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The Set Cover problem (SCP) and Set Packing problem (SPP) are standard NP-hard combinatorial

optimization problems. Their decision problem versions are shown to be NP-Complete in Karp’s 1972

paper. We specify a rough guide to constructing approximation heuristics that may have widespread

applications and apply it to devise greedy approximation algorithms for SCP and SPP, where the selection

heuristic is a variation of that in the standard greedy approximation algorithm. Our technique involves

assigning to each input set a valuation and then selecting, in each round, the set whose valuation is

highest. We prove that the technique we use for determining a valuation of the input sets yields a

unique value for all Set Cover instances. For both SCP and SPP we give experimental evidence that the

valuations we specify are unique and can be computed to high precision quickly by an iterative algorithm.

Others have experimented with testing the observed approximation ratio of various algorithms over a

variety of randomly generated instances, and we have extensive experimental evidence to show the quality

of the new algorithm relative to greedy heuristics in common use. Our algorithms are somewhat more

computationally intensive than the standard heuristics, though they are still practical for large instances.

We discuss some ways to speed up our algorithms that do not significantly distort their effectiveness in

practice on random instances.
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Chapter 1

Introduction

The Set Cover Problem (SCP) and Set Packing Problem (SPP) are standard NP-hard combinatorial

optimization problems. Their decision problem versions are shown to be NP-Complete in [13]. Because

we cannot expect to solve all instances of these problems exactly in polynomial time, much effort has

been expended on finding approximation algorithms for these problems. Many algorithms have been

proven to obtain approximate solutions for SCP and SPP that are within some factor of the optimal

solution. At the same time there are results showing that, assuming some complexity conjectures, no

polynomial-time algorithm can approximate these problems to any constant ratio. Further results have

placed even stronger constraints on what sort of approximation ratios are achievable by polynomial-time

algorithms.

Our primary purpose here is to describe a technique for greedily obtaining high-quality approximate

solutions for Set Cover and Set Packing problems. Our technique involves assigning to each input set a

valuation and then selecting, in each round, the set whose valuation is highest. In order to specify the

valuations, we define them recursively. For both SCP and SPP, we prove that a valuation satisfying our

definition must exist, and in the case of Set Cover, that it is unique. We have not been able to show

that our valuations result in a greedy algorithm that has some guaranteed approximation ratio, but do

show experimentally that it performs somewhat better than the standard greedy algorithms for these

problems on random instances.

We believe that the mathematics underlying our recursively defined valuations and the overall idea

that motivates our particular definitions are of significant interest independent of our algorithms and

their performance.

1.1 Notation and Terminology

The notation d�−1 is borrowed from [6] to denote the Hadamard inverse of a matrix or vector with all

non-zero entries. If d is a vector, then the components of d�−1 are
(
d�−1

)
i

= 1
di

.

We use the notation A−B to denote the set difference of A and B, {x | x ∈ A ∧ x 6∈ B}.

1



Chapter 1. Introduction 2

We use C to denote a diagonal matrix having c’s entries on the diagonal.

For a matrix M ∈ Rn×n, we use diag(M) to denote the length n vector containing M’s diagonal

entries.

A good proportion of the work on Set Cover uses n for the number of input sets and m for the size

of the universe. In [5], however, Feige uses n for the universe size, as have some others since. By the

rationale that n should denote the quantity most deeply involved in attainable approximation ratios, we

use n for the universe size and m for the number of input sets.

The choice of using A to denote a n×m matrix (rather than its transpose) was made simply so that

the constraints in the integer program formulation of Set Cover would not require a transpose operation

to be written.

We frequently use inequalities with vector quantities on either side, by which we intend the conjunc-

tion of the elementwise inequalities. For instance,

(
a

b

)
≤

(
c

d

)
should be understood as stating

that a ≤ c and b ≤ d.

We sometimes use the notation 0 or 1 to represent the column vector (of whatever size is appropriate

in the context) with a 0 or 1 in every component, respectively.

1.2 Organization of Thesis

In chapter 2 we define the Set Cover and Set Packing problems, discuss some of the relationships that

they have to other problems, and describe previous work on approximation algorithms for these problems.

Chapter 3 outlines some preprocessing techniques that can be used to simplify SCP and SPP in-

stances.

In chapter 4, we describe the overall idea that motivates our new heuristics and define the new

heuristics themselves.

Chapter 5 contains our principal mathematical results, relating to vectors v ∈ Rn+ for which Mv =

v�−1 for certain n× n matrices M.

Chapter 6 describes a few algorithms that we have used effectively to compute our new valuations

and includes some discussion of cases for which fixed points can be calculated exactly.

Chapter 7 contains the results of experiments we have done, comparing the quality of approximate

solutions to SCP and SPP instances obtained by a variety of simple greedy algorithms.

In a final brief chapter, we briefly summarize our results and suggest possible directions for future

research.



Chapter 2

Problem Definitions and Discussion

2.1 Problem Formulations

2.1.1 Set Cover

An instance of the Set Cover Problem (SCP) has the following components:

(a) There is a set I. This contains the labels, names or indices of the input sets and is only for notational

convenience. This set can have arbitrary elements, but without loss of generality, we can take it to

be {1, . . . ,m}.

(b) m = |I|, the number of input sets.

(c) For every i ∈ I, there is an input set Si. The Si’s can, again, be over arbitrary elements but without

loss of generality, we can take it that Si ⊆ {1, . . . , n}.

(d) U =
⋃
i∈I Si. U is the universe or basis set of the instance.

(e) n = |U|, the size of the universe.

(f) Associated with every input i ∈ I is a cost ci ∈ R.

We say that H ⊆ I covers U or that H is a cover for U when
⋃
i∈H Si = U . That is, every basis

element is included in at least one of H’s sets. Define the cost of any H ⊆ I to be
∑
i∈H ci, the sum of

the costs of the sets included in H.

The Set Cover Problem is to find, given I, Si and ci for i ∈ I, a set cover with minimal cost. The

Unweighted Set Cover Problem describes instances for which ci = 1 for all input sets i. The decision

problem variant of Set Cover is to determine, given I, Si and ci for i ∈ I and a cost threshold k, whether

there is a cover H ⊆ I with cost not exceeding k.

3



Chapter 2. Problem Definitions and Discussion 4

2.1.2 Hitting Set

Hitting Set is another common NP-hard combinatorial optimization problem. An instance of Hitting

Set has the following components.

(a) There is a set U . As in Set Cover, we call these the labels or names of the input sets.

(b) Define n = |U|.

(c) For every i ∈ U , there is an input set Si.

(d) Define I =
⋃
i∈U Si.

(e) Define m = |I|.

(f) Associated with every element i ∈ I is a cost ci ∈ R.

We will say that H ⊆ I hits an input set Si if |H ∩ Si| ≥ 1, and that H ⊆ I is a hitting set for U
if for every i ∈ U , H hits Si. Define the cost of any H ⊆ I to be

∑
i∈H ci, the sum of the costs of the

basis elements included in H.

The Hitting Set problem is, then, to find a minimum cost hitting set H ⊆ I for U .

2.1.3 (Hitting {Set) Cover}

The construction given below is commonly used to show the equivalence of Hitting Set and Set Cover,

but here we use it as a problem definition. We regard this problem as unifying Hitting Set and Set Cover

into a uniform terminology that easily translates back to either problem. For lack of a standard name,

we will call this problem (Hitting {Set) Cover} or HSC.

An HSC instance consists of the following objects.

(a) L = {l1, . . . , lm} and R = {r1, . . . , rn} are disjoint sets.

(b) Let c : L→ R give the costs of L’s elements.

(c) G = 〈L ∪R,E〉 is an undirected bipartite graph where E ⊆ L × R, so every edge connects one

element of L with one from R.

We then define a hitting set cover for the problem (G, c) to be any H ⊆ L, the union of whose

neighbours is R. That is, for every right element r ∈ R there is some l ∈ H so that the edge (l, r) ∈ E
exists. For any subset H ⊆ L, we define its cost c(H) as the sum of its elements’ costs c(H) =

∑
l∈H c(l).

A minimum hitting set cover, then, is any hitting set cover whose cost is least possible among all hitting

set covers.

To see why this problem unifies hitting set and set cover, consider the adjacency matrix of G. Since

G is bipartite, there are no edges between pairs of elements both in either of L or R, so we can write its



Chapter 2. Problem Definitions and Discussion 5

adjacency matrix as

MG =

(
0 A

AT 0

)
where A is an n×m matrix with

Ai,j =

{
1 if (lj , ri) ∈ E
0 o.w.

We will call A the fundamental matrix of a HSC problem. We would also like to define c as the

vector of costs of L’s elements, so that for i ∈ {1, . . . ,m}, we have ci = c(li).

Now, c and A contain a complete description of our problem. When the columns of A are set to

the adjacency vectors of the input sets from a hitting set instance, we have a problem in this setting

equivalent to the hitting set problem. Likewise, if we set A’s rows to be the input sets from an instance

of Set Cover, we have an equivalent problem. Because we can always transform instances of hitting

set and set cover into problems of this sort, we can treat both problems uniformly by considering this

problem instead.

As an example, consider the SCP instance I = {1, 2, 3, 4, 5}, with S1 = {1, 2, 3}, S2 = {2, 4},
S3 = {1, 3}, S4 = {4}, and S5 = {3, 4}. The costs are given by c1 = 3, c2 = 1, c3 = 2, c4 = 1, c5 = 2. The

figure below shows the HSC instance that this generates.

3

1

2

₁

₂

₃

₁

₃

₂

1₄ ₄

2₅

Sets Elements

Figure 2.1: Graph structure of an HSC instance.

If we were to take the Hitting Set instance U = {1, 2, 3, 4}, with S1 = {1, 3}, S2 = {1, 2}, S3 =

{1, 3, 5}, S4 = {2, 4, 5} and costs c1 = 3, c2 = 1, c3 = 2, c4 = 1, c5 = 2, we obtain the same equivalent

HSC instance.
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This instance has fundamental matrix and cost vector given by the following:

A =


1 0 1 0 0

1 1 0 0 0

1 0 1 0 1

0 1 0 1 1

 c =


3

1

2

1

2



2.1.4 Integer Programming Formulation

Set Cover can be written very simply as an equivalent integer program, in which:

(a) A is some particular n×m 0/1 matrix.

(b) c is a vector of costs: c ∈ Rm.

(c) x is a vector of binary variables.

Then the IP problem is

Minimize cTx

subject to Ax ≥ 1 and xi ∈ {0, 1} for all i = 1, . . . ,m

This problem is equivalent to the SCP instance whose subsets are given by understanding the columns

of A as adjacency vectors that indicate which of the n basis elements are included in each input set.

This is equivalent to the hitting set instance whose sets to hit are given by A’s rows.

2.1.5 Set Packing and Formulations

Set Packing is also a well known NP-hard combinatorial optimization algorithm. As with SCP, a Set

Packing instance consists of the following objects:

(a) There is a set I. This contains the labels or names of the input sets.

(b) Define m = |I|.

(c) For every i ∈ I, there is an input set Si.

(d) Define U =
⋃
i∈I Si. U is the universe or basis set of the problem.

(e) Define n = |U|.

(f) Associated with every input set i ∈ I is a cost ci ∈ R

Call H ⊆ I a packing for U if every basis element is included in at most one of H’s sets. Equivalently,

H ⊆ I is a packing for U if the input sets selected are pairwise disjoint. That is, ∀i, j ∈ H, i =
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j or Si ∩Sj = ∅. Also define the weight of a packing H ⊆ I to be the sum of the weights of the included

sets, c(H) =
∑
i∈H ci. The Set Packing problem is to find the maximum weight packing H ⊂ S of U .

It can be seen that the description of a Set Cover instance has precisely the same description as

a Set Packing instance. Given I, Si, ci for i ∈ I,, we can just as well ask what the maximum weight

packing or the minimum cost cover is.

Much the same as with the relationship between Set Cover and Hitting Set, Set Packing has an

analogous equivalent problem phrased in terms of elements with costs and constraints on subsets of

these elements. This problem has not been given any particular attention that we are aware of, but we

name and define it here for the sake of strengthening the analogy between Set Cover and Set Packing.

We call this the Jabbing Set Problem.

A Jabbing Set instance consists of the following objects:

(a) There is a set U . This contains the labels or names of the input sets.

(b) Define n = |U|.

(c) For every i ∈ U , there is an input set Si.

(d) Define I =
⋃
i∈U Si. I is the universe or basis set of the problem.

(e) Define m = |I|.

(f) Associated with every input i ∈ I is a cost ci ∈ R

Call H ⊆ I a jabbing set for U if every subset Si for i ∈ U is hit at most once, ∀i ∈ I, |Si ∩H| ≤ 1. The

Jabbing Set problem is then to find the maximum weight jabbing set H ⊆ I for U .

Much as with Set Cover, we will often favor the Integer Program formulation of Set Packing. Set

Packing can be written very simply as an integer program as follows, differing from the formulation for

Set Cover only by the direction of an inequality and swapping the minimize for maximize:

(a) A is some particular n×m 0/1 matrix.

(b) c is a vector of costs: c ∈ Rm.

(c) x is our vector of binary variables.

Then the IP problem is

Maximize cTx

subject to Ax ≤ 1 and xi ∈ {0, 1} for all i = 1, . . . ,m

2.1.6 Set Packing’s Relationship to Maximum Independent Set

The Weighted Maximum Independent Set (WMIS) problem (also called Vertex Packing) can be described

as follows: For a graph G = 〈V,E〉 with vertex weights given by ci for i ∈ V , what is the largest weight

subset H of V such that no pair of elements from H are neighbours in G. This problem is also NP-hard.
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The reductions between Set Packing and WMIS are particularly clean. Given a WMIS problem

defined by G = 〈V,E〉 and c, an equivalent Set Packing instance is I = V , Si = {e ∈ E | i ∈ e}. Any

max weight independent set H ⊆ V for G, c is also a max weight packing for V, c and the Si’s. To see this

construction more clearly, consider the elements’ neighbourhoods for the SPP instance. For every e ∈ U
we can define Ne = {i ∈ I | e ∈ Si}. Then, for every e ∈ E, we make an element with a neighbourhood

of size two.

Given instead some Set Packing instance I, c and Si for i ∈ I, we can make an equivalent WMIS

instance by defining G = 〈I, E〉 where E has an edge (i, j) for every i 6= j in I iff Si ∩Sj 6= ∅. Then the

optimal solutions to these problems are the same. By considering the element neighbourhoods, we can

construct the WMIS problem even more simply. For each e ∈ U we add a clique to G, yielding an edge

between every i, j ∈ Ne.

Viewed this way, we can see SPP as an alternative way to specify WMIS instances where we can

write a graph as a union of arbitrary size cliques, rather than just 2-cliques, which are simply edges.

This will be relevant later in section 4.3, where we specify our new Set Packing heuristic.

To be more formal, consider a problem with input V some set, S1, . . . , Sn all subsets of V specifying

cliques among V ’s elements and c : V → R weights of the elements of V . The problem is to find

the WMIS of G = 〈V,E〉 with weights given by c and E =
⋃
i,j∈{1,...,n},i6=j and Si∩Sj 6=∅ {(i, j)}. If we

restricted this to instances where |Si| = 2 for all i ∈ {1, . . . , n}, the problem is WMIS. Without that

restriction, this problem is equivalent to Set Packing in precisely the same way that Set Cover and

Hitting Set are equivalent.

2.2 Greedy Algorithms for Set Cover/Packing Approximation

2.2.1 Set Cover/Packing Approximation

Since the underlying problems are NP-hard, and are not expected to have polynomial time algorithms

for exact solution, it has become an area of interest to find algorithms that run in polynomial time and

perform well by some measure. Researchers have been particularly interested in algorithms that offer

a guarantee on the ratio between the provided solution and the optimal solution. The standard greedy

algorithm for SCP does just that, and provides a worst-case approximation ratio very close to what

has been proven (under plausible assumptions) the best possible worst-case approximation ratio for any

polynomial time algorithm.

2.2.2 Set Cover Approximation

The best studied technique for obtaining good approximate solutions to Set Cover problems was first

discussed in [4]. Let the input be a I, the sets Si for all i ∈ I and costs ci ∈ R+ for every i ∈ I. We can

describe the Standard Greedy Algorithm for SCP in the following pseudocode.

H ← ∅
while

⋃
i∈I Si 6= ∅ do
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b← argmaxi∈I
|Si|
ci

H ← H∪ {b}
for all i ∈ I do

Si ← Si − Sb
end for

end while

return H

Here, H contains the indices of the sets that have been selected so far to form a cover of U . In every

run through the while loop, the algorithm selects the set maximizing the ratio between the number of

uncovered elements and the cost of the set. It then modifies the input sets to remove the newly covered

elements from them, effectively removing some elements of U since they have already been covered and

it is irrelevant whether they are covered again or not.

2.2.3 Set Packing Approximation

For Set Packing, we describe an analogous algorithm that greedily selects additional sets until no more

can be added. For convenience, we describe the weights somewhat differently than in the above. Let the

input be a set of input set names I, each of the sets Si for i ∈ I, and weights given by ci ∈ R+ for i ∈ I
H ← ∅
while I 6= ∅ do

b← argmaxi∈I
ci√
|Si|

. Here we can use
c2i
|Si| instead for the same results.

H ← H∪ {b}
for all i ∈ I do

if Si ∩ Sb 6= ∅ then

I ← I − i
end if

end for

end while

return H

In this algorithm, we select the remaining feasible set for which the cost per square root of the

number of elements is largest. We then remove all sets that contain any element in common with the

selected set, effectively removing some sets from S if our latest choice means that their selection would

be infeasible. The particular choice of the set maximizing ci/
√
|Si| is similar to the algorithm for Set

Cover described above, though the square root of the set size may seem odd. In fact, this algorithm has

the optimal worst-case approximation ratio for any greedy set packing algorithm in which the valuation

of every set i is determined by |Si| and ci and so does not involve the detailed structure of the instance

[8]. In section 2.4 we will discuss this and other interesting heuristics.
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2.2.4 General Greedy Scheme

The most important line in each of the above algorithms is where the next set to use is chosen. We would

like to describe a general greedy algorithm for approximating Cover and Packing problems, abstracting

away the particular rationale for selection.

The previous two algorithms provide some valuation of the sets in the instance, assigning a real

number to each of them indicating their relative desirability. Both also reduce the underlying instance

to reflect the fact that some set has been selected. How this reduction is performed depends on whether

we are dealing with a Cover or Packing problem. In addition to these, we can transform or preprocess

the instance to a simpler one when the instance has some simple properties. One example suggesting

the type of preprocessing we mean is the situation where (for SCP) some input set Si is a subset of Sj

and ci > cj , so that we immediately know that Si will not be in any optimal cover since Sj is both larger

and cheaper and we can remove Si from the problem entirely. We will discuss this in greater detail in

chapter 3.

The overall scheme can be described in pseudocode as follows, where P denotes an instance:

preprocess(P )

while a choice can or must be made do

v← valuation(P )

b← argmaxi∈I vi

H ← H∪ b
reduce(P, b)

preprocess(P )

end while

return H

The preprocessing step is not usually included in a description of the standard greedy algorithm for

Set Cover, but it can make a difference in the performance of the algorithm. Usually, however, it is not

seen as important whether preprocessing is done on SCP instances where the standard greedy algorithm

is concerned, as it does not impact the worst-case approximation ratio. For the valuation technique we

describe later, certain types of preprocessing are relatively cheap and have an impact on the valuations,

whereas for the standard greedy algorithm they do not. This is discussed further in chapter 3.

2.3 The Standard Greedy Cover Heuristic

The standard greedy heuristic for Set Cover is to choose the set for which the number of uncovered

elements per unit cost is largest. It was first described in [12] for unweighted instances. For a Set

Cover instance given by the matrix A and element costs c, as in the IP formulation of the problem, the

valuation vi of set Si corresponding to column i of A will be

vi =

n∑
j=1

Aj,i/ci =
1

ci

n∑
j=1

AT
i,j
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If we denote the m ×m diagonal matrix with diagonal entries given by c−1i for 1 ≤ i ≤ m by C−1, we

can write the entire valuation vector simply as

v = C−1AT1

In [4], Chvàtal demonstrates that the approximate solutions for Set Cover problems obtained using

this valuation must have have a cost of no more than H(n) times the optimal solution, where H(n) =∑n
i=1

1
i is the sum of harmonic series up to the nth term. In fact, Chvàtal showed that this approximation

ratio cannot exceed H(k), where k = maxi∈I |Si|, the size of the largest input set, which obviously cannot

exceed n.

It is also known that for all n, there are instances for which an approximation arbitrarily close to

H(n) is attained. We can give a class of such instances quite simply. Let I = {1, . . . , n+ 1} and for

every 1 ≤ i ≤ n let Si = {ri} and Sn+1 = {r1, . . . , rn}. Figure 2.2 shows the HSC problem graph

structure to which this corresponds. The costs of the input sets for 1 ≤ i ≤ n are ci = 1/i, and the cost

of the last set cn+1 = 1 + ε for any ε > 0.

Now, for this instance, the valuation that the standard greedy heuristic provides is(
1, 2, 3, . . . , i, . . . , n,

n

1 + ε

)T
Since the largest of these values is n, we will take the set corresponding to it, Sn, incurring cost 1/n and re-

move Sn = {rn} from every set. In the next iteration, we are given the valuation
(

1, 2, 3, . . . , i, . . . , n− 1, n−11+ε

)T
and select Sn−1. This will continue until the final set cover produced is H = {1, . . . , n} with cost H(n).

The optimal set cover, however, is OPT = {n+ 1} so the attained approximation ratio is c(H)
c(OPT ) = H(n)

1+ε

and since epsilon can be arbitrarily small, these instances have approximation ratios arbitrarily close to

H(n).

1

1/2

1/3

1/n

.

.

.

.

.

.

l₁

l₂

l₃

l n

r₁

r₂

r₃

rn

1+ϵ l n+1

Figure 2.2: Graph structure of hard Instances for standard greedy set cover. The costs of li for 1 ≤ i ≤ n
are ci = 1/i and the cost of ln+1 is cn+1 = 1 + ε

The performance of this heuristic for solving Unweighted Set Cover problems, where all costs ci are
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fixed at 1, is also well understood. In [14], Slav́ık shows that the standard greedy heuristic provides

solutions for unweighted instances whose cost is within a factor of ln(n)− ln(ln(n)) + 0.78 of the cost of

the optimal solution. He also shows that this ratio is tight. For every n ≥ 2, there is an instance with

|U| = n and the standard greedy heuristic yields a solution with cost more than ln(n)− ln(ln(n))− 0.31

times the optimal solution’s cost. Note that this is better than the worst-case performance over weighted

Set Cover instances, since H(n) ≈ ln(n) + 0.58.

2.4 Other Approximation Techniques

A variety of non-greedy poly-time algorithms have been proposed and used for approximating SCP. LP

rounding, dual LP rounding, and primal/dual have been described and proven to have good worst-case

approximation ratios. Williamson in [15], in particular, is a good resource for more information on the

primal/dual technique.

In [10] Halldórsson describes an algorithm using local search that has worst-case approximation

ratio better than the standard greedy algorithm by a constant. Beasley and Chu describe a genetic

algorithm-based approach in [3]. In [9], Grossman and Wool describe some variations of the standard

greedy algorithm in addition to a neural network-based algorithm. Caprara et al. give a Langrangian-

based algorithm in [2] that won the 1994 Set Cover approximation competition FASTER.



Chapter 3

Preprocessing

Here we wish to describe some particular simplifications of Set Cover/Packing instances that can be

done cheaply and result in problems that are equivalent to and no larger than the input problems. Any

greedy algorithm utilizing the scheme presented in section 2.2.4 with some guaranteed approximation

ratio that is non-decreasing in n and m (and perhaps k = maxi∈I |Si|) cannot have a worse worst-case

approximation ratio when these preprocessing steps are used.

We discuss some ways to take an instance I (in some convenient representation) and produce a new

instance I ′ such that any optimal solution to I ′, possibly taken with some specified sets that must be

included, is an optimal solution to I and n′ ≤ n, m′ ≤ m and d′ ≤ d.

For transformations satisfying the above, it should generally be beneficial to perform the transfor-

mations and solve the transformed problems as opposed to solving the original problem with the same

algorithm. However, it is certainly not the case that all algorithms for approximating SCP can solve

the transformed problem with approximation ratio no worse than the original problem for all instances.

Consider a transformation as unproblematic as reordering the basis elements, which could just as likely

help as hinder an algorithm with some deterministic tie-breaking procedure. Nor can it be said that the

approximation ratio must always be improved for all approximation algorithms. All we wish to claim for

transformations of this sort is that they cannot worsen the worst-case approximation ratio of the greedy

valuation technique used and they frequently improve the approximation ratio when applied.

3.1 Basic Preprocessing

First, the following are a few ways in which the resulting instances are very clearly equivalent.

(a) Renaming the elements of the universe results in a problem that is semantically equivalent, though

its representation can be somewhat different.

(b) Renaming the input set labels.

(c) Scaling all of the costs by some constant λ > 0. Even though the optimal cost after such a transfor-

13
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mation will be different, it will be predictably scaled by λ. We wish to regard such scaled problems

as equivalent.

Next, we describe some transformations that make important changes to instances. For every sim-

plifying transformation that can be applied to a Set Cover problem there is an analogous transformation

for Set Packing problems.

(d) For a Set Cover instance, if any set has a cost that is non-positive, we can take that set and remove all

of its elements from the other input sets. Since it costs nothing or less than nothing to include, there

must be some optimal cover that includes it. For a Set Packing instance, any set with non-positive

weight can be rejected immediately, since it does not increase the total weight and its inclusion may

hurt our ability to take other sets. There must be an optimal packing that excludes such a set, so

we can safely exclude it.

In the literature, it is usually simply assumed that all costs/weights are positive. This transformation

explains why that requirement does not diminish the generality of instances with only positive costs.

Every one of the transformations discussed here will allow us to analogously trim the space of SCP

and SPP instances with which we should be prepared to deal.

(e) If some input set is empty (and assuming that it has positive cost, as the above permits us to), then

it will not be in any optimal cover since it incurs a cost and does no work towards our goal, so we

can remove it from the problem. It will, however, be included in every optimal packing, so we can

require that it is taken.

(f) Consider an instance where some universe element is not present in any of the input sets.1 This

means that no set cover exists for the instance. It is immediately infeasible and any attempt to find

a cover will fail. For Set Packing, however, we can remove the uncovered elements from the universe

and work with that equivalent simpler problem instead.

(g) Consider an instance where some universe element is present in exactly 1 of the input sets. For SCP,

the sole input set including this element must be included in every cover, so we can immediately

include it and reduce the problem respecting that inclusion. For SPP, we can remove that element

from the universe and the set that contains it. Since the constraint that every element must be

included no more than once cannot fail to be satisfied for this element, we can leave it out of the

problem entirely.

We call these 4 transformations basic preprocessing. When we talk about applying basic preprocess-

ing to an instance, we mean that we apply all of these steps to an instance recursively until no more can

be applied.

3.2 Subsumption Testing

There is an additional pair of preprocessing simplifications that we call subsumption preprocessing, due

to the similarity they share with subsumption in the context of SAT instances. One of them operates

1For the way that we have defined the problem, this is not possible, since the universe U is defined as the union of the
input sets. We describe this only for completeness.
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from the perspective of the input sets, sometimes permitting the removal of an input set since in any

cover/packing it can always be replaced by another input set with no loss of quality. The other operates

from the perspective of the elements, enabling us to remove an element when some other element enforces

a strictly stronger constraint on the problem.

(h) If there are 2 sets Si, Sj such that Si ⊆ Sj and ci ≥ cj , then we can see that i need not ever be

included in a cover. In any cover using i, we can instead replace it with j to find a cover that is no

more expensive. Therefore, we can remove set i from the problem.

For SPP, if there are 2 sets Si, Sj such that Si ⊆ Sj and ci ≥ cj , then we can remove set j from the

instance. Any packing using j would run up against at least as many constraints as one using i, and

it would do so for no more gain that i.

Basic preprocessing step (e) can be seen as a special case of this step.

(i) For any element e ∈ U , let Ne = {i ∈ I | e ∈ Si} be the set of input sets of which e is a member.

For SCP, if there are two different elements e, e′ ∈ U with Ne ⊆ Ne′ , e is a stronger constraint, and

every time one of its elements is selected, so will one of e′’s. Thus we can omit e′, removing it from

every set in Ne′ , and have an equivalent problem.

For SPP, if there is a pair of different elements e, e′ ∈ U where Ne ⊆ Ne′ , e
′ is a strictly stronger

constraint. If we remove e from all sets in Ne, we are left with a problem with precisely the same

feasible packings.

Basic preprocessing step (f) can be seen as a special case of this step.

Running subsumption testing has high complexity relative to the basic preprocessing steps. With

the most näıve approach we need to check O
(
m2
)

different cases for set subsumption and O
(
n2
)

cases

for element subsumption. In the algorithm we use for our experiments, the only shortcut we use is

checking sets/elements whose neighbourhoods have shrunk since we last checked whether they could be

involved in some subsumption.

3.3 Independent Subproblem Separation

Consider the set cover instance I = {1, 2, 3, 4, 5} with S1 = {1, 2}, S2 = {2, 3}, S3 = {1, 3}, S4 = {4, 5},
S5 = {4, 5} and uniform costs. In figure 3.1 we see the HSC instance associated with this problem. We

can easily observe that choosing input sets S1, S2 and S3 can never obtain elements 4 and 5. Likewise,

sets S4 and S5 can never obtain elements 1, 2, or 3. We can solve instances with I ′ = {1, 2, 3} and

I ′′ = {4, 5} independently and combine the covers for these to make a cover for the original instance.

In general, we can solve each component of an HSC graph independently and combine them afterwards

to obtain a cover.

Stated with reference only to the input of SCP or SPP instances, we can say that if any subset of

the input sets I ′ ⊂ I has the property that(⋃
i∈I′

Si

)
∩

( ⋃
i∈I−I′

Si

)
= ∅
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Figure 3.1: HSC graph structure for a problem with 2 independent subproblems.

then we can solve the instances with sets I ′ and I − I ′ independently.

The basic preprocessing step (e) can be viewed as a case of this preprocessing technique.

3.4 Inferring Stronger Packing Constraints

Recalling section 2.1.6, a Set Packing instance corresponds to an WMIS instance on the graph 〈I, E〉
where E has a clique among the neighbourhood Ne of every element e ∈ U . By finding larger cliques in

this graph, we can rewrite the element neighbourhoods in the SCP instance, which may allow subsump-

tion preprocessing to further simplify the instance.

In particular, if there is some e ∈ U and i ∈ I −Ne for which Si intersects each of the sets in Ne,

we can add e to Si and the resulting problem will have logically equivalent constraints. We can see this

process in action in figure 3.2.

We can use this observation to build maximal constraints, corresponding to maximal cliques in the

WMIS graph, in polynomial time. There may be multiple descriptions of the graph as maximal cliques,

and we may not find the maximum clique in our search, given the NP-hardness of the Max Clique

problem. It is also not clear that this preprocessing step is always to our advantage in the context of

k-Set Packing, since we allow ourselves to add elements to sets. Note, however, that in figure 3.2 we use

constraint strengthening and subsumption to transform a 3-Set Packing instance into a 1-Set Packing

instance, showing that this step is of use for at least some instances.
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Figure 3.2: Strengthening packing constraints. In the first step, we can see that l4 intersects l1 on r2, l2
on r3, and l3 on r4. This permits us to add r1 to l4, shown as a new green edge in the central diagram.
In the rightmost diagram, we have removed the other 3 elements from the instance because they are
subsumed by element r1.

3.5 Non-Minimal Covers

In some cases the standard greedy heuristic for SCP will yield solutions that are not minimal. Let H be

the returned solution having
⋃
i∈H Si = U . It sometimes happens that there is a strict subset of H that

is a set cover. Consider the following instance:

Example:

I = {1, 2, 3, 4}

S1 = {1, 3} with cost c1 = 2

S2 = {2, 4} with cost c2 = 2

S3 = {3, 4} with cost c3 = 1

S4 = {1, 2} with cost c4 = 5

For this instance, the initial valuations are (1, 1, 2, 0.4)T , so S3 is selected. In the next iteration, the

valuations are (0.5, 0.5, 0.4)T , so S1 or S2 is selected with the other one joining it in the following

iteration. Thus the returned set cover is H = {S1, S2, S3}. {S1, S2} is strictly smaller and is also

the optimal cover.

In fact, it is quite common for solutions returned by the standard greedy algorithm to be redundant, so

when we want to find approximate solutions to Set Cover instances, it is often advantageous to verify

that the returned solution is minimal or reduce it to a minimal solution. We now describe some of the

techniques that have been used to reduce non-minimal approximate solutions to minimal ones.
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Wool and Grossman

In [9], the following technique is used to minimize approximate Set Cover solutions.

Let the Set Cover problem of interest be given by A, c as in the IP formulation, with the non-minimal

solution given by the binary vector x. Let r = Ax−1. ri is the number of times that element i has been

redundantly acquired by the chosen sets. Then, for each set 1 ≤ i ≤ m, define the minimal redundancy

ti = minj∈Si rj . For any redundant input set i, ti > 0 and it can be eliminated from our cover. We

choose the set b for which tb is largest (breaking ties by choosing the largest cost set), eliminate it from

our cover by setting xb = 0 and continue until t has 0’s in every component.

Recursive Solution

It is possible to formulate the problem of minimizing a redundant Cover as an instance of Set Cover.

Given a problem specified by A, c and a redundant solution given by the binary vector x we can succinctly

specify the IP with variable vector z ∈ {0, 1}m:

Minimize cT z

subject to Az ≥ 1

and z ≤ x

The constraint that z ≤ x represents the requirement that we are looking for a subset of the sets chosen

in the first run through our problem. Once we remove the columns of A for which xi = 0 and reduce

the length of our variable vector z appropriately, we have an IP with the precise form of a Set Cover

problem. We can then solve this problem using the same greedy process with which we obtained x and

recursively minimize that solution. However, in order for us to guarantee that the recursive process

terminates, we need to show that the resulting instance is strictly smaller than the original instance we

set out to solve in the first place. This can only fail when x = 1, when our greedy process selects every

input set but the produced cover is redundant.

Since our algorithm stops after every element has been covered, there is some element that was

covered for the first time in the last iteration of the greedy selection process. If we first reduce the

instance A, c by requiring the inclusion of the set selected in the last iteration of the previous round, we

will be solving a strictly smaller instance. For instance, in the example given earlier in this section, we run

the greedy algorithm 3 times on subinstances with (I,U) given by, successively, ({1, 2, 3, 4} , {1, 2, 3, 4}),
({2, 3} , {2, 4}), ({3} , ∅), resulting in the optimal cover being selected, since the final instance is trivial.

Alternatively, we could require all sets in the redundant solution that contain any element that

was chosen exactly once to be included before forming the recursive subinstance or simply doing basic

preprocessing between greedy iterations. Either would ensure that the recursive instance is smaller and

that our process for minimization would terminate.
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New Greedy Heuristics for Set

Cover and Set Packing

4.1 Motivation

In the general greedy scheme for Set Cover we have a variety of options available to us. To distinguish

between them we generate a valuation for each alternative. We require that the valuations all be positive,

corresponding to the fact that any choice makes some progress towards our goal. While constructing a

cover, we know that every element must be obtained at some step. Every element forms a hard constraint

on our eventual solution.

The standard greedy heuristic is to select the option which satisfies the most constraints for the

least cost. If, instead, we consider each constraint not to have identical difficulty we might prefer to

make the choice such that the sum of the difficulties overcome is largest per unit cost. How then, do

we assign difficulties to the constraints? The standard heuristic can be seen to derive from the decision

that all constraints are equally difficult to satisfy. We might instead try to evaluate the difficulty of the

different constraints by referring recursively to the valuations of the choices that would satisfy them.

A constraint that is satisfied by many available options with high valuations is going to be effectively

less difficult to satisfy than one satisfied only by few with low valuations. Other choices are possible,

but for our immediate purposes we assign constraint difficulties inversely proportional to the sum of the

valuations of choices that would satisfy them.

If we write the vector of valuations as v and the difficulties as d, we have

v = C−1ATd

d = (Av)�−1

This gives us a recursive definition of the valuation that we originally sought to find. In the following we

show that this pair of definitions (and some variations) are satisfied only by a unique vector of valuations

v, can be found fairly quickly, and yield results that are generally preferable to those yielded by the

19



Chapter 4. New Greedy Heuristics for Set Cover and Set Packing 20

standard heuristic.

We are interested in this general idea, generating the valuations for our current options by defining

the valuation recursively, and think that it can be effectively applied in a variety of circumstances. We

also develop an intuitive heuristic for Set Packing using this idea and show that it performs better than

other simple greedy heuristics. We are unable to prove anything about the quality of the covers and

packings obtained from our heuristics, beyond our experimental results, but hope that future work may

be able to whether they yield some worst case approximation guarantee.

More importantly, we believe that the particular heuristics we have defined can be of practical use

immediately and that the general idea of calculating valuations recursively can be used effectively for a

wide variety of tasks.

4.2 The New Greedy Set Cover Heuristic

4.2.1 Relationship to the Standard Heuristic

The standard greedy heuristic works by assigning a valuation for the set i of vi = |Si|/ci (that is, the

number of input sets hit per unit cost) and irrevocably including the set maximizing this quantity to

a set cover that we are building. We then reduce the instance in accordance with the newly obtained

elements no longer constraining our future decisions, redo the preprocessing and continue on until we

have hit every element.

Consider the standard greedy heuristic as our starting point

v(1) = C−1AT1

Given these valuations, we can consider how difficult it might be to hit particular universe elements.

Since we are less likely to select sets with low valuations, we might assign the inverse of the sum of the

valuations of the sets of which it is a member. That is:

d(1) =
(
Av(1)

)�−1
From this, we might wish to continue the process, letting the valuations of sets be the cost-weighted sum

of the difficulties of their elements and recompute the difficulties, so we define:

v(i) = C−1ATd(i−1)

d(i) =
(
Av(i)

)�−1
We can now calculate v(i) for any i we like. In practice, as we use v(i) for larger i as a valuation for

greedy set cover approximation, the resulting covers tend to improve.

We can instead consider what valuation v ∈ Rm+ and difficulty d ∈ Rn+ could be selected so that
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simultaneously v = C−1ATd and d = (Av)
�−1

. For such a pair of vectors, we would have

d =
(
AC−1ATd

)�−1

4.2.2 Consistent Valuations

In general, we can write a heuristic by recursively defining two vectors v ∈ Rm+ and d ∈ Rm+ and

finding some pair of vectors that satisfy the definition. When there is some pair of vectors satisfying this

recursive definition, we will call them a consistent valuation and may use v as our greedy heuristic. We

require that these vectors be strictly positive because we find the notion of a negative value or difficulty

incoherent in this setting, since regardless of how poor a choice some set may be, it must make some

positive progress towards the goal of collecting every basis element. The choice of

v = C−1ATd

d = 1

yields the standard heuristic. For a recursive definition of this sort we would hope that a consistent

valuation exists and would ideally be unique. For the definitions immediately above it is clear that, for

any particular instance, there is a unique consistent valuation v,d satisfying it.

4.2.3 A Family of Heuristics

The form that we wish to propose is

v = C−1ATd

d = (ACγv)
�−1

where γ ∈ R is a free parameter that we will fix only later. For now we consider all valuations generated

by γ ranging over the reals. We find that γ = −3 performs well.γ can be viewed as additionally penalizing

sets with high cost.

If we can find a d for which

d = (ACγv)
�−1

=
(
ACγ−1ATd

)�−1
then we have a consistent valuation, since we can immediately calculate v given d, and its value is

uniquely determined by d. If we have additionally determined that there is a unique d for which the

above holds, then the consistent valuation given by our recursive definition is also unique.

Let us write M = ACγ−1AT . M is symmetric positive semi-definite, since

M = (C
γ−1
2 )AT )T ((C

γ−1
2 )AT )



Chapter 4. New Greedy Heuristics for Set Cover and Set Packing 22

If we consider only instances with no empty input sets, which we can do by requiring that basic prepro-

cessing be done on instances, every diagonal element of M is strictly positive. Also, if we consider only

instances for which every set’s cost is strictly positive, which can be accomplished again by doing basic

preprocessing, every component of M is non-negative. From the results of chapter 5, these qualities

ensure that there is a unique d satisfying d = (Md)
�−1

, and thus that our recursive definitions specify

a unique consistent valuation for every Set Cover instance that has undergone basic preprocessing.

4.2.4 Relationship to Theory

In our experiments, we will be most concerned with the heuristic obtained by setting the value γ = −3.

It can be argued that γ = 0 is more natural, defining the difficulty of an element as the reciprocal of the

sum of valuations of the sets it is in, instead of having the terms of this sum weighted by the inverse

cube of the set’s cost, but we have found that using γ = −3 performs better than other values of γ in an

average case sense. An experiment justifying this choice can be seen in section 7.3.1. We have not been

able to determine, for any value of γ, whether the new cover heuristic has some worst-case guaranteed

approximation ratio.

Assuming that valuations given by the new cover heuristic can be calculated or approximated ar-

bitrarily well in polynomial time (for which we provide evidence in section 6.3.1) and some plausible

complexity assumptions, Feige’s result [5] shows that there must be classes of Set Cover instances for

which the approximation ratio obtained using the new heuristic exceeds ln(n) − c ln(ln(n))2 for some

c > 0 for sufficiently large n. We have been unable to find any class of instances for which the new

heuristic gives approximation ratios exceeding a constant as n grows arbitrarily large, though we ex-

pect that such classes of instances must exist. Feige’s work could theoretically be used to build explicit

instances, though it would be highly inconvenient to do so.

4.3 The New Greedy Set Packing Heuristic

A common greedy heuristic for WMIS is to select the vertex with largest weight divided by neighbourhood

size. Considering the relationship between WMIS and SPP, this heuristic can be transferred to work on

Set Packing instances. For every input set i ∈ I, the valuation of i, vi = ci/(| {j ∈ I | Sj ∩ Si 6= ∅} |−1)

the set’s weight per intersecting input set besides itself. The −1 is to exclude the input set from being

counted among its neighbours. In the unweighted case, this heuristic behaves identically whether we

include or exclude the set as a neighbour of itself. We could instead consider each set a neighbour of

itself, but experimentally both valuations achieve good quality packings so we will focus on the WMIS

heuristic, which does not consider a set to be in its own neighbourhood. We call this the valuation the

MIS heuristic for Set Packing.

For the IP representation of SPP, we can write the valuation vector for the standard heuristic very

simply. Define the binarization of a matrix bin : Rn×n → {0, 1}n×n by letting bin(M) be the matrix
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having zeros where M has zeros, and 1’s where M has non-zeros. Thus

bin(M)i,j =

{
0 if Mi,j = 0

1 if Mi,j 6= 0

With this function, the standard heuristic’s valuation is written v = C((bin(ATA)− I)1)�−1. Note that

bin(ATA)1− I is precisely the adjacency matrix of the WMIS instance equivalent to the SPP instance

with constraints given by A.

Our valuation comes from trying to generalize this idea. Instead of valuing a set as its weight divided

by the quantity of neighbours it has, we could value it as its weight divided by the sum of its neighbours’

weights, or its weight divided by the sum of its neighbours’ ratios weight divided by neighbourhood size

and so on. This leads us to the following recursive definition for our new valuation:

v = C(bin(ATA)v)�−1

Letting M = C−1 bin(ATA), we have v = Mv�−1. If we insist on basic preprocessing, bin(ATA) will

have 1’s on its diagonal and no negative entry. Left multiplying this by C−1, which is diagonal with

strictly positive diagonal entries, results in a matrix M with no negative entries and all diagonal entries

strictly positive. From the result of section 5.1, we know that there must be some strictly positive vector

v satisfying our recursive definition. In general, it is not the case that M will be positive semi-definite,

so we cannot assert that it is unique. We will discuss the question of the uniqueness of our new Set

Packing valuation in some detail in section 6.5. The results of our experiments with random instances,

comparing the weight of packings produced by the new and 3 other heuristics, are presented in section

7.4.

We have tried to insert a parameter analogous to the new cover valuation’s γ, but for all variations

we have attempted, the straightforward definition above appears to have performance at least good as

similar alternatives.
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Mathematical Results

The aim of this section is to investigate what conditions (on a n × n matrix M) are sufficient for the

existence and uniqueness of positive solutions v ∈ Rn+ for systems of equations of the form

(Mv)�−1 = v

As far as we are aware, it is not known how to characterize the M for which there is a unique positive

fixed point of this system. We have been particularly interested in M that can be generated by our Set

Cover and Packing heuristics, but there seem to be some M that do not satisfy our assumptions which

nevertheless have a unique positive solution.

For convenience, we define the function

F (v) = (Mv)�−1

Any fixed point of F is a solution to our system.

We will use the following assumptions about our matrix M here. The first two are sufficient to prove

the existence of a positive fixed point of F , while existence and (c) enable us to show that the positive

fixed point is unique. In what follows, we will refer to these from time to time.

(a) For all 1 ≤ i ≤ n and 1 ≤ j ≤ n, Mi,j ≥ 0. Every matrix entry is non-negative.

(b) For all 1 ≤ i ≤ n we have Mi,i > 0. That is, every diagonal entry in the matrix is strictly positive.

(c) M is positive semi-definite. For every vector v ∈ Rn, vTMv ≥ 0.

5.1 Fixed Point Existence

To prove the existence of a fixed point, we will show that the function G has a zero.

G(d) = M(d�−1)− d

24
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This will be accomplished by an application of the Poincaré-Miranda theorem (a generalization of the

intermediate value theorem), as described in Idczak and Majewski[11]. A statement of this theorem is

the following: Let P = [α1, β1]× . . .× [αn, βn] with αi ≤ βi set to fixed real constants for all 1 ≤ i ≤ n,

and G : Rn → Rn be a function that is continuous over P. Then, if the following two statements hold,

Gi(d) ≥ 0 for every d ∈ P for which di = αi

and Gi(d) ≤ 0 for every d ∈ P for which di = βi

there must be some d ∈ P for which G(d) = 0.

By definition, G(d)’s components for 1 ≤ i ≤ n are given by

Gi(d) =

n∑
j=1

Mi,j

dj
− di

Our function G’s argument is inverted relative to F ’s. At the conclusion of the existence proof, we

explain why a zero of G implies the existence of a fixed point of F .

We use G as defined above and now fix the α’s and β’s.

αi =
√

Mi,i

βi =

n∑
j=1

Mi,j

αj

Note that fact (b) guarantees that the α’s are positive.

First, we demonstrate that αi ≤ βi, for all 1 ≤ i ≤ n as required.

αi =
√

Mi,i

= Mi,iα
−1
i

≤Mi,iα
−1
i +

∑
j 6=i

Mi,jα
−1
j

=

n∑
j=1

Mi,jα
−1
j

= βi

For the inequality, we use fact (a) and the fact that the αi are strictly positive.

Also, we can see that G is continuous over P. The only problem we might encounter is if di is 0 for

some i. Since αi > 0, P has no such points and we are therefore quite safe.

There are two things left to do. First, assume, for arbitrary 1 ≤ i ≤ n, that we have d ∈ P with di =

αi. We must now show that this assumption guarantees that Gi(d) ≥ 0. Since Gi(d) =
∑n
j=1

Mi,j

dj
−di,

it is sufficient to show that di ≤
∑n
j=1

Mi,j

dj
, which we derive below.
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di = αi

=
α2
i

αi

=
Mi,i

αi

=
Mi,i

di

≤ Mi,i

di
+
∑
j 6=i

Mi,j

dj

=

n∑
j=1

Mi,j

dj

Second, assume, for arbitrary 1 ≤ i ≤ n, that we have d ∈ P with di = βi. We must now show that

this assumption guarantees that Gi(d) ≤ 0. This is equivalent to di ≥
∑n
j=1

Mi,j

dj
, which we will now

show.

di = βi

=

n∑
j=1

Mi,j

αj

≥
n∑
j=1

Mi,j

dj

These facts allow us to apply the Poincaré-Miranda theorem, establishing the existence of some vector

d ∈ P such that G(d) = 0. For such a vector, we can define v = d�−1, and show that it is a fixed point

of F .

F (v) = (Mv)�−1

= (Md�−1)�−1

= (Md�−1 − d + d)�−1

= (G(d) + d)�−1

= d�−1

= v

So v is a fixed point of F . All of our assumptions were stated explicitly, so we now assert that for

matrices M satisfying (a) and (b) there must be a positive vector v for which (Mv)�−1 = v.

Since there is a root of G in [α1, β1]× . . .× [αn, βn], there must be a fixed point of F in [β−11 , α−11 ]×
. . .× [β−1n , α−1n ]. Switching this to F -like vectors and simplifying, we have that there exists a fixed point

v of F satisfying the following bounds:

F (diag(M)�−1/2) ≤ v ≤ diag(M)�−1/2
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5.2 Fixed Point Uniqueness

Assume that F has a fixed point. That is, there is some v ∈ Rn+ with F (v) = (Mv)�−1 = v. Because

of this, Mv = v�−1, which we will use below. We will show that the additional requirement that M is

positive semi-definite is sufficient to guarantee that v is the only positive fixed point of F .

Consider the function

K(u) = (u− v)T (Mu− u�−1)

This is a scalar-valued inner product of 2 vectors. We will show that for all u ∈ Rn+ with u 6= v,

K(u) > 0. The existence of any fixed point u ∈ Rn+ besides v, then, is a contradiction, since any fixed

point of F would have

K(u) = (u− v)T (Mu− u�−1)

= (u− v)T (u�−1 − u�−1)

= (u− v)T (0)

= 0

Let u ∈ Rn+ with u 6= v. To establish that K(u) must be positive, we will start by subtracting

(u − v)TM(u − v) and simplifying this. Note that this quantity is non-negative, since M is positive

semi-definite.

K(u) = (u− v)T (Mu− u�−1)

≥ (u− v)T (Mu− u�−1)− (u− v)TM(u− v)

= (u− v)T (Mu− u�−1 −M(u− v))

= (u− v)T (Mu− u�−1 −Mu + Mv)

= (u− v)T (Mv − u�−1)

= (u− v)T (v�−1 − u�−1)

Writing out this last expression as a sum, we have

n∑
i=1

(ui − vi)

(
1

vi
− 1

ui

)
=

n∑
i=1

(ui − vi)
2

uivi

Each term in this series is positive unless ui = vi, in which case it is 0. Since u 6= v, for some i ui 6= vi.

Thus at least one term in the sum will be positive, and none are negative, so the entire sum must be

positive, establishing our claim that K(u) is positive.
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Numerical Matters

In order to calculate the consistent valuation for the new recursively defined valuations, we need to solve

systems of the form Mv = v�−1 for some v ∈ Rn+ given a matrix M ∈ Rn×n≥0 . In this section we describe

a technique that has worked well for us in practice, discuss the rate of convergence of our technique,

address the time complexity of computing our new heuristic valuations and explore the prospects for

solving these sorts of systems exactly.

6.1 Calculating Fixed Points In Practice

Let us consider a particular matrix for which we wish to calculate a vector v for which Mv = v�−1,

M =


3 2 1 2

2 3 1 1

1 1 2 1

2 1 1 2


A näıve way of attempting to calculate such a v would be to start at some initial vector, possibly

v(0) = (1, 1, 1, 1)T , and then iteratively calculate v(k+1) = (Mv(k))�−1 until ||v(k−1)−v(k)|| is sufficiently

small.

28



Chapter 6. Numerical Matters 29

In practice, this does not work. Some values of v(k) for different k are shown below:

v(0) = (1, 1, 1, 1)T

v(1) = (0.125, 0.142857, 0.2, 0.166667)T

v(2) = (0.837488, 0.95672, 1.19829, 1.07969)T

v(999) = (0.128746, 0.146926, 0.188802, 0.167022)T

v(1000) = (0.831298, 0.948681, 1.21907, 1.07844)T

v(9999) = (0.128746, 0.146926, 0.188802, 0.167022)T

v(10000) = (0.831298, 0.948681, 1.21907, 1.07844)T

The vector settles into a repeating cycle of length 2, getting us no closer to a fixed point.

We have found the following iteration to be very effective in finding fixed points. Let v(0) ∈ Rn+ be

some positive starting vector. For k ≥ 1, define

v(k+1) =
v(k) + (Mv(k))�−1

2

Every iteration is the arithmetic mean of the previous point and the näıve iteration’s next point. This

iteration appears to have straightforward linear convergence, as can be seen in figure 6.1, showing the dis-

tance of successive values of v(k) from the true fixed point for this problem, v ≈ (0.327149, 0.373344, 0.479752, 0.424410)T .

Note that at the right side, convergence halts because we have obtained the fixed point to floating-point

double-precision. The value that we are using for the true fixed point is a vector computed to agree with

the fixed point up to 80 decimal places for each component.
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Figure 6.1: Convergence of v(k) towards the true fixed point v starting with v(k) = 1 and using a
weighted iteration.

We have found that this technique consistently achieves a linear rate of convergence, regardless of

the initial point used, so long as it is strictly positive. We have found no non-negative M with strictly

positive diagonals for which this iteration does not converge, though we have no proof that it must
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converge in all such cases.

Some simple variations of this iteration are possible and can have a significant impact on the rate of

convergence. Choosing v(k+1) to be any weighted mean of v(k) and (Mv(k))�−1 appears to be satisfactory

for convergence to occur. In practice, we have found that using the arithmetic mean and putting half as

much weight on v(k) as the new term causes the series to converge fairly quickly relative to alternatives.

We have also found that using the starting point with components v
(0)
i = (

∑n
j=1 Mi,j)

−1/2, the inverse

square roof of the row sum, works particularly well. This can also be written v(0) = (M1)�−1/2.

Thus, our final recommendation for calculating solutions to these systems is the following iteration:

v(0) = (M1)�−1/2

v(k+1) =
v(k) + 2(Mv(k))�−1

3

Using this scheme we obtain the fixed point to floating-point double-precision in nearly 20 fewer

iterations, as indicated by figure 6.2.
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Figure 6.2: Convergence of v(k) for our final proposed iteration.

This convergence behavior appears to be universal and is typical even for very large matrices M,

as suggested by figure 6.3. For floating-point double-precision, 30 iterations appear to suffice. It seems

we can obtain the fixed point to any required precision in a number of iterations that is constant with

respect to the instance size. The time required to perform one iteration is dominated by the time taken

to perform the matrix multiplication. This fact makes our valuation technique competitive with the

standard greedy algorithm, as we discuss further in 6.3.1.

6.1.1 An Alternate Iteration

We have found an alternative iteration scheme that is significantly different from the one presented

above. It proceeds from the simple idea of asking how should vj be set if all other components of v are
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Figure 6.3: Convergence of v(k) for our final proposed iteration for a matrix M of size 10000 × 10000
with entries selected uniformly from the reals in the interval (0, 5)

correct. We want vi = 1∑n
j=1 Mi,jvj

. Writing this as a 2nd degree polynomial in vi, we have

v2
i +

(∑
j 6=i Mi,jvj

)
Mi,i

vi −
1

Mi,i
= 0

Defining si = 1
Mi,i

∑
j 6=i Mi,jvj , the unique positive solution to this equation is

vi =
1

2

(√
s2i + 4/Mi,i − si

)
This leads us to propose the following iteration scheme, starting at any positive v(0). Let s(k+1) be

the vector with components s
(k+1)
i = 1

Mi,i

∑
j 6=i Mi,jv

(k)
j . This can also be found by computing Mv(k),

dividing each component by the appropriate diagonal entry of M and then subtracting v(k).

Then define the new iteration v(k+1) to be the vector with components

v
(k+1)
i =

1

2

(√(
s
(k)
i

)2
+ 4/Mi,i − s

(k)
i

)

We have found that this iteration converges to a fixed point regardless of the initial point v(0) used,

although only slowly for large instances. When combined with the previous iteration in a weighted

average, as is done with our previous iteration, we find that this converges to a fixed point similarly

quickly. Additionally, we have had good results with updating the valuation vector one component at a

time, as we describe in section 6.2.1.
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6.2 Additional Shortcuts

We have found that we can speed this process up even more with a few optimizations. Since we are only

calculating the full valuation in order to see which of its components is largest, very high precision is often

not required and we can terminate the iteration well before reaching machine precision. At the fixed

point for the random instances we have examined, we found that the difference between the valuations of

the highest valuation set and the second-highest valuation set is typically around 1%. Assuming that the

iteration converges as straightforwardly as suggested in figure 6.3, we should be safe halting the iteration

when ||v(k)− v(k − 1)||1 is less that the difference between the largest and second-largest components

of v(k).

Note that for the new cover heuristic, this is less straightforward. The valuations are given by

v = C−1ATd where d is the fixed point we seek. Terminating early here should be done with the

knowledge that the maximum of v will not change in later iterations. Conveniently, it is possible to

straightforwardly examine what the valuation would be at each iteration as an intermediate result of

the matrix product needed to perform the next iteration. That is, given d(k) we can consider v(k) =

C−1ATd(k) and continue on to calculate d(k+1) = (ACγv(k))�−1.

Another shortcut we have found is reusing the valuations or difficulties found in the previous greedy

iteration as a starting point for the next fixed point iteration. After the greedy scheme selects one set

to include in the growing cover or packing, the instance is modified and preprocessed again, but the

new system is still fairly similar to the previous one, making the use of the previous fixed point vector

a better starting point than the one defined in section 6.1.

Additionally, we find that the performance of the overall greedy algorithm does not suffer significantly

when the maximum number of iterations is fixed at even very small numbers. In random instances we

have found that, after an average of around two iterations the same set is selected as would be after

any number of subsequent iterations. The figure of two is slightly misleading, however, because the

variance of the number of iterations before the correct choice is made is fairly large. Despite this, fixing

a maximum number of iterations can be an effective way of controlling the running time of the overall

algorithm without hurting its performance too badly.

6.2.1 Using the Alternate Iteration for the Packing Heuristic

We have found the alternate iteration technique to be particularly useful in obtaining fixed points for the

packing heuristic. Updating each component independently, we find that we reach fixed-point double

precision in around 15 iterations. The form of the iterations is particularly clean for this heuristic, and

we present pseudocode for the entire iteration procedure below.

for all i ∈ I do

Mi ← {j ∈ I | Si ∩ Sj 6= ∅} − {i} . Generate sparse version of M

vi ← (|Mi|/ci)−1/2 . Initialize the valuation vector

end for

for each iteration do

for all i ∈ I do
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s←
∑
j∈Mi

vj

vi ← 1
2 (
√
s2 + 4ci − s) . Update the valuation for set i

end for

end for

return v

The convergence of this approach can be seen in figure 6.4.
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Figure 6.4: Convergence of v(k) towards the true fixed point for a random 5000× 5000 matrix.

6.3 Running Time of the New Heuristics

6.3.1 Running Time of the New Set Cover Heuristic

Let A be the fundamental matrix and C be the diagonal matrix of costs for a Set Cover instance. For

many problems of practical interest and for the random instances we explore in our experiments, A is

often quite sparse. Let ρ be the density of a Set Cover instance calculated as ρ =
∑
i,j Ai,j

mn . In practice we

use a sparse representation of A, equivalent to keeping track of every input set and the neighbourhood

of every element. This enables us to perform matrix products Av and ATd for vectors v and d in time

O (mnρ). Similar products using C only take time O (m) since C is diagonal.

Let M = ACγ−1AT . In order to calculate the new cover heuristic, we need to find d ∈ Rn+ for which

d = (Md)�−1. and then calculate the valuations v = C−1ATd. The iterative fixed point approximation

technique described in section 6.1 enables us to rapidly approximate the required d, obtaining it to

floating-point double-precision in around 30 iterations. The running time of each iteration is dominated

by the time taken to perform a matrix multiplication by M. With our sparse representations of A and

C, this is again time O (mnρ). This means that the time taken for one iteration of our greedy Set Cover

algorithm with the new heuristic only takes a constant multiple of the time taken by the standard greedy

algorithm.
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6.3.2 Running Time of the New Set Packing Heuristic

The cost of approximating fixed points for our new packing heuristic is significantly worse than it is for

cover. For a Set Packing instance given by A and C, we are interested in the matrix M = Cbin(ATA).

In order to perform matrix multiplications by M, we are not helped substantially by the sparse data

structures we maintain and our ability to do matrix multiplication by A and AT efficiently.

In practice, to multiply a vector v by M, we find each row of M independently and use each one to

calculate a single component of Mv. Using the notation of input sets Si and element neighbourhoods

Ne, we obtain (Mv)i by first finding Ri =
⋃
e∈Si Ne and then calculating (Mv)i = ci

(∑
j∈Ri vj

)−1
.

To estimate the running time of this technique, note that we need to compute the union of around mρ

neighbourhoods, each of size around nρ for each of the m input sets. Thus we expect the running time

for one multiplication by M to be in O
(
m2nρ2

)
, a factor of mρ larger than the time required for matrix

multiplication in the case of the cover heuristic. This can make finding approximate packings with the

new heuristic less practical than finding approximate covers. Note that the MIS heuristic has a similar

issue, needing O
(
m2nρ2

)
time to calculate, and it runs in around 1/30th of the time needed for the new

heuristic.

6.4 Exact Calculation of Fixed Points

The principal reason that we have so few solid mathematical results here is that we find it difficult

to characterize the solutions to Mv = v�−1. In a few cases, however, we can write out the solution

explicitly:

1. When M is a diagonal matrix with all diagonal entries positive, there is a unique positive fixed

point v whose components are given by vi = M
− 1

2
i,i . In other words, v = diag(M)�−1/2.

2. When M is non-negative with all non-zero diagonal entries and M’s rows all have the same sum,

there is a positive fixed point with all components equal to s−
1
2 where s is the sum of any row of

M. Equivalently, there is a fixed point at (M1)�−1/2.

3. When M is positive with all entries on the same row being equal, every column of M is the same.

Let u be one column of M, and let s =
√∑n

j=1
1
uj

, the square root of the sum of the reciprocals

of each row’s entry. There is a positive fixed point at v = (su)�−1

4. In some other situations we can find fixed points exactly by calculating them numerically and then

using an inverse symbolic calculator to find a representation of the number. For instance, when

M =

 1 1 1

1 1 0

1 0 1


there must be a unique v ∈ R3

+ satisfying Mv = v�−1. Numerically, it is given by (0.48587, 0.78615, 0.78615)T .
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It turns out that the exact value of v is
√√

5− 2√
1
2

(√
5− 1

)√
1
2

(√
5− 1

)


In the general case we do not expect that fixed points can be described by any simple closed form.

Without a deeper understanding of these fixed points, we have had to rely on experimental results to

provide the force of our overall argument for the value of the new heuristics. There is much room for

progress in understanding this problem.

6.5 Fixed Points For Broader Classes of Matrices

The assumptions we make about matrices M in order to prove the existence and uniqueness of fixed

points are these:

(a) No entries of M are negative.

(b) All diagonal entries of M are positive.

(c) M is positive semi-definite.

If we relax constraint (a), we can still find matrices with positive fixed points. For instance 3 1 −1

1 3 1

0 1 3


appears to have a fixed point at approximately (0.59242, 0.42200, 0.51129)T .

For a similar matrix

 3 −1 −1

−1 3 −1

0 −1 3

, however, we are unable to find any fixed points with all

positive components.

Relaxing constraint (b), we can consider the matrix

(
0 1

1 0

)
. This has fixed points at (n, 1

n )T for

all n ∈ R+. There is a positive fixed point, but it is not unique. If we look at a matrix that is only

a slight perturbation of this one,

(
0 1 + ε

1 0

)
for any small ε ∈ R+, we find it has no positive fixed

points at all.

This observation is what has motivated us, in the new packing heuristic’s definition, to regard each

set as a neighbour of itself. Without this, it is possible to formulate Set Packing instances for which the

new packing heuristic has no consistent valuations. We have also considered a class of heuristics where
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we obtain valuations for the definition

v = C((bin(ATA)− (1− ε)I)v)�−1

for arbitrarily small positive epsilon. Matrices of this form satisfy the preconditions for our fixed point

existence proof, and the iteration described in section 6.1 does tend to find a fixed point. Using these

fixed points for valuations in the greedy scheme appears to generate packings with high quality, but they

are not obviously superior to the packings found by the new packing heuristic as presented in section

4.3. This looks to us like a potentially valuable direction for further investigation.

We have not found any explicit matrix M that satisfies (a) and (b) but not (c) and is known to have

more than one positive fixed point. The matrix M used in our new packing heuristic are generally of

this type. We believe it is possible that our new packing heuristic generates unique valuations, but do

not have much confidence in either possible resolution. In the event that our packing heuristic produces

unique valuations, we would regard it as more natural, but in either case the results of section 7.4 indicate

that our heuristic produces high quality packings relative to alternative greedy packing heuristics.
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Experimental Results

7.1 Random Instances

In order to test the heuristics we have described, we need to run the greedy algorithm on particular

instances. To this end, we define a distribution of random instances. Let D(m,n, ρ, C) where m ∈ N
represents the number of sets, n ∈ N the number of elements, ρ ∈ (0, 1) the density of the instance and

C the distribution of the set costs. We use D(m,n, ρ, C) to represent the distribution of instances made

by the following process:

1. Fix I = {1, . . . ,m}

2. For each i ∈ I, set ci to a sample drawn uniformly at random from C.

3. For each i ∈ I set Si, to a subset of {1, . . . , n} with each element selected independently with

probability ρ.

4. For each element e ∈ {1, . . . , n}, if e is in fewer than 2 input sets, add e to Si for i ∈ {1, . . . ,m}
selected uniformly at random until e is in 2 input sets.

The cost distributions that we will consider are the following:

1. unweighted. All costs are set to 1. In order to save space in tables of results, we will sometimes

write u instead of unweighted.

2. discrete(a, b) for a, b ∈ N with 0 < a < b. All costs are selected with uniformly probability from

the set {a, . . . , b}. We will sometimes write d(a, b) for this distribution.

3. continuous(a, b). All costs are selected with uniformly probability from the real interval (a, b). We

occasionally use c(a, b) to denote this.

We are interested in instances with these different distributions mainly because the standard heuristic

is highly prone to ties in the unweighted case and only somewhat less so in the discrete cost setting.

37



Chapter 7. Experimental Results 38

When the costs are random real numbers, the standard greedy algorithm is deterministic for all intents

and purposes. When the standard valuation gives ties for some elements, we select the set to include

at random. We do the same for the new heuristics, but they obtain ties far less frequently, even

for unweighted instances. In order to provide a fair comparison between standard greedy and the

new algorithm, in many cases we give both algorithms approximately equal time by doing multiple

independent runs of the standard greedy algorithm and using the best cover/packing that it finds. The

ability to break ties in different ways is the only advantage obtained by running the standard algorithms

multiple times. This permits them to effectively sample from the space of solutions that they could

potentially return. The new algorithms would not usually obtain any benefit from multiple runs, since

they produce ties so rarely.

7.2 Algorithms Used

In all of the experiments below, we use only basic preprocessing. We have found that the more involved

preprocessing techniques are not clearly of value, so we do not consider them here. Further work is

needed to evaluate their usefulness.

For all of the valuation techniques discussed here, we consider it a tie if the valuations of input sets

differ by less than 10−7. In the event of a tie, we select an input set at random from the sets with

maximum valuation.

7.2.1 Set Cover Algorithms

For SCP, the algorithms we are comparing all use the general greedy scheme as described in 2.2.4 so they

differ only in how they compute the valuations of the sets at each step. The following Cover valuations

are considered:

1. The standard heuristic (STD). v = C−1AT1. For some tests, we run the standard heuristic many

times. We denote the best cover found with k independent runs of the standard algorithm by

STDk.

2. The new heuristic (NEWC(γ)), with parameter γ.

v = C−1ATd for d such that d =
(
ACγ−1ATd

)�−1
Multiple input sets obtaining the same valuation is very rare, relative to the standard heuristic, so

we only ever use a single run of the new algorithm.

We have omitted many other possible algorithms. The main reason for this is that other simple algorithms

(e.g. Primal/Dual, LP Rounding) do not appear to be competitive with the standard greedy algorithm,

as can be seen from Gomes et al.’s experimental work in [7].

Except when otherwise noted, we always minimize returned covers by the Wool and Grossman

technique described in section 3.5. In practice, this is far more beneficial for the standard algorithm

than for the new algorithm.
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7.2.2 Set Packing Algorithms

For Set Packing, we consider the following valuation techniques:

1. A variation of the standard Set Cover heuristic (STDP ), where we pick the set with greatest

weight per element. The valuations are given by v = C(AT1)�−1. When run multiple times, we

indicate this by STDPk for k independent runs.

2. The heuristic valuing sets by their weight divided by the square root of their size, which we call

the (ROOT ). v = C(AT1)�−
1
2 . Multiple runs are denoted by ROOTk.

3. The standard MIS heuristic (MIS). v = C((bin(ATA) − I)1)�−1. Multiple runs are denoted by

STDPk.

4. The new heuristic (NEWP ). We choose v ∈ Rm+ such that v = C(bin(ATA)v)�−1.

7.3 Set Cover Results

7.3.1 Varying γ for the New Heuristic

In order to justify the choice of γ = −3 for the remaining tests, we have tested a variety of different

values of γ on a variety of different random problem distributions. For each distribution, we generate

100 instances and solve them with each heuristic. We have compared the new algorithm for γ ranging

between 0 and -4. The results are presented in tables 7.1 and 7.2. Unweighted distributions are not

tested, because all values of γ yield the same valuations when all costs are identical.

In table 7.1 we show the proportion of the 100 instances that the new heuristic with the stated

choice of γ performed best on. Table 7.2 shows the quality of the obtained solutions. It is calculated as

the average, over the 100 instances, of the cost obtained by each algorithm divided by the cost of the

best solution found by any of the algorithm runs. It is effectively a proxy for approximation ratio, which

we cannot compute because the instances are too large to be solved exactly.

It can be readily seen that γ = −3 is best among the algorithms both in terms of finding the smallest

cover found most frequently and in terms of quality for a majority of distributions. It is interesting,

however, that γ = −3 does not dominate any of the alternatives. It seems reasonable that running the

new heuristic with different values of γ can be used to obtain different solutions, enabling us to utilize

multiple runs of the new algorithm in the same way that its tendency to tie makes multiple runs of the

standard heuristic valuable.

It is interesting that for most of the distributions, there are few instances for which the best cover

is found by more than one of these algorithms. With D(5000, 500, 0.02, continuous(1, 50)), for instance,

the best cover was found by exactly one of our settings for γ. The fairly wide spread between heuristics

finding the best solution also suggests that multiple runs with different γ can be valuable in practice.

The setting γ = −3 appears to be the best overall, but it should be noted that there is no reason that

γ must be an integer. Arbitrary real values of γ yield alternative versions of the new cover heuristic, and
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Table 7.1: Comparing the effectiveness of different values for γ for the new cover heuristic. Each cell
indicated what proportion of 100 instances drawn from that row’s distribution that column’s heuristic
performed best on.

Distribution γ = 0 γ = −1 γ = −2 γ = −3 γ = −4
D(500, 50, 0.05, discrete(1, 50)) 22% 27% 75% 66% 57%
D(1000, 200, 0.02, discrete(1, 50)) 6% 9% 43% 50% 27%
D(1000, 200, 0.05, discrete(1, 50)) 9% 9% 37% 57% 49%
D(2000, 200, 0.02, discrete(1, 50)) 2% 12% 56% 47% 29%
D(3000, 300, 0.02, discrete(1, 50)) 4% 7% 42% 59% 35%
D(5000, 500, 0.02, discrete(1, 50)) 3% 5% 35% 52% 33%
D(5000, 500, 0.05, discrete(1, 50)) 10% 21% 29% 52% 55%
D(5000, 500, 0.1, discrete(1, 50)) 29% 54% 57% 63% 69%
D(10000, 1000, 0.02, discrete(1, 50)) 3% 6% 27% 50% 49%

D(500, 50, 0.05, continuous(1, 50)) 10% 17% 45% 42% 31%
D(1000, 200, 0.02, continuous(1, 50)) 1% 9% 43% 31% 19%
D(1000, 200, 0.05, continuous(1, 50)) 8% 14% 28% 26% 26%
D(2000, 200, 0.02, continuous(1, 50)) 2% 6% 36% 40% 18%
D(3000, 300, 0.02, continuous(1, 50)) 1% 3% 36% 40% 20%
D(5000, 500, 0.02, continuous(1, 50)) 5% 6% 29% 39% 21%
D(5000, 500, 0.05, continuous(1, 50)) 6% 8% 16% 39% 31%
D(5000, 500, 0.1, continuous(1, 50)) 10% 16% 15% 36% 34%
D(10000, 1000, 0.02, continuous(1, 50)) 1% 6% 21% 40% 32%

Average over all instances 7.33% 13.06% 37.22% 46.06% 35.28%

it may well be that some other value between -2 and -4 performs better than -3. Further experiments

in this direction may be valuable.

7.3.2 Comparison Between the Standard and New Heuristics

In order to compare the standard and new heuristics as fairly as possible, we have to examine a few

different situations. We run both algorithms on a variety of different distributions, generating 100

problems for every row of the tables below. For each problem, we run the standard heuristic 50 times,

taking the best solution it obtains, and the new heuristic once. We track the cost of the best solution

obtained before minimization and also the cost of the best solution after minimization.

Table 7.3 summarizes our results for the 2 algorithms, STDC50 and NEWC(−3), considering the

quality of the solutions obtained for the random problems. Both algorithms are run using only the basic

preprocessing steps described in section 3.1. The columns labelled STDC50 and NEWC(−3) show

the percentage of the 100 problems for which each algorithm obtained the best solution. It is possible

for the sum of these values to exceed 100% if for some of the instances, both algorithms return a set

with the same cost. Under the columns labelled Quality, we calculate the average ratio relative to the

best solution found (by either algorithm after minimization) which we use as a proxy for approximation

ratio, since many of these problems cannot be solved exactly within a reasonable period of time. Let

si be the cost of the best of 50 runs of STDC on instance number i and ti be the cost of the set

returned by NEWC(−3). Then the “STDC50 Quality” column contains the value 1
100

∑100
i=1

si
min(si,ti)

and “NEWC(−3) Quality” contains 1
100

∑100
i=1

ti
min(si,ti)

. In every row the cell for the algorithm that
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Table 7.2: Comparing the effectiveness of different values for γ for the new cover heuristic. Each cell
indicated the average performance of the new heuristic for the stated column’s value of γ over 100
instances drawn from that row’s distribution.

Distribution γ = 0 Q γ = −1 Q γ = −2 Q γ = −3 Q γ = −4 Q
D(500, 50, 0.05, d(1, 50)) 1.0383 1.0282 1.0078 1.0082 1.0171
D(1000, 200, 0.02, d(1, 50)) 1.0337 1.0253 1.0081 1.0068 1.0123
D(1000, 200, 0.05, d(1, 50)) 1.0447 1.0367 1.0178 1.0116 1.0152
D(2000, 200, 0.02, d(1, 50)) 1.0384 1.0252 1.0079 1.0077 1.0149
D(3000, 300, 0.02, d(1, 50)) 1.0374 1.0287 1.0107 1.0056 1.0117
D(5000, 500, 0.02, d(1, 50)) 1.0407 1.0298 1.0132 1.0079 1.0119
D(5000, 500, 0.05, d(1, 50)) 1.0489 1.0337 1.0243 1.0144 1.0133
D(5000, 500, 0.1, d(1, 50)) 1.0436 1.0251 1.0222 1.0164 1.0133
D(10000, 1000, 0.02, d(1, 50)) 1.0463 1.0309 1.0173 1.0091 1.0082

D(500, 50, 0.05, c(1, 50)) 1.0428 1.0286 1.0132 1.0098 1.0142
D(1000, 200, 0.02, c(1, 50)) 1.0337 1.0237 1.0057 1.0080 1.0149
D(1000, 200, 0.05, c(1, 50)) 1.0442 1.0288 1.0186 1.0158 1.0182
D(2000, 200, 0.02, c(1, 50)) 1.0420 1.0319 1.0099 1.0092 1.0154
D(3000, 300, 0.02, c(1, 50)) 1.0432 1.0317 1.0088 1.0094 1.0153
D(5000, 500, 0.02, c(1, 50)) 1.0420 1.0327 1.0141 1.0077 1.0136
D(5000, 500, 0.05, c(1, 50)) 1.0522 1.0372 1.0217 1.0148 1.0167
D(5000, 500, 0.1, c(1, 50)) 1.0472 1.0347 1.0308 1.0200 1.0173
D(10000, 1000, 0.02, c(1, 50)) 1.0430 1.0290 1.0145 1.0083 1.0086

Average over all instances 1.0424 1.0301 1.0148 1.0106 1.0140

performs best on the highest proportion of instances and the cell for the algorithm with best quality are

highlighted.

It can be seen that on the majority of weighted problems the new heuristic generally performs better

regardless of instance size, though the standard heuristic performs better on some instances. The reason

the standard algorithm works well on unweighted instances is that they have more situations where

the standard valuation gives ties, allowing the 50 runs allocated to the standard algorithm to explore

a variety of the possible solutions accessible to it. For the problems with continuous cost distributions,

the standard heuristic is effectively deterministic, since the likelihood of ties occurring is very low.

In table 7.4 we show the results after minimizing all returned covers. The new heuristic fares only

a little more poorly, though uniformly so. In table 7.5 we show the difference in quality between the

pre-minimized and the minimized solutions. Minimizing the covers returned by the new heuristic does

not substantially reduce their sizes, improving them by around 0.1% on average. It is effectively built

into the new heuristic to avoid making selections that will later be made wholly redundant. This is not so

for the standard heuristic. It is very common that the best minimized solution returned by the standard

heuristic is significantly better than the best non-minimized solution it obtains. On average, the best

minimized solution is 2.8% better than the best non-minimized solution. For this reason, we believe

that the new heuristic can be valuable for situations in which the minimization step is not possible, as

in some formulations of online Set Cover or Hitting Set problems. One scheme that we suspect the new

heuristic is particularly well suited for is model M2 described in [1].

Overall, we can see that the new heuristic is usually superior for instances where the set costs are

drawn from a continuous distribution, but the results are mixed for distributions where the costs are



Chapter 7. Experimental Results 42

Table 7.3: Comparison between the standard and new set cover heuristics for a range of random instance
distributions. All results reported before the returned covers are minimized.

Distribution STDC50 STDC50 Q NEWC(−3) NEWC(−3) Q
D(1000, 200, 0.02, unweighted) 74% 1.0085 62% 1.0138
D(1000, 200, 0.05, unweighted) 99% 1.0015 53% 1.0244
D(2000, 200, 0.02, unweighted) 91% 1.0033 52% 1.0170
D(3000, 300, 0.02, unweighted) 97% 1.0013 42% 1.0186
D(5000, 500, 0.02, unweighted) 95% 1.0010 36% 1.0157
D(5000, 500, 0.05, unweighted) 99% 1.0007 42% 1.0239
D(5000, 500, 0.1, unweighted) 100% 1.0000 46% 1.0318
D(10000, 1000, 0.02, unweighted) 99% 1.0002 28% 1.0153

D(1000, 200, 0.02, discrete(1, 50)) 0% 1.0749 100% 1.0025
D(1000, 200, 0.05, discrete(1, 50)) 2% 1.0734 98% 1.0082
D(2000, 200, 0.02, discrete(1, 50)) 0% 1.0711 100% 1.0047
D(3000, 300, 0.02, discrete(1, 50)) 0% 1.0708 100% 1.0042
D(5000, 500, 0.02, discrete(1, 50)) 1% 1.0646 100% 1.0044
D(5000, 500, 0.05, discrete(1, 50)) 39% 1.0363 82% 1.0186
D(5000, 500, 0.1, discrete(1, 50)) 83% 1.0147 70% 1.0196
D(10000, 1000, 0.02, discrete(1, 50)) 1% 1.0481 100% 1.0066

D(1000, 200, 0.02, continuous(1, 50)) 0% 1.1000 100% 1.0015
D(1000, 200, 0.05, continuous(1, 50)) 0% 1.1036 100% 1.0026
D(2000, 200, 0.02, continuous(1, 50)) 0% 1.0868 100% 1.0003
D(3000, 300, 0.02, continuous(1, 50)) 0% 1.0911 100% 1.0012
D(5000, 500, 0.02, continuous(1, 50)) 0% 1.0833 100% 1.0024
D(5000, 500, 0.05, continuous(1, 50)) 2% 1.0652 98% 1.0048
D(5000, 500, 0.1, continuous(1, 50)) 15% 1.0448 85% 1.0065
D(10000, 1000, 0.02, continuous(1, 50)) 1% 1.0679 99% 1.0030

Average over all instances 37.4% 1.0464 78.9% 1.0105
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Table 7.4: Comparison between the standard and new set cover heuristics for a range of random instance
distributions. All results reported after the returned covers are minimized.

Distribution STDC50 STDC50 Q NEWC(−3) NEWC(−3) Q
D(1000, 200, 0.02, unweighted) 74% 1.0080 62% 1.0130
D(1000, 200, 0.05, unweighted) 99% 1.0005 52% 1.0244
D(2000, 200, 0.02, unweighted) 92% 1.0027 51% 1.0170
D(3000, 300, 0.02, unweighted) 97% 1.0010 42% 1.0186
D(5000, 500, 0.02, unweighted) 95% 1.0010 36% 1.0157
D(5000, 500, 0.05, unweighted) 99% 1.0004 41% 1.0239
D(5000, 500, 0.1, unweighted) 100% 1.0000 46% 1.0318
D(10000, 1000, 0.02, unweighted) 99% 1.0002 28% 1.0153

D(1000, 200, 0.02, discrete(1, 50)) 27% 1.0169 77% 1.0025
D(1000, 200, 0.05, discrete(1, 50)) 55% 1.0117 71% 1.0078
D(2000, 200, 0.02, discrete(1, 50)) 40% 1.0117 73% 1.0044
D(3000, 300, 0.02, discrete(1, 50)) 39% 1.0109 77% 1.0037
D(5000, 500, 0.02, discrete(1, 50)) 38% 1.0131 80% 1.0029
D(5000, 500, 0.05, discrete(1, 50)) 63% 1.0099 57% 1.0140
D(5000, 500, 0.1, discrete(1, 50)) 89% 1.0049 58% 1.0180
D(10000, 1000, 0.02, discrete(1, 50)) 20% 1.0167 90% 1.0015

D(1000, 200, 0.02, continuous(1, 50)) 9% 1.0357 91% 1.0012
D(1000, 200, 0.05, continuous(1, 50)) 10% 1.0435 90% 1.0017
D(2000, 200, 0.02, continuous(1, 50)) 2% 1.0381 98% 1.0002
D(3000, 300, 0.02, continuous(1, 50)) 7% 1.0420 93% 1.0007
D(5000, 500, 0.02, continuous(1, 50)) 3% 1.0443 97% 1.0005
D(5000, 500, 0.05, continuous(1, 50)) 7% 1.0438 93% 1.0019
D(5000, 500, 0.1, continuous(1, 50)) 19% 1.0362 81% 1.0035
D(10000, 1000, 0.02, continuous(1, 50)) 2% 1.0446 98% 1.0004

Average over all instances 49.4% 1.0182 70.1% 1.0094
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uniform or discrete.

Table 7.5: Quality difference between cover solutions before and after minimization.
Distribution STDC50 ∆ Quality NEWC(−3) ∆ Quality
D(1000, 200, 0.02, unweighted) 0.0005 0.0008
D(1000, 200, 0.05, unweighted) 0.0010 0.0000
D(2000, 200, 0.02, unweighted) 0.0006 0.0000
D(3000, 300, 0.02, unweighted) 0.0003 0.0000
D(5000, 500, 0.02, unweighted) 0.0000 0.0000
D(5000, 500, 0.05, unweighted) 0.0003 0.0000
D(5000, 500, 0.1, unweighted) 0.0000 0.0000
D(10000, 1000, 0.02, unweighted) 0.0000 0.0000

D(1000, 200, 0.02, discrete(1, 50)) 0.0580 0.0000
D(1000, 200, 0.05, discrete(1, 50)) 0.0617 0.0004
D(2000, 200, 0.02, discrete(1, 50)) 0.0594 0.0003
D(3000, 300, 0.02, discrete(1, 50)) 0.0599 0.0005
D(5000, 500, 0.02, discrete(1, 50)) 0.0515 0.0015
D(5000, 500, 0.05, discrete(1, 50)) 0.0264 0.0046
D(5000, 500, 0.1, discrete(1, 50)) 0.0098 0.0016
D(10000, 1000, 0.02, discrete(1, 50)) 0.0314 0.0051

D(1000, 200, 0.02, continuous(1, 50)) 0.0643 0.0003
D(1000, 200, 0.05, continuous(1, 50)) 0.0601 0.0009
D(2000, 200, 0.02, continuous(1, 50)) 0.0487 0.0001
D(3000, 300, 0.02, continuous(1, 50)) 0.0491 0.0005
D(5000, 500, 0.02, continuous(1, 50)) 0.0390 0.0019
D(5000, 500, 0.05, continuous(1, 50)) 0.0214 0.0029
D(5000, 500, 0.1, continuous(1, 50)) 0.0086 0.0030
D(10000, 1000, 0.02, continuous(1, 50)) 0.0233 0.0026

Average over all instances 0.0281 0.0011

7.3.3 OR Library Instances

The OR Library is a collection of optimization problems maintained by J.E. Beasley at http://people.

brunel.ac.uk/~mastjjb/jeb/info.html. The Set Cover problems that we will be approximating are

described at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html. They have pervi-

ously been used in experiments with SCP approximation in [9], and [7]. All of these problems have set

costs chosen from discrete(1, 100).

The results are shown in table 7.6. The new heuristic has performance modestly better than 50 runs

of the standard heuristic over these instances. We find the new heuristic to obtain the best solution in

60.3% of the instances, and the standard heuristic only 54%.

Table 7.6: A comparison of the approximate solutions obtained by

the standard and new Set Cover heuristics for the OR Library

instances.

Instance Name m n ρ STDC50 NEWC(−3)
scp41 1000 200 2.00% 434 436

scp42 1000 200 1.99% 529 513
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Table 7.6: (continued)

Instance Name m n ρ STDC50 NEWC(−3)
scp43 1000 200 1.99% 537 526

scp44 1000 200 2.00% 504 512

scp45 1000 200 1.97% 518 514

scp46 1000 200 2.04% 585 565

scp47 1000 200 1.96% 447 438

scp48 1000 200 2.01% 502 493

scp49 1000 200 1.98% 663 659

scp410 1000 200 1.95% 521 516

scp51 2000 200 2.00% 269 259

scp52 2000 200 2.00% 323 318

scp53 2000 200 2.00% 230 230

scp54 2000 200 1.98% 247 245

scp55 2000 200 1.96% 212 212

scp56 2000 200 2.00% 225 218

scp57 2000 200 2.01% 301 299

scp58 2000 200 1.98% 300 294

scp59 2000 200 1.97% 290 281

scp510 2000 200 2.00% 273 272

scp61 1000 200 4.92% 142 143

scp62 1000 200 5.00% 153 150

scp63 1000 200 4.96% 148 149

scp64 1000 200 4.93% 135 134

scp65 1000 200 4.97% 178 169

scpa1 3000 300 2.01% 259 258

scpa2 3000 300 2.01% 264 257

scpa3 3000 300 2.01% 239 240

scpa4 3000 300 2.01% 240 237

scpa5 3000 300 2.01% 240 242

scpb1 3000 300 4.99% 70 73

scpb2 3000 300 4.99% 77 78

scpb3 3000 300 4.99% 81 82

scpb4 3000 300 4.99% 83 82

scpb5 3000 300 4.99% 72 73

scpc1 4000 400 2.00% 236 234

scpc2 4000 400 2.00% 224 224

scpc3 4000 400 2.00% 248 251

scpc4 4000 400 2.00% 231 225

scpc5 4000 400 2.00% 220 219

scpd1 4000 400 5.01% 62 63

scpd2 4000 400 5.01% 68 68

scpd3 4000 400 5.01% 73 75

scpd4 4000 400 5.00% 63 63

scpd5 4000 400 5.00% 62 63

scpnre1 5000 500 9.98% 29 30

scpnre2 5000 500 9.97% 31 33

scpnre3 5000 500 9.97% 28 28

scpnre4 5000 500 9.97% 30 31

scpnre5 5000 500 9.98% 30 29

scpnrf1 5000 500 19.97% 15 15

scpnrf2 5000 500 19.97% 15 16

scpnrf3 5000 500 19.97% 15 16

scpnrf4 5000 500 19.97% 15 15

scpnrf5 5000 500 19.97% 14 14

scpnrg1 10000 1000 1.99% 184 186

scpnrg2 10000 1000 1.99% 161 162

scpnrg3 10000 1000 1.99% 175 177

scpnrg4 10000 1000 1.99% 178 179

scpnrg5 10000 1000 1.99% 179 173

scpnrh1 10000 1000 4.99% 67 70



Chapter 7. Experimental Results 46

Table 7.6: (continued)

Instance Name m n ρ STDC50 NEWC(−3)
scpnrh2 10000 1000 4.99% 68 66

scpnrh3 10000 1000 4.99% 63 64

Best overall 54.0% 60.3%

7.4 Set Packing Results

7.4.1 Comparison Between Packing Heuristics

For this experiment, we run all 4 Set Packing heuristics on 100 instances from each of a variety of

different random problem distributions. We use basic preprocessing for all algorithms and run all but

the new heuristic 50 times, taking the best packing found in any of those runs as the result. Note that the

running time of MIS50 and NEWP are comparable, but the running time of STDP50 and ROOT50 are

significantly less than the running time of NEWP . The results of this experiment are shown in tables

7.7 and 7.8. Table 7.7 shows what proportion of the instances for that row’s distribution were solved

with the largest weight packing among the 4 algorithms. Table 7.8 shows the quality of the packings

produced. The quality is computed as the average, over all instances for that row, of the ratio between

the best packing found and that algorithm’s packing. This means that values nearer 1 are better. In

both tables, we have highlighted the best achievement in each row.

Here, the new heuristic generally performs better than the alternatives. Much as with the new cover

heuristic, it performs relatively poorly on the unweighted instances. This is again because the other

algorithms see a larger range of possible solutions because of the multiple runs they are given. The

results for the new packing heuristic are stronger than those for the cover heuristic. Here over two thirds

of the time the new heuristic finds the best packing amongst all of the heuristics studied.

7.4.2 OR Library Instances

As in section 7.3.3, we have run the packing heuristics on the OR Library instances. The results are

shown in table 7.9.

The performance of the new heuristic over these instances is significantly better than the other

heuristics, obtaining the best solution found over three quarters of the time.

Table 7.9: A comparison of the approximate solutions obtained by

the four set packing heuristics for the OR Library instances.

Instance Name m n ρ STD50 ROOT50 MIS50 NEWP

scp41 1000 200 2.00% 5695 5639 5749 5887

scp410 1000 200 1.95% 5940 6131 6066 6251

scp42 1000 200 1.99% 5611 5747 5835 6044

scp43 1000 200 1.99% 5996 6054 5850 6035

scp44 1000 200 2.00% 5701 5808 5669 5905

scp45 1000 200 1.97% 5746 5897 5949 6025

scp46 1000 200 2.04% 6026 6136 6196 6234

scp47 1000 200 1.96% 5949 6095 6040 6272
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Table 7.9: (continued)

Instance Name m n ρ STD50 ROOT50 MIS50 NEWP

scp48 1000 200 2.01% 6154 6152 6147 6378

scp49 1000 200 1.98% 6393 6345 6360 6539

scp51 2000 200 2.00% 8206 8197 8333 8459

scp510 2000 200 2.00% 7716 7791 7724 7951

scp52 2000 200 2.00% 7845 7964 7981 8155

scp53 2000 200 2.00% 7750 7655 7874 7990

scp54 2000 200 1.98% 8073 8091 8176 8212

scp55 2000 200 1.96% 8030 8067 8038 8276

scp56 2000 200 2.00% 7991 7956 8024 8144

scp57 2000 200 2.01% 7841 7837 7748 7964

scp58 2000 200 1.98% 7928 7901 7968 8139

scp59 2000 200 1.97% 7918 8095 7993 8110

scp61 1000 200 4.92% 1597 1571 1597 1625

scp62 1000 200 5.00% 1693 1693 1815 1774

scp63 1000 200 4.96% 1559 1597 1581 1797

scp64 1000 200 4.93% 1910 1753 1812 1910

scp65 1000 200 4.97% 1627 1457 1592 1618

scpa1 3000 300 2.01% 7410 7380 7580 7605

scpa2 3000 300 2.01% 8000 7844 7880 8105

scpa3 3000 300 2.01% 7483 7446 7422 7555

scpa4 3000 300 2.01% 7699 7875 7818 7871

scpa5 3000 300 2.01% 7510 7680 7568 7996

scpb1 3000 300 4.99% 1453 1459 1425 1440

scpb2 3000 300 4.99% 1419 1513 1571 1545

scpb3 3000 300 4.99% 1360 1458 1447 1503

scpb4 3000 300 4.99% 1314 1398 1413 1491

scpb5 3000 300 4.99% 1437 1486 1519 1617

scpc1 4000 400 2.00% 6684 6438 6669 6786

scpc2 4000 400 2.00% 6076 6091 6242 6224

scpc3 4000 400 2.00% 6246 6233 6260 6567

scpc4 4000 400 2.00% 6652 6716 6579 6718

scpc5 4000 400 2.00% 6794 6646 6565 6949

scpd1 4000 400 5.01% 1141 1036 1052 1131

scpd2 4000 400 5.01% 1084 1088 1144 1262

scpd3 4000 400 5.01% 1183 1216 1131 1200

scpd4 4000 400 5.00% 1195 1224 1142 1224

scpd5 4000 400 5.00% 1128 1145 1159 1201

scpnre1 5000 500 9.98% 228 363 296 296

scpnre2 5000 500 9.97% 224 359 275 293

scpnre3 5000 500 9.97% 356 241 274 274

scpnre4 5000 500 9.97% 221 239 295 295

scpnre5 5000 500 9.98% 354 238 294 294

scpnrf1 5000 500 19.97% 95 95 100 100

scpnrf2 5000 500 19.97% 99 99 100 100

scpnrf3 5000 500 19.97% 99 99 100 100

scpnrf4 5000 500 19.97% 99 99 100 100

scpnrf5 5000 500 19.97% 99 99 100 100

scpnrg1 10000 1000 1.99% 2922 2821 3097 3035

scpnrg2 10000 1000 1.99% 2993 3006 2993 2953

scpnrg3 10000 1000 1.99% 3100 3069 2872 3122

scpnrg4 10000 1000 1.99% 2946 2812 2987 3159

scpnrg5 10000 1000 1.99% 2942 2787 2980 3125

scpnrh1 10000 1000 4.99% 532 532 532 532

scpnrh2 10000 1000 4.99% 531 531 531 531

scpnrh3 10000 1000 4.99% 531 531 531 531

Average over all instances 12.7% 17.5% 20.6% 76.2%
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Table 7.7: A comparison between the performance of 4 different heuristics for the Set Packing problem.
The proportion of the 100 problems that each heuristic performed best on is reported.

Distribution STDP50 ROOT50 MIS50 NEWP

D(1000, 100, 0.02, unweighted) 100% 100% 100% 100%

D(1000, 200, 0.02, unweighted) 44% 44% 61% 52%

D(1000, 200, 0.05, unweighted) 69% 72% 48% 36%

D(2000, 200, 0.02, unweighted) 82% 79% 66% 31%

D(3000, 300, 0.02, unweighted) 8% 5% 62% 66%

D(5000, 500, 0.02, unweighted) 17% 27% 64% 45%

D(5000, 500, 0.05, unweighted) 78% 77% 68% 67%

D(5000, 500, 0.1, unweighted) 62% 62% 92% 90%

D(10000, 1000, 0.02, unweighted) 62% 55% 43% 27%

D(1000, 100, 0.02, discrete(1, 50)) 17% 7% 16% 70%

D(1000, 200, 0.02, discrete(1, 50)) 0% 0% 5% 95%

D(1000, 200, 0.05, discrete(1, 50)) 11% 9% 15% 70%

D(2000, 200, 0.02, discrete(1, 50)) 2% 3% 6% 91%

D(3000, 300, 0.02, discrete(1, 50)) 2% 5% 5% 88%

D(5000, 500, 0.02, discrete(1, 50)) 7% 6% 10% 77%

D(5000, 500, 0.05, discrete(1, 50)) 17% 25% 32% 49%

D(5000, 500, 0.1, discrete(1, 50)) 37% 35% 51% 55%

D(10000, 1000, 0.02, discrete(1, 50)) 13% 14% 28% 47%

D(1000, 100, 0.02, continuous(1, 50)) 8% 10% 19% 64%

D(1000, 200, 0.02, continuous(1, 50)) 4% 2% 1% 93%

D(1000, 200, 0.05, continuous(1, 50)) 4% 16% 19% 61%

D(2000, 200, 0.02, continuous(1, 50)) 1% 0% 2% 97%

D(3000, 300, 0.02, continuous(1, 50)) 2% 0% 1% 97%

D(5000, 500, 0.02, continuous(1, 50)) 2% 4% 5% 89%

D(5000, 500, 0.05, continuous(1, 50)) 15% 20% 19% 58%

D(5000, 500, 0.1, continuous(1, 50)) 43% 43% 36% 45%

D(10000, 1000, 0.02, continuous(1, 50)) 5% 12% 17% 66%

Average over all instances 26.4% 27.1% 33.0% 67.6%
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Table 7.8: A comparison between the performance of 4 different heuristics for the Set Packing problem.
The average quality of each algorithm over 100 instances is reported.

Distribution STDP50 Q ROOT50 Q MIS50 Q NEWP Q

D(1000, 100, 0.02, unweighted) 1.0000 1.0000 1.0000 1.0000

D(1000, 200, 0.02, unweighted) 1.0067 1.0064 1.0041 1.0061

D(1000, 200, 0.05, unweighted) 1.0122 1.0111 1.0246 1.0341

D(2000, 200, 0.02, unweighted) 1.0013 1.0015 1.0029 1.0074

D(3000, 300, 0.02, unweighted) 1.0176 1.0184 1.0041 1.0045

D(5000, 500, 0.02, unweighted) 1.0156 1.0140 1.0062 1.0112

D(5000, 500, 0.05, unweighted) 1.0193 1.0200 1.0293 1.0319

D(5000, 500, 0.1, unweighted) 1.1267 1.1267 1.0267 1.0333

D(10000, 1000, 0.02, unweighted) 1.0094 1.0118 1.0189 1.0295

D(1000, 100, 0.02, discrete(1, 50)) 1.0039 1.0060 1.0038 1.0005

D(1000, 200, 0.02, discrete(1, 50)) 1.0334 1.0254 1.0250 1.0003

D(1000, 200, 0.05, discrete(1, 50)) 1.0535 1.0589 1.0378 1.0088

D(2000, 200, 0.02, discrete(1, 50)) 1.0223 1.0208 1.0164 1.0003

D(3000, 300, 0.02, discrete(1, 50)) 1.0299 1.0274 1.0236 1.0007

D(5000, 500, 0.02, discrete(1, 50)) 1.0344 1.0394 1.0284 1.0025

D(5000, 500, 0.05, discrete(1, 50)) 1.0713 1.0781 1.0464 1.0235

D(5000, 500, 0.1, discrete(1, 50)) 1.0970 1.1065 1.0883 1.0548

D(10000, 1000, 0.02, discrete(1, 50)) 1.0435 1.0458 1.0269 1.0086

D(1000, 100, 0.02, continuous(1, 50)) 1.0053 1.0065 1.0039 1.0005

D(1000, 200, 0.02, continuous(1, 50)) 1.0290 1.0247 1.0253 1.0003

D(1000, 200, 0.05, continuous(1, 50)) 1.0633 1.0553 1.0415 1.0106

D(2000, 200, 0.02, continuous(1, 50)) 1.0265 1.0246 1.0198 1.0001

D(3000, 300, 0.02, continuous(1, 50)) 1.0356 1.0352 1.0294 1.0002

D(5000, 500, 0.02, continuous(1, 50)) 1.0479 1.0435 1.0335 1.0013

D(5000, 500, 0.05, continuous(1, 50)) 1.0660 1.0587 1.0471 1.0188

D(5000, 500, 0.1, continuous(1, 50)) 1.0623 1.0795 1.1354 1.1002

D(10000, 1000, 0.02, continuous(1, 50)) 1.0560 1.0618 1.0361 1.0062

Average over all instances 1.0367 1.0373 1.0291 1.0147
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Discussion

We have demonstrated a novel method for devising greedy approximation heuristics. For two problems,

Set Cover and Set Packing, we have constructed new heuristics and shown that their performance is

better than alternative greedy algorithms. For the Set Cover heuristic, we have demonstrated that

the valuation we define exists and is unique, while we are unsure whether the Set Packing heuristic

guarantees a unique valuation. This leaves a variety of open questions. Is the valuation determined by

the Packing heuristic unique? Is there some simple way to characterize matrices M for which there is a

unique solution v to Mv = v�−1? Do the iterations we have described always converge? Is there a more

efficient way to find these fixed points? Do either of the new heuristics guarantee some approximation

ratio? Most importantly, can the overall technique of defining valuations recursively be used to construct

high quality approximation algorithms for other problems?

In our experimental results, it is striking that none of the algorithms considered appears to dominate

the others. Although the new heuristics are generally preferable to the alternatives on the sorts of

random instances we have used, it is still beneficial to use a variety of heuristics when looking for good

covers and packings. We can straightforwardly recommend that any real-world software in which any

of the standard cover or packing heuristics are used exclusively to obtain approximate solutions could

substantially benefit from also considering the solutions given by our new heuristics. Although their

runtimes are longer, they are not substantially so, and is should be possible to engineer them to run in

only 5 or 10 times what’s required for the standard heuristics.

It is both a blessing and a curse that the new heuristics are less prone to ties than the standard

heuristics. It is convenient that a single run deterministically generates a particular solution, but at the

same time, this means that multiple runs will not allow us to sample from the space of possible solutions

in the same way as the standard algorithms do. In order to generate a wider variety of solutions using

the new heuristics there are a few different approaches that might be made. For the cover heuristic,

varying the parameter γ permits us to obtain different covers. Additionally, for any valuation-producing

heuristic, we could randomize the general greedy scheme to select sets with probabilities determined by

the valuations produced. We leave it to others to determine how valuable are the solutions built with

this approach to obtaining variety.
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to the controllability of nonlinear repetitive processes. In International Workshop on Multidimen-

sional (nD) Systems, 2009.

[12] David S Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and

System Sciences, 9(3):256–278, 1974.

51



Bibliography 52

[13] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-

putations, pages 85–103, 1972.

[14] Petr Slav́ık. A tight analysis of the greedy algorithm for set cover. In STOC, pages 435–441, 1996.

[15] David P Williamson. The primal-dual method for approximation algorithms. Mathematical Pro-

gramming, 91(3):447–478, 2002.


