of the linear equation

C=wCW+(1-w)C® (6.1)

where 0 < w < 1. By itself, the solution w to (6.1) is not significant. However, the w that satisfies (6.1)

can be substituted into
P =wPW 4 (1 —w)P? (6.2)

to construct the probability distribution P having the given marginals and the associated correlation C.
Any correlation, C, that can be obtained from (6.1) with 0 < w <1 is called admissible.

Chapter 2 also extends the EJD methodology to the general d-dimensional setting for d > 3. We
show that both the EJD theorem and algorithm extend to d-dimensions. In higher dimensions, instead

159
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of having only two extreme measures, with extreme positive and extreme negative dependence, there
are n = 2(9=1) extreme measures with varying extreme dependencies between their components. To
describe and keep track of the possible extreme dependence between pairs of components of a multivariate
distribution, we introduced the concept of monotone structures (Section 2.4.1). In d-dimensions, an
extreme measure can be characterized as the solution to a multi-objective infinite-dimensional linear
programming problem, where the (bivariate) objective functions, specified by the associated monotone
structure, minimize or maximize the joint expectation of a pair of components of the multivariate
distribution and where the constraints are the marginal distributions that the joint distribution must
satisfy (Definition 22). In addition, the extreme correlations C'(l), ce C ™ are matrices, in this case.
In addition, our approach associated with (6.1) extends to d-dimensions with some modification:

since there are n extreme measures, the linear equation (6.1) becomes
C—wCW ey ) (6.3)

where 0 <w; <1lfori=1,...,nand ), , w; = 1. Similar to the bivariate setting, by solving (6.3) for

the weights (w,...,w,) and substituting them into
PO =, PD 4. o, P (6.4)

we obtain a probability measure P(©) having the given marginals and the associated correlation matrix
C from (6.3). Note that (6.3) is a linear system of equations with constraints on the coefficients,
{w; :i=1,2,...,n}, that can be solved using techniques from Mathematical Programming, as explained
in Section 2.8.1. If there does not exist a solution to (6.3), then the desired correlation matrix C is
said to be inadmissible. That is, there is no joint distribution with the given marginals that has the
correlation matrix C (see Section 2.8.3). Otherwise, C' is said to be admissible. The EJD methodology
is a crucial pillar of this thesis since it enables the construction of joint distributions with a prescribed
dependence structure satisfying given marginals, which are necessary inputs to the Backward Simulation
methodology.

The second pillar of this thesis is the Backward Simulation of correlated multivariate Poisson pro-
cesses. Backward Simulation relies on the conditional uniformity property of Poisson processes (Propo-
sition 3): given the number of events, n, at terminal simulation time 7', the arrival moments of the
Poisson process are uniformly distributed. The conditional uniformity property suggests a (stochastic)
simulation method for a Poisson process within the simulation interval [0,T]: 1) compute a pseudo-
random variable that gives the number of events, n, at terminal time; 2) draw n iid uniform variables;
3) sort the n uniform variables. Note that the importance of the EJD method in this context is now
clear: the joint distribution obtained from the EJD algorithm is necessary for sampling the number
of events of the Poisson process at terminal time, 7. A major advantage of Backward Simulation is
that the aforementioned procedure extends directly to the multivariate setting. Since a vector of ter-
minal events can be obtained from a suitable joint distribution, Backward Simulation of a multivariate
Poisson process simply consists of applying Backward Simulation to each univariate component using
the corresponding number of terminal events; the dependency information is contained within the joint
distribution. A key property of Backward Simulation is that the correlation structure is a linear function

of time (Theorem 3.42). That is,
t
t) =~ p(T
1) = - p(T)
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We also introduced a method for extending a Poisson process simulated using Backward Simulation in
[0,T] to any subsequent interval [mT, (m + 1)T] for any integer m > 1, known as the Forward Continua-
tion of Backward Simulation. We refer to the combined Backward Simulation and Forward Continuation
of Backward Simulation as the Forward-Backward Simulation Algorithm (or the Forward-Backward ap-
proach). Consider extending a bivariate bivariate correlated Poisson process simulated using Backward
Simulation on [0,7] to [T,27T]. Independently draw a bivariate random variable (ATX;D,ATXQ(?))
having the same prescribed marginal Poisson distributions and prescribed correlation, C, between its
components as (X:(Fl),X:S?)) from the joint distribution and define the number of terminal events at
t = 2T as follows:

1 2 1 2 1 2
(X5, X5 = (X, XP) + (Ar X Arx )

The process is filled in using Backward Simulation in [T, 27). This Forward Continuation of Backward
Simulation can be extended to any interval [mT, (m + 1)T] for any integer m > 1. Surprisingly, the
correlation structure of such a process that is simulated by the Forward-Backward approach attains
asymptotic stationarity (Corollary 3). We extend Backward Simulation and Forward Continuation of
Backward Simulation to the mixed Poisson processes (Chapter 4) and to the compound Poisson process
in Chapter 5. We also analyze their correlation structure in Chapters 4 and 5.

Before our work in this area, it was not possible to construct multivariate Poisson process having
extreme positive and negative correlation between their components. Our EJD approach, by construct-
ing joint distributions with extreme dependence between their components, in conjunction with the
Forward-Backward Simulation Algorithm is able to construct correlated multivariate Poisson processes
with extreme dependence between their components and simulate them within a simulation interval
[0,mT], for any integer m > 1. Moreover, this approach works for any admissible correlation ma-
trix. In particular, this thesis enables the accurate modeling of counting processes that exhibit negative

correlation between their components.

6.1.1 Our Contributions

The work in this thesis builds on earlier work of Kreinin [74]. I list below the contributions that I made

to our research project.
1. Proved various properties of comonotone and antimonotone distributions. (Subsection 2.2.1.)
2. Proved the correctness of Algorithm 1. (Section 2.3.)

3. Extended the notion of extreme measures to the d-dimensional setting and proved that the EJD

theorem can be extended to the d-dimensional setting. (Section 2.4.)
4. Extended the EJD algorithm to d-dimensions and proved its correctness. (Section 2.5.)

5. Introduced a method for the calibration of multivariate discrete extreme measures to observed

correlation structures. (Section 2.8.)
6. Introduced a method for sampling extreme measures and calibrated measures. (Section 2.9.)

7. Introduced the Forward Continuation of Backward Simulation for Poisson processes. This enabled

the continuation of correlated multivariate Poisson processes simulated using Backward Simulation
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within [0,7] to simulation intervals [mT, (m 4 1)T] for any non-negative integer m. This was

published in [17] for the Poisson case. (Section 3.3.)

8. Showed that the correlation structure of a correlated multivariate Poisson process computed by

Forward Continuation of Backward Simulation attains asymptotic stationarity. (Section 3.3.)

9. Showed formally that the extreme positive correlations attained under Forward Simulation in the
bivariate setting is constant and determined by the ratio of the intensities of the bivariate Poisson

process. (Section 3.4.)

10. Extended the Backward Simulation approach to mixed Poisson processes (Section 4.2) and showed
that the correlation structure of a multivariate mixed Poisson process constructed by Backward

Simulation depends on the correlation at terminal time adjusted by a correction factor (Section 4.3).

11. Extended the Forward-Backward approach to mixed Poisson processes and showed that a multi-
variate mixed Poisson process constructed by the Forward-Backward approach attains asymptotic

stationarity (Section 4.4).

12. Extended the Backward Simulation approach to compound Poisson processes (Section 5.2) and
showed that the correlation structure of a multivariate compound Poisson process constructed by
Backward Simulation is a linear function of the correlation at time 7', similar to the Poisson case
(Section 5.3).

13. Extended the Forward-Backward approach to compound Poisson processes and showed that a
multivariate compound Poisson process constructed by the Forward-Backward approach attains

asymptotic stationarity (Section 5.4).

6.2 Future Work

The problem studied in this thesis touches many fields of applied probability. We list some directions

for future work stemming from this thesis.
e Extending the Backward Simulation methodology to compound mixed-Poisson processes.

e A natural extension of our work that is worth investigating is whether Backward Simulation can
be applied to inhomogeneous Poisson processes'. Upon preliminary investigation, inhomogeneous
Poisson processes do satisfy an order statistic property [76]. Thus, it is very likely that Backward
Simulation can be applied to multivariate inhomogeneous Poisson processes. Investigating their

correlation structures should also be fruitful. We hope to investigate this in our future work.

e Antithetic variates, a popular variance reduction technique, is similar, in spirit, to the EJD ap-
proach. Both seek to generate objects with extreme dependence. It is worth studying whether the

EJD method of generating joint distributions can be used as a variance reduction technique.
e Studying whether or not the EJD algorithm can be extended to the continuous case.

e Section 2.8.1 proposes one approach to solving the calibration problem (2.105). It may be worth-

while investigating other approaches.

1This was also asked by some individuals from industry expressing interest in our work.
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e The optimization formulation of our problem, given by equations (2.3)-(2.3e) in the bivariate case
and equations (2.37)-(2.39) in the general d-dimensional case, is broadly known as the “marginal
problem” or the problem of finding “distributions with given marginals and correlations” in the
literature. There has been much previous work in the dual problem associated with the optimiza-
tion problems mentioned above [72]. Dual problems often reveal the sensitivities of a problem and
allow for more efficient numerical methods. It may be worthwhile to see if there is a dual version
of the EJD algorithm based on the dual problems to (2.3)-(2.3¢) or (2.37)-(2.39).

e Quasi Monte Carlo (QMC) has been applied to both the simulation of Poisson processes [45] and in
Backward Simulation methodologies [13], where it has been shown to be superior to crude Monte
Carlo, especially for problems in Finance [127]. It is worthwhile exploring how QMC can be applied

to the Backward Simulation of correlated multivariate Poisson and mixed Poisson processes.
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Appendix A

Chapter 2.3 Proofs

A.1 Proof of Theorem 3

PRrOOF: We prove Theorem 3 by induction on I.
We use Sl(l) to stand for the i*" statement below and refer to all three statements together as S; for
the I iteration of Algorithm 1.

Sl(l): The point s; = (sl(l), 31(2)) computed by Algorithm 1 is the (I + 1)%* point on the S-path associated
with P,

SZ(Q): The value z; computed by Algorithm 1 satisfies

1 1
F((l)) S 211 < 2 S F((l))7
s —1 5

(A.1)
FS(<22)),1 <zi1 <z < FS((22))-
l l
In addition, at least one of
FS((11)) 1= AL
(12) (A.2)
=z_
552)_1 -1
holds and at least one of
zZl = F((ll)a
S
(A.3)
A= FS(<22))

holds. Moreover, z; computed by Algorithm 1 is the (I41)%* smallest element in 1z = 1) VIIx (2.
Sl(g): The probability ]5((11)) 2y computed by Algorithm 1 is correct in the sense that it agrees with (2.7).
38y

Sy

We begin by using induction on [ to prove that S; holds for [ =0,1,2,. .., lax-
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For the base case of the induction we show that Sy holds true. To this end, note that Line 3 of Algorithm
1 gives
S0 = (0, O)

From Lemma 1, the origin is always a support point for bivariate comonotonic distributions. Therefore,
so = (0,0) is the 15 point on the S-path associated with P Thus, we have verified that S(()l) holds.

Next, we show that Séz) holds. On Line 4, Algorithm 1 computes the partition of unity by calling
Algorithm 8. Therefore, we have that

zZ0 = min (Fél),F52)>

From the discussion above, the fact that the cdfs are increasingly ordered (2.25) and Fo(l) > 0 and
FéQ) > 0, whence 2y > 0, we have that

0=FY =2, <z <FY,

0= F£21) =2_1<2 < Fé2)

Hence, (A.1) holds for I = 0. In addition, for [ = 0, both equations in (A.2) hold and at least one
of the equations in (A.3) holds. Moreover, from (2.25), it follows that the smallest element in Iz =
xa) VIxe is the smaller of Fél) and Fo(z). Hence, zgp = min (Fo(l), FO(2)) computed by Algorithm 1
on Line 4 is the smallest element in II;. That is, the value zy computed by Algorithm 1 is consistent
with Definition 21. Therefore, we have verified that S(()Q) holds.

Finally, we show that Sé?’) holds. From Line 5 of Algorithm 1:

H(1) _
PS(()U sém = 20-

Moreover, we have from Line 4 of Algorithm 1 that
20 = min (Fo(l), F0(2)> .
Therefore, Algorithm 1 gives
P;gl)) @ = min (Fél), F(§2)).

In addition, since so = (0,0), min (Fo(l), FO(2)) > 0, and Fill) = F£21) = 0, we see that

A1
Ps(u)) @ = 20
0 120
=min(FY, F) -0
= min(Fo(l)7 FO(Q)) — max(FEll), F£21))

= [min (FO(I), Féz)) — max (Fﬁll),Fg))Tr .

Thus, the value of ]5(5’10) computed on Line 5 of Algorithm 1 is consistent with the Pélo) given by (2.4).
Therefore, we have verified that S(()?’) holds.
Consequently, the base case of the induction proof must be true since we have verified that all three

statements in Sy hold.
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For the induction step, we choose any [ > 1 and assume that all three statements in S;_; hold. Our
goal is to prove that all three statements in S; hold.

We break the proof into three cases depending on whether
(1) 21 = F((lj) - F<f>) (Line 8),

(2) 21 = F(<11)>1 and z_; # F(i)) (Line 11),

Sy
(3) z1-1 # F) and 2y = F¢) (Line 14),
-1 -1

Note that exactly one of the cases above must be true, since from the construction of the partition

of unity in Line 4 of Algorithm 1, we must have that

zj—1 = min (F((ll)> ,F%)) )
Si-1 S

In what follows, it is helpful in the proof of the induction step to rewrite z;_; using Lines 5 and 18 as

follows
Zj—1 = 135(13'21 + 212,
o1 =PY +PY ... L PO (A.4)

If we define the sets A(s;—1) :A{(i,j) 0 < sl(i)l, 0<j< 51(3)17 ]51(;) > 0} and A°(s;-1) = {(4,7) :
0<1:< sl(i)l, 0<j5< 31(3)1» Pl(;) = 0}, then we can see that z,_; can also be written in terms of
the probabilities PZ(? associated with the points on the domain in the rectangle with one corner at the

origin, (0,0), and the other corner at the point s;_; = (sl(l_)l, 51(3)1)

e XA Y A
A(si—1) Ac(si—1)

1) (2)
Si-1 81—

=3 > P (A.5)

i=0 j=0

Case 1: z_; = F((ll)) = F((QQ)) (Line 8)
Si—1 Si-1
In this case, the condition in the if statement on Line 8 of Algorithm 1 is true and so Lines 9 and 10

of Algorithm 1 are executed. Hence, Algorithm 1 computes
Sl(l) = Sl(i)l +1,

(A.6)
51(2) = 31(3)1 + 1.

To verify that Sl(l) holds, we need to show that the point s; computed by Algorithm 1 on Lines 9 and
10 and specified above in (A.6) is the (I + 1)** point on the S-path associated with P(1),

To this end, note that the induction hypothesis Sl(i)l gives that the point s;_; in (A.6) is the [P
point on the S-path associated with P So, if we can show that the point s; specified in (A.6) is the
subsequent point to s;_1, then it follows immediately that the point s; specified in (A.6) is the (I + 1)t

point on the S-path associated with PM and we are done.



APPENDIX A. CHAPTER 2.3 PROOFS 175

To see that the point s; specified in (A.6) is the subsequent point to s;_1, note that, from Definition 17
and Remark 12, one of the three points (s( ) 41, 5(2) 1) (sl(l)l, 31(2)1 +1)o (sl(l)1 +1, 3(2) + 1) must be
the subsequent point to s;_1. So, if we can show that (5(1) +1, 5(2) 1) and (sl(l)l, 31(2)1 +1) are not support
points of P(l)7 then it follows that the point s; specified in (A.6) is the subsequent point to s;—1 on the

S-path associated with P(1),

We show by proof by contradiction that the subsequent point to s;_; on the S-path cannot be

(sl(l)1 +1, 5(2) 1). To that end, assume that the subsequent point to s;_1 is (51( )1 +1, 5(2) 1), which implies

that P((ll)) 1e® > 0. Now, since, in Case 1, z;_1 = F((zg)) we have from (A.5) that
S1-1 i1

811

(1) (2)
Si-1 81—

SN B = F(i).

1=0 7=0

However, as noted above, }5(31)) 1e® > 0. Therefore, (2.22) and the discussion above leads to the
ST hS

contradiction
o 82 sty 82 12, 512,
(2) _ A(l) _ (1) (1) ”(1)
Fo =2 > Py =3 3 P Z Dy > YR
- i=0 j=0 i=0 j=0 i=sD) 42 7=0
Sl(1>1 51(2)1
1, p
2> D P HPG o
=0 7=0
(2) (1)
F<2) +P<1) 41,52
> F(z)

(2) '

Hence, the subsequent point to s;_; cannot be (s(l) +1,s ( ) 1)-

A similar argument shows that the subsequent point to s;_; cannot be (sll)l, 352)1 +1). Therefore, by
Lemma 2, the subsequent point must be (sl(l)1 +1 81(2)1 +1). Hence, the point s; computed by Algorithm 1
on Lines 9 and 10 and specified above in (A.6) is the (I 4 1)** point on the S-path associated with P().
Therefore, we have verified that Sl(l) holds.

Next, we verify that 81(2) holds. To this end, recall that, in Case 1, z,_; = F((ll)) and zj_1 = F(fz)) .
Si1-1 Si1-1

Also, in Case 1, Lines 9 and 10 of Algorithm 1 are executed. Hence, s; satisfies

M) — M 4

s =850+
sl@) 31(2)1 + 1.
Therefore,
F;}l)) 1= F(<11)> =A-1= FS((22)) = FS(<22)>,17
! 1~ .
whence

= Z]—
S;l)_l -1,

(2)
= Zl—1-
S§2)71 -1

(A7)
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Line 4 of Algorithm 1 calls Algorithm 8 to compute the partition of unity. Therefore,
z; = min (F((ll)) , F%%).
S1 Sy

Since

-1 = F(<11)> = F(<2))

and

1 1 1
F((1)> = Fs(u))_l < Fs(u))a

2 2 2
F((2)> = F(<2)> 4 < F(<2)>

since Fi(l) and F]-(Q) are strictly increasing (see (2.25)), it follows that
Zl-1 = (<11)) F(('z)) < min (F((ll)),F((2))> = 2. (A.8)
Putting (A.7) and (A.8) together with
2 = min (F (<11))’F ((22)>) <F ,(<11)>’
5y
z; = min (Fs(fll)) , FS(?)) < FS(;Q))
we get

1 1
Fs(il))—l z1-1 < z1 < F((1))7

FS(;Q))71 z1—1 < Zl F((22))

(A.9)
That is, we have shown that (A.1) holds. Moreover, from (A.9), we see that both the equations in
(A.2) hold. In addition, since z; = min (F((ll)),F((Q))), at least one of the equations in (A.3) must hold.

Furthermore, since we know from the induction hypothesis S 2 1 that z_; is the I*" smallest element
in Iz = xq) VIxe), it follows from (A.9) that the smaller of F((l) and F%)) must be the (I + 1)
S1

smallest element in IIz. Hence, z; = min (F((ll)),F ((22))) is the (I + 1)Bt smallest element in IIz. That is,

the value z; computed by Algorithm 1 is consistent with Definition 21. Therefore, we have verified that
s n
)~/ holds.

Finally, we verify that Sl(g) holds. The value of ]5((11)) (2y computed on Line 18 of Algorithm 1 is
Sy Sy

I:)((ll)> (@) = 2 — Zl—1- (A.10)

51 7'Sl

We know from Line 4 of Algorithm 1 which calls Algorithm 8 to compute the partition of unity that

Z] = min (Fs((ll)) s FS((ZZ’))> . (A].l)
l 1
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Substituting I — 1 for [ in (A.11), we see that, if { > 2, on the previous iteration
zj—1 = min (F((ll)) ,F%)) ) (A.12)
Sic1 S

If I = 1, we see that Line 4 of Algorithm 1 also implies that (A.12) holds. Now, recall again that, in
Case 1, z;_1 = F((ll)) and z;_1 = F((QQ)) , whence F((ll)) = F((QZ)) . Therefore,
Si-1 Si-1 Si-1 Si-1

Zj—1 = min (F((ll)) ,Fq%)) )

(1)1 kE;)l (A-13)
= max (F e ,F§(2) )
-1 “l1—-1
From (A.8), it follows that
21— 2z1—1 > 0. (A.14)

Combining (A.10), (A.11), (A.13) and (A.14) together with

0= o0, 11,
o = s+
which follows from Lines 9 and 10 of Algorithm 1 in Case 1, we get
Ps(;l))&f) =2 —Zl-1
— min ( Py, F%))) max ( F(<1)> F? )
S1_1
min ( F<(11>) ’ F(é))) max ( F(}f) L F5(522)>_1)

+
[min (Fs((lg , F;?%) max (F((ll)> X F(<22)> 1)]
l l

Therefore, the probability P((ll)) 2y computed on Line 18 of Algorithm 1 is correct in the sense that it
Sl ’Sl

agrees with (2.7) and we have verified that Sl(3) holds.

Thus, we have shown that all three statements in S; hold in Case 1.

Case 2: z_1 = F((l)) and z;_1 # P2 (2> (Line 11)
In this case, the condltlon in the if btatement in Line 11 is true and so Lines 12 and 13 of Algorithm 1

are executed. Hence, Algorithm 1 computes

1 1)

Sl( = Sl( 1t (A.15)
2 2 .

S = of2,

We begin by showing that Sl(l) is true. Thus, our goal is to show that the s; specified in (A.15) is the
subsequent point of s;_1 on the S-path associated with PO Tt follows from this that s; is the (I+ 1)t
point on the S-path, since, by the induction hypothesis, Sl(i)l, s;_1 is the I*® point on the S-path.

To see that the s; specified in (A.15) is the subsequent point to s;—1 on the S-path associated with

PO first note that, by Lemma 2, the subsequent point to s;_; must be one of (s( )+, 5(2) 1) (sl(l)l, 352)1
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1) or (s, ( )1 +1, 3(2) + 1). We show below that the subsequent point cannot be either (sl(l)l, sl( )1 +1) or
(sl(l)1 +1 sl( ) 4 1). Therefore, the subsequent point must be (sl( )1 +1, 3(2) 1) computed by Algorithm 1
in Lines 12 and 13.

We first show by proof by contradiction that the subsequent point to s;_; cannot be (sl(l)l, 3(2) +1).

To that end, suppose that the subsequent point of s;_; is (sl( )1, 51(2)1 + 1), then, P((l)) @ 4 > 0. Since,
S1-1%1-1
in Case 2, z;_1 = F((ll)) , this together with (A.5) implies that:
Si-1
5517)1 Sl(2—>1
‘ : ’ Si—1
1=0 j=0

However, as noted above, P((l)) e > 0. Therefore, (2.21) and the discussion above leads to the

8582+
contradiction
1 1 2 1 1
'SL( )1 %) sg >1 SE )1 Sz( )1 5; )1
(1) 1) (1) A(l)
SERD I D b HED AL SRS DI S @
1=0 j=0 =0 j=0 zOJ g1(2)1_,'_2
1 2
51( )1 5; )1
1) (1)
>3 > Ry
0 j=0 ’('1) SEA
i=0 j=

(€] 1)
F + P
SO, SO @ 41

1
> F)
-1
Therefore, the subsequent point of s;_; on the S-path cannot be (sl(l)l, sl(z)1 +1).

Next, we show, again by proof by contradiction, that the subsequent point of s;_; on the S-path
cannot be (sl(l)1 + 1, 8(2) + 1). To that end, suppose that the subsequent point of s;_1 on the S-path
is (sl(l)l +1 sl( )1 + 1), which implies that (s( L+, 51(3)1) cannot also be on the S-path, since if both
(s, ( )1 +1 sl( )+ +1) and (sl(l)1 +1, s( ) 1) are on the S-path then, by Definition 17, (sl(l)1 + 1,31(3)1) is the

subsequent point of (sl(l 1,31(2)1)

Moreover, since (Sz( )1 + 1, 8(2) 1) is not on the S-path associated with
P(l), by Lemma 4, (sg )1 + 1, 5(2) 1) is not a support point of P(l), whence ]5((11)> e T 0. Now note
SiaThS

that (2.22) and (A.16) imply that

(2) (1) (2) (2) (2)
oo Si-1 Si—1 %11 Si-1

@) PO — M (1) c- 5(1)
FO =3 3 By =23 B ZPm IR D DD DY (A.18)
i=0 j=0 i=0 j=0 i=sl(l_)1+2j:O
8(2) 5(2)
W N po) X )
“Ew L hg T 2 2R
z—s§1)1+2 Jj=0
We first show that @
2
Si-1
(1) _
P =0. A.19
j;) s 41,5 ( )
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To this end, note that, in our proof by contradiction, we assumed above that P((l)) 2 = 0. In

117
(s, s

1_1:8,1) is on the S-path associated
with PV, whence s;_1 = (sl( )1, sl(z)l) is a support point of P, Therefore, none of the points (s( ) +1,7)
for0<j< 51(2)1 can be a support point of P(l), since, if they were, this would violate the comonotonicity

of P Consequently, P ((1)> T 0 for all j =0,1,.. 31(2)1 — 1. Hence, (A.19) must hold.

2J

addition, note that, from the induction hypothesis Sl 15 811 =

Next we show that .
2
S11

Z S P = (A.20)

z—agi)l-&-Q J=0

To this end, note that in our proof by contradiction, we assumed above that (sl( )1 +1, s( ) + 1) is the
subsequent point to s;_1 = (sl( )1, 552)1) on the S-path associated with P!, whence (5(1) +1, 5(2) +1)is
a support point of P(). Therefore, none of the points (i,7) for i > 31(1)1 +2and j€{0,1,..., 5171} can
be a support point of P(l), since, if they were, this would violate the comonotonicity of P, Hence,
(A.20) must hold.

Combining (A.18) with (A.19) and (A.QO) we get that F((22)) = F((ll)) However, in Case 2, zj_1 =

F (<11)) and z;_1 # ol (2) , whence F' ((2) #* Fe (1) . Hence, we have arrived at a contradiction. Therefore,

(s ( )1 +1 sl( )1 + 1) cannot be the subsequent point to s;_1 = (sl(l)l, 51(2)1) on the S-path associated with

PO, Ergo, the subsequent point to s;_1 on the S-path associated with PM must be s, = (Sl(l)1 +1, 3(2) )
computed on Lines 12 and 13 of Algorithm 1 and specified by (A.15). From the induction hypothesis
Sl(i)l, it follows that the point s;_; computed by Algorithm 1 is the {*" point on the S-path associated
with PV, Therefore, s;, the subsequent point to s;_; on the S-path associated with P(l), is the (1+1)%
point on the S-path associated with P(X). Therefore, we have verified that Sl(l) holds.

Next, we verify that Sl@) holds. To this end, note that, from (A.15), 51@1 = sl(l) — 1 and, in Case 2,

1
Zi_1 = Fs((l)) , whence

1) 1)
F(1> 4 F(l) = Zl-1-
Also, F((ll)) L < F((ll)), since, as noted above, the marginal cdfs F()) and F®) are strictly increasing (see
S~ S1
(2.25)). Therefore,

1 1
Fs(l(l))fl =z11 < Fs(fl)) (A21)

Since the induction hypothesis 81(3)1 holds, we can replace [ by I — 1 in the second line of (A.1) to get

2 2
F((z)) <z 2<z-1< F((z)) .
s —1 s

-1

. 2
However, in Case 2, z;_1 # F((Q)) . Therefore, we must have
Si-1

2 2
F((z)) <z 2<z1< F((z)) .
s -1 s

-1
Dropping the z;_s from the line above, we have

2 2
FE  <aa<FE).
Si-17 S1-1
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From (A.15), 51(2) = 51(3)1' Therefore,

2 2
FS(Z(L’))*I <zi—1 < Fs(l(Q)) (A22)

Now note that Line 18 of Algorithm 1 computes
z; = min (Fs((ll)) , FS((ZQ))).
L l
Since, from (A.21) and (A.22),

z1—1 < F&ll)) and z1-1 < FF(QQ)),
S S
it follows that
zj—1 < min (F((ll)),F(fz))) =z. (A.23)
5 5

Moreover,

2 = min (F(” F(2)> < r

S (@) Rek

@ z (A.24)

zZ] = min (F((11)) 5 F((22))) S F((22)) .
s Eh S1

Therefore, it follows from (A.21), (A.22) (A.23) and (A.24) that

1 1
FS(§1))71 =z1<z < Fs(l(l))’ (A.25)

.25
FQ <z,<z<F%.

852)—1 EH
Therefore, (A.1) holds. Moreover, from (A.25), it follows that the first equation in (A.2) holds. In
addition, since

z; = min (Fg((ll)) , F:?%),

<1 “1
z; must be equal to at least one of F (<11)) or F (<22)). Hence, at least one of the equations in (A.3) holds.
Sy Sy

Furthermore, since, from the induction hypothesis S;i)p we know that z_ is the I*" smallest element
in Iy =My VIye), it follows from (A.25) that the smaller of F((ll)) and F((zz)) must be the (I + 1)
S1 i

S

smallest element in I1;. Hence, z; = min (F ((11)) , F ((22))) is the (I +1)°* smallest element in I1z. Therefore,
S1 Si

we have verified that S{* holds.

Now we verify that SI(S) holds. The value of ]5((11)) (2 computed on Line 18 of Algorithm 1 is
Sy S

I:)F(ll)) (2 = 2] — Z|—1- (A26)

51 ,&l

We know from Line 4 of Algorithm 1 which calls Algorithm 2 to compute the partition of unity that

2 = min (F((l)) : F((Z))) (A.27)
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In addition, we proved above that Sl(z) holds. Therefore, we have from (A.1) that
1 2
Fs(él))ﬂ <z-1 and F§§2)>—1 <z

and from (A.2) that at least one of

1) (2)
F =z_-1 and F =2z_
551)_1 1—1 Sl(g)_l -1

holds. Therefore,
1 2
1 = max (Fs(gl)u’ FS(§2))_1). (A.28)
Since we verified above that Sl(2) holds, we also have z;_1 < z;, whence z; — z;_1 > 0. Combining
21— z1—1 > 0 with (A.26), (A.27) and (A.28), we get

p(l) =2 — 2l-1
OO -

i (1, 75) - (2 am

851)717 552)71

= [min (F(l) F(z) ) — max (F(l) F(z) )] '

sl(l)’ S;z) sl(1>—l7 sl(Q)—l

Therefore, the probability I:’((ll)) 2y computed on Line 18 of Algorithm 1 is correct in the sense that it
ERh

agrees with (2.7). Therefore, we have verified that Sl(S) holds.

Thus, we have verified that all three statements in S; hold in Case 2.

Case 3: 2,1 # F((ll)) and z;_; = F((QZ)) (Line 14)
Si-1 i1
The proof that Algorithm 1 is correct in this case is very similar to the proof in Case 2. Therefore,

for the sake of brevity, we omit the proof in this case.

Since we have shown that for each | = 0,1,2, ..., lmax, S; holds true for all three cases, we have shown
that Theorem 3 holds true.
O

A.2 Proof of Proposition 2

ProoOF: We prove Proposition 2 by induction on [.
To begin, we prove the base case of the induction. We know from Lemma 1 that sqg = (5(()1)7 3(82)) =

(0,0) is the 15 point on the S-path associated with ]5(12) and we know from Remark 21 that 5o = (0, jmax),
F

is the 1% point on the S-path associated with P2, Therefore, we have that 59 = (861)7jmax — s((f)), as
required.

For the induction step, choose any [ € {1,2,...,lnhax} and, for the induction hypothesis, assume that

Proposition 2 holds for [ — 1. That is, for the induction hypothesis, assume that, if s;_1 = (sl(i)l, sl(i)l)

is the {*® point on the S-path associated with Pél(g), then 5,1 = (sl(i)l,jmax — 51(3)1) is the {*® point on

the S-path associated with P(). Our goal is to show that, if s; = (sl(l)7 sl@)) is the (I + 1)%* point on the
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S-path associated with P}S;, then 5, = (sl(l),jrmX - 51(2)) is the (I 4 1) point on the S-path associated
with P®).

To this end, suppose s; is the (I + 1)%* point on the S-path associated with Pé‘l(g). By the induction

lth

hypothesis, s;_1 is the [*" point on the S-path associated with Pél(g . Therefore, s; must be the subsequent

point to s;_1 on the S-path associated with ]51;1(2) Hence, by Definition 17 and Remark 12, s; must be

one of the three points
1 2 1 2 1 2
(81(7)1 +1, 357)1), (357)1, sl(7)1 +1), or (357)1 +1, 557)1 +1). (A.30)

To complete the proof, consider three cases depending on which of the three points in (A.30) is equal to

Si.

Case 1: s; = (sl(i)1 +1, 81(3)1)

Since s; = (sl(i)1 +1, sl(i)l) is the subsequent point to s;_1 = (sl(i)l, 31(3)1) on the S-path associated

with P, it follows that
5(1)

s 41,5 |2 > 0.
Consequently, it follows from Lemma 14 that
5(2
P (<1)> @ >0

51,1+1ajmax75l,1

1) 2)

Therefore, 5 = (8,7} + 1, jmax — 31(—1) is the subsequent point to 5,_; = (sl(l) (2)

_1»jmax - 51_1) on
the S-path associated with P(). From the induction hypothesis, 5,_; = (sl(i)l,jmax - 51(3)1) is the

I™™ point on the S-path associated with P(?). Hence, 5 = (sl(i)1 + 1, jmax — 81(2)1) is the (I + 1)
point on the S-path associated with P@ . To complete the proof in this case, note that, since

s = (sl(i)1 +1, sl(i)l), 5 = (sl(l),jmax — sl(Q)), as required.

Case 2: 5, = (sl(i)l, 51(3)1 +1)

The proof in this case is very similar to the proof in Case 1. Therefore, for brevity, we omit it.

Case 3: 5, = (51@1 + 1751(3)1 +1)

Since s; = (sl(i)1 +1, sl(i)l +1) is the subsequent point to s;_1 = (sl(i)l, sl(i)l) on the S-path associated

with PLQ,, it follows that
H(1) 0
S0 L, +1[ED

However, in this case, we must also have

H(1) =0
a2y = O
(1)

D, a2, 1B

since otherwise one of the points (sl@1 +1, 51@1) or (51(1)17 51(3)1 +1) would be the subsequent point to

S§_1 = (sl(i)l, sl(i)l) on the S-path associated with 1515‘1(2) Consequently, it follows from Lemma 14
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that
5(2)
P o o >0
1—1 sJmax —S; 'y
A(2) _
Psu) IR C 0,
1—1 yJmax 1—1
>(2) _
Pao . o 1 0.
S;_1Jmax—S8; 4

Therefore, 5, = (sl(i)1 4+ 1, jmax — 31(3)1 — 1) is the subsequent point to 5,1 = (sl(i)l,jmax (2) )

— S
on the S-path associated with P®) . From the induction hypothesis, 5,1 = (sl(i)l,jmax — 3131) is

the I*" point on the S-path associated with P(®). Hence, 5, = (51(1)1 + 1, jmax — 51(3)1 — 1) is the

(I +1)%* point on the S-path associated with P® . To complete the proof in this case, note that,

since s; = (sl(i)1 + 1, sl(i)l +1), 5 = (sl(l) + 1, fmax — 31(2) — 1), as required.



Appendix B

Chapter 2.5 Proofs

B.1 Proof of Lemma 16

ProOF: To begin, we consider the two special cases: ¢ = —1 and 7 = zfn,;m). For any k € {1,2,...,d}

and i = —1, (2.89) reduces to
11— F(j,ﬂd;k) F(J d;k) (Bl)

-1 i(dik)

which is clearly true, since F(] 4R — 0 and FUM = 1.

Tmax

Similarly, for any k € {1,2,...,d} and i = P&k (2.89) reduces to

Jdik i dik
1 - FO00 = pUs (B.2)

which is clearly true, since F(j k) _ 0 and F<d %) ) — .

Tmax

Now consider the remaining general case i € {0,1,.. i) 1}. From (2.76) and (2.77), it follows

that, for any k € {1,2,...,d} and any ¢ € {0,1,.. zgga};) -1},

1— (J sdik) ZQ Jdsk)

ZE,?;’?
S
n=iER_;
=1 (Q(idjzf Q)
<Q(f§j§f) Q(f:f'f—m FQ Q) @+ Q)
= Q™+ QU
F((Jdcé)k) -

Imax —t—1

184
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B.2 Proof of Lemma 17

PROOF: Before we begin the proof, note that z(J Zuv) — () is the smallest element in z%%*) and
zéj’Qm’v) is the second smallest element in z(%%%") and so on. Similarly, z(J Zv) — 0 and z(gj ZU0) are

the smallest element and second smallest element, respectively, in 7" 2u0),

We begin by showing that (2.90) is true. To this end, choose any [ € {—1,0,1,...,12  — 1,1

7 Ymax max}

By the construction of the partition of unity, zl(j 29 s the (I + 2)*" element from the left in the

sequence zU"%%?) and must equal Fl-(j,’d;k) for some k € {u,v} and some i € {-1,0,1,.. , ik } That

is, zl(jl’z;”’v) = Fi(j,’d;k) for some k € {u,v} and some i 6 { 1,0,1,...,i%%" . Thus, there must be
(14 1) values in the set Uke{u)v}{Fi(j AR = 21,0, il Y smaller than F(] ) and lfnax — 1 values

in the set Uke{u’v}{Fi(j/’d"k) :i=-1,0,.. zmax } larger than F( ). Moreover, 1 — F(J ) must be
the (14 2)" element from the right in the set Ugey,03{1— Fi(] @ L= —1,0,. .., il )} That is, there

— [ values in the set Upegy,o3{1 — Fi(j/’d;k) th = 71,0, zﬁ,?a’f()} smaller than 1 — F(J dik)
PR _ i)

(d;k)
Imax —t—1

must be {2

max

and [ + 1 items greater than 1 — Fi(j/’d;k). By Lemma 16, we must have that 1 —

)

whence, F((j;i;)k_),_l must also be the (I + 2)*" element from the right in the set Uke{u,v}{Fz—j k)

-1,0,. zfﬁa];} Therefore, it must be that Z(J Zuw) F,((J;f,ij)k); 1- Fi(j/’d;k) =1- zl(j/’Q;u’”),

12, —1-1
since zl(]’ o lv_) is the (I + 2)*® element from the rlght in the set zU"2ww) — Uke{uyv}{Fi(j’d;k) D=

—1,0,.. zr(nax }. Therefore, (2.90) holds true.
Finally, note that, in the argument in the paragraph above, the same dimension index, k, and the

same iteration index, 4, are used in the proof of both zl(j Zuw) Fi(j k) and l(g % qilv)l = F(j’d;k)

max Tmax —1—1
1-— Fi(j/’d"k) Therefore, both (2.91) and (2.92) above hold true, where the k’s and i’s are the same in
(2.91) and (2.92).

|
B.3 Proof of Lemma 23
PROOF: We begin by showing that PU-9 is a probability distribution. That is,
PRI >0 (B.3)

for all k € {1,...,d} and all i, € {0,1,...,iEY and that

(d 1) (d d)

11 =0 iq=0

We start with (B.4) by noting that the left side can be written as

i i 102 1353
2: 2: Pl _E:N(J’,d) 2: p(5,d)
U1yeesld Ps(j-,d;l) s(7 did) Pl(] d) (B5)
i1=0 1q=0 1=0 1(G,d) 770, d) 1—0
J»ds;1) J did) 19,9 . D(j,d
since Algorithm 5 computes all the points, {sl(J & s S }l(] % _o» belonging to the support of pld)

and all other points in the domain are defined to be 0 since they do not belong to the support. Since

we have that Péj 4 zéj D by Line 8 of Algorithm 5 and Pl((]J(iZ = zl(f]‘?) zl(é’i))_l for 104 > 1 from



APPENDIX B. CHAPTER 2.5 PROOFS 186

Line 14 of Algorithm 5, the right-most sum in (B.5) satisfies

16, d)

= 50.d id id id id id
> BOD =04 (2P ) 4+ () 20D )
o G g
d
Zl((]a d)) (B.6)

max

Therefore, by (B.5), (B.6), and the fact that z(fji)) =1, (B.4) holds true.

Lax

Next, we show that (B.3) is valid. To this end, choose any point (iy, ...,iq) in the domain of P

and note that (i, ...,44) must satisfy either
(a) (i1,...,1q) = sl((J; d)) for some 104 € {0, 1, .. max} or
(b) (i1, ..y ta) # sl({]’ o for any 16 ¢ {0,1,. lr(ﬁaci)}

In case (a), pi(j’_d) L= P((jj?) Pl((]J Cg Also, by Algorithm 5, P(J 4 (j YD and PUY = 0D _ Gd)

Lyeenstd G 10Gd) 1Gd) 10G,d) —1
for 1049 > 0. In addition, by Algorithm 8, {z(()Vd), zgj’d),. l(é’ai)} is a strictly increasing sequence of
positive values. Hence, I:’(j 4 (j D < 0 and Isl(({‘j)) = zl((j] Cf,)> — zl(fj’ff,))_l > 0 for 19 > 0. Therefore,
P(],_C'l.)’ld = P(]f?) = Pl((J] ‘dig > 0. On the other hand, in case (b), (i1,...,4¢) is not in the support of

1)
PG4 gince Algorithm 5 computes all the support points, sl(fj &> of PG4 and (i1, .oy iq) # sl(J d) for any
1G9 € {0,1,...,1%:2}. Hence, P(]’ )‘ = 0. Therefore, whether case (a) or case (b) holds, Pz(f’d)m >0,
whence (B.3) is valid.
Since (B.3) and (B.4) hold true, we have shown that PG is a probability distribution and that it
satisfies (2.37c¢).
All that remains is to show that P satisﬁes (2.37b). To this end, we note that, by Remark 43, for

each k € {1,...,d} and each it € {0,1,.. ik } we can rewrite the equation on the left of (2.37b) as

$(div)

Ymax

Z Z P v dlk 150k Tk+15-+00d = Z P((chtli)l) (4,d;d) (B‘7)

_ Sam L SGa SGa
e s =
because, while (2.37b) is written assuming that P¢% is an infinite-dimensional distribution, it applies

equally well, with minor modifications, to finite dimensional distributions. Lemma 19 and Corollary 1
(4,d;k)

guarantee the existence of the integers ¢ and w, where ¢ is the smallest integer such that sg = i
and w is the largest integer such that s dik) = ik, enabling us to write (B.7) as
iGay
pUd 5 (4,d) (4,d) j,d P (5,d
Z Z 1y 150k bkt 1seesbd Z P(J'il) B (Jdd) - Z Pl(ad) _Pq(] )++P151] ) (BS)
VELy iy=0 Greg 1D RGeS

Since we have that ﬁl((zjf)) = zl(ffg — zl((JJ(?)_l from Line 14 of Algorithm 5, we can rewrite (B.8) as

BOD 4. PGD = (20D Zéjf?) F o (20D — 0

=0 _ z(gjf?. (B.9)

w

Note that (B.9) holds true in the edge case ¢ = 0, since ﬁéj’d) = z(()j’d) by Line 5 of Algorithm 5 and
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(()j’d) = (()j’d) — z(jid), since Z(J’l ) =0 by Definition 26, whence ]3(j 9 = (()j’d) — z(_jid). It follows from
Lines 8-12 of Algorithm 5 that either s(Jflk) = s 41 or s(]flk) s %K) Therefore, if w is the
greatest integer such that s(] dik) ik, then it must be that sgflk) (J’d’k) +1 =1+ 1. Consequently,

Line 10 must get executed in the subsequent iteration of the algorithm. In order for Line 10 to get

executed, the condition in Line 9 must evaluate to true, from which we can deduce that
j d;k jdsk
2§ = FU) = B0 (B.10)

(4,d;k)

Similarly, since ¢ is the smallest integer such that sg = ij, we can also deduce that

d dik ik
209 = F({Jd,j = EAY. (B.11)
Note that (B.11) holds for the edge case ¢ = 0 since séj’d;k) = 0 by Line 4 of Algorithm 5 and by
definition Ffjl’d;k) = 0. (See the beginning of this section.) Therefore, we have from (B.8), (B.9), (B.10),
and (B.11) that

4(di)
Lrnax
E : } : (J d) } : p(.d) _ p(dsk) (dik) _ (dik)
P 150k Tk, P (J d;1) S(J d;d) Flk - Fik—l - Qik . (B]‘2)
VETL i, =0 10.d) — S1Ghd) %3 d)

Note that (B.12) holds true for the edge case i, = 0 since F(] k)~ and, by definition, (()j’d;k) =
Fo(j k). Therefore, the probability distribution PU® satisfies the constraint (2.37b). g

B.4 Proof of Corollary 2

Proor: Choose any j € {1,2,...,n}, u,v such that 1 < v < v < d, any k € {u,v}, and any

2e{o,1,.. g U)} By Remark 52, there exists a unique 104 € {0,1,... n{;&)} such that
u,v d
ZZ(J 125u,0) Zl((J] d)) (B.13)

By Remark 54, there is at least one [0 € {0,1,.. lfﬁa‘f()} such that

st = s, (B.14)
For a given 12, the unique 1% that satisfies (B.13) also satisfies (B.14). We prove this preliminary result
by induction on 2 € {0,1,.. 1 du) } and use it in the proof of the corollary.

We begin the induction proof with the base case 12 = 0. First note that 37"***) = (0,0) from the
construction of the set 7' %) from the set §¥°% and the initialization of s(() D to (0,0,...,0) on Line 4
of Algorithm 5. Next note that, for > = 0, there exists, by Remark 52, a unique [¥'% satisfying (B.13).
Denote this [0:® by l(()j’d). From the construction of the set z(J:%uv) z(()j’g;u’v)

cither FU%%) or FU4Y) Hence, (B.13) implies that z(f]’ d)) must also belong to either FU%) or Fl-dv),

(.d) may not necessarily be 0. If
of Algorithm 5 that g‘f;i;‘ v = sg“d“”) (0,0). Thus, I§"? satisfies both (B.13) and (B.14). On the

must be an element of

However, since z0:%4?) c z(6:d), lg l(()j’d) = 0, it follows from Line 4

other hand, if l(()j’d) #* 0, (B.13) implies that zl((j]d)) is the first element of the set z(9'% that belongs to
0
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either FU4%) or FU%Y) Then, Lines 9-12 of Algorithm 5 further imply that 3((]; d))+1 is the first element

of the set §7%9 where either the u'h or the v'" coordinate is incremented. Therefore, it follows that
555;2;;1’”) = (0,0). Thus, I{"¥ satisfies both (B.13) and (B.14).

Next, for the induction step, choose any 1% € {0, 1,..., lﬁg';ii;“’”) —1} and, for the induction hypothesis,
assume that there exists an 109 € {0,1,.. lﬁﬁa@} that satisfies both (B.13) and (B.14). Denote this
16:4) by l(j D Then, note that, by Remark 52, there exists a unique 109 € {0, 1, ..., 1891 corresponding

to 12 + 1, denoted 19D such that

wn G2ww) _ G
25u,0

i =20 (B.15)

1241

To complete the induction proof, we show below that the same ll(g’ﬂ must also satisfy
<0 diwv) _ <(d,dsu,v)
Sz G (B.16)
1241

Towards that end, note that, by the generation of the set sUD in Algorithm 5 and by the construction

of the set 3% from the set 8%, ~(jf;u’v) must be one of (sl(g’d ) 1, ~§§’d v)), (§(3’d u) ~(]’d v) 4 1),

or (3,2 (piv) 4 q :l(g ) 1). Moreover, note that Z(J 2w) zl(f]i)) implies that zl((]i)) must be an element
2 2

of either FU%% or FU4Y) which, along with Lines 812 of of Algorithm 5, implies that s(é’i)u:) must

~(4,d;v d;u) ~(j,d;v ,d; ~
be one of (3 <;d’)+1 ((J;d)))’ (Sl(g;@)v l(fjd>)+1) (;J;d>)+1 l(<31d>)+1)-
l

12

d; d; ~(4,d;
Case 1: sl(fj ””U;i) (5 l(f] d)U) +1 sl((J7 d)v))
The induction hypothesis, z(j Zun) zl((jji%, along with our assertion (B.15) above that zl(gflu v
z({é’ d)) imply that there is no z(g’d) with [(:4) satisfying Z(J’ < (@D < Zl(gfi that belongs to
1441
either FU4%) or FU4Y)  Hence, for iterations z§§’d> + 2 to 11(5327 Line 9 of Algorithm 5 evaluates
to false for k € {u,v}, which leads to Line 12 of Algorithm 5 being executed. It then follows
that 5 ~l((JJC‘lj;J+Z) .= él(fﬁ)"’v), which enables us to rewrite the left side of the equation in our
1241
assumptlon for this case as
=, d;u, d; z(4:4;
Sl(é’”u Y= ( l((]J d)U) + 1 Z((JJ d)v))' (B'17)
1“+1

Then, since (B.14) holds for the same ll(g’d) that satisfies (B.13) by the induction hypothesis,
substituting (B.14) into the right side of (B.17) gives

5(.7'?d;u,v) _ ( (4,dsu) 11, ~l(g,d U)) (B.18)

(4,d)
1241

Finally, since in this case we have that sl((j;‘i)“ﬁ) = (3 Z((J]dd)") +1, ~Z((J]dd)v)) = sl(gji)u ) and the set
1241

50 %) i constructed from the set 5@ by removing duplicates and retaining the order in which

the support points were generated, it must then also be that ~l(f]'i)“ ) = (5 504 413 ~(J d”)) =

1241
:l(gf;lu’v), as required.
Case 2: S(Jd“”) = (3 =(4,d5u) (jdv) +1)

l(J d)+1 l(] d) l(] ,d)
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In this case, it can be shown that sl(fg‘i)“ ) = (gl(g’d?“),gl(i{’d‘”) +1) = gl(gfluv)
%41

very similar to the proof in Case 1, we omit it for the sake of brevity.

. Since the proof is

(U, dsu,v) (5 =(d,dsu) +1,3 =(4,dsv) +1)

Case 3: Slu A T l(: ) (J )

In this case, it can be shown that §(<J]dd)u v = = (32 59 4 1, Nl(g 4v) 4 1) = ~l(§f1“ v)

12+1
is very similar to the proof in Case 1, we omit it for the sake of brevity.

Since the proof

Therefore, we have shown that (B.16) holds in all three cases above, which completes the induction
step. Hence, we have shown by induction that, for any 1> € {0,1,.. lﬁga@l{u U)} the unique (0% ¢
{0,1,.. lr(ﬁ;;i)} that satisfies (B.13) also satisfies (B.14).

Next, recall that, by Lemma 20, for every (¥% ¢ {0,1,... nj,ai)} §l(g7ffl;)k) is the number of i €

{0,1,.. Zma )} such that F(J k) _ zl(j’d) for some I € {0,1,... ,l(-7’d) —1}. Moreover, given the fact that

we have shown above that, for every I2 there exists a corresponding 1'% such that both (B.13) and (B.14)

hold and the fact that we have fixed an ? at the beginning of this proof, (B.14) implies that Zél(g AR st

also be the number of ¢ € {0,1,.. zﬁﬁa’“)} such that F(J dik) _ (-’d) for some 1 € {0,1,...,104 —1}.

Thus, it remains to be shown that the number of ¢ € {0,1, .. z,(flid]f()} such that Fi(j’d;k) = zl(j’d)

1€{0,1,...,109 — 1} must be equal to the number of i € {0,1,...,i%"} such that FU*F) = 202w)

for some

for some [ € {0,1,...,12 — 1}, where [?> was chosen in the first line of the proof and 10:9) is such that
(B.13) and (B.14) hold.
Towards that end, we first show that for any ¢ € {0,1, .. zma )} all j €{1,2,...,n}, all k € {u, v},
where u, v are such that 1 <u <wv <d,
FOE = ;0D (B.19)
for some I € {0,1,...,10% — 1} iff
Fz-(j"d;k) _ Z[(j-Q?“v”) (B20)

for some [ € {0,1,...,1%> —1}.

We begin by showing the <= case. Towards this end, fix some i € {0,1,.. zﬁgalf()} and assume that
(B.20) holds for some [ € {0,1,...,1> — 1}. Note that there can only be one such [ € {0,1,...,1*> — 1}
that satisfies (B.20) since there are no duplicate elements in the set z(7:%%%). Further note that the
zl(j’Q;"’v) in (B.20) must also be in the set 209 since zU-2%) C zU:4) by the construction of z(:%%%) in

Remark 50. That is, there exists an e {0,1,.. lr(ﬁf)l()} such that
j,d j,2;U,v
20D = B, (B.21)

Then, (B.20) and (B.21) imply that Fi(j’d;k) = z;j’d). It remains to show that [ € {0,1,...,10:9) —1}.
To see this, note that
) g (5.22)

since | < 12 and the set zU%%?) is strictly increasing. Next, substituting (B.13) in the right side of
(B.22) and substituting (B.21) in the left side of (B.22) gives

L)

y
G < B, (B.23)
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Since 2% is also a strictly increasing set, (B.23) implies that [ < 1049 Therefore, (B.19) holds for I = I
and [ € {0,1,...,194 — 1}, as required.

The = case is similar and for this reason we omit its proof. Finally, since we have shown that, for

any ¢ € {0,1,... ,iggg]f()}, (B.19) holds if and only if (B.20) holds, it must then be that the number of
ie€{0,1,... JEﬁA’fJ} such that Fi(J’d;k) = zl(J’d) for some | € {0,1,...,19% — 1} is equal to the number of
1€{0,1,... ,i&‘f;’?} such that Fi(j’d;k) = zl(j’g;"’”) for some [ € {0,1,...,1%> —1}. O

B.5 Proof of Lemma 22

PROOF: We begin by showing that (2.101) holds true for i> = 0. Recall from Lines 3-5 of Algorithm 1
that
s§ =(0,0), 292 =min(FYFY FYEDY and PYD =0, (B.24)

Similarly, from Lines 2-5 of Algorithm 5 and from Algorithm 8, we must also have that

séj’d) =(0,...,0), z(()j’d) = rnin(Féj’d;l)7 . ,Féj’d;d)), and ]50(j’d) = z(()j’d). (B.25)
Case 1: Fo(jl’z;l) < Fo(j/’zm
In this case, (B.24) implies that
U2 = FUNED, (B.26)

From our assumption in this case that Fo(j/’z;l) < Fo(j/’2;2), the fact that FG:dw) = FUS21 and

FUdv) = p("2%2) e also have that
Fy9 ) < R, (B.27)
By Lemma 19, let m and n be the smallest integers such that

s@dn) = gbdw) — 1, (B.28)
Note that we assume here that i\cie) > 0 and i'%% > 0 and treat various edge cases at the end of
the proof for [? = 0. We must have that m < n since (B.27) implies, by Lines 9-12 of Algorithm 5,
that sﬁf;d?“) is incremented before sﬁf’d?”). Then, either

204) _ plida)

m—1 "

or 204 = gt (B.29)
since for (B.28) to hold in Algorithm 5, each coordinate is incremented if and only if the previous
z value is equal to the corresponding cdf with the same coordinate. In fact, we must have that
299 = min{ R, BP0y (B.30)
since the partition of unity is constructed in ascending order by Algorithm 8. Using (B.27) in

(B.30), we have that
209 = B, (B.31)

m—
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We also have, from (B.28), m < n, and Algorithm 5, that
sPEw) —0,0)  for 1€{0,...,m—1}. (B.32)

Using (2.43), we compute

(G:diu,v) _ pldiuv) _ 2: }: pUd
P P( 0) 21, bu—1,050u4150 500 —1,0,80 41,584

JE€ZLu,v 1;=0

d
- 5 A (B.33)
1(3,d) =0
Note that the second line in (B.33) follows from the first line by Remark 43. Then, recall from
Line 5 of Algorithm 5 that
B = 09 (B.34)

and from Line 14 of Algorithm 5 that

~(4,d j,d j,d
B =209 - 259 (B.35)

for 104 > 0. Using (B.31), (B.34) and (B.35) to rewrite (B.33), we have that

5(4,d; u,v d j,d j,d j,d j,d

Pl éj) B X (L R O
Jd;u

20D = pldiv), (B.36)

Therefore, (2.101) holds true for the case [? = 0 by (B.26) and (B.36), since F(J du) = Féj,’zl).

Case 2: Féj,’zl) > Féj,’2;2)

The proof in this case is very similar to Case 1. We omit the proof in this case for the sake of

brevity.

Note that in the edge case zgngf,ﬁ) = 53;2 > 0 and zfna,) = 5352 = 0, we have that Féj’dw) =1

Fo(j 22 Since, by Line 6 of Algorithm 5, the v*® coordinate of the support does not get incremented,
therefore, the n in (B.28) cannot exist. However, the m in (B.28) does exist. Consequently, we must have,
from (B.30), that z(j’d) F(j 1) " Gimilar arguments to those in (B.31)-(B.36) allow us to conclude

that, for the edge case z,(m;?() =& > 0 and (&Y = i = 0, (2.101) also holds true. A similar
argument holds for the edge case i) — &Y — 0 and i{EY = 25353 > 0.

In the edge case zr(gai) = 53;2 0 and z,({f;,)() = zgai) = 0, however, neither m nor n in (B.28) exist.
Since F(]’d W = F(]’d “) = 1, we must have that z({j’i)) =1= FO(]’d u) = Fé]’d ) which implies that in
order to compute P((g (()i)u ) the upper limit of summation (B.33) must be lr(ﬁ;i). Therefore, we have that

(s, , j,d i d .d d d
Pigy™ =2 + @0 =) o4 G -l ) =5 = L (B-37)
Since P(jl’z) 1, (2.101) also holds true for the case [ = 0, in the edge case il = ) = 0 and
(dw) _ (2;2) _
Tmax = tmax =

Therefore, (2.101) holds true for the case [2 = 0.
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Next, we show that (2.101) holds true for any I € {1,2,...,12.}. By Line 18 of Algorithm 1,

}51(23'/72) (4',2) (4',2)

=&z T A2
2:1 12:2) 2;1 2;2
= mm{F (JJ, o 12, F(fj 22)} mln{F((JJ o 13, F((JJ, 222} (B.38)
l —1 l —1

since, by Remark 32, we have that Z(J 2 = rmn{F((J2 12) D F(ZZ 22) 2)}.
12

Let 1Y% be the smallest iteration index in Algorithm 5 corresponding to the index [? such that

(s(j’d;u) (j,d;v)) =(s (G"2:1) (j’,2;2)). (B.39)

1Gd) 2 2G.d) 12 1212

Note that 1Y% must exist due to (B.61), which we have shown above. Then, either

(.d) (jsdsw) (j.d) )
o =EFGay O ZGa_ = F Gaw (B.40)
W s Gd) 1" —1 Gad)

12— 12—

z

since 1Y is the smallest index such that (B.39) holds and for (s(f;(i)u), sl(fj‘i)v)) to be the current support

point, either the ut® or the v*" coordinate must be incremented. Within Algorithm 5, a coordinate is
incremented if and only if the previous z value is equal to the corresponding cdf from the same coordinate.

In fact, we must have that

(4,d) (4,d;u) (j,d;v)
Zl(j,d)_l - mln{F (j.dsu) F S dsv) } (B.41)
- Llaa R

since the partition of unity is constructed in ascending order by Algorithm 8.

Now, let l(ﬁ’d) be the greatest iteration index such that

d; j,d; i,2;1 2;2
(l(fm)”),sl(?ﬁ,df’ V= (547, 53, (B.42)

We assume here that [% G l(_j’d @) #* lrfl;,l(, and that Z(J D) =+ ln]la(i) We handle the edge cases at the
end of the proof. Then, either

Uodiw)  _ (Grdiw) W) (G.dv)
Slijmﬂ lfj o t1 or Z(JJ g T Z(JJ o +1 (B.43)

which in turn implies that
d . d; d;
g = min{ E, ) (B.44)

l(J d) l(] d)

from similar arguments to those used above for 199 We then use (2.43) to compute

pU.diu,v) _ 5(j,dsu,v) 2 : } : 5 (J,d)
Pl2 P <a’ 2; 1) <a’ 22) P ",2;1> ) ; 3,2:2) . :
(5,5 -1, S YA 1seeesfo—1,85 Viut1yeeeyld
]EIU v 7/170 l
(4.d)
S s _ A0 Q) ()
p(5,d) J, P (Js
Z By P(y o Tt Plu,d)- (B.45)
+

=D

Note that the second line in (B.45) follows from the first line by Remark 43. We can rewrite (B.45)
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using (B.35) as

~(j,d;u,v d d j,d j,d
Pzgj ):((J) (4,d) )+,_.+(z(J)_(J_) )

2 T Zlia_y 1D T EHGD
(4,d) (4,d)
= le o T A6 (B.46)

Using (B.41) and (B.44) to rewrite (B.46), we arrive at

pU,diu,v) _ (4,dsw)  7p(d,dsv (J,d;u) (4,d;v)
Py mm{F Gy F Res dv)} mm{F Gy o F S div) (B.47)
L(J d) z(J d) z(J d) _y l(J d) _y
_ (3",2:1)  (5,2:2) (7",2:1)  (i',2:2)
mln{F (], onys F (J, " 2)} mm{F ey F e 2)} (B.48)
S12_4 S12_4

The first min in (B.48) follows from the first min in (B.47) since (s((jji)"),sl((]ﬁ)v)) = (sl(g = 1)’512 2:2))
by the definition of lsrj’d) and the fact that FGdw) = FU"21) and F(J dv) — F(j 22) . To see that the
second min in (B.48) follows from the second min in (B.47), first note that, from (B.39), we have that

d;v i’,2;1 i’,2;2
(s i) = (sid 0, s 22

and 1Y% is the smallest value for which this holds. Since we know from Statement 1 at the start of the
proof of Lemma 24 (which has already been proved above) that the support of PU-duv) g jdentical to
the support of P(j/’2), it follows that

(d,dsu)  (4,dsv) (G"2:1) (5",2;2)
(l(J ) _ 1 Sl(j’@,l) (512 1 98124 )

Finally, recall that FU-dw) = pU"210 and FU-dv) = FG"22) Therefore, (B.38) and (B.48) imply that
(2.101) holds in the general case.

Let us now handle the edge cases. In the edge case lg’d) = l(_j’d), (B.45) reduces to a single term
p(Jd;u,v p(i.d j»d j.d
B = U _ 00 _ 0 (B.49)

Using an argument similar to that used to derive (B.44) and (B.41), we can rewrite (B.49) as

H(J,dsu,v dyu) d;v d;u d;v
Pl(Qj ) — mln{F((]] A F((JJ dm} mln{F (]] d:u? , F((J] 0 v)> ) (B.50)

l(J d) l(J d) l(J’d>—1 Z(J d) _,

Similar reasoning to that used above in showing the equivalence between (B.47) and (B.38) can be used
to show the equivalence of (B.50) and (B.38), thereby showing that (2.101) holds in this case too.

@) _ lr(nax), it is clear that we must also have that l(j’d) = l(j’d) = lEﬁ;‘Q. We omit
lgf’d) — G

In the edge case [’
the proof of this case since the arguments are similar to the edge case considered in the

paragraph above.

(4,d) (4,d) _ Z(Jd)

In the edge case VY < Iy max , it is clear that

j,d d
b =2 =1 (B.51)
G
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and that (B.46) takes the form

pU,dsu,v) __(5,d) (4,d) (4,4)
Plzj = lejf‘d) Zl(ij’d)fl =1- Zl(ij‘d) .
= 1-min{F5) | FOE) ) (B.52)

Gy B

Note that if l(j D 199 we must also have that (2 = [2

d;u d;v i’,2;1 i’,2;2
(sl(f] & ),sl((jj & )) (sl(g ),sg )), where 12 # [2

Lemma 24 which we have already shown above.

& ax> Otherwise, we would have, by (B.39), that
which would contradict the first statement of

max?

Therefore, we have that

BYYD D )

max max

=1- Zl(z 72)_1

=1- mm{F(é 2:1) F%j” 1. (B.53)
512

max -1 ln}mx 1

It only remains to show that the two min terms in (B.52) and (B.53) are equal. Since FU-dw) — p("21)

and FU-dv) = F("22) e only need to show that (sl(f;i;)uzl, sl({;fi;)vjl) (sl(i 21) sl(i o )). The arguments

to show this is very similar to those, above, used in showing that the second min in (B.47) is equal to
(B.48); we omit the proof for the sake of brevity.
Thus, we have shown that (2.101) holds true for I> = 0,1,...,[> ([l

? "max*

B.6 Proof of Lemma 21

PROOF:  Since [GE%Y) — (U dwv) _ 2

max
simply using throughout this proof I2,, . instead of lr(ﬁ;fféu’”) and lr(ﬁa’,‘(i;u’v) and [ € {0,1,...,02,.} to
index the sets s(0duv) g7 diuw) gloduw) 5" diuw) (. 2muw) apng 7" 2uw),

by Remark 48, we can alleviate the notational burden by

Consider ﬁrst the u component of the left side of (2.100). By Corollary 2, Ql(zﬂ;u) is the number of

i€ {0,1,.. zmax } such that F(j diw) _ l(j’2;u’v) for some [ € {0,1,...,1> — 1}. Since Algorithm 6 is

not invoked in the e(duv) = (0,0) case, it must be that él(g diw) §l(§"d;u) Whence s(J ) must be the

number of i € {0,1,..., zfgalf()} such that Fi(j’d;“) = zl(j’2 ) for some [ € {0,1,...,12 —1}.
Next, consider the right side of (2.100). For any [? € {0,1,...,12 .}, there exists, by arguments
similar to those made in Remark 54, at least one 1G"d) ¢ {0,1,.. lgax } such that
(4" dsu,0) (4" dsu,v)
Qlﬁmxfp = slg;;(d)fl(j',d). (B54)

Since Line 5 of Algorithm 6 is invoked in the e/ %%) = (1,1) case, we can rewrite the u component of

the right side of (B.54) as
(4", d;u) (dw) =5 dsu) (B.55)

WD g T tmax TS 0nd e

Applying Remark 54 to the right side of (B.55) and substituting that into the right side of (B.54),

considering only the u component, gives

s h, = i — 5, (B.56)

Note that, since the 0”9 in both sides of (B.55) are the same, the {2 in both sides of (B.56) must also
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be the same. Next, we show that Sl(gidfll in the right side of (B.56) can be written as

s, = i — s, (B.57)

By Corollary 2, él(;f o4 u)2 in the left side of (B.57) is the total number of ¢ € {0,1,.. Zmax } such that
Fz(j,’d;u) = (j/’2’u 2} for some [ € {0,1,...,12, —12—1}.

* Y "max

Next, we can use the fact that zfga?() = ~(J diu) by Remark 53 and the fact that él(g diww) l(g‘d;"’“) in

the eU:%wv) = (0,0) case to rewrite the right ‘side of (B.57) as

i) — ) = g g (B.58)

Then, it is clear by Corollary 2 that the right side of (B.58) is the total number of i € {0,1,.. zgfaii)}

such that F7 4" = zl(j’Q;u’”) for some [ € {I?,... 12, — 1}. Since, by Lemma 18, the order in which
the FU-%% is matched in Algorithm 5 for the e(?4%v) = (0,0) case is reversed in Algorithm 5 for
the el 4%?) = (1,1) case, the number of i € {0,1,.. ngai?} such that F(j diu) — l(j 20) for some

le{i22+1,...,12, —1} must be equal to the number of i € {0,1,.. zmaQ} such that FU 4 =
(J 20) for some | € {0,1,...,12,. —1?—1}. Therefore, we have shown that both the left side and right
s1de of (B.57) equal the total number of i € {0,1,... ,zfﬁla?()} such that Fi(j d) = zl(j Z00) for some

1€{0,1,...,12,,. —1?> — 1}, whence, (B.57) holds true. Finally, substituting (B.57) into (B.56) gives

? Ymax

(.7 du) _ (d;u) o (l(d'u) (],du))

272
lm'rx max l

= s34, (B.59)

as required.
Therefore, we have shown that (2.100) holds true for the u component. Since the proof that (2.100)
holds true for the v component is similar, we omit it for brevity. Because (2.100) holds true for both u

and v components, we must have that (2.100) holds true. O

B.7 Lemma 24

Before we prove Lemma 24, we show some auxiliary results that will make the exposition in the

proof easier to follow. We begin by introducing the sets {é(j,’Q), Al((j] <i2))} {2 2 2) 2% 4))}, and
{2(()j’d;u’”), ... z#if‘ ")}, The sets {s Do l(7 o } and {Z(J 2 lf,{;”,’? } are constructed by dupli-
cating (where appropriate) points in the set of support points {s 2 , l(g’Z)} and in the partition of
unity {z; G’ 2) zl2 } respectively, according to Algorithm 25 below.
Algorithm 25 Subroutine: Extend sets constructed in the [2,, . setting to )

1 §((JJ 2) s(()J 72)7 2((JJ 2) _ zéﬂ :2)

2: 10 .

3. for 104 « 1 zg;‘i) do )

| if Proj, , s # Proj,, 5% _, then

5: IR 1

6: 2(752) (42) 2(] 2) (7",2)

Gy = 5 1Ga) = %4
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Clearly, from Algorithm 25, the sets {s(j"d),. lff?)} {85 U’ 2) . A({J ’d)} and {z(] 2) , Al((JJ dQ))}

have the same length. Note that we extend the set {s; G ’2),..., Sz 2)} by duplicating points S(J 2)

(4,d) (4,d) (4,d)
corresponding to s,(; 4 if the ut? and v*" coordinates of 8,(;.4) are unchanged from s;i; 4 ,; similarly for

i’ 2 2
{zé] ),..., lé}a )}

Note, however, that the d-dimensional partition of unity, {z(j ’d), R l<] d)} is not directly compa-
rable to neither {z(()j/z)7 zl(g 2) } nor {%; G 2. é‘l(g] oy } since it may contain values from {Fi(J’d’k) :
k=1,...,d and « = 0,1,.. zfga]f()} that do not exist in the two-dimensional setting. Therefore, we
must construct a set comparable to {52, zlfj ;2))} for the induction statement. To this end, let
{loy -+ lmax} C {léj’d ll(ﬁa‘i} be a set of indices such that I; < [;;1 and

j,d d 2 i’ 2;k . 2:k
(00,200 = G (P i = 0,1, i), (B.60a)
20D < R0, (B.60b)
K 7+1

Note that [ = lgﬁi, since 1 is in the set on the right side of (B.60a) and 2 ol d) is the unique value in

max

{zéj’d), e l({]‘i)} that is equal to 1.
Now Algorithm 26 below uses the sets {lo,...,lmax} and {zlgj’d), . .,zlgj’d)} to construct the set
LG dsu, L (ds
{Z(()J ) l(<jj i U)}~

Algorithm 26 Subroutine: Construct £0:%%) from z(7:4)

1: Set each z(j diu v) él(j duw) z(j 9
2: 1, + lo
3: for [ + 11 : lyyax doO
5 (J,dsu,v) A( jdiu,v) (4,d)
4: L Set ezich RIS S
5: I, +1
The set {2éj ’d;u’v) zl(jji)u )1 has length lr(fl’ax and only contains values from the partition of unity

max

W2_ {FY"ER =01, i%E)Y, where FU'21D) = pldiv) and PU'22) = pldiv),

We prove the following key result concerning the sequences {s(j ’d), . l((jj 'Z))} and {s(j 2), - él(i{/a‘;)}
and the sequences {%; (7.dsu, v), el AI((J](?,)" Y} and {2 ('2 , .. Al((J;;))}
Lemma 28. For 1¥% ¢ {0,1,... rgai)}
j»d jrdiu, O
Pro.]u,v sl((jj,d)) = Sl((jj,@u v) = Sl((jj.d))v (B.61a)
~(4,d;su, ~(5,2
Zl((jj,@u Y = Zl((Jj,d))' (B.61b)

PROOF: We prove that (B.61) holds for all 104 € {0,1, .. lg{;ﬁ(} by induction on {4, beginning
with the base case, 19 = 0. We have that s(j’d) = (0,...,0) from Line 4 of Algorithm 5 and s(()J 2 =
(0,0) from Line 3 of Algorithm 1. Moreover, since s(J 2 = (j,’2) from Line 1 of Algorithm 25, (B.61a)
holds true for 104 = 0.
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To see that (B.61b) also holds true for 174 = 0, note that the two-dimensional partition of unity,
("2) ,"2)
{zg 7 b

cey l2

is computed on Line 4 of Algorithm 1 and therefore that
zéj 2 = HllIl{F(J 251) F(] ’2’2)} From Line 1 of Algorithm 26, we have that 2 A(]duv) lgg’d). From
(B.60b), we can conclude that z(j 9 is the smallest element in the set on the right side of (B.60a),
whence 24" = l% R n{FO(] ’2;1),Féj/’2;2)}. Since ééj/’z) = z(gj/’z) = min{Féj,’Q’l), FO(jI’Q’Z)} from

Algorithm 25, z(()j i) iéj/’z). Hence, (B.61b) also holds true for /-9 = (.

For the induction step, choose any 1% ¢ {1,2,... H{ai)} and, for the induction hypothesis, assume

that (B.61) holds for 19 —1. That is, that Proj, , sl((]jf?)_ = ‘§1(<JJ ’d)) , and Al((J] (fi)u ) = él((jjy’d))_l. Given the
(4,d)

U, Lines 6-13 of Algorithm 5 increments the u'™ and/or the v*" coordinates

current support point s

(4,d)

J.ay_q if and only if

of s

(4,d) (4, d;su) (G.d)  _ p(idw)
21G,d) 1 Fb (dsw) and/or Gy 1 — FS<.7‘,d;v>
1(5,d) 1 1(5,d) —1

Consequently, there are four cases to consider:

. L) (4,dsu) (4,d) (4,d;v)
Case 1: 2y == Fg(] 2y and z o)1 = Fg(] i)
1(3:d) _1 1(3,d) 1

In this case, Line 9 of Algorithm 5 evaluates to true for both the u'" and the v*® coordinates,

leading to Line 10 being executed for both k = v and k = v. Therefore,

j,d;u ,d;u

Sz(gj,d) )= l(fj a) )1 +1, (B.62a)
j,d;v ,d;v

Sl((Jj,d) ) = Sl((Jj,d)_)l + 1. (B.62b)

By the induction hypothesis (B.61), Algorithm 25, and Algorithm 26, we have that

j diu,v 2 ,2
l(ziﬂi)_ ) = Sl((jj d)) 1 SEJ 1 )7 (B633)

j,d ~(4,d;u,v ~(7",2 2
G =% = 40D | = =20 (B.63b)

where ¢ — 1 is the most recent iteration for Algorithm 1. In the case of (B.63b), note also that

Zl((];gq 731(& (;u ") from the assumptions in Case 1, (B.60a), and Definition 26.

From the assumption for Case 1 that Zl%i)), = F((jjcflig = F({Jiqiz the fact that F((chiqig =
81Ghd) _ 1 81y _q S, Zy
F%,ii)) = F((J, 21)) and F(inzg = F((Jj,ii)) = F((J, 22> the induction hypothesis (B.61), and
Sl(j,d),l Si-1 l(] d) _q Sl(j,d)71 Si-1

(B.63Db), we must also have that

(3",2) _ (',251) (3",2) _ (5',2:2)
z; 7 = Fs”'*“’ and z;2;7 = Fs“' 212) -
i—1 1—1

Consequently, Line 8 of Algorithm 1 must evaluate to true, leading to the execution of Lines 9 and
10 of Algorithm 1. Therefore,

S () |y (G2 g (B.64)

In this case, since Line 4 of Algorithm 25 evaluates to true, Line 5 gets executed and we have that
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Nei) 2 2

Sl(é d>) = SEJ 1J21 (J ), (B.65a)
2 2 2

Zl(fj d)) = Zz(J 1 )1 = (J ) (B.65b)

Therefore, by (B.62), (B.63), (B.64), and (B.65), (B.61) holds true for /U9 as well.

L Ud) _ p(diu) (4,d) (4,d;v)
Case 2: 2d)_ == Fs(j,d;u) and e d) 1 #F SUsdiv)
1(5,d) 4 l(J d) _q

In this case, Line 9 of Algorithm 5 evaluates to true for the u'" coordinate, but not for the v*®
coordinate, leading to Line 10 being executed for the u'? coordinate, but Line 13 being executed

for the v*" coordinate. Therefore,

j,d;u d;u

Sz(gj,d) )= I(?J ) )1 +1, (B.66a)
j,d;v ,d;v

Sl((Jj,d) ) = Sl((]j,d)_)l' (B.66D)

By the induction hypothesis, Algorithm 25 and Algorithm 26, we have that

j,diu,v 2 2
l(ziﬂi)_]_) = Sl((jj d)) 1 SEJ 1 )7 (B67a)

j,d s (G dsu,v 2 ,2
Zl((J-ivd)>—1 = Zl(gj,d>_1) = Zl((jy d>) 1= Zz(j 1 ) (B.67Db)

where ¢ — 1 is the most recent iteration for Algorithm 1. In the case of (B.67b), note also that

l({;i))il = 21(53;1)1 from the assumptions in Case 2, (B.60a), and Definition 26.
From the assumption for Case 2 that zl({]‘?)_l == F:(Jf‘id?g and zl((]] 0 #F {Zid?z , the fact that
A% 1 A%, 1
FUdw F(f]/i R = F(f],illz nd F(fj’iﬁz = F(f]/i 33 = F(f],’i 32, the induction hypothesis
516G q 516 g Si-1 51G.a) q 516 g Si-1

(B.61), and (B.67b), we must also have that

(J 2) F((JJ, )

and Z(J ,2) ” F(] ,2;2)

A(J/ 22)

Consequently, Line 11 of Algorithm 1 must hold true, leading to the execution of Lines 12 and 13
of Algorithm 1. Therefore,
81(_3' 2) _ = (s¥ G’ 2 i1) + l,s(] 125 2)) (B.68)

In this case, since Line 4 of Algorithm 25 evaluates to true, Line 5 gets executed and we have that

§0D =0 =) (B.69a)
80D =07 =40, (B.69b)

Therefore, by (B.66), (B.67), (B.68), and (B.69), (B.61) holds true for 104 as well.

. 0.d) (4, dsu) (4,d) (4,dsv)
Case 3: 2y 1 +F i) and Zigdy_1 = Fs“ Ak
z(J d) _q 1(d,d) 1

The proof that (B.61) holds true in this case is very similar to the proof in Case 2. For the sake

of brevity, we omit the proof in this case.
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(4,d)

(7,d;u)
1(5,d) — 17éF

(G, d;u)
S1Ghd) _q

. (4,d;v)
Case 4: 2 and zm d) L F F(”“,

51G,d) _q

In this case, Line 9 of Algorithm 5 does not hold true for neither the u*"

Hence,

(4,d;u)
1)
(4,d;v)
1G.d)

(4,dsu)

= SiG.a_1

(4,d;v)

= SG.a) 1"

By the induction hypothesis, Algorithm 25, and Algorithm 26, we have that

(G:duw) _ A(3,2)  _ (",2)
S 1 = S = Si—1 >
s diu,) _ 5(5",2) L0"2)
G 1 A1 T Fi-1

where 7 — 1 is the most recent iteration for Algorithm 1.

; (4,d) (4,dsu) (4,d) (4,d;v)
From the assumption for Case 4 that 2,77, | # F Gaw and z5s | F F Ghdw)y s
L(J d) _q l(] d) _q
(odsu)  _ p(721)  _ a(,231) (G.dw)  _ (22 _ (7252)
Flian = Foisn = Fs(ﬂ 21y and F(adv) = F§<a",2;2> = Fs(j/,z;zw
1(G,d) 1 1(3,d) _q i—1 516G g 1(4,d) _1 i—1

(B.61), and (B.71), we must also have that

(4',2) (4',2;1)
z_ i # Fsu',m)
i—1

Note that there is no corresponding condition in Algorithm 1 to (B.72).

and z ;éFJ22

nor the vt®

199

coordinate.

(B.70a)
(B.70b)

(B.71a)
(B.71b)

the fact that

the induction hypothesis

(B.72)

However, in this case,

the projection condition in Line 4 of Algorithm 25 evaluates to false and Line 5 is not executed.

Therefore, we have that

232 _ (2)
S1G.a) = Si—1 s
£('2) _ _(5"2)
Z1G,ay = -1

Therefore, by (B.70), (B.71), and (B.73), (B.61) holds true for /U9 as well.

We have shown by induction on [U9) that (B.61) holds true for all 1% € {0, ..

B.7.1 Proof of Lemma 24

PROOF:

To prove the lemma, we show the following two statements:

1. The support of PU:diw?) ig identical to the support of PU"2),

2. The probabilities at each point of support are equal. That is, for I € {0,1, ...

P(]d uv)

(J 2)
P

l(] d)

max

’ ll?nax}7

(B.73a)
(B.73b)

We note that, for the remainder of the proof of Lemma 24, we assume that d > 2 since we have

already shown the two-dimensional case in Section 2.3 and since, for d = 2, Algorithm 5 reduces to

Algorithm 1. (See Remark 49.) There are four cases to consider.
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The el = (0,...,0) and e(*?) = (0,0) case

We begin proving Lemma 24 for the d-dimensional case 7 = 1 and the corresponding two-dimensional
case j/ = 1. The case j = 1 is the d-dimensional analogue of the comonotone case in the bivariate setting
with corresponding monotone structure e(¥ = (0, ..., 0) describing the dependence structure where all
coordinates exhibit extreme positive dependence to one another. It follows easily from e(*® that the
case j = 1 in d-dimensions corresponds to the case j* = 1 in two-dimensions.

We begin by proving the first statement listed at the start of the proof of Lemma 24 by induc-
tion. Note that Lemma 28 shows that the support computed by Algorithm 5 projected onto (u,v),

{s(()j’d;u’v), ceey sl({](i)uv)} (having duplicate points within the set), is equal to the augmented support set

5U"2) — {.§éj ’2 lé;;)} Moreover, since the augmented support, gt ), with the repeated points
removed is the set {s(j 2 l2 } the set {s; Gduw) sl(g*d*“’” } with the repeated points removed

is equal to the set of support pomts {s5 G’ 2) 312 )} obtained from Algorithm 1. Therefore, the first
statement at the start of the proof of Lemma 24 follows from Lemma 28 and holds true for the case
j=1land j =1

The second statement of the proof of the lemma was shown directly in Lemma 22.

Therefore, Lemma 24 follows from Lemma 28 and Lemma 22 for the case e("® = (0,...,0) and
e12) = (0,0) case.

The e%%) = (0,0) and e %) = (1,1) case

In the two-dimensional case, there are two extreme joint distributions: the comonotone case e(1?) = (0,0)
and the antimonotone case e(>?) = (0,1). In the general d-dimensional case, however, there may be
monotone structures such that their bivariate projections take the form e(:dv) = (1,1) or elidiuw) —
(1,0). We show in this subsection that the bivariate joint probability distribution PUdsuv) having the
monotone structure el:4%v) = (0,0) is equivalent to the bivariate joint probability distribution pU"diuw)
having the monotone structure el -4%v) = (1,1) by showing again that the two statements hold for this
case. Later, on page 201, we discuss the e(?4%v) = (0,1) and e(/%*?) = (1,0) case.

Lemma 21 directly shows the first statement of the proof of Lemma 24 in the e(4%*) = (0,0) and

eli’ duv) — (1,1) case.

Next, we show the second statement of the proof also holds true in this special case. That is, for all
12e€{0,1,..., 2.}

]51(2j,d;u,v) _ Egj/’dff’zv). (B.74)

max

We rewrite the left side of (B.74) using Line 18 of Algorithm 1 as

P _ G2) _ 62) (B.75)

Since there is a correspondence, by Remark 50, between the sets z(%%?) and zU2) we can rewrite

(B.75) as
pGdu) — 0D _ G2 @) () (B.76)

2-1 12 “12_q
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Using (2.90) from Lemma 17, we can rewrite (B.76) as

5 (3, d;u,v) (4,25u,v) (43,2;u,v)
P =232 e

(5",25u,v) (5',25u,v)
(L—zp " Tiamy) = (=2 T2
LU 2ue) (5 2u,0)

TRl Brax—12-1

Therefore, we have shown that (B.74) holds for all 12 € {0,1,...,12,.}.

Since gl(g"d;“’”) is the support point corresponding to 151(3’*“’“) and gl(g ’dﬂg) is the support point cor-
: P duw,v) . P (d:dsu, 507" s,
responding to Ijl(?iamfl:)’ it follows from (B.74) that Pg((j;dﬁz)) = P:(jj/,d;z,:)})) for all 1% € {0,1,2,...,12,..}.
=1

=212 2
Umax —1

This together with Lemma 21 shows that the probability distributions PU-4u:?) and PU"duv) gre
equal. Therefore, we have shown that Lemma 24 holds true for the special case el:d®v) — (0,0)
and el diuv) — (1,1).

The e%%) = (0,1) and e %) = (1,0) case

This case can be proved using arguments similar to the eU»%%?) = (0,0) and e 4%?) = (1,1) case

shown above. For this reason, we omit its proof.

The general 1 < 5 < n setting

Pick a j € {2,...,n} and choose a bivariate set of antimonotone coordinates (u,v) where 1 <u < v <d
from the corresponding monotone structure e?>®. Recall that to construct the antimonotone distribution
P22) in Algorithm 1, a preprocessing step is applied to the marginal distribution Q2. The modified
Q%2 is then used to construct F(%2) (Lines 3-5 of Algorithm 3). After the execution of the main loop
(Lines 6-18), a postprocessing step is applied to the support of P22 (Lines 19-20). As we have already
shown that (B.61) and (2.101) hold true for the comonotone case j = j' = 1, we only need to show that
the preprocessing of the marginal distributions and the postprocessing of the antimonotone supports in
Algorithm 5 is the same as the postprocessing in Algorithm 1. This can be clearly seen by comparing
Algorithm 3 and Algorithm 7 for the preprocessing steps and Algorithm 2 and Algorithm 6 for the
postprocessing steps. Therefore, Lemma 24 holds true for j € {2,...,d}.

|
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