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Abstract

Physiological cross-sectional area (PCSA) is an important property used to predict the maximal force capacity of
skeletal muscle. A common approach to estimate PCSA uses an algebraic formula based on muscle volume (MV),
fascicle length (FL) and pennation angle (PA) that are measured by magnetic resonance imaging (MRI) and ultrasono-
graphic assessments. Due to the limited capability of assessing architecturally complex muscles with these imaging
modalities, the accuracy of measurements and ultimately PCSA estimation is compromised. On the other hand, ca-
daveric modeling provides a more accurate quantification by effectively dealing with the variable complexity of the
muscle but it may not be straightforward to directly apply to in vivo studies. Thus, the purpose of our study is to
provide a practical approach to PCSA estimation for in vivo muscle by integrating both cadaveric and ultrasound data.
The muscle architecture in vivo is approximated by fitting 3D cadaveric data onto 2D ultrasound data of living sub-
jects. The fitted architectural data is used for PCSA quantification. Validation experiments based on synthetic muscle
and cadaveric data, respectively, demonstrate 0.4 − 8.4 % errors between original architecture and its approximation,
depending on the anatomical complexity. Furthermore, it is shown that, despite the large inter-subject variability of
cadaveric data (standard deviation: ±153.2 mm2), their transformation toward 2D ultrasound data consistently yields a
narrow distribution of PCSA estimation (standard deviation: ±24.6 ∼ ±35.7 mm2), which provides a practical insight
into accurate quantification of PCSA for in vivo muscle.
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1. Introduction1

Physiological cross-sectional area (PCSA) is an im-2

portant determinant of peak muscle force production3

during movement [6]. Since force predictions are4

known to be highly sensitive to changes in PCSA [3],5

reliable functional analysis requires accurate determina-6

tion of this parameter. An algebraic method [1, 15, 12]7

is commonly used to calculate PCSA based on archi-8

tectural parameters including muscle volume (MV),9

fascicle length (FL) and pennation angle (PA). To in-10

vestigate the architectural parameters in vivo, magnetic11

resonance imaging (MV) and ultrasound (FL, PA)12

have been used [16, 5, 4]. However, these techniques13

may result in under- or over-estimation of PCSA as14

variation of FL and PA throughout the muscle volume15

cannot be captured [2, 11]. In contrast, cadaveric16

studies have been used to model skeletal muscle at the17

fascicular level and to quantify architectural parameters18

from volumetrically digitized data [13, 14, 10]. This19

technique accounts for architectural variation within20

the muscle volume. Three-dimensional cadaveric21

models at the fascicular level, can be used to develop22

detailed ultrasound (US) protocols for investigation23

of in vivo muscle architecture. To date, it has only been24

possible to quantify in vivo PCSA using generalized 2D25

architectural data obtained from individual ultrasound26

scans. The feasibility of integrating in vivo imaging27

data with 3D cadaveric data to estimate in vivo PCSA28

has not been previously explored.29

30

The purpose of our study is to develop a computational31

approach to quantify PCSA in vivo by integrating 3D32

cadaveric models with in vivo US data. We hypothesize33

that 3D in vivo muscle architecture can be approxi-34

mated by fitting 3D cadaveric data onto 2D in vivo35

US data. This hypothesis is based on the assumption36

that inter-subject variability can be globally estimated37
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by representative geometric measurements, such as38

cross-sectional area and muscle length.39

40

In this paper, 3D cadaveric data of the muscle surface41

and fascicle trajectory are referred to as the source42

data and the 2D in vivo US data as the target data.43

Corresponding features including muscle length,44

cross-sectional area and 2D fascicle orientation, are ex-45

tracted from both data sets and compared to determine46

geometric differences. To integrate the two data sets,47

the geometric differences are minimized by fitting the48

source data into the target data. The fitted model is then49

used to estimate the in vivo PCSA of US imaged muscle.50

51

2. Methods52

The supraspinatus muscle was used to develop the com-53

putational approach to quantify PCSA in vivo. US data54

were acquired by scanning five live subjects (mean age:55

36.4 ± 12.7) and cadaveric data were obtained from56

seven male formalin embalmed specimens (mean age:57

61.9 ± 16) using dissection and digitization. All sub-58

jects and specimens had no supraspinatus pathology.59

2.1. In vivo ultrasound data60

An HDI 5000 Advanced Technology Laboratories61

(ATL) real-time ultrasound scanner with a linear (3862

mm) 12 MHz transducer (resolution 0.3 mm) was used63

to scan all subjects in relaxed states, with respect to the64

protocol developed by Kim et al. [8]. A longitudinal65

image was obtained by positioning the probe at the66

anterior region of the muscle and aligning it to the67

intramuscular tendon. Three transverse images were68

captured by aligning the probe to the sagittal plane69

and positioning it at 1
4 , 1

2 and 3
4 of muscle length. The70

intramuscular tendon and the observed fascicles were71

manually determined by superimposing lines onto the72

longitudinal image. Anatomical cross-sections of the73

muscle were also manually digitized by smooth curves74

in the transverse images (see Figure 1).75

76

2.2. Cadaveric data77

Supraspinatus was exposed by removing the overlying78

skin, fascia and muscles. Shoulder joint was stabilized79

in neutral (anatomical position) with metal plates.80

Three reference points, demarcated with screws, were81

digitized at each level of dissection to enable 3D82

volumetric reconstruction of the data. The fascicles on83

superficial surface of muscle were delineated between84

(a) (b)

Figure 1: In-vivo ultrasonographic assessment for the supraspinatus:
(a) Segmented cross-sectional area of the transverse image. (b) Sam-
pled fascicles and intramuscular tendon of the longitudinal image.

attachment sites using a dissecting microscope and85

digitized at 5–10 mm interval using a MicroScribe G286

digitizer (0.23 mm accuracy). The digitized fascicles87

were removed to expose underlying fascicles. This88

process was repeated until all fascicles (729 to 1750 per89

muscle) were digitized throughout the muscle volume.90

91

Using the method developed by Lee et al. [10, 9],92

digitized fascicle data were geometrically reconstructed93

and analyzed. To be consistent with US data, one lon-94

gitudinal and three transverse sections were generated95

from the reconstructed model by using the simulated96

ultrasound [9] positioned at the corresponding locations97

(see Figure 2).98

99

(a) (b)

(c) (d)

Figure 2: Cadaveric data of the supraspinatus: (a,b) Reconstructed
architecture and surface with the transverse (mid-sagittal) and mid-
longitudinal planes. (c) Cross-section image produced by the intersec-
tion of the transverse plane and the muscle geometry. (d) Longitudinal
image produced by the intersection of the mid-longitudinal plane and
the muscle geometry. Contour outlines (yellow), fascicles (cyan) and
distribution of distal attachment (red) are shown in images (c) and (d).
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2.3. Integration of cadaveric and ultrasound data100

Corresponding features, such as muscle length, aver-101

age cross-sectional area and fascicle orientation, are102

determined from 3D cadaveric data (source) and 2D103

US data (target) and compared to determine geometric104

differences. These differences are minimized by105

transforming cadaveric data to fit into US data. The106

transformed data is used to estimate PCSA of the target107

data.108

109

To validate the PCSA determined by our integration110

method, two experiments were conducted. For experi-111

ment 1, four synthetic data were created; two cylindrical112

models with uniform parallel fascicle arrangement and113

two ellipsoidal models with uniform bipennate fascicle114

arrangement were created using parametric equa-115

tions (See Figure 3). By cross-matching one model116

with the other model (i.e., paralleli → parallel j and117

bipennatei → bipennate j for i , j), the architectural118

data were transformed accordingly. For experiment119

2, the seven cadaveric supraspinatus models were120

cross-matched in all combination (Si → S j and121

S j → Si for i , j). To be consistent with the method,122

one longitudinal and three transverse sections gen-123

erated from the target model were used to transform124

the source model. The relative error (%) between125

PCSA of the transformed model (i.e., PCSAs→t) and126

that of the target model was calculated to assess the127

fidelity of our method (i.e., (PCSAs→t−PCSA)/PCSA).128

129

(a) (b)

Figure 3: Synthetic muscles. (a) Parallel muscles are created within
a cylinder; parallel1 (length of 20 mm and radius of 12 mm) and
parallel2 (length of 20 mm and radius of 10 mm). (b) Bipennate mus-
cles are created within an ellipsoid; bipennate1 (length of 25 mm,
width of 13 mm, height of 13 mm and pennation angle of 20◦) and
bipennate2 (length of 20 mm, width of 10 mm, height of 10 mm and
pennation angle of 25◦).

2.4. Transformation between muscle models130

We relate two ways (cf. (1) and (2)) to represent131

muscle volume, which allows us to explicitly asso-132

ciate the architecture with the external measurement133

(e.g., cross-sectional area and muscle length) per134

muscle. The difference in this measurement is then135

used to approximate architectural variation between136

muscles. By minimizing this difference, architecture137

of one muscle (referred to as source muscle) is fitted138

to that of the other muscle (referred to as target muscle).139

140

In a cadaveric muscle, the volume of each fascicle is ap-141

proximately modeled by a cylinder along its trajectory.142

As the entire muscle architecture is represented by a col-143

lection of those cylinders, the muscle volume (MV) can144

be estimated by145

MV =

n∑
i=1

aili (1)

where ai is the cross-sectional area of fascicle i, li is
the length of fascicle i and n is the number of fasci-
cles. Since the reconstructed surface encloses all fasci-
cles, the overall muscle volume is thus approximated by
summing the product of cross-sectional slices by their
thickness:

MV =

m∑
k=1

ck∆h =

m∑
k=1

ck
h
m

= ch (2)

Here, ck is a cross-sectional area of k-th slice of the mus-
cle, m is the number of cross-sections, h is the length of
the muscle, ∆h = h

m is the average thickness of each
cross-section and c = 1

m
∑m

k=1 ck is the average cross-
sectional area. Using (2), the inter-subject variability
of muscle volume can be approximated. For a target
muscle having volume MVt and source muscle having
volume MVs, let α = MVt

MVs be the scaling factor between
the target and source muscles. Then α can be estimated
as the product of relative cross-sectional area (αc) and
length (αh) between muscles:

α = αcαh, αc =
c t

cs , αh =
ht

hs (3)

where cs and c t are the average ck of the source and
target muscles, respectively, and hs and ht are the length
of the source and target muscles, respectively. Using the
results above, the volume of the target muscle can be
rewritten in terms of the architecture of source muscle
as

MVt =

nt∑
at

i l t
i = αcαh

ns∑
as

i ls
i (4)

where superscripts s and t indicate the source and tar-146

get muscles, respectively. Since the c and h values can147

be measured from both cadaveric and ultrasonographic148
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assessments, it is straightforward to determine αc and149

αh. The values of αc and αh are used to explicitly trans-150

form the source muscle so that its volume approximates151

the volume of the target muscle. For simplicity, the152

transformation is decomposed into transverse and longi-153

tudinal transformations. The transverse transformation154

minimizes the difference in the cross-sectional areas be-155

tween the source and the target muscles, whereas the156

longitudinal transformation is used to match the lengths157

of the muscles.158

2.4.1. Transverse transformation159

A 3D geometry of the target muscle is approximated by160

either shrinking or expanding that of the source muscle.161

For simplicity, the transformation is restricted to the162

transverse plane. The amount of shrinkage or expansion163

is determined by the scaling factor, αc in (3), which we164

use to minimize the difference in the cross-sectional165

areas between the source and the target muscles. In166

transverse ultrasound images, the cross-sectional area167

of a muscle is approximated by a polygon, the area of168

which is calculated by manual digitization. The value169

of c t is obtained by averaging cross-sectional areas, ct
k,170

estimated from three transverse images.171

172

For each cross-section C s
k (k = 1, 2, 3), its nearby ver-

tices on the surface are identified as Gk to constitute
G = ∪

k
Gk. Since the transformation is restricted to the

transverse plane and it is uniform around the surface,
new position for vertices in G can be simply defined by
symmetrically displacing them inward or outward from
the surface. The amount of displacement is determined
so that the associated cross-sectional area can be trans-
formed to achieve the target value; cs′

k = αccs
k. Since the

cross-section is represented by a closed polygon having
a number of boundary points, its area is calculated as

cs
k =

1
2

ne∑
i=1

nt · (pi − xo) × (pi+1 − xo) (5)

where nt is a normal of the transverse plane, xo is an173

arbitrary point on that plane, ne is the number of edges174

representing the boundary of the cross-section, and pi175

and pi+1 are the end points on the edge i. These bound-176

ary points p are determined by the intersection of the177

transverse plane and the muscle surface. Likewise, new178

cross-sectional area is calculated in terms of the dis-179

placement from the original points:180

cs′
k =

1
2

ne∑
i

nt · (p′i − xo) × (p′i+1 − xo) (6)

p′i = pi + ∆rkt(pi) (7)

where t(pi) is the unit vector representing the normal
traction at pi and ∆rk is the displacement along the
traction. Substituting (7) into (6), we solve for ∆rk

to make (6) equal to the target value cs′
k = αccs

k
(k = 1, 2, 3). Similar to (7), new positions for vertices
in Gk are determined by using ∆rk:

ui = vi + ∆rkt(vi) (8)

181

182

where t(vi) is the unit vector representing the normal183

traction at vi (see Figure 4).184

185

(a) (b)

Figure 4: Displacement for transverse transformation: (a) Cross-
section Cs

k (yellow) with boundary points, p (gray), and adjacent ver-
tices, Gk (blue), subject to the constraint in the transformation. (b) 2D
view of cross-section with the displacement (white).

The muscle surface is reconstructed based on the
enclosed fascicles, the trajectories of which directly
represent geometric details of the surface. This geo-
metric correspondence between the surface and fascicle
arrangement is used to approximate the new architec-
ture associated with the transformed surface. Thus,
geometric surface details must be preserved as much
as possible during the transformation. To this end, we
use the Laplacian surface deformation technique [17]
because it allows us to effectively transform global
shape while preserving local details. These details are
represented by the Laplacian coordinates that capture
the difference between the vertex and the average of its
neighboring vertices:

δi = L(vi) = vi −
1
di

∑
j∈Ni

v j (9)

where Ni is the set of vertices adjacent to vi and di is the
number of elements in Ni. The surface is transformed
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by constraining a set of vertices to the desired positions
and fitting the Laplacian coordinates of new surface v′
to the initial Laplacian δ of the original surface vo:

v′ = arg min
v

(||L(v) − δ||2 +
∑
i∈G

ωi||vi − ui||
2) (10)

where186

L(v) = (L(v1),L(v2), ...,L(vn))T ,

δ = L(vo) = (δ1, δ2, ..., δn)T ,

n : the number of vertices on the surface

G is a set of vertices subject to the constraint during187

the transformation, ui is the positional constraint (i.e.,188

desired position) for vi by (8) and ωi is its weight.189

190

The supraspinatus is a pennate muscle for which fasci-
cles originate from the broad proximal region and in-
sert into the narrow distal region. With this conver-
gent fascicle orientation, their distal attachment exhibits
strong linearity along the intramuscular tendon. Since
the surface transformation determines the internal fas-
cicle arrangement, a large transformation (e.g., αc � 1
or αc � 1) may perturb the architectural pattern that
needs to be preserved. To this end, we use an additional
static constraint (ui = vi) that restricts the movement
of the vertices wrapping around the distal tendon. By
incorporating this static constraint, (10) is expanded as

v′ = arg min
v

(||L(v)−δ||2+
∑
i∈G

ωi||vi−ui||
2)+

∑
j∈S

ω j||v j−u j||
2)

(11)
where S is a set of vertices constituting the distal191

tendon area on the muscle surface.192

193

While the surface is transformed by (11), the enclosed194

fascicles need to be transformed similarly, ensuring that195

the appropriate geometry is maintained (see Figure 5).196

To this end, we use the generalized mean value coordi-197

nates technique [7], the common application of which198

is to manipulate object deformation by means of a sur-199

rounding control mesh. This technique geometrically200

associates the vertices of an arbitrary object with those201

of a control mesh, which embraces the construction of202

a weight function, w (namely, mean value coordinates)203

having the following properties: continuity, smoothness204

and linear precision. For a detailed description of this205

technique, the reader is referred to Ju et al. [7]. For our206

purpose, the enclosed fascicles and their surrounding207

surface are considered to be the deformable object and208

the control mesh, respectively. For every fascicle point209

x j, its mean value coordinates wi are computed with210

respect to each vertex vi in the original surface (i.e.,211

prior to the transformation) and set as constant during212

the transformation. By letting v′i be the positions of the213

vertices from the transformed surface, the new interior214

fascicle point, x′j in the enclosing surface is computed as215

216

x′j =

∑n
i wi jv′i∑n

i wi j
(12)

where n is the number of vertices on the surface, wi j is217

the mean value coordinate described in [7], for x j and218

vi.219

(a) (b)

(c) (d)

Figure 5: Transverse transformation for the supraspinatus: (a,b) Ar-
chitecture (red) and its enclosing surface (gray). (c) Transformed sur-
face (gray) with respect to specified constraints. (d) Transformed ar-
chitecture (red) corresponding to the transformed surface.

2.4.2. Longitudinal transformation220

The longitudinal transformation not only matches
the length of the muscles, but also minimizes the PA
difference between the muscles. In contrast to the
transverse transformation, it is directly applied to the
fascicle arrangement because it is straightforward to
adjust the length and the angle based on the fascicle
trajectory. To minimize the perturbation of the tendi-
nous attachment, the transformation is restricted to the
direction of the intramuscular tendon. While fascicles
are fixed at the proximal attachment, they are elongated
or shortened by translating their distal attachment along
the tendon direction (see Figure 6). Similar to (10), a
least-squares-based optimization is used to transform
the fascicle trajectory while preserving local curvatures.
Associated translational displacements (∆h1 and ∆h2)
are specified with respect to the scaling factor in (3),
and PA measurement, respectively.
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∆h1 = αhhs − hs (13)

∆h2 = arg min
∆h

 n f∑
i

cos−1
(
as ·

(ts
i + ∆h as)

||(ts
i + ∆h as)||

)
− PA

t
2D


2

(14)
where n f is the number of fascicles in the source muscle221

visible by the simulated ultrasound, as is the direction222

of the intramuscular tendon, ts
i is the tangent of fascicle223

i at the distal attachment in the source muscle and224

PA
t
2D is the average PA of fascicles sampled on the225

imaging plane in the target muscle. Their proximity226

to that plane is evaluated to identify visible portions227

of fascicles. All parameters given in (14) are based on228

2D measurement. The US approach accounts for three229

fascicles sampled at the most proximal, middle and230

most distal locations of the intramuscular tendon, which231

approximate the PA distribution of the target muscle232

in 2D. In contrast, the cadaveric approach takes into233

account all visible fascicles for angular measurement234

in (14). The transformation is carried out in two steps:235

translation of distal attachments by (13) and then by236

(14). The transformation by ∆h2 may alter the muscle237

length, but it is not critical in our problem, because238

PCSA estimation is not dependent on the length.239

240

(a) (b)

Figure 6: Longitudinal transformation for the supraspinatus: (a) Orig-
inal architecture. (b) Transformed architecture with respect to trans-
lation of distal attachments.

3. Results241

As described in Section 2.3, three experiments were242

performed. Experiment 1 and 2 (synthetic and cadav-243

eric data, respectively) are based solely on the three-244

dimensional data, whereas experiment 3 uses 3D cadav-245

eric data and 2D US data. When both the target model246

and the transformed model have 3D fascicle data (ex-247

periment 1 and 2), their PCSA can be determined using248

the method described in [10]. Measurements for those249

data are given in Table 1. The PCSA calculated solely250

from the 3D data is regarded as the true value and com-251

pared against the PCSA computed by our fitting method252

from the 3D to 2D data (PCSAs→t). Our results for the253

PCSA estimation are presented in Tables 2, 3 and 4, re-254

spectively.255

3.1. Experiment 1: Synthetic data256

For parallel muscles, the relative differences in PCSA257

between parallel1 and parallel2 before the transforma-258

tion, are 41.8% and −29.5%, respectively. After the259

transformation, those differences are significantly re-260

duced to −1.5% and −2.5%, respectively. Similarly, for261

bipennate muscles, the relative differences in PCSA be-262

tween bipennate1 and bipennate2 are significantly low-263

ered from 55.6% to −0.6% and −35.7% to −7.5%, re-264

spectively. Results show that our method performs265

slightly better when the muscle surface shrinks than266

when it expands, where by shrink we mean that the267

source muscle has a bigger PCSA than the target mus-268

cle. Recall that fascicles located in the outermost lay-269

ers have some degree of deficiency in that they are270

surrounded by a few neighboring fascicles only, not271

completely enclosed by them. That may result in an272

unbounded Voronoi region, the area of which must273

be extrapolated or discarded, depending on the defi-274

ciency. Generally, shrinking the muscle improves this275

deficiency problem by increasing the density of fascicle276

points inside the muscle. On the other hand, expanding277

the muscle disperses these points, making the problem278

described above for the outermost regions worse. Con-279

sequently this may yield a less accurate estimation.280

Muscle N h c PA2D PCSA
parallel1 390 20.0 453.9 0.0 448.7
parallel2 154 20.0 334.5 0.0 316.5

bipennate1 891 25.0 173.2 16.6 162.8
bipennate2 750 20.0 115.3 13.4 104.6

S 1 1750 134.2 622.2 6.7 647.0
S 2 729 115.6 424.5 4.4 421.3
S 3 1081 125.9 506.6 8.3 543.8
S 4 1681 135.1 571.5 7.6 613.0
S 5 1294 131.7 698.3 7.5 694.8
S 6 1556 138.6 798.5 6.9 847.0
S 7 829 125.8 416.1 6.3 417.2

US 1 – 111.4 625.8 11.7 –
US 2 – 88.5 549.4 8.4 –
US 3 – 81.2 503.2 11.8 –
US 4 – 99.1 433.9 14.3 –
US 5 – 97.1 515.1 8.9 –

Table 1: Measurements for synthetic, cadaveric and US data. N is
the total number of digitized fascicles. h is the longitudinal length of
muscle (mm). c is the mean cross-sectional area (mm2). PA2D is the
mean pennation angle of fascicles projected onto the mid-longitudinal
plane. PCSA is estimated based on the original fascicle data (mm2).
Note that N and PCSA are unknown in US data.
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XXXXXXXXXXMuscles

Musclet parallel1 parallel2 bipennate1 bipennate2

parallel1 311.6 (−1.5)
parallel2 437.6 (−2.5)

bipennate1 103.9 (−0.6)
bipennate2 150.5 (−7.5)

Table 2: PCSA estimation (PCSAs→t) for synthetic muscles. PCSAs→t is estimated by mapping the architecture from Muscles (source muscle) to
Musclet (target muscle). The relative errors, expressed as percentages, are given in parenthesis.

3.2. Experiment 2: Cadaveric data281

From the seven specimens, 42 ordered-pairs are selected282

to perform the experiment (Ti, j : S i → S j, i , j). The283

PCSA of the transformed source muscle is estimated284

by our method and compared with that of the target285

muscle. Specimens yield a wide range of absolute286

relative errors (for instance, 0.7 % for T1,3 to 15.2 % for287

T1,2). This is mainly due to the architectural complexity288

and the variation between specimens. It is observed289

that the supraspinatus has non-uniform architecture:290

bipennate in the anterior region and parallel in the291

posterior region. Depending on the distribution of the292

fascicle orientation (i.e., the pennation angle) and the293

relative thickness of these regions, PCSA may be larger294

than c (e.g., S 1, S 3, S 4 and S 6) or comparable to c295

(e.g., S 2, S 5 and S 7). Since the muscle architecture is296

not significantly altered in our method, this discrepancy297

between PCSA and c may persist during the mapping.298

It is also found that some mappings that induce a299

large shrinkage, such as T1,2, T1,7, T6,2 and T4,7, yield300

more inaccurate results (above 12.0 %) than others do301

(below 8.0 %). This is caused by our static constraints302

specified to prevent undesired geometric changes and303

perturbations of the intramuscular tendon. Recall that304

the displacement for the mapping is determined by305

the difference between mean cross-sectional areas of306

muscles. The bigger the difference, the larger the307

displacement needed to transform the entire surface.308

However, too large a displacement may collapse the309

narrow distal region of the muscle volume or affect the310

linearity of an intramuscular tendon. In such cases,311

the associated static constraints adversely affect the312

transformation. As a result, the PCSA may not reach313

the targeted value. As PA2D variation is relatively small314

in this experiment, it is observed that, compared to the315

transverse transformation, the longitudinal transforma-316

tion has little effect on estimating the PCSA.317

318

Statistical analysis of the estimated PCSA is also pre-319

sented in Table 3. Depending on architectural vari-320

ation and volumetric differences between source and321

target muscles, the transformation can under- or over-322

estimate PCSA. However, compared to the distribution323

of original PCSA for all specimens (standard devia-324

tion: ±153.2), that of the estimated PCSA for each325

target muscle is much narrower (standard deviation:326

±24.6 ∼ ±35.7). Furthermore, it is shown that the327

mean of each distribution (PCSAs→t) is much closer328

to the true PCSA of the corresponding target muscle329

(−5.1 % ∼ 8.4 %) than that of the original PCSA dis-330

tribution (−29.4 % ∼ 43.3 %).331

3.3. Experiment 3: Cadaveric data to US data332

In contrast to the previous two experiments, it is im-333

possible to validate our estimation in this experiment,334

because the PCSA of the target muscles are unknown.335

Thus, only statistical results from experiments on all336

pairs of muscles are presented in Table 4. Similar to337

experiment 2, lower and upper bounds on the PCSA es-338

timation are determined by the smallest and the largest339

source muscles, respectively. Also, the distribution of340

the estimated PCSA per target muscle is narrow (stan-341

dard deviation: ±23.7 ∼ ±29.0), which indicates that342

the mean estimates based on cadaveric data can be a343

practical approximation of in vivo PCSA for US imaged344

muscles.345

4. Discussion346

An accurate determination of PCSA is needed for both347

biomechanical and clinical studies because reliable348

functional analysis and associated clinical assessment349

are highly dependent on the quality of this measure.350

In-vivo studies based on MRI and ultrasonography may351

under- or over-estimate PCSA because architectural352

complexity and variation are rarely accounted for. On353

the other hand, cadaveric modeling cannot be directly354

applied to in vivo studies. Therefore, the purpose of355

our study is to overcome the limitations inherent in356

each approach by combining them to produce accurate357

quantification method for PCSA calculation for in-vivo358

muscle. To this end, subject-specific architecture359

is approximated by fitting a 3D detailed reference360

architecture model (cadaveric data) to the target muscle361
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XXXXXXXXXXMuscles

Musclet S 1 S 2 S 3 S 4 S 5 S 6 S 7

S 1 485.6 (15.2) 539.9 (0.7) 618.9 (0.9) 716.3 (3.1) 855.5 (1.0) 470.5 (12.7)
S 2 603.4 (−6.7) 484.9 (−10.8) 547.8 (−10.6) 664.7 (−4.3) 758.8 (−10.4) 403.1 (−3.4)
S 3 618.6 (−4.4) 426.5 (1.2) 580.7 (−5.2) 652.7 (−6.0) 790.1 (−6.7) 412.4 (−1.1)
S 4 658.4 (1.7) 471.4 (11.9) 548.1 (0.8) 721.3 (3.8) 822.6 (−2.8) 476.6 (14.2)
S 5 635.9 (−1.7) 441.2 (4.7) 527.2 (−3.0) 586.0 (−4.4) 803.7 (−5.1) 434.7 (4.2)
S 6 670.2 (3.6) 478.3 (13.5) 558.6 (2.7) 622.6 (1.6) 744.8 (7.2) 464.0 (11.2)
S 7 615.4 (−4.8) 437.6 (3.9) 500.9 (−7.8) 564.6 (−7.8) 685.0 (−1.4) 791.6 (−6.5)

PCSAs→t 633.6 ± 26.2 456.8 ± 24.6 526.6 ± 28.5 586.8 ± 29.5 697.6 ± 35.7 803.7 ± 32.8 443.6 ± 31.4
PCSA 647.0 421.3 543.8 613.0 694.8 847.0 417.2

Error (%) −2.1 8.4 −3.2 −4.3 0.4 −5.1 6.3

Table 3: PCSA estimation (PCSAs→t) for cadaveric specimens. PCSAs→t is the estimated PCSA for Musclet (target muscle) computed by mapping
the architecture of Muscles (source muscle) to the 2D ultrasound version of Musclet . The percentage of the relative errors of Ti, j are given in
parenthesis. Statistical analysis of PCSAs→t for each Musclet is given as ‘the mean ± the standard deviation’.

XXXXXXXXXXMuscles

Musclet US 1 US 2 US 3 US 4 US 5

S 1 651.2 583.1 528.4 468.8 555.5
S 2 603.0 551.0 498.1 432.7 517.8
S 3 640.5 560.4 527.8 459.7 542.8
S 4 662.7 587.6 540.6 470.3 555.0
S 5 624.1 545.8 505.6 444.4 516.9
S 6 677.9 603.3 553.8 483.7 569.2
S 7 602.7 541.8 482.3 403.9 490.2

PCSAs→t 637.4 ± 29.0 567.6 ± 23.7 519.5 ± 25.2 451.9 ± 27.2 535.4 ± 27.9

Table 4: PCSA estimation (PCSAs→t) for in-vivo supraspinatus of living subjects.

that is represented by 2D geometric measures (US362

data). This approximate architecture model is used363

for PCSA quantification. Two validation experiments364

based on synthetic muscle and cadaveric specimens,365

respectively, demonstrate 0.4 − 8.4 % errors between366

original architecture and its approximation, depending367

on the anatomical complexity. No error analysis is368

conducted in the third experiment based on cadaveric369

and US data because their exact PCSA is unknown.370

Nevertheless, the distribution of estimation results371

provides a practical insight into in-vivo quantification372

of PCSA.373

374

Our approach can not only be used for static analysis,375

but it can also be applied to an investigation of dy-376

namic problems associated with muscle contraction or377

skeletal movement. A variable range of muscle activity378

can be assessed similarly in terms of 2D geometric379

measures in the ultrasound images. Thus, one possible380

extension of our method is to quantify changes of381

architectural parameters during muscle contraction.382

Another possible application is to provide region-383

specific architectural analysis for in-vivo muscle, such384

as the anterior/posterior or the superficial/deep region.385

This may need only an additional localization in the386

ultrasonographic assessment because our architectural387

model can be easily re-organized into multiple layers or388

regions.389

390

Although our study provides improved capability for in-391

vivo PCSA estimation, there are some limitations that392

may be addressed in future work. First, in the present393

study, we considered only a small sample of data. A394

more thorough validation needs more specimens and a395

variety of types of muscle. Second, the gap between396

superficial fascicles and the muscle surface may lead397

to a significant error, particularly when the muscle ex-398

pands, because this gap is proportionally scaled with399

the amount of transformation. Thus, minimizing this400

gap, by possibly using a tighter surface, could further401

reduce the estimation error. Lastly, performance of our402

method is highly sensitive to the consistency between403

cadaveric and US data, such as the orientation and lo-404

cation of their imaging planes. The present study uses405

only the proximal to distal length of the muscle to com-406

pare images. Additional image features, such as shape407

of cross-sections and bony landmarks, may enhance the408

reliability to our method.409
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