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A Collaterized Debt Obligation (CDO) is a multi-name credit derivative, which redis-
tributes the risk of defaults in a collection (also known as the basket or pool) of underlying
assets, into fixed income securities, known as the tranches. Each tranche is associated
with a certain fraction of first-to-default underlyings. Synthetic CDOs have a pool that
consists of Credit Default Swaps (CDSs). If all CDSs have equal notionals, then the pool

is termed homogeneous.

Single-period single-factor copula models approximate the probability of underlying
defaults using a percentile to percentile transformation, and incorporate the underly-
ing pool correlation structure for multi-name credit derivatives, such as CDOs. Cur-
rently, such models are static in time and do not calibrate consistently against market
quotes. Recently Jackson, Kreinin and Zhang (JKZ) proposed a discrete-time Multi-
period Single-factor Copula Model (MSCM), for which the default correlations are time-
independent, allowing the model to systematically fit the market quotes. For homo-
geneous pools, the JKZ MSCM provides a chaining technique, which avoids expensive
Monte Carlo simulation, previously used by other multi-period copula models. However,
even for homogeneous pools, the tree-based example of MSCM presented by JKZ has
three drawbacks: derivatives are difficult to obtain for calibration, probabilities of the
copula correlation parameter paths do not accurately represent its movements, and the

model is not extremely parsimonious.

In this thesis, we develop an improved implementation of MSCM: we use an alter-
native multi-path parameterization of the copula correlation parameter paths and the
corresponding probabilities. This allows us to calculate first-order derivatives for the
MSCM in closed form for a reasonable range of parameter values, and to vary the num-
ber of parameters used by the model. We also develop and implement a practical error
control heuristic for the error in the pool loss probabilities and their derivatives. We
develop theoretical error bounds for the pool loss probabilities as well. We also explore

a variety of optimization algorithms and demonstrate that the improved MSCM is in-
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expensive to calibrate. In addition, we show how MSCM calibrates to CDO data for

periods before, during and after the September 2008 stock market crash.
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Chapter 1

Introduction

The valuation of a credit derivative! is associated with the credit risk of the underlying
asset, or a collection of assets, also known as the pool. Hence there are two classes of
credit derivatives: single-name and multi-name, respectively. The mathematical model-
ing of credit derivatives is very complex in nature; the stock market crash of 2008-2009
was blamed, in part, on the quantitative models for credit derivatives. Increasingly so-
phisticated models are being developed, which attempt to improve the fit to market
quotes by better capturing market dynamics.

In this thesis, we improve on the implementation of the example of the Multi-period
Single-factor Copula Model (MSCM), originally proposed by Jackson, Kreinin and Zhang
(JKZ) [11]. We provide an alternative multi-path parameterization to MSCM, which al-
lows us to improve the model’s existing ability to capture market dynamics over time,
and which further allows us to calibrate the model in reasonable time by using optimiza-
tion routines which exploit our ability to write the first-order derivatives of the objective
function in closed form for a reasonable range of parameter values. We also develop an
error control heuristic for the error in the pool loss probabilities and their derivatives,

as well as a useful theoretical result about the errors in pool loss probabilities. In addi-

LA derivative is a financial instrument whose value is derived from some underlying asset, for example,
an option on a stock.
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tion, we examine the behavior of the MSCM on market data for periods before, during
and after the September 2008 stock market crash, and demonstrate that a parsimonious
parameterization of MSCM fits the market quotes better than the industry-standard

single-period single-factor copula model.

1.1  Mechanism Of Collaterized Debt Obligations

To understand Collaterized Debt Obligations (CDOs), depicted in Figure 1.2, we must
first understand simpler single-name Credit Default Swaps (CDSs), shown in Figure 1.1.
A CDS is a financial contract, in which the underlying asset (also referred to as the
underlying credit, or just the underlying) has a certain market value (also called the
notional, face or par value), and might default before the maturity (or expiry) of the
contract at time 7. The simplest example of such an asset is a bond issued by a company
or a firm. The owner of the asset wants insurance against a credit event, such as the
bankruptcy of the company and its associated default on the bond interest payments
and /or principal repayment. Consequently, the owner of the asset enters a CDS contract,
in which they are the buyer of protection, and pay fixed premiums?, quoted as a fraction
of the notional (insured value of the underlying asset) usually expressed in basis points
(bps), to the seller of protection. In case of a default, the seller of the CDS pays back the
notional to the buyer, and retains any market value that the asset still has. In practice,
the underlying might not be worthless after a default®. Premium payments stop after
the credit event and the CDS contract terminates [1].

A CDO is a multi-name credit derivative, which redistributes the risk of defaults in a
collection (also known as the basket or pool) of underlying assets, into fixed income secu-

rities, known as the tranches [2|. Tranches are ranked in order of seniority; in increasing

2Premiums are usually paid quarterly.
3A realistic market assumption is that about 40% of the underlying asset’s value can be recovered
after a default. This fraction is known as the recovery rate.
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against default

Figure 1.1: Mechanism of a Credit Default Swap.
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Figure 1.2: Mechanism of a synthetic Collaterized Debt Obligation.

order, we have the Equity, Mezzanine and Super Senior tranches. Each tranche is asso-
ciated with a certain fraction of defaults, specified by attachment (™) and detachment
b points in percent, where tr indexes the tranche; the difference S®) = pt) — ¢t jg
known as the tranche size. For example, if the Equity tranche has an attachment point of
0% and a detachment point of 3%, then this tranche covers the first 3% of defaults in the
pool. If more than 3% of underlyings default, then the next tranche starts covering the

losses, and so on. The issuer of the CDO is known as the trust. The trust sells tranches to

investors, who are ultimately responsible for covering portfolio losses, as the underlyings
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associated with their tranche begin to default, or experience other credit events, such as
credit downgrades.

A CDO is called synthetic if the underlying pool consists of CDSs. If all CDSs have the
same notional /V, then the pool is called homogeneous. We illustrate the functionality of a
synthetic CDO with homogeneous pool using the following example: consider an investor
in a Mezzanine tranche? with an attachment point of 3% and a detachment point of 7%.
If there are K underlyings, each with a notional N, then the investor receives payments

of

tranche spread - Notional, (1.1)

usually quarterly. If a CDS defaults, the investor in the Equity tranche must cover the
loss. Once the first 3% of underlying CDSs have defaulted, the contract of the investor
in the Equity tranche is terminated®. The investor in the Mezzanine tranche now begins
to cover the losses, and so on. The tranches are ranked by risk, with the Equity tranche

being the riskiest tranche to enter, and the Super Senior tranche being the least risky.

1.2 Brief Literature Overview

The Gaussian factor copula model is a type of structural model used to model credit
risk; structural models were originally introduced by Merton [40] and associate risk with
economic driving forces. On the other hand, reduced form models characterize defaults
via a stochastic process, that generally has no associated economic interpretation [47,
46]. Gaussian single-factor copula models have become an industry standard due to
their computational efficiency. The earliest cited use of Gaussian copula models was to
characterize the pool loss distribution of loans in 1987 by Vasicek [41]. The first cited

application to multi-name credit derivatives was by Li [42] in 2000. Many generalizations

4Mezzanine tranches usually refer to the range of tranches between the Equity and Super Senior
tranche.
5Premium payments stop; the investor covers the losses and collects the recovery values.
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of Gaussian copula models followed [43, 44, 45]; for example, the copula approach does

not have to use a Gaussian probability density [29].

For single-name credit derivatives, it is not difficult to associate the probability of
default with the value of the credit derivative via some probability model. However,
multi-name credit derivatives require the added knowledge about the correlations between
the defaults of the underlyings. This can be added to the structural model via another
driving factor, which the copula relates to the probability of default. For CDO pricing,
structural models have been known to provide poor fits to market quotes, because the
driving factors assumed either constant default correlation over time, or constant default
correlation across CDO tranches [2]. In reality, these correlations change spatially over
the tranches, and also over time for each tranche [2|; the former change in correlation
is commonly known as the tranche correlation smile, and the latter is simply referred
to as the correlation smile. The tranche correlation problem can be avoided by simply
performing calibration over tranches with roughly the same tranche implied correlation®.
However, single-period single-factor Gaussian copula models still assume that the tranche

implied correlation is fixed over time.

Chaining techniques have been proposed, which link a number of single-period single-
factor copulas, responsible for each time period, into a multi-period single-factor copula
model, thus combating the problem of the correlation smile by associating a different
value for the copula correlation parameter with each time period”. However, these models
suffer a computational drawback, in that a unique driving factor is associated with each
period, and in order to compute the expected pool loss, multi-dimensional integration
has to be carried out over all driving factors. Monte Carlo (MC) simulation is typically

used to approximate this integration. Hence, in practice, these chaining techniques do

6Tt should also be noted that the copula correlation parameter represents the true tranche implied
correlation.

"In order to compute the expected spread, we also need to associate a discrete probability measure
with possible values of the copula correlation parameter over time, to model the market dynamics of the
copula correlation parameter.
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not generalize well to more than two periods. The original extension of the single-period
single-factor copula model was proposed by Fingers [33] and soon after Andersen [34]
and Sidenius [35] popularized construction of multi-period single-factor copula models.
Jackson, Kreinin and Zhang [11] have recently proposed a recursion relationship which
avoids MC simulation in multi-period Gaussian copulas for homogeneous pools, where all
underlying assets have the same correlation®; for non homogeneous pools, a combinatorial
problem arises, which, to the best of our knowledge, cannot be solved in polynomial time,
so the proposed model is applicable only to homogeneous pools. The example of the
computationally tractable MSCM in [11] uses a binary tree structure to parameterize the
time evolution of the copula correlation parameter. This example suffers three drawbacks:
first-order derivatives are difficult to obtain for calibration, probabilities of the copula
correlation parameter paths do not accurately represent its movements, and the number
of model parameters cannot be easily varied to keep the model parsimonious for different

calibration data sets.

1.3 Main Contributions

In this thesis, we develop an improved implementation of the MSCM originally proposed
by Jackson, Kreinin and Zhang [11]. The original implementation used an optimization
method without derivatives for calibration; this is one of the reasons why calibration is
very time consuming. We use an alternative multi-path parameterization of the copula
correlation paths and the corresponding probabilities. This multi-path parameterization
allows us to formulate the first-order derivatives associated with the MSCM in closed
form, for all reasonable parameter values; in the original binary tree implementation,
settings of the copula correlation parameters in consecutive periods depended on the

settings in previous periods (see Figure A.2 for example), and this created a complicated

8This recursion relationship replaces expensive multidimensional integration by a series of one dimen-
sional integrals, for which we develop a quadrature routine in this thesis.
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dependence relationship in the derivatives. With the multi-path parameterization, the
copula correlation parameters can switch to any reasonable value with a unique transition
probability. Hence we can write the first-order derivatives of each period independently
from the other periods.

Multi-path parameterization allowed us to generalize the model to any number of
periods with any number of copula correlation parameter values per period, something
which was not practical with the binary tree implementation®. The original parameter-
ization also suffered a computational drawback; the optimization routine would set the
copula correlation parameter values to be outside of the unit interval, whence the copula
correlation parameter values had to be adjusted.

The derivative values associated with any implementation are expensive to compute.
We explore a variety of optimization algorithms to determine which methods are both
robust and computationally efficient. Finally, we explore the model’s ability to match

market data over the periods before, during and after the 2008-2009 stock market crash.

1.4 Thesis Outline

In this thesis we explore efficient implementations of MSCM and demonstrate numerically
that our improved implementation is relatively inexpensive to calibrate. We also assess
model performance on data collected before, during and after the 2008-2009 stock market
crash and discuss future research directions.

In Chapter 2 we provide the necessary background for this thesis. Since our research
draws from different areas, the reader may refer to this chapter if they feel that some
parts of the model discussion are new to them.

In Chapter 3 we develop the alternative multi-path parameterization for the MSCM

and compute closed forms of the first-order derivatives associated with these parameters.

%Even if we can determine a general structure for the original tree model, it is still difficult to vary
the number of copula correlation parameter paths per period.
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These derivatives can be computed for all reasonable ranges of parameter values. We
discuss what it means for the range of parameter values to be reasonable in the same
chapter. The chapter also lays out the framework used later to parallelize the software
implementation to improve computational efficiency.

In Chapter 4 we develop a quadrature heuristic used for one dimensional integration
over each common factor in the structural model and determine theoretical error bounds
for the numerically computed default probabilities. We argue that, in practice, it is very
likely that our error control heuristic produces an error in pool loss probabilities and
their derivatives a few orders of magnitude smaller than required.

In Chapter 5 we describe the C++ source code implementation of the model. This
chapter outlines various parallel sections, and stringent error control heuristics used by
the source code, as well as efficient implementation provided by the Boost C+-+ libraries.

Chapter 6 provides the numerical results. Specifically it contains calibration runtimes,
comparison of different calibration algorithms and a discussion of model performance on
different CDO data sets over the periods before, during and after the 2008-2009 stock
market crash.

Chapter 7 describes future research directions which can be undertaken to justify
some numerical results obtained in the previous chapter.

Finally, Chapter 8 provides concluding remarks.



Chapter 2

Background

This chapter provides background material needed to understand the Multi-period Single-
factor Copula Model (MSCM) proposed by Jackson, Kreinin and Zhang (JKZ) [11]. Sec-
tion 2.1 starts by explaining the general pricing mechanism of CDOs. Section 2.2 reviews
MSCM and Section 2.3 explains how MSCM applies to CDO pricing. MSCM requires a
fixed set of input parameters; Section 2.4 explains how to obtain these parameters from
CDS spreads. Section 2.5 reviews the original parameterization proposed by JKZ. MSCM
relies heavily on numerical integration rules, briefly surveyed in Section 2.6. Calibration
of MSCM requires an objective function, which can be based on a variety of error func-
tions, surveyed in Section 2.7. The goal of the calibration procedure is to pick a set of
model parameters, which is accomplished by minimizing the objective function. To this

end, we review several optimization algorithms in Section 2.8.

2.1 Pricing

Consider pricing a synthetic CDO with a homogeneous pool of K underlying CDSs'. The

loss given default on each CDS is LP = N - (1 — R), where N is the notional value of

!The proposed MSCM is only applicable to homogeneous pools.
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each CDS and R is the recovery rate (market value as a percent of par value immediately

after the default).

We are ultimately interested in pricing exotic CDOs, based on the same underlying
pool of CDSs. Some examples include the CDO of CDOs (called CDO?), options on CDO
tranches, etc. All these products require the knowledge of the dynamics (time evolution)
of the correlation structure of the pool on which the CDO is based [28]. Once these
dynamics are known, the simplest example of CDO pricing is to know what the price of

a given tranche should be.

Pricing a tranche refers to computing the spread, which is the ratio of the premiums
being paid relative to the tranche size. Once an investor enters a tranche, they are paid
a certain amount (quoted as the spread in bps) which depends on the tranche and the
tranche size, until the underlyings start defaulting. If the level of defaults is below the
attachment point of the investor’s tranche, then they receive premiums only. Once the
level of defaults rises above the attachment point, the investor starts covering losses,
while still receiving premiums on the fraction of the CDSs which their tranche covers
that have not yet defaulted. Once all CDSs that an investor’s tranche covers default, the
investor stops receiving premiums and covering losses; the investor collects the recovered

values of underlyings and the contract terminates.

We assume that the premiums are paid quarterly; we denote the premium payment
dates by 0 < t; < -+ < t,,-1 < tn, = T, where T" is the maturity date of the con-
tract. For convenience, we set tg = 0. Usually, t; —t,_y = 1/4 for all i € [1,2,--- ny]
(nr is the number of quarterly steps until time T'), since we measure the time in years.
For simplicity, anything which occurs at time ¢; is denoted with subscript 7. The pre-
mium cashflow is termed the premium leg (denoted P,Et;), where tr is the tranche index,
for now assume tr = 1,2,--- ng,) and the default cashflow is termed the default leg
(denoted DS;)). In the risk neutral world, assuming no arbitrage, we must have that

Epool) [PS;)] = E(pool) [DS;)], where the expectations are calculated under the risk neu-
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”

tral pool loss probability measure, denoted by the subscript “(pool)”. Our modeling
assumption is that a default can only occur at a time ¢;, otherwise computation of the
premium leg becomes very cumbersome.

Let us denote the attachment and detachment points of the CDO tranche by a®
and b respectively (where a™ < b for all tr) and the size of the tranche by S =
b)) — (") We can think of attachment and detachment points in different ways: we
can either let the attachment and detachment point be a percentage of the pool size, for
example a") = 3% and b = 7% is typical of a Mezzanine tranche, where all tranche
sizes S™) add up to 100%:; or, since the pool of CDSs contains K names, all with the same
notional value N, we can also think of them as the fraction of underlyings, for example

) = 0.03 - K and b = 0.07 - K, or perhaps the easiest way is to convert everything

al
into dollar values (because we are working with a homogeneous pool anyway) and set,
for example, a™ = 0.03- K - N and b®) = 0.07- K - N. We use the first interpretation
above for a(™ and b(*) (i.e., percentage of the pool size) throughout this thesis.

If we are working in dollar values (which is arguably the most intuitive approach),

then the loss taken by a specific tranche tr is
Lgtr) = min <K N - S max (O, LEPOOD —~K-N- a(“)>> , (2.1)

where LEPOOD =N-(1-R) ‘ZEPOOI) is the loss of the entire pool of underlyings, 0 < ll(pOOl) <
K, ZEPOOD € Z* and the size of the tranche S and the attachment point a*) are in
terms of the percentage of the pool size convention described above. We can compute

the present value of the default and premium legs as

nr
DI =% (Lf»tr) - Lf»t_ri) - F, (2.2)
i=1
nrp
P =80 (6 — i) - (K- N -8~ L) - B, (2.3)
=1

where nr is the number of quarterly time steps until time 7" and F; is the discount factor
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F, = exp (- /tt r(t)dt) , (2.4)

where 7(t) is the risk-free interest rate at time ¢. The equation for D) can be interpreted

at time ¢;:

as the loss in each time period (¢;_1,¢;], summed over the time periods and discounted to

the present value; the equation for PS;) can be interpreted as the part of the tranche that

(tr)

has not yet defaulted and so still pays premiums, K - N - S®) — L' multiplied by the

spread sff;) adjusted by the fraction (t; —t;_1) of a year, and discounted to the present

(tr)

value. If we assume for simplicity that F; and L, ’ are independent random variables

and take the expectation under the risk neutral pool loss probability measure, then we

obtain
nr
Epoon) [Dq(zt;)} = Z <E(p001) [Lz('tr)} — Epool) [Lgt—r%D - fi, (2.5)
i=1
nr
T tr
g [P) = - 35 (56 59— By [19]) - o= )£ 25)
=1

where f; = E(oo1 [Fi] and the spread value sg;) above is given as a fraction, for ex-
ample for a 5% spread, sgf;) = 0.05. We often assume that the interest rate is a fixed

deterministic value. In this case,
Epool) [Fi] = exp (=1 - ;) = f;. (2.7)

Notice that the computation of the default leg can be rewritten as

np—1

oo (D8] = 32 B L] - (= fie) + B (L] fore - (28)

because L[()tr) = 0 with probability 1. Since, as noted earlier, E,o01) [PAT)} Epoo) [Dﬁfp} ,

the spread SS;) can be estimated by

S B [+ U= Fi) + Bt [187] o

(tr) _
s
> <K N - S — B [Ll(tr)p (ti—ticn) - fi

nr

(2.9)

The pricing equation is different for the Equity tranche, which is often referred to as

as the 500 bps on-the-run tranche. First of all, the quote for the tranche itself is given



CHAPTER 2. BACKGROUND 13

usually in percent, and there is a fixed premium of 500 bps. The quote is the amount

paid up front (when investor enters the tranche), as a fraction of the quote spread 353).

Hence the pricing equation for the premium leg is

nr
E(pool) [Péi)] = 87(7,172 -K-N - S(l) +0.05 Z <K -N - S(l) - E(pool) [Lgl)]> : (tz - ti—l) : fz
=1

(2.10)

Hence, using Epool) [P,EtTr)] = Epool) [Dq(fTr)] again, we obtain

np—1
nglT) - (Z Epool) [Lgl)] (fi = figr) + Epoon) [LST)} “Jor
i=1

—0.05 - i (K N -SY — oo [LPD (= tiq) - fi> JE-N-SO. (2.11)

i=1
Hence, the problem of estimating the spread is reduced to the problem of estimat-
ing Epoay |11

Also, notice that we can rewrite the pricing equations using a different convention.

Let

K . S K - gt
(tr) . (pool) B
l[;”’ = min (—1 — 5 max (O,lZ T- R >) : (2.12)

”

where we have previously defined LEPOOI) =N-(1-R) 1% and the superscript (pool)

7

denotes the risk neutral pool loss probability dependence. Then

> Epoo [lz(tr)} - (fi = fir1) + Epool) [lg)] * o

sgf;) — — = , (2.13)
> ik < = — Epool [li ]) (ti—tic) - fi
np—1
8;172 = ( E(pool) |:lz(1):| : (fz - fi+1) + E(pool) [lg:,?} : fnT_
i=1
(K-S K.SO
—0.05- Z( " — Epoo [lg”]) (i—tin) - £ ) f T (2.14)
i=1

Note that, for the Super Senior tranche, we have to adjust the detachment point to K,

and not K/(1 — R), because we cannot have more than K underlyings default.
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To compute expectation, we can start with (2.1) and using L% = N (1— R)-1®°,
where [; (pool) — 0 1,... K, factor out the term N - (1 — R) to obtain

. K-S K -a™
LZ(-t ) =N- (]_ — R) - min (ﬁ, max (0, ll(-pOOI) - ﬁ)) : (215)

The above equation relates the number of defaults to the loss of the specific tranche.
Hence we can weight the tranche loss by the probability of r defaults in the pool to

compute the expected value

r K- Str K - a0
Foe 1] =000 (52 02 ) ) (7).

(2.16)

(tr)

where o™ and S®™) are given in terms of the percentage of the pool size convention

described above?.

Therefore, the problem is reduced to estimating P (lgpooh = 7’).

2.2 Multi-Period Single-Factor Copula Model

For a homogeneous pool, let

P(r, <t;) — P(m < ti1)
1-— P(Tk S ti_1>

o = P(Tk S (tifl,ti”’?’k > ti,1> = (217)

be the probability that the k-th underlying entity defaults in the time interval (¢;_1,1;],
conditional on no earlier default (because a certain entity can default once only). The
random variable 7, us the default time of the k-th entity. Further, let us introduce

random variables

Uk, = BriXi + M€k, (2.18)

2When r = 0, the pool loss is zero and so the corresponding term is omitted from the sum for the
computation of the expected value.
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where [ ; is the copula tranche implied correlation parameter®, X; ~ N(0,1) are inde-
pendent and identically distributed (iid), €;; ~ N(0, 1) are iid, X; is independent of ¢,
fork=1,2,--- ,Kandi=0,1,--- ,np, and N(0, 1) denotes the standard normal proba-
bility density; parameter 7y ; is determined to be n,;, = /1 — ﬁ%vi in the next paragraph.
We partition the time in years into quarterly payments, so for 5 years, i = 0,1, --- , 20,
where i = 0 is included for completeness in the base cases later on. X; is the common
factor driving the change in Uy ;; X; affects all underlyings at time ¢; (for example, some
economic shock). The factor ¢, is associated with the variability of individual names.

For a homogeneous pool, we have
Uki = BiXi + Ni€ - (2.19)

For ease in implementing the Gaussian copula model, we want Uy; ~ N(0,1), and
since the Gaussian density is characterized by its first two moments, we want E [Uy;] = 0
(satisfied automatically) and Var [Uy,] = E [U},] — E [Ur:)* = 1. Solving the last equa-
tion for 75, we obtain n.; = /1 — B¢ ,. Since Var [Uy,;] =1 for all k = 1,2,--- , K, this
also implies that for two names k; # ko, we have Corr(Uy, ;, Uk,i) = E [(Uk,.i) (Uryi)] =
By .iBrsy,i- For a homogeneous pool, the MSCM tranche implied correlation between all
underlyings at time ¢; is 32. Each (5 ; can be thought of as the copula correlation factor?
for name k with respect to all other names in the pool.

Since Uy; ~ N(0,1), we can use the standard percentile to percentile transformation
(similar to [1]):

P(r, <t;) — P(mp < ti—1)
1— P <tioq) 7
(2.20)

P(U]“ < u;m-) = <I>(uk7l) = P(Tk € (tiflytiHTk > ti—l) =

for ug; € R, where ®(-) is the standard normal Cumulative Distribution Function (CDF).

3We must also note that there are other measures of tranche implied correlations available, which do
no necessarily require expensive computation schemes. This thesis focuses on extending single-period
single-factor copula correlation, but there are also compound [37] and base [38] correlations available.
In addition, one can also emphasize pricing bespoke CDOs [36].

4The copula correlation factor represents the true correlation.



CHAPTER 2. BACKGROUND 16

Therefore,

Uk = q)_l (P(Tk < (ti—latiHTk > ti—l)); (221)

where ®~! denotes the inverse of the standard normal CDF. Under this Gaussian copula

model, a default happens when
Q(U,i) < P (11 € (ti1, ]| > tia) (2.22)

or equivalently, if we condition on the value of the common factor X; = x;, when

P(ry <) — P(my < ti
Umzﬁm+wdbﬂ@<@ﬂ(m—) (e sty | (2.23)

1 —P(Tk S ti—l)

We can rearrange this inequality to obtain

_ P(rp<t;)—P(1p.<t;_
o [ (klip)(Tkg(tik—l) 1)} _6k’ixi

1= Bk

Since we know the probability density for €;;, we can determine that the conditional

€ri < (2.24)

default probability is

17P(Tk§t¢,1)
V1= B

Notice that on the time interval (to,%;] (first time interval), this multi-period single-

o1 [P(TkSti)fP(TkStz‘A)} — Bz
Pri(zi) = P(1 € (tica, t]|me > tic, Xy =) = @ ’

(2.25)

factor copula model reduces to a single-period single-factor copula model provided in [1].

Namely, we obtain

O [P(1p < t1)] — Briwi

V1= B

since P(1, < ty) = 0. Also, we can replace ® by some other density, with other parameters

P(Tk < t1|X1 = ZL’l) =0 (226)

of interest, such as, for example, the Normal Inverse Gaussian distribution with two fixed
and two variable parameters [29]. This yields a different copula model, but with an added
set of parameters which makes the model less parsimonious. In this thesis, we restrict

our work to the standard normal density.
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2.3 Pricing With The Multi-Period Single-Factor Cop-

ula Model

Fingers [33] was the first to extend the single-period copula model to a multi-period
copula model. Soon after Andersen [34] and Sidenius [35] proposed alternative multi-
period factor copula models. However, these schemes suffer a computational drawback: to
calibrate parameters of the stochastic process (possible paths and associated risk neutral
probability values) we need to perform Monte Carlo (MC) simulation, which makes the
calibration extremely expensive. Hence their multi-period factor copula models are not
practical for more than a few common factors. Jackson, Kreinin and Zhang |[11] proposed
another model which avoids MC simulation for homogeneous pools. This section provides

an overview of their approach.

For a homogeneous pool,
K
LPY = N-(1-R)Y Z(n <t;) = N-(1-R)- 1P, (2.27)
k=1
where 7 is the indicator function, whence
P(LP = N-(1=R)-r) =P (1" =7). (2.28)

Then [8] derives the following recursive relationship (please refer to Appendix A.1 for

proof):
p <Z pool) ) Z p < (pool) ) p (lg)i););)'],l{fm e m)
-y {P (153‘;"” _ m) . /OO P (zgf"‘;lj}’( ™ m|X, = x) d@(xi)] o (2.29)
m=0 —oo
where l(foi’l }K " denotes the number of defaults for a pool of size K —m during the time

interval (t,_1,%;]. For a homogeneous pool, py;(z) = p;(z) forall k =1,2,--- K, x € R,
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whence
—m K -m — —
P (lgf—ﬁz)']’K =r—m|X; = xz) = i) ™ (1 = pilas))*
r—m
= Bin(r —m; K — m, pi(z;)), (2.30)

where Bin(k;n,p) denotes the Binomial probability of k& out of n events occurring with
individual success probability p. Notice that (2.29) is just matrix multiplication with a
lower triangular matrix which has P (l(pOOIE]K i m> as the value in its r-th row

and m-th column. For the base cases, P (lépOOD = 0> =1land P <l((]p°°1) = m> = 0 for all
m=1,2--- K.

2.4 Bootstrapping Default Probabilities From CDS Spreads

Default probabilities «; defined in (2.17) are fixed input parameters into the multi-period
multi-factor copula model. This section explains how to calculate «; from the CDS
spreads S(CDS) .

There are several different approaches to bootstrapping default probabilities of the
underlying entities from CDS spreads. Computing times-to-default can be accomplished
with dynamic hazard rates as in Section 6 of [4], with constant hazard rates between
CDS maturities in different, yet, similar approaches presented as Solutions 1 & 2 in [5]
and as described in [3]; arguably, the most intuitive and simplest approach is described
as Solution 3 in [5] and on pages 18-19 of [2].

Let p(CDS)

P(7 <'t;) be the default probability that we wish to bootstrap from the
CDS quotes. Then the pricing equations for a CDS with maturity at time T are given
by

E[DEPY] = (1 N - Z (CDS) _ p(CD8)y . (2.31)

nr

5This is typically referred to as “bootstrapping”in the finance literature
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nr
E[PCPY] = N - sl N (1 —t,0) - (1= p ") - £, (2.32)
=1

where the expectation is taken with respect to the risk neutral probability measure. We
can understand the default leg as the probability of default in time interval (¢;_1,t;]
multiplied by the loss given default (1 — R) - N and discounted back to the present value
with f;. Hence at each time ¢; we are computing the expected loss given default. The

premium payment is the spread snT DS)

times the notional N multiplied by the fraction
of the year (t; — t;_1) associated with this payment, times the probability of the entity

not defaulting by time ¢;, again discounted back to the present value with f;.

To bootstrap the default probability, we obtain the spread SSCDS) for a CDS that
matures at time ¢; and solve for p%CDS). We then obtain the spread sgCDS) for a CDS that
matures at time ¢, and solve for péCDS) using piCDS) and repeat this procedure recursively.
As a technical note, we perform linear interpolation of CDS quotes®. The spread is

(1-R)-> " (pECDS) — pf?s)> - fi

(CDS) _ =1

Sy = . 9 : (2.33)
1’ Z (1 —D; ) fi
where we have used (t; —t;_1) = 1/4. Using p (CDS) — 0, we can solve to obtain
p(CPS) Pir<t) = i S§CDS) (2.34)
1 =T TR '
This is our base case. We can solve for the other pl “P8) for § = = 2,3, -+ ,np using the

recursive bootstrapping formula:

pZ(CDS) _ (_ (CDS) (frFij CDS )> n
i—1
(1-R)- (fi p{ehs) _ Z@-ODS) _pg,(i]fs)) : fj)> /((1 —R)- fi+ }L 5PV -fz-) . (2.35)

j=1

6Standard industry practice is to use a linear interpolant [2].
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Simple 2-period tree parametrization
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Figure 2.1: Simple 2-period tree parameterization with 3 parameters: ¢ = (v, u1, p1),

used originally in [11].
2.5 Original Model Parameterization

The Single-period Single-factor Copula Model (SSCM) produces an approximation s

nr

to the CDO market spread mﬁfp using the ratio

E(pool) [Dr(ztr)}
st = —(:) (2.36)
E(pool) |:-PnT ]

where the default and premium leg expectations were previously given by (2.5) and
(2.6), respectively, and expectations with respect to the risk neutral pool loss probability
are computed using SSCM, for example [1]. In this section, we describe how MSCM
(proposed by JKZ [11]) computes the approximation to the CDO market spread.

In their example in [11], JKZ model the dynamics of the market using a tree structure,
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depicted in Figure A.2. To illustrate the approach, we consider a simpler tree parameteri-
zation in Figure 2.1, where the copula correlation parameter 3;, introduced in Section 2.2,
follows a specific path (referred to as the scenario) in time with a specific probability:
scenario values are parameterized using v; and p; and probabilities are parameterized

using p;. There are two possible scenarios for the ;’s in Figure 2.1:

e 5 = v foralli = 1,2,---,20 and B; = v/ for all i = 21,22,--- 40 with

probability pq;

e f;, =y foralli =1,2,---,20 and §; = v, - uy for all ¢ = 21,22, --- 40 with

probability 1 — p;.

The full set of variable model parameters in this example is ¥ = (7, p1, p1), over which
the model calibration is performed. The fixed set of model parameters are the default
probabilities a; (2.17), which are bootstrapped from CDS market spreads, as explained in
Section 2.4. Figure A.2 depicts a more general tree parameterization with more periods,
but the idea is the same: each new period scenario branches from the previous scenario
using a different factor j1;, responsible for each period j, with a new probability p;, also
responsible for each period.

Recall that 8; € [0,1] in Section 2.2, and hence ¢; € [0,1] for j = 1,2,3. However,
one drawback to this tree parameterization is that if u is close to zero, then 3; > 1, for
1=21,22,--- ,40 and a separate set of constraints have to be added into the calibration
routine to overcome this. Other difficulties with this parameterization are summarized
later in Section 3.1. In the same section, we propose an alternative multi-path parameteri-
zation, which overcomes these difficulties. This multi-path parameterization consists of 3;
scenario-setting values 4 = (y1,72,- - ,7n,) and path probabilities p'= (p1, p2, -, pn,)-
We describe certain restrictions which must be placed on p in Section 3.1. The com-
plete multi-path parameter vector @Z is partitioned into 7,; = (7, Q/Tnﬁl:nw), where J has

ny = 2n, = 2n, elements and V41, = (Y 41, ¥n 12, ,¥n,). Probabilities p’ are
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set using ﬁnﬁmw in a trivial manner, described in Section 3.1. For simpler multi-path
parameterizations, p = Jnﬁlm , and the complete set of model parameters becomes
¥ = (3, 0):

Let 3 = (B1, B2y Pny) and @ = (aq, g, -+ ,ap,). In MSCM, 3 is a discrete
random vector, with scenario probabilities specified by p; in SSCM, ﬁ =(B8,---,B) for
the copula correlation parameter 3, with probability 1. In both SSCM and MSCM, the
CDO spread is a function of § and &, ie. s\ = s,(f;)(ﬁ,o?) 7. Hence in MSCM, the
spread sgf;) is a random variable through B, and MSCM approximates the CDO market
spread by computing the expectation

-

e (F) = B [s8 (3.8)13] (2.37)

where the fixed set of parameters @ is included for completeness. From a functional point
of view, the expected spread is a function enT ( ﬁ) of the model parameters J In our
model, (2.37) reduces to

@)= Y sl Py (=T =), (2.38)

all scenarios C
of B

where 5 specifies a specific scenario value of B , and the conditional probability is specified
by p. For the scenarios depicted in Figure 2.1, Py (5 = af = ’7) takes on values p; and

1 — p1; we can think of other realizations of ; as occurring with probability zero. Thus,

for the scenarios in Figure 2.1, (2.38) reduces to

ev(thrw)(w) = Sv(thrw) ((717717 T 771771/:“1771/lula T 771/:“1)7&) - p1+
(t)((’yla’}/h Y1, B, Y M, s Ml) ) (1—,01) (239)

(tr)

Now, notice that to compute s; ’ efliciently, we have to store previous values of

P (ll(poon = 7’) for time t;. Moreover, these probabilities depend on the values of 3,

"The only difference is that the risk neutral pool loss probabilities in (2.36) are modeled slightly
differently in SSCM and MSCM. For a description of SSCM, see [1]. MSCM’s risk neutral pool loss
probabilities were described in Section 2.3.
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which follow a particular scenario. So, we can keep track of all possible values that
P (ZEPOOI) = r) can take for different 3;’s. The expectations Epoo [LE“)] can also be
reused, but more copies have to be stored in memory due to the dependence on the

tranche. Chapter 5 explains such implementation details more completely.

2.6 Quadrature Methods

Due to the nature of the problem and to make the integration as efficient as possible, we
consider Gaussian quadrature formulas on a finite interval [a, b] as possible approaches.
An overview of these methods is given in Chapters 2 and 4 of [6]; for a more detailed
discussion, please see [7].

The goal is to compute the lower triangular probability matrix A; (see (2.43) below)

(pool),K—m

with entries P (l(z._“.]

=r— m) Let us denote the standard normal probability

density by
1

V2r

and the rest of the integrand in (2.29) by

h(z) = ® (Q_%ﬂix) <1 — P (Q_%@x» (2.41)

with the constant of integration

o(z) = exp (—2%/2) (2.40)

= . (2.42)

For each time t;, scenario for §; and entry given by r and m, we need to compute

A = PN =1 —m)
_ . / " h()o(x)dz. (2.43)

Gauss-Chebyshev and Gauss-Legendre n-point quadrature rules are of the form

/1 W(z)x(x)dx ~ Z wix(z;), (2.44)
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where W (x) is the weight function associated with the rule, x(x) is the function which we
would like to integrate®, w; are the quadrature weights and z; are the quadrature nodes.
The weight function W (z) is W(z) = V1 — 22 or W(x) = 1/y/1 — 22 for the Gauss-
Chebyshev quadrature rule, and simply W (xz) = 1 for the Gauss-Legendre quadrature

rule. Gauss-Hermite quadrature rules are of the form

/ exp(—2?)x(x)dw ~ ijx(:cj), (2.45)
oo =
where the weight function is W (z) = exp(—z?).

A change of variables can be made to change the interval of integration in (2.44) from

[—1,1] to [a, b] using

/abw(:t)x(:v)d:v = b;a/_iw($>x<b;ax+a—2|-b> dx

b—a b—a a+b
~ ijx( 5t ), (2.46)
j=1
where we have assumed w (5% + %) = W(z) from (2.44). These three quadrature

rules are discussed in the following subsections. The error formulas are not discussed,
because we provide an alternative strategy for determining the interval of integration
la,b] and the number of quadrature nodes n in Chapter 4. For a full discussion of why

we are only considering these methods and how they apply, please also see Chapter 4.

2.6.1 Gauss-Chebyshev

We can use both variants of the Gauss-Chebyshev formula:

ox(x) ' Y/ 2
Vi /IW) b (247

where the nodes are respectively given by

27 —1 '
T; = Cos < j2n 7T) and  x; = cos (n i 17?) (2.48)

8In our case, x(x) = c- h(x) - ¢(z).
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and the weights are given by

m . J
w; = — and  w; = e sin? (n " 17r) : (2.49)

2.6.2 Gauss-Legendre

This is often the simplest rule to use, as the weight function is W (z) = 1. The j-th node
x; is the j-th root of the Legendre polynomial P,(z), where P,(z) is normalized to give

P,(1) = 1. The weights are

wj = : (2.50)

2.6.3 Gauss-Hermite

This is possibly the most intuitive method to use for problem (2.43), since W(x) =
exp (—2?), and the interval of integration is (—o0o, 00). The j-th node x; is the j-th root
of the Hermite polynomial H,,(x) and the weights are

wy = 2T (2.51)
n? [Hy—1(z;)]

2.7 Error Functions

The purpose of calibration is to fit the model parameters to the CDO market quotes
mS;), according to some error criterion. More specifically, for the MSCM described in
Section 2.5, our goal is to fit a set of model parameter values @/7 = (7, p) to the market
quotes mﬁf;) by minimizing the objective function
) = >3 emor (By |s(F.d)17] .m) (2.52)
treTr TEM

for some error function defined in this section, where Tr is the set of tranches, and

M is the set of maturities. For notational convenience, we can re-write (2.52) using a
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double-index k = (tr,T) as

= > emor (B [sW(A.@)F]mD)., (2.53)
ke{(tr,T)|treTr,TeM}
where there are |Tr| - |M| terms in the sum (2.53), and |Tr| and |M| are the number
of terms in the sets Tr and M, respectively. Using this double-index notation, we also
abbreviate, for notational convenience in this section only, & = Ej [SS;)(B, &)W], my =
m | and let

fr(¥) = error (&, my,) - (2.54)

Hence we can also write (2.53) as

—,

F0) =" ful®). (2.55)

k

For an efficient implementation of the calibration procedure, the error function has to
be cheap to compute, has to be convex to ensure the uniqueness of the solution (at least
in simple cases) and has to be resilient to outliers [19]. Moreover, it is preferable for the

error function to have a continuous first derivative. The least squares error function
€IToIr s (gk, mk) = (gk - mk>2 (256)

satisfies three of these four conditions, but it is not resilient to outliers.

The linear e-insensitive error function [18]
errore (&, my) = max(|E — mg| —€,0), € >0, (2.57)

is resilient to outliers, but it has a discontinuous first derivative. The Soft Error Function

(SEF), described in [17] as a Soft Loss Function (SLF), is smooth and is as resilient to
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outliers as (2.57):

4
—(gk — mk) —€, & —mp < —(1 + 5)6;
ot 09° - if — (14 0)e < & —mi < —(1— 0)s

errore 5 (Ex, my) = 1 0, if —(1—8e<& —my<(1—0)  (2.58)

(gk*mk‘l;ilf&)E)Q’ if (1-08)e<& —mp<(1+0)e

Ek—mk—e, if(1—|—5)6<5k—mk,
\

where 0 < § < 1 and € > 0. See Figure A.1 for a comparison plot of these three error
functions. The first derivative of SLF is given as (9) in [17].

Recall that in Sec 2.5, the CDO tranches are ranked in order of seniority, with the
more senior, less risky tranches receiving smaller premium payments than the less senior,
more risky tranches. The premium payments are quoted as CDO market spreads m.
Hence, we need to match my in a relative error sense with MSCM approximation &, i.e.
we need to match the most significant digits in each CDO market quote my. For example,
if m;, is small in magnitude, then, if the MSCM approximation &, does not match my
precisely, the absolute error using any of the three error functions (2.56), (2.57) and
(2.58) will be small, but the relative error may be large. This behavior will result in poor
fits to the more senior, less risky tranches.

Relative error is computed by rescaling the absolute error by my. For (2.56), we

obtain

vel (& i\ Ek
errorg (&, mg) = | ——— | = errorg o 1. (2.59)
k

my

Using the same change of variables for (2.57) and (2.58), produces

Ek
error™ (&, my,) = error, (—k, 1) : (2.60)
my

&
errort (&, my,) = errore s <m—k, 1) . (2.61)
k
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The derivatives of relative error functions with respect to &, are computed with a single
application of the chain rule, to yield a multiplicative factor of 1/m;°.

Notice that parameter e in (2.61) controls the precision with which & matches my.
For example, if we want the quotes to match to 3 significant digits, then an appropriate

value for € is € = 9-10~*. For model results used in later sections, we simply set € = 1074,

2.8 Optimization Algorithms

In our context, the goal of an optimization algorithm is to minimize the objective function
(2.52) by changing the set of model parameters 15, introduced in Section 2.5. For the
models that we introduce in Chapter 3, the parameters z; = (Y1,%2,- -+ , 1Py, ) must satisfy
¢; € 10,1 for ¢ = 1,2,--- ,ny. We can turn the associated constrained optimization

problem for f(v) into an unconstrained optimization problem by introducing the change

of variables

by = L(uy) = H%p(—uj)' (2.62)

Note that for all u; € R, ¢; = L(u;) € [0,1] for all j =1,2,--- ,n,. Hence, to calibrate

our model, we can solve an unconstrained optimization problem for

In the following subsections, we provide a brief description of each optimization al-
gorithm we considered for calibration. Our goal is to determine an efficient algorithm to
calibrate MSCM. Since it is expensive to compute derivatives for this problem, we con-
sider optimization algorithms with and without derivatives. The Jacobian J is specific
to the Levenberg-Marquardt algorithm, and due to the nature of the algorithm we can

only use the least squares (2.56) and relative least squares (2.59) error functions in the

9We assume that realistically, the CDO market spread is never zero. Otherwise, this creates an unfair
situation for the investor in the tranche, since they are only covering losses in the event of a certain
number of defaults, but are not receiving any payments in return.
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Algorithm | Gradient | Jacobian | Hessian Rate of Convergence
NMS No No No Linear (parameter-dependent) [20]
NMRS No No No Linear (parameter-dependent) |20]
NMSHD No No No Linear (parameter-dependent) [20]
NEWUOA No No No Superlinear [21, 22]
SD Yes No No Linear 23]
CGFR Yes No No Linear to Superquadratic [14]
CGPR Yes No No Linear to Superquadratic [14]
LM No Yes No Quadratic [25]
BFGS Yes No No Superlinear [24]
BFGS2 Yes No No Superlinear [24]

Table 2.1: Algorithms used for model calibration, along with information about which
derivatives they use and approximate rates of convergence. Most rate-of-convergence

theory assumes exact line searches.

objective function (2.63). The Levenberg-Marquardt Jacobian computation is defined in

Subsection 2.8.2.2.

The gradient ¢ and the Hessian H are computed with respect to the unconstrained

objective function F'(u) (2.63).

We considered the following optimization algorithms to calibrate the dynamic copula
model: Nelder-Mead Simplex (NMS), Nelder-Mead Random Simplex (NMRS), Nelder-
Mead Simplex for Higher Dimensions (NMSHD), Powell’s Method (NEWUOA), Steepest
Descent (SD), Conjugate Gradient Fletcher-Reeves (CGFR), Conjugate Gradient Polak-
Ribiére (CGPR), Levenberg-Marquardt Nonlinear Least Squares (LM) and Broyden-
Fletcher-Goldfarb-Shanno (both BFGS and BFGS2, a more efficient implementation for

higher dimensions). These optimization methods are summarized in Table 2.1.
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2.8.1 Methods Without Derivatives
2.8.1.1 Nelder-Mead Simplex

The algorithm takes an input vector @ = (uy,ug,- - ,uy,) and forms an n,-dimensional

simplex with n, + 1 vertices j = 0,1,--- ,ny given by

T, = i, (2.64)

v; = (U1,U2,"'7Uj+8,"',Unw)for‘]:]_,Q,,"',nw,

where s is the initial step size. The step size s changes for each dimension as the algorithm
progresses. A single iteration consists of sorting the objective function values F'(v;) at
each vertex v;, and updating the simplex vertices using an algorithm which consists of
geometrical operations on the simplex, such as reflection, reflection followed by expansion,
contraction and multiple contraction. The simplex eventually contracts within some
neighborhood of the minimum. A full description of the algorithm can be found in [12].
The GNU Scientific Library’s (GSL) routine nmsimplex, which we denote by NMS, is one
implementation of this algorithm. The GSL contains another variant of this algorithm,
called nmsimplex2rand, which we denote by NMRS, for which the basis vectors are
randomly oriented, and do not necessarily follow the coordinate axes. The GSL contains
a third implementation of the Nelder-Mead algorithm, called nmsimplex2, which we
denote by NMSHD, which is more efficient for higher dimensional problems. See [16] for

implementation details.

2.8.1.2 Powell’s Method (NEWUOA)

Powell’s method, NEWUOA, is similar to the Nelder-Mead algorithm, but uses a set
of coordinate axes as basis vectors, along which a bi-directional search is performed
[13]. The function minimum can be expressed as a linear combination of these basis
vectors. The algorithm keeps a set of basis vectors along which a significant improvement

is achieved and ignores the rest, until convergence. For a detailed generic description
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of Powell’s method (with pseudocode), see [15]. An implementation of the algorithm,
deemed efficient for higher dimensions, is NEWUOA; see [13] for a detailed description

of the software.

2.8.2 Methods With Derivatives
2.8.2.1 Gradient Methods

Steepest Descent (SD) This inefficient method is included for completeness. More
efficient gradient search methods exist, such as Conjugate Gradient methods [14]. The
GSL implementation of the steepest descent algorithm performs a line search in the
direction of the gradient, doubling the step size after each successful step and decreasing
the step size using a tolerance parameter if the step is unsuccessful; see [16]| for a more

detailed description.

Conjugate Gradient (Fletcher-Reeves (CGFR) & Polak-Ribiére (CGPR))

The conjugate gradient method improves upon the steepest descent method by conju-
gating the gradient, thus implicitly accumulating information about the Hessian matrix
[24]. If the objective function at step k of the algorithm is F'(;), «; is the step size and
g(u;) is the gradient at step k, then the line search is performed along the direction §;

using F(u; + ;5;), where Fletcher and Reeves specify

%) g (2.65)

| Sj—1 (266)

as the two possible conjugations. Using exact arithmetic, both algorithms are exact for

linear problems after n,, iterations [24].
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2.8.2.2 Jacobian Methods

Levenberg-Marquardt Nonlinear Least Squares (LM) Let 7 € R™™ " denote a
vector of CDO market quotes me;’. Using the double-index notation from Section 2.7,

let

E(§) = Bz |50 (8, )17 ] (2.67)
denote each expected spread term, and let & (&) = Ej, (L(u)) denote the k-th element of
vector € of expected spreads across all tranches and maturities (containing n,, elements,
as does m). Then the least squares error function for vectors can we written as

2

—

EITOILS vec (5(@7),773) = ‘6_"— m| (2.68)
2
where @ € R™. The relative least squares error function for vectors is given by
1 = T = =% = T
eITOTTS vor <5./ﬁ’b, 1) = Hg/m —1|| = errorys vec (5./7%, 1> : (2.69)
’ 2

where “./” denotes vector element-wise division and 1 denotes the vector of length n,,

with all elements equal to 1. For (2.68), using a vector of small increments 5 €R™ we

can approximate a change in parameters « using the Jacobian matrix J; ; = %
J

as
U

= —

E(T+0) = E(@0) + Jo, (2.70)

where we are starting with some initial approximation J. Then we can compute the 5

that minimizes
2

-

Ham—m—ﬁ

. 2.71
2 (271)
Using the regularization parameter A > 0 (superscript ’ denotes transpose in this subsec-

tion) a regularized approximate solution to (2.71) is
(fJ+A05=J{Ewy—m). (2.72)

This completes the description of the general version of the Levenberg Marquardt opti-

mization algorithm for (2.68), see [16] for implementation details. For the relative version
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Algorithm 1 Generic BFGS algorithm for unconstrained optimization (transpose is

denoted by superscript /).

o= initial guess

Hy= initial Hessian approximation

for j=0,1,2,...
Solve H;5; = —VF(u;) for §; // compute quasi-Newton step
Ujy1 = Uj; + 5 // update solution

y; = VF(uj1) — VF(i;)
Hj= Hy + (4;9,")/(4;'5;) — (H;835; Hy) [ (5; H;85)

end

of the the least squares function for vectors, the same derivations apply, using (2.69) as
the error function, and interchanging £ and 1 in (2.68) in an obvious way, as specified

in the definition of the relative error function for vectors (2.69).

2.8.2.3 Hessian Methods

BFGS The BFGS method uses an approximation to the Hessian matrix and preserves
its symmetry and positive definiteness. For linear problems, it terminates at the exact
solution after at most n,, iterations, if exact line searches and exact arithmetic are used.
For the Hessian approximation formula, see Algorithm 6.5 in [24], restated as Algorithm 1.

GSL implements a more efficient version of the BFGS algorithm, which we denote by
BFGS2, which is specified by Algorithms 2.6.2 and 2.6.4 in [10]; see [16] for implementa-

tion details.
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Calibration

As introduced in Section 2.5, the recently-proposed Multi-period Single-factor Copula

Model (MSCM) [11] has two sets of parameters:

e default probabilities «; satisfying (2.17) introduced in Section 2.2. These are a
set of fixed parameters, denoted by &, which are calculated using a bootstrapping

process from CDS market quotes;

e a variable set of constrained model parameters J, which model market dynamics

of the homogeneous pool of underlyings.

To calibrate the model, we need to determine a set of the constrained model parameters
¥, so that the expected spreads E; [sﬁf;)(g, 62)\’7] match the CDO market quotes m\
across a range of tranches tr and maturities 7. This is accomplished by first choosing
some error function: either one of the absolute error functions (2.56), (2.57) or (2.58),
or one of the relative error functions (2.59), (2.60) or (2.61). Once the error function is

fixed, we minimize the objective function (2.52), restated here for convenience:

F) =3 3 error (By [sW (B a@)l7] ,mi?) (3.1

treTr TeM

where, for the models we develop in Section 3.1, ¢; € [0,1] for all j =1,2,--- ,ny. An

optimization algorithm has to be used in order to minimize this constrained objective

34
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function.
As noted in Section 2.8, we can convert the constrained optimization problem de-

scribed above into an unconstrained one using the logistic function

1

V; = L(uy) = T+ oxp(—uy)

(3.2)

Note that u; € R, ¢; = L(u;) € [0,1] for all j =1,2,---,ny. The initial starting guess

can be set using the inverse of the logistic function

4= —In (1 ;j%‘) , (3.3)

assuming that we have a starting guess for J The unconstrained optimization problem

can be stated as

ﬁgggw F(u), (3.4)
where
F<ﬁ) = f ((‘C(ul)’ﬁ(u2)v to 7£(unw))> : (3'5)

To use the optimization methods surveyed in Section 2.8, the unconstrained objective
function F(«) and its derivatives with respect to elements of @ have to be defined for
parameter values «; and ;. In Section 3.2 we describe how to compute the unconstrained
objective function F'(%0). Firstly, F(i&) contains massively parallel regions, and we can also
re-use certain data structures when computing F'(%) and its derivatives. This is outlined
in Subsection 3.2.1. Next, in Subsection 3.2.2, we prove that the computation of F() is
defined for all o;; € [0,1] for i = 2,3,--- ;ny and oy € [0,1) and for all §; € [0,1]. We
also show that the expected spread (2.37) quoted by MSCM is undefined when a; = 1.
In Subsection 3.2.3, we describe how to compute the derivatives of F'(u) for all o; € (0,1)
and for all g; € [0,1). Unfortunately, we are unable to prove the existence of derivatives

for all a; € [0,1) and all g; € [0, 1].

'Realistically, if o; = 1, then it is unreasonable to create a CDO contract in the first place. Such
scenarios should never occur in practice, yet have to be handled numerically as part of the pre-processing
step when using MSCM.
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3.1 Multi-Path Model Parameterization

Reference [8] proposes a tree model similar to that shown in Figure 2.1 in Section 2.5.
In this parameterization, the 3; values are associated with p;: each j; branches from a
previous (3;_; value using 5; = f;_1 - p1; and f5; = [5;_1/u; at the start of each new model
period, where p; € (0,1]. An obvious difficulty in this approach is that we could have
Bi = Bi—1/p; > 1 for some value of i. The author simply truncates §; at 1, and leaves
w; € (0,1]. We could avoid having ; > 1 by adding constraints to the optimization
problem, but we prefer to use models for which the change of variables described above
allows us to use unconstrained optimization methods.

Other shortcomings of this parameterization, illustrated in Figure A.2, are:

1. during the first period, the ;’s follow a certain scenario with probability 1, i.e. the

model does not account for market dynamics during that period;

2. during the last period, the probability of moving up when g; = 0, 8; > 0 to a higher
value is equivalent to the probability of moving from a value of §; =~ 1, 5; < 1 to

almost perfect correlation;

3. Figure A.2 shows Extreme Cases 1 and 2, where certain scenarios of [; are not

taken into account, i.e. they do not occur with probability 1;
4. as noted above, the parameterization could produce a 3; > 1;

5. each next period depends on the previous value of p;, which makes it difficult to

obtain derivatives with respect to (3; for subsequent periods.

The alternative multi-path parameterization described below addresses these deficiencies
by letting the model adjust the possible values of §; in each period, independently of
other periods, with unique probabilities. Furthermore, the probability of transitioning to

another period does not depend on the previous period.
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One possible 2-period multi-path realization

¥, with probability 0 < p, < 1/3

75
07571 1 -, with probabilty 1 - (p, +p, +p,)

Y4 with probability 0 < p, <1

1-7, with probability 1 - P,

Possible . value
o
[6)]
|

Yq with probability 0 < Py < 1/3

0.25

¥, with probability 0 < p, < 1/3

Time (years)

Figure 3.1: A simple example of one possible configuration of the alternative multi-path
parameterization used in this thesis. The switch from one period to the next can be
adjusted arbitrarily, and more periods can be added in more complicated parameteriza-

tions.

Multi-path parameterization associates a set of branch parameters v and probabilities
p with each period. Figure 3.1 depicts a simple example of this parameterization using
2 periods, where the first period ends and the second period begins at 3.5 years. The
point at which one period ends and another begins is chosen as an arbitrary fixed value
in our models, although it could be a model parameter in more sophisticated models.
We associate one v, parameter and one p, probability parameter with the second period.
Thus, the second period has two possible scenarios. This is the minimum number of
scenarios per period that we use in the multi-path parameterization. We can add more
paths to each period, as shown in the first period, in this case, but we have to restrict the

probabilities p, because the sum of the path probabilities must be 1 in each period. We
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Algorithm 2 Pseudocode to restrict the probabilities p; to smaller

intervals, if needed. Probabilities p; are parameterized by ¥, ;.
// All indexes start at O

per = 0; // indexes the period
nbefore = 0;
nparam = n,/2; // number of p parameters, n, is always even
for j=0:(nparam - 1)
// skip over v parameters in the gradient
p; = (1.0 / number of p parameters in period per)*v;inparam
if ((j+1) - nbefore >= number of p parameters in period per)
// record number of p parameters that we’ve passed
nbefore += number of p parameters in period per

per += 1 // move to the next period

can enforce such constraints by modifying Jnﬂ/ﬂ;n , In 1/7 = (v, JMH:” ,) in the obvious
way, where each ; € [0,1] for all j =0,1,--- ,ny, originally given by (3.2). We simply
divide each 1, 4;, responsible for p;, by the number of p parameters in each period. For
example, in Figure 3.1, there are only 2 paths in the second period, associated with py,
so in that particular case, py = 9g. In the first period, p; = v, 4;/3 for all j = 1,2,3,
because there are three p probabilities associated with the first period. This adjustment

of the IEn,Y-i-l:nw values is detailed in the pseudocode in Algorithm 2.

The parameterization shown in Figure 3.1 has 8 distinct paths. For example, one
such path is 8; = v for all : = 1,2, --- |14 (the period switch at 3.5 years occurs after 14

quarterly payments), and 3; = 1—~, for all i = 15,16, - - - , 40 with probability p;-(1—p4).

Let r; denote the period, where j = 1,2,--- ,n, and n, is the number of periods.

Each r; is a time interval that has associated with it a set of parameters v, » and p;, 1,
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k=1,2,--- ,n;. Then all the 8;’s associated with period r; satisfy either

Bi = Y,k with probability p,, x, 0 < p,,x < 1/n;
or
n;
Bi = 1=, with probability 1 - p, x. (3.6)
k=1

For example, if we have a single period r; that covers the fill lifetime of the CDO and
if n; = 1, then all the ;’s are either v, or 1 — ~; with probabilities p; and 1 — py,
respectively, where 7, and p; € [0,1]. We have double-indexed elements of 4 and g to
succinctly represent the parameterization, but the optimization algorithm can only be
given a single vector @/; We now provide pseudocode for associating 3; with a particular
scenario, indexed by rg and ce.

The set of parameters can be partitioned into 1/7 = (7, Jnv—l-l:nw% where ¥ = (v1,7%2, "+ Vn,)

and wnw—i-l:nw - (wnw—l-lawnw—l—% T 7¢n¢) and Ty = 2”72-

We have to efficiently extract
the parameters associated with each period from the parameter vector J Consider an
indexing convention with rows rg indexing the possible parameter scenarios (also called
period branches) for each period r;, and with columns cg indexing the period®. Then
given the time index i, rg and co we can determine the corresponding value of 3; and the
corresponding probability. The pseudocode for extracting parameter values is given by
Algorithms 3 and 4 below. For example, in Figure 3.1 the constrained parameter vector
is z; = (71,72, 73, V4, U5, Vs, 7, 15). If we start indexing at 0, then for (rg,ce) = (3,0),
pi = 1 — 3 with probability 1 — (p1 + p2 + p3), i.e. there are three v € 7 parameters
associated with the first period, and the last branch in the period is parameterized by
the value 1 — ~3. Note that 1 — 3 € [0, 1]m since 3 € [0, 1].

For example, for the multi-path parameterization depicted in Figure A.2, there would

be 2 = 16 possible scenarios (paths) that 3; could take, each with its own unique

2The number of elements in z/_; is always even by construction.

3@ denotes a hypothetical matrix. Imagine the paths in Figure 3.1 as elements in the matrix ©, then
the depicted parameterization forms a 4 x 2 matrix ©, with empty entries in O3 > and O3 3, if © indexing
starts at zero.



CHAPTER 3. CALIBRATION 40

Algorithm 3 Pseudocode to extract the probability related to the period

co and to the branch rg from the parameter vector p.

// Indexes for 1y and ¢y start at O
function prob = get_prob(rg,ce,p)
// Determine how many probs p were in previous periods
nprobs_before = 0;
// Count the number of parameters in previous periods
// and skip over them
for j=0:(co-1)
nprobs_before += number of parameters used in period j
// Determine which p value to currently use
if (number of parameters used in period cg == rg)
// subtract the last probs in current branch column
prob =1
for j=0:(co-1)
Prob -= phprobs_beforetj // P index starts at zero
else if (rg < number of parameters used in period cg)
Prob = fuprobs_beforetre ~ // P index starts at zero
else
error ("This should never happen.")

return prob;

probability. Figure A.3 shows more possible parameterizations. It is possible to have
many market quotes for the calibration (see Section 6.1 for the description of the data

sets available). Hence the depicted parameterizations still result in a parsimonious model.
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Algorithm 4 Pseudocode to extract the value of [(; related to the period

co and to the branch rg from the parameter vector 7.
// Indexes for ry and ¢y start at O

function f3; = get_beta(re,ceo,?)
// Determine how many - were in previous periods
ngammas_before = 0;
// Count the number of parameters in previous periods
// and skip over them
for j=0:(ce-1)
ngammas_before += number of parameters used in period j
// Determine which 7 value to currently use
if (number of parameters used in period cg == rg)
Bi = 1 - Yngammas_beforetro—1 // 7 index starts at zero
else if (rg < number of parameters used in period cg)
Bi = Vngammas_before+re // 7 index starts at zero
else
error ("This should never happen.")

return [;;

3.2 Objective Function And Derivative Computation

For Optimization

In this section, we first describe how one can exploit the massive parallelism of MSCM
when evaluating the constrained,objecthmafunctknl(f(db (2.52), or equivalently, the un-
constrained objective function F'(u) (3.5). We also outline in Subsection 3.2.1 how to

improve the efficiency of objective function evaluation by re-using various probabilities

and expectations during pricing. We then prove that either objective function can be
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evaluated for all a; € [0,1] for i = 2,3,--- ;ny and oy € [0,1) and for all 3; € [0,1]
in Subsection 3.2.2; we also show that the expected spread (2.37) quoted by MSCM is
undefined when «; = 1. In Subsection 3.2.3 we proceed to compute the derivatives of the
objective function F' () with respect to elements of @ for all a; € (0,1) and all 5; € [0, 1).
Unfortunately, we are unable to prove anything about the existence of derivatives for

a; €[0,1) fori =2,3,--- ,ny and oy € [0,1) and for all 5; € [0, 1].

3.2.1 Parallelism

-,

The goal is to minimize either the constrained objective function f(v) (2.52), or equiv-
alently, the unconstrained objective function F(@) (3.5), which reduces to computing
spreads for different scenarios of 8;. The computation is partitioned into three stages,

each of which is massively parallel:

1. integrate the probability matrices A; (2.43) for all scenarios of f; and store them

in memory. This can be done in parallel, since each A; depends on «; and (; only.

1

2. compute data structures which store P (l(poon = r) and E(poon [ll(tr)}, which are
reused during the next pricing stage. This can also be done in parallel by creating

a parallel process for each scenario in the multi-path parameterization.

3. price the CDO spreads sﬁf;) (5’, a) for different scenarios of 5, using the data struc-
tures in stage 2, which are dynamically populated during pricing (see Subsec-
tion 5.2.1 for a specific description of the dynamic programming implementation).

This too can be done in parallel.

3.2.2 Objective Function Evaluation

The unconstrained objective function F'(u) (3.5) is defined for all a;, 8; € (0, 1). The goal
of this subsection is to extend the definition of F'(@) for all o; € [0,1] fori =2,3,--- ,nr

and a; € [0,1) and all §; € [0,1]. This is accomplished by considering the four limits:
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a; - 0%, a; = 17, B; » 0" and ; — 17, denoted for brevity as lim,, g, 0+ 1-, of the
objective function F()

lim  F(&). (3.7)

a;,Bi—0+, 17
We also demonstrate that the pricing equation for the spread quote (2.9), restated below

for convenience

Z?:Tfl Elpool) [Lz('tr)] - (fi = fir1) + Epool [LS;)]  for
2id <K N5 = Epooy [Lz('tr)D (i —tic1) - f

tr) __
s =

(3.8)

is undefined when o; = 1, which makes the expected spread E; [sﬁf;)(*, o?)W} (2.37),
quoted by MSCM also undefined®.

Recall from Section 2.5, that the computation of Ej [sﬁf;)(ﬁ, &)W] (2.37) is reduced
in Section 2.1 to the computation of the MSCM spread approximation SS;) (Bi a) (2.9),
restated as (3.8). In the same section, this is further reduced to the computation of
Epoo) [LE“’] (2.16), restated below in (3.9). Computation of Eye0 [Lgtr)} is further
reduced to the problem of estimating P (lngOI) = r), given by the recursion relationship
(2.29), restated below for convenience in (3.17). It is trivial matter to verify that, provided
the denominator of the spread (3.8) is non-zero, each of the four aforementioned limits

a;, ;i — 01,17 is defined up to the stage of computing P (lz(poon = r). Recall from

Section 2.1 that E(poay L") | (2.16) is given by

K
. K - S(tr) K - q(tr) oo

B [1] = -0 3 i (5 mas (0.0 = 550 ) ) 1 (1 =),

(3.9)

where (™) and S®) are given in percent, and LEpOOl) = N-(1-R)- l§p°°1)7 lz(pOOI) c

0,1,---, K. Notice that from the no arbitrage argument in [11], the expected pool loss

Epoon) [LE“’] is a monotonically increasing function. Hence, the denominator in (3.8)

4Recall from Section 2.1 that the Equity tranche is priced differently, and its pricing equation is
defined when a; = 1. However, we are later concerned with the Mezzanine tranches in this thesis, and
the setting of o; = 1 has to be handled.
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can only be zero if for time ¢ = 1 (first time step) for any

K
> B (gl ) 1
r>1 g (S + a(™) (3.10)

we have P <l§p°°1) = r) = 1. Following the no arbitrage argument in [8], the expected

tranche losses E(,o01) [LE“)} are monotonically increasing. We later show that when

1 = ]_,
. (tr) | . . Qltr)
lim E(pool) Ll =K-N-S (311)
a1 —1—
for all i = 1,2,--- ,ny and all tranches tr. This makes (3.8) undefined for all ny and all
tr.

To compute lim,, g,0+ 1- Epool) [Lgtr)} , we have to compute lim,, 5, o+ 1- P (lEPOOI) = r>.
Let P; € RE+! denote the exact value of the probability vector at time ¢; (pool loss prob-
ability) with K + 1 elements P <l§p°°1) = 7’), r=20,1,---, K, and let A; denote the exact
value of the lower triangular integration matrix with entries [A;],,, = P (lgff(fg]’K_m =7 — m)

(2.43), restated here for convenience

(Al = [ o (3.12)

where

—~

3.13)

. (I)_l (Oéz> — BZI o _ (I)_l (Oéz> — ﬁLI e
h(x)-@( T ) (1 <I>< T )) )

is the Riemann integrand, where the functions py;(x) = p;(z) (2.25) are

pi(z) =0 <¢_1 (o) = 5”“") , (3.14)

V1-5
where ®(-) € [0, 1] is the standard normal Cumulative Density Function (CDF) and &~!

is its inverse. The Riemann constant of integration is given by

K—-—m
c= (3.15)

r—m
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and the standard normal probability density function is given by

1
¢@F=%%

Then the recursion (2.29) can be written succinctly as

exp (—z%/2). (3.16)

b= AP (3.17)

using matrix-vector multiplication.

The computation of the four limits of the objective function reduces to

l h da. 3.18
im e [ h@pot)ds 3.18)
In each of the four cases, 8; — 17, f; = 07, a; = 17 and oy — 0F, foranyr =0,1,--- , K

and m=0,1,---,r, one way of finding
l h d 3.19
im e [ h@pole)ds 5.19)

is to prove

. h dr = lim h d 3.20
O /_ _N@)d(@)de =c /_ gl k(@) (3.20)

and then to compute the right hand side in the above equation. Otherwise, we cannot
say anything about the limits, because the integral specifying [A;], = is intractable ana-
lytically. We can invoke the Dominated Convergence Theorem (DCT) and it corollaries,

stated in [48]°. We can rewrite (3.12) as a Riemann-Stieltjes integral using

c/oo h(z)p(x)dx = c/oo h(z)d®(x), (3.21)

—00 —00
where ® denotes the standard normal Cumulative Distribution Function (CDF) that has
a probability density function ¢(z) (3.16) with respect to Lebesgue measure.

We are now in the position to state the assumptions, required to use DCT. First, we

must obtain an integrable dominator G(z), such that

|h(2)] < G(x) (3.22)

SDCT and its corollaries are well-known, and are available from other functional analysis texts.
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for all z € R. Setting G(z) = 1 provides such a bound, because h(z) only contains
probabilities, raised to positive powers. Clearly G(z) is integrable with respect to ¢(x),

because

/: dd(z) = /_Z \/12_7Texp (—%2) dr =1 < oo (3.23)

is just the area under the standard normal probability density.
Next, before applying DCT, we must show that any of the four limits exist, i.e.

lim  h(z) = A () (3.24)

@, ;=017
for all z € RS for some function ~(<°™)(z). In the results below, we are using the fact that
the standard normal Cumulative Density Function (CDF) ®(z) and its inverse ®~!(z)
are continuous functions, whence

lim (I)(X(x)):@( lim X@)), (3.25)

ai,ﬁiﬁo"',l_ ai,ﬁi%O“',l—
li ! = li 3.26
m ey = (|t (@), (3.2
if lim,, 5, 50+1- X(2) exists for some function x(z). We now determine h(°®™)(z) for all

r=20,1,--- , K and all m = 0,1,--- ,r for each of the four limit cases:

1. Case oy — 17: for all r = K and m = 0,1,--- , K, we obtain lim,, ;- h(z) = 1.

Otherwise, lim,, ,;- h(x) = 0.

2. Case a; — 0%: for all r = 0,1,--- , K and m = r, we obtain lim,, o+ h(z) = 1.

Otherwise, lim,, ,o+ h(z) = 0.

3. Case f; —» 0T: forallr =0,1,--- ,Kandm =0,1,--- ,r, we obtain limg, o+ h(z) =

o™ (1 — )", because ® (& (oy)) = .

6We can relax convergence to hold almost everywhere [48], but in our case we can use this stronger
result.
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4. Case ; — 17: we obtain

.

1r—moiK—r, if 1 < & Y(ay);
h(conv) ($) _ (1/2)r—m (1/2)K—r : if ¢ = (I)_1<Oéi); (327)
gr—m1K-r if > @& ay).

\

We have established all assumptions necessary to use DCT. We can now apply DCT,

which states that under the above conditions

lim / () d () = / T dim h(2)do(). (3.28)

0/1',7/877_>0+:17 —00 — 00 aj,ﬂi—)0+,17
In the first three cases below, we are integrating a constant with respect to the standard

normal Lebesgue probability measure. The last case is more tricky and requires another

proof, stated as part of the case 4 below. We now obtain the following four cases:

1. Case a; — 17: for r = K and m = 0,1,---, K, we obtain [4;];,, =1 (i.e. last
row of A; is filled with 1’s); otherwise [4;],,, = 0.

2. Case a; — 07: for r = m and m = 0,1,--- , K, we obtain [A;], . =1 (i.e. the
diagonal of A; is filled with 1’s); otherwise [A;], ,, = 0.

3. Case f; — 0F: for all r = 0,1,--- , K and m = 0,1,--- ,r, we obtain [4;] =

r,m

K—m

al ™™ (1 — o)

r—m

4. Case B; — 17: we start with the following equality, and then consider different

cases for different values of » and m:

c/oo RO (2)dd (z) =

d ()& &~ (ay)+E
lim / R (2)dd (z) + / RO (2)dd ()
£=0 —00 D= 1(a;)—¢

n /@ N h<conv>(a;)dq>(x)} | (3.20)

“Hag)+E



CHAPTER 3. CALIBRATION 48

First, consider the middle term | f:ll((;g)_f h(c™) (7)d®(x) and notice that the in-
tegrand 0 < Al™)(z) < 1 for all # € [ 1(ay) — & @1 (ay) + €] and for all
r=20,1,---,K and m = 0,1,--- ;7. Hence, we can use the squeeze theorem

: (o) +€ (conv) — ; ; .
[49] to prove that lim,_,g fq)_l(a,)f5 h (x)d®(z) = 0 using the following result:

O~ (aq)+€
0 < lim RO (1) dd ()
20 Ja-1(a;)—¢
P! (i) +€ . )
<l dd(x) =1im |® (P () +&) — P (P (o) — =0. (3.30
<l [ a0 = i [0 (0700 +) ~ 8 (97 a) — ] =0 (330)

For all = K and all m = 0,1,--- , K — 1, and using the fact that ® (&~ (o)) =
a; we obtain [* @07 pleom) (1)dd(z) = D (@ (ay) — &), and taking the limit
¢ — 0 we obtain a;. The term A©™)(z) is zero for all € [®'(oy) + £, 0]

for these settings of r and m. Hence, ¢ [*°_hl™)(2)d®(z) = ¢ a; = o, since

K—m K—m
Cc = = == 1
r—m K—m
Similarly, for all m = r and r = 0,1,--- , K — 1 we obtain h(©°™)(z) = 0 for

all x € [—00, @} (y) — ] and f‘lfil(a,j)—&-{ Rl (2)dd(z) = 1 — & (P ay) + €)
and taking the limit as & — 0 we obtain 1 — ;. Hence, ¢ [ ™) (2)d®(z) =
K—-—m K—r
c(l—w;) =1—q, since c = = = 1.
r—m 0
For all other r and m, except r = m = K, h(®°™)(z) = 0 on [—o0, ®~!(e;) — £] and

[ (a;) + &, 00]. Notice that at r = K and m = r the first and last terms in (3.29)

are o; and 1 — o, respectively, and sum to 1 after taking individual limits as & — 0.

o K—r 0
Hence, ¢ [*°_ h{“™) (2)d®(z) = ¢ = 1, since ¢ = = = 1.
r—m 0
In summary, for all 7 = K and all m = 0,1,- -+, K — 1, we obtain [4;];,, = a; (i.e.

last row of A; is filled with «;) and for all m = r and r =0,1,--- , K — 1, we obtain
[Ai],, =1 —a; (i.e. diagonal of A; is filled with 1 — ;). For r = K and m = K,

we obtain [A4;] = 1.
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Notice that in all of the above cases for «;, 8; — 01,17, the columns of A; sum to
1. It could also happen that a combination of the above cases could occur, for example
a; — 0" and 3; — 17. In this case, we would handle the «; cases first, because the spreads
sg;) (2.9) have to be defined for any realization of (;, before computing the expectation
E; [sgp(ﬁ, o?)W]. Notice, however, that for all » = 0,1,--- , K and m = 0,1,--- ,r we
can verify the following result by direct computation:
lim lim c/oo h(z)p(z)de = lim lim c/Oo h(z)p(x)dx

Bi—0t,1= a;—0+,1— ) _ a;—0t,1- g;—0+,1- o

= lim c/oo h(z)p(z)dz, (3.31)

042‘4)0+,1_ — 00

because «; limit cases produce values which do not depend on £;.

Using the notation from the recursion relationship (3.17), the multi-path parame-
terization branches described in Section 3.1 are started with the column vector Py =
(1,0,---,0) and E(po0l [l(()tr)] = 0 for all tranches tr. Now, consider the first time step in

the recursion relationship (3.17). For each of the four aforementioned limit cases of [A;]

we obtain the following values for the column vector P;:
1. Case a;y — 17: P, =(0,0,---,0,1).
2. Case ay — 0": P, =(1,0,0---,0).
3. Case /1 = 07: P, =(1—0a1,0,0---,0,1).

K
. Case /1 — 17: the r-th element of P, is given by [P], = af (1—o

r

)K—r

W~

Y

forr=0,1,--- | K.

From case 1 above, we get that P <l§p°°” = K) — 1 whenever a; — 1~. The condition

(3.10) is then satisfied”, and, as mentioned at the beginning of this subsection, the spread

"Recall that, following the no-arbitrage argument in [11] the default probabilities ; are monotonically
increasing.
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pricing equation (3.8) becomes undefined in the limit oy — 17 because relationship (3.11)
produces a zero in the denominator of (3.8) for any maturity 7" and tranche tr.

Hence, we have shown that the objective function F () (3.5) is defined for a; € [0, 1]
fori=2,3,--- ,ny and oy € [0,1) and for all §; € [0,1]. The next section attempts to
derive a similar result for the derivatives of the objective function with respect to the

unconstrained set of MSCM parameters .

3.2.3 Derivatives Of The Objective Function

In this subsection we compute the derivatives of the unconstrained objective function
F(a) (3.5) with respect to the elements wu, of the parameter vector @. We also prove that
we can compute these derivatives for all ; € (0, 1) and for all §; € [0,1).

The derivative of the logistic function £ is

0
ou,

Lu) = Lwy) - (1 — L(uy)). (3.32)

Recall that the probabilities p are scaled from Jnﬁl:nw, as described in Section 3.1. Using
the chain rule, this simply adds the same scaling factor of the reciprocal of the number
of p parameters responsible for a certain period, in an obvious way, as was described in
Section 3.1. Detailed pseudocode for gradient computation is provided by Algorithm 5.

The derivatives of the error functions are provided in Section 2.7 and they are easy
to compute.

Let us denote the expected spread, conditional on the values of parameters 7 and p
by Ej [sgf;) (B’)W] =E; [sﬁf;) (B’, o?)W} , removing the notation which specifies dependence
on the vector of fixed parameters @. The derivatives of this expected spread with respect
to probabilities p, € p'is easy to compute. Expression E; [sgf;) (E)W] either has the term
p, multiplying some realization s\") of the spread, or the term —p,, or E; [SS;)(B)W]

may not depend on p, at all. We illustrate the computation of the gradient with the

example in Figure 3.1. If we would like to compute the expected spread with maturity
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Algorithm 5 Pseudocode to scale the gradient when computing the

derivative with respect to probabilities, parameterized by ”(/}j+nw/2.
// All indexes start at O

co = 0; //period index
nbefore = 0;
nparam = n,/2; // number of p parameters, n, is always even
for j=0:(nparam - 1)
// skip over v parameters in the gradient
gradient (j+nparam) = (1.0 / number of p parameters in period cg)
*L_logistic_function_derivative(u; nparam ) * (8pj error_function at ;nparam)
if ((j+1) - nbefore >= number of p parameters in period cg)
// record number of p parameters that we’ve passed
nbefore += number of p parameters in period cg

co *= 1 // move to the next period

of T'= 3 years, then there are 4 possible spread scenarios available, let us label them by

sj, where j = 1,2,3,4. Then the expected spread is given by

By [S2(B)F] = pus + pasa + pass + (1= pr = pa = pa)si, (3.33)

and it is a trivial matter to compute the derivatives with respect to p,, v = 1,2,3,4. If
we consider a maturity of 7' = 5 years, then there are 8 possible scenarios available for
the spread, and p, is now involved in the computation, unlike in (3.33). For example, one
possible path out of 8 could have the probability (1 — p; — p2 — p3)(1 — ps) multiplying
some spread realization. Again, it is trivial to compute the derivatives with respect to
Pu-

We now describe how to compute the derivatives with respect to ,. Notice that due
to parameterization, given by (3.6), this reduces to just computing the derivatives with

respect to 3;, and in the case of 1 — 7, a negative sign appears in the derivative. The
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derivative of the realization of the spread s\%) (2.9), restated as (3.8) in this chapter, can

be computed with the quotient rule using

9 T 9

- Epoon [D2] = 37 (2 Eqpoo [L(“”’] - 2B [ tr)] Z 3.34

a,%/ (p 1)[ nT} = (8% (pool) [ 8%, (pool) i—1 fa ( )
O Blgony [PL] = s EnT: —2 B L) =) - S (3.35)
Oy, 0T =\ Oy, VLT

Notice that since the spread computation is undefined for a; = 1, this result propagates
into the quotient rule, and the spread derivative computation is also undefined when
] = 1.

The computation of the gradient further reduces to

9 9
v 0V,

(i) i gt
_ me < , TNax (0,7’ - _aR )) ain <l(p001) 7’) . (3.36)

Hence the computation is further reduced to
(

W —vea-n)

)

E(pool) [lgtr)} _

a%LP (l pocl) 7’) , it B =

0 (pool)
\ =7r) = 9 ( ool) . o .
nyP (ll ) f ) I (l p ) 5 lf /BL — 1 71/; (337>

0, otherwise,
\

where v, denotes some v, € 7 and (3, denotes some 3, € 5 Notice that if 5, was not used
for time ¢;, 1 < i <, or P (l§p°°” = r) was not created recursively from a particular
scenario where [, was used, then 9g P (l§p0°1) = T) = 0.

Let P/ = 95 P ( o) — r) and let [A]], . denote entry Js, P (léfffz]’[(_m =r— m).

Then the derivative of the recursion relationship (3.17) can be written as
Pl =A P+ A P (3.38)

Notice that (3.38) abstracts different scenarios of dependence of P;, P!/, A; and A} on
B.°. If A; does not depend on f3,, then Jg, [A],,, = 0 for all r = 0,1,--- , K and all
m=0,1,--- 7.

®In most cases, either P/ is a zero vector, or A/, is a zero matrix.
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Up to this point, all equations have been defined for all «;, 5; € [0,1], except the
spread pricing equation (3.8), which was discussed in Subsection 3.2.2. In order to

compute [A}] . when A; depends on (3, we can prove that

T?

9 [~ * 9
C@ﬁi / h(z)o(z)dx = h(z)p(x)dx, (3.39)

“ ") 05
by invoking another corollary of DCT for derivatives [48| of the integrand h(z) (3.13).
We can then approximate the right hand side of (3.39) using some quadrature rule from
Section 2.6. Recall the equivalence of Riemann and Riemann-Stieltjes integrals in (3.21),
hence proving (3.39) is equivalent to proving the result using Riemann-Stieltjes integrals.
Let us denote hg, = 0g,h(x). To use the DCT corollary for derivatives, we must show
that

’hﬁz(m)‘ < Gﬁi(x)> (340)

for all x € R for some dominator Gpg,(z), which does not depend on «a; or ;. We can
switch to a Riemann-Stieltjes integral, because the standard normal probability density

term ¢(x) (3.16) does not depend on §;; recall the equivalence (3.21). Then

1
hau(@) = == 15(x) - 1 () - i (=) (3.41)
where
2
> '(a;) — B
hS)(z) = exp —% (—%)_ﬁfx) 7 (3.42)

O (o) —
i) = B

WS (@) = (r—m) i)™ (1= pia)) " = (K — 1) (1= pi(@)) " i)™, (3.44)

(3.43)

and p;(z) = ® ((@*1 (o) = Bi-x) [y/1— Bf) Now we have to find an integrable domi-
nator Gg,(x), which does not depend on «; and f;, and which satisfies (3.40). Consider
some small real constant & which can be infinitely close to zero, but which can never

equal zero. Let us restrict oy € [€,1 —¢] and §; € [0,1 — &]. Then term )h(;) (x)’ can be
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bounded in absolute sense by

0 (@) < (3.45)

and the bound is maximized when 3; = 1 — ¢ (denote this value by 3) and when o is
either £ or 1 — £. Without loss of generality, let us pick o; = £ and denote it by a. We
can bound h(;) (x) in absolute sense, if we fix £. The most sensible bound that we can

find for A} (z) is

h(ﬁl)(x)‘ < 1, because even if we fix 8; and «;, the absolute maximum of
hg,(x) depends on the interaction of h(ﬁll)(x) and hg)(x) for all x, and eventually we could
encounter a value x = ®~!(a)/3, at which point the exponential term simply becomes
1. The bound on the term h(ﬁi) (x) is easy to compute.

We obtain the following dominator
1 plo~t(a)] + x|
s 1 — 623 .

Using the fact that [~ |z|d®(x) = 2/v/2m and the fact that @ is the standard normal

Gg,(x) = (2r + K +m)

(3.46)

CDF, we obtain

/_Oo G (2)dD(x) = (2r + K +m) \/127 1 i = 5lo'(a)] + \/% < oo (3.47)
This completes the proof that we can interchange the integral and the derivative in (3.39)
for all ; € [€,1 —¢&] and all §; € [0,1 — £] for arbitrarily small but non-zero &.

The proof techniques used for 5; < 1 do not work for 5; = 1, so we were unable to
compute [Af], . for §; € [0,1]. The same situation occurs for a; € [0,1]. Realistically,
values a; = 0 and a; = 1 are highly unlikely in practice. This is discussed at the end of

this subsection.

We can determine that for all r =0,1,--- K and all m=20,1,--- ,r

lim hg,(z) =c¢ -z, (3.48)

Bi—0F

where ¢; is just some constant. Recall that [*° zexp(—2?/2)dz = 0, and using DCT

corollary again, we determine that

im [ hydd(z) — / iy, dd(z) — 0, (3.49)

Bi—>0+ —00 —0 ﬁi—>0+
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forallr=0,1,--- K and m=0,1,--- ,r.

The constant £ can be arbitrarily close to 0, and at least up to floating point precision,
we proved that we can interchange the derivative d5, with the integral [*° h(z)d®(z)
for all a; € (0,1) and all §; € [0,1). We were unable to prove anything about the closed
intervals of a; € [0,1] and 3; € [0,1]. Realistically, «; are usually not equal to 0 or 1,
because if they were, then we would know that either underlyings cannot default with
probability 1, or they default with probability 1, respectively. Surely, if either case were
to happen, then it would not be reasonable to create a CDO contract in the first place.
The data sets used for calibration in this thesis (see Section 6.1 for the description of
data sets) never produce these default probability values of ;. It could happen that
during calibration, 8; = 1, but this is very unlikely, and in any event we can switch to
any gradient-free optimizer from Section 2.8 if this were to happen.

In summary, we have established that for all ; € (0,1) and all 5; € [0,1) the matrix

entries of A} = 0, [A;],,, are given by

n 1 [ K-m /ooe ( a:Q)e 1 (0 ) - B\
dom = 5= xp(—% |exp | —5 | —F———
, 2r \ ., oo 2 2 V1-— 32

X
| —|
—~
=3
|
S
S
s
—
|
3
L
—
|
b=
s
=
=
1
|
|
=
=
|
S
&
>
1
N
S
s
—
|
3
—_
QL
JH
w
Ot
=

where p;(z) = @ ((@‘1 (;) — Bi - x) /\/1—7@2) Notice that this derivative is taken with
respect to ;.

The Jacobian J for the Levenberg-Marquardt optimization algorithm in Subsec-
tion 2.8.2.2 can be generated from the individual terms & (2.67) used in the objective
function F', as outlined in the same subsection. None of the algorithms surveyed and
implemented by the GSL library require Hessian evaluation.

As can be seen from the discussion above, calculating gradients is quite complex for

this model. Calculating Hessians is even more complex. Therefore, we restricted our
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optimization methods to algorithms that do not require Hessians explicitly.

Parameter Base Cases The multi-path parameterization branches are started with

the column vectors Py, = (1,0,---,0), Pj = (0,0,---,0), and Epe0l [l(()tr)} =0 =

%E(pool) [l(()tr)] for all tr and v, where I} and F} are column vectors.



Chapter 4

Error Analysis

Recall from Chapter 3, that recursion relationship (3.17) requires the computation of the

following lower triangular matrix A;, with entries

[A;] :Pwmwnwzr—no:c[%h@w@m@ (4.1)

rom (i—1,7]

o0

forr=0,1,--- ,K and m=0,1,--- ,r, where

K—m
c= , (4.2)

r—m

h(z) = pi(e) (1= py(x))" ", (4.3)

pi(z) = & (q)_l\/(%ﬁix) . (4.4)

We proved in Chapter 3 that the computation of A; is defined for all a;, 3; € [0, 1] and all

r=0,1,--- ,Kand m =0,1,--- ,r. We derived the analytic expressions corresponding
to (4.1) for ay, B; = 0,1. Also recall that the r-th entry of the column vector P, € R¥+!
from Chapter 3 is given by P (ll(pOOl) = r).

Recall that the recursion relationship (2.29), restated as (3.17) in Chapter 3, can be
written succinctly as

P, = APy (4.5)

57
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using matrix-vector multiplication. However, because integrals (4.1) are intractable an-
alytically, we must approximate them numerically, using some quadrature rule (possible
quadrature rules were presented in Section 2.6). Let A; denote the numerical approx-
imation to A; using some quadrature rule, and let P; denote the resultant numerical

approximation to the pool loss probability vector, given by

A

B=Ab, (4.6

~

which demonstrates that the numerical approximation error in A; propagates into the
pool loss probability vector P.
In this chapter, we determine an integration strategy for A;, which guarantees that

the error in the pool loss probability vector P; satisfies

e

< tol (4.7)
1

foralli =1,2,--- ,np

max ?

where T.yx is the maximum maturity of the CDO contract!, for
some tolerance parameter tol. We determine the error € = e(tol) due to the quadrature
rule approximation in [/L} o as a function of the tolerance parameter tol, which guaran-
tees (4.7). Let Q (x(x); [a, b]) denote the quadrature rule approximation of the integral of

a function x(x) over some interval [a,b], and let I (x(x);[a,b]) denote the exact integral

of x(z) over [a,b]. Precisely, we prove that if either relationship

1 (¢ h(z)d(x); (—00,00)) — Q (- h(z)d(x); (—00,00))| < € (4.8)
holds for an open quadrature rule or relationships

I (c-h(z)p(x); (—00,a))| < di-e

|1 (c- h(z)o(x); [a,b]) = Q (¢ h(x)¢(x); [a, b)) < dy-e
I (c- h(x)p(x); [b,00))] < ds-e (4.9)

! Usually the longest life span of a CDO contract is Tyax = 10 years, which is equivalent to nr,., =40
quarterly payments.
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hold for some constants d; € [0,1], j = 1,2,3 and 23:1 d; = 12, for a closed quadrature

rule on [a, b], then (4.7) is automatically satisfied for all i = 1,2,--- ,nq, .

We derive this relationship between € and tol in Subsection 4.1. We also determine
the interval of integration [a, b] for a closed quadrature rule. Recall that the derivatives of
the probability vector P, with respect to 5, were denoted by P! in Subsection 3.2.3. We
have attempted to determine a similar relationship between the quadrature error eg, in

the quadrature approximation to dg, [A4;],.,,, which guarantees that the error in numerical

r,m?

approximation P! to P/ satisfies ”R’ — P!

< tol. Unfortunately, the theoretical error
1
bounds computed in all our attempts were too pessimistic, and did not result in a practical

value of €g,.

In Section 4.2 we describe which quadrature routines can be used in practice to
compute A; and we justify our choice of the Gauss-Legendre quadrature rule on [a, b].
Routines which guarantee the error bounds in (4.8) or (4.9) are very slow in practice,
and we cannot guarantee these bounds if we want to use a faster quadrature routine.
However, we develop an error control heuristic, which makes it very unlikely for (4.7) to
not hold in practice. We also suggest an integration strategy to approximate pool loss
probability derivative vectors P/, and demonstrate with numerical results that our error
control heuristic is very likely to produce errors which are a few orders of magnitude

smaller than required.

As a side note, we have attempted a number of changes of variables in (4.1) to undo
the step function behavior of p;(z) in the limit as §; — 17, but this did not result in
any usable bounds on the errors of quadrature approximations, and we were unable to
reduce the number of quadrature points needed to satisfy the requirements of our error

control heuristic.

2A natural choice is d; = d3 = 1/4 and dy = 1/2.
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4.1 Pool Loss Probability Error

In this section, we derive the aforementioned error control strategy for the recursion
relationship (4.5), which guarantees that (4.7) is satisfied, as long as either (4.8) or (4.9)
is satisfied for an appropriately chosen e.

Define ¢; to be the maximum absolute error in integral approximations (4.8) or (4.9)
at time ¢; for all » = 0,1,--- K and all m = 0,1,--- ,r and let ; be the maximum
absolute error of the column sums of the matrix A; at time ¢, (€;,0; € RT). Notice that
while ; is held constant during each period, «; changes in value at every time step t;.

We can further bound the quadrature error by letting

€= max €, (4.10)
i€{1,2, nrax}

where T, is the longest maturity of a CDO that we are using in the calibration; we
could have a single branch which spans the entire time frame, i.e. 10 years with quarterly
payments create 40 quadrature locations.

We can also bound

5 < (K +1)e; < (K + 1, (4.11)

which accounts for making maximum error in the same direction every time. So the error

bound becomes

‘ Piy1 — pz’+1 L HAiHPz' — A P, L HAiHPi — Ai+1Pi + AiJrlPi — A,
< HA¢+1 _Ai—l—lHIHPi”1+ HAZ‘HHI S Oip1 + (14 di41) . (4.12)
Let us further denote Y = (K + 1)e and then the error bound above becomes
‘PZ-H—]%H 1§Y+(1+Y)’ (4.13)

The initial error is HPO — ]SOH = 0, because we know the pool loss probability vector
1

exactly at time ty5. This together with (4.13) implies that

) P

NTmax MTmax

NTmax —

<Y Z [(1+Y)] = (1 +Y) Toex — 1, (4.14)
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We can use (4.14) to find €, the bound on the errors in the integral approximations

Q (¢ h(x)p(x); (—00,00)) or Q (c - h(x)p(x); [a, b]) that will ensure that ‘ P — P

MTmax

tol, for some appropriate tolerance tol. For example, for tol = 1078, K = 125 and
nr,.. = 40, a simple calculation shows that ¢ < 2 - 10712 suffices.
For quadrature rules on a finite interval [a, b], we can bound the errors due to interval

truncation for all r =0,1,--- ,K and m =0,1,--- ,r by

¢ / OO h(z)p(x)da

cmax\/% /a exp (—2%/2) dz < e/4 (4.15)

c/boo h(z)o(z)dx

1 (o]
< Crax——— exp (—22/2) dx < €/4, 4.16
< o= [ e (PRl as (@10

where

K
Crmax = , (4.17)

[K/2]
for a natural choice of d; = d3 = 1/4 and dy = 1/2 in (4.9). For this choice of dj,

j = 1,2, 3, notice that because the function exp (—z?/2) is symmetric about the origin,

we can set @ = —b. The value of a which satisfies (4.15) is given by

a§<1>1( 1 ) (4.18)

€ * Cmax

where ®~! denotes the inverse of the standard normal Cumulative Density Function
(CDF). For the aforementioned computation of ¢ < 210712, we determine that a <
—13.099507 by solving (4.18).

Hence, we have determined that if we can guarantee (4.8) for an open quadrature rule,
then for the entire duration of the CDO contract, (4.7) holds. We found the intervals of
integration for (4.9) for a natural choice of error constants d;, j = 1,2,3, and if we can

guarantee that on this pre-determined interval of integration [a, b], relationship

|1 (c- h(z)p(x); [a,b]) — Q (¢~ h(x)p(x); [a, b])| < €/2 (4.19)

holds for some closed quadrature rule @, then (4.7) also holds. The next subsection

addresses the practicality of these theoretical results.
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4.2 Error Control Strategy

Quadrature routines which guarantee (4.8) or (4.19) are too slow for our applications. To
be as efficient as possible, we would like to use a pre-generated set of quadrature nodes
x; and weights w; (for closed interval quadrature rules, the interval of integration [a, b]
is pre-determined from Section 4.1). We were unable to compute analytic error bounds,
developed for such quadrature rules, because we were unable to determine closed form
error equations for the integrand h(z) (4.3) for more than a few quadrature nodes. Instead
of guaranteeing (4.8) or (4.19), we develop an error control heuristic in this section which
in practice results in very small errors in the pool loss probability vector P;, because the
error analysis derivation placed very pessimistic error bounds in (4.12).

Notice that the bound (4.18) does not depend on time ¢;. In an attempt to satisfy

(4.14), we can check that

K
3 [Ai] 1| < (K + D, (4.20)
j=o0 -~ "

after computing each column m = 0,1,--- | K in the matrix A;. Tf the bound (4.20) is

satisfied, we move to the next column, otherwise we double the number of quadrature
nodes and weights in a particular quadrature rule, and repeat the computation.

This error control heuristic does not guarantee (4.14), because

K

SN
K ~

Z [Ai]jm <

and the error bounds (4.12) do not necessarily hold. However, the above inequalities

Y

1

Al (4.21)
1

(4.21) are unlikely to be very different in practice, since the entries of A; are all pos-
itive (for our later choice of the quadrature rule, all weights are positive), and we are
integrating a positive function h(x). Also, the bounds developed from (4.12) are highly

pessimistic, and we suggest, using the numerical results discussed at the end of this



CHAPTER 4. ERROR ANALYSIS 63

subsection, that the error in practice in (4.7) is a few orders of magnitude less than tol.

Recall from Chapter 3 that the derivative of the integral (4.1) with respect to 5,

(pool),K—m
P

B 12 Yoy) — Bix ’ Bi® () — x

x [ = m) ey (= @) ST = (K =) (1= (@) T e ] (422)

05,

k3

= r —m) is given by (3.50), using the integrand

As mentioned previously, we used a similar error bound strategy to (4.12) in our attempts

to determine an €g,, which guarantees that

is satisfied for any ¢ = 1,2,--- ,np, . . Our attempts did not result in a practical value of

~

P — P

< tol (4.23)

€3;, because of extremely pessimistic error bounds in this case. We were unable to form
tighter error bounds. However, notice that (4.22) contains two decaying exponential
terms and one polynomial term. The same standard normal probability density term
exp(—2?/2) which decays the integrand h(z) (4.3) when |z| is large, also decays hg, ().
These similarities between h(z) and hg, (z) suggest that it is likely that both integrands
require about the same number of quadrature points (and for closed interval quadrature
rules, on the same interval [a, b]). Now recall from Section 3.1, that the 3;’s follow various
scenario paths. For each time ¢; and each scenario value of f3;, after we finish integrating
all entries of A; for some 7, we can re-use the same number of quadrature points for the
computation of A} (3.50), as dictated by (4.20).

We must now consider quadrature rules and routines for the computation of A; and
A; For a single scenario of (;’s, the CDO contract usually has up to 40 quarterly
payments. Matrix A; has (K + 1)(K + 2)/2 elements. So, for K = 125, we must

compute the integral (4.1) 320040 times for just a single scenario of ;’s®>. In addition

we must compute the same number of integral derivatives (3.50), not to mention other

3There are at least 2 scenarios in our multi-path parameterization.
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derivative data structures from Subsection 3.2.3. Hence our quadrature routine must
use as few quadrature points as possible to guarantee (4.20) and it must be as fast as
possible. Our preliminary numerical tests showed that adaptive integration on (—o0, c0)
is too expensive, and this would make the computation of A; too inefficient. Adaptive
integration of this kind, and Gauss-Laguerre on [0, c0), map the interval of integration to
(0,1] and those maps usually result in singularities at 0, which are then dampened [16].

Gauss-Hermite quadrature suits the integrand h(x) (4.3) best and requires fewer nodes
and weights, because of the Gaussian probability density term. However, we run into the
problem of generating a sufficient number of nodes and weights: the algorithm given in
[15] is poorly conditioned for more than 100 nodes and an alternative algorithm provided
by [30] suffers the curse of dimensionality, as an internal data structure does not allow us
to generate a significant number of quadrature points [31]. It could happen that the error
control heuristic (4.20) requires a high number of quadrature nodes. This is not likely in
practice, however, and one could use Gauss-Hermite quadrature for this problem.

We compared Gauss-Chebyshev and Gauss-Legendre rules and determined that the
latter rule produces the same quadrature error in (4.20) with a fewer number of nodes.
Hence, we decided to use Gauss-Legendre as our quadrature rule, however as mentioned
previously, other quadrature rules and routines can also be used.

We now demonstrate that when the error heuristic (4.20) is being used together with

our error control strategy for derivatives,
K

(6],

K

> (7],

j=0

< tol and max <tol, (4.24)

1=1,2,- "M Tmax

max
1=1,2, ;nry .

for a realistic choice of «;’s and for multiple values of 3, where each 5; = ( for all
i=1,2,--- np,. .. This suggests that it is very likely that both (4.14) and (4.23) are
satisfied in practice. Table 4.1 on page 66 quotes values of (4.24) for various values of j,
using «;’s from the first day of the CDX NA IG S8 data set, which is described later in
Section 6.1 and is ultimately used for MSCM calibration in Chapter 6. Other values of

a;’s produce similar results, so we only quoted the results for one particular setting of
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a;’s. We can see that elements of PA’Z add up to a value very close to 1 and elements of
derivative vector ]51-’ sum to a value even closer to 0. Values of pi’ accumulate a negligible
error for 8; = 1—107°. We verified that elements of PZ-’ sum to 0 for all values of 3; in the

neighborhood of 8; = 1 — 10~ with the same magnitude of error on the order of 1072
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16 MaXi—12,. np,,. Z]K:o []%L — 1] | max—12... ny, Z;io [p{L
1016 1.8540724511e — 14 8.2205037147e — 17
101 1.8207657604e — 14 1.9036418513e — 16
1010 3.1752378504e — 14 6.5829436586e — 16
107 3.3084646134e — 14 2.9336517232¢ — 16
107° 1.7319479184e — 14 2.2885867635¢ — 16
1072 2.0095036746e — 14 2.3135653416e — 16

0.1 1.2212453271e — 14 5.8443449842¢ — 16
0.2 2.5535129566e — 14 1.0496920693e — 15
0.3 2.9976021665¢ — 14 6.8283821508e — 16
0.4 2.3425705820e — 14 1.6223643494e — 15
0.5 2.1316282073e — 14 2.3904273990e — 15
0.6 1.2878587086e — 14 1.6555792431e — 15
0.7 2.4868995752¢ — 14 2.9262500168¢e — 15
0.8 9.4368957093¢e — 15 2.8840184364¢e — 15
0.9 3.0642155480e — 14 1.2623582735¢ — 14
1—-1072 1.0880185641e — 14 4.8572257327e — 14
1-107° 1.3544720900e — 14 4.7617681316e — 12
1-1077 1.3322676296e — 14 1.5407439555¢ — 31
1—1071% 1.3322676296e — 14 0
1—-10"% 1.3322676296e — 14 0
1—10"16 1.3322676296e — 14 0

Table 4.1: Errors defined by (4.24) for the default probabilities «; from the first day of
the CDX NA IG S8 data set, discussed in Chapter 6, for various settings of the copula

correlation parameters 5; = S forall e =1,2,--- np__ .



Chapter 5

Code Implementation

Calibrating the Multi-period Single-factor Copula Model (MSCM) is very computation-
ally demanding. The goal is to be able to solve the optimization problem (3.4) in an
efficient manner using some optimization algorithm from Section 2.8. As outlined in
Subsection 3.2.1, the MSCM calibration process possesses many stages which can be
computed in parallel, thus improving the efficiency of evaluation of the objective function
(2.52) and its first-order derivatives, described in Section 3.2. In addition, the MSCM
calibration process has many complicated data structures, which have to be handled

efficiently.

We implement the MSCM calibration process in C++, using Boost [26] libraries
for data structures, GNU Scientific Library (GSL) [16] for optimization routines and
OpenMP |27] for parallelization. Matlab was used to generate plots and to parse CDO
data sets (originally available in Microsoft Excel) into text files, from which the model

loads the data. Thread safety was guaranteed using Valgrind’s thread checker Helgrind.

67
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5.1 Lazy Computation With Boost C-+-+ Libraries For

Vectorized Quadrature

The most expensive procedure in the MSCM calibration process is the initialization of
the lower triangular matrices A; (2.43) and A} (3.50). Therefore, the computation of A;
and A’ has to be efficient. For example, the quadrature rule () in Chapter 4 requires the
computation of a sum of a product of weights and function values at quadrature nodes.
This must be done (K + 1)(K +2)/2 = 8001 times for K = 125 for each A; or A].

Instead of looping over nodes and weights, we can use a function object, also known
as a functor |32], which performs like a function when called on an object. For example,
a matrix can be stored as a contingent array in memory, or we can create an object which
behaves like an array of dimension 2, but has the added advantage of memory manage-
ment during compilation [26]. The compiler can then selectively manage memory as it
becomes needed, hence the term “lazy computation”. Then we can define, for example,
a multiplication functor: another object which multiplies two matrix objects. There is
also an added benefit of code readability.

Consider a Gauss-Legendre quadrature weight vector w € R"S: and a vector of nodes
T € R"t for some ngr, € Z7. Recall from Section 2.6 that we can perform Gauss-

Legendre quadrature on an arbitrary interval [a, ] for some function y(x)' using

b b—a <X b—a a+b
/ X(z)dz ~ 5 ij X < 5Tt ) ; (5.1)
a j=1

where w; is the Gauss-Legendre quadrature weight for the interval [a, b]. Algorithms 6
and 7 demonstrate two ways of performing quadrature (5.1) in C++. We believe that the

implementation with Boost is more readable. The performance depends on the compiler,

'For example, in (4.1) we set x(x) = c - h(z)p(z), where ¢ = <K—m ), h(z) =

r—m

pi(x)" ™ (1 —pi ()" 7", pi(z) = @ ((@‘1 (o) — Biz) [A/1— ,6’3) and ¢(z) is the standard normal prob-
ability density.
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Algorithm 6 C++ implementation of a quadrature sum using GSL.
const unsigned n_GL = 64; // number of Gauss-Legendre points

gsl_vector *x = gsl_vector_alloc(n_GL); // allocate vector memory

gsl_vector *w = gsl_vector_alloc(n_GL); // allocate vector memory
double s = 0; // sum accumulator
// Initialize vectors with Gauss-Legendre nodes and weights on [a,b]
init_GL(x,w); // nodes and weights are scaled for [a,b] in init_GL
// Perform quadrature
for (unsigned j = 0; j < n_GL; ++j)

s += gsl_vector_get(w, j)*chi(gsl_vector_get(x,j));
gsl_vector_free(x); // free vector memory

gsl_vector_free(w); // free vector memory

compiler optimization flags, operating system and the actual hardware used.

5.2 OpenMP Parallel Implementation

The C++ implementation of the MSCM calibration process has several parallel regions,
as well as nested parallel regions. In practice, some of these regions need to be disabled,
because the overhead in thread creation nullifies the performance gain. There is also an
added aspect of thread safety when using an omp_set nested() library call. There are
also three different thread schedulers available in OpenMP 3.0 [27].

The following is a description of each region, which can be computed in parallel.
In practice, too many parallel regions increase the execution time, due to the overhead
in thread creation, coordination and termination. In practice, to improve the effect of

parallelization, we need to disable some of the following parallel regions:

1. Parallel integration of matrices A; (2.43) for each multi-path branch, i.e. paral-
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Algorithm 7 C++ implementation of a quadrature sum using Boost.
using namespace boost::numeric::ublas;

const unsigned n_GL = 64; // number of Gauss-Legendre points
vector<double> x(n_GL), w(n_GL); // invoke vector object constructors
double s = 0; // sum accumulator

// Initialize vectors with Gauss-Legendre nodes and weights on [a,b]
init_GL(x,w); // nodes and weights are scaled for [a,b] in init_GL

// Perform quadrature

s = prec_inner_prod(w, apply_to_all<functor::chi<double> > (x));

// garbage collection is handled automatically by each vector object,

// so no need to remember to deallocate memory with Boost

lelization of multi-path branches.

2. Computation of entries of A; and optionally 121; Rows of A; for each column and

then elements of A; can be computed in parallel.

3. If the first period has v paths in the multi-path parameterization, then we can

create v parallel processes for the computation of Ep,oa [Lgtr)} (2.16).

4. We can recursively nest the paths from the previous step for subsequent periods.
For example, if there are g multi-path periods with v branches per period, then

the last period will have v#~! paths computing Ee01 [LZ(-“)} (2.16) in parallel.

5. We can compute the nested error function loops in the unconstrained objective

function F'(u) (3.5) in parallel.

6. Similarly to the previous item, we can compute entries of the Levenberg Marquardt

vector € from Paragraph 2.8.2.2 in parallel.

7. Similarly to item 5 we can compute derivatives of the unconstrained objective
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function F'(u) (3.5) by parallelizing the nested loops in (3.1).

8. We can compute the gradient and the Jacobian of the unconstrained objective

function F'(u) (3.5) in parallel.

In practice, only items 2, 5, 6, 7 and 8 need to be enabled. The adjustment of the
above model performance parameters and all numerical results have been performed on
a system with two Intel Xeon E5355 quad core CPUs (maximum of eight parallel threads)
with 4MB of CPU cache per CPU. Figure 5.1 on the following page depicts the speedup
factor when performing the computation of the objective function and its derivatives for
all 6 model parameterizations, described later in detail in Section 6.2. These are average
speedup factors when computing the objective function and its derivatives for the first
day of each of the four data sets used in Chapter 6 with the MSCM parameterizations,
which are later used in the numerical results in Chapter 6.

The overhead in thread creation is evident in Figure 5.1 on the next page. For ex-
ample, the parameterization with a single period spanning 10 years with 4 paths per
period parallelizes best when executed with 4 parallel threads. However, the speedup
factor decreases when the same parameterization is executed with 5 parallel threads.
This is because the OpenMP scheduler attempts to schedule 4 parallel processes over 5
threads, and time is lost in copying the data between processes. In general, if the pro-
gram has an even number of parallel regions, then executing them over an odd number
of threads decreases performance. Figure 5.1 on the following page shows that different
parallelizations require a different minimum number of parallel threads. For example,
a parameterization with a single period spanning 10 years with only 2 paths per pe-
riod requires only 2 parallel threads. However, all parameterizations parallelize well on
average when presented with the maximum number of parallel threads, and this is the
implementation that we’ve used in the numerical results, presented in the next chapter.

When checking the parallel implementation with Valgrind’s thread safety detector

Helgrind, thread safety using omp_set nested() was not guaranteed, and any nesting
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Runtime Speedup Factor Due To Parallelization
4.5

—3 prds 2 paths/prd btw 5, 7, 10 years (6)
— 1 prd 4 paths over 10 years (6)

44 1 prd 2 paths over 10 years (2) a
—2 prds 3 paths/prd btw 5 & 10 years (8)
—4 prds 2 paths/prd every 2.5 years (8) /\\ /
3.5H 2 prds 2 paths/prd btw 5 & 10 years (4) Lt %

2.5 \/

1.5

Objective function F( u) and V F( u) average speedup factor

1 | | | | | | |
1 2 3 4 5 6 7 8
Number of parallel threads

Figure 5.1: Speeedup factors when computing the objective function F(u) (3.5) and its
gradient with respect to the unconstrained parameters in «. The six different model
parameterizations are described in Section 6.2. The number of parameters which each
parameterization set is given in brackets. For example, @ contains 4 elements for the 2

period 2 paths per period multi-path parameterization.

had to be disabled. Also, by trial and error, we found that the fastest scheduler is static

and runtimes improved slightly after disabling the omp_set dynamic() library call.

5.2.1 Pricing In Parallel

As mentioned in Subsection 3.2.1, we can integrate matrices A; and A fori =1,2,--- ,np,_
in parallel. We need to price the model without recomputing values of P(l§p°°” =r) and
Epool) [lgtr)} ; when computing the derivatives of the objective function (2.52) we need to

do the same for 9, P(I*** = 7) and 8,, E(poo [lgtr)} . This task is further complicated by
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parallelization, i.e. race conditions have to be avoided in parallel data structures. These
problems can be solved by recursively generating the pricing scenarios and reusing com-
puted values of P (l?"”” = r) and E(pool) [z?r)] These values would be re-used during
the computation of the expected spread Ej [sﬁf;) (5, d’)W} (2.37) when computing model
quotes (the same E(,q01 [lz(tr)} are needed when computing spread quotes SS;) (2.9), for
example, the spread quotes for any tranche with maturities of 5 and 7 years use the same
Epoo) [lgtr)} fori=1,2,---,20 with quarterly payments). When computing derivatives,

we can similarly store and re-use 0, P (ll(poon = 7") and 0y, E(poo) [lgtr)] when computing

0, 5 |58y (B, 1.

5.3 Correctness During Development

We also have to make sure that the MSCM calibration process produces valid results.

Below is a list of things that we check when testing the validity of the results:

° HE — 1‘ < tol for each setting of f; after the computation;
1
o F [l tr)] <FE [zg“)} , but to accommodate numerical errors we actually check E [lz(t_ri] —

(
i1
E [zf”] < tol for each scenario of f;;

e gradient and Jacobian entries are checked for certain test values of @/7 with a separate

routine using forward finite differencing? to produce a relative error of ~ 1077.

2For some settings of ~y;, the forward finite difference approximation would be very different to the
analytic answer. For example, for a parameterization using a single period with two paths, v, = % =
would produce 3; = 1/2 with probability p; = 1/2 in both paths. We know that the derivative is zero

(local minimum), but numerically » .. > 0, error(E5 [sﬁf;)(g, &)|ﬂ ,mgfr)) ~ 40 # 0, for a forward step

size of 1072 due to the accumulation of numerical errors introduced by the finite difference approximation.
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5.4 Error Control

We employ the quadrature error control heuristic (4.20) and quadrature strategy from

1=y, [A] ' < ol and [ 35, [P]

J

Subsection 4.2. We also check that < tol after

J

each integration time step.



Chapter 6

Numerical Results

We present the Multi-period Single-factor Copula Model (MSCM) calibration results in
this chapter. Specifically, we calibrate the model on the first day of the four data sets,
described in Section 6.1 with different parameterizations, presented in Section 6.2, using
a variety of unconstrained optimization algorithms, previously described in Section 2.8.
We determine that on average, the most robust and efficient derivative-free unconstrained
optimization algorithm is NEWUOA (presented in Subsubsection 2.8.1.2), and the most
robust and efficient derivative-based unconstrained optimization algorithm is BFGS2
(presented in Paragraph 2.8.2.3). We then present and discuss calibration results and
runtimes for daily data for each of the four aforementioned data sets, for the periods
before, during and after the September 2008 stock market crash. We also justify our
choice of the relative Soft Error Function (SEF) (2.61) in the unconstrained objective

function F (@) (3.5).
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6.1 Data Sets Used For Calibration

CDO and CDS quotes were obtained from the Reuters Thomson data stream', which
provides active trading data as long as part of the CDO data is still needed by either
investors or sellers. The data stream does not provide historical prices; only most recent
CDO data is available, although as of July 2010 some data sets extend back in time as
far as December 2008. CDX NA IG series 8 (S8) data set was previously acquired by Dr.
Wanhe Zhang from the same data stream, but was no longer available from the Reuters

Thomson data stream in July 2010.

The credit crunch in July 2007 and the crash of September 2008 disrupted data
available for calibration in a severe way. Figure A.4 shows the CDX NA IG S8 data set,
available from March 2007 until December 2008 and partitioned into three time frames
across the rows of the figure. Plots on the left show raw CDS quotes with maturities at
3,5, 7 and 10 years, and plots on the right show the bootstrapped default probabilities.
We can see that the CDS quotes change drastically and this affects the shape of default
probabilities: as time progresses, default probabilities become linear with respect to time,
loosing their convex shape, and are no longer monotonically increasing with respect to

time.

Figure A.5 shows the CDX NA IG S10 & S11 and CMA ITRAXX EU S10 data
sets, which were available after the crash of 2008; only CDS data which resulted in
monotonically increasing default probabilities was plotted. For the first two data sets,
the default probabilities are concave in shape, while the third (European) data set has

almost linear default probabilities (just at the point of changing convexity).

Convex default probabilities indicate that we expect more defaults to happen at a

L University of Toronto Rotman School of Business provides free access to students to otherwise
proprietary CDO market quotes. Reuters Thomson data stream supplies the same quotes as Bloomberg,
but also has the added functionality of collectively pooling multiple tickers across large time ranges into
a Microsoft Excel spreadsheet; the Bloomberg system only provides individual quotes for a single ticker
on a specific date.
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later date, because currently the economy /market is stable. Concave shapes indicate the
opposite, that we are expecting the defaults to happen sooner rather than later, so it
is not unreasonable for the concavity to change after the crash of 2008, due to market
instability.

We should also mention that the data available from the Thomson Reuters data
stream had many missing values, and that the raw data had to be severely reduced
until we could find contingent segments without missing data across all tranches and
all maturities. Table A.1 provides the summary of each data set obtained; there were
no other usable CDO series in the Reuters Thomson data stream at the time of data

collection.

6.2 Calibration Results

First, we consider which optimization algorithms from Section 2.8 suit the optimization

problem (3.4), restated for convenience below:

min F(u). (6.1)
aeR"™

We explore the following MSCM parameterizations?:

1. three periods between 5, 7 and 10 years, with two possible paths per period (6

parameters);
2. single period over 10 years, with four possible paths (6 parameters);
3. single period over 10 years, with two possible paths (2 parameters);

4. two periods between 5 and 10 years, with three possible paths per period (8 pa-

rameters);

2We are restricted in the range of multi-path parameterizations that we can explore, because the
lowest number of CDO quotes per data set is 12
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5. four periods between 2.5, 5, 7.5 and 10 years, with two possible paths per period

(8 parameters);

6. two periods between 5 and 10 years, with two possible paths per period (4 param-

eters).

For the first day of each data set, we pick one of the above MSCM parameterizations and
plot the unconstrained objective function F'(«) values versus runtime for each optimiza-
tion algorithm from Section 2.8. The unconstrained objective function uses a relative
Soft Error Function (SEF) (2.61) with 6 = 0.5 and € = 10~*. All algorithms were exe-
cuted with the same starting guess of 1/7 = (=1,-1,---,—1)3. Derivative-free methods
were executed for 500 iterations* and derivative-based algorithms were executed for 40
iterations, unless the algorithms converged before the number of iterations was exceeded.
Figures A.6 to A.29 on pages 102-125 show these results. We can conclude that on
average the most robust and efficient derivative-free algorithm is NEWUOA. The most
robust and efficient derivative-based algorithm is BFGS2.

It was difficult to specify convergence criteria for each algorithm, as these differ with
each day of the data set and for each MSCM parameterization: most of the time the
algorithms either don’t realize that they’ve converged to the local minimum, or they
terminate prematurely. Also, it is difficult for the algorithms to avoid local minima:
sometimes different algorithms find different local minima. The objective function is not
necessarily convex, as seen in the argument given in Footnote 2 on page 73: a certain
setting of parameters can produce a zero gradient, but this would not necessarily produce
quotes which match the market data. Numerical results shows that it is also highly

unlikely for the derivative-based method to encounter a value of 5; = 1, as discussed in

3To provide a starting guess, we need to calibrate at least a single-period single-factor copula model,
which is significantly more expensive than a single step of any optimization algorithm, the latter resulting
in a good starting guess.

1A single iteration can perform more than one function evaluation. The number of function evalua-
tions per iteration is algorithm-specific, so the runtimes vary slightly between different algorithms.
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Subsection 3.2.3. Multiple paths per period result in longer calibration times, and make
MSCM less parsimonious, but do not considerably reduce the objective function (2.52).
On the other hand, addition of periods significantly decreases the objective function, but

also makes the parameterization less parsimonious.

6.2.1 Daily Calibration Results

We pick the parameterization with two periods between 5 and 10 years, with two paths
per period (4 parameters, referred to for brevity as the two-period two-path parame-
terization), and calibrate MSCM on daily data using both NEWUOA (limited to 500
iterations) and BFGS2 (limited to 40 iterations) optimization algorithms, with the afore-
mentioned relative SEF in F'(¢). These results are presented in Figure 6.1 and Figure 6.2.
To demonstrate the dynamics of MSCM, we also calibrate the four period parameteri-
zation of MSCM with two paths per period every 2.5 years (8 parameters, referred to
for brevity as the four-period two-path parameterization) on daily data with a BEGS2
algorithm, this time limited to 120 iterations. These daily results are presented in Fig-
ure 6.3. Average runtimes are presented in Tables 6.1, 6.2 and 6.3. For reference, we
also include the the same daily calibration results for the industry-standard single-period
single-factor copula model [1], referred to as the Hull Copula in Figure 6.4.

We want to place the objective function values of all four CDO data sets on the same
plot, and because data sets all have a different number of CDO quotes, the value of F'(«)
would be higher in data sets with a higher number of CDO quotes. Therefore, we plot
F (@) per number of data points in all daily calibration result figures.

We should also note that we chose the two-period two-path and four-period two-
path parameterizations because they are the most intuitive to understand. Normally, we
would choose the parameterization based on some market insight. For example, if we
are expecting a volatile market between 2.5 to 5 years, then we would place more paths

between 2.5 and 5 years. In the industry, we would pick a different parameterization for
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each day based on market insight.

We can see that for the two-period two-path parameterization, NEWUOA has more
variability in the objective function values compared to the BFGS2, and the algorithm
never converged and was terminated after 500 iterations®’. On many days, NEWUOA
produces similar objective function values to BFGS2 algorithm. The BFGS2 algorithm
has less variability in the objective function values and detects convergence for some days.
As hypothesized in Subsection 3.2.3, it is also very unlikely to encounter the value g; = 1,
and we have an efficient (see Table 6.2 for runtimes) and robust NEWUOA algorithm

should the value of §; = 1 occur in practice.

From all four daily calibration result figures, we can see that the credit crunch of July
2007 affected the CDX NA IG S8 data set. Just before the crash in September 2008,
the data is unusable due to monotonically decreasing default probabilities (a gap in the
data). Right before the crash of 2008, the CDO quotes tend to stay the same over time.
Calibrating on CDO data after the crash shows that the model is no longer applicable,
however later in 2009 the quotes start to return to pre-crash status and this results in

lower error function values.

Calibrated parameter values and CDO quotes produced by MSCM for the two-period
two-path parameterization are given in Tables A.2 to A.7 on pages 128-133 for the first
day of each data set®. We see that only calibration with CDX NA IG S8 data set
produced meaningful copula correlation parameter values. While the MSCM matched
the CDO quotes of all CDO data sets reasonably well, for some reason data sets apart
from CDX NA IG S8, sometimes produce low copula correlations with low probabilities,
and high copula correlations with high probabilities. This observation is explained in
the next chapter, by comparing the single-period single-factor copula from [1] to the

seemingly equivalent multi-period single-factor copula parameterization (single path with

>Due to time constraints, we had to limit NEWUOA daily runs at 500 iterations per day. In practice,
we need more than 500 iterations to reduce the variability in objective function values in Figure 6.2.
6General description of all calibration result tables is provided at the beginning of Section A.3.



CHAPTER 6. NUMERICAL RESULTS 81

probability 1).
High objective function values for CDX NA IG S10 and S11 data sets could be due

to:
e default probabilities «; (2.17) not accurately representing a volatile market;
e CDO quotes are provided for a different set of pricing equations;

e CDO quotes were adjusted due to some business contract (usual market assump-

tions are not applicable).

Zhang |8] mentions that his MSCM parameterization is not extremely parsimonious,
whereas in our case the model uses 4 parameters only and still matches the market quotes
reasonably well; Zhang’s parameterization used 7 parameters. CDO data sets used in
Table A.1 have 12-63 CDO quotes to match, so the two-period two-path parameterization
is very parsimonious in practice.

The CMA ITRAXX EU S10 data set was also fitted reasonably well, with small
objective function variability. We think that this is because the stock market crash of

September 2008 had not yet had a big effect on the FEuropean market at the time.

6.2.2 Increasing Model Flexibility

Notice that we can decrease the error per number of data points by increasing the number
of MSCM parameters, as demonstrated with the four-period two-path parameterization
in Figure 6.3. Tables A.8 to A.13 on pages 134-139 show the CDO quotes produced by the
four-period two-path parameterization with 8 parameters for the first day of each of the
four data set. Because we are calibrating a larger number of model parameters, we also
need to increase the number of BFGS2 iterations. However, due to time constraints, we
limited BFGS2 to 120 iterations only, and there is a lot more variability in the objective

function values in Figure 6.3 than in Figure 6.1. This could also be due to the BFGS2
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algorithm converging to local minima for certain days in Figure 6.3, and this might
also produce unrealistic copula tranche implied correlations in Tables A.8 to A.13 on
pages 134-139 for the four-period two-path parameterization.

The industry-standard Hull Copula has higher errors in Figure 6.4 than the rest of
our daily run figures, as expected. We also note that the CDX NA IG S11 data set has a
few days where the Hull Copula produces very low objective function values. We believe
that this is because the agency providing the CDO quotes could have used some variant
of the Hull Copula for these quotes. Naturally, when calibrating the Hull Copula on
those days, the error is fairly low. We demonstrate later in Chapter 7 that the MSCM

and the Hull Copula are not entirely equivalent when estimating pool loss probabilities.

6.2.3 Choice Of The Error Function

We hypothesized in Section 2.7 that it is best to use the relative SEF (2.61) in the
unconstrained objective function F(@) (3.5). We show that this is true, by calibrating
MSCM for the first day of each data set with the two-period two-path parameterization
and an absolute SEF (2.58), with ¢ = 10* and § = 0.5. Calibration results are presented
in Tables A.14 to A.19 on pages 140-145. When comparing the results to the relative
SEF, presented in Tables A.2 to A.7 on pages 128-133, we observe that the more senior
tranches, which have lower spreads, don’t calibrate well, as argued in Section 2.7. Also,
even the CDX NA IG S8 data set does not calibrate to reasonable copula correlation
parameter values with the absolute SEF. The same data set calibrated well with the
relative SEF for all days before the credit crunch of July 2007. Hence, we conclude that

it is best to use a relative SEF in the unconstrained objective function F(@0) (3.5).

6.2.4 Runtimes

Negligible differences in runtimes between different data sets in Tables 6.1, 6.2 and 6.3

suggest that pricing is not affecting the runtimes and parallelization of pricing was han-
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Data set Mean Calibration Time £ Std. Dev. (minutes)
CDX NA IG S8 11.6 &£ 2.52
CDX NA IG S10 9.91 £ 3.53
CDX NA IG S11 9.14 £3.47
CMA ITRAXX EU S10 11.5+£2.54

83

Table 6.1: Mean calibration times for data sets across all days in each CDO series us-

ing the BFGS2 algorithm with at most 40 iterations and a 2-period 2-path multi-path

parameterization (4 parameters) with periods each of 5 years.

Data set Mean Calibration Time £ Std. Dev. (minutes)
CDX NA IG S8 7.45 £ 2.62
CDX NA IG S10 7.36 £ 2.45
CDX NA IG S11 7.31£2.42
CMA ITRAXX EU S10 7.43 £2.62

Table 6.2: Mean calibration times for data sets across all days in each CDO series using

the NEWUOA algorithm with at most 500 iterations and a 2-period 2-path multi-path

parameterization (4 parameters) with periods each of 5 years.

dled successfully (the data sets used require anywhere between 12 to 63 data points, so

we can price a varying number of CDO quotes in roughly the same amount of time).

Also, the runtimes are clearly reasonable and demonstrate that MSCM can be used in

practice.
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Data set Mean Calibration Time £+ Std. Dev. (minutes)
CDX NA IG S8 20.0 £4.09
CDX NA IG S10 20.9£4.83
CDX NA IG S11 175+ 7.21
CMA ITRAXX EU S10 19.9 +4.29

84

Table 6.3: Mean calibration times for data sets across all days in each CDO series using

the BFGS2 algorithm with at most 120 iterations and a 4-period 2-path multi-path

parameterization (8 parameters) with periods each of 2.5 years.
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Calibration With Two Periods Each Of 5 Years With BFGS2 (4 Parameters)
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Figure 6.1: Calibration results with the BFGS2 algorithm [16] (described in Para-
graph 2.8.2.3) limited to 40 iterations, for all four data sets with the relative Soft Error
Function (SEF) (2.61) used in the objective function F(@) (3.5); error is shown after
dividing F'(@) by the number of data points available in each data set. MSCM param-
eterization uses two periods each of 5 years, with two paths per period. The letter (C)
indicates that BFGS2 converged, the letter (T) indicates that the algorithm was ter-
minated after 40 iterations, and the letter (E) indicated that a value of 5, = 1 was

encountered during the optimization and BFGS2 signaled for termination.
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Calibration With Two Periods Each Of 5 Years With NEWUOA (4 Parameters)
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Figure 6.2: Calibration results with the NEWUOA algorithm [13] (described in Sub-
subsection 2.8.1.2) limited to 500 iterations, for all four data sets with the relative Soft
Error Function (SEF) (2.61) used in the objective function F(u) (3.5); error is shown
after dividing F'(@) by the number of data points available in each data set. MSCM
parameterization uses two periods each of 5 years, with two paths per period. The letter

(T) indicates that NEWUOA was terminated after 500 iterations.
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Calibration With Four Periods Each Of 2.5 Years With BFGS2 (8 Parameters)
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Figure 6.3: Calibration results with the BFGS2 algorithm [16] (described in Para-
graph 2.8.2.3), limited to 120 iterations, for all four data sets with the relative Soft
Error Function (SEF) (2.61) used in the objective function F(u) (3.5); error is shown
after dividing F'(¢) by the number of data points available in each data set. MSCM pa-
rameterization uses four periods each of 2.5 years, with two paths per period. The letter
(C) indicated that BFGS2 has converged, the letter (T) indicates that the algorithm was
terminated after 120 iterations, and the letter (E) indicated that a value of §; = 1 was

encountered during optimization and BFGS2 signaled for termination.
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Calibration Of CDX NA IG 58/10/11 & CMA ITRAXX EU S10 With The Hull Copula
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Figure 6.4: Calibration results for the regular industry-standard Hull Copula [1] single-
factor single-period model for all four data sets with the relative Soft Error Function
(SEF) (2.61) used in the objective function F(@) (3.5); the error is shown after dividing

F(u) by the number of data points available in each data set.



Chapter 7

Some Observations And Questions

We compare the single-period single-factor copula from [1] (denoted for brevity as the
Hull Copula in Section 6.2) to the Multi-period Single-factor Copula Model (MSCM) by
setting 5; = fforv =1,2,--- ,40 with probability 1 in the multi-path parameterization of
MSCM discussed in Section 3.1, where (3 is the copula correlation parameter. Figure 7.1
shows the spreads produced by both models as a function of 5, where we are trying to
match the 3 — 7% tranche at maturities of 5, 7 and 10 years on March 23, 2007 for the

CDX NA IG S8 data set'.

We make the following observations:
o for T'=>5 and T = 7, two values of 8 match the market quote;

e the models are not necessarily equivalent for g € (0,1], but are guaranteed to
produce identical quotes for § = 0; we believe that this is because the default
probabilities a; (2.17) are modeled as a step function on each (¢;_1,t;] in the MSCM
model, whereas the Hull Copula model assumes a continuous underlying function

for the a;’s. As a result, the pool loss probabilities P(l§p°°” = r) differ for 8 € (0, 1].

For shorter maturities (for example, T = 5 and T = 7 in Figure 7.1), the two

!The same data set calibrated well in Figure 6.1
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Model Spreads As A Function Of Correlation Parameter
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° Hull Copula T=5
Hull Copula T=7
° Hull Copula T=10
* Dynamic Copula T=5
Dynamic Copula T=7
* Dynamic Copula T=10
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Figure 7.1: Spreads produced by single and multi-period single-factor copula models as

a function of the copula correlation parameter (3, plotted against the 3 — 7% tranche at

maturities of 5, 7 and 10 years on March 23, 2007 for the CDX NA IG S8 data set.

models can produce the same quote value for some other 3; € (0, 1], but this is not

always true.

e CDO spreads, plotted as a function of 5, change shape for both models as the

spread quote maturity 7' increases.

This suggests that when calibrating either model, we need to decide which range of 3 is

plausible for shorter maturities, and constrain 5. However, how do we know this range?

One possible reason why some data sets result in 5 =~ 1 with probability &~ 1 is because

of this behavior: CDO spread quotes for longer maturities suggest higher 3 values and

because those values also calibrate the shorter maturity quotes well, we see an overly
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inflated [ value with probability ~ 1. Figure 7.1 also suggests that tranche implied

copula correlations are less ambiguous for long range correlation representation.

Research Questions In order to use the dynamics of the multi-period single-factor
copula model, we need to be able to calibrate the model for any value of T" on post-crash

market data. Further research is needed to answer the following questions:
e Why are the CDO spread quotes so different between the two models?

e Why do different values of g match the CDO market quotes at shorter maturities

for both models?

e What causes the large increase in the objective function F(@) (3.5) per number of
data points in the multi-period single-factor copula model when applied to data

sets that include crash periods?

e Why can we match market quotes with fairly low error per data point in, for
example, Figure 6.1, yet calibrate to unrealistic tranche implied copula correlation

values?



Chapter 8

Conclusion

In this thesis, we developed an alternative multi-path parameterization to the Multi-
period Single-factor Copula Model (MSCM), recently proposed by Jackson, Kreinin and
Zhang [11]. This parameterization allowed us to compute the first-order derivatives of
the objective function

F) =3 3 error ( By s (Ba)l7|,m)

treTr TeM

discussed in Section 2.5, in closed form, for all reasonable values of @ and E This en-
ables us to use derivative-based optimization algorithms to calibrate the MSCM, thereby
improving the efficiency of the calibration process. In addition, multi-path parameter-
ization provides a more intuitive structure for the market dynamics, by associating a
unique copula correlation parameter path with a unique probability for each period of
the MSCM.

We also developed a robust and efficient software implementation of the MSCM by
determining an error control heuristic for the pool loss probabilities and their derivatives.
We also provide a useful theoretical result that if a quadrature routine can guarantee a

certain error in approximating the integral

K—m o0 1 (o) — Bix o 1 (o) — Bix o
r—m /OO(I)< Vl_ﬁi2 ) (1_®< Vl_ﬁi2 )) )
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forallr=20,1,--- ,K and m = 0,1,--- ,r, then we can guarantee that the error in the
pool loss probability is below a certain threshold.

We further tested the MSCM on four distinct data sets from periods before, during
and after the 2008-2009 stock market crash, and compared a simple parameterization of
MSCM to the seemingly equivalent single-period single-factor copula model discussed in
[1]. This comparison suggests that copula models are accurate for modeling long-term
tranche implied correlations for CDO pricing, as discussed in Chapter 7, but may pro-
duce inaccurate tranche implied copula correlations for shorter maturities. This suggests
several research questions, outlined in Chapter 7.

Regarding the multiple period structure of the MSCM, market quote fits are greatly
improved my adding more periods to the MSCM, but we did not see a significant improve-
ment with the addition of more paths in each period. We showed that the multi-period
nature of the MSCM improves market quote fits over the single-period single-factor cop-
ula model. Regardless of the number of CDO market quotes and the number of periods,
we demonstrated that multi-path parameterization of the MSCM is relatively inexpensive

to calibrate, and that the MSCM can be used effectively in practice.
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Appendix

A.1 Proofs

A.1.1 Recursion Relationship Of Pool Loss Probabilities

Reference [8] shows that

PP =) =3 PO = m) - P = —m), (A1)

7 (i—1,]
using a lemma from Section A.1.2, restated here for convenience:

Gt = P(my S t]X1 =01, Xo = 02, 00 Xi = 27) = q\50 + (1= qi) - i, (A2)

where
(def) .
Pri = P(r, <tj|me > tic, X = x;). (A.3)
For homogeneous pools, p,gdf - pgdef) and qlgief) = (def) Notice that
P(l pool / / Pl =r|Xy =21, Xo = 29, ..., X; = 2;)d®(x1)...dD(x;),

(A.4)
so we need to determine the conditional probability P(l(pOOl =7 X1 =21, Xo =29,..., X; =

x;). We determine the conditional probability of r defaults given the conditional proba-
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bility of each default using the Binomial probability distribution:
K r K—r
PO = | Xy =21, Xy = 23, X; = 1;) = (q(deﬂ> (1 - quef)> . (AL5)

Next, we substitute (A.2), use the binomial expansion on the first probability term, and

then group terms to obtain the conditional recurrence relation:

K r -
ef ef ef ef ef
(457 + (1 — D)) (1= gDy - (1 =) =

K T r m r—m r—m K—r
def def def def def
> (qfﬁ) (1 - qﬁl)) (pE )> ((1 a: 1)> <1 -] )>>

m=0 m
T K—-m K—-—m r—m K—m—(r—m)
(def) (1 B q§ieif)) <p§def)> (1 B pl(def)> _
m=0 r—m
P pool X X X | = 1 P l(pool),K—m — X. = 1. A6
=m|X1 =z, Xy = oy Xim1 = i) P( (i—1,i] =r—m|X; = ;). (A.6)

O

Now notice that when integrating out the common factors we obtain the required equa-

tion, because

/ / 190 — | X = 2y, Xo = @9, o0, Xioy = 24_1)dD(21)...d®(2;_1) = P(IPS = m).
(A.7)

A.1.2 Lemma

We need to show that

ql(cdzef) = P(Tk S t7,|X1 =T, XQ = T2, 7X7, = ) = ql(Cdzef)l + (1 — qlidZEf)l) pl(c(?;ef) (AS)
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This is given by regular manipulation of probabilities

q;ﬁflff) = P(r, <] Xy =21, Xo =29, ..., X; = 1)

=P(r, <tia|Xi =21, Xo =29, ..., Xio1 = 21)+
P(Tk - (tifl,ti”Xl = xl,XQ = T2, ,XZ = mz)

=Py <t;iq| X1 =21, Xo =29, ..., Xim1 = x;1)+

96

P(Tk > ti_1|X1 = ZEl,Xg = T9, -~-7Xi—1 = $i_1) . P(Tk - (ti—lati”'rk > ti—laXi = 1’1)

def def def
= ql(f,i—)l +(1 - qlgt,i—)l) pl(m )

(A.9)
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A.2 Figures

Error Functions
2.5

— Least Squares
—¢-insensitive, €=0.5
——SEF, 6=0.5, €=0.01
- SEF, 8=0.5, £=0.1
--SEF, 8=0.5, €=0.5

Error

0
Argument Difference

Figure A.1: Error functions used to calibrate the model, given by (2.56), (2.57) and
(2.58).
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CDS Quotes: March 20, 2007 - Sept 9, 2007
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Figure A.4: CDS spreads and bootstrapped default probabilities used to calibrate CDX

NA IG series 8 data set, split into three time regions across the rows of the figure.
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CDX NAIG S10 o Dec 8,08 - Jan 9, 09
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Figure A.5: CDS spreads and bootstrapped default probabilities from CDX NA IG series
10, 11 and CMA ITRAXX EU series 10 data sets.
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A.2.1 Calibration Results

A.2.1.1 Single Period Multi-Path Parameterization With Two Paths Per
Period

CDX NA IG S8, 1 period, 2 paths over 10 years, objective F( u ) values
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Figure A.6: CDX NA IG S8 data set from March 23, 2007 calibrated with optimization
algorithms from Section 2.8 with a single period multi-path parameterization with two
paths. Derivative-free algorithms were limited to 500 iterations, and derivative-based
algorithms were limited to 40 iterations. Letters in brackets denote convergence: (C)
denotes that the algorithm has converged on its own with the user-specified convergence
test, (T) denotes that the algorithm has exceeded the aforementioned number of iterations
before convergence and was terminated by the user, and (E) denotes for derivative-based
algorithms only that the optimization algorithm encountered the value §; = 1 during

optimization and signaled for termination.
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CDX NA IG S10, 1 period, 2 paths over 10 years, objective F( u ) values
34r
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Figure A.7: CDX NA IG S10 data set from December 8, 2008 calibrated with optimization
algorithms from Section 2.8 with a single period multi-path parameterization with two
paths. Derivative-free algorithms were limited to 500 iterations, and derivative-based
algorithms were limited to 40 iterations. Letters in brackets denote convergence: (C)
denotes that the algorithm has converged on its own with the user-specified convergence
test, (T) denotes that the algorithm has exceeded the aforementioned number of iterations
before convergence and was terminated by the user, and (E) denotes for derivative-based
algorithms only that the optimization algorithm encountered the value 5; = 1 during

optimization and signaled for termination.
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CDX NA IG S11, 1 period, 2 paths over 10 years, objective F( u ) values
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Figure A.8: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a single period multi-path parameterization

with two paths. Derivative-free algorithms were limited to 500 iterations, and derivative-

based algorithms were limited to 40 iterations. Letters in brackets denote convergence:

(C) denotes that the algorithm has converged on its own with the user-specified con-

vergence test, (T) denotes that the algorithm has exceeded the aforementioned number

of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CMA ITRAXX EU S10, 1 period, 2 paths over 10 years, objective F(u ) values
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Figure A.9: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with op-
timization algorithms from Section 2.8 with a single period multi-path parameterization
with two paths. Derivative-free algorithms were limited to 500 iterations, and derivative-
based algorithms were limited to 40 iterations. Letters in brackets denote convergence:
(C) denotes that the algorithm has converged on its own with the user-specified con-
vergence test, (T) denotes that the algorithm has exceeded the aforementioned number
of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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A.2.1.2 Single Period Multi-Path Parameterization With Four Paths Per
Period

CDX NA |G S8, 1 period, 4 paths over 10 years, objective F( u ) values
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Figure A.10: CDX NA IG S8 data set from March 23, 2007 calibrated with optimization
algorithms from Section 2.8 with a single period multi-path parameterization with four
paths. Derivative-free algorithms were limited to 500 iterations, and derivative-based
algorithms were limited to 40 iterations. Letters in brackets denote convergence: (C)
denotes that the algorithm has converged on its own with the user-specified convergence
test, (T) denotes that the algorithm has exceeded the aforementioned number of iterations
before convergence and was terminated by the user, and (E) denotes for derivative-based
algorithms only that the optimization algorithm encountered the value §; = 1 during

optimization and signaled for termination.
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CDX NA IG S10, 1 period, 4 paths over 10 years, objective F( u ) values
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Figure A.11: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a single period multi-path parameterization

with four paths. Derivative-free algorithms were limited to 500 iterations, and derivative-

based algorithms were limited to 40 iterations. Letters in brackets denote convergence:

(C) denotes that the algorithm has converged on its own with the user-specified con-

vergence test, (T) denotes that the algorithm has exceeded the aforementioned number

of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S11, 1 period, 4 paths over 10 years, objective F( u ) values
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Figure A.12: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-
mization algorithms from Section 2.8 with a single period multi-path parameterization
with four paths. Derivative-free algorithms were limited to 500 iterations, and derivative-
based algorithms were limited to 40 iterations. Letters in brackets denote convergence:
(C) denotes that the algorithm has converged on its own with the user-specified con-
vergence test, (T) denotes that the algorithm has exceeded the aforementioned number
of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CMA ITRAXX EU S10, 1 period, 4 paths over 10 years, objective F( u ) values
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Figure A.13: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with
optimization algorithms from Section 2.8 with a single period multi-path parameteri-
zation with four paths. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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A.2.1.3 Two Period Multi-Path Parameterization With Three Paths Per
Period (T=5,10)

CDX NA IG S8, 2 periods, break at 5 years, 3 paths per period, objective F( u ) values

1 -
8 o LM (C)
| - BFGS2 (T)
16 CGFR (T)
» CGPR (T)
14F BFGS (T)
SD (T)
i + NMS2 (C)
° NMS (C)
ol + NMS2R (C)
NEWUOA (T)
8

Objective F( u) using the relative Soft Error Function (SEF)

6 \ .

D.

Sk,

P ————

'W‘:'“ .
27 % —Wu .
an

0

0 1 (I)O 2(I)0 3(I)0 460 5(I)0 6(I)0 760 860 960
Time (Seconds)

Figure A.14: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-
tion algorithms from Section 2.8 with a two period multi-path parameterization with
two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S10, 2 periods, break at 5 years, 3 paths per period, objective F( u ) values
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Figure A.15: CDX NA IG S11 data set from November 9, 2008 calibrated with op-
timization algorithms from Section 2.8 with a two period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S11, 2 periods, break at 5 years, 3 paths per period, objective F( u ) values
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Figure A.16: CDX NA IG S11 data set from November 9, 2008 calibrated with op-
timization algorithms from Section 2.8 with a two period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CMA ITRAXX EU S10, 2 periods, break at 5 years, 3 paths per period, objective F( u ) values
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Figure A.17: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with
optimization algorithms from Section 2.8 with a two period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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A.2.1.4 Four Period Multi-Path Parameterization With Two Paths Per Pe-

riod (T=2.5,5,7.5,10)

CDX NA IG S8, 4 periods at 2.5, 5, 7.5 & 10 years, 2 paths per period, objective F( u ) values
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Figure A.18: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-

tion algorithms from Section 2.8 with a four period multi-path parameterization with

two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-specified

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S10, 4 periods at 2.5, 5, 7.5 & 10 years, 2 paths per period, objective F(u ) values
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Figure A.19: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-

mization algorithms from Section 2.8 with a four period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-specified

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S11, 4 periods at 2.5, 5, 7.5 & 10 years, 2 paths per period, objective F( u ) values
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Figure A.20: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-
mization algorithms from Section 2.8 with a four period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CMA ITRAXX EU S10, 4 periods at 2.5, 5, 7.5 & 10 years, 2 paths per period, objective F( u ) values
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Figure A.21: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with
optimization algorithms from Section 2.8 with a four period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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A.2.1.5 Three Period Multi-Path Parameterization With Two Paths Per

Period (T=5,7,10)

CDX NA |G S8, 3 periods at 5, 7 & 10 years, objective F( u ) values
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Figure A.22: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-

tion algorithms from Section 2.8 with a three period multi-path parameterization with

two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-specified

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S10, 3 periods at 5, 7 & 10 years, objective F(u ) values
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Figure A.23: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-
mization algorithms from Section 2.8 with a three period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S11, 3 periods at 5, 7 & 10 years, objective F(u ) values
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Figure A.24: CDX NA IG S11 data set from November 9, 2008 calibrated with opti-
mization algorithms from Section 2.8 with a three period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CMA ITRAXX EU S10, 3 periods at 5, 7 & 10 years, objective F( u ) values
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Figure A.25: CMA ITRAXX EU S10 data set from September 30, 2008 calibrated with
optimization algorithms from Section 2.8 with a three period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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A.2.1.6 Two Period Multi-Path Parameterization With Two Paths Per Pe-
riod (T=5,10)

CDX NA IG S8, 2 periods, break at 5 years, 2 paths per period, objective F( u ) values
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Figure A.26: CDX NA IG S8 data set from March 23, 2007 calibrated with optimiza-
tion algorithms from Section 2.8 with a two period multi-path parameterization with
two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S10, 2 periods, break at 5 years, 2 paths per period, objective F( u ) values
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Figure A.27: CDX NA IG S11 data set from November 9, 2008 calibrated with op-

timization algorithms from Section 2.8 with a two period multi-path parameterization

with two paths per period. Derivative-free algorithms were limited to 500 iterations, and

derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-

vergence: (C) denotes that the algorithm has converged on its own with the user-specified

convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-

ber of iterations before convergence and was terminated by the user, and (E) denotes for

derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CDX NA IG S11, 2 periods, break at 5 years, 2 paths per period, objective F( u ) values
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Figure A.28: CDX NA IG S11 data set from November 9, 2008 calibrated with op-
timization algorithms from Section 2.8 with a two period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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CMA ITRAXX EU S10, 2 periods, break at 5 years, 2 paths per period, objective F( u ) values
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Figure A.29: CMA ITRAXX EU S10 data set calibrated on September 30, 2008 with
optimization algorithms from Section 2.8 with a two period multi-path parameterization
with two paths per period. Derivative-free algorithms were limited to 500 iterations, and
derivative-based algorithms were limited to 40 iterations. Letters in brackets denote con-
vergence: (C) denotes that the algorithm has converged on its own with the user-specified
convergence test, (T) denotes that the algorithm has exceeded the aforementioned num-
ber of iterations before convergence and was terminated by the user, and (E) denotes for
derivative-based algorithms only that the optimization algorithm encountered the value

B; = 1 during optimization and signaled for termination.
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A.3 Tables

Tables A.2 to A.19 on pages 128-145 show the Multi-period Single-factor Copula Model
(MSCM) calibration results. Each table shows the MSCM expected spreads (2.37) and
market spreads, respectively, for each tranche and maturity. These tables also show the
calibrated multi-path parameters v; and probabilities p;, as discussed in Section 3.1. For
completeness, we also calibrated the Hull Copula [1| on the same market data, and quote

the Hull Copula tranche implied copula correlation parameter $ next to v; and p;.
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