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Muscle architecture is a primary determinant of the muscle function associated with body

movement. An assessment of muscle architecture is therefore of great importance, not only

for investigating anatomical aspects of muscle but also for predicting its functional capacity.

Most muscles have a variable complexity in their architectures, making it challenging to accu-

rately assess them. Previous cadaveric approaches only take into account limited portions of

architecture. On the other hand, conventional radiological approaches, such as ultrasonography

and MRI, examine two-dimensional projected images. Neither of these approaches provides a

thorough understanding of the entire muscle architecture. This may lead to under- or over-

estimation of architectural parameters that are significant for both clinical and computational

studies. Therefore, the purpose of this thesis is to develop a computational modeling approach to

facilitate quantification and reconstruction of complex muscle architecture. Cadaveric specimen

data are used to investigate muscle architecture and to reconstruct accurate models. Associ-

ated geometric complexity and variation are carefully examined to yield consistent estimation

of architectural parameters. This method demonstrates robustness against non-uniformity in

the data and consistency over various types of muscle architecture; less than 10% error in

PCSA estimation. By incorporating ultrasonographic assessment, this method is extended to

approximate muscle architecture in living subjects, which enables estimation of PCSA for in

vivo muscle in a more consistent manner. Validation experiments demonstrate 0.4 − 8.4 %

estimation errors between the original architecture and its approximation, depending on the

anatomical complexity, which provides a practical insight into the quantification of PCSA for

in vivo muscle.
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Chapter 1

Introduction

1.1 Motivation

Skeletal muscle provides force production and excursion capability to drive and stabilize body

movement. Improper functioning of skeletal muscle can cause various health issues in the entire

body system, such as musculoskeletal disorder and injury. In such cases, correct understanding

of muscle is imperative not only to develop effective strategies for muscle injury prevention

and therapeutic treatment, but also to plan surgical procedures, such as tendon transfer and

replacement surgery. For instance, the surgical outcome of tendon transfer depends on a good

matching between donor and recipient muscles that necessitates a careful pre-operative exami-

nation. Specifically, an assessment of muscle architecture is essential to evaluate its functional

capacity because it is a primary determinant of the muscle function associated with body move-

ment. Thus, it is of great clinical importance to accurately assess muscle architecture.

Accurate assessment of muscle architecture is important, not only for clinical studies but also

for computational studies using an analytical model, such as the inverse-dynamics problem for

neuromuscular control. The model complexity varies with respect to the purpose and applica-

tion of those studies. For instance, muscle morphology can be simply represented by a single

line segment or modeled in a more sophisticated manner by a detailed surface or volume mesh.

Muscle dynamics can be modeled by a simple uni-directional, point-to-point mass-spring model

or by a more complicated continuum-based material scheme. Regardless of the complexity and

degree of freedom, architectural and structural parameters associated with studied muscles are

directly used to build models. Thus, the model performance is highly dependent on the choice

and accurate representation of those parameters. In building a muscle model, however, it is

common practice to choose reference values reported in the literature or geometric measures

simply determined by radiological assessment, such as magnetic resonance imaging (MRI) and

ultrasonography. This may lead to imprecise parameter values and hence inaccurate models.

For instance, even small changes in architectural parameters, specifically, physiological cross-

sectional area (PCSA), may lead to considerable variation in simulation results. Therefore, it

1



Chapter 1. Introduction 2

is critical to use reliable modeling based on an accurate parameter estimation.

1.2 Problem statement

Muscle architecture is the geometric arrangement of muscle fascicles (or fibers) at the macro-

scopic level. An individual fiber is the elementary functional unit for force production and

shortening. The functional outcome is aggregated over all fibers to characterize the entire

muscle function. Force production per muscle is proportional to the number of fibers or total

cross-sectional area of fibers but inversely proportional to the angulation of the fibers relative

to the tendon axis. The length of the fiber from proximal to distal attachment determines the

excursion limit for the associated joint. As the distribution of the angle and length of fibers

are non-uniform in most muscles, the functional properties of muscle are characterized by how

fibers are organized and arranged. Thus, the accurate assessment of the muscle architecture

must take into account the structural complexity of muscles.

In general, muscle assessment can be classified into the following three approaches: cadaveric,

radiological and biomechanical approaches. The cadaveric approach aims to obtain an in-depth

understanding of anatomical structure. Detailed analysis can be achieved but it is not straight-

forward to apply to in-vivo studies directly. On the other hand, the radiological approach (e.g.,

ultrasonography and MRI) is non-invasive, so it is widely used for understanding living tissues.

Additionally, it can be used effectively to quantify dynamically changing structural properties

during muscle contraction. However, it is inherent that two-dimensional images impose con-

straints on the capacity to fully understand three-dimensional structure. The biomechanical

approach provides functional analysis of muscle associated with skeletal movement. Kinetic and

kinematic measures are commonly used to determine functional properties, which consequently

permits us to evaluate muscle performance and functional contribution to movement. In con-

trast to cadaveric and radiological approaches, it may not enable us to quantify the underlying

structure of muscle. None of those approaches alone provides a comprehensive understanding

of muscle.

Since the focus of this thesis is to investigate architectural and structural aspects of muscle,

cadaveric and radiological assessment are the main tools used throughout this thesis to address

the following questions:

• How to reconstruct the complex geometry of muscle architecture based on the detailed

cadaveric data.

• How to determine and predict functional and physiological properties of muscle from

reconstructed muscle geometry.

• How to utilize computational modeling studies for clinical applications.
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This thesis is based on existing data (e.g., fascicle data and ultrasound) that were already ac-

quired in other anatomical studies [77, 78, 41, 9, 58, 89, 57, 81]. Thus, the protocol development

for data acquisition is not within the scope of this thesis.

1.3 Contribution

The purpose of this thesis is to develop computational modeling approaches to reconstruct and

understand the complex architecture of skeletal muscle. Cadaveric specimen data are used to

conduct a detailed investigation of muscle architecture and to reconstruct geometric models.

Ultrasonographic data are also used to extend this cadaveric modeling, which allows to conduct

experiments based on in-vivo muscles. This thesis mainly consists of three sub-projects, each

of which is presented with a corresponding method development and validation experiments.

First, this thesis presents a computational method to quantify architectural parameters based

on cadaveric specimen data. Cadaveric data exhibit greater details in their structure, geometric

properties of which have often highly non-uniform and variable complex patterns. Presumably,

these complexities are highly correlated with many clinical implications but they are rarely

accounted for in previous studies. In contrast, in this thesis, dissection and digitization is used

to capture those properties in a more systematic manner, such as structural and volumetric

modeling. The proposed method specifically focuses on geometric reconstruction of fascicle

trajectory and arrangement within the muscle volume. Associated geometric complexity and

variation are carefully examined to yield consistent estimation of architectural parameters, in

which no adjustment is needed to deal with inter-subject and inter-specimen variability. Based

on those estimated parameters, this thesis also presents a geometric approach to approximate

muscle surface and volume.

Second, this thesis proposes a three-dimensional approach to pennation angle (PA) estimation

based on geometric analysis of fascicle attachment. It is observed that some muscles (e.g.,

pennate muscles) exhibit stronger linearity in the distribution of distal attachment, whereas

others (e.g., non-pennate muscles) exhibit much weaker linearity. Based on an estimate of the

linearity, the proposed method effectively classifies a variety of skeletal muscles into two distinct

groups: pennate and non-pennate muscles. This approach also allows to estimate the line of

action and PA for a muscle. As the conventional method is based on two-dimensional images

(e.g., ultrasonography), its estimation of the line of action and PA is sensitive to how these

images are captured by the imaging device. Many studies stress that an anatomical knowledge

is needed to manipulate the images correctly. To compare the proposed method to this more

traditional approach, 2D ultrasonographic assessment is simulated by controlling the imaging

plane to determine associated 2D image features from 3D cadaveric data. This experiment illus-

trates the correspondence between the architecture in space and its projected images, providing
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practical insight into the difficulty of obtaining accurate parameters solely from 2D assessment

for muscles having complex and variable architecture.

Third, the proposed cadaveric modeling is extended to understand the architecture of in-vivo

muscle. Cadaveric assessment allows to reconstruct a detailed muscle architecture in 3D, but

may not be directly applicable to in-vivo studies. On the other hand, radiological approaches,

such as ultrasonography, enable to access the structure of living tissue but, as noted above, its

assessment in 2D is limited. The proposed approach is to combine both assessments. More

specifically, the 3D architectural model based on cadaveric specimens is geometrically trans-

formed to match the 2D characteristics that can be determined by the ultrasound images in a

standard clinical setting. This geometric approach is based on the following assumption: the

same muscles in different subjects are sufficiently similar to each other in overall architectural

and geometric morphology that inter-subject variability of architecture can be approximated

in terms of global characteristics. This approach is validated by applying the transformation

approach in three experimental settings: synthetic to synthetic muscles, cadaveric to cadaveric

muscles and cadaveric muscle to ultrasound images. The quality of architecture approximation

is evaluated by comparing PCSA estimation between muscles.

1.4 Outline of thesis

The subsequent chapters are organized as follows. Chapter 2 briefly outlines basic knowledge of

muscle anatomy and biomechanics that are used as background material throughout the thesis.

It also reviews existing muscle models that focus on representing muscle morphology. Chapter 3

presents the proposed approach to reconstruction and assessment of muscle architecture, PCSA

estimation in particular. Chapter 4 presents the three-dimensional approach to PA estimation

based on cadaveric specimens. By comparing it to the conventional image-based approach,

it is demonstrated that the proposed method deals with anatomical complexity and variation

more effectively than the conventional approach. Chapter 5 presents the geometric approach to

reconstruction of muscle surface and volume from estimated architectural parameters. Chapter

6 discusses how to combine the cadaveric model with the radiological approach to obtain better

approximations to the architecture of in-vivo muscle. It is demonstrate how PCSA of living

muscle is estimated by using the proposed combined approach. Chapter 7 concludes with a

discussion and some suggestions for future work.



Chapter 2

Background

Muscles are the active tissues in the body that generate forces to drive motion. Depending on

their physiological functions, muscles can be classified into three types: cardiac, smooth, and

skeletal muscle. Cardiac muscles make up the walls of the heart, while smooth muscles consti-

tute the walls of other organs and blood vessels. Both of these classes of muscle are controlled

by the autonomic nervous system and contract without conscious effort. Unlike the first two

classes of muscle, skeletal muscle contraction is controlled through the somatic nervous system

and, for the most part, is done so consciously. These voluntary contractions produce forces that

are transferred to the underlying skeleton, resulting in human body movement. Most research

in graphics and related fields, such as biomechanics and robotics, has focused on understanding

the physiological features and functions of skeletal muscles. In this chapter, both fundamental

and computational aspects of skeletal muscles are briefly reviewed.

Much of the material in this chapter also appears in the publication [48].

TENDON MUSCLE FASCICLE MUSCLE FIBRE MYOFIBRIL SARCOMERES

Figure 2.1: Major components of the hierarchical muscle structural system (adapted from Ng-
Thow-Hing [69])
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Chapter 2. Background 6

2.1 Muscle structure

Skeletal muscles are wrapped by the epimysium, a dense connective tissue that joins with the

tendon. Internally, the muscle is composed of numerous muscle fiber bundles, called fascicles,

which are separated from one another by a layer of connective tissue known as the perimy-

sium. In turn, every fascicle consists of muscle fibers that are isolated from one another by

the endomysium. Similarly, each muscle fiber consists of parallel bundles of myofibrils. Finally,

each myofibril is made up of a serial array of contractile units, called sarcomeres, which are re-

sponsible for producing the contractions associated with muscles. The hierarchical structure of

muscle is illustrated in Figure 2.1. Although fascicles and fibers are often graphically depicted

as circular structures, it is important to note the true mosaic-like space-filling pattern of these

components.

Another important component to be considered is tendon. It transmits forces produced by the

attached muscle to bone. Tendon connects muscle to bone either at a narrow area or over a

wide and flattened area, known as the aponeurosis. The attachment of muscle to more sta-

tionary bone (i.e., the proximal site) is called the origin while the other end, attached to more

movable bone (i.e., distal site), is called the insertion. Tendons are mostly composed of parallel

arrays of collagen fibers closely packed together and have the mechanical property that they

are much stiffer than muscles when they are pulled. In addition to force transmission, tendons

passively modulate force during locomotion, providing additional stability (for example, the

Achilles tendon during a human stride).

2.2 Muscle architecture

Unipennate Bipennate MultipennateFusiform TriangularParallel

PARALLEL PENNATECONVERGENT

Figure 2.2: Exemplary muscle architecture types (adapted from Ng-Thow-Hing [69])

Muscle architecture refers to the internal arrangement of fascicles within a muscle. Some mus-

cles have simple architectures, in which the fascicles are arranged parallel to one another along

the length of the muscle. These are typically the larger muscles, such as biceps brachii. However,

most muscles exhibit fascicles with an angular orientation, called the pennation angle, between

their tendinous attachments (i.e., line of action) and orientation of each fascicle. Muscles with

angular fascicle arrangements are known as pennate muscles. Several types of pennate patterns
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are observed in skeletal muscles, as illustrated in Figure 2.2. Parallel muscles can have either

longitudinally arranged fascicles (e.g., sartorius) or similarly oriented fascicles with tapering

ends (e.g., biceps brachii and psoas major). Unipennate muscles have fascicles arranged in a

diagonal pattern on one side of the tendon (e.g., lumbricals and extensor digitorum longus).

Bipennate muscles have two rows of fascicles, running in opposite diagonal directions on both

sides of a central tendon (e.g., rectus femoris). Multipennate muscles have multiple rows of

diagonal fascicles, with a central tendon that branches into two or more tendons (e.g., deltoid).

Convergent muscles have wider origin and narrower insertion (e.g., pectoralis major). These

differences in muscle architecture determine the range of movement and power produced by

a muscle. A muscle would contain a greater number of shorter muscle fascicles in a pennate

configuration than in a parallel configuration. As such, pennate muscles do not shorten as

much, but can produce more force than parallel muscles of the same size.

Since muscle architecture is a primary determinant for muscle function, it is common that

functional capacity of the muscle is inferred from estimated architectural parameters, such

as fascicle length (FL), pennation angle (PA), physiological cross-sectional area (PCSA) and

muscle volume (MV). Specifically, FL is proportional to shortening velocity of muscle and

excursion range for associated joints, because FL reflects the number of sarcomeres in series

in the fascicles. PA determines the contribution that muscle fascicles make to the force acting

along the attached tendon axis (i.e., the line of action). PCSA is proportional to the maximum

capacity of force that muscle can produce. FL is defined as the distance between the origin of

the most proximal fascicles to the insertion of the most distal fascicles. Or it is simply defined

as the distance between the origin and insertion of one fascicle. PA is defined as the angle

between the orientation of a fascicle and the line of action. For each fascicle i, its PA is simply

calculated as

PAi = cos−1(line of action · fascicle orientationi). (2.1)

MV is practically measured by either the sum of volumetric slices obtained from MRI images

or using mass and density measures:

MV[cm3] =
∑
k

Ck∆hk (2.2)

=
mass[g]

density[g/cm3]
(2.3)

where Ck is the area of cross-sectional slice k and ∆hk is the thickness of the slice. PCSA

is defined as the sum of the cross-sectional areas of all muscle fascicles within the muscle. In

practice, PCSA is simply measured using the algebraic method

PCSA[cm2] =
MV[cm3] · cos(PA)

FL[cm]
(2.4)
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Maximum isometric force, FM0 , is calculated by

FM0 [N] = PCSA[cm2] ·maximum isometric stress[N/cm2] (2.5)

If maximum isometric stress is assumed to be constant (e.g., 45 N/cm2 [31] or 25−35 N/cm2 [110]),

PCSA is used to compare force capabilities of muscles.

2.3 Assessment of muscle architecture

Muscle architecture is generally investigated by either an invasive cadaveric or a non-invasive

radiological approach. The cadaveric approach uses either a formalin-fixed or a fresh cadaveric

specimen, whereas the radiological approach uses either ultrasonography or MRI imaging data.

Cadaveric assessment provides a unique opportunity to directly measure architectural proper-

ties. Many previous approaches [59, 102] use selectively sampled fascicles from the superficial

layer of muscle, FL and PA of which are directly measured using a caliper, goniometer and pro-

tractor. On the other hand, PCSA and MV are estimated using (2.4) and (2.3), respectively.

For more detailed investigation into architecture, Agur et al. [2], Kim et al. [42] and Rosatelli

et al. [79] used dissection to collect fascicles throughout the muscle. Using a MicroScribe G2

digitizer, fascicle trajectories are traced and reconstructed three-dimensionally, which provides

an in-depth understanding of muscle architecture. However, due to the invasiveness, the cadav-

eric approach is not straightforward to apply to in-vivo studies.

Ultrasonography produces a grey-scale image based on the variable response of tissue to ultra-

sonic waves, with hypo-echoic fascicle (dark) and hyper-echoic connective tissue (white). Due

to its portability and flexibility, ultrasonography is widely used as a diagnostic tool to assess

architectural properties in-vivo in both relaxed and contracted states. Specifically, FL, PA and

anatomical cross-sectional area are estimated by varying images with respect to the alignment

of a hand-held probe. As the parameter estimation is sensitive to the location and orientation

of the probe, it is essential to determine the correct imaging plane [11, 76, 66].

MRI generates an oscillating magnetic field that excites hydrogen atoms in the body. The con-

trast between different tissues is determined by the rate at which those excited atoms return to

the equilibrium state. MRI produces a sequence of axial images that are used to measure MV

by (2.3) and reconstruct muscle geometry. However, MRI has difficulty in identifying specific

muscles and capturing narrow areas.

Diffusion tensor imaging (DTI) produces magnetic resonance images of living tissues sensitized

with the local characteristics of molecular diffusion: specifically, estimates of the rate of water

diffusion at a spatial location. Thus, DTI effectively visualizes fibrous structure of living tissue,
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such as brain and muscle. Since DTI is a non-invasive method, it enables in-vivo quantifi-

cation of muscle architecture throughout the volume without any tissue damage [55, 26, 84].

However, it has some limitations related to low signal-to-noise ratio (SNR) and difficulties in

differentiating between other connective tissues.

2.4 Muscle contraction

Muscle contraction is controlled by the central nervous system; nerve impulses originate from

and travel down the motor neurons to the sensory-somatic branch in the muscle. The place at

whitch the terminal of a motor neuron and a muscle fiber connect is called the neuromuscular

junction. Each motor neuron innervates a set of muscle fibers in which the nerve impulses

stimulate the flow of calcium into the sarcomeres, causing their filaments to slide [39]. Sar-

comeres have protein-based structures composed of high-tensile “thin” filaments of actin and

“thick” filaments of myosin. They are alternatingly stacked on one another and interact via

cross-bridges to produce force. The sliding filament and cross-bridge theory [36, 37] describes

the process of muscle contraction. During muscle contraction, the lengths of these filaments

remain constant and slide past each other to increase their overlap, producing an overall short-

ening effect in the muscle, as illustrated in Figure 2.3. The myosin heads are considered to be

elastic elements which oscillate about an equilibrium position (i.e., position of attachment to

the myosin filament) due to biochemical energy. They are linked as the cross-bridges to the

myosin binding sites located in the actin filament. When the heads oscillate, they continuously

attach or detach from the myosin binding site. When they attach, they exert forces on the

actin filaments, causing filaments to slide past each other. Muscle contraction can be classified

according to length change or force level. In isotonic contraction, muscle length changes while

producing force; the muscle either shortens (i.e., concentric contraction) or lengthens (i.e., ec-

centric contraction) depending on whether the produced force is sufficient to resist an external

load. In isometric contraction, muscle length remains unchanged while producing force, as, for

example, when holding up an object without moving.

Actin

Myosin
RELAXED CONTRACTED

Figure 2.3: During concentric muscle contraction, the sarcomere shortens as filaments of myosin
pull along the rigid filaments of actin. The more the filaments overlaps, the more the sarcomere
thickens (adapted from [39]).
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2.5 Functional properties of muscle

Functional properties of muscle associated with dynamic force development can be obtained

from simple experiments using muscle isolated from tendon [28]. Two fundamental properties,

force-length and force-velocity, have been frequently incorporated into a variety of biomechan-

ical models to understand muscle function.

When the whole muscle is stretched or shortened to several different lengths (force-length prop-

erty), the resulting force output is measured and plotted against the length. With no muscle

activation, muscle only develops passive restorative force against increased stretching. With

muscle activation, muscle contracts and generates active force. The total force is the sum of

both active and passive forces (see Figure 2.4(a)). The curves for these forces are approximated

in various ways, such as piecewise line segments [109], piecewise cubic splines [21] or quadratic

functions [99]. The active force is found by subtracting the passive force from the total force.

The non-linear force-length relationship is consistent with the sliding filament theory of muscle

contraction.

The force-velocity property of muscle is the relationship between the velocity at which mus-

cle shortens and the amount of force it produces (plotted in Figure 2.4(b)). To quantify this

relationship, a fully activated muscle is clamped isometrically and then suddenly released to

allow shortening against an external load. When there is no load on the muscle, the maximum

velocity of shortening is experienced. As the external load increases, the velocity of shortening

decreases. The curve for this property is modeled by following hyperbolic equation (which is

also known as the Hill equation) [33]:

(F + a)(v + b) = (F0 + a)/b (2.6)

where F is the force generated by the muscle, v is the velocity of shortening, F0 is the maxi-

mum isometric force, a and b are constants related to a specific class of muscle. This property

is arguably thought to be associated with the dependence of muscle force on the number of

attached cross-bridges [39]. During muscle contraction, cross-bridges attach to produce forces.

Since it takes some amount of time for them to attach, as filaments slide past one another

more quickly (i.e., muscle shortens with increasing velocity), the produced force decreases due

to the lower number of attached cross-bridges. Conversely, as the relative velocity of filaments

decreases (i.e., muscle shortens with decreasing velocity), more cross-bridges can attach, pro-

ducing more force.

Another important property of muscle is line of action, which determines functional constraints

on the behavior of muscle. There are two common methods to represent the line of action:
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Figure 2.4: Functional properties of muscles associated with force development (adapted from
[109]). (a) A sample force-length plot shows the passive elastic (dotted), active (dashed), and
total (solid) force generated by a muscle against its length. FM0 is the maximum isometric
force and L0 is the rest/optimal length. FM0 is experienced at L0. (b) A sample force-velocity
plot shows the force a muscle generates against the velocity of muscle contraction. VM

max is the
maximum shortening velocity.

piecewise line segments [22] and centroid curves [38]. Piecewise line segments specify the path

of muscles to tendinous attachments. They can be wrapped around the joints or pass through

the tendon sheaths. Centroid curves are constructed by interpolating approximate centroids of

cross-sections throughout the muscle.

2.6 Modeling muscle contraction

A simple and phenomenological mechanical model (shown in Figure 2.5(a)) was suggested by

Gasser and Hill [28] to capture the mechanical properties of muscle discussed above. This model

has three major components: the series element (SE), the parallel element (PE), and the con-

tractile element (CE). The series element (SE) represents mainly the elastic effects of tendon

and intrinsic elasticity within the sarcomere. The parallel element (PE) represents the passive

elasticity of the muscle resulting from the penetration of connective tissues into the muscle

body. The contractile element (CE) accounts for generation of active force that is dependent

on the muscle length, lM , and the time-varying neural signal, a(t), originating from the central

nervous system. The Hill model was later refined by Zajac [109] to be a dimensionless aggregate

or “lumped” model that can be scaled easily to represent any skeletal musculotendon unit. The

force components are modeled from the measurement of isolated muscle fibers, which directly

reflect the non-linear properties due to the sliding filaments. While the series elastic element

can be lumped with the tendon and removed from the model, pennation effects are directly
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Figure 2.5: Mechanical muscle models (adapted from Chen and Zeltzer [21]). (a) Hill’s model
describes the force of a muscle contracting as the sum of three elements: the contractile element
(CE), the series elastic element (SE) and the parallel element (PE) along with the viscous
element (B) that depends on the shortening velocity. (b) Zajac’s model extends Hill’s model,
adding the pennation angle, α, of a muscle fiber.

included into the model. In Zajac’s model, muscle length, lM , tendon length, lT , muscle force,

FM , and shortening velocity, vM , are respectively normalized as

l̃M =
lM

lM0
, l̃T =

lT

lTs
, F̃M =

FM

FM0
, ṽM =

vM

vMmax

where lM0 is optimal muscle length at which FM0 is developed, lTs is tendon rest length, FM0 is

the maximum isometric force of active muscle, and vMmax is the maximum shortening velocity

of muscle fibers. The relationship between muscle and musculotendon length is

l̃MT = l̃T + l̃M cosα

where α is the pennation angle (see Figure 2.5(b)). The normalized active force F̃CEactive and

passive force F̃PE can be approximated from the characteristic curves of force-length and force-

velocity (shown in Figure 2.4). The production of contractile force F̃CE is the F̃CEactive scaled by

activation level, a(t), varying with time t, and the force-velocity relation, Fv(ṽ
M ):

F̃CE = a(t)Fv(ṽ
M )F̃CEactive(l̃

M )

Finally, the total force generated by the whole musculotendon unit is
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F̃M = (F̃CE + F̃PE) cosα

Another commonly used muscle model is the Huxley model [36] which combines the sliding fil-

aments and cross-bridge theory that is reviewed in Section 2.4. While the Hill model has been

used to describe macroscopic behaviors of muscle, the Huxley model has been used mainly to

understand the properties of the microscopic contractile elements. To describe muscle contrac-

tion, the actin-myosin bonding reaction is expressed using first order kinetics as

dn

dt
=
∂n

∂t
− v(t)

∂n

∂x
= (1− n)f(x)− ng(x). (2.7)

Here, the function n(x, t) is proportional to the number of attached cross-bridges with displace-

ment x at time t, v(t) is the velocity of contraction of a half sarcomere, f(x) is the rate of

attachment and g(x) is the rate of detachment. The displacement x is the distance between

the equilibrium position and the myosin binding position located in the actin filament. The

cross-bridge is defined as the cross-link between the myosin head and the myosin binding posi-

tion and its behavior is modeled using a Hookean spring. The total force exerted by muscle is

calculated by summing the forces contributed by each bonded cross-bridge as

F (t) =
mkAs(t)

2l

∫ ∞
−∞

xn(x, t)dx (2.8)

where m is the number of cross-bridges per unit volume, k is the spring constant, A is the

cross-sectional area of the muscle, s(t) is the sarcomere length and l represents the distance

between successive binding positions.

2.7 Modeling muscle morphology

Muscle is not only a functional unit that drives body movement, it is also a fundamental

component in defining the visual appearance of the human body. As such, realistic muscle

deformation is needed for high-quality animated human characters. Several approaches have

been proposed to model either muscle deformation or muscle-driven body deformation. Their

application can be used to simulate different scales of systems, from a single muscle to an entire

body. Based on their underlying fundamental methodology, these approaches are classified into

three categories: geometrically-based, physically-based, and data-driven approaches.
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2.7.1 Geometrically-based approaches

Geometrically-based techniques were employed in early systems because they are practical and

efficient. Most proposed approaches have focused on modeling animation effects of muscle con-

traction, such as bulging or swelling, which can be key underlying factors for skin deformation

or facial animation. They have been shown to be successful in modeling simple muscle (e.g.,

fusiform) but there may not be a straightforward extension to complex muscles [104, 83]. Fur-

thermore, since muscle deformation is determined by skeleton arrangement, these techniques

have difficulty in achieving a high order of realism from physiological or biomechanical perspec-

tives. Thus, to better handle these problems, muscles are constructed as multiple layers or are

often coupled with other physically-based approaches (see Section 2.7.2).

Space and free form deformation

A space deformation is a mapping from an input domain to a target domain within an Euclidean

space, in which geometric control is manipulated to satisfy specified constraints. The Free Form

Deformation (FFD) technique places a lattice around an object and creates a deformable space

by using a trivariate Bézier volume defined by the points of the lattice [85]:

X(u, v, w) =
l∑

i=0

m∑
j=0

n∑
k=0

Bi(u)Bj(v)Bk(w)Pijk, 0 ≤ u, v, w ≤ 1 (2.9)

where Bi(u), Bj(v) and Bk(w) are separable Bernstein polynomials and Pijk is a point of the

lattice (i.e., control point) and X(u, v, w) is a deformed point (i.e., spatial point). Chadwick et

al. [20] employed FFD to represent muscle deformation. Articulated skeletons, located inside

muscle, transform a surrounding FFD lattice, which in turn represents a muscle shape change.

Although FFDs provide simple and fast control, they do not permit direct manipulation of

muscle shape. Also, the regular lattice spacing used by FFD prevents the detailed control

needed to produce more refined and complex shapes (see Figure 2.6). Moccozet et al. [63]

addressed this limitation by introducing Dirichlet Free From Deformation (DFFD) which is

based on a scattered data interpolation technique. They removed the requirement for regu-

larly spaced control points by replacing rectangular local coordinates by generalized natural

neighbor coordinates (namely, Sibson coordinates). Given a point, its natural neighbors are

collected based on Delaunay and Dirichlet/Voronoi diagrams and its displacement is computed

using interpolation. They used a multi-layered deformation model to illustrate hand animation

in which the muscle layer is modeled by a DFFD control point set corresponding to a simplified

hand topography. In Skeleton-Subspace Deformation (SSD), deformation of surface points is

determined by the weighted summation of the associated skeleton coordinate transformations.

Muscle bulging or swelling can be modeled by manually defining skeleton subspaces and ad-

justing weights. Lewis et al. [56] introduced the Pose-Space Deformation (PSD) by generalizing

the interpolation domain, which can be defined by a skeleton or even expression parameters.
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They improved upon the blending problem, in which neighboring subspaces might incorrectly

blend together in SSD, and permitted direct manipulation of the desired deformation.

Figure 2.6: An exemplary FFD surface is defined by a control lattice around the muscle shape
surface. (Left) The FFD surface before deformation. (Right) The FFD surface after deforma-
tion.

Parametric and polygonal surfaces

A parametric surface is represented by either parametric equations to control shapes or a collec-

tion of surface patches which are defined in terms of bivariate and single valued equations (i.e.,

x = x(u,w), y = y(u,w), z = z(u,w)). A polygonal surface is an approximate and discretized

surface represented by many simple geometric primitives, such as vertices, edges and faces.

Komatsu [44] used biquartic Bézier surfaces to model body deformation. The Bézier surfaces

are patched cylindrically around the skeleton and are jointly controlled to transform the body.

Wilhelms [104] and Scheepers et al. [83] used a parametric ellipsoid as a basic primitive to model

human skeletal muscles. Three principal axes are adjusted to represent the bulging of the muscle

belly, while volume is preserved with respect to constrained ratios using predefined relationships

among these three axes. Although an ellipsoid is sufficient for modeling simple shapes, such as

fusiform muscle, it cannot be easily adapted to model more complex muscle shapes. Scheepers

et al. extended their model to represent multi-belly muscles (e.g., pectoralis) in which n pairs

of origin and insertion points are specified and n ellipsoids are laterally aligned along the path

within the corresponding pair. Their model is further generalized to represent more complex

muscles which are bent and wrapped around anatomical structure (e.g., brachioradialis in the

forearm). The straight path between the origin and the insertion point is replaced by a cubic

Bézier curve representing the direction of muscle force and ellipses of varying size along this

curve to define the volume and shape of the muscle. Dow and Semwal [24] proposed the

generalized cylinder based muscle model, in which muscle is represented by a cylinder axis and

surrounding cross-sectional slices. The contour of each slice is modeled by B-spline curves and

its radius is controlled to express volumetric changes of muscle (see Figure 2.7). Wilhelms and

Gelder [105] presented a similar approach with the additional flexibility that a cylinder axis

can be bent for modeling muscle bent over a joint. Furthermore, the muscle length, width

and, thickness are scaled to maintain constant volume. Ng-Thow-Hing and Fiume [70, 69] used

B-spline solids in which a cylindrical coordinate system is chosen to construct a control point
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lattice from real specimen data. Their geometric parameterisation can model realistic muscle

shape and also depict muscle fibers inside the muscle.

Figure 2.7: An exemplary parametric and polygonal surface: a muscle shape is defined by
control of a set of cross-sectional slices. The surface before deformation (left) and after defor-
mation (right).

Implicit surfaces

An implicit surface generated by a set of skeletons, si (i = 1, 2, · · · , n), with associated field

functions, fi, is defined at the isovalue c by

{P ∈ R3| f(P ) = c}, where f(P ) =

n∑
i=1

fi(P ). (2.10)

The skeleton, si, can be any geometric primitive such as a point, a curve, a parametric sur-

face, etc. The field function, fi, is generally a decreasing function of the distance from a given

point, P , to the associated skeleton (see Figure 2.8). Based on the type of field function,

various implicit surfaces have been developed: blobs, metaballs, soft objects, and convolution

surfaces [15, 106, 16].

Bloomenthal et al. [16] used convolution surfaces to model the human hand and arm by ap-

proximating bones, muscles, tendons and veins close to the underlying skeletons. Thalmann et

al. [96] presented the multi-layered human model whose body primitives (e.g., muscle, limb, and

fatty tissue) are additively constructed from a stick figure skeleton model and coated with the

ellipsoidal metaball surfaces. Although the implicit surfaces are smooth and continuous in mod-

eling objects, unwanted blending effects may often occur in modeling deformation over joints.

This problem can be avoided by defining neighboring areas between the different skeletons, and

specifying how the contributions from them are to be summed (e.g., blending graph [18] and

weighted blending with the proximity [87]).

Figure 2.8: An exemplary implicit surface is defined by the sum of field functions around asso-
ciated spherical skeletons. The surface before deformation (left) and after deformation (right).
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(a)

(b)

Figure 2.9: Geometrically-Based Approaches (a) deformed cylinders [104] and (b) B-Spline
solids [69]

2.7.2 Physically-based approaches

While geometrically-based models have proven to be sufficient for some graphical applications

demanding visually acceptable quality, their inherent simplicity and the need for human inter-

vention often makes it difficult to extend them to represent complex scenes involving dynamics.

Furthermore, they lack the physical or mechanical accuracy often required for realistic modeling

and simulation. To overcome these deficiencies, many researchers have turned to physically-

based approaches in which physical simulation is employed to solve for complex interactions

involving muscle dynamics and tissue properties. To model physically-based muscles, the fol-

lowing two problems must be addressed: (1) determining the contractile muscle forces and (2)

representing the changing muscle geometry during the contraction. To solve these problems,

several muscle models have been proposed based on a variety of computational methods, such

as mass-spring systems, FEM (Finite Element Method), and FVM (Finite Volume Method).

Mass-spring system

An object is modeled by a collection of point masses linked together with massless springs. An

elastic force acting on mass i connected by a spring to mass j is given by

fij = k(|xij | − lij)
xij
|xij |

(2.11)

where xij = xj − xi, and xi, xj are the locations of point masses i and j, respectively, lij
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is the rest length between them and k is the spring’s stiffness. This linear spring model can

be generalized by incorporating various types of spring forces, such as angular, bending, and

shearing. Each force is derived from an energy minimization principle and serves as a constraint

to cause the desired deformation effects.

Chadwick et al. [20] linked FFD control points to point masses in a mass-spring system, allowing

this dynamic system to influence the geometrically-based deformation. By augmenting their

FFD-based muscle model with a mass-spring system they were able to represent the viscoelastic

properties that articulated skeleton-driven deformation often lacks. Lee et al. [52] and Albrecht

et al. [3] embedded a muscle layer based on a mass-spring system between the skin surface

and the skeleton structure to model facial expressions and hands, respectively. Spring forces

generated by the movement of bones in the skeleton caused the attached skin surface to deform

realistically. Nedel and Thalmann [68] and Aubel and Thalmann [10] proposed a two-layered

muscle model consisting of a line of action and the muscle surface. The line of action is modeled

using either a straight line [68] or a 1D mass spring [10] to define the profile of the muscle (e.g.,

orientation and bone attachment). The skeleton kinematically controls the line of action to

deform the surrounding muscle surface based on a mass spring system (see Figure 2.10(a)).

Besides linear springs representing the surface, angular springs have been incorporated to control

the volume of the muscle [68]. Ng-Thow-Hing and Fiume [70, 69] proposed a more sophisticated

model based on anatomical and biomechanical considerations. Their solid muscle is extracted

from medical imaging data or cross-sectional sliced images (e.g., Visible Human [1]) and modeled

using volumetric B-splines. For interior details, a muscle fiber architecture is constructed based

on digitally scanned fiber data. While a Hill-based model is employed to express the dynamics

of muscle fiber, a mass-spring system is used to represent viscoelastic deformation of muscle.

Zordan et al. [114] developed a human torso model to animate breathing motions, such as

inhalation and exhalation. The interplay of rib cage, diaphragm, and abdomen muscles while

breathing was described based on respiration mechanics and was simulated using a mass-spring

system (see Figure 2.10(b)). Furthermore, in order to preserve the volume of the human body,

pressure forces based on anticipated volume change were incorporated. Delp et al. [23] used

a set of line segments to define behavior of muscles. Additionally, wrapping surfaces (e.g.,

ellipsoids and cylinders) are employed to impose geometrical constraints, preventing muscles

from penetrating into other surrounding tissues.

Finite element method (FEM)

In the finite element method (FEM), a body is subdivided into a set of domains or finite ele-

ments (e.g., hexahedra or tetrahedra in 3D, quadrilaterals or triangles in 2D). Displacements

and positions in an element are approximated from discrete nodal values using interpolation

functions:



Chapter 2. Background 19

(a)

(b)

Figure 2.10: A mass-spring system is used to simulate behaviors of lines of action and wrapped
surfaces of (a) pectoralis muscle [10] and (b) torso model [114]

Φ(x) ≈
∑
i

hi(x)Φi (2.12)

where hi is a basis function and Φi is the scalar weight associated with hi. There exist many

choices for the element type and the basis functions. The choice depends on the object geometry,

accuracy requirements, and computational budget. Higher order interpolation functions and

more complex elements require greater computation per element, but may give a more accurate

approximation. For a more complete discussion of the FEM, see [92]. Given a dynamic problem

to be solved, equilibrium equations are derived in terms of quantities of interest (e.g., strain

or stress) and are expressed as Partial Differential Equations (PDEs). These PDEs are then

approximated by the FEM. For example, to represent solid deformation, the total strain en-

ergy as the potential energy is carefully designed to express desired material response and then

equilibrium equations are derived according to the principle of virtual work [29, 67]. Resulting

algebraic equations form a linear or nonlinear system, depending on the specified strain energy.

While smaller linear systems can be solved by direct methods (e.g., Gaussian Elimination),

large or nonlinear systems require iterative methods (e.g., Conjugate Gradient or Newton’s

method) [75].

Chen and Zeltzer [21] proposed a biomechanical approach by integrating a Hill-based muscle
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model into a linear elastic solid model. Active muscle forces are approximated as parametric

functions and embedded into selected edges between vertices of a FEM-based solid. While they

animated flexion of muscles, they emphasized the biomechanical validity of their model by com-

paring it to experimental measurements, such as the force-length and quick-release properties.

Zhu et al. [112] employed Stern’s muscle model [91] in which simplified behaviors of bone-

joint-muscle complexes are described. Both works employed a linear elastic material model for

connective passive tissues of muscle, which is computationally efficient but valid only for in-

finitesimal deformation. In contrast, Hirota et al. [34] and Lemos et al. [53] adopted nonlinear

material models that allowed the robust representation of large deformations. Hirota et al.

combined the Mooney-Rivlin model [64], the Veronda model [101] and the fiber-reinforcement

material model [43] to express passive response of tissues during body contact. Lemos et al. [53]

used a rubber-like material model (e.g., hyperelastic material) and explicitly aligned Hill-based

muscle forces to fiber orientations within the finite elements.

In biomechanics, FEM has been widely investigated for studying skeletal muscles. Various mus-

cle models have been proposed to analyze and predict accurate strain distribution of muscle

during contraction and its functional properties. Yucesoy et al. [107] modeled the mechanical

behavior of skeletal muscle as the interaction between the intracellular domain (i.e., muscle

fibers) and extracellular matrix domain (i.e., connective tissues). Thus, muscle geometry is

represented by two separate meshes that are elastically linked to account for the force trans-

missions between these two domains. Blemker and Delp [12] and Blemker [14] developed a

way to represent complex muscle geometry and architecture (see Figure 2.11(a)). A variation

of the moment arms of fibers is modeled and the predicted changes to muscle shape are com-

pared to magnetic resonance images. Tang et al. [93] proposed a constitutive muscle model

in which active contraction of muscle fibers and hyperelastic material properties are coupled

using the strain energy approach. They demonstrated different types of contractions, such as

concentric and eccentric contractions, and effects of muscle geometry and fiber orientation on

the stress distribution. Gielen et al. [30] and Oomens et al. [71] incorporated the Huxley model

to represent contractile properties of skeletal muscle. The Huxley equations (Equation 2.7) are

approximated using a Distribution Moments approach [108] and combined with the constitutive

equation describing nonlinear and incompressible material response.

Finite volume method (FVM)

As with FEM, the finite volume method approximates PDEs piecewise by algebraic equations.

More specifically, for the integration of conserved variables in PDEs, volume integrals are con-

verted to surface integrals using the divergence theorem. These terms are then evaluated as

fluxes at the surfaces of each finite volume. For example, computation of the internal force f

at node xi uses
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(a)

(b)

Figure 2.11: Physically-based Approaches: (a) gluteus maximus and medius muscle models
with the hip extension and flexion (based on FEM, [14]) and (b) subscapularis muscle model
attached to scapula bone model (based on FVM, [95])

fi =
d

dt

∫∫∫
Ωi

ρvdx =
d

dt

∫∫
∂Ωi

tdS =
d

dt

∫∫
∂Ωi

σndS (2.13)

where Ωi is a small volume containing xi, ρ is the density, v is the velocity, t is the surface

traction on ∂Ωi, σ is the stress tensor, and n is the surface normal. From left to right in (2.13),

note that a volumetric integral, requiring velocities and densities to be defined at every point

in space, is replaced by a more tractable surface integral involving a stress tensor and a normal

to the surface. For a more complete discussion of the FVM, see [54].

Teran et al. [94, 95] proposed a FVM-based approach to simulate deformable behavior of skeletal

muscles (shown in Figure 2.11(b)). They argued that FVM inherently requires less computation

and memory usage than FEM does. Moreover, they showed that FVM provides a geometric

interpretation of stress inside the object (i.e., multidimensional forces pushing on each face of

an element), allowing for a simpler and more intuitive way of integrating equations of motion

compared to FEM. To represent highly nonlinear material response of muscle, they used a

sophisticated constitutive model similar to [34]. Furthermore, they incorporated anisotropic

properties based on fiber architecture, which are modeled using the B-spline solid technique [70].
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2.7.3 Data-driven approaches

In contrast to many methods involving the modeling of physical human components and pro-

cesses, some data-driven approaches forego anatomical mechanisms and directly model the skin

shape in an ‘outside-in’ manner, deformed by the underlying muscle of a human in plausible

poses. Data is captured on the surface of subjects, usually with markers on the skin, by a

motion capture system or a range scanning device. Several techniques may then be used to

generate a new skin surface given a novel skeleton pose. Although such data-driven approaches

are relatively new, several key papers have already shown the power of this technique.

Early work by Min et al. [62] is based on the observation that skin shape in a human scan is

determined by the underlying skeleton and muscle, and uses an anatomically-based approach

having layers of skeleton, muscle, and skin. Moving the skeleton deforms the isosurface muscle

in a volume-preserving fashion, which in turn deforms the skin layer. The upper body was

modeled and the resulting animation showed realistic arm bending and stretching. Another ap-

proach to arm animation by Sloan et al. [88] used several exemplary arm shapes and a unique

interpolation scheme using linear and radial basis functions to create a continuous range of

well-behaved poses.

As example poses of human subjects became more accessible, more ambitious systems were

created [60]. In the range-scanning technique, a person poses for a short time as a scanner

creates tens of thousands of data points on the surface of the subject at a density of just a few

millimeters. Allen et al. [5] created a high quality posable upper body model from range scan

data together with many correspondence markers. This work was later expanded [6] to accom-

modate the large CAESER (Civilian American and European Surface Anthropometry Resource

project) database of whole-body range scans, resulting in a compelling system with several de-

sirable features. Morphing by interpolating between registered scans or fitting a model to a

sparse marker set are two significant outcomes of this technique. The technique also supports

transferring texture, surface data or animation between models to correct scanning problems,

to alter the appearance, or to animate the characters. Multiple correlated parameters could be

modified, such as a person’s weight or height, or statistically correct human shapes could be

preserved when locally modifying a character part, for example, lengthening an arm.

There are many steps involved in creating the reconstruction and parameterization of the

CAESER data sets. Previous techniques, which were used primarily on morphable face models,

are based on cylindrical mappings that could not be adapted to a complex branching object,

like the complete human body. This work used an artist-generated template object together

with a non-rigid registration technique to create a vertex correspondence between a set of skin

surfaces that have substantial variation in shape, but a common overall human structure. An

energy-minimization approach was used with a weighted sum error objective function that com-
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Figure 2.12: Data-driven approach: statistical model [6]

bines distance to a template object, smoothness, and marker distance.

Seo and Thalmann [86] presented a similar template-based system with additional tailoring

parameters to generate new, instantly animatable, high-quality human forms, ideal for fashion

design. An alternate technique uses many silhouettes from a video stream instead of range scan

data to formulate the human shape in a re-animatable form [82]. Anguelov et al. [8] extended

this work, focusing on representing muscle deformation resulting from articulated body motion,

to perform Shape Completion and Animation of People (SCAPE), by using separate models for

pose deformation and for body shape variation. By decoupling the skeleton (rigid) deformation

from the muscle (non-rigid) deformation, the formulation, identification of the model, and the

efficiency of the learning algorithms are all improved. A limitation is that a single muscle de-

formation model is used for all people so that a more muscular person may not exhibit as much

muscle deformation as they should.

Data-driven modeling of skin and muscle deformation was further refined by Park and Hod-

gins [73, 74] by modeling static deformations, as a function of skeleton pose, and dynamic

deformations, as a function of the acceleration of each body part. Animated motions of an

actor were captured using a high density of 350 markers, while performing slow motions and

then fast motions. The two classes of deformation were then modeled and new animations could

be generated from more typical marker counts (40 to 50 markers) in additional motion-capture

sessions. Although this approach still has the limitation of being skeleton-driven and does not

express muscle motion without joint angle changes, it does produce very high quality results.

Figure 2.13: Data-driven approach: motion-capture [74]



Chapter 3

Estimation of physiological

cross-sectional area for skeletal

muscle

3.1 Introduction

Skeletal muscle has been actively studied in biomechanics to discover its mechanical functions

associated with body movement. As muscle functions are closely related to architectural param-

eters [109], such as pennation angle, fiber length and physiological cross-sectional area (PCSA),

musculoskeletal simulation needs their accurate determination. Current biomechanical mod-

eling techniques rely on PCSA to estimate peak muscle force production during body move-

ment [72, 7]. Force predictions are known to be highly sensitive to changes in PCSA [17].

Hence, accurate PCSA determination is important for reliable modeling and simulation. In

contrast to pennation angle and fiber length, which can be directly measured, PCSA is gen-

erally not straightforward to calculate because the functional capacity of all fibers inside the

muscle must be accounted for. Ideally, a cross-sectional plane can be specified with respect to

the anatomical axis to identify a complete set of cross-sections of all fibers. In parallel mus-

cle, PCSA is usually well determined in the anatomical plane transverse to the longitudinal

axis of the muscle. For other muscles having more complex architecture, such as pennate and

convergent muscles, an appropriate plane in which to determine PCSA may not be so easily

defined [77] (See Figure 3.1). Therefore, for robust estimation of PCSA, the underlying muscle

architectural variations must be carefully taken into account.

In most muscle models, PCSA is calculated simply as [4, 80]

PCSA[cm2] =
mass[g] · cos(pennation angle)

density[g/cm3] · fiber length[cm]
(3.1)

24
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Figure 3.1: Anatomical (ACSA) and physiological cross-sectional area (PCSA)

However, except for parallel muscle having uniform architecture, (3.1) may lead to inconsistent

PCSA estimation, because non-uniformities, such as variable fiber length and pennation angle,

occur in the architecture of many other muscles. Furthermore, this algebraic method requires

the determination of other parameters, some of which are difficult to estimate accurately. For

instance, the commonly used density value of 1.0597g/cm3 [61], which was derived from unfixed

rabbit and canine muscle tissue, may be inaccurate for human skeletal muscles and generally

density varies by hydration and fixation time [103]. Muscle volume can be measured directly by

water displacement [47], volume reconstruction from MRI scans [35] or indirectly by dividing

muscle mass by density [65]. However, water displacement may include internal tendons in

volume calculation and MRI has difficulty in identifying specific muscles and capturing narrow

areas. In general, architectural parameters are measured by fascicles selectively sampled from

the superficial layer of muscle [59, 102]. For an in-depth understanding of architectural parame-

ters and more reliable quantification, Agur et al. [2], Kim et al. [42] and Rosatelli et al. [79] used

dissection to collect and digitize fascicles throughout the entire muscle of a human cadaveric

specimen. In contrast to these invasive approaches, David et al. [55] proposed a non-invasive

method to reliably reconstruct muscle fiber architecture from dense but noisy diffusion tensor

images. Based on the digitized fascicle data, Ravichandiran et al. [77, 78] proposed the Fiber

Bundle Element (FBE) method to calculate volume and PCSA by representing muscle geometry

by a collection of cylinders. Each fascicle is approximated piecewise by a cylinder, the diameter

of which is estimated by the distance to the nearest neighboring fascicle. With complete access

to volumetric muscle data and geometrical adaptation to its architecture, their method enjoys

more reliable estimation of architectural parameters than do other algebraic methods. However,

as the diameter of the circular cylinder which they use is always chosen as the distance to the

nearest digitized point on a neighboring fascicle, their method may often underestimate the

volume of fascicles that are unevenly spaced within muscle. Also, their pointwise calculation

for the distance may lead to an inconsistency under certain circumstances. For example, if a

fiber point has no collateral neighbors, the estimated thickness of the associated fascicles may

be undesirably enlarged because the cross-section is not parallel to the transverse plane.

For robust estimation of PCSA, this study extends the approaches outlined above. PCSA is
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estimated by using polygons that are approximated by considering all immediate neighboring

fascicles. Also, Cross-sections are forced to be perpendicular to the associated fascicle’s orien-

tation. This considerably reduces gaps that may be produced by the FBE method.

Much of the material in this chapter also appears in the publication [51].

3.2 Methods

3.2.1 Data acquisition for muscle specimens

This study is based on data obtained from 24 muscle specimens: 7 specimens for Extensor carpi

radialis bevis (ECRB), 7 specimens for Extensor carpi radialis longus (ECRL), 4 specimens for

Pectoralis major (PM) and 6 specimens for Supraspinatus (SS). Muscle specimens with visible

abnormalities, such as muscle atrophy, fat infiltration or surgery, are excluded from the data

acquisition. During dissection and digitization, associated skeletons and joints are stabilized in

the anatomical position with metal plates and screws. Fascicles are sequentially dissected and

digitized from superficial to deep throughout the muscle volume. A MicroScribe G2 digitizer

with 0.23 mm accuracy is used to mark trajectories of fascicles with sampled points. The

fascicles that are digitized in the same plane from medial to lateral constitute a layer. Digitized

fascicles are removed, exposing the next layer about 1 − 2 mm deeper. To identify fascicles

accurately, a surgical microscope is used throughout dissection and digitization. Ethics approval

was obtained from the Research Ethics Board at the University of Toronto (Protocol Reference

Number: 17108).

(a) (b)

Figure 3.2: Representation of fascicles. (a) piecewise linear approximation. (b) Catmull-Rom
spline interpolation.
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3.2.2 Data generation for synthetic muscle

To test and evaluate the proposed method and compare it to the FBE and algebraic methods,

both synthetic data and real specimen data are used. To produce the synthetic data, parametric

equations are first chosen to represent targeted geometries: cylinder and ellipsoid. Fascicles are

then populated and arranged with respect to predefined architectures: parallel for cylinder

(Figure 6.3(a)) and unipennate for ellipsoid (Figure 3.7). For each architecture, nonuniform

data are also created by varying the interval between fascicles, their length or their pennation

angles.

3.2.3 Reparameterisation of digitized fascicles

The original fascicle data are modeled as piecewise lines which simply connect those points (Fig-

ure 3.2(a)). However, this modeling may lead to a poor approximation because fascicles are

geometrically closer to smooth curves. Thus, a higher-order representation (Figure 3.2(b)) is

preferable over the piecewise linear approximation. Ravichandiran et al. [77, 78] used the cubic

Bézier spline to model fascicles as smooth curves. However, their curves are not guaranteed

to pass through all the original points, resulting in geometric deviation from the original data.

Instead, a cubic Catmull-Rom spline is employed to ensure that the interpolating curves do

pass through all the original points. Like the cubic Bézier spline, a cubic Catmull-Rom spline is

a subset of the class of Hermite cubic splines whose tangents are defined by extra control points

and a 0.5 tension parameter [19]. Each line segment in the original fascicle is replaced by a

cubic and these cubics are joined to form a smooth curve. Once the entire curve is constructed,

fiber points are redistributed or resampled to make the curve representation uniform because

the original spacing between adjacent points is often irregular. To this end, an arc-length

parameterisation is used. An arc-length function l(t) is defined by

l(t) =

∫ t

t0

∥∥∥∥dp(u)

du

∥∥∥∥ du (3.2)

where p(u) = (x(u), y(u), z(u)) represents the curve under consideration. As measured fascicles

are generally smooth curves, their arc-length can be approximated by chord-length:

li ≈ ‖ pi+1 − pi ‖ . (3.3)

Moreover, this approximation is sufficiently good to give a reparameterized spline curve with

nearly equal arc-length between points because fascicles are very unlikely to have high curvature

in their trajectories.
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Using (3.3), a sequence of parameters ck for k = 0, ..., n− 1, can be defined as

ck =

∑k−1
0 ‖ pi+1 − pi ‖∑n−1
0 ‖ pi+1 − pi ‖

(3.4)

ck denotes the ratio of the chord length from point p0 to pk over the total length of the entire

curve. Using (3.4), an initial curve representation (ck,pk) is obtained at the original points.

A new set of parameters is then constructed to be equally spaced by adjusting the interval or

sampling rate, producing an interpolated curve (c′k,p
′
k) (Figure 3.3). For each specimen, data

are re-sampled with 0.5− 1.0 mm intervals, yielding 50− 90K points.

Figure 3.3: Reparameterisation of fascicle: Original points pk (black) and the resampled, evenly
spaced points p′k (white) on the interpolated curve.

3.2.4 Estimation of PCSA

Digitized fascicles provide position and orientation information only for muscle. To calculate

PCSA, relevant volumetric information must also be recovered. The FBE method [78] is based

on the assumption that the volume of connective tissues inside a muscle is negligibly small.

Thus, the thickness of a fascicle can be approximated by the distances to neighboring fascicles.

Ravichandiran et al. calculate the radius (i.e., half of the thickness) of a fascicle at every fiber

point, p, as

r = min
q∈Q
||p− q||/2 (3.5)

where Q is a set of digitized points on neighboring fascicles. Each fascicle is modeled by a

piecewise cylinder, so the average radius, r, of the fascicle is given by the mean of the radii of

all cylindrical segments, and the resulting PCSA is calculated as

PCSA =
n∑
i=1

πr2
i cos(αi), (3.6)

where n is the number of fascicles and αi is the pennation angle of fascicle i. The angle αi is

calculated as the average of the proximal and distal pennation angles of fascicle i. Both angles

are measured as the angle between the line of action and tangents at ends of the fascicle (i.e.,

proximal and distal site) [77, 78]. Recall that the true calculation of PCSA must account for

all fascicles occupying the muscle, which exhibits its cross-sections to be densely filled with
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fascicles. However, since it is not feasible to capture all fascicles using currently available

techniques, acquired data are always represented in various patterns of sample distribution

(See Figure 3.4). Thus, if the smallest circle is chosen as the best fit to the spacing between

fascicles by (3.5), this spacings may be mishandled (e.g., left as an empty gap), which often

underestimates the actual thickness of fascicles. Furthermore, since the radius in (3.5) is based

on pointwise distance within a neighborhood, the distance may not always be perpendicular to

the orientation of the fascicle, which could overestimate the thickness of fascicles. This problem

may be worse at the ends of fascicles (e.g., tendinous attachments) where fascicles often appear

in a staggered pattern. These possible over- and under-estimates compromise the reliability of

the PCSA computation, depending on the muscle specimen and digitization accuracy.

Figure 3.4: The FBE method. smallest circle (blue) is sought at every fiber point, p. These
points are on the same transverse plane as the one in Figure 3.5(a).

To improve consistency and reliability, the following extensions are suggested. Instead of the

smallest circle, a polygon is used to approximate the cross-sectional area that is formed by a

set of points which are equidistant from p and its neighboring fascicles. Let

S(p) = {v|v = (q + p)/2,q ∈ N(p)} (3.7)

where N(p) is determined by the intersection of the transverse plane at p and the neighboring

fascicles. In contrast to the FBE method that chooses among digitized points, q in (3.7) can be

an arbitrary point on the spline curve representing the fascicle. However, since a cross-section

of the fascicle is adjoined by a finite number of neighboring fascicles, only immediate neighbors

must be taken into account. Instead of explicitly determining those neighbors, in practice,

the Voronoi tessellation is used to directly identify S(p) which consists of vertices and edges

equidistant to p and all its neighbors, q. Thus, the cross-sectional area, A, at p, is simply

approximated by the polygon formed by S(p) (i.e., Voronoi region) (Figure 3.5(d)), and the
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resulting PCSA is calculated as

PCSA =
n∑
i=1

Aicos(αi) (3.8)

where Ai is the mean cross-sectional area of fascicle i. Figure 3.5(d) shows that the proposed

method always yields a cross-sectional area that is completely filled with polygons, indepen-

dently of how their centers are arranged. Figure 3.4 illustrates that this is not the case for the

FBE method that can be quite sensitive to the data (e.g., sparsity and sampling) whereas the

proposed method is much more robust against this deficiency of data.

(a) (b)

(c) (d)

Figure 3.5: Proposed method. (a) a transverse plane defined at pi on the chosen fascicle. (b)
Voronoi tessellation. (c)(d) close-up view of Voronoi tessellation with a cross-sectional area A
at pi (red), approximated as a polygon (pink) defined by S(pi) (gray).

Generally, fascicles located on superficial layers have some degree of deficiency in that they are

surrounded by a few neighboring fascicles only, not completely enclosed by them. This may

result in an unbounded Voronoi region, the vertices of which are not completely connected.
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This boundary problem is handled by incorporating an angle-based adjustment:

A′ = A
2π∑

i Angle(p,vi,vi+1)
(3.9)

where Angle(v0,v1,v2) is the angle formed by (v0 − v1) and (v0 − v2).
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3.3 Results

3.3.1 Synthetic muscle data

(a) (b)

Figure 3.6: Synthetic parallel muscles. Fascicles are created within a cylinder having radius and
length of 5 cm and pennation angle of 0. (a) uniform muscle. (b) nonuniform muscle (intervals
between fascicles are variable).

(a) (b)

Figure 3.7: Synthetic unipennate muscles. Fascicles are created within an ellipsoid, having axes
of length 5, 5 and 10 cm. (a) uniform muscle (only fascicle length is variable) (b) nonuniform
muscle (fascicle length, pennation angle and interval between fascicles are variable).

As the exact geometry is known for each problem, the algebraic method (3.1) gives the exact

PCSA for the problem, by assuming that this algebraic method accounts for all fascicles dis-

tributed in a uniform and continuous form. On the other hand, the synthetic data only represent

sampled fascicles. Furthermore, some amount of non-uniformity is introduced to simulate the

deficiency of data acquisition. This exact PCSA value is used to compute the error associated

with either the proposed method or the FBE method applied to those synthetic data. The

PCSA results for these three methods and the relative errors for the proposed method and the

FBE method are presented in Table 3.1. The results show that the proposed method performs

much more reliably than the FBE method. Note that the FBE method underestimates PCSA
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Muscle Algebraic Proposed FBE
Method Method Method

Parallel1 78.5 78.7 (+0.3) 61.7(−21.4)
Parallel2 78.5 79.1 (+0.8) 42.2(−46.2)

Unipennate1 97.3 101.8(+4.6) 78.8(−18.9)
Unipennate2 94.3 102.4(+8.7) 32.6(−65.3)

Table 3.1: Comparative results for PCSA (cm2) using the algebraic method, the proposed
method and the FBE method. Superscripts 1 and 2 indicate uniform and nonuniform repre-
sentation, respectively. Percentage of relative errors are given in parenthesis.

by nearly 20% even in uniform muscles. Because spacings between fascicles are equal vertically

and horizontally but not diagonally, there are substantial gaps between diagonal neighbors. The

larger the variance of those spacings is, the more the gaps between fascicles are not accounted

for in the FBE method. This results in the FBE method’s vulnerability to nonuniformity of

data that often exists in specimen data or can be induced by digitization error. On the other

hand, the proposed method considers the entire proximities around fascicles. Hence, it pro-

duces more robust PCSA estimates with less sensitivity to data. The results computed by the

proposed method are always slightly larger than the results for the algebraic method. This is

caused by how the boundary is treated by the proposed method. As cross-sectional areas of

boundary fascicles are adjusted by extrapolation in this method, outer areas located beyond

the predefined boundary also are added into the calculation. This adjustment can be larger in

nonuniform muscle than in uniform muscle.

3.3.2 Digitized specimen data

The new PCSA and volume estimation for specimen data are given in Table 3.2, and a compar-

ison with the FBE method is presented in Table 3.3. The results clearly show that PCSA and

volume vary by specimen and muscle. Similar to the results for synthetic data, the proposed

method yields larger PCSA estimation than does the FBE method. The two methods differ by

45−50% for ECRB, ECRL and PM, and 20−35% for SS in specimen to specimen comparison.

This may be because SS is more uniform than other muscles in terms of fascicle arrangement

or cross-sectional area. Note that the FBE results by the proposed method are smaller than

the original results [78]. That may be explained by the difference of resampling fascicle data.

In the proposed method, fiber points are resampled very densely and equally spaced. That

reduces over-estimation for fascicle thickness that point-wise calculation of the FBE method

could produce (as discussed in Section 3.2.4).
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Muscle n PCSA Volumec Volumet

ECRB

128 4.18 21.33 20.33
93 2.09 12.01 12.23
117 2.65 17.32 16.36
106 2.84 18.72 18.24
106 2.43 14.45 12.18
178 2.11 8.81 8.47
126 3.03 16.83 16.22

ECRL

116 4.14 28.37 26.49
87 1.63 13.37 13.68
62 1.65 15.66 15.23
74 2.74 27.92 24.1
76 1.59 15.54 14.74
105 1.9 11.86 11.44
92 2.02 17.67 16.66

PM

634 14.87 277.1 246.78
679 12.1 224.4 171.36
767 12.32 206.7 169.69
873 10.41 188.7 140.3

SS

1750 6.16 45.7 38.23
1081 5.07 33.7 25.35
1684 6.31 39.18 28.68
1061 7.68 38.38 31.71
1294 7.16 52.26 42.91
1556 9.16 64.71 53.7

Table 3.2: PCSA (cm2) and volume (cm3) estimation for specimen data by the proposed
method; n is the number of digitized fascicles.

Muscle Proposed Method FBE

ECRB 2.76± 0.72 1.26± 1.37
ECRL 2.24± 0.93 1.13± 0.29
PM 12.43± 1.84 7.43± 0.69
SS 6.92± 1.42 4.31± 1.49

Table 3.3: Comparative results for PCSA (cm2) between the proposed method and the FBE
method. The number before the ± is the mean PCSA for all specimens of that muscle type
in Table 3.2, while the number after the ± is the associated standard deviation.
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3.4 Discussion

Human cadaveric muscle specimen data provide the potential for an in-depth understanding of

human skeletal muscle and accurate parameter estimation. However, most muscles have highly

non-uniform architecture, in that their fascicles vary in orientation, thickness and cross-section.

Thus, determining the associated parameters, specifically, PCSA, is not straightforward. Fur-

thermore, any measurement error may induce more non-uniformity. To maximize utilization of

the cadaveric data, this non-uniformity needs to be dealt with appropriately. The commonly

used algebraic method (3.1) only uses average values of associated parameters, such as volume,

density and fascicle length, which does not account for architectural complexity well. By using

this method, it is hard to investigate region-specific variation of architecture that is existent

in most muscles. Furthermore, those parameters are not all easy to determine accurately. For

instance, MRI provides direct volume calculation but it has some limitations: difficulty in dif-

ferentiating specific muscle from others and inaccuracy in narrow areas. The FBE method only

uses the coordinate of digitized fascicles to directly calculate PCSA without the need for any

other parameters. However, its performance varies with the application. While it works well for

uniform data, it shows inconsistency for non-uniform data. It is often observed that its overall

performance is very sensitive to the quality of data (e.g., poorly digitized fascicles), which in

turn necessitates additional efforts and time in data acquisition. To effectively deal with those

problems, therefore, this study proposes an adaptive geometric approach. By carefully consid-

ering the local proximity around each fascicle, the proposed approach finds a piecewise cylinder

to completely fill the non-uniform spacing between fascicles. A collection of cylinders is then

used to determine overall architectural parameters. This approach shows consistent estimation

over various types of muscle without any modeling adjustment. It also shows robustness against

some deficiency of data, such as noise and under-sampling, which is often inherent in current

data acquisition procedure.

Although the proposed approach exhibits improved parameter estimation capability compared

to earlier approaches, there are some problems to overcome. Firstly, in the PCSA estimation,

no connective tissues or other tissues (e.g., blood vessels) are considered. Even though they

occupy volume to some extent between fascicles, all partitioned areas are simply included in

the PCSA. Thus, the PCSA calculated by the proposed method may be slightly larger than the

actual PCSA. This may be more problematic in understanding pathological muscle having fat

infiltration, which could over-estimate its functional capacity. It would be also potential studies

to investigate structural tissue components in the cross-section of muscle specimen, and then

compare them with the reconstruction based on the Voronoi tessellation. Secondly, parameter-

isation of cross-sections needs to be improved. These cross-sections are individually and locally

approximated by parametric ellipses. Even though the thickness of a fascicle changes smoothly,

the least squares based estimation of serial cross-sections may vary abruptly depending on the

availability of their neighbors. Incorporating the correlation between adjacent cross-sections or
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global constraints may produce more reliable and consistent parameterisation than the local-

ized method does. Thirdly, only four sets of synthetic data are used to validate the proposed

method. For a more extensive validation study, it is needed to increase the sample size of data

(e.g., more random data generated for each architecture) or introduce other variations, such as

variable spline curves rather than straight lines. However, to conduct rigorous validation, real

muscle data must be used. To this end, two problems need to be addressed; how to approximate

in vivo architectural parameters by using the cadaveric modeling approach and how to relate

the architecture-based PCSA estimation with some phenomenological approach (e.g., maximum

force or torque measure). Fourthly, even though the proposed method is not very dependent

on modeling parameters (e.g., arc-length and boundary condition), it would be desirable to

demonstrate this in a more analytical way. For instance, a fascicle trajectory can be digitized

with various sampling rates and intervals, and then compared against its reconstructed model

based on the spline method. Finally, there is another important aspect of the problem that

is currently handled in an ad hoc way. To extract muscle geometry, level sets of all fascicles

must be properly interpolated with acceptable overlaps. As the overlap increases, the resulting

muscle surface becomes smoother but shrinks. Otherwise, the surface breaks into disjoint fasci-

cles. Thus, accurate reconstruction of muscle geometry needs the determination of appropriate

overlaps, which are left as a topic for future work.



Chapter 4

Estimation of pennation angle for

skeletal muscle

4.1 Introduction

The physiological and mechanical functions of muscle are characterized by associated architec-

tural parameters, such as thickness, fascicle length, pennation angle and physiological cross-

sectional area [111]. Specifically, pennation angle (PA) is an important determinant of the

contribution that muscle fascicles make to the force acting along the line of action. PA is de-

fined as the angle between the orientation of a fascicle and the attached tendon axis (i.e., the

line of action) (see Figure 4.1(a)). For each fascicle i, its PA is simply calculated as

(a) (b)

Figure 4.1: Pennation angle. (a) Schematic of definition. (b) Measurement on an ultrasono-
graphic image.

PAi = cos−1(line of action · fascicle orientationi). (4.1)

37
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As the muscle fascicle force, f im, is in the direction of the fascicle orientation and the tendon

force, ft, is in the direction of the line of action, their functional relation is expressed as

ft =
∑
i

f im cos(PAi). (4.2)

Since fascicles have variable length and arrangement within a muscle, the associated PA differs

from fascicle to fascicle [27, 98, 59]. For its quantification, two-dimensional (2D) ultrasonog-

raphy is widely used in many clinical and biomechanical studies, because it is non-invasive,

portable and applicable to dynamic measurements (e.g., muscle contraction). However, since

a muscle is only assessed by 2D images, the accuracy of the measurement (up to 23% error)

relies on the alignment of the imaging plane (or ultrasound probe) [11, 76]. Since fascicles form

complex and variable structures within a muscle, it is challenging to find the correct imaging

plane (namely, true fascicle plane) that provides a more precise assessment of the entire three-

dimensional (3D) architecture. Thus, in practice, the optimal plane is determined by satisfying

the following criteria: maximum visibility of fascicles and perpendicular to the skin or deep

aponeurosis. However, it is evident that individual 2D images may be subject to a limited

assessment of volumetric geometry. Limited visibility and image resolution also impose further

constraints on conducting detailed investigations.

In contrast to ultrasonographic assessments, the use of cadaveric specimens allow direct mea-

surement of PA. Lieber and Friden [59], Murray et al. [65] and Ward et al. [102] collected a small

number of fascicles from specimen surfaces and measured PA using a hand-held goniometer or

protractor. Although their direct measurements would in principle be more accurate than ultra-

sonographic assessments, any internal variation was not accounted for in their quantifications.

On the other hand, Agur et al. [2], Kim et al. [42], Rosatelli et al. [79], Ravichandiran et al. [77]

and Lee et al. [51] conducted assessment of PA based on volumetric fascicle data that were

collected throughout the muscle using dissection and digitization procedures. Those studies

assumed that the line of action was aligned to the longitudinal axis of muscle [100, 45] that

was approximated as an average of orientation of all fascicles. PA was then calculated as the

relative angle between this axis and the fascicle orientation. However, this approximation may

still fail if it is inconsistent with the underlying muscle architecture. For example, in pennate

muscles, this muscle axis may not coincide with the tendon axis, because fascicles run parallel

to one another, but they are variably oblique to the attached tendon axis (see Figure 4.2).

Therefore, for consistent quantification, PA must be estimated with respect to the tendon axis.

Digitizing tendons may be an immediate solution for this problem, but certain types of tendons

(e.g., intramuscular or aponeurotic tendon) may have irregular shapes and arrangements that

make reconstruction challenging.

The purpose of this study is to provide insight into the correspondence between underlying 3D
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architecture and 2D assessment. To this end, a 3D method was developed to directly quantify

PA based on 3D architectural data [51]. Those data were then assessed two-dimensionally by

simulating ultrasound imaging. Using anatomically defined reference frames, region specific

variation of PA within a muscle was investigated.

Figure 4.2: Problematic line of action estimation. Average orientation of fascicles is appar-
ently oblique to the patellar tendon, the axis of which is directed horizontally in the given
configuration.

Much of the material in this chapter also appears in the publication [50].

4.2 Methods

This study is based on cadaveric specimen data obtained through serial dissection and digi-

tization procedures. Fascicles were collected and geometrically reconstructed to represent the

muscle architecture. Based on the reconstructed architecture, the geometric arrangement of

fascicle attachments was used to estimate PA. A reference coordinate frame was determined

to evaluate region-specific variation of PA and also used to initialize the imaging plane for

simulated ultrasound scans.

4.2.1 Data acquisition for muscle specimens

The experimental data are acquired from a variety of muscles including two lower extremity

muscles — abductor hallucis (ABH) and vastus medialis (VM) — and sixteen upper extremity

muscles — anconeus (ANC), abductor pollicis longus (APL), brachialis (BR), extensor carpi

radialis bevis (ECRB), extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU),

extensor digitorum (ED), extensor digitorum (EDM), extensor indicis (EI), extensor pollicis

brevis (EPB), extensor pollicis longus (EPL), flexor carpi ulnaris (FCU), pectoralis major (PM),

pronator teres (PT), pronator quadratus (PQ) and supraspinatus (SS). Muscle specimens with
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visible abnormalities, such as muscle atrophy, fat infiltration or surgery, were excluded from

the data acquisition. During dissection and digitization, associated joints were stabilized into

anatomical position with metal plates and screws. Fascicles were sequentially dissected and

digitized from superficial to deep throughout the muscle volume. A MicroScribe G2 digitizer

with 0.23 mm accuracy was used to mark trajectories of fascicles with sampled points. Digitized

fascicles were removed, exposing the underlying fascicles about 1 − 2 mm deeper. To identify

fascicles accurately, a surgical microscope was used throughout the dissection and digitization

process. 1

4.2.2 Orientation of fascicles

Using the digitized points, each fascicle is first approximated by a smooth piecewise cubic spline,

p(u) = (x(u), y(u), z(u)), where u ∈ [0, 1]. The orientation of a fascicle is represented by a series

of tangent vectors, p′(u) = (x′(u), y′(u), z′(u)), along the curves (See Figure 4.3).

(a) (b)

Figure 4.3: Representation of fascicles. (a) Spline curves and resampled points, p. (b) Tangents,
p′, evaluated along the curves.

Using an arc-length parameterization, fascicle points are redistributed (i.e., resampled) to make

the curve representation uniform [51]. As reconstructed spline curves are clamped at their

ends (i.e., tendinous attachments), tangent vectors at these points must be approximated from

neighboring points, using formulas such as t(0) = p′(0) ≈ (p(u1)−p(u0))/(u1−u0) and t(1) =

p′(1) ≈ (p(un)−p(un−1))/(un−un−1). To determine proximal and distal orientation, previous

studies [77, 51] simply chose tangent vectors evaluated at the end points (i.e., approximations

to p′(0) and p′(1)). However, the positions of tendinous attachments may be slightly perturbed

due to errors that may occur in the dissection and digitization procedure. This may affect the

angular measurement in (4.1). For more reliable quantification, the proposed method takes

an average of the tangent fields evaluated over a local area close to these attachments. More

specifically, for each fascicle i, the averaged tangent vectors for proximal, tip, and distal, tid,

1Ethics approval was obtained from the Research Ethics Board at the University of Toronto (Protocol Refer-
ence Number: 27210).
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orientations are calculated as

tip =
1

np

up∑
u=0

ti(u) (4.3)

tid =
1

nd

1∑
u=ud

ti(u) (4.4)

where ti(u) is the tangent vector for fascicle i defined at the point p(u), np and nd are the number

of points in the local proximal and distal regions, respectively, and u ∈ [0, ..., up, ..., ud, ..., 1]. In

practice, 0.15− 0.2 is used for up and 0.8− 0.85 is used for ud, whence approximately 15− 20%

of the entire fascicle length is included in each of the proximal and distal regions.

4.2.3 Line of action

The line of action of a muscle can be approximated by the long axis of the internal tendon onto

which the fascicles attach. For non-pennate muscles, such as fusiform and parallel muscles, the

average direction of collective forces exerted by all fascicles is parallel, or nearly parallel, to the

axis of the attached tendon. Thus, the line of action can be approximated as [77, 51]

line of actionp =
1

n

n∑
i=1

tip

line of actiond =
1

n

n∑
i=1

tid

(4.5)

where n is the number of fascicles. This approach, based on Equation (4.5), is conceptually

similar to the method described in [45]: the estimated centre line corresponds to an average

direction of all fascicles (see Figure 4.4). However, equation (4.5) may be inappropriate for

pennate muscles, because fascicles are often oblique, rather than parallel, to attached tendons.

Thus, the averaged direction of fascicles may produce a poor estimate of the line of action (see

Figure 4.2). Digitized tendons or aponeuroses could be used to determine the line of action,

but, compared to fascicle data, they are often observed to be irregular and non-homogeneous

in terms of arrangement or shape. Thus, the fascicle data may be more straightforward and

simpler to deal with computationally.

From the specimen data, it is observed that the geometric arrangement of fascicle attachments

reveals the directionality of the tendons. For instance, in pennate muscles, tendinous attach-

ments are linearly arranged, whereas in non-pennate muscle, they are arranged in more diverse

patterns. To be more specific, for pennate muscles, the distribution of the attachment points

is approximately represented as a long and thin ellipsoid, the principal axis of which roughly

matches the tendon axis. The least square regression method can be used to find this axis:
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(a) (b)

Figure 4.4: Estimated line of action (black arrow) and distal attachments (black dots) of fascicles
(red) for fusiform muscle. (a) Brachioradialis. (b) Extensor carpi radialis longus.

min
β1 β2

∑
i

‖S(pi)− β1ti − β2‖2 (4.6)

where S(p) denotes the attachment points and β1t + β2 is the linear regression model to fit.

The vector β1 is the estimated principal axis for the line of action (see Figure 4.5).

4.2.4 Pennate and non-pennate muscles

Depending on pennation, the line of action in (4.1) is determined by using either (4.5) or (4.6).

For reliable quantification of PA, the method for determining the line of action must be chosen

consistently. To this end, recall that attachments of fascicles are arranged linearly in pen-

nate muscle, but are more complex in non-pennate muscle. To utilize this characteristic in

determining the type of muscle, the quality of the fit in (4.6) is evaluated by considering

r2 = 1−
∑n

i=1 ‖S(pi)− β1ti − β2‖2∑n
i=1 ‖S(pi)− S(p)‖2

(4.7)

where S(p) = 1
n

∑n
i=1 S(pi) and n is the number of attachment points. Here, r2 = 1.0 indicates

a perfect fit of the regression model, while r2 = 0.0 is associated with the poorest fit. Because of

the linearity of their attachment arrangement, pennate muscles have high values of r2, whereas

non-pennate muscles have lower values of r2. Based on this difference, a threshold for the

r2 value can be chosen to classify muscles as either pennate or non-pennate. However, some

pennate muscles, which are directly attached to bones without any external tendons, may need

to be classified differently. In such cases, the line of action is approximated as the average

orientation of fascicles using (4.5) instead (see Figure 4.6). Attachment types (i.e., tendinous
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(a) (b)

Figure 4.5: Estimated line of action (black arrow) and distal attachments (black dots) of fascicles
(red) for pennate muscle. (a) Supraspinatus. (b) Vastus medialis.

or bony attachment) can be determined during the dissection and digitization process.

Figure 4.6: Flow chart for the proposed method to determine the line of action.

4.2.5 Anatomical reference frame

A reference coordinate frame is determined for the further analysis of the correlation between

the PA distribution and the fascicles’ anatomical positions within the muscle volume. To this

end, a three-dimensional Cartesian coordinate system is formed by the three orthogonal axes

that originate from the geometric centre of the muscle and correspond to the standard anatom-

ical directions: proximo-distal, superficial-deep and latero-medial (or anterior-posterior) (see

Figure 4.7).

The estimated line of action (described in Section 4.2.3) is used to represent the proximo-distal
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(a) (b)

(c) (d)

Figure 4.7: Anatomical reference frame. (a) Fascicles of extensor digitorum muscle. (b) Illus-
tration of the line of action, shown as the black arrow in the distal region, and the corresponding
cross-section, πC , shown as the purple plane. (c) Intersection points of πC with the fascicles
and the estimated anatomical directions, superficial-deep (white arrow) and the medial-lateral
(gray arrow). (d) Reference coordinate frame shown with the fascicles.
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axis. Subsequently, the cross-section, πC , is defined as the plane that is transverse to the

proximo-distal axis and located at the origin of the coordinate frame (see Figure 4.7(b)). The

intersection of πC and the fascicles yields a two-dimensional point-set, {S(pc)}. Many superfi-

cial muscles have elliptical cross-sections, the longer and shorter axes of which approximately

correspond to the latero-medial and the superficial-deep axes, respectively (See Figure 4.7(c)).

These axes can be effectively estimated by a principal component analysis (PCA): the eigen-

vector associated with the larger eigenvalue approximates the major axis of the ellipse whereas

the eigenvector associated with the smaller eigenvalue represents its minor axis. In the case

of muscles that have circular cross-sections (e.g., ECRL), the axes determination may be in-

consistent, as those eigenvectors may not coincide with the corresponding anatomical axes.

Consequently, manual adjustment may be required. With regard to the proximo-distal axis, all

distal attachments of the fascicles are projected onto this axis and their relative positions are

used to evaluate correlation. Regarding the latero-medial and superficial-deep axes, the geo-

metric deviations of all fascicles from the centre of the muscle are calculated and then assessed

in relation to the axes.

4.2.6 Simulated ultrasound assessment

(a) (b)

Figure 4.8: Mid-longitudinal images of Supraspinatus: (a) living subject by ultrasound. (b) ca-
daveric specimen (digitized fascicle data) by simulated ultrasound.

Two-dimensional (2D) ultrasound assessment is simulated by projecting fascicles onto the imag-

ing plane, which is determined by the linear combination of two reference axes (see Figure 4.8).

The longitudinal plane is defined by either the proximo-distal and the latero-medial axes or the

proximo-distal and superficial-deep axes. The transverse plane is defined by the latero-medial

and superficial-deep axes. Translating and rotating these planes imitates the alignment control

of the ultrasound probe. To create a 2D image, viewable fascicles are identified by evaluat-

ing their proximity to the imaging plane and then they are projected onto that plane. To be

comparable to an ultrasound scan, the simulated imaging plane is initially positioned at the

geometric centre of the muscle and aligned to the mid-longitudinal plane. Then, the position

and orientation of the plane are adjusted by up to ±10 mm and ±15◦, respectively, to maximize

the number of viewable fascicles. PA is then calculated based on the projected fascicle image
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using the projected 2D fascicles and the line of action. In some cases, only the middle portion

of a fascicle is visible in the projected image. In such cases, it may be inaccurate to estimate the

fascicle’s tangent vector at the attachments points by extrapolation. Thus, in practice, when

calculating PA, the proposed method uses only the projected fascicles that have a viewable

portion that includes at least 15 − 20% of the proximal and distal regions (similar to Section

4.2.2). Since the focus of this study is specifically to understand the correspondence between

2D imaging data and 3D volumetric data, the simulation approach is simplified by excluding

any other factors, such as tissue deformation, anisotropic image features and volume rendering,

that are often discussed in realtime ultrasound simulation studies.

4.3 Results

The PA estimation results for 18 muscles, using both 2D and 3D methods, are given in Table 4.1.

The 2D method is based on the simulated ultrasound imaging method described in Section 4.2.6.

The proposed 3D method is described in Sections 4.2.1–4.2.5. The PA estimation results are

also presented graphically in Figures 4.9, 4.10 and 4.11.

Muscle N (N2D) Pattern r2 PA3D PA2D

ABH 396 (136) pennate 0.98 18.9± 8.9 (0.7− 52.1) 13.8± 9.6 (0.4− 46.5)
ANC 728 (64) non-pennate 0.96 16.8± 12.3 (0.5− 78.8) 10.2± 6.3 (0.9− 29.5)
APL 620 (184) pennate 0.98 13.1± 5.6 (0.6− 40.2) 11.3± 7.7 (0.1− 37.0)

BR 182 (24) non-pennate 0.67 3.1± 2.2 (0.1− 10.8) 4.3± 3.7 (0.1− 15.6)
ECRB 630 (306) pennate 0.93 14.2± 4.9 (1.8− 35.1) 8.2± 6.1 (2.5− 54.3)
ECRL 629 (84) non-pennate 0.82 11.9± 5.1 (1.0− 33.4) 12.8± 7.8 (0.2− 31.6)

ECU 449 (126) pennate 0.99 6.4± 2.9 (0.4− 19.0) 5.5± 4.0 (0.1− 17.7)
ED 460 (89) pennate 0.97 9.3± 3.5 (0.3− 22.1) 9.2± 5.9 (0.4− 29.8)

EDM 158 (82) pennate 0.99 5.6± 2.5 (0.4− 10.7) 4.8± 3.5 (0.0− 22.4)
EI 176 (89) pennate 0.98 9.6± 4.4 (0.6− 21.9) 7.6± 6.2 (0.2− 27.1)

EPB 155 (63) pennate 0.96 22.9± 8.8 (9.5− 49.9) 21.5± 17.9 (0.6− 85.0)
EPL 201 (65) pennate 0.99 6.4± 3.0 (0.8− 15.8) 5.2± 3.5 (0.2− 17.8)
FCU 1047 (442) pennate 0.99 15.4± 6.9 (0.5− 37.6) 10.1± 7.6 (0.1− 42.2)
PM 792 (64) non-pennate 0.78 13.6± 10.2 (0.2− 41.3) 7.2± 5.1 (0.2− 20.9)
PQ 910 (78) non-pennate 0.69 19.6± 10.3 (2.9− 59.6) 12.3± 13.7 (0.1− 76.8)
PT 1218 (313) pennate 0.98 15.8± 7.0 (0.3− 43.1) 12.2± 8.3 (0.1− 44.1)
SS 1750 (723) pennate 0.92 16.5± 9.5 (0.4− 43.9) 13.1± 3.6 (0.9− 43.2)

VM 703 (370) pennate 0.97 34.5± 15.7 (2.6− 70.0) 30.4± 13.6 (1.6− 83.2)

Table 4.1: Estimation of PA at distal attachments. N is the total number of digitized fascicles.
N2D is the number of projected fascicles in the imaging plane. PA3D and PA2D are the estimated
PA using the 3D method and the 2D method, respectively. The value of PA (in degrees) is
given as ‘the mean ± the standard deviation (min-max)’.

4.3.1 Pennate and non-pennate muscles

The linearity of the geometric arrangement of the distal attachments is evaluated using (4.7).

All pennate (i.e., unipennate and bipennate) muscles have r2 values ranging from 0.92 to 0.99,

indicating a highly linear arrangement of the attachment. Other muscles having lower r2 val-
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ues are classified as non-pennate muscles (i.e., fusiform and convergent). A value of 0.9 was

selected as the dividing threshold between pennate and non-pennate muscle. This agrees with

the general classification suggested in gross anatomy. However, there exist exceptional cases

that may need to be dealt with differently, such as ANC. Although the distal attachment for

ANC muscle exhibits a strong linear arrangement (r2 = 0.962), the estimated axis may not

represent its tendinous axis, since the ANC muscle is attached directly to the ulna without an

external tendon. Consequently, this estimated axis may coincide with the longitudinal axis of

the bone. In such cases for which a muscle is attached directly to a bone, the line of action is

approximated as an average orientation of fascicles using (4.5) instead of (4.6).

Fan-shaped muscles (ANC, PM and PQ) have substantial variation in their PA, whereas

fusiform or parallel muscles (BR, ECRL) have a relatively small range of PA values. In fan-

shaped muscles, fascicles are spread over a broad area and converge into a narrow attachment

site. Their PA varies considerably from the fascicles located farthest from the central axis

(78.81◦ in ANC) to ones located closest to this axis (0.48◦ in ANC). In pennate muscles, fasci-

cles are inserted more obliquely at the distal end of the tendon, whereas they are nearly parallel

to the axis of the tendon at the proximal end.

4.3.2 Region-specific variation of PA

To effectively visualize local variation of PA throughout a muscle, its distribution is normalized

and mapped onto a color gradient ranging from red (PAmin) to blue (PAmax). The correlation

between region and PA is mathematically quantified by associating the geometric location of

the fascicle with the three anatomical axes as described in Section 4.2.5. With respect to these

axes, the distribution of PA is depicted in plots and the observed correlations are expressed

using fitted polynomial functions. The results demonstrate that the correlation patterns may

differ from muscle to muscle and furthermore that one axis may have a stronger correlation than

another. In relation to the anatomical axes, PA changes either monotonically (e.g., decreasing

or increasing) or non-monotonically (e.g., decreasing and then increasing). In most cases, these

patterns are well-fitted by either a linear or a quadratic function.

Among the muscles investigated in this study, the pennate muscles are commonly observed to

have increasing PA in the proximo-distal direction. This correlation is stronger for unipennate

muscles (e.g., EPB and VM) than for other types of muscles, because these unipennate muscles

have a relatively simple architectural pattern in that the fascicles are attached to only one side

of the tendon (see Figure 4.9). The correlation with the proximo-distal direction rarely occurs

for non-pennate muscles (e.g., BR and ECRL). Instead, these muscles are observed to have a

changing pattern of PA in the transverse direction, such as lateral to medial or superficial to

deep (see Figure 4.10). Similarly, in bipennate muscles, PA distribution may be characterized
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with respect to the latero-medial direction, because, in those muscles, the geometric deviation

of fascicles from the line of action (i.e., extramuscular tendon for non-pennate muscles and

intramuscular tendon for bipennate muscles) can be quantified in the transverse direction,

which is proportional to their PA. Fascicle arrangement may be nearly symmetric (e.g., ECRB)

or asymmetric (e.g., APL) in relation to the tendon, which leads to either non-monotonic or

monotonic PA distribution (see Figure 4.11).
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Figure 4.9: PA variation and its correlation with the proximal-distal direction for unipennate
muscles. (a) Entire color field of PA for EPB. (b) PA distribution and its fitted model: y =
0.0036373 x2 + 0.25795 x+ 19.721. (c) Entire color field of PA for VM. (d) PA distribution and
its fitted model: y = 0.00047506 x2 + 0.25476 x+ 30.719.
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(d)

Figure 4.10: PA variation and its correlation with the superficial-deep direction for fusiform
muscles. (a) Entire color field of PA for BR. (b) PA distribution and its fitted model: y =
0.043905 x2 − 0.37168 x + 2.4642. (c) Entire color field of PA for ECRL. (d) PA distribution
and its fitted model: y = 0.05396 x2 − 0.20736 x+ 6.5558.
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Figure 4.11: PA variation and its correlation with the medial to lateral (or anterior to posterior)
direction for bipennate muscles. (a) Entire color field of PA for ECRB. (b) PA distribution and
its fitted model: y = 0.031945 x2 − 0.015641 x + 12.433. (c) Entire color field of PA for APL.
(d) PA distribution and its fitted model: y = 0.43524 x+ 11.766.
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4.3.3 Comparison of 3D and 2D estimation of PA

The difference between the estimated PA computed by the 3D and 2D methods varies sub-

stantially (1.1% − 47.1%) and depends on the architectural pattern of the muscle. The 2D

method yields a smaller estimation of PA than does the 3D method for all but fusiform muscles

(BR and ECRL). A significant difference of PA (37.2%− 47.1%) occurs for fan-shaped muscles

(ANC, PM and PQ). For bipennate muscles, the difference of PA varies widely (1.1%−42.2%),

whereas for unipennate muscles (EPB and VM), the difference is smaller (6.1%− 11.9%).

Unlike the 3D method, the 2D method does not take all fascicles into account when estimating

PA. More specifically, in the 2D method, only a subset of fascicles (8.1%−52.6%) that intersect

the imaging plane contribute to PA estimation. Furthermore, 2D projection may introduce an

angular error. Ultimately, this comparative result is mainly due to how closely the 2D distribu-

tion of projected fascicles approximates the entire architecture of the muscle For the 2D method,

the mid-longitudinal imaging plane is defined by the proximo-distal and superficial-deep axes.

Among the studied muscles, fusiform muscles and unipennate muscles have substantial vari-

ation of PA along either the proximo-distal or superficial-deep axis. Since the imaging plane

contains both axes, it is likely that the 2D distribution of fascicles shows a similar variation

pattern to what is observed in 3D. As fascicles are located farther from the plane, some be-

come more parallel (e.g., BR and ECRL) while others remain oblique to the tendon axis (e.g.,

EPB and VM). Thus, their PA is close to zero or still considerable, respectively. Since those

fascicles do not appear in 2D images, the resulting average PA using the 2D method can be

slightly larger or smaller than the PA computed by the 3D method. Fan-shaped muscles and

some bipennate muscles (e.g., ECRB and FCU) have a stronger pattern of fascicle angulation

along the latero-medial axis than along the other axes. This is rarely captured in the imaging

plane. In such cases, the 2D method yields much smaller PA estimates than does the 3D method.

4.4 Discussion

PA is an important architectural parameter used to characterize muscle functions. Ultrasonog-

raphy is the most commonly used approach to measure PA. It provides 2D assessment based

on a hand-held probe. However, 2D assessment is subject to some uncertainty and ambiguity,

which may result in under- or over-estimation of PA. This may lead to critical problems in

both computational studies and diagnostic treatments. Thus, when using ultrasonography, it

is important to find the optimal imaging plane so that PA can be reliably quantified. To do so,

requires a good understanding of 3D muscle architecture and the corresponding 2D assessment

of the imaging scan. To this end, this study focuses on developing both 3D and 2D approaches

to quantifying PA. The proposed 3D approach directly quantifies PA from digitized fascicle

data. The geometric analysis of fascicle attachment permits it to handle architectural variation
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consistently, without any dependency on it. The volumetric data enable detailed investigations

of PA variation that may be characterized with respect to the anatomical axes. The 2D ap-

proach, based on simulated ultrasound imaging, is used to compare 3D and 2D measurements.

Their difference can be used to assess the resemblance between 3D arrangement of fascicles in

space and their projected 2D arrangement.

The proposed 3D method can be directly applied to fascicle data that are obtained by diffusion

tensor MRI [55, 26]. However, since this study is based on cadaveric specimen data that were

collected invasively, it may not be directly applicable to in vivo quantification based on ultra-

sonography. Nevertheless, it could provide insight into determining a good scanning plane with

respect to the underlying muscle architecture. For instance, it is observed that some bipennate

muscles (e.g., ECRB and FCU) and fan-shaped muscles have strongly varying PA along the

latero-medial axis. If the imaging plane is aligned to include this axis, 2D measurements become

more compatible with 3D measurements. This study also suggests that multiple scans should

be performed at different positions for muscles having multiple bellies or distinct regions that

may have functional differences.

Although this study provides improved capability for PA estimation, there are some limitations

to overcome. First, the presented comparative study should be extended to include true ul-

trasonographic assessment, not just simulated results. This could include a discussion of the

structural differences between cadaveric specimens and in vivo tissue, which ultimately may

help to clarify the association between diagnostic ultrasound imaging and the true underlying

anatomical structure. Second, the inter-subject variability, including pathological aspects, is

not even discussed because only one specimen was available for most muscles when this study

was conducted. More specimens are needed to enable assessment of inter-subject variability

using the proposed analytical approach. Last, the proposed 3D method needs to be extended

to a variety of in vivo problems, including architectural changes associated with muscle con-

traction. To this end, it would be essential to investigate the integration of 3D architectural

modeling and in vivo measurements based on medical imaging data.



Chapter 5

Geometric reconstruction of surface

and volume for skeletal muscle

5.1 Introduction

Skeletal muscle has a mixture of materials with various physical properties, such as hyper-

elasticity, incompressibility, contractility and non-homogeneity. Depending on the application,

some properties are more accurately accounted for in muscle models than others. Due to their

simplicity and versatility, lumped-parameter models are commonly used in a variety of com-

putational musculoskeletal studies. Those one-dimensional models effectively represent uni- or

bi-directional muscle contraction but have difficulty in representing volumetric behavior. Fur-

thermore, they may not simulate reliably in vivo muscles having complex architecture due to

their oversimplification of muscle structures, such as assuming uniform fiber length and arrange-

ment. By comparing with experimental measurements, previous studies [32, 97] demonstrated

that force prediction derived from lumped-parameter models unfaithfully varies with respect

to change in joint angle, especially for complex muscles. Blemker and Delp [12, 13] circum-

vent this problem by incorporating varying fiber arrangement with simulated fiber excursions

during body movement. For this, the fiber arrangement was modeled as a volumetric vector

field and then embedded into hexahedral meshes that were created from magnetic resonance

imaging (MRI) data using a finite element mesh generator. This allows them to study complex

muscle as well as its in vivo behavior. However, since the fiber arrangement is synthesized using

predefined templates, the anatomical accuracy and reliability are considerably compromised in

their model.

Therefore, this study suggests a geometric method to reconstruct surface and volume of muscle

from digitized fascicle data. By assuming that each fascicle can be well approximated by an

elliptical cylinder, associated geometric parameters, such as cross-sectional area, are determined

and aggregated to represent the entire surface and volume of muscle.
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Much of the material in this chapter also appears in the publication [51].

5.2 Methods

(a) (b)

(c) (d)

Figure 5.1: Geometric reconstruction of a single fascicle. (a) a chosen fascicle (white). (b) a
series of polygons estimating cross-sections of that fascicle. (c) a series of ellipses to approximate
those polygons (d) a reconstructed surface.

To reconstruct muscle geometry from digitized fascicles, the polygonal representation of each

fascicle (Figure 5.1(b)) is further approximated in parametric form, specifically, elliptical cylin-

ders (Figure 5.1(c)). This parametric form facilitates shape operations (e.g., average, sum and

blend) for each fascicle geometry in a simpler but more controlled manner than is possible

with the polygonal representation. The least-square-based optimization [25] is used to find an

ellipse that fits the polygonal cross-section, S(p). Then, a level set method (otherwise known

as an implicit surface method) is used to convert the parametric elliptical representation into

a continuous form (Figure 5.1(d)). The elliptical cross-section may be a poor approximate for
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certain fascicles having irregular shapes (e.g., concavity) but this is not too problematic for

reconstruction of a muscle surface. Because multi-layers of connective tissues (e.g., epimysium

and endomysium) and other tissue components (e.g., fat) around fascicles can be considered

as additional factors to moderate those irregularities and make their shapes more uniformly

smooth. Typically, a level set function is defined as

φ(x,p, r) =‖ x− p ‖ −r (5.1)

where x is a position to be evaluated and r is the desired strength of the field at p. The set of x

for which (5.1) is zero forms a bounding solution surface (i.e., isosurface). Taking into account

that ellipses of a particular orientation are used in this study, equation (5.1) is extended to

φa(x
′,p,A) = [(x′ − p)TA(x′ − p)]

1
2 − 1.0 (5.2)

A =

 A B/2 D/2

B/2 C E/2

D/2 E/2 F



where the symmetric positive-definite matrix A is built from an ellipse in the quadratic polyno-

mial form, Ax2 +Bxy+Cy2 +Dx+Ey+F = 0, and x′ is a point which lies on the transverse

plane at p on the fascicle. Equation (5.2) is evaluated on the transverse plane and swept along

the fascicle to create a cylindrical geometry.

Because fascicles are reconstructed individually, they may become disjoint, thereby separating

from each other (Figure 5.2(b)). To model an entire muscle surface, including all other con-

nective tissues, such as epimysium, perimysium and endomysium, level sets associated with

each fascicle should be joined with appropriate overlaps. For this, the proposed method uses

interpolation based on weighted local averaging [113] of neighboring fascicles (Figure 5.2(c)).

To this end, let

φp(x
′,p,A) = [(x′ − p)TA(x′ − p)]

1
2 − 1.0 (5.3)

p =
∑
i

wipi

wi =
k(‖ x′ − pi ‖)/R∑
j k(‖ x′ − pj ‖ /R)

where A represents a locally averaged ellipse and k is a kernel function which is symmetric and

smoothly decays with local support, R. k(t) = MAX(0, (1− t2)3) is used. Using (5.2) or (5.3),

a scalar field is densely sampled on a 3D grid, with spacing specified as 1.0 mm in this study,

and the corresponding mesh is extracted using a polygonisation technique. A BCC grid-based

technique [46] is used to directly extract a tetrahedral mesh (Figure 5.2).
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(a) (b) (c)

Figure 5.2: Reconstruction of muscle geometry. (a) spline-based fascicles. (b) reconstruction
of fascicles (without interpolation). (c) reconstruction of entire muscle (with interpolation).

Muscle Volume Volumec Volumet

Parallel1 392.7 393.5 (+0.2) 342.3(−12.8)
Parallel2 392.7 395.5 (+0.7) 350.2(−10.8)

Unipennate1 1047.2 979.3(−6.4) 934.1(−10.8)
Unipennate2 1047.2 981.8(−6.2) 965.9(−7.7)

Table 5.1: Comparative results for volume (cm3). Volumec is an approximate volume computed
by a collection of cylinders. Volumet is an approximate volume computed by a tetrahedral mesh.
Percentage of relative errors are given in parenthesis.

5.3 Result

For geometry reconstruction, a 1 mm grid is used for all specimens except PM for which a 2

mm grid is used instead because the size of PM demands a tremendous memory allocation.

The level-set method performs poorly for PM and SS, in which many cross-sections of fascicles

are estimated to be smaller than the grid-size. Thus, a finer grid must be used to reduce the

difference. To validate the proposed method, volume estimates of synthetic data (described in

Section 3.2.2) are compared in Table 5.1. First, the volume (Volumec) is approximated by a

collection of cylinders, formed by cross-sections along the fascicle length. That is,
∑n

i=1Aili

where Ai is the approximate cross-sectional area of fascicle i and li is its length. Volume can

also be calculated from the reconstructed muscle geometry. Since the proposed approximation

to the muscle geometry consists of tetrahedra, muscle volume (Volumet) is approximated by

the sum of volumes of tetrahedra. As only fascicle volume is considered, muscle geometry is

reconstructed by (5.2). Volumec in Table 5.1 is close to the exact volume. On the other hand,

Volumet in Table 5.1, which is computed from the volume of tetrahedral mesh, has significantly

larger errors (8 − 13%). This is caused mainly by errors that arise in both obtaining the

parametric form and polygonising the level set surfaces.
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Muscle n Volumec Volumet

ECRB

128 21.33 20.33
93 12.01 12.23
117 17.32 16.36
106 18.72 18.24
106 14.45 12.18
178 8.81 8.47
126 16.83 16.22

ECRL

116 28.37 26.49
87 13.37 13.68
62 15.66 15.23
74 27.92 24.1
76 15.54 14.74
105 11.86 11.44
92 17.67 16.66

PM

634 277.1 246.78
679 224.4 171.36
767 206.7 169.69
873 188.7 140.3

SS

1750 45.7 38.23
1081 33.7 25.35
1684 39.18 28.68
1061 38.38 31.71
1294 52.26 42.91
1556 64.71 53.7

Table 5.2: PCSA (cm2) and volume (cm3) estimation for specimen data by the proposed
method; n is the number of digitized fascicles.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3: Reconstruction of muscle geometry. Muscles are illustrated in two representations:
fascicles (on left) and reconstructed surface geometry (on right). ECRB (a,b), ECRL (c,d),
PM (e,f) and SS (g,h).
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5.4 Discussion

The geometric method is proposed to reconstruct the entire surface and volume of muscle from

digitized cadaveric specimens. As associated geometric parameters are determined based on the

underlying architecture, the reconstructed surface and volume geometries fit well into the fas-

cicle arrangement. Thus, any further mapping or registration is not needed. Those geometries

are represented by polygonal meshes that can be used to visualize the approximated shape of

muscle and its dynamic simulation as well. Not only the entire surface and volume of a muscle,

but also region-specific reconstruction (e.g., anterior, posterior, superficial or deep region) can

be provided, which allows for further intramuscular analysis.

However, there are some issues to discuss. Firstly, the accuracy of the reconstruction needs to

be assessed by further validation, such as other medical imaging (e.g., MRI) or 3D scanning

methodologies. Secondly, parameterisation of cross-sections needs to be improved. These cross-

sections are individually and locally approximated by parametric ellipses. Even though the

thickness of a fascicle changes smoothly, the least-squares-based estimation of serial cross-

sections may vary abruptly depending on the availability of their neighbors. Incorporating

the correlation between adjacent cross-sections or global constraints may produce more reliable

and consistent parameterisation than the localized method does. Thirdly, there exist some

limitations inherent to the geometric methods that used in this study. The proposed approach

does not model very thin muscles very well. As this muscle can be digitized with having

thickness of one or two fascicles, associated cylindrical parameters may not be approximated

accurately due to insufficient proximity around every fascicle. Also the level set method is not

capable of modeling thin objects well. One possible solution is to create a thicker volume of

muscle then adaptively re-scale it until the fascicles are tightly enclosed. Lastly, there is another

important aspect of the problem that is currently handled in an ad hoc way. To extract muscle

geometry, level sets of all fascicles must be properly interpolated with acceptable overlaps. As

the overlap increases, the resulting muscle surface becomes smoother but shrinks. Otherwise,

the surface breaks into disjoint fascicles. Thus, accurate reconstruction of muscle geometry

needs the determination of appropriate overlaps, which is left as a topic for future work.



Chapter 6

A practical approach to in-vivo

quantification of PCSA for skeletal

muscle

6.1 Introduction

Physiological cross-sectional area (PCSA) is an important determinant of peak muscle force

production during body movement. Since force predictions are known to be highly sensitive

to changes in PCSA [17], reliable functional analysis requires accurate determination of PCSA.

An algebraic method is commonly used to calculate PCSA based on muscle volume (MV), fas-

cicle length (FL) and pennation angle (PA) that are estimated by magnetic resonance imaging

(MRI) and ultrasonographic assessments. However, this method does not account well for in-

tramuscular variation of architecture, which may lead to under- or over-estimation of PCSA.

Furthermore, the high cost of an MRI examination may limit its application. On the other

hand, cadaveric specimen-based studies determine the muscle architecture at the fascicular

level to provide capacity for an in-depth understanding of PCSA associated with architectural

complexity and variation of muscle. However, as detailed architectural and structural data are

nearly impossible to obtain from living tissues, this approach may not be directly applicable

to in vivo studies. Furthermore, compared to living tissues, cadaveric tissues are subject to

volumetric shrinkage during the embalming and dehydration processes, necessitating an appro-

priate adjustment for accurate quantitative analysis.

The purpose of the study in this chapter is to propose a practical approach to the quantification

of PCSA for in-vivo muscle by integrating both cadaveric studies and in-vivo ultrasonographic

assessments. This study hypothesizes that three-dimensional in-vivo muscle architecture can

be approximated by mapping 3D cadaveric data onto 2D in-vivo ultrasound imaging data.

This hypothesis is based on two assumptions: (1) the same muscles in different subjects are

60
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similar to each other in overall architectural pattern and geometric topology and (2) the inter-

subject variability can be globally estimated by representative geometric measurements, such

as cross-sectional area and muscle length. The 3D internal architecture and the external sur-

face reconstructed from cadaveric specimens are referred to as the source data and a set of 2D

measurements (e.g., cross-sections, length and sampled fascicle orientation) from ultrasound

images are referred to as the target data. However, it is not straightforward to directly match

the source data with the target data, using an approach such as the point to point correspon-

dence, due to the dimensionality difference between these data (i.e., 3D volume vs 2D image).

Instead, a feature-based matching approach is used, in which by using simulated ultrasound,

corresponding 2D features (e.g., cross-section, length, 2D fascicle orientation) are obtained from

the source data and compared with those of the target data. By either expanding or shrinking

the volume of the source muscle, the 3D architecture and surface geometry in the source data

are transformed so that the measurement difference between those features is minimized. The

three-dimensional estimation method for PCSA is then applied to the transformed muscle ar-

chitecture that is the proposed in-vivo muscle model.

Much of the material in this chapter also appears in the publication [49].

6.2 Methods

6.2.1 In-vivo ultrasonographic assessment

For the ultrasonographic assessment of the supraspinatus, five subjects were recruited. Sub-

jects with a history of rotator cuff pathology or neuromuscular disease were excluded. An

HDI 5000 Advanced Technology Laboratories (ATL) real-time ultrasound scanner with a lin-

ear (38 mm) 12 MHz transducer (resolution 0.3 mm) was used to scan all subjects in relaxed

states, with respect to the protocol developed by Kim et al. [41]. A longitudinal image was

obtained by positioning the probe at the anterior region of the muscle and aligning it to the

intramuscular tendon. A transverse image was captured by positioning the probe at the middle

of muscle belly and aligning it to the sagittal plane. Two additional transverse images were

obtained by translating the probe proximally or distally (one-fourth and three-fourths of the

proximo-distal length). The intramuscular tendon and the observed fascicles were manually de-

termined by superimposing lines onto the longitudinal image. Anatomical cross-sections of the

muscle were also manually digitized by smooth curves in the transverse images (See Figure 6.1).

6.2.2 Cadaveric modeling

Cadaveric assessment uses seven supraspinatus specimens that were acquired using dissection

and digitization. Specimens with visible abnormalities, such as muscle atrophy, fat infiltration
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(a) (b)

Figure 6.1: In-vivo ultrasonographic assessment for the supraspinatus: (a) Segmented cross-
sectional area of the transverse image. (b) Sampled fascicles and intramuscular tendon of the
longitudinal image.

and surgery, were excluded from the data acquisition. During dissection and digitization, as-

sociated joints were stabilized into anatomical position with metal plates and screws. Fascicles

were sequentially dissected and digitized from superficial to deep throughout the muscle volume.

A MicroScribe G2 digitizer with 0.23 mm accuracy was used to trace trajectories of fascicles

with sampled points. Digitized fascicles were removed, exposing the underlying fascicles about

1 − 2 mm deeper. To identify fascicle trajectory accurately, a surgical microscope was used

throughout the dissection and digitization process. A cubic Catmull-Rom spline was used to

reconstruct fascicles and associated architectural parameters, such as FL, PA, PCSA and MV,

were quantified [51, 50]. Based on these parameters, an external surface geometry was recon-

structed (See Figure 6.2(a)). To be comparable to the ultrasonographic assessment, transverse

and longitudinal images are created by the intersection of muscle geometry and imaging planes

(See Figure 6.2(b) and 6.2(c)). Section contours are represented by 2D polygons, whereas fas-

cicles are shown as intersection points (in the transverse image) or projected 2D line segments

(in the longitudinal image) [50].

6.2.3 Data generation for synthetic muscles

In addition to an analysis based on specimen data, synthetic data are used to validate the

proposed method. The synthetic data are produced by choosing parametric equations to rep-

resent targeted geometries: cylinder and ellipsoid. Fascicles are then populated and arranged

with respect to predefined architectures: parallel for cylinder and bipennate for ellipsoid (See

Figure 6.3). The validating experiment uses two parallel muscles, parallel1 (length of 20 mm

and radius of 12 mm) and parallel2 (length of 20 mm and radius of 10 mm), and two bipennate

muscles, bipennate1 (length of 25 mm, width of 13 mm, height of 13 mm and pennation angle of
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(a) (b) (c)

Figure 6.2: Cadaveric assessment of the supraspinatus: (a) Reconstructed architecture and
surface with the transverse (mid-sagittal) and mid-longitudinal planes. (b) Cross-section image
produced by the intersection of the transverse plane and the muscle geometry. (c) Longitudinal
image produced by the intersection of the mid-longitudinal plane and the muscle geometry.
Contour outlines (yellow), fascicles (cyan) and distribution of distal attachment (red) are shown
in images (b) and (c).

20◦) and bipennate2 (length of 20 mm, width of 10 mm, height of 10 mm and pennation angle

of 25◦). These synthetic data have uniform architecture without any intramuscular variation

of FL and PA within the muscle.

(a) (b)

Figure 6.3: Synthetic muscles. (a) Parallel muscles are created within a cylinder. (b) Bipennate
muscles are created within an ellipsoid.

6.2.4 Mapping of muscle architecture

To map the architecture of the source muscle onto that of the target muscle, this study uses two

ways to represent muscle volume. One is to estimate volume based on the architecture (by (6.1));

the other is to determine volume based on the external geometric measurement (by (6.2)). Using

these two representations, it is possible to approximately associate the internal architecture with

the external measurement per muscle and then determine architectural variation between the

source and target muscles, which is used for the mapping. In a cadaveric muscle, the volume of

each fascicle is approximately modeled by a cylinder along its trajectory. As the entire muscle
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architecture is represented by a collection of those cylinders, the muscle volume (MV) can be

estimated by

MV =
n∑
i=1

aili (6.1)

where ai is the cross-sectional area of fascicle i, li is the length of fascicle i and n is the number of

fascicles. As the reconstructed surface encloses all fascicles, muscle volume is also approximated

by summing the cross-sectional slices times their thickness:

MV =
m∑
k=1

ck∆h =
m∑
k=1

ck
h

m
= ch (6.2)

where ck is a cross-sectional area of k-th slice of the muscle, m is the number of cross-sections,

h is the length of the muscle, ∆h = h
m is the average thickness of each cross-section and

c = 1
m

∑m
k=1 ck is the average cross-sectional area. Using (6.2), an inter-subject variability

of muscle volume can be approximated. For a target muscle having volume MVt and source

muscle having volume MVs, let α = MVt

MVs be the scaling factor between the target and source

muscles. The scaling factor α can be estimated as the product of relative cross-sectional area

(αc) and length (αh) between muscles:

α = αcαh, αc =
ct

cs
, αh =

ht

hs
(6.3)

where cs and ct are the average ck of the source and target muscles, respectively, and hs and

ht are the length of the source and target muscles, respectively. Using the results above, the

volume of the target muscle can be rewritten in terms of the architecture of source muscle as

MVt =

nt∑
ati l

t
i = αcαh

ns∑
asi l

s
i (6.4)

where superscript s and t indicate the source and target muscles, respectively. Since c and h

can be measured from both cadaveric and ultrasonographic assessments, it is straightforward

to determine αc and αh. The values of αc and αh are used to explicitly transform the source

muscle so that its volume approximates the volume of the target muscle. For simplicity, the

transformation is decomposed into two sub-transformations: transverse and longitudinal trans-

formation. The transverse transformation minimizes the difference in the cross-sectional areas

between the source and the target muscles, whereas the longitudinal transformation is used to

match the lengthes of the muscles.

6.2.5 Transverse transformation

A 3D geometry of the target muscle is approximated by either shrinking or expanding that

of the source muscle. For simplicity, the transformation is restricted to the transverse plane.
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The amount of shrinking or expanding is determined by the scaling factor, αc in (6.3), which is

used to minimize the difference in the cross-sectional areas between the source and the target

muscles. In transverse ultrasound images, the cross-sectional area of a muscle is approximated

by a polygon, the area of which is calculated by manual digitization. The value of ct is ob-

tained by averaging cross-sectional areas, ctk, estimated from three transverse images. To be

consistent with ultrasonographic assessment, three transverse images are created from cadav-

eric muscle data by using the simulated ultrasound (described in Section 4.2.6) positioned at

the corresponding locations (i.e., 1
4 , 1

2 and 3
4 of the proximo-distal axis). The intersections of

the transverse plane centered at those locations and muscle surface produce three polygonal

cross-sections, Csk (k = 1, 2, 3), the areas (csk) of which are averaged to obtain cs.

For each cross-section Csk, its nearby vertices on the surface are identified as Gk to constitute

G = ∪
k
Gk. Since the transformation is restricted to the transverse plane and it is uniform

around the surface, new positions for vertices in G can be simply defined by symmetrically

displacing them inward or outward from the surface. The amount of displacement is determined

so that the associated cross-sectional area can be transformed to achieve the target value;

cs
′
k = αcc

s
k. As the cross-section is represented by a closed polygon having a number of boundary

points, its area is calculated as

csk =
1

2

ne∑
i=1

nt · (pi − xo)× (pi+1 − xo) (6.5)

where nt is a normal of the transverse plane, xo is an arbitrary point on that plane, ne is the

number of edges representing the boundary of the cross-section, and pi and pi+1 are the end

points on the edge i. These boundary points p are determined by intersection of the transverse

plane and the muscle surface. Likewise, a new cross-sectional area is calculated in terms of the

displacement from the original points:

cs
′
k =

1

2

ne∑
i

nt · (p′i − xo)× (p′i+1 − xo) (6.6)

p′i = pi + ∆rkt(pi) (6.7)

where t(pi) is the unit vector representing the normal traction at pi and ∆rk is the displace-

ment along the traction. Substituting (6.7) into (6.6) solves for ∆rk to make (6.6) equal to

the target value cs
′
k = αcc

s
k (k = 1, 2, 3). Similar to (6.7), new positions for vertices in Gk are

determined by using ∆rk:

ui = vi + ∆rkt(vi) (6.8)
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where t(vi) is the unit vector representing the normal traction at vi (See Figure 6.4).

(a) (b)

Figure 6.4: Displacement for transverse transformation: (a) Cross-section Csk (yellow) with
boundary points, p (gray), and adjacent vertices, Gk (blue), subject to the constraint in the
transformation. (b) 2D view of cross-section with the displacement (white).

The muscle surface is reconstructed based on the enclosed fascicles, the trajectories of which

directly represent geometric details of the surface. This geometric correspondence between the

surface and fascicle arrangement is used to approximate the new architecture associated with

the transformed surface. Thus, geometric surface details must be preserved as much as possible

during the transformation. To this end, the Laplacian surface deformation technique [90] is

used because it allows us to effectively transform global shape while preserving local details.

These details are represented by the Laplacian coordinates to be described as the difference

between the vertex and the average of its neighboring vertices:

δi = L(vi) = vi −
1

di

∑
j∈Ni

vj (6.9)

where Ni is the set of vertices adjacent to vi and di is the number of elements in Ni. The

surface is transformed by constraining a set of vertices to the desired positions and fitting the

Laplacian coordinates of new surface v′ to the initial Laplacian δ of the original surface:

v′ = arg min
v

(||L(v)− δ||2 +
∑
i∈G

ωi||vi − ui||2) (6.10)

where L(v) = (L(v1),L(v2), ...,L(vn))T , δ = L(vo) = (δ1, δ2, ..., δn)T , n is the number of ver-

tices on the surface, G is a set of vertices subject to the constraint during the transformation,

ui is the positional constraint (i.e., desired position) for vi given by (6.8) and ωi is its weight.

The supraspinatus is a pennate muscle for which fascicles originate from the broad proximal
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region and insert into the narrow distal region. With this convergent fascicle orientation,

their distal attachment exhibits strong linearity along the intramuscular tendon. Since the

surface transformation determines the internal fascicle arrangement, a large transformation

(e.g., αc � 1 or αc � 1) may perturb the architectural pattern that needs to be preserved.

To this end, an additional static constraint (ui = vi) is used to restrict the movement of the

vertices wrapping around the distal tendon. By incorporating this static constraint, (6.10) is

expanded as

v′ = arg min
v

(||L(v)− δ||2 +
∑
i∈G

ωi||vi − ui||2) +
∑
j∈S

ωj ||vj − uj ||2) (6.11)

where S is a set of vertices constituting the distal tendon area on the muscle surface.

While the surface is transformed by (6.11), the enclosed fascicles need to be transformed simi-

larly, while ensuring that the appropriate geometry is maintained (See Figure 6.5). To this end,

this study uses the generalized mean value coordinates technique [40], the common application

of which is to manipulate object deformation by means of a surrounding control mesh. This

technique geometrically associates the vertices of an arbitrary object with those of a control

mesh, which embraces the construction of a weight function, w (namely, mean value coor-

dinates) having the following properties: continuity, smoothness and linear precision. For a

detailed description of this technique, the reader is referred to Ju et al. [40]. For the purpose

of this study, the enclosed fascicles and their surrounding surface are considered to be the de-

formable object and the control mesh, respectively. For every fascicle point xj , its mean value

coordinates wi are computed with respect to each vertex vi in the original surface (i.e., prior

to the transformation) and set as constant during the transformation. By letting v′i be the

positions of the vertices from the transformed surface, the new interior fascicle point, x′j in the

enclosing surface is computed as

x′j =

∑n
i wijv

′
i∑n

i wij
(6.12)

where n is the number of vertices on the surface, wij is the mean value coordinate described

in [40], for xj and vi.

6.2.6 Longitudinal transformation

The longitudinal transformation not only matches the length of the muscles, but also minimizes

the PA difference between the muscles. In contrast to the transverse transformation, it is di-

rectly applied to the fascicle arrangement because it is straightforward to adjust the length and

the angle based on the fascicle trajectory. To minimize the perturbation of the tendinous at-
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(a) (b) (c)

Figure 6.5: Transverse transformation for the supraspinatus: (a) Architecture (red) and its
enclosing surface (transparent). (b) Transformed surface (gray) with respect to specified con-
straints. (c) Transformed architecture (red) corresponding to the transformed surface (trans-
parent).

tachment, the transformation is restricted to the direction of the intramuscular tendon. While

fascicles are fixed at the proximal attachment, they are elongated or shortened by translating

their distal attachment along the tendon direction. Similar to (6.10), a least-squares-based

optimization is used to transform the fascicle trajectory while preserving local curvatures. As-

sociated translational displacements (∆h1 and ∆h2) are specified with respect to the scaling

factor in (6.3), and PA measurement, respectively.

∆h1 = αhh
s − hs (6.13)

∆h2 = arg min
∆h

 nf∑
i

cos−1

(
as · (tsi + ∆h as)

||(tsi + ∆h as)||

)
− PAt

2D

2

(6.14)

where nf is the number of fascicles in the source muscle visible by the simulated ultrasound,

as is the direction of the intramuscular tendon, tsi is the tangent of fascicle i at the distal at-

tachment in the source muscle and PAt
2D is the average PA of fascicles sampled on the imaging

plane in the target muscle. To be comparable with ultrasonographic assessment, the simulated

ultrasound is used, in which a two-dimensional image is created from cadaveric muscle data

by projecting its fascicles onto the mid-longitudinal plane. Their proximity to that plane is

evaluated to identify visible portions of fascicles. All parameters given in (6.14) are based on

2D measurement. Ultrasonographic assessment accounts for three fascicles sampled at the most

proximal, middle and most distal locations of the intramuscular tendon, which approximate the

PA distribution of the target muscle in 2D. In contrast, cadaveric assessment takes into account

all visible fascicles for angular measurement in (6.14). The transformation is carried out in two

steps: translation of distal attachments by (6.13) and then by (6.14). The transformation by

∆h2 may alter the muscle length, but it is not critical problem in this study, because PCSA

estimation is not dependent on the length.



Chapter 6. A practical approach to in-vivo quantification of PCSA for skeletal muscle69

6.3 Results

To validate the proposed method, three experiments were performed. Experiment 1 is based

on synthetic muscles having uniform geometry and architecture. Experiment 2 uses seven

cadaveric specimens of the supraspinatus that exhibit various degrees of inter- and intramuscular

variations. Experiment 3 uses seven cadaveric specimens and ultrasonographic imaging from

five living subjects. In each experimental setting, muscle data are paired with each other (source

and target muscle) to perform the architectural mapping from one to the other and vice versa.

Experiments 1 and 2 are based solely on the three-dimensional fascicle data. Note that the

proposed method takes the 3D architectural model and the 2D geometric measurements as the

source and target data, respectively. Thus, to be compatible, simulated ultrasound is used to

obtain a 2D assessment (e.g., mean cross-sectional area, c, and 2D pennation angle, PA2D) from

the 3D fascicle data. The simulated 2D data is referred to as the target muscle in experiments

1 and 2. In those experiments, since both the target muscle and the transformed architectural

model have 3D fascicle data, their PCSA can be determined by using the method described

in Chapter 3. The PCSA calculated solely from the 3D data is regarded as the true value

and compared against the PCSA computed by the mapping method from the 3D to 2D data,

which is referred to as PCSAs→t. The relative error between them is calculated to evaluate the

proposed method (i.e., (PCSAs→t − PCSA)/PCSA). The results for the PCSA estimation are

presented in Tables 6.2, 6.4 and 6.6, respectively.

6.3.1 Experiment 1: Synthetic muscles

For parallel muscles, the relative differences in PCSA between parallel1 and parallel2 before

the mapping, are 41.8% and −29.5%, respectively. After the mapping, those differences are

significantly reduced to −1.5% and −2.5%, respectively. Similarly, for bipennate muscles, the

relative differences in PCSA between bipennate1 and bipennate2 are significantly lowered from

55.6% to −0.6% and −35.7% to −7.5%, respectively. Results show that the proposed method

performs slightly better when the muscle surface shrinks than when it expands, where shrink

means that the source muscle has a bigger PCSA than the target muscle. Recall that fascicles

located in the outermost layers have some degree of deficiency in that they are surrounded

by a few neighboring fascicles only, not completely enclosed by them. That may result in an

unbounded Voronoi region, the area of which must be extrapolated or discarded, depending on

the deficiency. Generally, shrinking the muscle improves this deficiency problem by increasing

the density of fascicle points inside the muscle. On the other hand, expanding the muscle

disperses these points, making the problem described above for the outermost regions worse.

Consequently this may yield an inaccurate estimation.
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Muscle N h c PA2D PCSA

parallel1 390 20.0 453.9 0.0 448.7
parallel2 154 20.0 334.5 0.0 316.5

bipennate1 891 25.0 173.2 16.6 162.8
bipennate2 750 20.0 115.3 13.4 104.6

Table 6.1: Measurements for synthetic muscles. N is the total number of digitized fascicles.
h is the longitudinal length of muscle (mm). c is the mean cross-sectional area (mm2). PA2D

is the mean pennation angle of fascicles projected onto the mid-longitudinal plane. PCSA is
estimated based on the original fascicle data (mm2).

XXXXXXXXXXXMuscles

Musclet parallel1 parallel2 bipennate1 bipennate2

parallel1 311.6 (−1.5)
parallel2 437.6 (−2.5)

bipennate1 103.9 (−0.6)
bipennate2 150.5 (−7.5)

Table 6.2: PCSA estimation (PCSAs→t) for synthetic muscles. PCSAs→t is estimated by
mapping the architecture from Muscles (source muscle) to Musclet (target muscle). The relative
errors, expressed as percentages, are given in parenthesis.

6.3.2 Experiment 2: Cadaveric specimens

From the seven cadaveric specimens, 42 ordered-pairs are selected to perform the experiment

(Ti,j : Si → Sj , i 6= j). The PCSA of the transformed source muscle is estimated by the pro-

posed method and compared with that of the target muscle. Cadaveric specimens yield a wide

range of absolute relative errors (for instance, 0.7 % for T1,3 to 15.2 % for T1,2). This is mainly

due to the architectural complexity and the variation between specimens. It is observed that

the supraspinatus has non-uniform architecture: bipennate in the anterior region and parallel

in the posterior region. Depending on the distribution of the fascicle orientation (i.e., the pen-

nation angle) and the relative thickness of these regions, PCSA may be larger than c (e.g., S1,

S3, S4 and S6) or comparable to c (e.g., S2, S5 and S7). Since the muscle architecture is not

significantly altered in the proposed method, this discrepancy between PCSA and c may persist

during the mapping. It is also found that some mappings that induce a large shrinkage, such

as T1,2, T1,7, T6,2 and T4,7, yield more inaccurate results (above 12.0 %) than others do (below

8.0%). This is caused by the static constraints specified to prevent undesired geometric changes

and perturbations of the intramuscular tendon. Recall that the displacement for the mapping

is determined by the difference between mean cross-sectional areas of muscles. The bigger the

difference, the larger the displacement needed to transform the entire surface. However, too

large a displacement may collapse the narrow distal region of the muscle volume or affect the

linearity of an intramuscular tendon. In such cases, the associated static constraints adversely

affect the transformation. As a result, the PCSA may not reach the targeted value. As PA2D

variation is relatively small in this experiment, it is observed that, compared to the transverse
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transformation, the longitudinal transformation has little effect on estimating the PCSA.

Statistical analysis of the estimated PCSA is also presented in Table 6.4 and Figure 6.6. De-

pending on architectural variation and volumetric differences between source and target muscles,

the transformation can under- or over-estimate PCSA. However, compared to the distribution

of original PCSA for all specimens (standard deviation: ±153.2), that of the estimated PCSA

for each target muscle is much narrower (standard deviation: ±24.6 ∼ ±35.7). Furthermore,

it is shown that the mean of each distribution (PCSAs→t) is much closer to the true PCSA of

the corresponding target muscle (−5.1 % ∼ 8.4 %) than that of the original PCSA distribution

(−29.4 % ∼ 43.3 %).

Muscle N h c PA2D PCSA

S1 1750 134.2 622.2 6.7 647.0
S2 729 115.6 424.5 4.4 421.3
S3 1081 125.9 506.6 8.3 543.8
S4 1681 135.1 571.5 7.6 613.0
S5 1294 131.7 698.3 7.5 694.8
S6 1556 138.6 798.5 6.9 847.0
S7 829 125.8 416.1 6.3 417.2

Table 6.3: Measurements for cadaveric specimens of the supraspinatus. N is the total number
of digitized fascicles. h is the longitudinal length of the muscle (mm). c is the mean cross-
sectional area (mm2). PA2D is the mean pennation angle of the fascicles projected onto the
mid-longitudinal plane. PCSA is the estimated PCSA based on the original fascicle data (mm2).

XXXXXXXXXXXMuscles

Musclet S1 S2 S3 S4 S5 S6 S7

S1 485.6 (15.2) 539.9 (0.7) 618.9 (0.9) 716.3 (3.1) 855.5 (1.0) 470.5 (12.7)
S2 603.4 (−6.7) 484.9 (−10.8) 547.8 (−10.6) 664.7 (−4.3) 758.8 (−10.4) 403.1 (−3.4)
S3 618.6 (−4.4) 426.5 (1.2) 580.7 (−5.2) 652.7 (−6.0) 790.1 (−6.7) 412.4 (−1.1)
S4 658.4 (1.7) 471.4 (11.9) 548.1 (0.8) 721.3 (3.8) 822.6 (−2.8) 476.6 (14.2)
S5 635.9 (−1.7) 441.2 (4.7) 527.2 (−3.0) 586.0 (−4.4) 803.7 (−5.1) 434.7 (4.2)
S6 670.2 (3.6) 478.3 (13.5) 558.6 (2.7) 622.6 (1.6) 744.8 (7.2) 464.0 (11.2)
S7 615.4 (−4.8) 437.6 (3.9) 500.9 (−7.8) 564.6 (−7.8) 685.0 (−1.4) 791.6 (−6.5)

PCSAs→t 633.6± 26.2 456.8± 24.6 526.6± 28.5 586.8± 29.5 697.6± 35.7 803.7± 32.8 443.6± 31.4
PCSA 647.0 421.3 543.8 613.0 694.8 847.0 417.2

Error (%) −2.1 8.4 −3.2 −4.3 0.4 −5.1 6.3

Table 6.4: PCSA estimation (PCSAs→t) for cadaveric specimens. PCSAs→t is the estimated
PCSA for Musclet (target muscle) computed by mapping the architecture of Muscles (source
muscle) to the 2D ultrasound version of Musclet. The percentage of the relative errors of Ti,j
are given in parenthesis. Statistical analysis of PCSAs→t for each Musclet is given as ‘the mean
± the standard deviation’.
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Figure 6.6: Distribution of the PCSA estimation. The distribution of estimated PCSA
(PCSAs→t ) for each specimen (in Table 6.4) is compared to its true value of the PCSA (red
circle). The distribution of true PCSA for all specimens is also plotted as the leftmost line
segment.

6.3.3 Experiment 3: Cadaveric specimens to living subjects

In contrast to the previous two experiments, it is impossible to validate the PCSA estimation in

this experiment, because the PCSA of the target muscles are unknown. Thus, only statistical

results from experiments on all pairs of muscles are presented in Table 6.6. Similar to experiment

2, lower and upper bounds on the PCSA estimation are determined by the smallest and the

biggest source muscles, respectively. Also, the distribution of the estimated PCSA per target

muscle is narrow (standard deviation: ±23.7 ∼ ±29.0), which indicates that the mean estimates

based on cadaveric specimens can be a practical approximation of PCSA for in vivo muscle based

on ultrasonographic assessment.

Muscle h c PA2D

US1 111.4 625.8 11.7
US2 88.5 549.4 8.4
US3 81.2 503.2 11.8
US4 99.1 433.9 14.3
US5 97.1 515.1 8.9

Table 6.5: Ultrasonographic measurement for the supraspinatus of living subjects. h is the
longitudinal length of the muscle (mm). c is the mean cross-sectional area (mm2). PA2D is the
mean pennation angle of fascicles identified from the mid-longitudinal image.

6.4 Discussion

PCSA is an architectural parameter that directly determines the maximum capacity of muscle

power. An accurate determination of PCSA is needed for both biomechanical and clinical stud-
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XXXXXXXXXXXMuscles

Musclet US1 US2 US3 US4 US5

S1 651.2 583.1 528.4 468.8 555.5
S2 603.0 551.0 498.1 432.7 517.8
S3 640.5 560.4 527.8 459.7 542.8
S4 662.7 587.6 540.6 470.3 555.0
S5 624.1 545.8 505.6 444.4 516.9
S6 677.9 603.3 553.8 483.7 569.2
S7 602.7 541.8 482.3 403.9 490.2

PCSAs→t 637.4± 29.0 567.6± 23.7 519.5± 25.2 451.9± 27.2 535.4± 27.9

Table 6.6: PCSA estimation (PCSAs→t) for in-vivo supraspinatus of living subjects.

ies because reliable functional analysis and associated clinical assessment are highly dependent

on the quality of this measure. A commonly used approach is an algebraic formula based on

measurement of volume and fascicle length from MRI and ultrasonography, respectively. Since

this approach is non-invasive, it can be applied in a broad range of in-vivo studies. How-

ever, it may under- or over-estimate PCSA because architectural complexity and intramuscular

variation are rarely accounted for. On the other hand, cadaveric assessment based on the 3D

modeling provides a unique opportunity for an in-depth investigation into PCSA quantifica-

tion associated with architectural complexity. But it is not straightforward to apply to in-vivo

studies because comparable data acquisition is not achievable. Therefore, the purpose of this

study is to overcome the limitation inherent in each approach by combining them to provide

further capacity for PCSA quantification of in-vivo muscle. To this end, a subject-specific ar-

chitecture is approximated by mapping a 3D detailed reference architecture model to the target

muscle that is represented by 2D geometric measures. This approximated architecture model

is used for PCSA quantification. An architectural reference model is created from cadaveric

data whereas geometric measures are obtained from ultrasonographic assessment. Even though

customized ultrasound imaging would provide a more extended set of features, this study aims

at broader applicability by restricting ultrasonographic assessment to standard protocols that

are commonly followed by most clinical studies. The proposed approach is based on the as-

sumption that the same muscles in different subjects are sufficiently similar in terms of overall

architectural pattern. Two validation experiments based on synthetic muscle and cadaveric

specimens, respectively, demonstrate 0.4 − 8.4 % errors between original architecture and its

approximation, depending on the anatomical complexity. No error analysis is conducted in

the third experiment based on cadaveric specimens and ultrasound images because their exact

PCSA is unknown. Nevertheless, the distribution of estimation results provides a practical

insight into PCSA quantification for in-vivo muscle.

The proposed approach can not only be used for static analysis, but it can also be applied to an

investigation of dynamic problems associated with muscle contraction or skeletal movement. A

variable range of muscle activity can be assessed similarly in terms of 2D geometric measures
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in the ultrasound images. Thus, one possible extension of the proposed method is to trace 2D

image features in the sequence of ultrasound images obtained during muscle contraction and

then fit a 3D architecture model to each of these images. Another possible application is to

provide region-specific architectural analysis for in-vivo muscle, such as the anterior/posterior

or the superficial/deep region. This may need only an additional localization in the ultrasono-

graphic assessment because the architectural model can be easily re-organized into multi-layers

or multi-regions.

Although this study provides improved capability for in-vivo PCSA estimation, there are some

limitations that may be addressed in future work. First, only a small sample of data is con-

sidered in the present study. A more thorough validation needs more specimens and a variety

of types of muscle. Second, the gap between superficial fascicles and the muscle surface may

lead to a significant error, particularly when the muscle expands, because this gap is propor-

tionally scaled with the amount of transformation. Thus, minimizing this gap, by possibly

using a tighter surface, could further reduce the estimation error. Lastly, performance of the

proposed method is highly sensitive to the consistency between cadaveric and ultrasonographic

assessment, such as the orientation and location of their imaging planes. The present study

uses only the proximal to distal length of the muscle to compare images. Additional image fea-

tures, such as shape of cross-sections and bony landmarks, may enhance the reliability to the

proposed method. To this end, further investigation into the correspondence between synthetic

ultrasound and real ultrasound is needed.
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Conclusion

7.1 Summary

Muscle architecture is a primary determinant of the muscle function associated with body

movement. An assessment of muscle architecture is therefore of great importance, not only

for investigating anatomical aspects of muscle but also for predicting its functional capacity.

Most muscles have a variable degree of complexity in their fascicle arrangement, making it chal-

lenging to accurately assess their architecture. Previous cadaveric approaches only take into

account a small number of superficial fascicles of specimens. On the other hand, conventional

radiological approaches, such as ultrasonography and MRI, examine two-dimensional projected

images. Neither of these approaches provides an in-depth three-dimensional image of the entire

muscle architecture. This may lead to under- or over-estimation of architectural parameters,

consequently affecting the accuracy of associated computational models to be used for various

analytical studies.

This thesis focuses on computational modeling of muscle architecture based on its detailed

structure. Dissection and digitization are used to capture and reconstruct fascicle trajectories

in much greater detail (e.g., sub-mm scale and throughout the volume) from cadaveric spec-

imens than previous studies did. Based on those trajectories, a set of geometric properties

representing the volume of each fascicle is estimated. Architectural parameters (e.g., FL, PA,

PCSA and MV) are then determined associated with those properties. Those parameters are

also used to approximate the surface geometry of the muscle encapsulating all fascicles. This

modeling approach provides a unique opportunity to approximate more accurately anatomical

and physiological details that were rarely explored but presumed to be significantly correlated

with many clinical implications. This study carefully examines and handles the non-uniformity

and complexity in the fascicle arrangement that must be appropriately taken into considera-

tion to reconstruct muscle architecture consistently, regardless of muscle type and variability.

Furthermore, this study accounts for further complexity that is imposed by some deficiency

inherent in the data acquisition. Specifically, it is impossible to computationally replicate exact
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muscle architecture by digitizing all fascicles, which only yields coarsely and unevenly sampled

data. Nevertheless, the proposed method demonstrates robustness against this deficiency of

data and performs consistently over various complexities of muscle architecture (below 10 % er-

ror in PCSA estimation). However, it is nearly impossible to obtain detailed architectural data,

such as fascicular level of 3D data, from living tissues. That imposes a significant restriction

on the cadaveric modeling approach to understand in vivo tissues, limited assessment of which

is only available using conventional radiological approaches. To overcome this limitation in

each approach, this study combines them by associating cadaveric models with ultrasound im-

ages computationally. Two applications are discussed. One is to illustrate the correspondence

between 3D architecture in space and its projected features on images, providing practical

insight into accurate estimation of PA in the ultrasonographic assessment. The other is to

approximate in vivo architecture by matching detailed reference models with subject-specific

measurements on ultrasound images, which enables us to estimate PCSA for in vivo muscle.

Validation studies demonstrate that this matching method significantly reduces the distribution

of PCSA for reference architectures (i.e., standard deviation: ±150.3 → ±24.6 ∼ ±35.7 mm2),

yielding 0.4 − 8.4 % error between the mean value of this distribution and the known value of

PCSA. Thus, the proposed combined approach is an effective way to determine PCSA for living

subjects.

Main contributions are:

• Anatomy-based computational modeling of muscle architecture by carefully incorporating

anatomical details and complexities.

• A uniform approach to reconstruct muscle geometry and to understand muscle physiology.

No adjustment is needed for modeling parameters specific to inter-muscular variability.

• Robust and consistent quantification of architectural parameters (e.g., FL, PA, PCSA and

MV) given some deficiencies in the quality of the data in terms of resolution, sampling

and noise.

• Determination of architectural patterns (i.e., pennate and non-pennate) and line of action

based on the geometric arrangement of fascicles.

• Geometric reconstruction of the muscle surface specific to the underlying architecture and

structure, which is potentially useful for anatomical visualization and simulation.

• A novel approach to quantification of PCSA for in vivo muscle by combining cadaveric

modeling and ultrasonographic assessment.
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7.2 Discussion and future work

The proposed methods have been actively used in various anatomical studies [9, 58, 89, 57, 81]

that mainly focus on modeling and analyzing architectural and structural aspects of skeletal

muscle. The proposed modeling and analytical approach has been shown to provide an in-depth

understanding of human skeletal muscle and the potential perspective for more reliable clinical

applications. However, to be generally accepted by the clinical and research communities,

there exist some problems to overcome. Firstly, most muscles have some range of structural

and architectural variability both between cadaveric specimens and between in vivo muscles.

The proposed method only accounts for the variability of global features. However, to be

applicable to translational studies, including surgical and therapeutic treatment, local variations

must be taken into account for the personalized and patient-specific modeling. Secondly, the

modeling approach based on digitized fascicles needs to be further validated by incorporating

other methodologies. For instance, the proposed surface reconstruction could be compared with

other reconstructions based on MRI or laser scans. Thirdly, many dynamic human models,

such as upper-limb motor control and lower-limb locomotion, commonly use a 1D linear mass-

spring model to represent individual muscle force, making it challenging to incorporate the 3D

architectural complexity and intra-muscular variation that is necessary to extend the analysis

further. As the constitutive modeling approach is shown to effectively simulate some muscle

behavior driven by the embedded architecture [13, 81], it is promising to expand this approach

to represent more complex problems. Fourthly, the proposed methods rely on some control

parameters to be specified, such as re-sampling rate of fascicle points, rejection threshold for the

boundary problem and the amount of smoothing for surface reconstruction. Those parameters

are currently determined by the experimental observation. To present a more rigorous model,

they need to be specified in more analytic manner. Lastly, even though this study provides

some insights for predicting functional aspects of muscle, much more needs to be done to clearly

determine the correlation between muscle architecture and functional outcome associated with

body movement. Further integrative modeling is needed, in conjunction with biomechanical

assessment, such as electromyography and dynamometer.
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