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Abstract. The modeling of financial markets by Lévy process has become an active area of
research during recent years. This has motivated an equal amount of, if not more, research activity
into the necessary numerical methods. Due to the large body of work in this area, we focus our
survey on fast numerical methods for Lévy markets. Particular emphasis is placed on grid-based
methods.

1. Introduction. Numerical methods for computational finance can be grouped
into three main categories: Monte Carlo methods, Finite Difference/Element/Volume
(FD/FE/FV) methods and Transform methods. Monte Carlo methods are by far the
most prevalent of the three categories due to their being the simplest to implement and
possibly the most widely applicable. Indeed, for some complex or high dimensional
structures, Monte Carlo might be the only way possible to numerically value such
derivatives. However, it is well known that the Monte Carlo method suffers from slow
convergence, and consequently, is not applicable in many practical situations. This
drawback motivates research into alternative methods. The second class of methods,
FD/FE/FV methods, are natural applications of standard methods from computa-
tional mathematics originally designed for problems in science and engineering. That
the solution of the option pricing problem, in the Black-Scholes (BS) case, reduces
to the solution of the heat equation corroborates the applicability of such classes of
methods. Transform methods, the third class of numerical methods, in contrast to the
PDE-based framework of the FD/FE/FV methods, look to exploit properties of inte-
gration in order to efficiently arrive at a solution. Transform methods are extremely
efficient when applicable and in many cases are simpler for Lévy Processes than Gaus-
sian Processes. Gaussian Processes are also Lévy Processes, but in a trivial sense–see
the quick review section on Lévy Processes. In all cases, due to the Lévy-Ito decom-
position, Lévy processes can be decomposed into three main components: a linear
Brownian Motion, a compound Poisson Process, and a square integrable pure jump
martingale [77]. In many cases, this translates to the fact that existing methods only
need to be extended such that the additional jump terms are taken into account. As
such, it will be worthwhile expounding on the numerical methods for some products
in the Gaussian case (i.e. American options), as the Lévy case follows via additional
consideration of the jump term.

1.1. Lévy Processes. It is well known that financial returns deviate from nor-
mality and there has been much research into more realistic processes for modelling
asset returns. Naturally, incorporating jumps is an intuitive step forward from the
BS model; this can clearly be accomplished with models driven by Lévy Processes.
We begin by reviewing some basic facts regarding Lévy Processes.

Definition 1.1. A Stochastic process X = {Xt : t ≥ 0} defined on the standard
probability space with triplet (Ω,F ,P) is a Lévy Processes if it satisfies the following:

(i) P(X0 = 0) = 1.
(ii) X has càdlàg paths, i.e. trajectories are P-a.s. right continuous with left

limits.
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(iii) X has independent increments, i.e. ∀t, h > 0, Xt+h −Xt is independent of
Xs for all s ≤ t.

(iv) X has stationary increments, i.e. ∀h > 0, Xt+h−Xt has the same probability
law as Xh.

Clearly, from the definitions above, we see that Lévy Processes are also Markov
processes. We defer to [83] for details into the theory of Markov Processes. The
following theorem describes explicitly and completely, a Lévy Process in terms of its
Fourier Transform. This representation also links a Lévy Process with its character-
istic function.

Theorem 1.2. Lévy-Khintchine representation. Let X be a Lévy process, then

E
[
eiuXt

]
= eitΨ(u)

where the characteristic exponent Ψ has the form

Ψ(u) := iγu+
1

2
σ2u2 +

∫
Ω

(
1− eiuz + iuz1|z|≤1

)
ν(dz)

and γ ∈ R, σ ≥ 0 (constants) and ν is a σ-finite measure on B(R \ 0) satisfying the
conditions ∫

R\0
min(1, z2)ν(dz) <∞ (1.1)

the triplet (σ, γ, ν) is known as the characteristic triplet and ν is known as the Lévy
measure.

The advantages of being able to characterize processes in this manner should
be clear. However, we highlight the simple and well known fact that linear Brownian
motion has the characteristic exponent Ψ(u) := σ2u2/2 + iγu [15]. The fact that the
Lévy measure is missing in this characteristic exponent is the reason that the Brow-
nian motion is also known as a trivial Lévy process.

From this representation, Lévy processes are usually decomposed as Xt = σBt +
Yt, where Bt is a Brownian motion and Yt is a quadratic pure jump Lévy process
independent of Bt. Lévy process with σ = 0 are known as pure jump processes. It is
through various parameterizations of the Lévy measure ν, that proposed exponential
Lévy models in the literature differ. We show, in a later section, a few examples
of popular choices for the Lévy measure. As mentioned above, Lévy processes are
Markov processes and, consequently, they posses an infinitesimal generator LX of the
form

LXf(x) = lim
t→0

E[f(x+Xt)]− f(x)

t

=
σ2

2

∂2f

∂x2
+ γ

∂f

∂x
+

∫
R
ν(dy)

[
f(x+ y)− f(x)− y1|y|≤1

∂f

∂x

]
(1.2)

which is the basic and fundamental connection between a (jump) diffusion and a
partial integro differential operator.

We refer the reader to the treatises [7, 15, 59, 77] for more standard and rigorous
expositions on Lévy Processes.
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1.2. Exponential Lévy Models. Let (St)t∈[0,T ] denote the price of a financial
asset. This is usually modelled as a stochastic process on a filtered probability space
(Ω,F ,Ft,P). By no arbitrage arguments, there exists a martingale measure equivalent
to P such that St is a martingale. This is usually known as the risk-neutral or pricing
measure which we denote as Q. Analogous to the Gaussian case, we assume that the
price process follows, under Q, exponential Lévy dynamics

St = S0e
rt+Xt (1.3)

where Xt is a Lévy process with characteristic triplet (σ, γ, ν). Particular Lévy Mod-
els, which we introduce in the next section, correspond to different parameterizations
of the Lévy measure ν. No arbitrage imposes the following conditions on the corre-
sponding characteristic triplet (σ, γ, ν)∫

|y|>1

νQ(dy)ey <∞ (1.4)

γ = −σ
2

2
−
∫
R

(ey − 1− y1|y|≤1)νQ(dy) (1.5)

The infinitesimal generator associated with the exponential Lévy model becomes

LXf =
σ2

2

[
∂2f

∂x2
− ∂f

∂x

]
+

∫
R
νQ(dy)

[
f(x+ y)− f(x)− (ey − 1)

∂f

∂x

]
(1.6)

This is the general form of the infinitesimal generator for the exponential Lévy model
and at this point it is customary to assume that νQ(dy) has a Lévy density, i.e.,
νQ(dy) = kQ(y)dy for (practical) computational considerations.

1.2.1. Particular Lévy Models. As mentioned above, various jump diffusion
models parameterize differently the Lévy measure νQ(dy). These models include: the
Variance Gamma model [63], based on a pure jump process of finite variation and
its generalization, the CGMY model [22], extended to allow for infinite variation; the
Hyperbolic Process [38] and its generalization the Generalized Hyperbolic Model [39];
Normal Inverse Gaussian (NIG) process [10] and its generalization, the Normal Tem-
pered Stable Levy Processes [11, 12]. There are also models based on non-infinitely
divisible processes such as the Truncated Levy Distributions [64] and their infinitely
divisible analogue given in [69]. Empirical studies support the claim that infinite ac-
tivity finite variation Lévy processes better represent stock price dynamics [48]. In
many cases, these Lévy based models have the BS model as their limiting case. A
very readable introduction into the current literature of proposed Lévy Models is [28].

1.2.2. Assumptions on the Lévy density. It is important to list standard
assumptions on the Lévy measure. These assumptions are basic and are not always
all satisfied by all proposed Lévy models. However, some assumptions, such as (A3),
are necessary for more advanced analyses, such as the wavelet compression of the
moment matrix of the associated Lévy density. Assumptions (A1-A3) are satisfied by
virtually every proposed Lévy model.

(A1) Activity of small jumps.

∀u ∈ R |ψ0(u)− icu| ≤ C(1 + |u|2)Y/2 (1.7)

where ψ0(u) denotes the pure jump portion, Yt, of Xt. C > 0 and Y < 2 are
constants.
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(A2) Semiheavy tails.

∀|z| > 1, k(z) ≤ C

{
e−G|z| if z < 0

e−M |z| if z > 0
(1.8)

where C > 0, G > 0, M > 1 are constants.
(A3) Smoothness.

∀z 6= 0, |k(α)(z)| ≤ C(α)|z|−(1+Y+α)+ (1.9)

where α ∈ N0 and C(α) is a constant depending on α.
(A4) Boundedness from below.

∀0 < |z| < 1,
1

2
(k(−z) + k(z)) ≥ C−

|z|1+Y
(1.10)

If Xt is an infinite activity Lévy process, then k is not integrable; k is integrable if
Xt is a finite activity process. Furthermore, infinite processes satisfy (A4) above with
Y < 0, whereas finite processes do not (with 0 < Y < 2).

1.2.3. CGMY. A very popular model proposed by Carr et al. [22], the CGMY
process is typically considered part of the infinite activity family of models and sub-
sumes the Variance Gamma model (CGMY with Y = 0). The Lévy density takes the
functional form

k(z) = C

{
e−G|z|

|z|1+Y if z < 0
e−M|z|

|z|1+Y if z > 0
(1.11)

with C > 0, G,M ≥ 0 and Y < 2. These four parameters give the CGMY model great
flexibility and allow the model to be either of finite or infinite activity and variation.

1.2.4. Pricing and the (Parabolic) Partial Integro-Differential Equa-
tion. The mathematical formulation of the pricing of an European option leads to a
PDE in the Gaussian case and a PIDE in the Lévy case. As our main focus is on Lévy
markets and the fact that the Gaussian case is well expounded upon, we review how
a PIDE arises from the pricing of an European option. The value of an option, Ct, is
defined to be the conditional expectation of its payoff, discounted under the pricing
measure:

Ct = E[e−r(T−t)HT |Ft]

where HT is the payoff of the option at maturity and Ft is the associated filtration of
the underlying probability space. We can rewrite this in a more discrete form using
the Markov property of Lévy processes:

C(t, S) = E[e−r(T−t)HT (ST )|St = S]

If C is sufficiently smooth (i.e, u ∈ C1,2 with bounded derivatives), it is well known
that we can obtain a Black-Scholes-like PIDE for the option price by applying standard
no-arbitrage arguments [30]:

∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2S2

2

∂2C

∂S2
(t, S)− rC(t, S) (1.12)

+

∫
v(dx)

[
C(t, Sex)− C(t, S)− S(ex − 1)

∂C

∂S
(t, S)

]
= 0
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Equation (1.12) reduces to the Black-Scholes equation in the Gaussian case for which
the last integral in (1.12) is zero.

2. Grid-based Methods. Mesh based methods (the Trinity being the well
known Finite Difference/Element/Volume Methods), the solution method of choice
for many numerical problems in other computational fields, have also taken root in
computational finance. Although both Finite Difference (FD) and Finite Element
(FE) methods can be applied to a broad swath of problems, FD methods are most
commonly applied to simple problems (payoffs) in low dimensions or as the time dis-
cretization scheme in mixed schemes. FE methods, on the other hand, are more com-
monly applied to more complex problems in high dimensions, or for problems where
a high accuracy is needed. The cost of the computational benefits of FE schemes is
a more involved implementation. Finite volume (FV) methods have also been ap-
plied in computational finance but are less popular and widespread. This may be
because most problems in finance are inherently parabolic, whereas FV methods are
usually applied to hyperbolic problems (conservation laws). In this section, attention
is largely devoted to the pricing of American options in order to highlight methods
that are centered around a PDE approach. As explained later, the transform ap-
proach is ideally suited to (pricing) problems of European exercise, whereas the PDE
approach is better suited to problems with American exercise features or path depen-
dency. Indeed, for options of European exercise, PDE-based methods are, in general,
not competitive with transform based methods. Furthermore, American options are
ubiquitous on exchanges and as a contract feature (consider convertible bonds and
other derivative contracts with embedded optionality, exercisable up to a certain date).

Outline of current and related research. Before further exposition, we pro-
vide a brief overview of current research in grid based methods for Lévy models in
hopes of illuminating the current research landscape. Finite Difference methods have
been proposed in [6, 29, 35, 58, 95]. Andersen and Andreasen [6] were one of the
first to solve, numerically, classic pricing problems in Lévy models and suggested an
operator splitting method based on the Crank-Nicholson method, treating the jump
integral with an explicit method. However, this method does not extend to problems
having singular kernels (infinite activity Lévy models). d’Halluin et al. [35] tackle
the LCP (arising from the formulation of the American option problem in a jump-
diffusion setting, which is discussed later) with an implicit discretization, treating the
jump integral via a FFT. We remark that, in the literature, it is popular to handle the
jump integral via the FFT due to its numerical efficiency. Zhang [95] treats the PIDE
in a variational setting, devising a FD scheme for jump diffusion with finite intensity
possessing all exponential moments. Although treated in a variational framework,
the exponential moment condition severely limits the proposed method to the Merton
model. Cont et al. [29] propose a more general FD scheme under the framework of
viscosity solutions, which allows for rigorous analysis of stability, convergence, and
estimates of the rate of convergence to be undertaken. Arguably, when applicable,
analysis of the PIDE should be done in a viscosity solution framework as all viscos-
ity solutions are stable. Viscosity solutions can also be seen to extend the notion of
weak solutions for nonlinear settings in which it provides a nice regularity theory [32].
Whole families of methods have been developed for solving the basic Linear Com-
plementarity Problem arising from the American option pricing problem and as we
devote a section to discussing this, we defer to the following section for an overview
of proposed solution methods. Penalty methods are known to be applicable to LCPs
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[8] and are popular as they allow for a single homogeneous method to be applied to
single and multidimensional problems [35, 46]. Furthermore, they are also able to
easily include various generalizations (stochastic volatility, transactions costs, etc) in
one framework.

Another exciting approach to pricing problems is that of the HJB/stochastic
optimal control perspective [45, 52, 73, 92]. This new class of methods arise from
traditional pricing problems when more realistic features are modelled, such as jumps
in the underlying or market frictions such as transactions costs. Though as we have
seen there are far simpler ways to deal with jumps, the control theoretic framework
lends itself well when modelling various market frictions. At this point, it is pertinent
to mention that, although market frictions such as transaction costs are of great prac-
tical relevance, in both academia and industry, they are rarely dealt with rigorously,
if at all, because of the added complexity required to model them. Of course, this is
changing as the field matures. One of the main attractive features of the control the-
oretic perspective is that it can exploit the fact that many problems in such settings
can be phrased as optimization problems, thereby allowing one to take advantage of
the advances in the field of (mathematical) optimization. We note however, that it
is not rare for specialized solution methods to be devised for a particular re-framed
optimization problem [45].

Finally, we must mention the class of methods based on the Galerkin framework,
ranging from finite element methods [3, 4], to spectral element methods [25, 47], to
the exciting new Wavelet methods [65, 66, 67, 85]. Galerkin based methods are more
sophisticated and more difficult to implement compared to other grid based methods
such as Finite Differences, however, they are more amenable to problems of higher
dimensions and, in general, can be more efficient when requiring greater accuracy.
Furthermore, as is well known, the Galerkin method also provides an a priori frame-
work for the error, which is of great importance in computational finance. In more
practical considerations, Galerkin methods can lead to a more homogeneous code base
which is of great importance when maintaining production codes. We devote a section
to the more detailed exposition of Wavelet methods as they are an exciting subclass of
Galerkin methods, owing to such properties as certain integral operators being sparse
when represented in the wavelet basis.

2.1. American Options and Linear Complementarity Problems. As briefly
mentioned above, in the study of numerical methods for option pricing problems in
Lévy markets, grid based methods in most cases, for European options, are not com-
petitive with transform based methods. As most of the methods reviewed in this
section are based on the American option problem, we first review the standard vari-
ational formulation of the American option problem. In general, grid based methods
rely on an equivalent variational formulation of a PDE. In the case of the American
put problem, the price satisfies a parabolic variational inequality. When discretized,
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this results in a Linear Complementarity Problem (LCP) [91]:

Lv ≥ 0 s > 0, t ∈ [0, T ] (2.1a)

(v −H) ≥ 0 s > 0, t ∈ [0, T ] (2.1b)

(Lv)(v −H) = 0 s > 0, t ∈ [0, T ] (2.1c)

vt − (
1

2
σ2s2vss + rsvs − rv) = Lv s > 0, t ∈ [0, T ] (2.1d)

v = K s = 0, t ∈ [0, T ] (2.1e)

v = H s > 0, t = T (2.1f)

v → 0 s→∞, t ∈ [0, T ] (2.1g)

where s is the spot price, H = max(K − s, 0) is the payoff, with K being the strike,
v is the value of the American option, and L is the BS (linear parabolic differential)
operator. Though in (2.1) above we have defined L to be the BS operator, the gen-
eral method of numerically solving the American Option problem can be extended
to stochastic volatility models by defining L to be the Heston operator. The same
holds in a Lévy setting, where L then represents the corresponding Lévy parabolic
integro-differential operator [29]. Many existing numerical methods in the literature
explore different ways to solve the LCP, some of which include Projected Successive
Over Relaxation (PSOR) [91], Operator Splitting [54], Projected Multigrid Meth-
ods [70], Penalty Methods [46], Policy Iteration [73], and Component Wise Splitting
Methods [55]. Other approaches worth mentioning for solving the American option
problem include solving for the Free Boundary (via front-fixing) [68] and relatively
new techniques such as the use of Malliavin calculus [1]. LCPs are important classes
of numerical problems in the computational sciences, in particular, in computational
mechanics. LCPs have been found in the symmetric case to be equivalent to bound-
constrained quadratic programming (BQPs) problems. The LCP specific numerical
methods mentioned above are long established methods, though, as of late, there
has been a rekindling of interest in numerical methods for LCPs. This stems from
new techniques of subspace acceleration that allow for more complex splittings and
improved identification of the active set [44, 74] which includes application to the
American option problem.

2.2. Operator Splitting. Introduced by Ikonen and Toivanen [54] to finance,
the operator splitting method originated in fluid mechanics where it is used to handle
the incompressibility constraint [2]. The main idea is in splitting the operators arising
in the LCP into fractional time steps as opposed to solving them simultaneously in
one time step. This results in a series of simpler problems during each time step,
as opposed to directly solving the LCP. Applied to the option pricing problem, this
amounts to solving for the equation associated with the BS operator in a fractional
time step, and then imposing the constraint (2.2) in a second fractional time step. An
equivalent way of looking at this is that the equation associated with the BS operator
is solved first and then the solution is adjusted in a second fractional time step so
that the constraint is satisfied. To begin, we first rewrite the LCP (2.1) in a slightly
different but equivalent form where we introduce an auxiliary variable to represent
the BS operator and make slight notional changes more appropriate for this method:
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λ = vt +
1

2
σ2s2vss + rsvs − rv s > 0, t ∈ [0, T ] (2.2a)

[v − (K − s)+] · λ = 0 s > 0, t ∈ [0, T ] (2.2b)

v − (K − s)+ ≥ 0, λ ≥ 0 s > 0, t ∈ [0, T ] (2.2c)

v = max(K − s, 0) s > 0, t = T (2.2d)

v = K s = 0, t ∈ [0, T ] (2.2e)

v → 0 s→∞, t ∈ [0, T ] (2.2f)

2.2.1. Space Discretization. To begin, we introduce the standard finite dif-
ference discretization schemes for the space variable - the standard central difference
scheme. Note that the subscript i refers to the ith point in the spatial discretization

1

2
σ2s2 ∂

2v

∂s2
≈ σ2s2

i

(vi−1 − 2vi + vi+1)

2(∆s)2
(2.3)

rs
∂v

∂s
≈ rsi

(vi+1 − vi−1)

2∆s
(2.4)

Substituting the above discretizations into (2.2a), we arrive at the semidiscrete equa-
tion

∂v

∂t
+Av − λ = 0 (2.5)

where the matrix A contains the above space discretizations (and −rv).

2.2.2. Time Discretization. Next, we discretize (2.5) in time. In the litera-
ture, it is common to discretize the time variable via a θ-scheme given as follows

1

∆t

(
v(k+1) − v(k)

)
+A

(
(1− θ)v(k+1) + θv(k)

)
− λ(k) = 0 (2.6)

where superscript k denotes the kth time level. Note that we are integrating backward
in time and that vk, λk are implicit. Another popular time discretization method is
the two-step backward differentiation formula (BDF) [70]:

1

∆t
(
4

3
v(k+1) − v(k) − 1

3
v(k+2)) +

2

3
(Av(k) − λ(k)) = 0 (2.7)

The remaining constraints from the LCP are discretized in a straightforward and
consistent manner with the discretizations introduced above and are as follows:[

v
(k)
i − (K − si)+

]
· λ(k)

i = 0, v
(k)
i ≥ (K − si)+, λ

(k)
i ≥ 0. (2.8)

For the reminder of this section, we do not explicitly mention (2.8), the remaining
discretized LCP conditions and assume that they are satisfied.
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2.2.3. Operator Splitting. Having to solve (2.6) or (2.7) simultaneously with
(2.8) is difficult; indeed this comes from the simple fact that constructing solutions
to linear problems is easier than constructing solutions to LCPs. As previously men-
tioned, the general strategy of operator splitting methods is to decouple the LCP into
simpler linear problems via splitting the time discretization into two fractional time
steps. The first fractional time step for both methods (the θ-scheme and the BDF,
respectively) are, respectively,

1

∆t
(v(k+1) − ṽ(k)) +A

(
(1− θ)v(k+1) + θṽ(k)

)
− λ(k+1) = 0 (2.9)

1

∆t
(
4

3
v(k+1) − ṽ(k) − 1

3
v(k+2)) +

2

3
(Aṽ(k) − λ(k+1)) = 0 (2.10)

The ṽ(k) denotes the intermediate value that links the two fractional time steps and
λ(k+1) is known from the previous time step. Note that in the first fractional time
step, all the terms at the k + 1 and k + 2 time steps are known and that only ṽ(k) is
solved for (since we are going backwards in time). Thus, ṽ(k) can be computed via
an LU -decomposition. The second fractional time steps are

1

∆t
(ṽ(k) − v(k)) + λ(k+1) − λ(k) = 0 (2.11)

1

∆t
(ṽ(k) − v(k)) +

2

3
(λ(k+1) − λ(k)) = 0 (2.12)

for the θ-scheme and the BDF, respectively. It is in the second fractional time step
that the additional LCP conditions (2.8) are incorporated into the method. Indeed it
is those equations together with (2.11) or (2.12) that allows us to compute v(k) and
λ(k). Note that v(k) and λ(k) are decoupled from the other components and can be
solved for algebraically, as we would already have obtained the values of ṽ(k) from
the first fractional time step, v(k) and λ(k) are decoupled because of the fact that
they must satisfy a complementarity condition. One of the two must be known at
each iteration. For example, if it were the case that λ(k) = 0, the complementarity

condition implies then that v
(k)
i ≥ (K − si)+. More importantly, the consequence of

the case that λ(k) = 0 results in the second fractional time steps being unknown in
only one variable. In the BDF-scheme, this allows us to solve directly for v(k):

v(k) = ṽ(k) +
2

3
λ(k+1)∆t (2.13)

Similarly, if it is the case that v
(k)
i = (K − si)

+ (i.e., λ(k) ≥ 0), we can use the
complementarity condition to arrive at a solution for λ(k). However, this has only
shown that λ(k) and v(k) are decoupled and that it is possible to use additional
information from the complementarity conditions in order to arrive at a solution
to the second fractional time step. The original paper does not discuss why the
method works. It can be shown, although out of the scope of this survey, that the
method proposed is equivalent to the Douglas-Rachford algorithm. In order to show
that this method does indeed work, one would need to first reformulate the LCP
into a form consistent with the Douglas-Rachford scheme. The resulting form has
two operators which must be shown to be maximal monotone operators in order to
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use the standard result to prove that the scheme converges [71]. Note that maximal
monotone operators stem from the theory on proximal algorithms, specifically, the
underlying proximal operators. Some theory on the relation between the Douglas-
Rachford splitting algorithm and proximal algorithms can be found in [40].

2.2.4. Numerical Results and Convergence. Numerical experiments show
that the operator splitting method is approximately twice as efficient as the PSOR
method; the CPU time for PSOR was shown to increase by a factor of 8 when the
discretization (both space and time) was made twice as fine, whereas the Operator
Splitting method only increased by a factor of 4 [54]. With regards to accuracy, it is
shown that the operator splitting method is essentially the same as the PSOR method.
Although operator splitting methods are known to be efficient, one disadvantage of
this class of methods is a lack of convergence results for each possible splitting scheme:
convergence analysis has to be done from scratch. Moreover, as the operator split-
ting method, fundamentally, looks not to solve the discretized LCP, any convergence
results for the continuous LCP cannot be exploited.

2.2.5. Extensions. The Operator Splitting method, like many other methods,
has been extended to more general cases such as stochastic volatility [55], where the A
matrix in (2.5) is decomposed into three simpler matrices denoted Ax, Axy, Ay. This
component-wise method is also known as the Marchuk-Yanekno scheme. Similar to
the method of Policy Iteration, to be discussed in the next section, one of the most
important considerations in the analysis of the method is the properties of the A
matrix. For example, if the A matrix has properties, such as being a Z-matrix, then
the method may have nice convergence results. Following this line of thought, Huang
et al. [53] discuss some properties of the matrices resulting from the discretization of
the LCP arising from models such as the Cox’s CEV and a jump-diffusion model. A
more general and rigorous discussion of the properties of the matrices arising from
LCPs can be found in [31].

2.3. Policy Iteration. Most of the methods discussed in this paper are tradi-
tional numerical methods, i.e. grid based methods or numerical integration methods.
In this section, we describe a numerical method following the recent trend of framing
and solving problems from an optimization standpoint. In a recent paper [73], the au-
thors demonstrate the use of policy iteration as a means of pricing American options.
It is shown that the Policy Iteration can be seen as a standard Penalty Method [92]
with the regularization parameter approaching infinity. The key insight that permits
tackling the problem from an optimization standpoint is the recognization that the
LCP can be expressed as a discrete HJB problem. Policy Iteration is a numerical
method designed for solving HJB equations that was first introduced to finance in
[45]. Policy Iteration was originally devised by Bellman [13, 14] and Howard [51] for
the solution of stationary infinite horizon Markovian Dynamic Programming (MDP)
problems. Central to each MDP is the Bellman equation in the discrete case or
the Hamilton-Jacobi-Bellman equation in the continuous case which is the dynamic
programming equation describing the cost of the dynamical system. The dynamic
programming equation, also known as a value function, essentially measures the cost
of each stage (payoff) so that one may choose, usually, the path that results in the
lowest cost. We refer to the standard treatises [13, 14, 51] for theoretical background
and [57] for a more numerical treatment, as even a quick review is beyond the scope
of this paper. It is worthwhile to mention that it has been shown, under specific
regularity conditions, that Policy Iteration is mathematically equivalent to Newton’s
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Method [72].

The policy iteration algorithm used in this paper is adapted from the original [45]
to the case of the discretized LCP arising from the American option problem. The
resulting discretized linear complementarity problem takes the form

Ax ≥ b
x ≥ c

(Ax− b)i · (x− c)i = 0 1 ≤ i ≤ N (2.14)

where A ∈ RN×N is an M -matrix and b, c ∈ RN . Recall that an M -matrix is a
nonsingular matrix A such that A−1 ≥ 0 [50]. It is clear that (2.14) is equivalent to
the following optimization problem

min{Ax− b, x− c} = 0 (2.15)

also known as the obstacle problem, a discrete HJB equation. The obstacle problem
is a classic problem in variational inequalities and free boundary problems, where the
goal is to find the equilibrium position of an elastic membrane constrained to lie above
a certain obstacle [8]. Note that the optimization problem (2.15) is computed in a
component-wise fashion.

2.3.1. Application to American Options. The application of Policy Itera-
tion to American options in [73] is predicated on the equivalence of (2.14) and (2.15).
The LCP arising from the American option problem is reformulated as a discrete HJB
problem that can be solved via the Policy Iteration adapted to this specific case. The
component-wise form of (2.15) is

min
φ∈{0,1}

{φ(Ax− b)i + (1− φ)(x− c)i} = 0 (2.16)

Equivalently, this amounts to considering

(φi(Ax)i + (1− φi)(x)i)− (φi(b)i + (1− φi)(c)i) = 0 1 ≤ i ≤ N

where φi ∈ arg minφ∈{0,1}{φ(Ax− b)i + (1−φ)(x− c)i} represents the optimal policy
in state i. The algorithm amounts to point-wise checks and solving the corresponding
equations which violate the equality most. Formally, the problem specific Policy
Iteration algorithm is

Policy Iteration Algorithm applied to the American Option Problem. Let x0 ∈
RN . Given xn, let φn ∈ RN , A ∈ RN×N , b ∈ RN be such that for 1 ≤ i ≤ N

(φn)i ∈ arg minφ∈{0,1}{φ(Axn − b)i + (1− φ)(xn − c)i}
(An)i = (φn)i(A)i + (1− (φn)i)(IN )i

(bn)i = (φn)i(b)i + (1− (φn)i)(c)i

where (An)i and (IN )i stand for the ith row of An or IN , respectively, and IN is the
N ×N identity matrix.

It then follows that

(Anxn − bn)i = min
φ∈{0,1}

{φ(Axn − b)i + (1− φ)(xn − c)i}
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Each step of the algorithm consists of correcting the row that violates the inequality
the most. It is shown that this algorithm terminates in finitely many steps. In par-
ticular, the policy iteration converges in at most N + 1 steps for the vanilla American
option payoff [73]. In practice, however, the algorithm often converges in much fewer
iterations. Recall that the policy iteration steps through via finding improved policies;
if the policy cannot be improved further, then the algorithm terminates.

2.3.2. Policy Iteration in the Lévy Case. Since the method mainly relies on
the M-matrix property of the operator matrix, Policy Iteration can be applied to Lévy
(and other) models provided that their discretizations satisfy the M-matrix property.
At the time of this writing, there have not been explicit results published on this; it
could be a possible research topic.

2.4. Wavelet Galerkin Methods. Galerkin methods are a mainstay tool of the
numerical analyst and one of the main solution methods of choice for the numerical
solution of PDEs in computational mathematics due to such properties as their a
posteriori error analysis and mesh adaptivity. The Galerkin method has been applied
to finance in the BS [3] and the stochastic volatility cases [4]. As mentioned earlier,
Galerkin methods are, in general, more complex than simpler discretization methods
such as Finite Differences. However, Galerkin methods are more amenable to more
exotic payoff features and higher dimensions when compared to less sophisticated
discretizations. Analogous to the finite element literature in other fields, other flavours
of Galerkin methods have also been applied to finance [25, 47]. Our focus is on the
wavelet Galerkin method (known simply in the literature as wavelet methods) due
to properties such as wavelet compression and optimal preconditioning1, which allow
it to handle features characteristic of PIDEs, like integral operators. The particular
method that we discuss discretizes the spatial dimension via a Wavelet-based Galerkin
method, whereas the time dimension is discretized via a discontinuous Galerkin (dG)
approach. The resulting linear systems are then solved by the incomplete GMRES.

2.4.1. Background. Wavelets originated in signal processing and image anal-
ysis and have traditionally been mainly applied to those fields. Recently, interest in
their applicability to the numerical solution of PDEs has surged. One major reason for
this is that PDEs describing physical phenomena exhibit multiscale behaviour. Nat-
urally, numerical methods such as multigrid methods which are able to exploit this
are quite successful. It is well known that multigrid methods take advantage of mesh
refinements, and in that sense can be considered asymptotically optimal. Wavelets
inherently describe components living in different scales, thereby naturally possessing
an important property which make multigrid methods so effective. Another attractive
property of wavelets is that many operators (not just integral operators) and their
inverses are sparse when represented in wavelet coordinates. Wavelet analysis in many
cases parallels Fourier analysis and indeed many of the results obtained in the Fourier
case have analogous results in the wavelet case. Due to the considerable depth of the
analysis underlying wavelet methods, we highlight the basics of wavelets so that our
review of wavelet based Galerkin methods will be easier to understand.

2.4.2. Preliminaries. The analysis of wavelets is a broad field and, as pre-
viously mentioned, many results parallel that of Fourier analysis which is an even
older and broader field, with many ties to Harmonic analysis. Wavelets are func-
tions that are inherently multiscale and consequently hierarchical. This is the basis

1in a sense to be discussed
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for many of their important properties which we summarize below. To this end, we
define a space Vh as the space of piecewise polynomials of total degree p ≥ 0 van-
ishing on the boundary ∂Ω. Vh is the finite element space that we will be working
with. The hierarchical basis functions ψlj (wavelets) possess the following properties

1. Vh = span {ψlj | 0 ≤ l ≤ L, 1 ≤ j ≤M l}
2. The wavelets have support Slj = supp ψlj with diam(Slj) ≤ C2−l

3. Wavelets such that S̄lj ∩ ∂Ω = ∅ have moments that vanish up to order p;

(ψlj , q) = 0 for all polynomials q of total degree p or less.

4. ψlj , where l ≥ l0 are scalar transformations and scalings of the wavelet ψl0j
5. A function v ∈ Vh has the decomposition

v =

L∑
l=0

M l∑
j=1

vljψ
l
j

where vlj = (v, ψ̄lj). ψ̄
l
j are known as dual wavelets.

6. The following norm equivalence holds. There exist constants c1, c2 > 0 such
that

c1‖v‖2H̃s(Ω)
≤
∞∑
l=0

M l∑
j=0

|vlj |2 22ls ≤ c2‖v‖2H̃s(Ω)

The aforementioned properties are the basic machinery behind the compression prop-
erty and efficiency of wavelets. Further properties and analysis can be found in the
standard texts for wavelets for numerical analysis: Cohen [26] and Daubechie [34].
Standard references in the literature include [27, 33, 80, 81, 82].

2.4.3. Variational Formulation. Due to constraints on the scope of this re-
port, we focus the bulk of the discussion on the European case. We discuss the
American case, albeit in lesser detail, afterwards. It is, by now, well known that the
European option pricing problem results in the following PIDE:

∂u

∂τ
(τ, x) + LX(u)(τ, x) = 0 in (0, T )× R (2.17)

u(0, x) = g(x) inR (2.18)

where g(x) = f(ex) is the payoff function in log-space. Note that the PIDE above is in
log-space x = log(S), and time to maturity, τ . The operator LX is, more specifically,
LX = LBS + Ljump [66] with

LBS [v] =− σ2

2
v′′ +

(
σ2

2
− r
)
v′ + rv

Ljump[v] =−
∫
R

(
v(x− y)− v(x)− (ey − 1)v′(x)

)
k(y)dy

The infinitesimal generator LX of the Lévy process Xt is split into the BS component
LBS and the jump component Ljump. The payoff function may grow exponentially
as |x| → ∞ (i.e, (ex−K)+, (K− ex)+ /∈ L2(R)). As such, instead of classical Sobolev
spaces, as in the Brownian case, exponentially weighted Sobolev spaces are most
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often used. To this end, we introduce the exponentially weighted Sobolev spaces with
exponent w:

H1
±w(R) := {v ∈ L1

loc(R)| e±wv, e±wv′ ∈ L2(R)} (2.19)

where

w(x) =

{
w−|x| if x < 0

w+|x| if x > 0

and w ∈ L1
loc(R), w′ ∈ L∞(R). As in the standard variational analysis needed for

Galerkin methods, we introduce a bilinear form aη(·, ·) corresponding to our operator
LX :

a±w(ϕ,ψ) :=

∫
R
LX [ϕ](x)ψ(x)e±2w(x)dx ϕ, ψ ∈ C∞0 (R) (2.20)

Under some conditions, the bilinear form aw() can be shown to satisfy a G̊arding
inequality. Further assuming that the exponent w has 0 ≤ w− < M and 0 < w+ < G,
where M and G are the constants from the Lévy density (1.8), the solution u ∈
L2((0, T );H1

−w(R)) ∩H1((0, T );H1
−w(R)) of

∂

∂τ
(u(τ), v)L2

−w(R) + a−w(u(t), v) = 0 ∀v ∈ H1
−w(R) (2.21)

u(0) = g (2.22)

exists and is unique [67].

2.4.4. Localization. The variational formulation has domain on the whole real
line. Clearly, this is not feasible for numerical solutions. As such, the variational
formulation must be localized to a suitable computational domain ΩR = (−R,R), so
that a computer solution is feasible. A step towards obtaining an equivalent localized
problem is by the introduction of what is referred to as the excess to payoff function.

U = u− g (2.23)

This excess to payoff function is introduced because it decays exponentially. Hence,
the corresponding PIDE for the excess to payoff function can be localized as in more
classical cases and we recover again a local property. Restricting the solution of the
PIDE for U to our computational domain ΩR, we obtain

∂UR
∂τ

+ LXR [UR] = −LXR [g] in (0, T )× ΩR (2.24)

UR(τ, x) = 0 in (0, T )× R \ ΩR (2.25)

UR(0, x) = 0 in ΩR (2.26)

It can be shown that there does exist a solution for the PIDE above and that it is
unique. We refer to [66, 67] for details of the verification.

2.4.5. Discretization and Numerical Solution. The exposition in the pre-
vious section dealt mostly with the solution of the PIDE in a variational setting.
In this section we discuss the particulars of the discretization. We mention that, in
general, the discretization of nonlocal operators such as Ljump leads to dense and
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ill-conditioned stiffness matrices. This undoubtedly increases the computational com-
plexity of the numerical solution. It is for this reason that wavelet bases are so
attractive - their properties such as matrix compressions result in the matrix being
sparse and in most cases, better conditioned.

We begin by introducing the general functional space necessary for the analysis
of the discretization. For 0 ≤ ρ ≤ 2 the spaces

V = H̃ρ/2(Ω)


Hρ/2(Ω) if 0 ≤ ρ < 1

H
1/2
00 (Ω) if ρ = 1

H
ρ/2
0 (Ω) if 1 < ρ ≤ 2

(2.27)

defined on a bounded interval Ω = (a, b) denote the standard Sobolev Spaces [5].
Let V ∗ denote the dual of V. We remark that the analysis of the discretization and
the problem form required for numerical solution is carried out on standard Sobolev
Spaces. This is because the bilinear form a(·, ·) can be extended continuously into
V × V . We do not specify which particular space V refers to as the analysis can
proceed without specifics. The specific cases of V exists to deal with certain cases of
the PIDE. This is due to the fact that as the volatility of the process changes, the
order of the operator changes accordingly. Details of the continuous extension and
the cases of the PIDE in different volatility regimes are presented in [66].
Basis Functions. The wavelet functions chosen as a basis are the biorthgonal
wavelets

{ϕlj}j,l l = 0, 1, .., L j = 1, 2, ...,M (2.28)

whose general properties have been discussed above.
Matrix Compression is a deep topic in itself (see [78] for more advanced compres-
sion methods), but given that the problem is semidiscretized in space via wavelets,
the matrix compression for our bilinear form a on Vh × Vh is

Ã(j,l),(j′,l′) :=

{
A(j,l),(j′,l′) if dist(Slj , S

l′

j′) ≤ δl,l′ orSlj ∩ ∂Ω 6= ∅
0 otherwise

(2.29)

where the truncation parameter is δl,l′ = cmax{2−L+α̂(2L−l−l′), 2−l, 2−l
′} with pa-

rameters c > 0, 0 < α̂ ≤ 1, and Slj = suppψlj .
Domain Discretization. The problem domain is discretized as follows. For the spa-
tial dimension, T 0 is introduced as a fixed coarse partition of ΩR. Then, for l > 0, T l
is defined to be a bisection of each of the intervals in T l−1. Clearly, we have discretized
the spatial domain in a manner amenable to the inherent multiscale properties of the
wavelet basis functions. Let Th = T L for some L > 0 such that h = C2−L. Vh is then
defined to be the space of all continuous piecewise polynomial functions vanishing on
the ∂Ω of degree p ≥ 0 (p ≥ 1 in the case where the operator is of order 1 ≤ ρ ≤ 2).
We can then arrive at a hierarchy of spaces based on the discretization (triangulation)
V 0 ⊂ V 1 ⊂ · · ·V L = Vh with each space V l corresponding to the partition T l. Let
N l = dimV l and N = dimVh = NL = C2L.
Problem Discretization. The resulting spatial semidiscrete problem is(

d

dt
ũh, vh

)
+ ã(ũh, vh) = 0 ∀vh ∈ Vh (2.30)

ũh(0) = PVh

L2 u0 (2.31)
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where PVh

L2 denotes the (L2) projection of onto Vh
The time dimension is discretized via M = {Im}Mm=1, a partition into M subin-

tervals Im = (tm−1, tm) of the time domain (0, T ) where m = 1, 2, ..,M and 0 = t0 <
t1 < · · · < tM = T . The functional spaces used for the dG method are

Sr(M, Vh) := {u ∈ L2((0, T ), Vh) : u|Im ∈ Prm(Im, Vh), m = 1, 2, ., ,M} (2.32)

where Prm(Im, Vh) denotes the space of polynomials of degree rm, at most, on Im.
The time domain is discretized via the dG method, which is fairly non-standard; see
[36, 49] for standard references on the dG method. The fully discretized problem is
that of finding ŨdGh ∈ Prn(In, Vh), 1 ≤ n ≤M∫

In

(
(∂tŨ

dG
h ,W ) + ã(ŨdGh ,W )

)
dt+ (ŨdG+

n−1 ,W
+
n−1) = (UdG−n−1 ,W

+
n−1) (2.33)

for all W ∈ Prn(In, Vh), with UdG−0 = PVh

L2 u0. Note that the ‘-’ superscript denotes
a one-sided limit (i.e., u−m := lims→0+ u(tm − s)). This can be interpreted as a time
stepping scheme of size tm− tm−1 of order rm. The resulting linear systems that must
be solved at each time step m = 1, 2, ...,M are of size (rm + 1)NL.
Linear System. In matrix form, (2.33) becomes

Ru = f with R = C⊗M +
k

2
I⊗ Ã (2.34)

Cij = σij
√

(i+ 0.5)(j + 0.5) σij =

{
(−1)i+j j > 1

1 otherwise
(2.35)

where M is the mass matrix corresponding to the simple inner product (·, ·) and Ã
is the compressed stiffness matrix corresponding to our bilinear form ã(·, ·).
Decoupling. Although (2.34) can be solved as a single linear system of size (rm +
1)NL, it is decoupled into r+1 linear systems of size NL with the help of a Schur de-
composition. Though not discussed nor mentioned in the original paper, the decoupled
systems are amenable to solutions via parallel methods. Indeed, such an investiga-
tion could be basis for future work. A Schur decomposition of C ∈ C(r+1)×(r+1)

results in C = QTQH where T is an upper triangular matrix having the eigenvalues
λ1, λ2, ..., λr+1 of C on its diagonal and Q is a unitary matrix. Left multiplying (2.34)
by (QH ⊗ I) results in(

T⊗M +
k

2
I⊗ Ã

)
w = g, w = (QH ⊗ I)u g = (QH ⊗ I)f (2.36)

Complexity. The most evident advantage of working in a wavelet basis is that the
representation of the operator can be compressed via matrix compression. Complexity-
wise, this means that an otherwise dense matrix representation of a nonlocal operator
in the standard hat functions having non zero entries on the order of O(N2) (where
N denotes the size of the matrix) has non zero entries of order O(N logN) only in
the wavelet basis. The complexity for the full solution of the discrete scheme is shown
to be bounded by O(N(logN)4+2α) where α is some constant, which has been shown
numerically to be around 1 [85].
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2.4.6. Extensions and variations. We note that the method discussed above
with the wavelet discretization in space and dG discretization in time is valid for
Markov processes more general than Lévy processes such as time-inhomogeneous
Markov processes (i.e. where the law of Xt+h −Xt can depend on t). This is mainly
due to working in the weak solution (Galerkin) framework and is one of the advan-
tages over using simpler discretizations such as Finite Differences. In other variations
of a wavelet-Galerkin based method, the time discretization is a θ-scheme, thereby
resulting in slightly different bounds for the total complexity [67, 85]. Higher dimen-
sional extensions for the abstract parabolic evolution problem have been explored in
[86]. For such a problem, the space dimension was discretized via sparse wavelet grids
whereas the time dimension was discretized via an hp discontinuous Galerkin scheme.
The associated linear systems were solved with the GMRES algorithm. It is pertinent
to note that for such a high dimensional case, applications to high dimensional com-
putational finance problems such as the pricing of basket options were not considered;
this could be the basis of future work.

3. Transform Methods. In contrast to PDE-based methods, transform meth-
ods take an alternative view rooted in applied probability and signal processing. As
opposed to deriving a PIDE to solve, the problem is tackled as a pure integration prob-
lem. Although mathematically pleasing, the pure integration problem would have not
gained as much attention if not for the existence of the Fast Fourier Transform (FFT);
the reader is referred to [84] for a more complete treatment. The FFT allows the in-
tegration to be computed in an extremely efficient manner. Before proceeding further
we give an overview of this section. We begin this section with a brief description
of more traditional transform methods proposed by Carr and Madan [23]. However,
we do not delve too deeply into this as it is widely documented in literature and
the underlying idea is straightforward. We then provide an overview of the current
literature of various related transform methods followed by some preliminaries on the
basics of the Fourier transform. Then, we review the COS method and the Fourier
time-stepping method, which is the focus of this section due to its novelty and effec-
tiveness.
Overview of the literature. Among the first proponents of the Fourier Transform
approach are Carr and Madan [23]. There existed Fourier analytic methods in the
option pricing literature before Carr and Madan’s paper, although the underlying
analysis was unable to harness the power of the FFT. Related works on this theme
include [9, 37, 61]. Shortly following the intense research into FFT methods, it was
discovered that pricing via transform methods could incur a large error for out of the
money options. Lee [60] extended the line of reasoning from the authors above but
was also one of the first to address the control of the error in such methods. Leven-
dorskii also did important work in this regard and illuminated the complex analytic
machinery behind the efficacy of Fourier Transform methods [20, 21]. Furthermore,
the complex analytic framework of the transform methods shows that both the COS
method [41] and the CONV method [62] are variations of the general transform meth-
ods devised in [20]. Having deduced the important drivers of the method, they also
make recommendations for improving other transform methods, namely the Hilbert
transform method of Feng and Linetsky [43].
Preliminaries. Recall that for a sufficiently integrable function, the Fourier trans-
form of a function is

φ(ω) =

∫
R
eixωf(x)dx (3.1)
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and that the inverse Fourier transform is

f(x) =
1

2π

∫
R
e−ixωφ(ω)dω (3.2)

Note that our choice of notation conveniently coincides with that of a probability
density, f , and its characteristic function, φ.

3.1. COS Method. The COS method is an extremely efficient option pricing
method first introduced by Fang and Oosterlee [41] utilizing the analytic techniques
of Sinc methods [79]. Specifically, the density function in the risk neutral valuation
formula is expanded via a Fourier-Cosine series, which is intimately related to its
characteristic function. It is due to this expansion that the method exhibits exponen-
tial convergence for continuous payoffs and algebraic convergence for discontinuous
payoffs. The risk neutral valuation formula is canonically given as

v(x, t0) = e−rτEQ[v(y, T )|x] = e−rτ
∫
R
v(y, T )f(y|x)dy (3.3)

where τ denotes time to maturity, f(y|x) is the probability density of y given x at
time t0, and v(y, T ) is the payoff function. This is an inherently different approach
from PIDE methods, where, from the risk neutral valuation formula, no-arbitrage
arguments are applied in order to derive a PIDE which the derivative instrument
must satisfy. In most cases, this PIDE is then solved numerically. The COS method,
on the other hand, treats the evaluation of the contingent claim as a pure numerical
integration problem. It is important to acknowledge this subtle yet important point
– we realize that the COS method is not natural for contingent claims with American
features as those problems are fundamentally (stochastic) optimal control problems.2

The effectiveness of the COS method comes from exploiting the exponential decay
of the Fourier-Cosine series coefficients that stems from the relationship between the
density and the characteristic function (Fourier-cosine expansion). The COS method
not only applies to vanilla European options and has been extended to barrier options
[62], European style Asian options [94], and swing options [93].

3.1.1. The Fourier-Cosine Expansion. The Fourier-Cosine expansion of a
general function f supported on [0, π] is given as

f(θ) =

∞∑
k=0

′
Ak · cos(kθ) (3.4)

Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ (3.5)

where
∑ ′

denotes the otherwise usual summation with the first term weighted by
1/2. Note that by the change of variables θ = x−a

b−aπ and x = b−a
π θ+ a we are able to

expand functions supported on [a, b] by generalizing the formula for Ak to

Ak =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a
b− a

)
dx

2However, the COS method is applicable to Bermudan Options from which we can derive ap-
proximate American Option prices via Richardson extrapolation [37].
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Now, suppose that (3.1) can be sufficiently well approximated on a finite interval.
That is,

φ1(ω) =

∫ b

a

eiωxf(x)dx ≈
∫
R
eiωxf(x)dx = φ(ω) (3.6)

where φ1 denotes (3.1) restricted to a finite interval [a, b]. Then Ak can be rewritten
as

Ak =
2

b− a
Re

{
φ1

(
kπ

b− a

)
· exp

(
− i kaπ

b− a

)}
(3.7)

Replacing φ1 by φ in (3.7), we obtain the approximation

Fk =
2

b− a
Re

{
φ

(
kπ

b− a

)
· exp

(
− i kaπ

b− a

)}
(3.8)

to Ak. Expanding the density via the Fourier-Cosine method with Fk as the Fourier
coefficient, we obtain a first approximation

f1(x) =

∞∑
k=0

′Fk cos(kπ
x− a
b− a

) (3.9)

to f(x). Truncating the infinite series in (3.9), we obtain a second approximation

f2(x) =

N−1∑
k=0

′Fk cos(kπ
x− a
b− a

) (3.10)

to f(x), which is the approximation of the Fourier-Cosine expansion of f(x) that we
exploit for the probability density function.

3.1.2. European Options. We apply this to European options (on a finite
interval) by expanding the density function f(y |x) in (3.3) in a Fourier-Cosine series,
bringing us to

v(x, t0) = e−rτ
∫ b

a

v(y, T )

∞∑
k=0

′Ak(x) cos(kπ
y − a
b− a

)dy (3.11)

where

Ak(x) =
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dy (3.12)

Now define

Vk =
2

b− a

∫ b

a

v(y, T ) cos(kπ
y − a
b− a

)dy (3.13)

the cosine series coefficients of the payoff function. Then, (3.11) can be approximated
by

v1(x, t0) =
1

2
(b− a)e−rτ

N−1∑
k=0

′Ak(x)Vk (3.14)
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Approximating Ak by Fk as above, one obtains the approximation

v2(x, t0) = e−rτ
N−1∑
k=0

′Re

{
φ

(
kπ

b− a
, x

)
e−ikπ

a
b−a

}
Vk (3.15)

to v(x, t0), where φ(ω, x) is the characteristic function of f(y|x), thereby arriving
at a semi-discrete formula with a fixed number, N, of terms from a pure integration
problem on an infinite interval. It can be shown that Vk can be determined analytically
for the case of vanilla and digital options, whereby we obtain a fast and efficient
analytical formula for the evaluation of options. We note in passing that, for more
complicated contracts, Vk can be determined numerically in the cases where it cannot
be determined analytically.

3.1.3. The Lévy Case. Clearly, the COS method is ideally suited to models
where the characteristic function is given analytically, as is the case for many Lévy
processes. What may seem counterintuitive is that the method when applied to a
more complicated stochastic processes is, in fact, greatly simplified. This is due to
the fact that many Lévy characteristic functions are trivially dependent on the (log)
space variable in the sense that it can essentially be factored out. Such characteristic
functions are usually of the form

φ(ω,x) = ϕlevy(ω) · eiωx (3.16)

where ϕlevy represents the part of the characteristic function dependent on the model
parameters. It is due to this that multiple strikes can be computed simultaneously.
This leads to the pricing formula

v2(x, t0) = e−rτ
N−1∑
k=0

′Re

{
ϕlevy

(
kπ

b− a

)
e−ikπ

x−a
b−a

}
Vk (3.17)

It is shown in [41] that Vk = UkK where Uk corresponds to the cosine series coef-
ficients of the payoff function, introduced above in (3.13) (which can be determined
analytically for European and digital options) and K is a vector of strikes. It is due to
this Vk decomposition that we are able to price multiple strikes with one evaluation
in the Lévy case.

Remark 1. The Heston model also enjoys simplifications similar to the Lévy case
for the same reason that the (log) space variable can essentially be factored out.

Remark 2. The COS method (and other numerical methods that require the eval-
uation of the characteristic function) can still be applied when an analytic characteris-
tic function is not available as it is possible to numerically evaluate the characteristic
function for affine jump diffusion models via a system of ODEs [37].

3.1.4. Greeks. As the pricing formula (3.15) is analytic, we can do a straight-
forward partial differentiation to obtain another formula to compute the sensitivities
(i.e., Greeks). As the COS method is highly efficient, the additional computational
cost of another COS-pricing formula is small compared to the cost of computing
Greeks in other numerical methods. For example, the delta for the vanilla European
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option case for a general underlying stochastic process is

∆ =
∂v

∂So
=
∂v

∂x

∂x

∂So
=

1

So

∂v

∂x
(3.18)

≈ e−rτ
N−1∑
k=0

′Re

{
∂φ

(
kπ

b− a
, x

)/
∂x · e−ikπ

a
b−a

}
Vk
S0

The other Greeks of interest are obtained in a similar fashion.

3.1.5. Bermudan Options. A Bermudan option is a contract which allows for
exercise at multiple (pre-determined) dates before maturity. It is clear that the level
of exercisability is between that of an European and an American option. Indeed, it
is intuitive that in the limit of the exercise dates approaching infinity, the Bermudan
option price should approach that of the American option. It can be easily seen
that (due to the Markov property) between exercise dates, the value of the option
can be viewed as a simple European option. As such, the valuation of a Bermudan
option amounts to an induction backwards in time, taking the maximum of either
the payoff or the continuation value at that exercise point. The continuation value is
the value of continuing to hold the option (forgoing exercise). Formally, this means
that given a collection of exercise times T = {t1, ..., tM} and t0 the initial time, for
m = M,M − 1, ..., 2{

c(x, tm−1) = e−r(tm−tm−1)
∫
R v(y, tm)f(y|x)dy

v(x, tm−1) = max (g(x, tm−1), c(x, tm−1))
(3.19)

v(x, t0) = e−r(t1−t0)

∫
R
v(y, t1)f(y|x)dy

where x and y are state variables (log-space), with v, c, g denoting the option value,
continuation value, and payoff, respectively. It is also important to define, for what
follows, the free boundary point , x∗m, which separates the continuation region, where
the option should be held, from the exercise region, where the option should be
exercised. As the valuation of a Bermudan option primarily relies on the valuation of
European options it can be solved by the COS method. This is explored in [42]. We
expound on the basic methodology in pricing such options within the COS method
and avoid detailed discussion of the numerical intricacies required in implementing
the method in an efficient and practical manner. Utilizing the COS method described
above, we can calculate the continuation value and the option value as

ĉ(x, tm−1) := e−r∆t
N−1∑
k=0

′Re

{
φ(

kπ

b− a
;x)e−ikπ

a
b−a

}
Vk(tm)

Vk(tm) :=
2

b− a

∫ b

a

v(y, tm) cos(kπ
y − a
b− a

)dy (3.20)

From (3.20), it can be observed that the majority of the work in computing the
Bermudan option price is in determining the Vk. Since it is much easier in determining
the early-exercise point in Bermudan options as opposed to American options, we can
determine the early exercise point via a root finder (Newton’s method) for ĉ(x, tm)−
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g(x, tm) = 0. This is valid because we have a semi-analytic formula for ĉ as a function
of x, whereby we can obtain a derivative necessary for Newton’s method. Note that
we also have a good initial guess of x∗m from the previous step if tm+1 − tm is small.
Given knowledge of the x∗m, the Fourier cosine coefficients Vk can thus be split into
parts corresponding to the intervals [a, x∗m] and (x∗m, b]:

Vk(tm) =

{
Ck(a, x∗m, tm) +Gk(x∗m, b, tm) call

Gk(a, x∗m, tm) + Ck(x∗m, b, tm) put

for m = M − 1,M − 2, ..., 1, and

Vk(tM ) =

{
Gk(0, b, tm) call

Gk(a, 0, tM ) put
(3.21)

where we assume that

Gk(x1, x2, tm) :=
2

b− a

∫ x2

x1

g(x, tm) cos(kπ
x− a
b− a

)dx

Ck(x1, x2, tm) :=
2

b− a

∫ x2

x1

c(x, tm) cos(kπ
x− a
b− a

)dx (3.22)

where we recall that g(x, tm) is the payoff. Hence, similar to the COS method, Gk
can be determined analytically.

3.1.6. American Options. As the COS method fundamentally treats the op-
tion pricing problem as an integration problem, it was not designed specifically to
handle American options. This is due to the simple fact that the American option
problem is inherently an Optimal Stopping problem. However, it is well known and
intuitive that in the limit of the exercise dates of a Bermudan option approaching
infinity, the value of a Bermudan option should approach that of an American option.
Hence, via extrapolation techniques such as Richardson extrapolation, one can obtain
the price of American options via the prices of Bermudan options [24] that are solved
via the COS method.

3.1.7. 2-D Rainbow Options. The extension of the COS method to higher
dimensions is introduced in [75]. The exposition here is focused on the 2D case; this
can be easily extended to higher dimensions. In theory, this is a good and simple
extension, however, practically, as with most non-Monte Carlo based methods, we
eventually run into the curse of dimensionality. For this method, the total compu-
tational complexity is O(2nNn log2N), where n refers to the dimensionality of the
asset and N refers to the number of terms to include in the Fourier-cosine summation,
(which is related to the desired accuracy). Empirical experiments show that up to
10 dimensions can be considered tractable for this method. Furthermore, memory
requirements grow exponentially when the dimensions increase, also limiting the ef-
fectiveness of this method beyond a dimension of around 10. However, this is not to
say that this mild multidimensional extension is nothing more than a theoretical ex-
ercise as the majority of real world multidimensional problems are of low dimensions.
Indeed, it is common industry practice for classically intractable high dimensional
problems (d > 10) in the equity world to be proxied by an index, thereby reducing
the effective dimension.3

3The reader is referred to the papers [88, 89, 90] on the topic of effective dimension.
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Intuitively, an option on two assets can be thought of as an option on one asset that
has two dimensions. Recalling the fact that the COS method tackles the problem from
a numerical integration perspective, the fundamental risk neutral valuation formula
for the two dimensional problem can be written as

v(x, to) = e−r∆tEt0,x[g(XT )] = e−r∆t
∫∫

R2

g(y)f(y|x)dy (3.23)

where ∆t = T − t0, g(·) denotes, as usual, the payoff function, x = (x1, x2) is the
state variable, and f(·|·) is the conditional density. Clearly, (3.23) takes the approach
of treating two assets as a single asset in two dimensions, hence the double integral.
As in the 1D COS method, we first discretize the integration domain, resulting in the
approximation

v1(x, t0) = e−r∆t
∫ b2

a2

∫ b1

a1

g(y)f(y|x)dy (3.24)

to v(x, t0). Expanding the density via a Fourier cosine expansion, we arrive at

v1(x, t0) = e−r∆t
∫ b2

a2

∫ b1

a1

g(y)

∞∑
k1=0

′
∞∑
k2=0

′Ak1,k2(x)

cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2

with the series coefficients defined as

Ak1,k2(x) :=
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

f(y|x) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2

As in the 1D case, with some rearranging of the terms, we can then define the Fourier
cosine coefficients of the payoff function as

Vk1,k2(T ) :=
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

g(y) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2

Rearranging the terms in order to take advantage of the above definition and trun-
cating the infinite series, we arrive at the second approximation

v2(x, t0) =
b1 − a1

2

b2 − a2

2
e−r∆t

N−1∑
k1=0

′
N−1∑
k2=0

′Ak1,k2(x)Vk1,k2(T ) (3.25)

to v(x, t0). Continuing analogously as in the 1D case, an approximation of Ak1,k2(x)
on the support of the whole line is taken

Fk1,k2(x) :=
2

b1 − a1

2

b2 − a2

∫∫
R2

f(y|x) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2

(3.26)
Before rewriting the final form of the discretization, we rewrite (3.26) by noticing that
the product of the cosines satisfies a trigonometric identity and can be rewritten as

2Fk1,k2(x) = F+
k1,k2

(x) + F−k1,k2(x) (3.27)
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where

F±k1,k2(x) :=
2

b1 − a1

2

b2 − a2

∫∫
R2

f(y|x) cos

(
k1π

y1 − a1

b1 − a1
± k2π

y2 − a2

b2 − a2

)
dy1dy2

=
2

b1 − a1

2

b2 − a2
Re

{∫∫
R2

f(y|x) exp

(
ik1π

y1

b1 − a1
± ik2π

y2

b2 − a2

)
exp

(
− ik1π

a1

b1 − a1
∓ ik2π

b2
b2 − a2

)}
dy

=
2

b1 − a1

2

b2 − a2
Re

{
ϕ(

k1π

b1 − a1
± k2π

b2 − a2
|x) ·

exp

(
− ik1π

a1

b1 − a1
∓ ik2π

a2

b2 − a2

)}
(3.28)

where ϕ(ω|x) is the bivariate characteristic function of f(y|x). With this, we arrive
at the 2D COS formula

v3(x, t0) :=
b1 − a1

2

b2 − a2

2
e−r∆t

N−1∑
k1=0

′
N−1∑
k2=0

′ 1

2
[F+
k1,k2

(x) + F−k1,k2(x)]V (T ) (3.29)

3.2. Fourier Time Stepping. First introduced by Jackson, Jaimungal, and
Surkov [56], the Fourier Time Stepping (FTS) method, markedly different from the
COS method above, is actually a framework for efficient options pricing. Options of
different payoffs (vanilla/exotic) and observations (European/Barrier/American) can
be priced by the FTS method in a consistent manner. In contrast to [41], where the
problem is approached from a pure numerical integration standpoint, the FTS method
approaches the option pricing problem instead from a PIDE standpoint. Namely, the
risk neutral valuation equation (3.3), an integration problem, is transformed into
PIDE form by applying the no-arbitrage condition (zero-drift), resulting in{

(∂t + L)v(x, t) = 0

v(T, x) = ϕ(S(0)ex)
(3.30)

where L is the infinitesimal generator of the Lévy process, in multidimensional form,

Lg(x) = (γ′∂x+
1

2
∂′xΣ∂x)g(x)+

∫
R\0

(g(x+y)−g(x)−1{|y|<1}y
′∂xg(x))ν(dy) (3.31)

An important piece of insight is that, when the Fourier Transform is applied to the
infinitesimal generator, the characteristic exponent can be factored out

F [Lv](t, ω) =

{
iγ′ω − 1

2
ω′Σω +

∫
Rn

(
eiω
′y − 1− i1{|y|<1}ω

′y

)
ν(dy)

}
F [v](t, ω)

= Ψ(ω)F [v](t, ω) (3.32)

Another result that is important and used widely in the FTS method is the well known
fact that

F [∂nxg](ω) = iωF [∂n−1
x g](ω) = · · · = (iω)nF [g](ω) (3.33)

With knowledge of the above, applying the Fourier Transform to the PIDE (3.30)
results in {

∂tF [v](t, ω) + Ψ(ω)F [v](t, ω) = 0

F [v](T, ω) = F [ϕ](ω)
(3.34)
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a system of ODEs that are easily solved analytically. From this system, given a value
of F [v](t, ω) at time t2 ≤ T , we can obtain the value at t1 < t2 via

v(t1,x) = F−1

[
F [v](t2, ω) · eΨ(ω)(t2−t1)

]
(x) (3.35)

which is the valuation equation in continuous form. To implement this on a computer,
we use the Fast Fourier Transform (FFT) in place of the continuous Fourier Transform
operator F in (3.35). The Fourier Time Stepping method is efficient, as inherited from
the use of FFTs in the valuation equation. Furthermore, it is easily seen from the
valuation equations that stepping in space is not required; the time stepping in the
frequency space contains embedded information about the spacial domain via the
Nyquist critical frequency.

3.2.1. European Options. Evident in (3.35), European options can be solved
in an extremely efficient manner with a single time step. For such a case, one starts
with the payoff at the maturity and does a single timestep backward via (3.35). This
is not limited to vanilla European options, but also options of European exercise with
more exotic payoffs such as digitals.

3.2.2. Greeks. Hedge parameters can be computed in the (FST) method frame-
work similarly to the strategy for the COS method. Namely, the valuation equation
is partially differentiated analytically and the resulting equation is solved as if it were
an original valuation equation. In the FST framework, this method of obtaining the
Greeks is referred to as greekFST. In many cases (most predominantly Delta and
Gamma), the Greeks are obtained simply via a scaling of the option values.

3.2.3. Extensions. The FST method is not limited to European options: as
mentioned previously, FST method is also applicable to Bermudan and American
options. In addition to this, the FST method has been extended in two different
manners - namely to more exotic payoffs and complex models of the underlying.
Payoff-wise, the FST method is also applicable to exotic options such as Barrier
options, Shout options, and Swing options. Model-wise extensions include extending
the FST method to be applicable in mean-reverting and regime-switching frameworks.
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[15] J. Bertoin, Lévy Processes, Cambridge University Press, (1996).
[16] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political

Economy, 81 (1973), pp. pp. 637–654.
[17] D. Blackwell, Discounted Dynamic Programming, Ann. Math. Statist., 36 (1965), pp. 226–

235.
[18] O. Bokanwski, S. Maroso, and H. Zidani, Some convergence results for Howard’s algorithm,

SIAM Journal on Numerical Analysis, 47 (2009), pp. 3001–3026.
[19] S. Boyarchenko and S. Levendorskii, Non-Gaussian Merton-Black-Scholes Theory, Ad-

vanced Series on Statistical Science and Applied Probability, Volume 9. World Scientific,
(2002).

[20] , New efficient versions of Fourier transform method in applications to option pricing,
SSRN, (2011), pp. 1–62.

[21] , Fast pricing and calculation of sensitivities of out-of-the-money European options under
Lévy processes, Journal of Computational Finance, 15 (2012), pp. 71–133.

[22] P. Carr, H. Geman, D.B. Madan, and M. Yor, The fine structure of asset returns: An
empirical investigation, Journal of Computational Finance, 75 (2002), pp. 305–332.

[23] P. Carr and D.B. Madan, Option valuation using the fast Fourier transform, Journal of
Computational Finance, 3 (1999), pp. 463–520.

[24] C.G. Chang, S.L. Chung, and R.C. Stapleton, Richardson extrapolation techniques for the
pricing of American-style options, Journal of Futures Markets, 27 (2007), pp. 791–817.

[25] F. Chen, J. Shen, and H. Yu, A new spectral element method for pricing european options un-
der the Black-Scholes and Merton jump diffusion models, Journal of Scientific Computing,
52 (2012), pp. 499–518.

[26] A. Cohen, Numerical analysis of wavelet methods, Studies in Mathematics and Its Applica-
tions, JAI Press, (2003).

[27] A. Cohen and R. Masson, Wavelet methods for second-order elliptic problems, precondition-
ing, and adaptivity, SIAM Journal on Numerical Analysis, 21 (1999), pp. 1006–1023.

[28] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC,
(2004).

[29] R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion
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