
Calibration Of Multi-Period Single-Factor Gaussian Copula

Models For CDO Pricing

by

Max S. Kaznady

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

Copyright© April 2011 by Max S. Kaznady



Abstract

Calibration Of Multi-Period Single-Factor Gaussian Copula Models For CDO Pricing

Max S. Kaznady

Master of Science

Graduate Department of Computer Science

University of Toronto

April 2011

ii



A Collaterized Debt Obligation (CDO) is a multi-name credit derivative, which redis-

tributes the risk of defaults in a collection (also known as the basket or pool) of underlying

assets, into �xed income securities, known as the tranches. Each tranche is associated

with a certain fraction of �rst-to-default underlyings. Synthetic CDOs have a pool that

consists of Credit Default Swaps (CDSs). If all CDSs have equal notionals, then the pool

is termed homogeneous.

Single-period single-factor copula models approximate the probability of underlying

defaults using a percentile to percentile transformation, and incorporate the underly-

ing pool correlation structure for multi-name credit derivatives, such as CDOs. Cur-

rently, such models are static in time and do not calibrate consistently against market

quotes. Recently Jackson, Kreinin and Zhang (JKZ) proposed a discrete-time Multi-

period Single-factor Copula Model (MSCM), for which the default correlations are time-

independent, allowing the model to systematically �t the market quotes. For homo-

geneous pools, the JKZ MSCM provides a chaining technique, which avoids expensive

Monte Carlo simulation, previously used by other multi-period copula models. However,

even for homogeneous pools, the tree-based example of MSCM presented by JKZ has

three drawbacks: derivatives are di�cult to obtain for calibration, probabilities of the

copula correlation parameter paths do not accurately represent its movements, and the

model is not extremely parsimonious.

In this thesis, we develop an improved implementation of MSCM: we use an alter-

native multi-path parameterization of the copula correlation parameter paths and the

corresponding probabilities. This allows us to calculate �rst-order derivatives for the

MSCM in closed form for a reasonable range of parameter values, and to vary the num-

ber of parameters used by the model. We also develop and implement a practical error

control heuristic for the error in the pool loss probabilities and their derivatives. We

develop theoretical error bounds for the pool loss probabilities as well. We also explore

a variety of optimization algorithms and demonstrate that the improved MSCM is in-
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expensive to calibrate. In addition, we show how MSCM calibrates to CDO data for

periods before, during and after the September 2008 stock market crash.
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Chapter 1

Introduction

The valuation of a credit derivative1 is associated with the credit risk of the underlying

asset, or a collection of assets, also known as the pool. Hence there are two classes of

credit derivatives: single-name and multi-name, respectively. The mathematical model-

ing of credit derivatives is very complex in nature; the stock market crash of 2008-2009

was blamed, in part, on the quantitative models for credit derivatives. Increasingly so-

phisticated models are being developed, which attempt to improve the �t to market

quotes by better capturing market dynamics.

In this thesis, we improve on the implementation of the example of the Multi-period

Single-factor Copula Model (MSCM), originally proposed by Jackson, Kreinin and Zhang

(JKZ) [11]. We provide an alternative multi-path parameterization to MSCM, which al-

lows us to improve the model's existing ability to capture market dynamics over time,

and which further allows us to calibrate the model in reasonable time by using optimiza-

tion routines which exploit our ability to write the �rst-order derivatives of the objective

function in closed form for a reasonable range of parameter values. We also develop an

error control heuristic for the error in the pool loss probabilities and their derivatives,

as well as a useful theoretical result about the errors in pool loss probabilities. In addi-

1A derivative is a �nancial instrument whose value is derived from some underlying asset, for example,
an option on a stock.

1



Chapter 1. Introduction 2

tion, we examine the behavior of the MSCM on market data for periods before, during

and after the September 2008 stock market crash, and demonstrate that a parsimonious

parameterization of MSCM �ts the market quotes better than the industry-standard

single-period single-factor copula model.

1.1 Mechanism Of Collaterized Debt Obligations

To understand Collaterized Debt Obligations (CDOs), depicted in Figure 1.2, we must

�rst understand simpler single-name Credit Default Swaps (CDSs), shown in Figure 1.1.

A CDS is a �nancial contract, in which the underlying asset (also referred to as the

underlying credit, or just the underlying) has a certain market value (also called the

notional, face or par value), and might default before the maturity (or expiry) of the

contract at time T . The simplest example of such an asset is a bond issued by a company

or a �rm. The owner of the asset wants insurance against a credit event, such as the

bankruptcy of the company and its associated default on the bond interest payments

and/or principal repayment. Consequently, the owner of the asset enters a CDS contract,

in which they are the buyer of protection, and pay �xed premiums2, quoted as a fraction

of the notional (insured value of the underlying asset) usually expressed in basis points

(bps), to the seller of protection. In case of a default, the seller of the CDS pays back the

notional to the buyer, and retains any market value that the asset still has. In practice,

the underlying might not be worthless after a default3. Premium payments stop after

the credit event and the CDS contract terminates [1].

A CDO is a multi-name credit derivative, which redistributes the risk of defaults in a

collection (also known as the basket or pool) of underlying assets, into �xed income secu-

rities, known as the tranches [2]. Tranches are ranked in order of seniority; in increasing

2Premiums are usually paid quarterly.
3A realistic market assumption is that about 40% of the underlying asset's value can be recovered

after a default. This fraction is known as the recovery rate.
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Figure 1.1: Mechanism of a Credit Default Swap.

Figure 1.2: Mechanism of a synthetic Collaterized Debt Obligation.

order, we have the Equity, Mezzanine and Super Senior tranches. Each tranche is asso-

ciated with a certain fraction of defaults, speci�ed by attachment a(tr) and detachment

b(tr) points in percent, where tr indexes the tranche; the di�erence S(tr) = b(tr) − a(tr) is

known as the tranche size. For example, if the Equity tranche has an attachment point of

0% and a detachment point of 3%, then this tranche covers the �rst 3% of defaults in the

pool. If more than 3% of underlyings default, then the next tranche starts covering the

losses, and so on. The issuer of the CDO is known as the trust. The trust sells tranches to

investors, who are ultimately responsible for covering portfolio losses, as the underlyings
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associated with their tranche begin to default, or experience other credit events, such as

credit downgrades.

A CDO is called synthetic if the underlying pool consists of CDSs. If all CDSs have the

same notional N , then the pool is called homogeneous. We illustrate the functionality of a

synthetic CDO with homogeneous pool using the following example: consider an investor

in a Mezzanine tranche4 with an attachment point of 3% and a detachment point of 7%.

If there are K underlyings, each with a notional N , then the investor receives payments

of

tranche spread · Notional, (1.1)

usually quarterly. If a CDS defaults, the investor in the Equity tranche must cover the

loss. Once the �rst 3% of underlying CDSs have defaulted, the contract of the investor

in the Equity tranche is terminated5. The investor in the Mezzanine tranche now begins

to cover the losses, and so on. The tranches are ranked by risk, with the Equity tranche

being the riskiest tranche to enter, and the Super Senior tranche being the least risky.

1.2 Brief Literature Overview

The Gaussian factor copula model is a type of structural model used to model credit

risk; structural models were originally introduced by Merton [40] and associate risk with

economic driving forces. On the other hand, reduced form models characterize defaults

via a stochastic process, that generally has no associated economic interpretation [47,

46]. Gaussian single-factor copula models have become an industry standard due to

their computational e�ciency. The earliest cited use of Gaussian copula models was to

characterize the pool loss distribution of loans in 1987 by Vasicek [41]. The �rst cited

application to multi-name credit derivatives was by Li [42] in 2000. Many generalizations

4Mezzanine tranches usually refer to the range of tranches between the Equity and Super Senior
tranche.

5Premium payments stop; the investor covers the losses and collects the recovery values.
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of Gaussian copula models followed [43, 44, 45]; for example, the copula approach does

not have to use a Gaussian probability density [29].

For single-name credit derivatives, it is not di�cult to associate the probability of

default with the value of the credit derivative via some probability model. However,

multi-name credit derivatives require the added knowledge about the correlations between

the defaults of the underlyings. This can be added to the structural model via another

driving factor, which the copula relates to the probability of default. For CDO pricing,

structural models have been known to provide poor �ts to market quotes, because the

driving factors assumed either constant default correlation over time, or constant default

correlation across CDO tranches [2]. In reality, these correlations change spatially over

the tranches, and also over time for each tranche [2]; the former change in correlation

is commonly known as the tranche correlation smile, and the latter is simply referred

to as the correlation smile. The tranche correlation problem can be avoided by simply

performing calibration over tranches with roughly the same tranche implied correlation6.

However, single-period single-factor Gaussian copula models still assume that the tranche

implied correlation is �xed over time.

Chaining techniques have been proposed, which link a number of single-period single-

factor copulas, responsible for each time period, into a multi-period single-factor copula

model, thus combating the problem of the correlation smile by associating a di�erent

value for the copula correlation parameter with each time period7. However, these models

su�er a computational drawback, in that a unique driving factor is associated with each

period, and in order to compute the expected pool loss, multi-dimensional integration

has to be carried out over all driving factors. Monte Carlo (MC) simulation is typically

used to approximate this integration. Hence, in practice, these chaining techniques do

6It should also be noted that the copula correlation parameter represents the true tranche implied
correlation.

7In order to compute the expected spread, we also need to associate a discrete probability measure
with possible values of the copula correlation parameter over time, to model the market dynamics of the
copula correlation parameter.
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not generalize well to more than two periods. The original extension of the single-period

single-factor copula model was proposed by Fingers [33] and soon after Andersen [34]

and Sidenius [35] popularized construction of multi-period single-factor copula models.

Jackson, Kreinin and Zhang [11] have recently proposed a recursion relationship which

avoids MC simulation in multi-period Gaussian copulas for homogeneous pools, where all

underlying assets have the same correlation8; for non homogeneous pools, a combinatorial

problem arises, which, to the best of our knowledge, cannot be solved in polynomial time,

so the proposed model is applicable only to homogeneous pools. The example of the

computationally tractable MSCM in [11] uses a binary tree structure to parameterize the

time evolution of the copula correlation parameter. This example su�ers three drawbacks:

�rst-order derivatives are di�cult to obtain for calibration, probabilities of the copula

correlation parameter paths do not accurately represent its movements, and the number

of model parameters cannot be easily varied to keep the model parsimonious for di�erent

calibration data sets.

1.3 Main Contributions

In this thesis, we develop an improved implementation of the MSCM originally proposed

by Jackson, Kreinin and Zhang [11]. The original implementation used an optimization

method without derivatives for calibration; this is one of the reasons why calibration is

very time consuming. We use an alternative multi-path parameterization of the copula

correlation paths and the corresponding probabilities. This multi-path parameterization

allows us to formulate the �rst-order derivatives associated with the MSCM in closed

form, for all reasonable parameter values; in the original binary tree implementation,

settings of the copula correlation parameters in consecutive periods depended on the

settings in previous periods (see Figure A.2 for example), and this created a complicated

8This recursion relationship replaces expensive multidimensional integration by a series of one dimen-
sional integrals, for which we develop a quadrature routine in this thesis.
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dependence relationship in the derivatives. With the multi-path parameterization, the

copula correlation parameters can switch to any reasonable value with a unique transition

probability. Hence we can write the �rst-order derivatives of each period independently

from the other periods.

Multi-path parameterization allowed us to generalize the model to any number of

periods with any number of copula correlation parameter values per period, something

which was not practical with the binary tree implementation9. The original parameter-

ization also su�ered a computational drawback; the optimization routine would set the

copula correlation parameter values to be outside of the unit interval, whence the copula

correlation parameter values had to be adjusted.

The derivative values associated with any implementation are expensive to compute.

We explore a variety of optimization algorithms to determine which methods are both

robust and computationally e�cient. Finally, we explore the model's ability to match

market data over the periods before, during and after the 2008-2009 stock market crash.

1.4 Thesis Outline

In this thesis we explore e�cient implementations of MSCM and demonstrate numerically

that our improved implementation is relatively inexpensive to calibrate. We also assess

model performance on data collected before, during and after the 2008-2009 stock market

crash and discuss future research directions.

In Chapter 2 we provide the necessary background for this thesis. Since our research

draws from di�erent areas, the reader may refer to this chapter if they feel that some

parts of the model discussion are new to them.

In Chapter 3 we develop the alternative multi-path parameterization for the MSCM

and compute closed forms of the �rst-order derivatives associated with these parameters.

9Even if we can determine a general structure for the original tree model, it is still di�cult to vary
the number of copula correlation parameter paths per period.
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These derivatives can be computed for all reasonable ranges of parameter values. We

discuss what it means for the range of parameter values to be reasonable in the same

chapter. The chapter also lays out the framework used later to parallelize the software

implementation to improve computational e�ciency.

In Chapter 4 we develop a quadrature heuristic used for one dimensional integration

over each common factor in the structural model and determine theoretical error bounds

for the numerically computed default probabilities. We argue that, in practice, it is very

likely that our error control heuristic produces an error in pool loss probabilities and

their derivatives a few orders of magnitude smaller than required.

In Chapter 5 we describe the C++ source code implementation of the model. This

chapter outlines various parallel sections, and stringent error control heuristics used by

the source code, as well as e�cient implementation provided by the Boost C++ libraries.

Chapter 6 provides the numerical results. Speci�cally it contains calibration runtimes,

comparison of di�erent calibration algorithms and a discussion of model performance on

di�erent CDO data sets over the periods before, during and after the 2008-2009 stock

market crash.

Chapter 7 describes future research directions which can be undertaken to justify

some numerical results obtained in the previous chapter.

Finally, Chapter 8 provides concluding remarks.



Chapter 2

Background

This chapter provides background material needed to understand the Multi-period Single-

factor Copula Model (MSCM) proposed by Jackson, Kreinin and Zhang (JKZ) [11]. Sec-

tion 2.1 starts by explaining the general pricing mechanism of CDOs. Section 2.2 reviews

MSCM and Section 2.3 explains how MSCM applies to CDO pricing. MSCM requires a

�xed set of input parameters; Section 2.4 explains how to obtain these parameters from

CDS spreads. Section 2.5 reviews the original parameterization proposed by JKZ. MSCM

relies heavily on numerical integration rules, brie�y surveyed in Section 2.6. Calibration

of MSCM requires an objective function, which can be based on a variety of error func-

tions, surveyed in Section 2.7. The goal of the calibration procedure is to pick a set of

model parameters, which is accomplished by minimizing the objective function. To this

end, we review several optimization algorithms in Section 2.8.

2.1 Pricing

Consider pricing a synthetic CDO with a homogeneous pool of K underlying CDSs1. The

loss given default on each CDS is LGD = N · (1 − R), where N is the notional value of

1The proposed MSCM is only applicable to homogeneous pools.

9
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each CDS and R is the recovery rate (market value as a percent of par value immediately

after the default).

We are ultimately interested in pricing exotic CDOs, based on the same underlying

pool of CDSs. Some examples include the CDO of CDOs (called CDO2), options on CDO

tranches, etc. All these products require the knowledge of the dynamics (time evolution)

of the correlation structure of the pool on which the CDO is based [28]. Once these

dynamics are known, the simplest example of CDO pricing is to know what the price of

a given tranche should be.

Pricing a tranche refers to computing the spread, which is the ratio of the premiums

being paid relative to the tranche size. Once an investor enters a tranche, they are paid

a certain amount (quoted as the spread in bps) which depends on the tranche and the

tranche size, until the underlyings start defaulting. If the level of defaults is below the

attachment point of the investor's tranche, then they receive premiums only. Once the

level of defaults rises above the attachment point, the investor starts covering losses,

while still receiving premiums on the fraction of the CDSs which their tranche covers

that have not yet defaulted. Once all CDSs that an investor's tranche covers default, the

investor stops receiving premiums and covering losses; the investor collects the recovered

values of underlyings and the contract terminates.

We assume that the premiums are paid quarterly; we denote the premium payment

dates by 0 < t1 < · · · < tnT−1 < tnT = T , where T is the maturity date of the con-

tract. For convenience, we set t0 = 0. Usually, ti − ti−1 = 1/4 for all i ∈ [1, 2, · · · , nT ]

(nT is the number of quarterly steps until time T ), since we measure the time in years.

For simplicity, anything which occurs at time ti is denoted with subscript i. The pre-

mium cash�ow is termed the premium leg (denoted P
(tr)
nT , where tr is the tranche index,

for now assume tr = 1, 2, · · · , ntr) and the default cash�ow is termed the default leg

(denoted D
(tr)
nT ). In the risk neutral world, assuming no arbitrage, we must have that

E(pool)

[
P

(tr)
nT

]
= E(pool)

[
D

(tr)
nT

]
, where the expectations are calculated under the risk neu-
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tral pool loss probability measure, denoted by the subscript �(pool)�. Our modeling

assumption is that a default can only occur at a time ti, otherwise computation of the

premium leg becomes very cumbersome.

Let us denote the attachment and detachment points of the CDO tranche by a(tr)

and b(tr) respectively (where a(tr) < b(tr) for all tr) and the size of the tranche by S(tr) =

b(tr) − a(tr). We can think of attachment and detachment points in di�erent ways: we

can either let the attachment and detachment point be a percentage of the pool size, for

example a(tr) = 3% and b(tr) = 7% is typical of a Mezzanine tranche, where all tranche

sizes S(tr) add up to 100%; or, since the pool of CDSs containsK names, all with the same

notional value N , we can also think of them as the fraction of underlyings, for example

a(tr) = 0.03 ·K and b(tr) = 0.07 ·K, or perhaps the easiest way is to convert everything

into dollar values (because we are working with a homogeneous pool anyway) and set,

for example, a(tr) = 0.03 ·K ·N and b(tr) = 0.07 ·K ·N . We use the �rst interpretation

above for a(tr) and b(tr) (i.e., percentage of the pool size) throughout this thesis.

If we are working in dollar values (which is arguably the most intuitive approach),

then the loss taken by a speci�c tranche tr is

L
(tr)
i = min

(
K ·N · S(tr),max

(
0, L

(pool)
i −K ·N · a(tr)

))
, (2.1)

where L
(pool)
i = N ·(1−R) · l(pool)

i is the loss of the entire pool of underlyings, 0 ≤ l
(pool)
i ≤

K, l
(pool)
i ∈ Z+ and the size of the tranche S(tr) and the attachment point a(tr) are in

terms of the percentage of the pool size convention described above. We can compute

the present value of the default and premium legs as

D(tr)
nT

=

nT∑
i=1

(
L

(tr)
i − L(tr)

i−1

)
· Fi, (2.2)

P (tr)
nT

=

nT∑
i=1

s(tr)
nT
· (ti − ti−1) ·

(
K ·N · S(tr) − L(tr)

i

)
· Fi, (2.3)

where nT is the number of quarterly time steps until time T and Fi is the discount factor
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at time ti:

Fi = exp

(
−
ˆ ti

t0

r(t)dt

)
, (2.4)

where r(t) is the risk-free interest rate at time t. The equation for D
(tr)
nT can be interpreted

as the loss in each time period (ti−1, ti], summed over the time periods and discounted to

the present value; the equation for P
(tr)
nT can be interpreted as the part of the tranche that

has not yet defaulted and so still pays premiums, K ·N · S(tr) − L(tr)
i , multiplied by the

spread s
(tr)
nT adjusted by the fraction (ti − ti−1) of a year, and discounted to the present

value. If we assume for simplicity that Fi and L
(tr)
i are independent random variables

and take the expectation under the risk neutral pool loss probability measure, then we

obtain

E(pool)

[
D(tr)
nT

]
=

nT∑
i=1

(
E(pool)

[
L

(tr)
i

]
− E(pool)

[
L

(tr)
i−1

])
· fi, (2.5)

E(pool)

[
P (tr)
nT

]
= s(tr)

nT
·
nT∑
i=1

(
K ·N · S(tr) − E(pool)

[
L

(tr)
i

])
· (ti − ti−1) · fi, (2.6)

where fi = E(pool) [Fi] and the spread value s
(tr)
nT above is given as a fraction, for ex-

ample for a 5% spread, s
(tr)
nT = 0.05. We often assume that the interest rate is a �xed

deterministic value. In this case,

E(pool) [Fi] = exp (−r · ti) = fi. (2.7)

Notice that the computation of the default leg can be rewritten as

E(pool)

[
D(tr)
nT

]
=

nT−1∑
i=1

E(pool)

[
L

(tr)
i

]
· (fi − fi+1) + E(pool)

[
L(tr)
nT

]
· fnT , (2.8)

because L
(tr)
0 = 0 with probability 1. Since, as noted earlier, E(pool)

[
P

(tr)
nT

]
= E(pool)

[
D

(tr)
nT

]
,

the spread s
(tr)
nT can be estimated by

s(tr)
nT

=

∑nT−1
i=1 E(pool)

[
L

(tr)
i

]
· (fi − fi+1) + E(pool)

[
L

(tr)
nT

]
· fnT∑nT

i=1

(
K ·N · S(tr) − E(pool)

[
L

(tr)
i

])
· (ti − ti−1) · fi

. (2.9)

The pricing equation is di�erent for the Equity tranche, which is often referred to as

as the 500 bps on-the-run tranche. First of all, the quote for the tranche itself is given
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usually in percent, and there is a �xed premium of 500 bps. The quote is the amount

paid up front (when investor enters the tranche), as a fraction of the quote spread s
(1)
nT .

Hence the pricing equation for the premium leg is

E(pool)

[
P (1)
nT

]
= s(1)

nT
·K ·N · S(1) + 0.05

nT∑
i=1

(
K ·N · S(1) − E(pool)

[
L

(1)
i

])
· (ti − ti−1) · fi.

(2.10)

Hence, using E(pool)

[
P

(tr)
nT

]
= E(pool)

[
D

(tr)
nT

]
again, we obtain

s(1)
nT

=

(
nT−1∑
i=1

E(pool)

[
L

(1)
i

]
· (fi − fi+1) + E(pool)

[
L(1)
nT

]
· fnT

−0.05 ·
nT∑
i=1

(
K ·N · S(1) − E(pool)

[
L

(1)
i

])
· (ti − ti−1) · fi

)/
K ·N · S(1). (2.11)

Hence, the problem of estimating the spread is reduced to the problem of estimat-

ing E(pool)

[
L

(tr)
i

]
.

Also, notice that we can rewrite the pricing equations using a di�erent convention.

Let

l
(tr)
i = min

(
K · S(tr)

1−R
,max

(
0, l

(pool)
i − K · a(tr)

1−R

))
, (2.12)

where we have previously de�ned L
(pool)
i = N ·(1−R)·l(pool)

i , and the superscript �(pool)�

denotes the risk neutral pool loss probability dependence. Then

s(tr)
nT

=

∑nT−1
i=1 E(pool)

[
l
(tr)
i

]
· (fi − fi+1) + E(pool)

[
l
(tr)
nT

]
· fnT∑nT

i=1

(
K·S(tr)

1−R − E(pool)

[
l
(tr)
i

])
· (ti − ti−1) · fi

, (2.13)

s(1)
nT

=

(
nT−1∑
i=1

E(pool)

[
l
(1)
i

]
· (fi − fi+1) + E(pool)

[
l(1)
nT

]
· fnT−

−0.05 ·
nT∑
i=1

(
K · S(1)

1−R
− E(pool)

[
l
(1)
i

])
· (ti − ti−1) · fi

)/
K · S(1)

1−R
. (2.14)

Note that, for the Super Senior tranche, we have to adjust the detachment point to K,

and not K/(1−R), because we cannot have more than K underlyings default.
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To compute expectation, we can start with (2.1) and using L
(pool)
i = N ·(1−R) · l(pool)

i ,

where l
(pool)
i = 0, 1, · · ·K, factor out the term N · (1−R) to obtain

L
(tr)
i = N · (1−R) ·min

(
K · S(tr)

1−R
,max

(
0, l

(pool)
i − K · a(tr)

1−R

))
. (2.15)

The above equation relates the number of defaults to the loss of the speci�c tranche.

Hence we can weight the tranche loss by the probability of r defaults in the pool to

compute the expected value

E(pool)

[
L

(tr)
i

]
= N · (1−R) ·

K∑
r=1

min

(
K · S(tr)

1−R
,max

(
0, r − K · a(tr)

1−R

))
·P
(
l
(pool)
i = r

)
,

(2.16)

where a(tr) and S(tr) are given in terms of the percentage of the pool size convention

described above2.

Therefore, the problem is reduced to estimating P
(
l
(pool)
i = r

)
.

2.2 Multi-Period Single-Factor Copula Model

For a homogeneous pool, let

αi = P (τk ∈ (ti−1, ti]|τk > ti−1) =
P (τk ≤ ti)− P (τk ≤ ti−1)

1− P (τk ≤ ti−1)
(2.17)

be the probability that the k-th underlying entity defaults in the time interval (ti−1, ti],

conditional on no earlier default (because a certain entity can default once only). The

random variable τk us the default time of the k-th entity. Further, let us introduce

random variables

Uk,i = βk,iXi + ηk,iεk,i, (2.18)

2When r = 0, the pool loss is zero and so the corresponding term is omitted from the sum for the
computation of the expected value.



Chapter 2. Background 15

where βk,i is the copula tranche implied correlation parameter3, Xi ∼ N(0, 1) are inde-

pendent and identically distributed (iid), εk,i ∼ N(0, 1) are iid, Xi is independent of εk,i,

for k = 1, 2, · · · , K and i = 0, 1, · · · , nT , and N(0, 1) denotes the standard normal proba-

bility density; parameter ηk,i is determined to be ηk,i =
√

1− β2
k,i in the next paragraph.

We partition the time in years into quarterly payments, so for 5 years, i = 0, 1, · · · , 20,

where i = 0 is included for completeness in the base cases later on. Xi is the common

factor driving the change in Uk,i; Xi a�ects all underlyings at time ti (for example, some

economic shock). The factor εk,i is associated with the variability of individual names.

For a homogeneous pool, we have

Uk,i = βiXi + ηiεk,i. (2.19)

For ease in implementing the Gaussian copula model, we want Uk,i ∼ N(0, 1), and

since the Gaussian density is characterized by its �rst two moments, we want E [Uk,i] = 0

(satis�ed automatically) and Var [Uk,i] = E
[
U2
k,i

]
− E [Uk,i]

2 = 1. Solving the last equa-

tion for ηk,i, we obtain ηk,i =
√

1− β2
k,i. Since Var [Uk,i] = 1 for all k = 1, 2, · · · , K, this

also implies that for two names k1 6= k2, we have Corr(Uk1,i, Uk2,i) = E [(Uk1,i) (Uk2,i)] =

βk1,iβk2,i. For a homogeneous pool, the MSCM tranche implied correlation between all

underlyings at time ti is β
2
i . Each βk,i can be thought of as the copula correlation factor4

for name k with respect to all other names in the pool.

Since Uk,i ∼ N(0, 1), we can use the standard percentile to percentile transformation

(similar to [1]):

P (Uk,i < uk,i) = Φ(uk,i) = P (τk ∈ (ti−1, ti]|τk > ti−1) =
P (τk ≤ ti)− P (τk ≤ ti−1)

1− P (τk ≤ ti−1)
,

(2.20)

for uk,i ∈ R, where Φ(·) is the standard normal Cumulative Distribution Function (CDF).

3We must also note that there are other measures of tranche implied correlations available, which do
no necessarily require expensive computation schemes. This thesis focuses on extending single-period
single-factor copula correlation, but there are also compound [37] and base [38] correlations available.
In addition, one can also emphasize pricing bespoke CDOs [36].

4The copula correlation factor represents the true correlation.
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Therefore,

uk,i = Φ−1 (P (τk ∈ (ti−1, ti]|τk > ti−1)) , (2.21)

where Φ−1 denotes the inverse of the standard normal CDF. Under this Gaussian copula

model, a default happens when

Φ(Uk,i) < P (τk ∈ (ti−1, ti]|τk > ti−1) , (2.22)

or equivalently, if we condition on the value of the common factor Xi = xi, when

Uk,i = βk,ixi + εk,i

√
1− β2

k,i < Φ−1

[
P (τk ≤ ti)− P (τk ≤ ti−1)

1− P (τk ≤ ti−1)

]
. (2.23)

We can rearrange this inequality to obtain

εk,i <
Φ−1

[
P (τk≤ti)−P (τk≤ti−1)

1−P (τk≤ti−1)

]
− βk,ixi√

1− β2
k,i

. (2.24)

Since we know the probability density for εk,i, we can determine that the conditional

default probability is

pk,i(xi) = P (τk ∈ (ti−1, ti]|τk > ti−1, Xi = xi) = Φ

Φ−1
[
P (τk≤ti)−P (τk≤ti−1)

1−P (τk≤ti−1)

]
− βk,ixi√

1− β2
k,i

 .
(2.25)

Notice that on the time interval (t0, t1] (�rst time interval), this multi-period single-

factor copula model reduces to a single-period single-factor copula model provided in [1].

Namely, we obtain

P (τk < t1|X1 = x1) = Φ

Φ−1 [P (τk ≤ t1)]− βk,ixi√
1− β2

k,i

 , (2.26)

since P (τk ≤ t0) = 0. Also, we can replace Φ by some other density, with other parameters

of interest, such as, for example, the Normal Inverse Gaussian distribution with two �xed

and two variable parameters [29]. This yields a di�erent copula model, but with an added

set of parameters which makes the model less parsimonious. In this thesis, we restrict

our work to the standard normal density.
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2.3 Pricing With The Multi-Period Single-Factor Cop-

ula Model

Fingers [33] was the �rst to extend the single-period copula model to a multi-period

copula model. Soon after Andersen [34] and Sidenius [35] proposed alternative multi-

period factor copula models. However, these schemes su�er a computational drawback: to

calibrate parameters of the stochastic process (possible paths and associated risk neutral

probability values) we need to perform Monte Carlo (MC) simulation, which makes the

calibration extremely expensive. Hence their multi-period factor copula models are not

practical for more than a few common factors. Jackson, Kreinin and Zhang [11] proposed

another model which avoids MC simulation for homogeneous pools. This section provides

an overview of their approach.

For a homogeneous pool,

L
(pool)
i = N · (1−R)

K∑
k=1

I(τk ≤ ti) = N · (1−R) · l(pool)
i , (2.27)

where I is the indicator function, whence

P
(
L

(pool)
i = N · (1−R) · r

)
= P

(
l
(pool)
i = r

)
. (2.28)

Then [8] derives the following recursive relationship (please refer to Appendix A.1 for

proof):

P
(
l
(pool)
i = r

)
=

r∑
m=0

P
(
l
(pool)
i−1 = m

)
· P
(
l
(pool),K−m
(i−1,i] = r −m

)
=

r∑
m=0

[
P
(
l
(pool)
i−1 = m

)
·
ˆ ∞
−∞

P
(
l
(pool),K−m
(i−1,i] = r −m|Xi = xi

)
dΦ(xi)

]
, (2.29)

where l
(pool),K−r
(i−1,i] denotes the number of defaults for a pool of size K −m during the time

interval (ti−1, ti]. For a homogeneous pool, pk,i(x) = pi(x) for all k = 1, 2, · · ·K, x ∈ R,
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whence

P
(
l
(pool),K−m
(i−1,i] = r −m|Xi = xi

)
=

 K −m

r −m

 pi(xi)
r−m(1− pi(xi))K−r

= Bin(r −m;K −m, pi(xi)), (2.30)

where Bin(k;n, p) denotes the Binomial probability of k out of n events occurring with

individual success probability p. Notice that (2.29) is just matrix multiplication with a

lower triangular matrix which has P
(
l
(pool),K−m
(i−1,i] = r −m

)
as the value in its r-th row

and m-th column. For the base cases, P
(
l
(pool)
0 = 0

)
= 1 and P

(
l
(pool)
0 = m

)
= 0 for all

m = 1, 2, · · · , K.

2.4 Bootstrapping Default Probabilities From CDS Spreads

Default probabilities αi de�ned in (2.17) are �xed input parameters into the multi-period

multi-factor copula model. This section explains how to calculate αi from the CDS

spreads s
(CDS)
i

5.

There are several di�erent approaches to bootstrapping default probabilities of the

underlying entities from CDS spreads. Computing times-to-default can be accomplished

with dynamic hazard rates as in Section 6 of [4], with constant hazard rates between

CDS maturities in di�erent, yet, similar approaches presented as Solutions 1 & 2 in [5]

and as described in [3]; arguably, the most intuitive and simplest approach is described

as Solution 3 in [5] and on pages 18-19 of [2].

Let p
(CDS)
i = P (τ ≤ ti) be the default probability that we wish to bootstrap from the

CDS quotes. Then the pricing equations for a CDS with maturity at time T are given

by

E
[
D(CDS)
nT

]
= (1−R) ·N ·

nT∑
i=1

(p
(CDS)
i − p(CDS)

i−1 ) · fi; (2.31)

5This is typically referred to as �bootstrapping�in the �nance literature
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E
[
P (CDS)
nT

]
= N · s(CDS)

nT
·
nT∑
i=1

(ti − ti−1) · (1− p(CDS)
i ) · fi, (2.32)

where the expectation is taken with respect to the risk neutral probability measure. We

can understand the default leg as the probability of default in time interval (ti−1, ti]

multiplied by the loss given default (1−R) ·N and discounted back to the present value

with fi. Hence at each time ti we are computing the expected loss given default. The

premium payment is the spread s
(CDS)
nT times the notional N multiplied by the fraction

of the year (ti − ti−1) associated with this payment, times the probability of the entity

not defaulting by time ti, again discounted back to the present value with fi.

To bootstrap the default probability, we obtain the spread s
(CDS)
1 for a CDS that

matures at time t1 and solve for p
(CDS)
1 . We then obtain the spread s

(CDS)
2 for a CDS that

matures at time t2 and solve for p
(CDS)
2 using p

(CDS)
1 and repeat this procedure recursively.

As a technical note, we perform linear interpolation of CDS quotes6. The spread is

s(CDS)
nT

=
(1−R) ·

∑nT
i=1

(
p

(CDS)
i − p(CDS)

i−1

)
· fi

1
4
·
∑nT

i=1

(
1− p(CDS)

i

)
· fi

, (2.33)

where we have used (ti − ti−1) = 1/4. Using p
(CDS)
0 = 0, we can solve to obtain

p
(CDS)
1 = P (τ ≤ t1) =

1
4
· s(CDS)

1

(1−R) + 1
4
· s(CDS)

1

. (2.34)

This is our base case. We can solve for the other p
(CDS)
i for i = 2, 3, · · · , nT using the

recursive bootstrapping formula:

p
(CDS)
i =

(
1

4
s

(CDS)
i ·

(
fi +

i−1∑
j=1

fj · (1− p(CDS)
j )

)
+

(1−R) ·

(
fi · p(CDS)

i−1 −
i−1∑
j=1

(p
(CDS)
j − p(CDS)

j−1 ) · fj

))/(
(1−R) · fi +

1

4
· s(CDS)

i · fi
)
. (2.35)

6Standard industry practice is to use a linear interpolant [2].
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Figure 2.1: Simple 2-period tree parameterization with 3 parameters: ~ψ = (γ1, µ1, ρ1),

used originally in [11].

2.5 Original Model Parameterization

The Single-period Single-factor Copula Model (SSCM) produces an approximation s
(tr)
nT

to the CDO market spread m
(tr)
nT using the ratio

s(tr)
nT

=
E(pool)

[
D

(tr)
nT

]
E(pool)

[
P

(tr)
nT

] , (2.36)

where the default and premium leg expectations were previously given by (2.5) and

(2.6), respectively, and expectations with respect to the risk neutral pool loss probability

are computed using SSCM, for example [1]. In this section, we describe how MSCM

(proposed by JKZ [11]) computes the approximation to the CDO market spread.

In their example in [11], JKZ model the dynamics of the market using a tree structure,
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depicted in Figure A.2. To illustrate the approach, we consider a simpler tree parameteri-

zation in Figure 2.1, where the copula correlation parameter βi, introduced in Section 2.2,

follows a speci�c path (referred to as the scenario) in time with a speci�c probability:

scenario values are parameterized using γ1 and µ1 and probabilities are parameterized

using ρ1. There are two possible scenarios for the βi's in Figure 2.1:

� βi = γ1 for all i = 1, 2, · · · , 20 and βi = γ1/µ1 for all i = 21, 22, · · · , 40 with

probability ρ1;

� βi = γ1 for all i = 1, 2, · · · , 20 and βi = γ1 · µ1 for all i = 21, 22, · · · , 40 with

probability 1− ρ1.

The full set of variable model parameters in this example is ~ψ = (γ1, µ1, ρ1), over which

the model calibration is performed. The �xed set of model parameters are the default

probabilities αi (2.17), which are bootstrapped from CDS market spreads, as explained in

Section 2.4. Figure A.2 depicts a more general tree parameterization with more periods,

but the idea is the same: each new period scenario branches from the previous scenario

using a di�erent factor µj, responsible for each period j, with a new probability ρj, also

responsible for each period.

Recall that βi ∈ [0, 1] in Section 2.2, and hence ψj ∈ [0, 1] for j = 1, 2, 3. However,

one drawback to this tree parameterization is that if µ1 is close to zero, then βi > 1, for

i = 21, 22, · · · , 40 and a separate set of constraints have to be added into the calibration

routine to overcome this. Other di�culties with this parameterization are summarized

later in Section 3.1. In the same section, we propose an alternative multi-path parameteri-

zation, which overcomes these di�culties. This multi-path parameterization consists of βi

scenario-setting values ~γ = (γ1, γ2, · · · , γnγ ) and path probabilities ~ρ = (ρ1, ρ2, · · · , ρnρ).

We describe certain restrictions which must be placed on ~ρ in Section 3.1. The com-

plete multi-path parameter vector ~ψ is partitioned into ~ψ = (~γ, ~ψnγ+1:nψ), where ~ψ has

nψ = 2nγ = 2nρ elements and ~ψnγ+1:nψ = (ψnγ+1, ψnγ+2, · · · , ψnψ). Probabilities ~ρ are
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set using ~ψnγ+1:nψ in a trivial manner, described in Section 3.1. For simpler multi-path

parameterizations, ~ρ = ~ψnγ+1:nψ and the complete set of model parameters becomes

~ψ = (~γ, ~ρ).

Let ~β = (β1, β2, · · · , βnT ) and ~α = (α1, α2, · · · , αnT ). In MSCM, ~β is a discrete

random vector, with scenario probabilities speci�ed by ~ρ; in SSCM, ~β = (β,β, · · · , β) for

the copula correlation parameter β, with probability 1. In both SSCM and MSCM, the

CDO spread is a function of ~β and ~α, i.e. s
(tr)
nT = s

(tr)
nT (~β, ~α) 7. Hence in MSCM, the

spread s
(tr)
nT is a random variable through ~β, and MSCM approximates the CDO market

spread by computing the expectation

e(tr)
nT

(~ψ) = E~ρ

[
s(tr)
nT

(~β, ~α)|~γ
]
, (2.37)

where the �xed set of parameters ~α is included for completeness. From a functional point

of view, the expected spread is a function e
(tr)
nT (~ψ) of the model parameters ~ψ. In our

model, (2.37) reduces to

e(tr)
nT

(~ψ) =
∑

all scenarios ζ̃

of β̃

s(tr)
nT

(~ζ, ~α) · P~ρ
(
~β = ~ζ|~Γ = ~γ

)
, (2.38)

where ~ζ speci�es a speci�c scenario value of ~β, and the conditional probability is speci�ed

by ~ρ. For the scenarios depicted in Figure 2.1, P~ρ

(
~β = ~ζ|~Γ = ~γ

)
takes on values ρ1 and

1− ρ1; we can think of other realizations of βi as occurring with probability zero. Thus,

for the scenarios in Figure 2.1, (2.38) reduces to

e(tr)
nT

(~ψ) = s(tr)
nT

((γ1, γ1, · · · , γ1, γ1/µ1, γ1/µ1, · · · , γ1/µ1), ~α) · ρ1+

s(tr)
nT

((γ1, γ1, · · · , γ1, γ1 · µ1, γ1 · µ1, · · · , γ1 · µ1), ~α) · (1− ρ1). (2.39)

Now, notice that to compute s
(tr)
i e�ciently, we have to store previous values of

P
(
l
(pool)
i = r

)
for time ti. Moreover, these probabilities depend on the values of βi,

7The only di�erence is that the risk neutral pool loss probabilities in (2.36) are modeled slightly
di�erently in SSCM and MSCM. For a description of SSCM, see [1]. MSCM's risk neutral pool loss
probabilities were described in Section 2.3.
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which follow a particular scenario. So, we can keep track of all possible values that

P
(
l
(pool)
i = r

)
can take for di�erent βi's. The expectations E(pool)

[
L

(tr)
i

]
can also be

reused, but more copies have to be stored in memory due to the dependence on the

tranche. Chapter 5 explains such implementation details more completely.

2.6 Quadrature Methods

Due to the nature of the problem and to make the integration as e�cient as possible, we

consider Gaussian quadrature formulas on a �nite interval [a, b] as possible approaches.

An overview of these methods is given in Chapters 2 and 4 of [6]; for a more detailed

discussion, please see [7].

The goal is to compute the lower triangular probability matrix Ai (see (2.43) below)

with entries P
(
l
(pool),K−m
(i−1,i] = r −m

)
. Let us denote the standard normal probability

density by

φ(x) =
1√
2π

exp
(
−x2/2

)
(2.40)

and the rest of the integrand in (2.29) by

h(x) = Φ

(
Φ−1 (αi)− βix√

1− β2
i

)r−m(
1− Φ

(
Φ−1 (αi)− βix√

1− β2
i

))K−r

(2.41)

with the constant of integration

c =

 K −m

r −m

 . (2.42)

For each time ti, scenario for βi and entry given by r and m, we need to compute

[Ai]r,m = P
(
l
(pool),K−m
(i−1,i] = r −m

)
= c

ˆ ∞
−∞

h(x)φ(x)dx. (2.43)

Gauss-Chebyshev and Gauss-Legendre n-point quadrature rules are of the form

ˆ 1

−1

W (x)χ(x)dx ≈
n∑
j=1

wjχ(xj), (2.44)
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whereW (x) is the weight function associated with the rule, χ(x) is the function which we

would like to integrate8, wj are the quadrature weights and xj are the quadrature nodes.

The weight function W (x) is W (x) =
√

1− x2 or W (x) = 1/
√

1− x2 for the Gauss-

Chebyshev quadrature rule, and simply W (x) = 1 for the Gauss-Legendre quadrature

rule. Gauss-Hermite quadrature rules are of the form

ˆ ∞
−∞

exp(−x2)χ(x)dx ≈
n∑
j=1

wjχ(xj), (2.45)

where the weight function is W (x) = exp(−x2).

A change of variables can be made to change the interval of integration in (2.44) from

[−1, 1] to [a, b] using

ˆ b

a

w(x)χ(x)dx =
b− a

2

ˆ 1

−1

W (x)χ

(
b− a

2
x+

a+ b

2

)
dx

≈ b− a
2

n∑
j=1

wjχ

(
b− a

2
xj +

a+ b

2

)
, (2.46)

where we have assumed w
(
b−a

2
x+ a+b

2

)
= W (x) from (2.44). These three quadrature

rules are discussed in the following subsections. The error formulas are not discussed,

because we provide an alternative strategy for determining the interval of integration

[a, b] and the number of quadrature nodes n in Chapter 4. For a full discussion of why

we are only considering these methods and how they apply, please also see Chapter 4.

2.6.1 Gauss-Chebyshev

We can use both variants of the Gauss-Chebyshev formula:

ˆ 1

−1

χ(x)√
1− x2

dx and

ˆ 1

−1

χ(x)
√

1− x2dx, (2.47)

where the nodes are respectively given by

xj = cos

(
2j − 1

2n
π

)
and xj = cos

(
j

n+ 1
π

)
(2.48)

8In our case, χ(x) = c · h(x) · φ(x).
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and the weights are given by

wj =
π

n
and wj =

π

n+ 1
sin2

(
j

n+ 1
π

)
. (2.49)

2.6.2 Gauss-Legendre

This is often the simplest rule to use, as the weight function is W (x) = 1. The j-th node

xj is the j-th root of the Legendre polynomial Pn(x), where Pn(x) is normalized to give

Pn(1) = 1. The weights are

wj =
2

(1− x2
j) [P ′n(xj)]

2 . (2.50)

2.6.3 Gauss-Hermite

This is possibly the most intuitive method to use for problem (2.43), since W (x) =

exp (−x2), and the interval of integration is (−∞,∞). The j-th node xj is the j-th root

of the Hermite polynomial Hn(x) and the weights are

wj =
2n−1n!

√
π

n2 [Hn−1(xj)]
2 . (2.51)

2.7 Error Functions

The purpose of calibration is to �t the model parameters to the CDO market quotes

m
(tr)
nT , according to some error criterion. More speci�cally, for the MSCM described in

Section 2.5, our goal is to �t a set of model parameter values ~ψ = (~γ, ~ρ) to the market

quotes m
(tr)
nT by minimizing the objective function

f(~ψ) =
∑
tr∈Tr

∑
T∈M

error
(
E~ρ

[
s(tr)
nT

(~β, ~α)|~γ
]
,m(tr)

nT

)
, (2.52)

for some error function de�ned in this section, where Tr is the set of tranches, and

M is the set of maturities. For notational convenience, we can re-write (2.52) using a
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double-index k = (tr, T ) as

f(~ψ) =
∑

k∈{(tr,T )|tr∈Tr,T∈M}

error
(
E~ρ

[
s(tr)
nT

(~β, ~α)|~γ
]
,m(tr)

nT

)
, (2.53)

where there are |Tr| · |M | terms in the sum (2.53), and |Tr| and |M | are the number

of terms in the sets Tr and M , respectively. Using this double-index notation, we also

abbreviate, for notational convenience in this section only, Ek = E~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
, mk =

m
(tr)
nT , and let

fk(~ψ) = error (Ek,mk) . (2.54)

Hence we can also write (2.53) as

f(~ψ) =
∑
k

fk(~ψ). (2.55)

For an e�cient implementation of the calibration procedure, the error function has to

be cheap to compute, has to be convex to ensure the uniqueness of the solution (at least

in simple cases) and has to be resilient to outliers [19]. Moreover, it is preferable for the

error function to have a continuous �rst derivative. The least squares error function

errorLS (Ek,mk) = (Ek −mk)
2 (2.56)

satis�es three of these four conditions, but it is not resilient to outliers.

The linear ε-insensitive error function [18]

errorε (Ek,mk) = max(|Ek −mk| − ε, 0), ε ≥ 0, (2.57)

is resilient to outliers, but it has a discontinuous �rst derivative. The Soft Error Function

(SEF), described in [17] as a Soft Loss Function (SLF), is smooth and is as resilient to
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outliers as (2.57):

errorε,δ (Ek,mk) =



−(Ek −mk)− ε, if Ek −mk < −(1 + δ)ε;

(Ek−mk+(1−δ)ε)2

4δε
, if − (1 + δ)ε ≤ Ek −mk ≤ −(1− δ)ε;

0, if − (1− δ)ε < Ek −mk < (1− δ)ε;

(Ek−mk−(1−δ)ε)2

4δε
, if (1− δ)ε ≤ Ek −mk ≤ (1 + δ)ε;

Ek −mk − ε, if (1 + δ)ε < Ek −mk,

(2.58)

where 0 < δ ≤ 1 and ε > 0. See Figure A.1 for a comparison plot of these three error

functions. The �rst derivative of SLF is given as (9) in [17].

Recall that in Sec 2.5, the CDO tranches are ranked in order of seniority, with the

more senior, less risky tranches receiving smaller premium payments than the less senior,

more risky tranches. The premium payments are quoted as CDO market spreads mk.

Hence, we need to match mk in a relative error sense with MSCM approximation Ek, i.e.

we need to match the most signi�cant digits in each CDO market quotemk. For example,

if mk is small in magnitude, then, if the MSCM approximation Ek does not match mk

precisely, the absolute error using any of the three error functions (2.56), (2.57) and

(2.58) will be small, but the relative error may be large. This behavior will result in poor

�ts to the more senior, less risky tranches.

Relative error is computed by rescaling the absolute error by mk. For (2.56), we

obtain

errorrel
LS (Ek,mk) =

(
Ek −mk

mk

)2

= errorLS

(
Ek
mk

, 1

)
. (2.59)

Using the same change of variables for (2.57) and (2.58), produces

errorrel
ε (Ek,mk) = errorε

(
Ek
mk

, 1

)
, (2.60)

errorrel
ε,δ (Ek,mk) = errorε,δ

(
Ek
mk

, 1

)
. (2.61)
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The derivatives of relative error functions with respect to Ek are computed with a single

application of the chain rule, to yield a multiplicative factor of 1/mk
9.

Notice that parameter ε in (2.61) controls the precision with which Ek matches mk.

For example, if we want the quotes to match to 3 signi�cant digits, then an appropriate

value for ε is ε = 9 ·10−4. For model results used in later sections, we simply set ε = 10−4.

2.8 Optimization Algorithms

In our context, the goal of an optimization algorithm is to minimize the objective function

(2.52) by changing the set of model parameters ~ψ, introduced in Section 2.5. For the

models that we introduce in Chapter 3, the parameters ~ψ = (ψ1, ψ2, · · · , ψnψ) must satisfy

ψj ∈ [0, 1] for i = 1, 2, · · · , nψ. We can turn the associated constrained optimization

problem for f(~ψ) into an unconstrained optimization problem by introducing the change

of variables

ψj = L(uj) =
1

1 + exp(−uj)
. (2.62)

Note that for all uj ∈ R, ψj = L(uj) ∈ [0, 1] for all j = 1, 2, · · · , nψ. Hence, to calibrate

our model, we can solve an unconstrained optimization problem for

F (~u) = f
((
L(u1),L(u2), · · · ,L(unψ)

))
. (2.63)

In the following subsections, we provide a brief description of each optimization al-

gorithm we considered for calibration. Our goal is to determine an e�cient algorithm to

calibrate MSCM. Since it is expensive to compute derivatives for this problem, we con-

sider optimization algorithms with and without derivatives. The Jacobian J is speci�c

to the Levenberg-Marquardt algorithm, and due to the nature of the algorithm we can

only use the least squares (2.56) and relative least squares (2.59) error functions in the

9We assume that realistically, the CDO market spread is never zero. Otherwise, this creates an unfair
situation for the investor in the tranche, since they are only covering losses in the event of a certain
number of defaults, but are not receiving any payments in return.
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Algorithm Gradient Jacobian Hessian Rate of Convergence

NMS No No No Linear (parameter-dependent) [20]

NMRS No No No Linear (parameter-dependent) [20]

NMSHD No No No Linear (parameter-dependent) [20]

NEWUOA No No No Superlinear [21, 22]

SD Yes No No Linear [23]

CGFR Yes No No Linear to Superquadratic [14]

CGPR Yes No No Linear to Superquadratic [14]

LM No Yes No Quadratic [25]

BFGS Yes No No Superlinear [24]

BFGS2 Yes No No Superlinear [24]

Table 2.1: Algorithms used for model calibration, along with information about which

derivatives they use and approximate rates of convergence. Most rate-of-convergence

theory assumes exact line searches.

objective function (2.63). The Levenberg-Marquardt Jacobian computation is de�ned in

Subsection 2.8.2.2.

The gradient ~g and the Hessian H are computed with respect to the unconstrained

objective function F (~u) (2.63).

We considered the following optimization algorithms to calibrate the dynamic copula

model: Nelder-Mead Simplex (NMS), Nelder-Mead Random Simplex (NMRS), Nelder-

Mead Simplex for Higher Dimensions (NMSHD), Powell's Method (NEWUOA), Steepest

Descent (SD), Conjugate Gradient Fletcher-Reeves (CGFR), Conjugate Gradient Polak-

Ribière (CGPR), Levenberg-Marquardt Nonlinear Least Squares (LM) and Broyden-

Fletcher-Goldfarb-Shanno (both BFGS and BFGS2, a more e�cient implementation for

higher dimensions). These optimization methods are summarized in Table 2.1.
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2.8.1 Methods Without Derivatives

2.8.1.1 Nelder-Mead Simplex

The algorithm takes an input vector ~u = (u1, u2, · · · , unψ) and forms an nψ-dimensional

simplex with nψ + 1 vertices j = 0, 1, · · · , nψ given by

~v0 = ~u, (2.64)

~vj = (u1, u2, · · · , uj + s, · · · , unψ) for j = 1, 2, , · · · , nψ,

where s is the initial step size. The step size s changes for each dimension as the algorithm

progresses. A single iteration consists of sorting the objective function values F (~vj) at

each vertex vj, and updating the simplex vertices using an algorithm which consists of

geometrical operations on the simplex, such as re�ection, re�ection followed by expansion,

contraction and multiple contraction. The simplex eventually contracts within some

neighborhood of the minimum. A full description of the algorithm can be found in [12].

The GNU Scienti�c Library's (GSL) routine nmsimplex, which we denote by NMS, is one

implementation of this algorithm. The GSL contains another variant of this algorithm,

called nmsimplex2rand, which we denote by NMRS, for which the basis vectors are

randomly oriented, and do not necessarily follow the coordinate axes. The GSL contains

a third implementation of the Nelder-Mead algorithm, called nmsimplex2, which we

denote by NMSHD, which is more e�cient for higher dimensional problems. See [16] for

implementation details.

2.8.1.2 Powell's Method (NEWUOA)

Powell's method, NEWUOA, is similar to the Nelder-Mead algorithm, but uses a set

of coordinate axes as basis vectors, along which a bi-directional search is performed

[13]. The function minimum can be expressed as a linear combination of these basis

vectors. The algorithm keeps a set of basis vectors along which a signi�cant improvement

is achieved and ignores the rest, until convergence. For a detailed generic description
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of Powell's method (with pseudocode), see [15]. An implementation of the algorithm,

deemed e�cient for higher dimensions, is NEWUOA; see [13] for a detailed description

of the software.

2.8.2 Methods With Derivatives

2.8.2.1 Gradient Methods

Steepest Descent (SD) This ine�cient method is included for completeness. More

e�cient gradient search methods exist, such as Conjugate Gradient methods [14]. The

GSL implementation of the steepest descent algorithm performs a line search in the

direction of the gradient, doubling the step size after each successful step and decreasing

the step size using a tolerance parameter if the step is unsuccessful; see [16] for a more

detailed description.

Conjugate Gradient (Fletcher-Reeves (CGFR) & Polak-Ribière (CGPR))

The conjugate gradient method improves upon the steepest descent method by conju-

gating the gradient, thus implicitly accumulating information about the Hessian matrix

[24]. If the objective function at step k of the algorithm is F (~uj), κj is the step size and

~g(~uj) is the gradient at step k, then the line search is performed along the direction ~sj

using F (~uj + κj~sj), where Fletcher and Reeves specify

~sj = −~g(~uj) +
(~g(~uj))

T ~g(~uj)

(~g(~uj−1))T ~g(~uj−1)
~sj−1 (2.65)

and Polak and Ribière specify

~sj = −~g(~uj) +
(~g(~uj)− ~g(~uj−1))T ~g(~uj)

(~g(~uj−1))T ~g(~uj−1)
~sj−1 (2.66)

as the two possible conjugations. Using exact arithmetic, both algorithms are exact for

linear problems after nψ iterations [24].
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2.8.2.2 Jacobian Methods

Levenberg-Marquardt Nonlinear Least Squares (LM) Let ~m ∈ Rnm,+ denote a

vector of CDO market quotes m
(tr)
nT . Using the double-index notation from Section 2.7,

let

Ek(~ψ) = E~ρ

[
s(tr)
nT

(~β, ~α)|~γ
]

(2.67)

denote each expected spread term, and let Ek(~u) = Ek (L(~u)) denote the k-th element of

vector ~E of expected spreads across all tranches and maturities (containing nm elements,

as does ~m). Then the least squares error function for vectors can we written as

errorLS,vec

(
~E(~u), ~m

)
=
∥∥∥~E − ~m

∥∥∥2

2
, (2.68)

where ~u ∈ Rnψ . The relative least squares error function for vectors is given by

errorrel
LS,vec

(
~E ./~m,~1

)
=
∥∥∥~E ./~m−~1∥∥∥2

2
= errorLS,vec

(
~E ./~m,~1

)
, (2.69)

where �./� denotes vector element-wise division and ~1 denotes the vector of length nm

with all elements equal to 1. For (2.68), using a vector of small increments ~δ ∈ Rnm , we

can approximate a change in parameters ~u using the Jacobian matrix Jk,j = ∂Ek
∂uj

∣∣∣
~u
as

~E(~u+ ~δ) ≈ ~E(~u) + J~δ, (2.70)

where we are starting with some initial approximation J . Then we can compute the ~δ

that minimizes ∥∥∥~E(~u)− ~m− J~δ
∥∥∥2

2
. (2.71)

Using the regularization parameter λ ≥ 0 (superscript ′ denotes transpose in this subsec-

tion) a regularized approximate solution to (2.71) is

(J ′J + λI)~δ = J ′
(
~E(~u)− ~m

)
. (2.72)

This completes the description of the general version of the Levenberg Marquardt opti-

mization algorithm for (2.68), see [16] for implementation details. For the relative version
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Algorithm 1 Generic BFGS algorithm for unconstrained optimization (transpose is

denoted by superscript ′).
~u0= initial guess

H0= initial Hessian approximation

for j=0,1,2,...

Solve Hj~sj = −∇F (~uj) for ~sj // compute quasi-Newton step

~uj+1 = ~uj + ~sj // update solution

~yj = ∇F (~uj+1)−∇F (~uj)

Hj+1 = Hj + (~yj~y
′

j )/(~y ′j ~sj)− (Hj~sj~s
′

j Hj)/(~s
′

j Hj~sj)

end

of the the least squares function for vectors, the same derivations apply, using (2.69) as

the error function, and interchanging ~E and ~m in (2.68) in an obvious way, as speci�ed

in the de�nition of the relative error function for vectors (2.69).

2.8.2.3 Hessian Methods

BFGS The BFGS method uses an approximation to the Hessian matrix and preserves

its symmetry and positive de�niteness. For linear problems, it terminates at the exact

solution after at most nψ iterations, if exact line searches and exact arithmetic are used.

For the Hessian approximation formula, see Algorithm 6.5 in [24], restated as Algorithm 1.

GSL implements a more e�cient version of the BFGS algorithm, which we denote by

BFGS2, which is speci�ed by Algorithms 2.6.2 and 2.6.4 in [10]; see [16] for implementa-

tion details.
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As introduced in Section 2.5, the recently-proposed Multi-period Single-factor Copula

Model (MSCM) [11] has two sets of parameters:

� default probabilities αi satisfying (2.17) introduced in Section 2.2. These are a

set of �xed parameters, denoted by ~α, which are calculated using a bootstrapping

process from CDS market quotes;

� a variable set of constrained model parameters ~ψ, which model market dynamics

of the homogeneous pool of underlyings.

To calibrate the model, we need to determine a set of the constrained model parameters

~ψ, so that the expected spreads E~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
match the CDO market quotes m

(tr)
nT

across a range of tranches tr and maturities T . This is accomplished by �rst choosing

some error function: either one of the absolute error functions (2.56), (2.57) or (2.58),

or one of the relative error functions (2.59), (2.60) or (2.61). Once the error function is

�xed, we minimize the objective function (2.52), restated here for convenience:

f(~ψ) =
∑
tr∈Tr

∑
T∈M

error
(
E~ρ

[
s(tr)
nT

(~β, ~α)|~γ
]
,m

(tr)
T

)
, (3.1)

where, for the models we develop in Section 3.1, ψj ∈ [0, 1] for all j = 1, 2, · · · , nψ. An

optimization algorithm has to be used in order to minimize this constrained objective

34
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function.

As noted in Section 2.8, we can convert the constrained optimization problem de-

scribed above into an unconstrained one using the logistic function

ψj = L(uj) =
1

1 + exp(−uj)
. (3.2)

Note that uj ∈ R, ψj = L(uj) ∈ [0, 1] for all j = 1, 2, · · · , nψ. The initial starting guess

can be set using the inverse of the logistic function

uj = − ln

(
1− ψj
ψj

)
, (3.3)

assuming that we have a starting guess for ~ψ. The unconstrained optimization problem

can be stated as

min
~u∈Rnψ

F (~u), (3.4)

where

F (~u) = f
((
L(u1),L(u2), · · · ,L(unψ)

))
. (3.5)

To use the optimization methods surveyed in Section 2.8, the unconstrained objective

function F (~u) and its derivatives with respect to elements of ~u have to be de�ned for

parameter values αi and βi. In Section 3.2 we describe how to compute the unconstrained

objective function F (~u). Firstly, F (~u) contains massively parallel regions, and we can also

re-use certain data structures when computing F (~u) and its derivatives. This is outlined

in Subsection 3.2.1. Next, in Subsection 3.2.2, we prove that the computation of F (~u) is

de�ned for all αi ∈ [0, 1] for i = 2, 3, · · · , nT and α1 ∈ [0, 1) and for all βi ∈ [0, 1]. We

also show that the expected spread (2.37) quoted by MSCM is unde�ned when α1 = 11.

In Subsection 3.2.3, we describe how to compute the derivatives of F (~u) for all αi ∈ (0, 1)

and for all βi ∈ [0, 1). Unfortunately, we are unable to prove the existence of derivatives

for all αi ∈ [0, 1) and all βi ∈ [0, 1].

1Realistically, if α1 = 1, then it is unreasonable to create a CDO contract in the �rst place. Such
scenarios should never occur in practice, yet have to be handled numerically as part of the pre-processing
step when using MSCM.
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3.1 Multi-Path Model Parameterization

Reference [8] proposes a tree model similar to that shown in Figure 2.1 in Section 2.5.

In this parameterization, the βi values are associated with µj: each βi branches from a

previous βi−1 value using βi = βi−1 · µj and βi = βi−1/µj at the start of each new model

period, where µj ∈ (0, 1]. An obvious di�culty in this approach is that we could have

βi = βi−1/µj > 1 for some value of i. The author simply truncates βi at 1, and leaves

µj ∈ (0, 1]. We could avoid having βi > 1 by adding constraints to the optimization

problem, but we prefer to use models for which the change of variables described above

allows us to use unconstrained optimization methods.

Other shortcomings of this parameterization, illustrated in Figure A.2, are:

1. during the �rst period, the βi's follow a certain scenario with probability 1, i.e. the

model does not account for market dynamics during that period;

2. during the last period, the probability of moving up when βi ≈ 0, βi > 0 to a higher

value is equivalent to the probability of moving from a value of βi ≈ 1, βi < 1 to

almost perfect correlation;

3. Figure A.2 shows Extreme Cases 1 and 2, where certain scenarios of βi are not

taken into account, i.e. they do not occur with probability 1;

4. as noted above, the parameterization could produce a βi > 1;

5. each next period depends on the previous value of µj, which makes it di�cult to

obtain derivatives with respect to βi for subsequent periods.

The alternative multi-path parameterization described below addresses these de�ciencies

by letting the model adjust the possible values of βi in each period, independently of

other periods, with unique probabilities. Furthermore, the probability of transitioning to

another period does not depend on the previous period.
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Figure 3.1: A simple example of one possible con�guration of the alternative multi-path

parameterization used in this thesis. The switch from one period to the next can be

adjusted arbitrarily, and more periods can be added in more complicated parameteriza-

tions.

Multi-path parameterization associates a set of branch parameters γ and probabilities

ρ with each period. Figure 3.1 depicts a simple example of this parameterization using

2 periods, where the �rst period ends and the second period begins at 3.5 years. The

point at which one period ends and another begins is chosen as an arbitrary �xed value

in our models, although it could be a model parameter in more sophisticated models.

We associate one γ4 parameter and one ρ4 probability parameter with the second period.

Thus, the second period has two possible scenarios. This is the minimum number of

scenarios per period that we use in the multi-path parameterization. We can add more

paths to each period, as shown in the �rst period, in this case, but we have to restrict the

probabilities ρ, because the sum of the path probabilities must be 1 in each period. We
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Algorithm 2 Pseudocode to restrict the probabilities ρj to smaller

intervals, if needed. Probabilities ρj are parameterized by ψnγ+j.

// All indexes start at 0

per = 0; // indexes the period

nbefore = 0;

nparam = nψ/2; // number of ρ parameters, nψ is always even

for j=0:(nparam - 1)

// skip over γ parameters in the gradient

ρj = (1.0 / number of ρ parameters in period per)*ψj+nparam

if ((j+1) - nbefore >= number of ρ parameters in period per)

// record number of ρ parameters that we've passed

nbefore += number of ρ parameters in period per

per += 1 // move to the next period

can enforce such constraints by modifying ~ψnγ+1:nψ in ~ψ = (~γ, ~ψnγ+1:nψ) in the obvious

way, where each ψj ∈ [0, 1] for all j = 0, 1, · · · , nψ, originally given by (3.2). We simply

divide each ψnγ+j, responsible for ρj, by the number of ρ parameters in each period. For

example, in Figure 3.1, there are only 2 paths in the second period, associated with ρ4,

so in that particular case, ρ4 = ψ8. In the �rst period, ρj = ψnγ+j/3 for all j = 1, 2, 3,

because there are three ρ probabilities associated with the �rst period. This adjustment

of the ~ψnγ+1:nψ values is detailed in the pseudocode in Algorithm 2.

The parameterization shown in Figure 3.1 has 8 distinct paths. For example, one

such path is βi = γ1 for all i = 1, 2, · · · , 14 (the period switch at 3.5 years occurs after 14

quarterly payments), and βi = 1−γ4 for all i = 15, 16, · · · , 40 with probability ρ1 ·(1−ρ4).

Let rj denote the period, where j = 1, 2, · · · , nr and nr is the number of periods.

Each rj is a time interval that has associated with it a set of parameters γrj ,k and ρrj ,k,
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k = 1, 2, · · · , nj. Then all the βi's associated with period rj satisfy either

βi = γrj ,k, with probability ρrj ,k, 0 ≤ ρrj ,k ≤ 1/nj

or

βi = 1− γrj ,nj , with probability 1−
nj∑
k=1

ρrj ,k. (3.6)

For example, if we have a single period r1 that covers the �ll lifetime of the CDO and

if n1 = 1, then all the βi's are either γ1 or 1 − γ1 with probabilities ρ1 and 1 − ρ1,

respectively, where γ1 and ρ1 ∈ [0, 1]. We have double-indexed elements of ~γ and ~ρ to

succinctly represent the parameterization, but the optimization algorithm can only be

given a single vector ~ψ. We now provide pseudocode for associating βi with a particular

scenario, indexed by rΘ and cΘ.

The set of parameters can be partitioned into ~ψ = (~γ, ~ψnγ+1:nψ), where ~γ = (γ1, γ2, · · · , γnγ )

and ~ψnγ+1:nψ = (ψnγ+1, ψnγ+2, · · · , ψnψ) and nψ = 2nγ
2. We have to e�ciently extract

the parameters associated with each period from the parameter vector ~ψ. Consider an

indexing convention with rows rΘ indexing the possible parameter scenarios (also called

period branches) for each period rj, and with columns cΘ indexing the period3. Then

given the time index i, rΘ and cΘ we can determine the corresponding value of βi and the

corresponding probability. The pseudocode for extracting parameter values is given by

Algorithms 3 and 4 below. For example, in Figure 3.1 the constrained parameter vector

is ~ψ = (γ1, γ2, γ3, γ4, ψ5, ψ6, ψ7, ψ8). If we start indexing at 0, then for (rΘ, cΘ) = (3, 0),

βi = 1 − γ3 with probability 1 − (ρ1 + ρ2 + ρ3), i.e. there are three γ ∈ ~γ parameters

associated with the �rst period, and the last branch in the period is parameterized by

the value 1− γ3. Note that 1− γ3 ∈ [0, 1]m since γ3 ∈ [0, 1].

For example, for the multi-path parameterization depicted in Figure A.2, there would

be 24 = 16 possible scenarios (paths) that βi could take, each with its own unique

2The number of elements in ~ψ is always even by construction.
3Θ denotes a hypothetical matrix. Imagine the paths in Figure 3.1 as elements in the matrix Θ, then

the depicted parameterization forms a 4×2 matrix Θ, with empty entries in Θ3,2 and Θ3,3, if Θ indexing
starts at zero.
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Algorithm 3 Pseudocode to extract the probability related to the period

cΘ and to the branch rΘ from the parameter vector ~ρ.

// Indexes for rθ and cθ start at 0

function prob = get_prob(rΘ,cΘ,~ρ)

// Determine how many probs ρ were in previous periods

nprobs_before = 0;

// Count the number of parameters in previous periods

// and skip over them

for j=0:(cΘ-1)

nprobs_before += number of parameters used in period j

// Determine which ρ value to currently use

if (number of parameters used in period cΘ == rΘ)

// subtract the last probs in current branch column

prob = 1

for j=0:(cΘ-1)

prob -= ~ρnprobs_before+j // ~ρ index starts at zero

else if (rΘ < number of parameters used in period cΘ)

prob = ~ρnprobs_before+rΘ
// ~ρ index starts at zero

else

error("This should never happen.")

return prob;

probability. Figure A.3 shows more possible parameterizations. It is possible to have

many market quotes for the calibration (see Section 6.1 for the description of the data

sets available). Hence the depicted parameterizations still result in a parsimonious model.



Chapter 3. Calibration 41

Algorithm 4 Pseudocode to extract the value of βi related to the period

cΘ and to the branch rΘ from the parameter vector ~γ.

// Indexes for rθ and cθ start at 0

function βi = get_beta(rΘ,cΘ,~γ)

// Determine how many γ were in previous periods

ngammas_before = 0;

// Count the number of parameters in previous periods

// and skip over them

for j=0:(cΘ-1)

ngammas_before += number of parameters used in period j

// Determine which γ value to currently use

if (number of parameters used in period cΘ == rΘ)

βi = 1 - ~γngammas_before+rΘ−1 // ~γ index starts at zero

else if (rΘ < number of parameters used in period cΘ)

βi = ~γngammas_before+rΘ
// ~γ index starts at zero

else

error("This should never happen.")

return βi;

3.2 Objective Function And Derivative Computation

For Optimization

In this section, we �rst describe how one can exploit the massive parallelism of MSCM

when evaluating the constrained objective function f(~ψ) (2.52), or equivalently, the un-

constrained objective function F (~u) (3.5). We also outline in Subsection 3.2.1 how to

improve the e�ciency of objective function evaluation by re-using various probabilities

and expectations during pricing. We then prove that either objective function can be
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evaluated for all αi ∈ [0, 1] for i = 2, 3, · · · , nT and α1 ∈ [0, 1) and for all βi ∈ [0, 1]

in Subsection 3.2.2; we also show that the expected spread (2.37) quoted by MSCM is

unde�ned when α1 = 1. In Subsection 3.2.3 we proceed to compute the derivatives of the

objective function F (~u) with respect to elements of ~u for all αi ∈ (0, 1) and all βi ∈ [0, 1).

Unfortunately, we are unable to prove anything about the existence of derivatives for

αi ∈ [0, 1) for i = 2, 3, · · · , nT and α1 ∈ [0, 1) and for all βi ∈ [0, 1].

3.2.1 Parallelism

The goal is to minimize either the constrained objective function f(~ψ) (2.52), or equiv-

alently, the unconstrained objective function F (~u) (3.5), which reduces to computing

spreads for di�erent scenarios of βi. The computation is partitioned into three stages,

each of which is massively parallel:

1. integrate the probability matrices Ai (2.43) for all scenarios of βi and store them

in memory. This can be done in parallel, since each Ai depends on αi and βi only.

2. compute data structures which store P
(
l
(pool)
i = r

)
and E(pool)

[
l
(tr)
i

]
, which are

reused during the next pricing stage. This can also be done in parallel by creating

a parallel process for each scenario in the multi-path parameterization.

3. price the CDO spreads s
(tr)
nT (~β, ~α) for di�erent scenarios of ~β, using the data struc-

tures in stage 2, which are dynamically populated during pricing (see Subsec-

tion 5.2.1 for a speci�c description of the dynamic programming implementation).

This too can be done in parallel.

3.2.2 Objective Function Evaluation

The unconstrained objective function F (~u) (3.5) is de�ned for all αi, βi ∈ (0, 1). The goal

of this subsection is to extend the de�nition of F (~u) for all αi ∈ [0, 1] for i = 2, 3, · · · , nT

and α1 ∈ [0, 1) and all βi ∈ [0, 1]. This is accomplished by considering the four limits:
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αi → 0+, αi → 1−, βi → 0+ and βi → 1−, denoted for brevity as limαi,βi→0+,1− , of the

objective function F (~u)

lim
αi,βi→0+,1−

F (~u). (3.7)

We also demonstrate that the pricing equation for the spread quote (2.9), restated below

for convenience

s(tr)
nT

=

∑nT−1
i=1 E(pool)

[
L

(tr)
i

]
· (fi − fi+1) + E(pool)

[
L

(tr)
nT

]
· fnT∑nT

i=1

(
K ·N · S(tr) − E(pool)

[
L

(tr)
i

])
· (ti − ti−1) · fi

(3.8)

is unde�ned when α1 = 1, which makes the expected spread E~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
(2.37),

quoted by MSCM also unde�ned4.

Recall from Section 2.5, that the computation of E~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
(2.37) is reduced

in Section 2.1 to the computation of the MSCM spread approximation s
(tr)
nT (~β, ~α) (2.9),

restated as (3.8). In the same section, this is further reduced to the computation of

E(pool)

[
L

(tr)
i

]
(2.16), restated below in (3.9). Computation of E(pool)

[
L

(tr)
i

]
is further

reduced to the problem of estimating P
(
l
(pool)
i = r

)
, given by the recursion relationship

(2.29), restated below for convenience in (3.17). It is trivial matter to verify that, provided

the denominator of the spread (3.8) is non-zero, each of the four aforementioned limits

αi, βi → 0+, 1− is de�ned up to the stage of computing P
(
l
(pool)
i = r

)
. Recall from

Section 2.1 that E(pool)

[
L

(tr)
i

]
(2.16) is given by

E(pool)

[
L

(tr)
i

]
= N · (1−R) ·

K∑
r=1

min

(
K · S(tr)

1−R
,max

(
0, r − K · a(tr)

1−R

))
·P
(
l
(pool)
i = r

)
,

(3.9)

where a(tr) and S(tr) are given in percent, and L
(pool)
i = N · (1 − R) · l(pool)

i , l
(pool)
i ∈

0, 1, · · · , K. Notice that from the no arbitrage argument in [11], the expected pool loss

E(pool)

[
L

(tr)
i

]
is a monotonically increasing function. Hence, the denominator in (3.8)

4Recall from Section 2.1 that the Equity tranche is priced di�erently, and its pricing equation is
de�ned when αi = 1. However, we are later concerned with the Mezzanine tranches in this thesis, and
the setting of αi = 1 has to be handled.
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can only be zero if for time i = 1 (�rst time step) for any

r ≥ K

1−R
(
S(tr) + a(tr)

)
(3.10)

we have P
(
l
(pool)
1 = r

)
= 1. Following the no arbitrage argument in [8], the expected

tranche losses E(pool)

[
L

(tr)
i

]
are monotonically increasing. We later show that when

α1 = 1,

lim
α1→1−

E(pool)

[
L

(tr)
i

]
= K ·N · S(tr) (3.11)

for all i = 1, 2, · · · , nT and all tranches tr. This makes (3.8) unde�ned for all nT and all

tr.

To compute limαi,βi→0+,1− E(pool)

[
L

(tr)
i

]
, we have to compute limαi,βi→0+,1− P

(
l
(pool)
i = r

)
.

Let Pi ∈ RK+1 denote the exact value of the probability vector at time ti (pool loss prob-

ability) with K+ 1 elements P
(
l
(pool)
i = r

)
, r = 0, 1, · · · , K, and let Ai denote the exact

value of the lower triangular integration matrix with entries [Ai]r,m = P
(
l
(pool),K−m
(i−1,i] = r −m

)
(2.43), restated here for convenience

[Ai]r,m = c

ˆ ∞
−∞

h(x)φ(x)dx, (3.12)

where

h(x) = Φ

(
Φ−1 (αi)− βix√

1− β2
i

)r−m(
1− Φ

(
Φ−1 (αi)− βix√

1− β2
i

))K−r

, (3.13)

is the Riemann integrand, where the functions pk,i(x) = pi(x) (2.25) are

pi(x) = Φ

(
Φ−1 (αi)− βix√

1− β2
i

)
, (3.14)

where Φ(·) ∈ [0, 1] is the standard normal Cumulative Density Function (CDF) and Φ−1

is its inverse. The Riemann constant of integration is given by

c =

 K −m

r −m

 (3.15)
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and the standard normal probability density function is given by

φ(x) =
1√
2π

exp
(
−x2/2

)
. (3.16)

Then the recursion (2.29) can be written succinctly as

Pi = AiPi−1 (3.17)

using matrix-vector multiplication.

The computation of the four limits of the objective function reduces to

lim
αi,βi→0+,1−

c

ˆ ∞
−∞

h(x)φ(x)dx. (3.18)

In each of the four cases, βi → 1−, βi → 0+, αi → 1− and αi → 0+, for any r = 0, 1, · · · , K

and m = 0, 1, · · · , r, one way of �nding

lim
αi,βi→0+,1−

c

ˆ ∞
−∞

h(x)φ(x)dx (3.19)

is to prove

lim
αi,βi→0+,1−

c

ˆ ∞
−∞

h(x)φ(x)dx = c

ˆ ∞
−∞

lim
αi,βi→0+,1−

h(x)φ(x)dx (3.20)

and then to compute the right hand side in the above equation. Otherwise, we cannot

say anything about the limits, because the integral specifying [Ai]r,m is intractable ana-

lytically. We can invoke the Dominated Convergence Theorem (DCT) and it corollaries,

stated in [48]5. We can rewrite (3.12) as a Riemann-Stieltjes integral using

c

ˆ ∞
−∞

h(x)φ(x)dx = c

ˆ ∞
−∞

h(x)dΦ(x), (3.21)

where Φ denotes the standard normal Cumulative Distribution Function (CDF) that has

a probability density function φ(x) (3.16) with respect to Lebesgue measure.

We are now in the position to state the assumptions, required to use DCT. First, we

must obtain an integrable dominator G(x), such that

|h(x)| ≤ G(x) (3.22)

5DCT and its corollaries are well-known, and are available from other functional analysis texts.
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for all x ∈ R. Setting G(x) = 1 provides such a bound, because h(x) only contains

probabilities, raised to positive powers. Clearly G(x) is integrable with respect to φ(x),

because ˆ ∞
−∞

dΦ(x) =

ˆ ∞
−∞

1√
2π

exp

(
−x

2

2

)
dx = 1 <∞ (3.23)

is just the area under the standard normal probability density.

Next, before applying DCT, we must show that any of the four limits exist, i.e.

lim
αi,βi→0+,1−

h(x) = h(conv)(x) (3.24)

for all x ∈ R6 for some function h(conv)(x). In the results below, we are using the fact that

the standard normal Cumulative Density Function (CDF) Φ(x) and its inverse Φ−1(x)

are continuous functions, whence

lim
αi,βi→0+,1−

Φ (χ(x)) = Φ

(
lim

αi,βi→0+,1−
χ(x)

)
, (3.25)

lim
αi,βi→0+,1−

Φ−1 (χ(x)) = Φ−1

(
lim

αi,βi→0+,1−
χ(x)

)
, (3.26)

if limαi,βi→0+,1− χ(x) exists for some function χ(x). We now determine h(conv)(x) for all

r = 0, 1, · · · , K and all m = 0, 1, · · · , r for each of the four limit cases:

1. Case αi → 1−: for all r = K and m = 0, 1, · · · , K, we obtain limαi→1− h(x) = 1.

Otherwise, limαi→1− h(x) = 0.

2. Case αi → 0+: for all r = 0, 1, · · · , K and m = r, we obtain limαi→0+ h(x) = 1.

Otherwise, limαi→0+ h(x) = 0.

3. Case βi → 0+: for all r = 0, 1, · · · , K andm = 0, 1, · · · , r, we obtain limβi→0+ h(x) =

αr−mi (1− αi)K−r, because Φ (Φ−1(αi)) = αi.

6We can relax convergence to hold almost everywhere [48], but in our case we can use this stronger
result.
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4. Case βi → 1−: we obtain

h(conv)(x) =


1r−m0K−r, if x < Φ−1(αi);

(1/2)r−m (1/2)K−r , if x = Φ−1(αi);

0r−m1K−r, if x > Φ−1(αi).

(3.27)

We have established all assumptions necessary to use DCT. We can now apply DCT,

which states that under the above conditions

lim
αi,βi→0+,1−

ˆ ∞
−∞

h(x)dΦ(x) =

ˆ ∞
−∞

lim
αi,βi→0+,1−

h(x)dΦ(x). (3.28)

In the �rst three cases below, we are integrating a constant with respect to the standard

normal Lebesgue probability measure. The last case is more tricky and requires another

proof, stated as part of the case 4 below. We now obtain the following four cases:

1. Case αi → 1−: for r = K and m = 0, 1, · · · , K, we obtain [Ai]K,m = 1 (i.e. last

row of Ai is �lled with 1's); otherwise [Ai]r,m = 0.

2. Case αi → 0+: for r = m and m = 0, 1, · · · , K, we obtain [Ai]m,m = 1 (i.e. the

diagonal of Ai is �lled with 1's); otherwise [Ai]r,m = 0.

3. Case βi → 0+: for all r = 0, 1, · · · , K and m = 0, 1, · · · , r, we obtain [Ai]r,m = K −m

r −m

αr−mi (1− αi)K−r.

4. Case βi → 1−: we start with the following equality, and then consider di�erent

cases for di�erent values of r and m:

c

ˆ ∞
−∞

h(conv)(x)dΦ(x) =

lim
ξ→0

[ˆ Φ−1(αi)−ξ

−∞
h(conv)(x)dΦ(x) +

ˆ Φ−1(αi)+ξ

Φ−1(αi)−ξ
h(conv)(x)dΦ(x)

+

ˆ ∞
Φ−1(αi)+ξ

h(conv)(x)dΦ(x)

]
. (3.29)
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First, consider the middle term
´ Φ−1(αi)+ξ

Φ−1(αi)−ξ h
(conv)(x)dΦ(x) and notice that the in-

tegrand 0 ≤ h(conv)(x) ≤ 1 for all x ∈ [Φ−1(αi)− ξ,Φ−1(αi) + ξ] and for all

r = 0, 1, · · · , K and m = 0, 1, · · · , r. Hence, we can use the squeeze theorem

[49] to prove that limξ→0

´ Φ−1(αi)+ξ

Φ−1(αi)−ξ h
(conv)(x)dΦ(x) = 0 using the following result:

0 ≤ lim
ξ→0

ˆ Φ−1(αi)+ξ

Φ−1(αi)−ξ
h(conv)(x)dΦ(x)

≤ lim
ξ→0

ˆ Φ−1(αi)+ξ

Φ−1(αi)−ξ
dΦ(x) = lim

ξ→0

[
Φ
(
Φ−1(αi) + ξ

)
− Φ

(
Φ−1(αi)− ξ

)]
= 0. (3.30)

For all r = K and all m = 0, 1, · · · , K − 1, and using the fact that Φ (Φ−1(αi)) =

αi we obtain
´ Φ−1(αi)−ξ
−∞ h(conv)(x)dΦ(x) = Φ (Φ−1(αi)− ξ), and taking the limit

ξ → 0 we obtain αi. The term h(conv)(x) is zero for all x ∈ [Φ−1(αi) + ξ,∞]

for these settings of r and m. Hence, c
´∞
−∞ h

(conv)(x)dΦ(x) = c · αi = αi, since

c =

 K −m

r −m

 =

 K −m

K −m

 = 1.

Similarly, for all m = r and r = 0, 1, · · · , K − 1 we obtain h(conv)(x) = 0 for

all x ∈ [−∞,Φ−1(αi) − ξ] and
´∞

Φ−1(αi)+ξ
h(conv)(x)dΦ(x) = 1 − Φ (Φ−1(αi) + ξ)

and taking the limit as ξ → 0 we obtain 1 − αi. Hence, c
´∞
−∞ h

(conv)(x)dΦ(x) =

c(1− αi) = 1− αi, since c =

 K −m

r −m

 =

 K − r

0

 = 1.

For all other r and m, except r = m = K, h(conv)(x) = 0 on [−∞,Φ−1(αi)− ξ] and

[Φ−1(αi) + ξ,∞]. Notice that at r = K and m = r the �rst and last terms in (3.29)

are αi and 1−αi, respectively, and sum to 1 after taking individual limits as ξ → 0.

Hence, c
´∞
−∞ h

(conv)(x)dΦ(x) = c = 1, since c =

 K − r

r −m

 =

 0

0

 = 1.

In summary, for all r = K and all m = 0, 1, · · · , K− 1, we obtain [Ai]K,m = αi (i.e.

last row of Ai is �lled with αi) and for all m = r and r = 0, 1, · · · , K−1, we obtain

[Ai]r,r = 1 − αi (i.e. diagonal of Ai is �lled with 1 − αi). For r = K and m = K,

we obtain [Ai]K,K = 1.
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Notice that in all of the above cases for αi, βi → 0+, 1−, the columns of Ai sum to

1. It could also happen that a combination of the above cases could occur, for example

αi → 0+ and βi → 1−. In this case, we would handle the αi cases �rst, because the spreads

s
(tr)
nT (2.9) have to be de�ned for any realization of βi, before computing the expectation

E~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
. Notice, however, that for all r = 0, 1, · · · , K and m = 0, 1, · · · , r we

can verify the following result by direct computation:

lim
βi→0+,1−

lim
αi→0+,1−

c

ˆ ∞
−∞

h(x)φ(x)dx = lim
αi→0+,1−

lim
βi→0+,1−

c

ˆ ∞
−∞

h(x)φ(x)dx

= lim
αi→0+,1−

c

ˆ ∞
−∞

h(x)φ(x)dx, (3.31)

because αi limit cases produce values which do not depend on βi.

Using the notation from the recursion relationship (3.17), the multi-path parame-

terization branches described in Section 3.1 are started with the column vector P0 =

(1, 0, · · · , 0) and E(pool)

[
l
(tr)
0

]
= 0 for all tranches tr. Now, consider the �rst time step in

the recursion relationship (3.17). For each of the four aforementioned limit cases of [Ai]

we obtain the following values for the column vector P1:

1. Case α1 → 1−: P1 = (0, 0, · · · , 0, 1).

2. Case α1 → 0+: P1 = (1, 0, 0 · · · , 0).

3. Case β1 → 0+: P1 = (1− α1, 0, 0 · · · , 0, α1).

4. Case β1 → 1−: the r-th element of P1 is given by [P1]r =

 K

r

αr1 (1− α1)K−r,

for r = 0, 1, · · · , K.

From case 1 above, we get that P
(
l
(pool)
1 = K

)
→ 1 whenever α1 → 1−. The condition

(3.10) is then satis�ed7, and, as mentioned at the beginning of this subsection, the spread

7Recall that, following the no-arbitrage argument in [11] the default probabilities αi are monotonically
increasing.
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pricing equation (3.8) becomes unde�ned in the limit α1 → 1− because relationship (3.11)

produces a zero in the denominator of (3.8) for any maturity T and tranche tr.

Hence, we have shown that the objective function F (~u) (3.5) is de�ned for αi ∈ [0, 1]

for i = 2, 3, · · · , nT and α1 ∈ [0, 1) and for all βi ∈ [0, 1]. The next section attempts to

derive a similar result for the derivatives of the objective function with respect to the

unconstrained set of MSCM parameters ~u.

3.2.3 Derivatives Of The Objective Function

In this subsection we compute the derivatives of the unconstrained objective function

F (~u) (3.5) with respect to the elements uν of the parameter vector ~u. We also prove that

we can compute these derivatives for all αi ∈ (0, 1) and for all βi ∈ [0, 1).

The derivative of the logistic function L is

∂

∂uν
L(uν) = L(uν) · (1− L(uν)) . (3.32)

Recall that the probabilities ~ρ are scaled from ~ψnγ+1:nψ , as described in Section 3.1. Using

the chain rule, this simply adds the same scaling factor of the reciprocal of the number

of ρ parameters responsible for a certain period, in an obvious way, as was described in

Section 3.1. Detailed pseudocode for gradient computation is provided by Algorithm 5.

The derivatives of the error functions are provided in Section 2.7 and they are easy

to compute.

Let us denote the expected spread, conditional on the values of parameters ~γ and ~ρ

by E~ρ

[
s

(tr)
nT (~β)|~γ

]
= E~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
, removing the notation which speci�es dependence

on the vector of �xed parameters ~α. The derivatives of this expected spread with respect

to probabilities ρν ∈ ~ρ is easy to compute. Expression E~ρ
[
s

(tr)
nT (~β)|~γ

]
either has the term

ρν multiplying some realization s
(tr)
nT of the spread, or the term −ρν , or E~ρ

[
s

(tr)
nT (~β)|~γ

]
may not depend on ρν at all. We illustrate the computation of the gradient with the

example in Figure 3.1. If we would like to compute the expected spread with maturity
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Algorithm 5 Pseudocode to scale the gradient when computing the

derivative with respect to probabilities, parameterized by ψj+nψ/2.

// All indexes start at 0

cΘ = 0; //period index

nbefore = 0;

nparam = nψ/2; // number of ρ parameters, nψ is always even

for j=0:(nparam - 1)

// skip over γ parameters in the gradient

gradient(j+nparam) = (1.0 / number of ρ parameters in period cΘ)

*L_logistic_function_derivative(uj+nparam)*(∂ρjerror_function at uj+nparam)

if ((j+1) - nbefore >= number of ρ parameters in period cΘ)

// record number of ρ parameters that we've passed

nbefore += number of ρ parameters in period cΘ

cΘ += 1 // move to the next period

of T = 3 years, then there are 4 possible spread scenarios available, let us label them by

sj, where j = 1, 2, 3, 4. Then the expected spread is given by

E~ρ

[
s(tr)
nT

(~β)|~γ
]

= ρ1s1 + ρ2s2 + ρ3s3 + (1− ρ1 − ρ2 − ρ3)s4, (3.33)

and it is a trivial matter to compute the derivatives with respect to ρν , ν = 1, 2, 3, 4. If

we consider a maturity of T = 5 years, then there are 8 possible scenarios available for

the spread, and ρ4 is now involved in the computation, unlike in (3.33). For example, one

possible path out of 8 could have the probability (1− ρ1 − ρ2 − ρ3)(1− ρ4) multiplying

some spread realization. Again, it is trivial to compute the derivatives with respect to

ρν .

We now describe how to compute the derivatives with respect to γν . Notice that due

to parameterization, given by (3.6), this reduces to just computing the derivatives with

respect to βi, and in the case of 1 − γν a negative sign appears in the derivative. The
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derivative of the realization of the spread s
(tr)
nT (2.9), restated as (3.8) in this chapter, can

be computed with the quotient rule using

∂

∂γν
E(pool)

[
D(tr)
nT

]
=

nT∑
i=1

(
∂

∂γν
E(pool)

[
L

(tr)
i

]
− ∂

∂γν
E(pool)

[
L

(tr)
i−1

])
· fi; (3.34)

∂

∂γν
E(pool)

[
P (tr)
nT

]
= s(tr)

nT
·
nT∑
i=1

(
− ∂

∂γν
E(pool)

[
L

(tr)
i

])
· (ti − ti−1) · fi. (3.35)

Notice that since the spread computation is unde�ned for α1 = 1, this result propagates

into the quotient rule, and the spread derivative computation is also unde�ned when

α1 = 1.

The computation of the gradient further reduces to

∂

∂γν
E(pool)

[
L

(tr)
i

]
= N · (1−R) · ∂

∂γν
E(pool)

[
l
(tr)
i

]
=

= N · (1−R) ·
K∑
r=1

min

(
K · S(tr)

1−R
,max

(
0, r − K · a(tr)

1−R

))
· ∂

∂γν
P
(
l
(pool)
i = r

)
. (3.36)

Hence the computation is further reduced to

∂

∂γν
P
(
l
(pool)
i = r

)
=



∂
∂βι
P
(
l
(pool)
i = r

)
, if βι = γν ;

− ∂
∂βι
P
(
l
(pool)
i = r

)
, if βι = 1− γν ;

0, otherwise,

(3.37)

where γν denotes some γν ∈ ~γ and βι denotes some βι ∈ ~β. Notice that if βι was not used

for time ti, 1 ≤ i ≤ ι, or P
(
l
(pool)
i = r

)
was not created recursively from a particular

scenario where βι was used, then ∂βιP
(
l
(pool)
i = r

)
= 0.

Let P ′i = ∂βιP
(
l
(pool)
i = r

)
and let [A′i]r,m denote entry ∂βιP

(
l
(pool),K−m
(i−1,i] = r −m

)
.

Then the derivative of the recursion relationship (3.17) can be written as

P ′i+1 = A′i+1Pi + Ai+1P
′
i . (3.38)

Notice that (3.38) abstracts di�erent scenarios of dependence of Pi, P
′
i , Ai and A′i on

βι
8. If Ai does not depend on βι, then ∂βι [Ai]r,m = 0 for all r = 0, 1, · · · , K and all

m = 0, 1, · · · , r.

8In most cases, either P ′i is a zero vector, or A′i+1 is a zero matrix.
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Up to this point, all equations have been de�ned for all αi, βi ∈ [0, 1], except the

spread pricing equation (3.8), which was discussed in Subsection 3.2.2. In order to

compute [A′i]r,m, when Ai depends on βι, we can prove that

c
∂

∂βi

ˆ ∞
−∞

h(x)φ(x)dx = c

ˆ ∞
−∞

∂

∂βi
h(x)φ(x)dx, (3.39)

by invoking another corollary of DCT for derivatives [48] of the integrand h(x) (3.13).

We can then approximate the right hand side of (3.39) using some quadrature rule from

Section 2.6. Recall the equivalence of Riemann and Riemann-Stieltjes integrals in (3.21),

hence proving (3.39) is equivalent to proving the result using Riemann-Stieltjes integrals.

Let us denote hβi = ∂βih(x). To use the DCT corollary for derivatives, we must show

that

|hβi(x)| ≤ Gβi(x), (3.40)

for all x ∈ R for some dominator Gβi(x), which does not depend on αi or βi. We can

switch to a Riemann-Stieltjes integral, because the standard normal probability density

term φ(x) (3.16) does not depend on βi; recall the equivalence (3.21). Then

hβi(x) =
1√
2π
· h(1)

βi
(x) · h(2)

βi
(x) · h(3)

βi
(x), (3.41)

where

h
(1)
βi

(x) = exp

−1

2

(
Φ−1(αi)− βix√

1− β2
i

)2
 , (3.42)

h
(2)
βi

(x) =
βiΦ

−1(αi)− x√
1− β2

i

3 , (3.43)

h
(3)
βi

(x) = (r −m) pi(x)r−m−1 (1− pi(x))K−r−(K − r) (1− pi(x))K−r−1 pi(x)r−m, (3.44)

and pi(x) = Φ
(

(Φ−1 (αi)− βi · x) /
√

1− β2
i

)
. Now we have to �nd an integrable domi-

nator Gβi(x), which does not depend on αi and βi, and which satis�es (3.40). Consider

some small real constant ξ which can be in�nitely close to zero, but which can never

equal zero. Let us restrict αi ∈ [ξ, 1− ξ] and βi ∈ [0, 1− ξ]. Then term
∣∣∣h(2)
βi

(x)
∣∣∣ can be



Chapter 3. Calibration 54

bounded in absolute sense by ∣∣∣h(2)
βi

(x)
∣∣∣ ≤ βi |Φ−1(αi)|+ |x|√

1− β2
i

3 , (3.45)

and the bound is maximized when βi = 1 − ξ (denote this value by β̄) and when αi is

either ξ or 1 − ξ. Without loss of generality, let us pick αi = ξ and denote it by ᾱ. We

can bound h
(2)
βi

(x) in absolute sense, if we �x ξ. The most sensible bound that we can

�nd for h
(1)
βi

(x) is
∣∣∣h(1)
βi

(x)
∣∣∣ ≤ 1, because even if we �x βi and αi, the absolute maximum of

hβi(x) depends on the interaction of h
(1)
βi

(x) and h
(2)
βi

(x) for all x, and eventually we could

encounter a value x = Φ−1(ᾱ)/β̄, at which point the exponential term simply becomes

1. The bound on the term h
(3)
βi

(x) is easy to compute.

We obtain the following dominator

Gβi(x) = (2r +K +m)
1√
2π

β̄ |Φ−1(ᾱ)|+ |x|√
1− β̄2

3 . (3.46)

Using the fact that
´∞
−∞ |x|dΦ(x) = 2/

√
2π and the fact that Φ is the standard normal

CDF, we obtainˆ ∞
−∞

Gβi(x)dΦ(x) = (2r +K +m)
1√
2π

1√
1− β̄2

3

[
β̄
∣∣Φ−1(ᾱ)

∣∣+
2√
2π

]
<∞. (3.47)

This completes the proof that we can interchange the integral and the derivative in (3.39)

for all αi ∈ [ξ, 1− ξ] and all βi ∈ [0, 1− ξ] for arbitrarily small but non-zero ξ.

The proof techniques used for βi < 1 do not work for βi = 1, so we were unable to

compute [A′i]r,m for βi ∈ [0, 1]. The same situation occurs for αi ∈ [0, 1]. Realistically,

values αi = 0 and αi = 1 are highly unlikely in practice. This is discussed at the end of

this subsection.

We can determine that for all r = 0, 1, · · · , K and all m = 0, 1, · · · , r

lim
βi→0+

hβi(x) = c1 · x, (3.48)

where c1 is just some constant. Recall that
´∞
−∞ x exp(−x2/2)dx = 0, and using DCT

corollary again, we determine that

lim
βi→0+

ˆ ∞
−∞

hβidΦ(x) =

ˆ ∞
−∞

lim
βi→0+

hβidΦ(x) = 0, (3.49)
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for all r = 0, 1, · · · , K and m = 0, 1, · · · , r.

The constant ξ can be arbitrarily close to 0, and at least up to �oating point precision,

we proved that we can interchange the derivative ∂βi with the integral
´∞
−∞ h(x)dΦ(x)

for all αi ∈ (0, 1) and all βi ∈ [0, 1). We were unable to prove anything about the closed

intervals of αi ∈ [0, 1] and βi ∈ [0, 1]. Realistically, αi are usually not equal to 0 or 1,

because if they were, then we would know that either underlyings cannot default with

probability 1, or they default with probability 1, respectively. Surely, if either case were

to happen, then it would not be reasonable to create a CDO contract in the �rst place.

The data sets used for calibration in this thesis (see Section 6.1 for the description of

data sets) never produce these default probability values of αi. It could happen that

during calibration, βi = 1, but this is very unlikely, and in any event we can switch to

any gradient-free optimizer from Section 2.8 if this were to happen.

In summary, we have established that for all αi ∈ (0, 1) and all βi ∈ [0, 1) the matrix

entries of A′i = ∂βi [Ai]r,m are given by

[A′i]r,m =
1

2π

 K −m

r −m

 ˆ ∞
−∞

exp

(
−x

2

2

)
exp

−1

2

(
Φ−1(αi)− βix√

1− β2
i

)2


×

[
βiΦ

−1(αi)− x√
1− β2

i

3

]
×
[
(r −m) pi(x)r−m−1 (1− pi(x))K−r − (K − r) (1− pi(x))K−r−1 pi(x)r−m

]
dx, (3.50)

where pi(x) = Φ
(

(Φ−1 (αi)− βi · x) /
√

1− β2
i

)
. Notice that this derivative is taken with

respect to βi.

The Jacobian J for the Levenberg-Marquardt optimization algorithm in Subsec-

tion 2.8.2.2 can be generated from the individual terms Ek (2.67) used in the objective

function F , as outlined in the same subsection. None of the algorithms surveyed and

implemented by the GSL library require Hessian evaluation.

As can be seen from the discussion above, calculating gradients is quite complex for

this model. Calculating Hessians is even more complex. Therefore, we restricted our
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optimization methods to algorithms that do not require Hessians explicitly.

Parameter Base Cases The multi-path parameterization branches are started with

the column vectors P0 = (1, 0, · · · , 0), P ′0 = (0, 0, · · · , 0), and E(pool)

[
l
(tr)
0

]
= 0 =

∂
∂γν
E(pool)

[
l
(tr)
0

]
for all tr and ν, where P0 and P

′
0 are column vectors.



Chapter 4

Error Analysis

Recall from Chapter 3, that recursion relationship (3.17) requires the computation of the

following lower triangular matrix Ai, with entries

[Ai]r,m = P (l
(pool),K−m
(i−1,i] = r −m) = c

ˆ ∞
−∞

h(x)φ(x)dx, (4.1)

for r = 0, 1, · · · , K and m = 0, 1, · · · , r, where

c =

 K −m

r −m

 , (4.2)

h(x) = pi(x)r−m (1− pi(x))K−r , (4.3)

pi(x) = Φ

(
Φ−1 (αi)− βix√

1− β2
i

)
. (4.4)

We proved in Chapter 3 that the computation of Ai is de�ned for all αi, βi ∈ [0, 1] and all

r = 0, 1, · · · , K and m = 0, 1, · · · , r. We derived the analytic expressions corresponding

to (4.1) for αi, βi = 0, 1. Also recall that the r-th entry of the column vector Pi ∈ RK+1

from Chapter 3 is given by P
(
l
(pool)
i = r

)
.

Recall that the recursion relationship (2.29), restated as (3.17) in Chapter 3, can be

written succinctly as

Pi = AiPi−1 (4.5)

57
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using matrix-vector multiplication. However, because integrals (4.1) are intractable an-

alytically, we must approximate them numerically, using some quadrature rule (possible

quadrature rules were presented in Section 2.6). Let Âi denote the numerical approx-

imation to Ai using some quadrature rule, and let P̂i denote the resultant numerical

approximation to the pool loss probability vector, given by

P̂i = ÂiP̂i−1, (4.6)

which demonstrates that the numerical approximation error in Âi propagates into the

pool loss probability vector P̂i.

In this chapter, we determine an integration strategy for Âi, which guarantees that

the error in the pool loss probability vector Pi satis�es∥∥∥P̂i − Pi∥∥∥
1
≤ tol (4.7)

for all i = 1, 2, · · · , nTmax , where Tmax is the maximum maturity of the CDO contract1, for

some tolerance parameter tol. We determine the error ε = ε(tol) due to the quadrature

rule approximation in
[
Âi

]
r,m

as a function of the tolerance parameter tol, which guaran-

tees (4.7). Let Q (χ(x); [a, b]) denote the quadrature rule approximation of the integral of

a function χ(x) over some interval [a, b], and let I (χ(x); [a, b]) denote the exact integral

of χ(x) over [a, b]. Precisely, we prove that if either relationship

|I (c · h(x)φ(x); (−∞,∞))−Q (c · h(x)φ(x); (−∞,∞))| ≤ ε (4.8)

holds for an open quadrature rule or relationships

|I (c · h(x)φ(x); (−∞, a))| ≤ d1 · ε

|I (c · h(x)φ(x); [a, b])−Q (c · h(x)φ(x); [a, b])| ≤ d2 · ε

|I (c · h(x)φ(x); [b,∞))| ≤ d3 · ε (4.9)

1Usually the longest life span of a CDO contract is Tmax = 10 years, which is equivalent to nTmax = 40
quarterly payments.
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hold for some constants dj ∈ [0, 1], j = 1, 2, 3 and
∑3

j=1 dj = 12, for a closed quadrature

rule on [a, b], then (4.7) is automatically satis�ed for all i = 1, 2, · · · , nTmax .

We derive this relationship between ε and tol in Subsection 4.1. We also determine

the interval of integration [a, b] for a closed quadrature rule. Recall that the derivatives of

the probability vector Pi with respect to βι were denoted by P ′i in Subsection 3.2.3. We

have attempted to determine a similar relationship between the quadrature error εβi in

the quadrature approximation to ∂βi [Ai]r,m, which guarantees that the error in numerical

approximation P̂ ′i to P
′
i satis�es

∥∥∥P ′i − P̂ ′i∥∥∥
1
≤ tol. Unfortunately, the theoretical error

bounds computed in all our attempts were too pessimistic, and did not result in a practical

value of εβi .

In Section 4.2 we describe which quadrature routines can be used in practice to

compute Âi and we justify our choice of the Gauss-Legendre quadrature rule on [a, b].

Routines which guarantee the error bounds in (4.8) or (4.9) are very slow in practice,

and we cannot guarantee these bounds if we want to use a faster quadrature routine.

However, we develop an error control heuristic, which makes it very unlikely for (4.7) to

not hold in practice. We also suggest an integration strategy to approximate pool loss

probability derivative vectors P ′i , and demonstrate with numerical results that our error

control heuristic is very likely to produce errors which are a few orders of magnitude

smaller than required.

As a side note, we have attempted a number of changes of variables in (4.1) to undo

the step function behavior of pi(x) in the limit as βi → 1−, but this did not result in

any usable bounds on the errors of quadrature approximations, and we were unable to

reduce the number of quadrature points needed to satisfy the requirements of our error

control heuristic.

2A natural choice is d1 = d3 = 1/4 and d2 = 1/2.
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4.1 Pool Loss Probability Error

In this section, we derive the aforementioned error control strategy for the recursion

relationship (4.5), which guarantees that (4.7) is satis�ed, as long as either (4.8) or (4.9)

is satis�ed for an appropriately chosen ε.

De�ne εi to be the maximum absolute error in integral approximations (4.8) or (4.9)

at time ti for all r = 0, 1, · · · , K and all m = 0, 1, · · · , r and let δi be the maximum

absolute error of the column sums of the matrix Âi at time ti (εi, δi ∈ R+). Notice that

while βi is held constant during each period, αi changes in value at every time step ti.

We can further bound the quadrature error by letting

ε = max
i∈{1,2,··· ,nTmax}

εi, (4.10)

where Tmax is the longest maturity of a CDO that we are using in the calibration; we

could have a single branch which spans the entire time frame, i.e. 10 years with quarterly

payments create 40 quadrature locations.

We can also bound

δi ≤ (K + 1)εi ≤ (K + 1)ε, (4.11)

which accounts for making maximum error in the same direction every time. So the error

bound becomes∥∥∥Pi+1 − P̂i+1

∥∥∥
1

=
∥∥∥Ai+1Pi − Âi+1P̂i

∥∥∥
1

=
∥∥∥Ai+1Pi − Âi+1Pi + Âi+1Pi − Âi+1P̂i

∥∥∥
1

≤
∥∥∥Ai+1 − Âi+1

∥∥∥
1
‖Pi‖1 +

∥∥∥Âi+1

∥∥∥
1

∥∥∥Pi − P̂i∥∥∥
1
≤ δi+1 + (1 + δi+1)

∥∥∥Pi − P̂i∥∥∥
1
. (4.12)

Let us further denote Y = (K + 1)ε and then the error bound above becomes∥∥∥Pi+1 − P̂i+1

∥∥∥
1
≤ Y + (1 + Y )

∥∥∥Pi − P̂i∥∥∥
1
. (4.13)

The initial error is
∥∥∥P0 − P̂0

∥∥∥
1

= 0, because we know the pool loss probability vector

exactly at time t0. This together with (4.13) implies that∥∥∥PnTmax
− P̂nTmax

∥∥∥
1
≤ Y

nTmax−1∑
j=0

[
(1 + Y )j

]
= (1 + Y )nTmax − 1. (4.14)
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We can use (4.14) to �nd ε, the bound on the errors in the integral approximations

Q (c · h(x)φ(x); (−∞,∞)) orQ (c · h(x)φ(x); [a, b]) that will ensure that
∥∥∥PnTmax

− P̂nTmax

∥∥∥
1
≤

tol, for some appropriate tolerance tol. For example, for tol = 10−8, K = 125 and

nTmax = 40, a simple calculation shows that ε ≤ 2 · 10−12 su�ces.

For quadrature rules on a �nite interval [a, b], we can bound the errors due to interval

truncation for all r = 0, 1, · · · , K and m = 0, 1, · · · , r by∣∣∣∣c ˆ a

−∞
h(x)φ(x)dx

∣∣∣∣ ≤ cmax
1√
2π

ˆ a

−∞
exp

(
−x2/2

)
dx ≤ ε/4 (4.15)∣∣∣∣c ˆ ∞

b

h(x)φ(x)dx

∣∣∣∣ ≤ cmax
1√
2π

ˆ ∞
b

exp
(
−x2/2

)
dx ≤ ε/4, (4.16)

where

cmax =

 K

bK/2c

 , (4.17)

for a natural choice of d1 = d3 = 1/4 and d2 = 1/2 in (4.9). For this choice of dj,

j = 1, 2, 3, notice that because the function exp (−x2/2) is symmetric about the origin,

we can set a = −b. The value of a which satis�es (4.15) is given by

a ≤ Φ−1

(
4

ε · cmax

)
, (4.18)

where Φ−1 denotes the inverse of the standard normal Cumulative Density Function

(CDF). For the aforementioned computation of ε ≤ 2 · 10−12, we determine that a ≤

−13.099507 by solving (4.18).

Hence, we have determined that if we can guarantee (4.8) for an open quadrature rule,

then for the entire duration of the CDO contract, (4.7) holds. We found the intervals of

integration for (4.9) for a natural choice of error constants dj, j = 1, 2, 3, and if we can

guarantee that on this pre-determined interval of integration [a, b], relationship

|I (c · h(x)φ(x); [a, b])−Q (c · h(x)φ(x); [a, b])| ≤ ε/2 (4.19)

holds for some closed quadrature rule Q, then (4.7) also holds. The next subsection

addresses the practicality of these theoretical results.
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4.2 Error Control Strategy

Quadrature routines which guarantee (4.8) or (4.19) are too slow for our applications. To

be as e�cient as possible, we would like to use a pre-generated set of quadrature nodes

xj and weights wj (for closed interval quadrature rules, the interval of integration [a, b]

is pre-determined from Section 4.1). We were unable to compute analytic error bounds,

developed for such quadrature rules, because we were unable to determine closed form

error equations for the integrand h(x) (4.3) for more than a few quadrature nodes. Instead

of guaranteeing (4.8) or (4.19), we develop an error control heuristic in this section which

in practice results in very small errors in the pool loss probability vector Pi, because the

error analysis derivation placed very pessimistic error bounds in (4.12).

Notice that the bound (4.18) does not depend on time ti. In an attempt to satisfy

(4.14), we can check that ∣∣∣∣∣
K∑
j=0

[
Âi

]
j,m
− 1

∣∣∣∣∣ ≤ (K + 1)ε, (4.20)

after computing each column m = 0, 1, · · · , K in the matrix Âi. If the bound (4.20) is

satis�ed, we move to the next column, otherwise we double the number of quadrature

nodes and weights in a particular quadrature rule, and repeat the computation.

This error control heuristic does not guarantee (4.14), because∣∣∣∣∣
K∑
j=0

[
Âi

]
j,m
− 1

∣∣∣∣∣ ≤ ∥∥∥Âi − Ai∥∥∥
1
,∣∣∣∣∣

K∑
j=0

[
Âi

]
j,m

∣∣∣∣∣ ≤ ∥∥∥Âi∥∥∥
1
, (4.21)

and the error bounds (4.12) do not necessarily hold. However, the above inequalities

(4.21) are unlikely to be very di�erent in practice, since the entries of Âi are all pos-

itive (for our later choice of the quadrature rule, all weights are positive), and we are

integrating a positive function h(x). Also, the bounds developed from (4.12) are highly

pessimistic, and we suggest, using the numerical results discussed at the end of this
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subsection, that the error in practice in (4.7) is a few orders of magnitude less than tol.

Recall from Chapter 3 that the derivative of the integral (4.1) with respect to βi,

∂βiP (l
(pool),K−m
(i−1,i] = r −m) is given by (3.50), using the integrand

hβi(x) = exp

−1

2

(
Φ−1(αi)− βix√

1− β2
i

)2
× [βiΦ−1(αi)− x√

1− β2
i

3

]

×
[
(r −m) pi(x)r−m−1 (1− pi(x))K−r − (K − r) (1− pi(x))K−r−1 pi(x)r−m

]
. (4.22)

As mentioned previously, we used a similar error bound strategy to (4.12) in our attempts

to determine an εβi , which guarantees that∥∥∥P̂ ′i − P ′i∥∥∥
1
≤ tol (4.23)

is satis�ed for any i = 1, 2, · · · , nTmax . Our attempts did not result in a practical value of

εβi , because of extremely pessimistic error bounds in this case. We were unable to form

tighter error bounds. However, notice that (4.22) contains two decaying exponential

terms and one polynomial term. The same standard normal probability density term

exp(−x2/2) which decays the integrand h(x) (4.3) when |x| is large, also decays hβi(x).

These similarities between h(x) and hβi(x) suggest that it is likely that both integrands

require about the same number of quadrature points (and for closed interval quadrature

rules, on the same interval [a, b]). Now recall from Section 3.1, that the βi's follow various

scenario paths. For each time ti and each scenario value of βi, after we �nish integrating

all entries of Ai for some i, we can re-use the same number of quadrature points for the

computation of A′i (3.50), as dictated by (4.20).

We must now consider quadrature rules and routines for the computation of Âi and

Â′i. For a single scenario of βi's, the CDO contract usually has up to 40 quarterly

payments. Matrix Ai has (K + 1)(K + 2)/2 elements. So, for K = 125, we must

compute the integral (4.1) 320040 times for just a single scenario of βi's
3. In addition

we must compute the same number of integral derivatives (3.50), not to mention other

3There are at least 2 scenarios in our multi-path parameterization.
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derivative data structures from Subsection 3.2.3. Hence our quadrature routine must

use as few quadrature points as possible to guarantee (4.20) and it must be as fast as

possible. Our preliminary numerical tests showed that adaptive integration on (−∞,∞)

is too expensive, and this would make the computation of Ai too ine�cient. Adaptive

integration of this kind, and Gauss-Laguerre on [0,∞), map the interval of integration to

(0, 1] and those maps usually result in singularities at 0, which are then dampened [16].

Gauss-Hermite quadrature suits the integrand h(x) (4.3) best and requires fewer nodes

and weights, because of the Gaussian probability density term. However, we run into the

problem of generating a su�cient number of nodes and weights: the algorithm given in

[15] is poorly conditioned for more than 100 nodes and an alternative algorithm provided

by [30] su�ers the curse of dimensionality, as an internal data structure does not allow us

to generate a signi�cant number of quadrature points [31]. It could happen that the error

control heuristic (4.20) requires a high number of quadrature nodes. This is not likely in

practice, however, and one could use Gauss-Hermite quadrature for this problem.

We compared Gauss-Chebyshev and Gauss-Legendre rules and determined that the

latter rule produces the same quadrature error in (4.20) with a fewer number of nodes.

Hence, we decided to use Gauss-Legendre as our quadrature rule, however as mentioned

previously, other quadrature rules and routines can also be used.

We now demonstrate that when the error heuristic (4.20) is being used together with

our error control strategy for derivatives,

max
i=1,2,··· ,nTmax

∣∣∣∣∣
K∑
j=0

[
P̂i

]
j
− 1

∣∣∣∣∣ ≤ tol and max
i=1,2,··· ,nTmax

∣∣∣∣∣
K∑
j=0

[
P̂ ′i

]
j

∣∣∣∣∣ ≤ tol, (4.24)

for a realistic choice of αi's and for multiple values of β, where each βi = β for all

i = 1, 2, · · · , nTmax . This suggests that it is very likely that both (4.14) and (4.23) are

satis�ed in practice. Table 4.1 on page 66 quotes values of (4.24) for various values of β,

using αi's from the �rst day of the CDX NA IG S8 data set, which is described later in

Section 6.1 and is ultimately used for MSCM calibration in Chapter 6. Other values of

αi's produce similar results, so we only quoted the results for one particular setting of
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αi's. We can see that elements of P̂i add up to a value very close to 1 and elements of

derivative vector P̂ ′i sum to a value even closer to 0. Values of P̂ ′i accumulate a negligible

error for βi = 1−10−5. We veri�ed that elements of P̂ ′i sum to 0 for all values of βi in the

neighborhood of βi = 1− 10−5 with the same magnitude of error on the order of 10−12.
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β maxi=1,2,··· ,nTmax

∣∣∣∣∑K
j=0

[
P̂i

]
j
− 1

∣∣∣∣ maxi=1,2,··· ,nTmax

∣∣∣∣∑K
j=0

[
P̂ ′i

]
j

∣∣∣∣
10−16 1.8540724511e− 14 8.2205037147e− 17

10−15 1.8207657604e− 14 1.9036418513e− 16

10−10 3.1752378504e− 14 6.5829436586e− 16

10−7 3.3084646134e− 14 2.9336517232e− 16

10−5 1.7319479184e− 14 2.2885867635e− 16

10−2 2.0095036746e− 14 2.3135653416e− 16

0.1 1.2212453271e− 14 5.8443449842e− 16

0.2 2.5535129566e− 14 1.0496920693e− 15

0.3 2.9976021665e− 14 6.8283821508e− 16

0.4 2.3425705820e− 14 1.6223643494e− 15

0.5 2.1316282073e− 14 2.3904273990e− 15

0.6 1.2878587086e− 14 1.6555792431e− 15

0.7 2.4868995752e− 14 2.9262500168e− 15

0.8 9.4368957093e− 15 2.8840184364e− 15

0.9 3.0642155480e− 14 1.2623582735e− 14

1− 10−2 1.0880185641e− 14 4.8572257327e− 14

1− 10−5 1.3544720900e− 14 4.7617681316e− 12

1− 10−7 1.3322676296e− 14 1.5407439555e− 31

1− 10−10 1.3322676296e− 14 0

1− 10−15 1.3322676296e− 14 0

1− 10−16 1.3322676296e− 14 0

Table 4.1: Errors de�ned by (4.24) for the default probabilities αi from the �rst day of

the CDX NA IG S8 data set, discussed in Chapter 6, for various settings of the copula

correlation parameters βi = β for all i = 1, 2, · · · , nTmax .
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Code Implementation

Calibrating the Multi-period Single-factor Copula Model (MSCM) is very computation-

ally demanding. The goal is to be able to solve the optimization problem (3.4) in an

e�cient manner using some optimization algorithm from Section 2.8. As outlined in

Subsection 3.2.1, the MSCM calibration process possesses many stages which can be

computed in parallel, thus improving the e�ciency of evaluation of the objective function

(2.52) and its �rst-order derivatives, described in Section 3.2. In addition, the MSCM

calibration process has many complicated data structures, which have to be handled

e�ciently.

We implement the MSCM calibration process in C++, using Boost [26] libraries

for data structures, GNU Scienti�c Library (GSL) [16] for optimization routines and

OpenMP [27] for parallelization. Matlab was used to generate plots and to parse CDO

data sets (originally available in Microsoft Excel) into text �les, from which the model

loads the data. Thread safety was guaranteed using Valgrind's thread checker Helgrind.

67
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5.1 Lazy Computation With Boost C++ Libraries For

Vectorized Quadrature

The most expensive procedure in the MSCM calibration process is the initialization of

the lower triangular matrices Ai (2.43) and A
′
i (3.50). Therefore, the computation of Ai

and A′i has to be e�cient. For example, the quadrature rule Q in Chapter 4 requires the

computation of a sum of a product of weights and function values at quadrature nodes.

This must be done (K + 1)(K + 2)/2 = 8001 times for K = 125 for each Ai or A
′
i.

Instead of looping over nodes and weights, we can use a function object, also known

as a functor [32], which performs like a function when called on an object. For example,

a matrix can be stored as a contingent array in memory, or we can create an object which

behaves like an array of dimension 2, but has the added advantage of memory manage-

ment during compilation [26]. The compiler can then selectively manage memory as it

becomes needed, hence the term �lazy computation�. Then we can de�ne, for example,

a multiplication functor: another object which multiplies two matrix objects. There is

also an added bene�t of code readability.

Consider a Gauss-Legendre quadrature weight vector ~w ∈ RnGL and a vector of nodes

~x ∈ RnGL for some nGL ∈ Z+. Recall from Section 2.6 that we can perform Gauss-

Legendre quadrature on an arbitrary interval [a, b] for some function χ(x)1 using

ˆ b

a

χ(x)dx ≈ b− a
2

nGL∑
j=1

wj · χ
(
b− a

2
xj +

a+ b

2

)
, (5.1)

where wj is the Gauss-Legendre quadrature weight for the interval [a, b]. Algorithms 6

and 7 demonstrate two ways of performing quadrature (5.1) in C++. We believe that the

implementation with Boost is more readable. The performance depends on the compiler,

1For example, in (4.1) we set χ(x) = c · h(x)φ(x), where c =

(
K −m
r −m

)
, h(x) =

pi(x)r−m (1− pi(x))
K−r

, pi(x) = Φ
((

Φ−1 (αi)− βix
)
/
√

1− β2
i

)
and φ(x) is the standard normal prob-

ability density.
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Algorithm 6 C++ implementation of a quadrature sum using GSL.

const unsigned n_GL = 64; // number of Gauss-Legendre points

gsl_vector *x = gsl_vector_alloc(n_GL); // allocate vector memory

gsl_vector *w = gsl_vector_alloc(n_GL); // allocate vector memory

double s = 0; // sum accumulator

// Initialize vectors with Gauss-Legendre nodes and weights on [a,b]

init_GL(x,w); // nodes and weights are scaled for [a,b] in init_GL

// Perform quadrature

for (unsigned j = 0; j < n_GL; ++j)

s += gsl_vector_get(w, j)*chi(gsl_vector_get(x,j));

gsl_vector_free(x); // free vector memory

gsl_vector_free(w); // free vector memory

compiler optimization �ags, operating system and the actual hardware used.

5.2 OpenMP Parallel Implementation

The C++ implementation of the MSCM calibration process has several parallel regions,

as well as nested parallel regions. In practice, some of these regions need to be disabled,

because the overhead in thread creation nulli�es the performance gain. There is also an

added aspect of thread safety when using an omp_set_nested() library call. There are

also three di�erent thread schedulers available in OpenMP 3.0 [27].

The following is a description of each region, which can be computed in parallel.

In practice, too many parallel regions increase the execution time, due to the overhead

in thread creation, coordination and termination. In practice, to improve the e�ect of

parallelization, we need to disable some of the following parallel regions:

1. Parallel integration of matrices Âi (2.43) for each multi-path branch, i.e. paral-
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Algorithm 7 C++ implementation of a quadrature sum using Boost.
using namespace boost::numeric::ublas;

const unsigned n_GL = 64; // number of Gauss-Legendre points

vector<double> x(n_GL), w(n_GL); // invoke vector object constructors

double s = 0; // sum accumulator

// Initialize vectors with Gauss-Legendre nodes and weights on [a,b]

init_GL(x,w); // nodes and weights are scaled for [a,b] in init_GL

// Perform quadrature

s = prec_inner_prod(w, apply_to_all<functor::chi<double> > (x));

// garbage collection is handled automatically by each vector object,

// so no need to remember to deallocate memory with Boost

lelization of multi-path branches.

2. Computation of entries of Âi and optionally Â′i. Rows of Âi for each column and

then elements of Â′i can be computed in parallel.

3. If the �rst period has ν paths in the multi-path parameterization, then we can

create ν parallel processes for the computation of E(pool)

[
L

(tr)
i

]
(2.16).

4. We can recursively nest the paths from the previous step for subsequent periods.

For example, if there are µ multi-path periods with ν branches per period, then

the last period will have νµ−1 paths computing E(pool)

[
L

(tr)
i

]
(2.16) in parallel.

5. We can compute the nested error function loops in the unconstrained objective

function F (~u) (3.5) in parallel.

6. Similarly to the previous item, we can compute entries of the Levenberg Marquardt

vector ~E from Paragraph 2.8.2.2 in parallel.

7. Similarly to item 5 we can compute derivatives of the unconstrained objective
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function F (~u) (3.5) by parallelizing the nested loops in (3.1).

8. We can compute the gradient and the Jacobian of the unconstrained objective

function F (~u) (3.5) in parallel.

In practice, only items 2, 5, 6, 7 and 8 need to be enabled. The adjustment of the

above model performance parameters and all numerical results have been performed on

a system with two Intel Xeon E5355 quad core CPUs (maximum of eight parallel threads)

with 4MB of CPU cache per CPU. Figure 5.1 on the following page depicts the speedup

factor when performing the computation of the objective function and its derivatives for

all 6 model parameterizations, described later in detail in Section 6.2. These are average

speedup factors when computing the objective function and its derivatives for the �rst

day of each of the four data sets used in Chapter 6 with the MSCM parameterizations,

which are later used in the numerical results in Chapter 6.

The overhead in thread creation is evident in Figure 5.1 on the next page. For ex-

ample, the parameterization with a single period spanning 10 years with 4 paths per

period parallelizes best when executed with 4 parallel threads. However, the speedup

factor decreases when the same parameterization is executed with 5 parallel threads.

This is because the OpenMP scheduler attempts to schedule 4 parallel processes over 5

threads, and time is lost in copying the data between processes. In general, if the pro-

gram has an even number of parallel regions, then executing them over an odd number

of threads decreases performance. Figure 5.1 on the following page shows that di�erent

parallelizations require a di�erent minimum number of parallel threads. For example,

a parameterization with a single period spanning 10 years with only 2 paths per pe-

riod requires only 2 parallel threads. However, all parameterizations parallelize well on

average when presented with the maximum number of parallel threads, and this is the

implementation that we've used in the numerical results, presented in the next chapter.

When checking the parallel implementation with Valgrind's thread safety detector

Helgrind, thread safety using omp_set_nested() was not guaranteed, and any nesting
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Figure 5.1: Speeedup factors when computing the objective function F (~u) (3.5) and its

gradient with respect to the unconstrained parameters in ~u. The six di�erent model

parameterizations are described in Section 6.2. The number of parameters which each

parameterization set is given in brackets. For example, ~u contains 4 elements for the 2

period 2 paths per period multi-path parameterization.

had to be disabled. Also, by trial and error, we found that the fastest scheduler is static

and runtimes improved slightly after disabling the omp_set_dynamic() library call.

5.2.1 Pricing In Parallel

As mentioned in Subsection 3.2.1, we can integrate matricesAi andA
′
i for i = 1, 2, · · · , nTmax

in parallel. We need to price the model without recomputing values of P (l
(pool)
i = r) and

E(pool)

[
l
(tr)
i

]
; when computing the derivatives of the objective function (2.52) we need to

do the same for ∂γνP (l
(pool)
i = r) and ∂γνE(pool)

[
l
(tr)
i

]
. This task is further complicated by
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parallelization, i.e. race conditions have to be avoided in parallel data structures. These

problems can be solved by recursively generating the pricing scenarios and reusing com-

puted values of P
(
l
(pool)
i = r

)
and E(pool)

[
l
(tr)
i

]
. These values would be re-used during

the computation of the expected spread E~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
(2.37) when computing model

quotes (the same E(pool)

[
l
(tr)
i

]
are needed when computing spread quotes s

(tr)
nT (2.9), for

example, the spread quotes for any tranche with maturities of 5 and 7 years use the same

E(pool)

[
l
(tr)
i

]
for i = 1, 2, · · · , 20 with quarterly payments). When computing derivatives,

we can similarly store and re-use ∂γνP
(
l
(pool)
i = r

)
and ∂γνE(pool)

[
l
(tr)
i

]
when computing

∂γνE~ρ

[
s

(tr)
nT (~β, ~α)|~γ

]
.

5.3 Correctness During Development

We also have to make sure that the MSCM calibration process produces valid results.

Below is a list of things that we check when testing the validity of the results:

�

∣∣∣∥∥∥P̂i∥∥∥
1
− 1
∣∣∣ ≤ tol for each setting of βi after the computation;

� E
[
l
(tr)
i−1

]
≤ E

[
l
(tr)
i

]
, but to accommodate numerical errors we actually check Ê

[
l
(tr)
i−1

]
−

Ê
[
l
(tr)
i

]
≤ tol for each scenario of βi;

� gradient and Jacobian entries are checked for certain test values of ~ψ with a separate

routine using forward �nite di�erencing2 to produce a relative error of ≈ 10−7.

2For some settings of γj , the forward �nite di�erence approximation would be very di�erent to the
analytic answer. For example, for a parameterization using a single period with two paths, γ1 = 1

2 = ρ1
would produce βi = 1/2 with probability ρi = 1/2 in both paths. We know that the derivative is zero

(local minimum), but numerically
∑

tr

∑
T ∂γjerror(E~ρ

[
s
(tr)
nT (~β, ~α)|~γ

]
,m

(tr)
T ) ≈ 40 6= 0, for a forward step

size of 10−3 due to the accumulation of numerical errors introduced by the �nite di�erence approximation.
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5.4 Error Control

We employ the quadrature error control heuristic (4.20) and quadrature strategy from

Subsection 4.2. We also check that

∣∣∣∣1−∑K
j=0

[
P̂i

]
j

∣∣∣∣ ≤ tol and

∣∣∣∣∑K
j=0

[
P̂ ′i

]
j

∣∣∣∣ ≤ tol after

each integration time step.



Chapter 6

Numerical Results

We present the Multi-period Single-factor Copula Model (MSCM) calibration results in

this chapter. Speci�cally, we calibrate the model on the �rst day of the four data sets,

described in Section 6.1 with di�erent parameterizations, presented in Section 6.2, using

a variety of unconstrained optimization algorithms, previously described in Section 2.8.

We determine that on average, the most robust and e�cient derivative-free unconstrained

optimization algorithm is NEWUOA (presented in Subsubsection 2.8.1.2), and the most

robust and e�cient derivative-based unconstrained optimization algorithm is BFGS2

(presented in Paragraph 2.8.2.3). We then present and discuss calibration results and

runtimes for daily data for each of the four aforementioned data sets, for the periods

before, during and after the September 2008 stock market crash. We also justify our

choice of the relative Soft Error Function (SEF) (2.61) in the unconstrained objective

function F (~u) (3.5).

75
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6.1 Data Sets Used For Calibration

CDO and CDS quotes were obtained from the Reuters Thomson data stream1, which

provides active trading data as long as part of the CDO data is still needed by either

investors or sellers. The data stream does not provide historical prices; only most recent

CDO data is available, although as of July 2010 some data sets extend back in time as

far as December 2008. CDX NA IG series 8 (S8) data set was previously acquired by Dr.

Wanhe Zhang from the same data stream, but was no longer available from the Reuters

Thomson data stream in July 2010.

The credit crunch in July 2007 and the crash of September 2008 disrupted data

available for calibration in a severe way. Figure A.4 shows the CDX NA IG S8 data set,

available from March 2007 until December 2008 and partitioned into three time frames

across the rows of the �gure. Plots on the left show raw CDS quotes with maturities at

3, 5, 7 and 10 years, and plots on the right show the bootstrapped default probabilities.

We can see that the CDS quotes change drastically and this a�ects the shape of default

probabilities: as time progresses, default probabilities become linear with respect to time,

loosing their convex shape, and are no longer monotonically increasing with respect to

time.

Figure A.5 shows the CDX NA IG S10 & S11 and CMA ITRAXX EU S10 data

sets, which were available after the crash of 2008; only CDS data which resulted in

monotonically increasing default probabilities was plotted. For the �rst two data sets,

the default probabilities are concave in shape, while the third (European) data set has

almost linear default probabilities (just at the point of changing convexity).

Convex default probabilities indicate that we expect more defaults to happen at a

1 University of Toronto Rotman School of Business provides free access to students to otherwise
proprietary CDO market quotes. Reuters Thomson data stream supplies the same quotes as Bloomberg,
but also has the added functionality of collectively pooling multiple tickers across large time ranges into
a Microsoft Excel spreadsheet; the Bloomberg system only provides individual quotes for a single ticker
on a speci�c date.
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later date, because currently the economy/market is stable. Concave shapes indicate the

opposite, that we are expecting the defaults to happen sooner rather than later, so it

is not unreasonable for the concavity to change after the crash of 2008, due to market

instability.

We should also mention that the data available from the Thomson Reuters data

stream had many missing values, and that the raw data had to be severely reduced

until we could �nd contingent segments without missing data across all tranches and

all maturities. Table A.1 provides the summary of each data set obtained; there were

no other usable CDO series in the Reuters Thomson data stream at the time of data

collection.

6.2 Calibration Results

First, we consider which optimization algorithms from Section 2.8 suit the optimization

problem (3.4), restated for convenience below:

min
~u∈Rnψ

F (~u). (6.1)

We explore the following MSCM parameterizations2:

1. three periods between 5, 7 and 10 years, with two possible paths per period (6

parameters);

2. single period over 10 years, with four possible paths (6 parameters);

3. single period over 10 years, with two possible paths (2 parameters);

4. two periods between 5 and 10 years, with three possible paths per period (8 pa-

rameters);

2We are restricted in the range of multi-path parameterizations that we can explore, because the
lowest number of CDO quotes per data set is 12
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5. four periods between 2.5, 5, 7.5 and 10 years, with two possible paths per period

(8 parameters);

6. two periods between 5 and 10 years, with two possible paths per period (4 param-

eters).

For the �rst day of each data set, we pick one of the above MSCM parameterizations and

plot the unconstrained objective function F (~u) values versus runtime for each optimiza-

tion algorithm from Section 2.8. The unconstrained objective function uses a relative

Soft Error Function (SEF) (2.61) with δ = 0.5 and ε = 10−4. All algorithms were exe-

cuted with the same starting guess of ~ψ = (−1,−1, · · · ,−1)3. Derivative-free methods

were executed for 500 iterations4 and derivative-based algorithms were executed for 40

iterations, unless the algorithms converged before the number of iterations was exceeded.

Figures A.6 to A.29 on pages 102�125 show these results. We can conclude that on

average the most robust and e�cient derivative-free algorithm is NEWUOA. The most

robust and e�cient derivative-based algorithm is BFGS2.

It was di�cult to specify convergence criteria for each algorithm, as these di�er with

each day of the data set and for each MSCM parameterization: most of the time the

algorithms either don't realize that they've converged to the local minimum, or they

terminate prematurely. Also, it is di�cult for the algorithms to avoid local minima:

sometimes di�erent algorithms �nd di�erent local minima. The objective function is not

necessarily convex, as seen in the argument given in Footnote 2 on page 73: a certain

setting of parameters can produce a zero gradient, but this would not necessarily produce

quotes which match the market data. Numerical results shows that it is also highly

unlikely for the derivative-based method to encounter a value of βi = 1, as discussed in

3To provide a starting guess, we need to calibrate at least a single-period single-factor copula model,
which is signi�cantly more expensive than a single step of any optimization algorithm, the latter resulting
in a good starting guess.

4A single iteration can perform more than one function evaluation. The number of function evalua-
tions per iteration is algorithm-speci�c, so the runtimes vary slightly between di�erent algorithms.
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Subsection 3.2.3. Multiple paths per period result in longer calibration times, and make

MSCM less parsimonious, but do not considerably reduce the objective function (2.52).

On the other hand, addition of periods signi�cantly decreases the objective function, but

also makes the parameterization less parsimonious.

6.2.1 Daily Calibration Results

We pick the parameterization with two periods between 5 and 10 years, with two paths

per period (4 parameters, referred to for brevity as the two-period two-path parame-

terization), and calibrate MSCM on daily data using both NEWUOA (limited to 500

iterations) and BFGS2 (limited to 40 iterations) optimization algorithms, with the afore-

mentioned relative SEF in F (~u). These results are presented in Figure 6.1 and Figure 6.2.

To demonstrate the dynamics of MSCM, we also calibrate the four period parameteri-

zation of MSCM with two paths per period every 2.5 years (8 parameters, referred to

for brevity as the four-period two-path parameterization) on daily data with a BFGS2

algorithm, this time limited to 120 iterations. These daily results are presented in Fig-

ure 6.3. Average runtimes are presented in Tables 6.1, 6.2 and 6.3. For reference, we

also include the the same daily calibration results for the industry-standard single-period

single-factor copula model [1], referred to as the Hull Copula in Figure 6.4.

We want to place the objective function values of all four CDO data sets on the same

plot, and because data sets all have a di�erent number of CDO quotes, the value of F (~u)

would be higher in data sets with a higher number of CDO quotes. Therefore, we plot

F (~u) per number of data points in all daily calibration result �gures.

We should also note that we chose the two-period two-path and four-period two-

path parameterizations because they are the most intuitive to understand. Normally, we

would choose the parameterization based on some market insight. For example, if we

are expecting a volatile market between 2.5 to 5 years, then we would place more paths

between 2.5 and 5 years. In the industry, we would pick a di�erent parameterization for
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each day based on market insight.

We can see that for the two-period two-path parameterization, NEWUOA has more

variability in the objective function values compared to the BFGS2, and the algorithm

never converged and was terminated after 500 iterations5. On many days, NEWUOA

produces similar objective function values to BFGS2 algorithm. The BFGS2 algorithm

has less variability in the objective function values and detects convergence for some days.

As hypothesized in Subsection 3.2.3, it is also very unlikely to encounter the value βi = 1,

and we have an e�cient (see Table 6.2 for runtimes) and robust NEWUOA algorithm

should the value of βi = 1 occur in practice.

From all four daily calibration result �gures, we can see that the credit crunch of July

2007 a�ected the CDX NA IG S8 data set. Just before the crash in September 2008,

the data is unusable due to monotonically decreasing default probabilities (a gap in the

data). Right before the crash of 2008, the CDO quotes tend to stay the same over time.

Calibrating on CDO data after the crash shows that the model is no longer applicable,

however later in 2009 the quotes start to return to pre-crash status and this results in

lower error function values.

Calibrated parameter values and CDO quotes produced by MSCM for the two-period

two-path parameterization are given in Tables A.2 to A.7 on pages 128�133 for the �rst

day of each data set6. We see that only calibration with CDX NA IG S8 data set

produced meaningful copula correlation parameter values. While the MSCM matched

the CDO quotes of all CDO data sets reasonably well, for some reason data sets apart

from CDX NA IG S8, sometimes produce low copula correlations with low probabilities,

and high copula correlations with high probabilities. This observation is explained in

the next chapter, by comparing the single-period single-factor copula from [1] to the

seemingly equivalent multi-period single-factor copula parameterization (single path with

5Due to time constraints, we had to limit NEWUOA daily runs at 500 iterations per day. In practice,
we need more than 500 iterations to reduce the variability in objective function values in Figure 6.2.

6General description of all calibration result tables is provided at the beginning of Section A.3.
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probability 1).

High objective function values for CDX NA IG S10 and S11 data sets could be due

to:

� default probabilities αi (2.17) not accurately representing a volatile market;

� CDO quotes are provided for a di�erent set of pricing equations;

� CDO quotes were adjusted due to some business contract (usual market assump-

tions are not applicable).

Zhang [8] mentions that his MSCM parameterization is not extremely parsimonious,

whereas in our case the model uses 4 parameters only and still matches the market quotes

reasonably well; Zhang's parameterization used 7 parameters. CDO data sets used in

Table A.1 have 12-63 CDO quotes to match, so the two-period two-path parameterization

is very parsimonious in practice.

The CMA ITRAXX EU S10 data set was also �tted reasonably well, with small

objective function variability. We think that this is because the stock market crash of

September 2008 had not yet had a big e�ect on the European market at the time.

6.2.2 Increasing Model Flexibility

Notice that we can decrease the error per number of data points by increasing the number

of MSCM parameters, as demonstrated with the four-period two-path parameterization

in Figure 6.3. Tables A.8 to A.13 on pages 134�139 show the CDO quotes produced by the

four-period two-path parameterization with 8 parameters for the �rst day of each of the

four data set. Because we are calibrating a larger number of model parameters, we also

need to increase the number of BFGS2 iterations. However, due to time constraints, we

limited BFGS2 to 120 iterations only, and there is a lot more variability in the objective

function values in Figure 6.3 than in Figure 6.1. This could also be due to the BFGS2
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algorithm converging to local minima for certain days in Figure 6.3, and this might

also produce unrealistic copula tranche implied correlations in Tables A.8 to A.13 on

pages 134�139 for the four-period two-path parameterization.

The industry-standard Hull Copula has higher errors in Figure 6.4 than the rest of

our daily run �gures, as expected. We also note that the CDX NA IG S11 data set has a

few days where the Hull Copula produces very low objective function values. We believe

that this is because the agency providing the CDO quotes could have used some variant

of the Hull Copula for these quotes. Naturally, when calibrating the Hull Copula on

those days, the error is fairly low. We demonstrate later in Chapter 7 that the MSCM

and the Hull Copula are not entirely equivalent when estimating pool loss probabilities.

6.2.3 Choice Of The Error Function

We hypothesized in Section 2.7 that it is best to use the relative SEF (2.61) in the

unconstrained objective function F (~u) (3.5). We show that this is true, by calibrating

MSCM for the �rst day of each data set with the two-period two-path parameterization

and an absolute SEF (2.58), with ε = 10−4 and δ = 0.5. Calibration results are presented

in Tables A.14 to A.19 on pages 140�145. When comparing the results to the relative

SEF, presented in Tables A.2 to A.7 on pages 128�133, we observe that the more senior

tranches, which have lower spreads, don't calibrate well, as argued in Section 2.7. Also,

even the CDX NA IG S8 data set does not calibrate to reasonable copula correlation

parameter values with the absolute SEF. The same data set calibrated well with the

relative SEF for all days before the credit crunch of July 2007. Hence, we conclude that

it is best to use a relative SEF in the unconstrained objective function F (~u) (3.5).

6.2.4 Runtimes

Negligible di�erences in runtimes between di�erent data sets in Tables 6.1, 6.2 and 6.3

suggest that pricing is not a�ecting the runtimes and parallelization of pricing was han-
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Data set Mean Calibration Time ± Std. Dev. (minutes)

CDX NA IG S8 11.6± 2.52

CDX NA IG S10 9.91± 3.53

CDX NA IG S11 9.14± 3.47

CMA ITRAXX EU S10 11.5± 2.54

Table 6.1: Mean calibration times for data sets across all days in each CDO series us-

ing the BFGS2 algorithm with at most 40 iterations and a 2-period 2-path multi-path

parameterization (4 parameters) with periods each of 5 years.

Data set Mean Calibration Time ± Std. Dev. (minutes)

CDX NA IG S8 7.45± 2.62

CDX NA IG S10 7.36± 2.45

CDX NA IG S11 7.31± 2.42

CMA ITRAXX EU S10 7.43± 2.62

Table 6.2: Mean calibration times for data sets across all days in each CDO series using

the NEWUOA algorithm with at most 500 iterations and a 2-period 2-path multi-path

parameterization (4 parameters) with periods each of 5 years.

dled successfully (the data sets used require anywhere between 12 to 63 data points, so

we can price a varying number of CDO quotes in roughly the same amount of time).

Also, the runtimes are clearly reasonable and demonstrate that MSCM can be used in

practice.
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Data set Mean Calibration Time ± Std. Dev. (minutes)

CDX NA IG S8 20.0± 4.09

CDX NA IG S10 20.9± 4.83

CDX NA IG S11 17.5± 7.21

CMA ITRAXX EU S10 19.9± 4.29

Table 6.3: Mean calibration times for data sets across all days in each CDO series using

the BFGS2 algorithm with at most 120 iterations and a 4-period 2-path multi-path

parameterization (8 parameters) with periods each of 2.5 years.
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Figure 6.1: Calibration results with the BFGS2 algorithm [16] (described in Para-

graph 2.8.2.3) limited to 40 iterations, for all four data sets with the relative Soft Error

Function (SEF) (2.61) used in the objective function F (~u) (3.5); error is shown after

dividing F (~u) by the number of data points available in each data set. MSCM param-

eterization uses two periods each of 5 years, with two paths per period. The letter (C)

indicates that BFGS2 converged, the letter (T) indicates that the algorithm was ter-

minated after 40 iterations, and the letter (E) indicated that a value of βi = 1 was

encountered during the optimization and BFGS2 signaled for termination.
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Figure 6.2: Calibration results with the NEWUOA algorithm [13] (described in Sub-

subsection 2.8.1.2) limited to 500 iterations, for all four data sets with the relative Soft

Error Function (SEF) (2.61) used in the objective function F (~u) (3.5); error is shown

after dividing F (~u) by the number of data points available in each data set. MSCM

parameterization uses two periods each of 5 years, with two paths per period. The letter

(T) indicates that NEWUOA was terminated after 500 iterations.
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Figure 6.3: Calibration results with the BFGS2 algorithm [16] (described in Para-

graph 2.8.2.3), limited to 120 iterations, for all four data sets with the relative Soft

Error Function (SEF) (2.61) used in the objective function F (~u) (3.5); error is shown

after dividing F (~u) by the number of data points available in each data set. MSCM pa-

rameterization uses four periods each of 2.5 years, with two paths per period. The letter

(C) indicated that BFGS2 has converged, the letter (T) indicates that the algorithm was

terminated after 120 iterations, and the letter (E) indicated that a value of βi = 1 was

encountered during optimization and BFGS2 signaled for termination.
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Figure 6.4: Calibration results for the regular industry-standard Hull Copula [1] single-

factor single-period model for all four data sets with the relative Soft Error Function

(SEF) (2.61) used in the objective function F (~u) (3.5); the error is shown after dividing

F (~u) by the number of data points available in each data set.
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Some Observations And Questions

We compare the single-period single-factor copula from [1] (denoted for brevity as the

Hull Copula in Section 6.2) to the Multi-period Single-factor Copula Model (MSCM) by

setting βi = β for i = 1, 2, · · · , 40 with probability 1 in the multi-path parameterization of

MSCM discussed in Section 3.1, where β is the copula correlation parameter. Figure 7.1

shows the spreads produced by both models as a function of β, where we are trying to

match the 3 − 7% tranche at maturities of 5, 7 and 10 years on March 23, 2007 for the

CDX NA IG S8 data set1.

We make the following observations:

� for T = 5 and T = 7, two values of β match the market quote;

� the models are not necessarily equivalent for β ∈ (0, 1], but are guaranteed to

produce identical quotes for β = 0; we believe that this is because the default

probabilities αi (2.17) are modeled as a step function on each (ti−1, ti] in the MSCM

model, whereas the Hull Copula model assumes a continuous underlying function

for the αi's. As a result, the pool loss probabilities P (l
(pool)
i = r) di�er for β ∈ (0, 1].

For shorter maturities (for example, T = 5 and T = 7 in Figure 7.1), the two

1The same data set calibrated well in Figure 6.1

89
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Figure 7.1: Spreads produced by single and multi-period single-factor copula models as

a function of the copula correlation parameter β, plotted against the 3− 7% tranche at

maturities of 5, 7 and 10 years on March 23, 2007 for the CDX NA IG S8 data set.

models can produce the same quote value for some other βi ∈ (0, 1], but this is not

always true.

� CDO spreads, plotted as a function of β, change shape for both models as the

spread quote maturity T increases.

This suggests that when calibrating either model, we need to decide which range of β is

plausible for shorter maturities, and constrain β. However, how do we know this range?

One possible reason why some data sets result in β ≈ 1 with probability ≈ 1 is because

of this behavior: CDO spread quotes for longer maturities suggest higher β values and

because those values also calibrate the shorter maturity quotes well, we see an overly
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in�ated β value with probability ≈ 1. Figure 7.1 also suggests that tranche implied

copula correlations are less ambiguous for long range correlation representation.

Research Questions In order to use the dynamics of the multi-period single-factor

copula model, we need to be able to calibrate the model for any value of T on post-crash

market data. Further research is needed to answer the following questions:

� Why are the CDO spread quotes so di�erent between the two models?

� Why do di�erent values of β match the CDO market quotes at shorter maturities

for both models?

� What causes the large increase in the objective function F (~u) (3.5) per number of

data points in the multi-period single-factor copula model when applied to data

sets that include crash periods?

� Why can we match market quotes with fairly low error per data point in, for

example, Figure 6.1, yet calibrate to unrealistic tranche implied copula correlation

values?
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Conclusion

In this thesis, we developed an alternative multi-path parameterization to the Multi-

period Single-factor Copula Model (MSCM), recently proposed by Jackson, Kreinin and

Zhang [11]. This parameterization allowed us to compute the �rst-order derivatives of

the objective function

f(~ψ) =
∑
tr∈Tr

∑
T∈M

error
(
E~ρ

[
s(tr)
nT

(~β, ~α)|~γ
]
,m(tr)

nT

)
,

discussed in Section 2.5, in closed form, for all reasonable values of ~α and ~β. This en-

ables us to use derivative-based optimization algorithms to calibrate the MSCM, thereby

improving the e�ciency of the calibration process. In addition, multi-path parameter-

ization provides a more intuitive structure for the market dynamics, by associating a

unique copula correlation parameter path with a unique probability for each period of

the MSCM.

We also developed a robust and e�cient software implementation of the MSCM by

determining an error control heuristic for the pool loss probabilities and their derivatives.

We also provide a useful theoretical result that if a quadrature routine can guarantee a

certain error in approximating the integral K −m

r −m

ˆ ∞
−∞

Φ

(
Φ−1 (αi)− βix√

1− β2
i

)r−m(
1− Φ

(
Φ−1 (αi)− βix√

1− β2
i

))K−r

dΦ(x)
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for all r = 0, 1, · · · , K and m = 0, 1, · · · , r, then we can guarantee that the error in the

pool loss probability is below a certain threshold.

We further tested the MSCM on four distinct data sets from periods before, during

and after the 2008-2009 stock market crash, and compared a simple parameterization of

MSCM to the seemingly equivalent single-period single-factor copula model discussed in

[1]. This comparison suggests that copula models are accurate for modeling long-term

tranche implied correlations for CDO pricing, as discussed in Chapter 7, but may pro-

duce inaccurate tranche implied copula correlations for shorter maturities. This suggests

several research questions, outlined in Chapter 7.

Regarding the multiple period structure of the MSCM, market quote �ts are greatly

improved my adding more periods to the MSCM, but we did not see a signi�cant improve-

ment with the addition of more paths in each period. We showed that the multi-period

nature of the MSCM improves market quote �ts over the single-period single-factor cop-

ula model. Regardless of the number of CDO market quotes and the number of periods,

we demonstrated that multi-path parameterization of the MSCM is relatively inexpensive

to calibrate, and that the MSCM can be used e�ectively in practice.
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Appendix

A.1 Proofs

A.1.1 Recursion Relationship Of Pool Loss Probabilities

Reference [8] shows that

P (l
(pool)
i = r) =

r∑
m=0

P (l
(pool)
i−1 = m) · P (l

(pool),K−m
(i−1,i] = r −m), (A.1)

using a lemma from Section A.1.2, restated here for convenience:

q
(def)
k,i = P (τk ≤ ti|X1 = x1, X2 = x2, ..., Xi = xi) = q

(def)
k,i−1 + (1− q(def)

k,i−1) · p(def)
k,i , (A.2)

where

p
(def)
k,i = P (τk ≤ ti|τk > ti−1, Xi = xi). (A.3)

For homogeneous pools, p
(def)
k,i = p

(def)
i and q

(def)
k,i = q

(def)
i . Notice that

P (l
(pool)
i = r) =

ˆ ∞
−∞

...

ˆ ∞
−∞

P (li = r|X1 = x1, X2 = x2, ..., Xi = xi)dΦ(x1)...dΦ(xi),

(A.4)

so we need to determine the conditional probability P (l
(pool)
i = r|X1 = x1, X2 = x2, ..., Xi =

xi). We determine the conditional probability of r defaults given the conditional proba-
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bility of each default using the Binomial probability distribution:

P (l
(pool)
i = r|X1 = x1, X2 = x2, ..., Xi = xi) =

 K

r

(q(def)
i

)r (
1− q(def)

i

)K−r
. (A.5)

Next, we substitute (A.2), use the binomial expansion on the �rst probability term, and

then group terms to obtain the conditional recurrence relation:

 K

r

(q(def)
i−1 + (1− q(def)

i−1 )p
(def)
i

)r (
(1− q(def)

i−1 ) · (1− p(def)
i )

)K−r
=

 K

r


 r∑
m=0

 r

m

(q(def)
i−1

)m (
1− q(def)

i−1

)r−m (
p

(def)
i

)r−m((1− q(def)
i−1

)(
1− p(def)

i

))K−r
=

r∑
m=0

 K

m

(q(def)
i−1

)m (
1− q(def)

i−1

)K−m K −m

r −m

(p(def)
i

)r−m (
1− p(def)

i

)K−m−(r−m)

=

r∑
m=0

P (l
(pool)
i−1 = m|X1 = x1, X2 = x2, ..., Xi−1 = xi−1)P (l

(pool),K−m
(i−1,i] = r −m|Xi = xi). (A.6)

Now notice that when integrating out the common factors we obtain the required equa-

tion, because

ˆ ∞
−∞

...

ˆ ∞
−∞

P (l
(pool)
i−1 = r|X1 = x1, X2 = x2, ..., Xi−1 = xi−1)dΦ(x1)...dΦ(xi−1) = P (l

(pool)
i−1 = m).

(A.7)

A.1.2 Lemma

We need to show that

q
(def)
k,i = P (τk ≤ ti|X1 = x1, X2 = x2, ..., Xi = xi) = q

(def)
k,i−1 + (1− q(def)

k,i−1) · p(def)
k,i . (A.8)



Appendix A. Appendix 96

This is given by regular manipulation of probabilities

q
(def)
k,i = P (τk ≤ ti|X1 = x1, X2 = x2, ..., Xi = xi)

= P (τk ≤ ti−1|X1 = x1, X2 = x2, ..., Xi−1 = xi−1)+

P (τk ∈ (ti−1, ti]|X1 = x1, X2 = x2, ..., Xi = xi)

= P (τk ≤ ti−1|X1 = x1, X2 = x2, ..., Xi−1 = xi−1)+

P (τk > ti−1|X1 = x1, X2 = x2, ..., Xi−1 = xi−1) · P (τk ∈ (ti−1, ti]|τk > ti−1, Xi = xi)

= q
(def)
k,i−1 + (1− q(def)

k,i−1) · p(def)
k,i . (A.9)
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A.2 Figures

Figure A.1: Error functions used to calibrate the model, given by (2.56), (2.57) and

(2.58).
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Figure A.4: CDS spreads and bootstrapped default probabilities used to calibrate CDX

NA IG series 8 data set, split into three time regions across the rows of the �gure.
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Figure A.5: CDS spreads and bootstrapped default probabilities from CDX NA IG series

10, 11 and CMA ITRAXX EU series 10 data sets.
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A.2.1 Calibration Results

A.2.1.1 Single Period Multi-Path Parameterization With Two Paths Per

Period

Figure A.6: CDX NA IG S8 data set from March 23, 2007 calibrated with optimization

algorithms from Section 2.8 with a single period multi-path parameterization with two

paths. Derivative-free algorithms were limited to 500 iterations, and derivative-based

algorithms were limited to 40 iterations. Letters in brackets denote convergence: (C)

denotes that the algorithm has converged on its own with the user-speci�ed convergence

test, (T) denotes that the algorithm has exceeded the aforementioned number of iterations

before convergence and was terminated by the user, and (E) denotes for derivative-based

algorithms only that the optimization algorithm encountered the value βi = 1 during

optimization and signaled for termination.
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Figure A.7: CDX NA IG S10 data set from December 8, 2008 calibrated with optimization

algorithms from Section 2.8 with a single period multi-path parameterization with two

paths. Derivative-free algorithms were limited to 500 iterations, and derivative-based

algorithms were limited to 40 iterations. Letters in brackets denote convergence: (C)

denotes that the algorithm has converged on its own with the user-speci�ed convergence

test, (T) denotes that the algorithm has exceeded the aforementioned number of iterations

before convergence and was terminated by the user, and (E) denotes for derivative-based

algorithms only that the optimization algorithm encountered the value βi = 1 during

optimization and signaled for termination.
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Figure A.8: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a single period multi-path parameterization

with two paths. Derivative-free algorithms were limited to 500 iterations, and derivative-

based algorithms were limited to 40 iterations. Letters in brackets denote convergence:

(C) denotes that the algorithm has converged on its own with the user-speci�ed con-

vergence test, (T) denotes that the algorithm has exceeded the aforementioned number

of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.9: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with op-

timization algorithms from Section 2.8 with a single period multi-path parameterization

with two paths. Derivative-free algorithms were limited to 500 iterations, and derivative-

based algorithms were limited to 40 iterations. Letters in brackets denote convergence:

(C) denotes that the algorithm has converged on its own with the user-speci�ed con-

vergence test, (T) denotes that the algorithm has exceeded the aforementioned number

of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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A.2.1.2 Single Period Multi-Path Parameterization With Four Paths Per

Period

Figure A.10: CDX NA IG S8 data set from March 23, 2007 calibrated with optimization

algorithms from Section 2.8 with a single period multi-path parameterization with four

paths. Derivative-free algorithms were limited to 500 iterations, and derivative-based

algorithms were limited to 40 iterations. Letters in brackets denote convergence: (C)

denotes that the algorithm has converged on its own with the user-speci�ed convergence

test, (T) denotes that the algorithm has exceeded the aforementioned number of iterations

before convergence and was terminated by the user, and (E) denotes for derivative-based

algorithms only that the optimization algorithm encountered the value βi = 1 during

optimization and signaled for termination.
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Figure A.11: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a single period multi-path parameterization

with four paths. Derivative-free algorithms were limited to 500 iterations, and derivative-

based algorithms were limited to 40 iterations. Letters in brackets denote convergence:

(C) denotes that the algorithm has converged on its own with the user-speci�ed con-

vergence test, (T) denotes that the algorithm has exceeded the aforementioned number

of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.12: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a single period multi-path parameterization

with four paths. Derivative-free algorithms were limited to 500 iterations, and derivative-

based algorithms were limited to 40 iterations. Letters in brackets denote convergence:

(C) denotes that the algorithm has converged on its own with the user-speci�ed con-

vergence test, (T) denotes that the algorithm has exceeded the aforementioned number

of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.13: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with

optimization algorithms from Section 2.8 with a single period multi-path parameteri-

zation with four paths. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.



Appendix A. Appendix 110

A.2.1.3 Two Period Multi-Path Parameterization With Three Paths Per

Period (T=5,10)

Figure A.14: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-

tion algorithms from Section 2.8 with a two period multi-path parameterization with

two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.15: CDX NA IG S11 data set from November 9, 2008 calibrated with op-

timization algorithms from Section 2.8 with a two period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.16: CDX NA IG S11 data set from November 9, 2008 calibrated with op-

timization algorithms from Section 2.8 with a two period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.17: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with

optimization algorithms from Section 2.8 with a two period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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A.2.1.4 Four Period Multi-Path Parameterization With Two Paths Per Pe-

riod (T=2.5,5,7.5,10)

Figure A.18: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-

tion algorithms from Section 2.8 with a four period multi-path parameterization with

two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.19: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a four period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.20: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a four period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.21: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with

optimization algorithms from Section 2.8 with a four period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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A.2.1.5 Three Period Multi-Path Parameterization With Two Paths Per

Period (T=5,7,10)

Figure A.22: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-

tion algorithms from Section 2.8 with a three period multi-path parameterization with

two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.23: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a three period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.24: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a three period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.25: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with

optimization algorithms from Section 2.8 with a three period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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A.2.1.6 Two Period Multi-Path Parameterization With Two Paths Per Pe-

riod (T=5,10)

Figure A.26: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-

tion algorithms from Section 2.8 with a two period multi-path parameterization with

two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.27: CDX NA IG S11 data set from November 9, 2008 calibrated with op-

timization algorithms from Section 2.8 with a two period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.28: CDX NA IG S11 data set from November 9, 2008 calibrated with op-

timization algorithms from Section 2.8 with a two period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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Figure A.29: CMA ITRAXX EU S10 data set calibrated on September 30, 2008 with

optimization algorithms from Section 2.8 with a two period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-speci�ed

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

βi = 1 during optimization and signaled for termination.
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A.3 Tables

Tables A.2 to A.19 on pages 128�145 show the Multi-period Single-factor Copula Model

(MSCM) calibration results. Each table shows the MSCM expected spreads (2.37) and

market spreads, respectively, for each tranche and maturity. These tables also show the

calibrated multi-path parameters γj and probabilities ρj, as discussed in Section 3.1. For

completeness, we also calibrated the Hull Copula [1] on the same market data, and quote

the Hull Copula tranche implied copula correlation parameter β next to γj and ρj.
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