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When evaluating integration schemes used in molecular dynamics (MD) simulations, energy

conservation is often cited as the primary criterion by which the integrators should be com-

pared. As a result variable stepsize Runge-Kutta methods are often ruled out of consideration

due to their characteristic energy drift.

We have shown that by appropriately modifying the stepsize selection strategy in a variable

stepsize RK method it is possible for the MD practitioner to obtain substantial control over the

energy drift during the course of a simulation. This ability has been previously unreported in

the literature, and we present numerical examples to illustrate that it can be achieved without

sacrificing computational efficiency under currently obtainable timescales.
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Chapter 1

Introduction

1.1 Motivation

Molecular dynamics (MD) simulation is a commonly used tool for investigating the detailed

behavior of macromolecular systems. Computing the forces involved in these large systems

comprises 90% of the computational work in a typical simulation, and must be done several

times on each timestep in the integration of the system of underlying ordinary differential

equations. This computational cost is compounded by the huge number of steps that must be

taken to accurately determine a solution over a meaningful timescale. Thus, increasing the

effective size of the timestep is an obvious way to reduce the computational burden of MD

simulations.

One of the primary criterion in choosing an integrator for molecular dynamics simulation

is energy conservation [10], [5], [17]. Because of their simplicity and energy conservation

properties, lower order symplectic methods are most commonly used by current practitioners

of MD, with the second-order Verlet method being most often used in practice [14]. Since

standard Runge Kutta methods tend to exhibit systematic energy drift when integrating MD

systems they have largely been excluded from consideration as a viable method in the literature.

This thesis demonstrates that although standard Runge Kutta integrators do not intrinsically

2



CHAPTER 1. INTRODUCTION 3

conserve energy, by taking advantage of variable stepsize with novel stepsize selection mech-

anisms they are able to faithfully and efficiently compute long term MD simulations. Further,

they do this with energy drifts comparable to standard symplectic methods at currently attain-

able timescales. However, the relationship between tolerance and energy conservation is far

from clear, making standard RK methods potentially unfavorable to the MD practitioner. In

order to address this difficulty new stepsize selection strategies are proposed that provide the

simulator with the ability to predictably control the energy drift while maintaining competitive

computational costs.

1.2 Background

1.2.1 Molecular Dynamics

At the most fundamental level a molecular dynamics simulation solves the initial value problem

ẏ = f(t, y), y(0) = y0, t ∈ (0, tend), (1.1)

where the trajectories of N particles are determined by Newton’s equations of motion.

We use q(t) = (q1(t), . . . , qN(t)) and v(t) = (v1(t), . . . , vN(t)) to represent the positions

and velocities of the system of N particles, respectively. It is important to note that each qi, vi

consists of a triplet of values qi = (qix, qiy, qiz), vi = (vix, viy, viz) containing the x, y and z

coordinates of each particle so that the “path” y(t) = (q(t), v(t)) obtained by solving equation

1.1 lies in R6N . Such a path is subsequently referred to as the phase space trajectory of a

system consisting of N particles in the phase space R6N .

With this notation, any linear operator A : RN → RN acting on q or v should be understood

as Aq
def
= A⊗I3q, or Av

def
= A⊗I3v where⊗ is the Kroneker product and I3 is the 3×3 identity

matrix. It will usually be clear from context how to treat a general operator acting on q or

v, and any case where a potential ambiguity arises will be explained in detail. With care, the

notational savings afforded by these conventions more than outweigh the few difficulties that
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may arise.

Using this notation Newton’s equations of motion for the system described by equation 1.1

take on the specific form,

q̇ = v, (1.2)

v̇ = M−1F (q),

with

M−1 =





m−1
1 0 . . . 0

... . . . . . . ...

0 . . . 0 m−1
N




.

This system of first-order differential equations is equivalent to the more familiar,

F = Ma = Mq̈.

Here, mi is the mass of the i-th particle for i ∈ 1, . . . , N , F is a force function satisfy-

ing F (q) = −∇V (q) for an appropriate potential function V and ∇V (q) is the gradient

(∂V (q)
∂q1

, . . . , δV (q)
δqN

)T . With the choice of a reasonable potential function integrating Newton’s

equations of motion can provide a realistic approximation to the real phase space trajectory of

the system.

A typical example of the intermolecular potential function used in current MD simulations

consists of the sum of a short range Van der Waals potential, and a long range Coulombic

interaction 1

V (r) =
N�

i=1

�

j>i

φ(rij) +
N�

i=1

�

j>i

QiQj

�rij

(1.3)

where rij

def
= �qi − qj� for the l2 norm �x� def

=
√

x · x and Qi gives the electric charge of

the ith particle. The choice of Qi, Qj and the parameters defining φ(r) are chosen to match

the physical characteristics of the material being modeled subject to computational efficiency

1If intramolecular forces are considered this expression becomes more complicated. The nature of the force
function is not the focus of this thesis, and the form presented herein is sufficiently general for our purposes.
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considerations, and the availability of relevant empirical information. These parameters will

be dealt with in more detail in subsequent sections.

Numerical results presented in subsequent sections were determined using a widely used

benchmark system whose potential function contains only the Van Der Waals term, providing

a realistic approximation of the intermolecular forces between argon molecules. This simple

system is used when comparing integration techniques since determining a physically realistic

potential for more complex systems is an active area of research, without a clearly correct

choice even for slightly more complicated molecules such as water [4], [20].

Energy Conservation

The energy associated with a particular phase state (q, v) is defined to be the sum of the kinetic

and potential energies

E(q, v) = V (q) +
1

2

N�

i=1

mi�vi�2.

A simple derivation shows that energy is conserved along exact solutions to equation 1.2 so

long as the force function F is the exact gradient of a potential function V :

dE

dt
=

dV (q(t))

dt
+

1

2

N�

i=1

mi

d�vi�2

dt

= ∇V (q) · q̇ +
1

2

N�

i=1

2miviv̇i

= ∇V (q) · v +
N�

i=1

mivi

Fi

mi

= ∇V (q) · v −∇V (q) · v = 0.

Since the energy in an MD simulation should be constant, a common gauge of the quality of

a given approximate solution is how well this quantity is preserved. The amount by which the

energy changes during a simulation is known as the energy drift . Numerical methods generally

exhibit characteristic patterns in the energy drift, with less suitable integrators having larger

drifts than their more suitable counterparts. It is important to note that more accurate methods
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will always exhibit reduced energy drift, but increased accuracy is not strictly necessary to

obtain small drifts as can be seen from the performance of low order symplectic methods.

1.2.2 Runge-Kutta Methods

The non-symplectic Runge-Kutta methods we will be investigating are explicit, s-stage, order

p, Runge-Kutta methods that compute an approximate solution to equation 1.1 at discrete points

yn ≈ y(tn), tn ∈ [0, tend] via the equation,

yn = yn−1 + hn

s�

i=1

wiki,

for n ∈ 1, 2, . . . ,M , 0 = t0 < t1 < · · · < tM = tend, hn = tn − tn−1 with,

ki = f(tn−1 + cihn, Yi),

for i ∈ 1, 2, . . . , s and

Yi = yn−1 + hn

i−1�

j=1

aijkj.

The choice of the stepsize hn and parameters wj , cj and aij completely determine the

approximation yn computed at the nth timestep. If the true solution to equation 1.1 is given by

y(t) then the global error for a pth order method is defined by

�n

def
= max

n=1,...N

�y(tn)− yn�,

and will satisfy,

�n ≤ ψnH
p

n
+ O(Hp+1

n
),

where H = maxn=1,...,N{hn}. Given the local initial value problem,

żn = f(t, zn(t)),

zn(tn−1) = yn−1,

we define the local error on step n to be, le
def
= zn(tn)− yn.
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Continuous Extensions and Defect Based Error Control

Standard Runge-Kutta methods only provide solution values at discrete points, while it is often

desirable to provide an accurate interpolant that determines the approximate solution over the

entire interval. Given solution values yn−1, yn associated with the nth step, an approximation

pn(t) to the local solution for t ∈ [tn−1, tn] can be determined by using s̄−s additional function

evaluations per attempted step [7],

pn(t) = yn−1 + hn

s̄�

j=1

bj(τ)kj. (1.4)

Here, the k1, . . . , ks are determined by the RK method, ks+1, . . . , ks̄ are extra stages determined

using the additional function evaluations [19] and bj(τ) is defined for t ∈ [tn−1, tn] by,

bj(τ) =
p+1�

l=1

βjlτ
l−1,

with

τ =
t− tn−1

hn

.

Note that for the class of continuous extensions (the pn(t)) considered herein we have

ks+1 = f(tn, yn) and this stage value will be the first stage of the next step so that effectively

only s̄− s− 1 additional function evaluations are required per step to define pn(t).

Let p(t) denote the piecewise polynomial approximation defined by the interpolants pn(t)

associated with each step of the initial value problem 1.1. Note that p(t) is continuous and

defined on the interval [0, tend] since it is obtained from the all the local interpolants given by

1.4. The defect, δ(t) of this approximate solution p(t) is then defined over the entire interval

of integration as,

δ(t)
def
= ṗ(t)− f(t, p(t)).
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It is shown in [18] that with an appropriate choice of the free parameters that define the

stages ks+2, ks+3, . . . ks̄ and the βij the continuous approximate solution, p(t), will satisfy,

δ(t) = Ψ(τ)hp

n
+ O(hp+1

n
), (1.5)

for t ∈ (tn−1, tn).

Such interpolants are of optimal order and permit the use of a stepsize selection strategy

designed to bound the defect over the interval [0, tend]. Robust continuous Runge Kutta codes

(CRKs) exist that attempt to ensure the size of the defect is bounded by a user-supplied param-

eter TOL. This ’backward’ error control approach is advantageous in MD simulations since

typical molecular models are unstable in the traditional sense and it is not feasible to specify

meaningful tolerances in terms of global error for long simulations. Defect based strategies

allow for the direct control of the energy drift in a simulation, as we demonstrate in subsequent

sections.

Stepsize Selection

Runge Kutta codes developed by Enright et. al. [7], [19] accept an input parameter TOL and

attempt to ensure that the maximum global error over the interval of integration is less than

a multiple of TOL by dynamically varying the local stepsize hn = tn − tn−1. For continu-

ous RK methods, the local error is estimated using an evaluation of the defect in the interval

[tn−1, tn]. The quality of this estimate is dependent on where the defect is sampled and on the

particular choice of interpolant polynomials. For some choices, this estimate can be asymptoti-

cally correct [12]. Estimates of the local error for more standard discrete formulas are typically

determined using RK formula pairs.

If, in a given step, the local error estimate estn satisfies �estn� < hn · TOL for a discrete

method, or the defect satisfies �δ(t + τ ∗hn)� < TOL for a continuous method then the step is

accepted. At every accepted or rejected step, hn is adjusted according to

hn+1 = ρ

�
TOL

�estn�

� 1
p

hn (1.6)
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where the constant ρ is a “safety factor” introduced to reduce the chance of a failed step2.

Application to Molecular Dynamics

It is possible to take advantage of the estimate of the maximum magnitude of the defect to show

that the energy drift in a molecular dynamics simulation can be controlled in an intuitive way.

Given a specified value for TOL, a defect-based integrator provides an approximate solution

q̄(t), v̄(t) to q(t), v(t) to problem 1.2 satisfying,

˙̄q = v̄ + δ1, (1.7)

˙̄v = M−1F (q̄) + δ2,

where �δ1(t)� and �δ2(t)� are both ≤ TOL, ∀t ∈ [0, tend].

Following the derivation from section 1.2.1, one can obtain an expression for the rate of

energy drift in the approximate phase space trajectory:

dE

dt
=

dV (q̄(t))

dt
+

1

2

N�

i=1

mi

d�v̄i�2

dt

= ∇V (q̄) · (v̄ + δ1) +
N�

i=1

miv̄i(
Fi

mi

+ (δ2)i)

= ∇V (q̄) · v̄ −∇V (s) · v̄ +∇V (q̄) · δ1 + Mv̄ · δ2

= ∇V (q̄) · δ1 + Mv̄ · δ2. (1.8)

Equation 1.8 provides a direct way to bound and control the energy drift during a simula-

tion. In particular it shows that the energy drift can be controlled by appropriately controlling

the magnitude of the two components of the defect in 1.7.

2A value of ρ = 0.9 is usual
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The DVERK interface

In our investigations we use two CRK methods to illustrate our approach: rkd56, an imple-

mentation of an order 6 CRK method and rkd78, an implementation of an 8th order CRK

method. Both codes were written by Enright et al. at the University of Toronto. The calling

sequence for rkd56 is:

subroutine rkd56 (n, fcn, x, y, xend, tol, ind, c, nw, w)

The calling sequence for the order 8 method is identical. When given appropriate values,

the vector parameter c allows for the specification of a weighted tolerance such that the magni-

tude of the components of the defect of pn(t) are controlled for i ∈ 1, 2, . . . 6N . Equation 1.8

suggests that we bound the defect in equation 1.7 by,

�δ1� ≤ TOL

maxi |∇q̄i|
,

�δ2� ≤ TOL

maxi mi|v̄i|
,

so that,

dE

dt
= ∇V (s)δ1 + Mwiδ2,

dE

dt
≤ 3N · TOL. (1.9)

On each step accepted by the integrator it is a trivial matter to implement this error control.

However, evaluating the defect involves additional function evaluations which makes energy

control based directly on equations 1.8 or 1.9 prohibitively expensive when applied at each

time step. In chapter 2 we will demonstrate that it is possible to augment the inequality 1.6

with novel stepsize selection strategies that provide the MD practitioner with more fine-grained

control over the energy drift, at a competitive computational cost.
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1.3 Previous Work

The numerical integration of Hamiltonian systems has been an area of active research over the

past 30 years. Leimkuhler’s recent text [5] provides an excellent survey of the field, with a

focus on molecular dynamics. There is a general consensus in the literature that symplectic

integrators are superior for the long term integration of Hamiltonian systems [17]. However,

for symplectic methods to preserve energy they require that a constant stepsize be used, and

the computational trade-off from the restriction to a constant stepsize has not been explored in

detail.

The work presented in this thesis is similar in structure to the comparisons presented in [14],

[9]. In [14] Skeel and Okunbor compare the performance of symplectic and non-symplectic

integrators, finding that some higher order symplectic methods allow for up to 40% increase

in scaled stepsize as compared to the standard Verlet method. The possibility of exploiting

optimal order continuous approximations, or variable stepsize is not considered in their inves-

tigation. The non-symplectic integrators used for comparison are run with a constant stepsize,

leading to poorer performance than would be achieved from an efficient stepsize selection

scheme.

Some work has also been done on the development of variable stepsize symplectic inte-

grators [15]. These methods typically involve the modification of either the force function, or

the Hamiltonian of the system in order to decompose the system into components associated

with different time scales. The behavior and performance of these new methods are still being

tested and they have not achieved widespread use in MD experiments.

1.4 Contribution of the Thesis

The primary contribution of this thesis is the development of an efficient error control schema

that is able to directly bound the energy drift of a molecular dynamics simulation. It is demon-

strated that even for relatively long MD simulations, our novel error control strategy is com-
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petitive when compared to commonly used symplectic integrators. By modifying the stepsize

selection strategies used by rkd56 and rkd78, the MD practitioner is presented with the ability

to select a maximum allowable energy drift over the course of the simulation. Further, the

strategies presented herein will fail early in the integration if the target drift is not achievable,

allowing the practitioner to determine the appropriate integrator without wasting a substantial

number of cycles.

1.5 Outline of the Thesis

In chapter 2 the performance of a crude error control is assessed on a problem with free bound-

ary conditions, and a full force function. Chapter 3 outlines and tests a refinement of the

error control which exploits equation (1.8) more fully. Chapter 4 tests the refined error con-

trol method against Verlet using periodic boundary conditions and a potential cutoff function;

computational approximations widely used in standard MD simulations. Finally, a C∞ cut-

off function is proposed, and the error control strategies are subsequently evaluated with this

cutoff. In chapter 5 the results are summarized and future work is discussed.



Chapter 2

The Simple System

2.1 Description

In order to test the efficacy of the proposed error control, a system of N non-polar atoms inter-

acting with only the Van Der Walls force is considered. This is the simplest physically realistic

system modeled using MD with generally accepted results in the literature. The test system

described below is commonly used when comparing the suitability of numerical integrators for

MD simulation and is the system used by Verlet [11] in introducing his famous Verlet method

[14], [9].

2.1.1 The Potential Function

The basic building block of the intermolecular potential for this system is the Lennard-Jones

potential function (2.1), consisting of a strong repulsive term that dominates at short distances

and a weak attractive term that dominates at large distances. The particular powers are chosen

for computational efficiency, although the model fits empirical data closely.

φ(rij) = 4�

��
σ

rij

�12

−
�

σ

rij

�6
�

(2.1)

The quantities �, and σ represent the minimum energy of the interaction and the distance at

13
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which the potential energy between the two particles is zero, respectively. These parameters

are typically chosen to match empirical data or ab initio calculations and the values used here

are standard for the realistic simulation of argon.

The potential of a system of N argon atoms in the simulation is then defined as the sum

over all pairs of two particle interactions, so that (1.3) simplifies to

V (q) =
N�

i=1

�

j<i

φ(rij).

In order to derive the force felt by each particle we must consider each component of the

position separately. Let q3i+c denote qix if c = 1, qiy if c = 2 and qiz if c = 3. Then the force

felt by the c-th component of the i-th particle is the 3i + c-th component of −∇V , and can be

written as

−∇V3i+c = − ∂V

∂q3i+c

= − ∂

∂q3i+c

�

j<k≤N

φ(rjk)

= −
N�

j=i+1

∂φ(rij)

∂q3i+c

−
i−1�

k=1

∂φ(rki)

∂q3i+c

= −
N�

j=1
j �=i

∂φ(rij)

∂q3i+c

= −
N�

j=1
j �=i

φ
�
(rij)

∂rij

∂q3i+c

,

where φ
�
(rik) = −48 �

rik

��
σ

rik

�12
− 0.5

�
σ

rik

�6
�

and ∂rij

∂q3i+c
= q3i+c−q3j+c

rij
.

Since q3i+c−q3j+c

rij
is just the c-th component of the unit vector pointing from the ith atom to

the jth atom, the force function F , introduced in (1.2), has the specific form:

Fi =
N�

j=1
j �=i

−48
�

rij

��
σ

rij

�12

− 0.5

�
σ

rij

�6
�

qi − qj

�qi − qj�
.

2.1.2 Computational Tricks

There are many approximations introduced into production MD codes to increase simulation

speed [17], all of which create artifacts in the conservation of energy [14]. In order to demon-
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strate that the proposed techniques offer the MD practitioner with over energy drift, we will

first run a simulation without the use of these time-saving devices. This will allow us to con-

sider the effect of the numerical integration scheme as separate from the effects of extraneous

modelling error.

When using the complete force calculation with no approximations it can be shown that a

pth order symplectic method is able to remain within O(hp) of the true energy, although a small

systematic drift is observed over long time intervals due to roundoff error [8]. Under these

conditions a non-symplectic method may have a difficult time competing with the inherent

energy conservation of the symplectic Verlet method, since there will be no drift associated

with force field approximations. Nevertheless, it will be shown that even over relatively long

time intervals Runge-Kutta methods are able to perform comparably to the symplectic Verlet

method when applied with appropriate stepsize selection strategies.

2.1.3 Reduced Units

In order to reduce the errors due to floating point arithmetic and for ease of coding we use

reduced units in the integration. In the rescaled system, σ, � and m are the fundamental units

for distance, energy and mass respectively. All the atoms in our simulations have, m = margon

so that in reduced units they are given unit mass.

Quantities written with the superscript ∗ indicate that they are expressed in reduced units.

Under this system the Lennard-Jones potential (2.1) becomes,

φ(r∗
ij
) = 4

��
1

r∗
ij

�12

−
�

1

r∗
ij

�6
�

.

Table 2.1 gives the formulas used to convert between reduced and standard units [10].
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Reduced Units SI Units

length r∗ r

σ

energy e∗ e

�

temperature T ∗ kBT

�

time t∗ t

σ

�
�

m

mass M∗ M

m

force f ∗ fσ

�

velocity v∗ v
�

m

�

Table 2.1: Conversions between commonly used quantities in reduced, and the International

System of Units (SI).

2.1.4 Initial Conditions and Equilibriation

Many of the quantities measured using the MD method require that the system satisfy the

ergodic hypothesis [10]. Ergodicity is required to ensure that meaningful statements can be

made about ensemble averages by computing time averages from the phase space trajectory of

the system. For example, the instantaneous temperature of an MD simulation is given by,

T (v) =
m

3kBN

N�

i=1

v2
i
. (2.2)

By defining the time average for a measured quantity A as �A(t)� = 1
N

�
N

k=1 A(k∆t), it is pos-

sible to define the temperature during a simulation as �T (v(t))�. This formula demonstrates

an additional benefit of using continuous methods, as it is possible to more accurately com-

pute time averaged quantities. That is, we are able to compute �A(t)� = 1
ttend

�
tend
0 A(t)dt to

high accuracy using standard quadrature tools, rather than resorting to an unnecessarily rough

partitioning of the interval [0, ttend].

Since the atoms in a typical MD run are typically provided with random initial velocities

and physically unlikely positions, it is necessary to allow the system to reach a more realistic
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equilibrium state before useful results can be generated. In this thesis, the initial positions are

set according to a face centered cubic (FCC) crystal structure, the lowest-energy static state for

spherically symmetric particles. The initial width of the crystal was 9.25∗ as determined by a

binary search to be near the width providing minimal potential energy.

Following the numerical experiments in [11], [14] the initial velocities were randomly gen-

erated with uniform distribution and scaled so that the average kinetic energy of the system was

equal to the desired temperature T = 66K. The system was run for 21.66ps using the Verlet

method while the temperatures were adjusted by a factor of
�

T

T � at each step, where T � is the

measured average instantaneous temperature. After this temperature-damped equilibration the

simulation progressed for an additional 2.16ps without temperature damping. The resulting

phase state was used as the initial conditions for all comparative runs.

2.2 Numerical Results

The most expensive part of a molecular dynamics simulation is by far the evaluation of the

O(n2) force function in (1.2). These function evaluations comprise 90% of the computational

effort in an MD simulation [2]. For this reason a reasonable quantity to use in comparing

the efficiency of an integration scheme is the scaled stepsize, defined as the size of a given

step divided by the number of function evaluations required to take the step [14]. Since the

step sizes used in RK integrations are variable, and because some steps are rejected we use

an average scaled stepsize, hs to compare the computational costs of numerical integrators.

Letting f be the number of function evaluations used during the integration we define hs to be,

hs =
tend

f
.

An appropriate measure of the energy drift is given by the root-mean-square (rms) error in

the energy [14], [9]:

�RMS
def
=

�
�

t

(e(t)− E)2

M
,
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where E is the exact energy of the system (i.e. the energy computed at time 0) and e(t) is the

energy of the system at time t as it evolves according to a particular integration scheme. The

sum is taken over all M timesteps tn (n = 0, . . . ,M ) that are visited by the discrete method,

so for a constant timestep scheme such as the Verlet method tn ∈ 0, ∆t, 2∆t, . . . , (M − 1)∆t.

A quantity that will be useful in subsequent sections is the following bound on the slope of

the energy drift

slopemax
def
=

maxt∈[0,tend](e(t))−mint∈[0,tend](e(t))

tend
.

It can be shown that �RMS ≤ slopemax so that this quantity may be used as a measure of the error

in the energy associated with the integration.

2.2.1 Traditional Methods

Figure 2.1 shows the results of a typical MD simulation using the Verlet method on a system of

864 LJ argon atoms over 2.15ns. In the majority of MD simulations the Verlet integrator is run

with a constant stepsize on a femptosecond scale to provide a good trade-off between accuracy

and cost [17]. All Verlet integrations in this thesis are run with a stepsize of 1× 10−15s = 1fs

so that we are using the best energy conservation traditionally used in practice.

Figure 2.1 shows the characteristic behavior of the energy drift in an MD simulation when

integrated using the Verlet method and the exact force calculation. The drift is highly os-

cillatory around a central value, with a slight systematic drift in energy over very long time

intervals. The nature of the long term drift is discussed in detail in [6].

Figure 2.2 demonstrates the smooth energy drift characteristic of Runge-Kutta integrators

applied to the same problem. In contrast to the Verlet method’s oscillatory behavior, we see a

well behaved directional drift. This systematic drift is often cited as the reason RK methods

are rejected for use in long term MD simulations.

Table 2.2 reports the observed �RMS and scaled stepsize for the Verlet method and this typi-

cal Runge-Kutta integrator and demonstrates that, even in the most challenging case, a variable
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Figure 2.1: Typical energy conservation using Stormer-Verlet integration.

stepsize method can compete with Stormer-Verlet in terms of energy conservation. By sup-

plying the Runge-Kutta code with a tolerance of 10−4, it was possible to obtain an average

scaled stepsize comparable to the scaled stepsize used by the Verlet method. With the same

computational cost it is seen that the RMS error in the energy is more than an order of magni-

tude smaller for the variable stepsize RK method. This performance is observed even over the

relatively long time interval of 1000∗ reduced units (or 2.15ns) as seen in figures 2.2 and 2.1.

RMS Error Scaled Stepsize

Verlet-Stormer 5.9438× 10−4 4.6294× 10−4

Runge-Kutta 3.5041× 10−5 3.3786× 10−4

Table 2.2: Stepsize and RMS Energy Error for Standard RK Methods

Comparable performance is not sufficient justification to propose using standard variable-
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Figure 2.2: Characteristic energy drift typically associated with standard Runge-Kutta meth-

ods.

stepsize methods. First, the method of controlling the drift (TOL) is not related to the energy

drift in a simple way, so the appropriate value of TOL for a given experiment is not at all

obvious. Additionally, although the RMS error can be made small for a competitive computa-

tional cost there is no guarantee that the method will be able to satisfy the error requirement

with a reasonable stepsize. Moreover, a standard variable stepsize method may fail at any point

during a simulation, potentially wasting a substantial amount of computer time.

2.2.2 Behavior of the Energy Drift

Figure 2.3 shows the drift in total energy for a variety of tolerance values over a shorter time

interval. The systematic drift typical of explicit Runge Kutta methods is seen for all tolerances,

and the drift varies quite predictably with respect to TOL. While there is definitely a well
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behaved relationship between TOL and the energy drift, it is evident that TOL significantly

overestimates the error in energy by several orders of magnitude. In the next chapter we will

exploit the predictable relationship between TOL and the slope of the energy drift in order

to provide the MD practitioner with increased control over over the energy drift in a typical

simulation.
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Figure 2.3: Energy drift for various values of TOL.



Chapter 3

An Improved Energy Drift Control

In the previous section it was shown that, when using a standard RK method, the energy drift

in an MD simulation varies predictably with the parameter TOL. We present several strategies

for directly controlling the energy drift over a simulation by exploiting this relationship. In

addition to providing the MD practitioner with the ability to bound the absolute energy drift

during integration these strategies will also bound the associated RMS error. Consider a method

of stepsize selection that attempts to ensure,

max
i,j

|e(ti)− e(tj)| ≤ MAX , (3.1)

where e(ti) is the energy of the simulation at time ti and MAX is the maximum allowable

energy drift, specified by the user. Under these conditions we have,

�RMS =

����
M�

i=1

(e(ti)− e(0))2

M

≤

����
M�

i=1

MAX 2

M
= MAX .

Each of our proposed algorithms operates by directly attempting to satisfy (3.1). Thus, in

22
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subsequent sections, we are able to obtain a bound on �RMS in addition to a guaranteed bound

on the energy drift.

3.1 The Algorithms

Intuitively, each of the strategies described below bound the drift over the course of the sim-

ulation by ensuring that a given step is only accepted if the energy change over that step is

not too large. We should reiterate that although RMS error is often used when comparing

integrators[14], we are primarily interested in bounding the absolute energy drift since it is the

physically relevant quantity. We have observed that the absolute energy drift is a more strin-

gent condition than RMS error so, with proper care in choosing the MAX parameter, we will

be able to directly compare the efficiency of our step selection strategies with the benchmark

Verlet method.

3.1.1 Simple Energy Error Control

The first technique we propose satisfies (3.1) for t ∈ [0, tend] by modifying the stepsize selection

procedure used in the Runge-Kutta integrator (we will use rkd56 in most of the examples in

this chapter). After the attempted step from tn−1 to tn we accept only if

tend�e(tn)− e(tn−1)�
hn

≤ MAX , (3.2)

where hn = tn − tn−1 is the trial stepsize. This will guarantee that the required bound is

satisfied since for an arbitrary choice of i and j such that ti, tj ∈ [0, tend] and j > i, we have:
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e(ti)− e(tj) =
j�

k=i+1

e(tk−1)− e(tk)

≤
j�

k=i+1

MAX hk

tend

= MAX
�

j

k=i+1 hk

tend

≤ MAX .

In the case of rejected steps we simply adjust the trial stepsize using equation (1.6) with

estn set to the left hand side of equation (3.2). The step is then retried with the adjusted

stepsize. This stepsize selection strategy does not require the use of a continuous polynomial

approximation so that for each step taken by rkd56 only eight function evaluations are required

per step.

Numerical Results

In this, and subsequent numerical results sections we choose the MAX parameter to be 1.877×

10−2. This value was obtained by calculating maxi,j |e(ti)− e(tj)|, where e(ti) are the energies

at the ith step of the benchmark Verlet simulation in chapter 2. We use 10 times the observed

Verlet drift, since our algorithm ensures that the bound is strictly satisfied and since RMS error

is a less restrictive measure of the quality of the simulation.

Verlet-Stormer Runge-Kutta

Scaled Stepsize 4.6294× 10−4 3.4960× 10−4

RMS Error 5.9438× 10−4 7.9098× 10−5

Max Energy Drift 1.877× 10−3 1.3861× 10−4

Table 3.1: Scaled stepsize, RMS error, and maximum energy drift for the benchmark Verlet

method and the simple stepsize selection strategy applied with rkd56.
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Figure 3.1: Energy drift observed with the novel stepsize selection in rdk56.

Table 3.1 summarizes the observed results for this simple stepsize selection strategy. The

third row demonstrates that the bound given by (3.1) is satisfied. This strategy is somewhat

overzealous in controlling the energy drift, which can be seen to be two orders of magnitude

smaller than the specified value for MAX .

In terms of efficiency the proposed algorithm fares well - with a scaled stepsize thirty per-

cent smaller than that used in the Verlet method we see a tenfold improvement in the RMS error.

Adjustments to this stepsize selection strategy in subsequent sections will further improve on

these results by exploiting the fact that the observed energy drift is significantly smaller than

that predicted by the MAX parameter.
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3.1.2 Adjusting the error estimate

A consequence of the error control given by (3.2) is that after any timestep tn we are guaranteed

that |e(tn) − e(0)| ≤ MAX tn
tend

. In practice this inequality is almost never sharp so that each

step introduces wasted energy drift that could be used in subsequent steps. In this section we

present our first adjustment to the simple rkd56 stepsize selection strategy that takes advantage

of this wasted drift in order to increased the average step size over the integration.

On the nth step of the simulation we have MAX − |e(tn−1) − e(0)| units of energy that

we could use in the remainder of the run in addition to the acceptable drift as computed by the

simple stepsize selection strategy (3.2). This suggests that we modify the stepsize selection

strategy to accept the nth step if the energy change over that step satisfies

|e(tn)− e(tn−1)| ≤
(MAX − |e(tn−1)− e(0)|)hn

tend − tn−1
. (3.3)

If this equation is satisfied for all n then we have

(tend − tn−1)|e(tn)− e(tn−1)|
hn

≤ MAX − |e(tn−1)− e(0)|

|e(tn)− e(tn−1)| ≤ MAX − |e(tn−1)− e(0)|

since tend−tn−1

hn
< 1 so that

|e(tn)− e(tn−1)| + |e(tn−1)− e(0)| ≤ MAX

Therefore, since the triangle inequality implies that |e(tn)−e(0)| ≤ |e(tn)−e(tn−1)|+|e(tn−1−

e(0)|, we have |e(tn) − e(0)| ≤ MAX Since (3.3) guarantees that at any given point in the

simulation we have |e(tn)− e(0)| ≤ MAX , the observed energy drift will remain bounded by

the user-defined acceptable limit.
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Numerical Results

Applying the error control strategy (3.3) gives a characteristic energy drift as shown in figure

3.2. As the simulation progresses an increasing amount of unused drift accumulates resulting

in a larger stepsize near t = tend. The total energy drift is somewhat closer to the value specified

by MAX , although there still remains substantial unused drift at the end of the simulation.

Verlet-Stormer Runge-Kutta

Scaled Stepsize 4.6294× 10−4 4.0123× 10−4

RMS Error 5.9438× 10−4 1.9141× 10−4

Max Energy Drift 1.8770× 10−3 9.2398× 10−4

Table 3.2: Scaled stepsize, RMS error, and maximum energy drift for the benchmark Verlet

method and the adjusted stepsize selection strategy (3.3) used with rkd56.

Table 3.2 reports the improved performance of this stepsize selection strategy, as we are

able to take a significantly larger average stepsize compared to the previous method. The

scaled stepsize is only 15 percent smaller than that of the Verlet benchmark while the RMS

error is three times smaller giving the 6th order RK method performance comparable to to

that of Verlet. At the end of this chapter we will demonstrate that further improvements in

performance can be realized by applying this strategy to higher-order RK methods, resulting

in a significant performance gain when compared to the Verlet integrator.

Although the absolute change in energy remains bounded by the parameter MAX the non-

uniform behavior of the energy drift over the interval of integration may be undesirable to

the MD practitioner. In the next section we propose an additional modification to the stepsize

selection strategy that will increase the uniformity of the energy drift over [0, tend] at the expense

of introducing an additional ad-hoc parameter.
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Figure 3.2: Energy drift using the stepsize selection strategy (3.3).

3.1.3 A further adjustment

In order to achieve greater uniformity in the energy drift as the simulation approaches t = tend

we propose splitting the interval [0, tend] into subintervals of equal length, while applying the

stepsize adjustment (3.3) over each subinterval. Formally, this involves introducing an ad-hoc

parameter Nint to be the number of subintervals of width Wint
def
= tend

Nint
. We denote the lth interval

by [tl−1, tl]
def
= [(l − 1)Wint, lWint] for l ∈ {1, . . . Nint}. For what follows, we let {tl0, . . . , tlMl

}

denote the subset of all steps {t0, . . . , tM} that lie in the lth subinterval. The stepsize associated

with the tl
n
th step is then defined as hl

n

def
= tl

n
− tl

n−1.

In order to define this alternative stepsize selection strategy we need to introduce the fol-

lowing additional quantity,

∆tl
n

def
= Wint − (tl

n
− tl−1),
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to be the time remaining in the current subinterval. For simplicity, we approximate e(tl−1)

by using e(tl−1
Ml−1

) for the value of the energy at the start of the interval. This does not pose a

significant problem so long as Nint is chosen so that Wint is significantly larger than the average

stepsize. It is possible to use the continuous approximation to the solution to calculate the

energy precisely at tl−1, or to truncate steps that cross a subinterval boundary but in practice

each of these choices has a negligible effect on the outcome.

Finally, step tl
n

is accepted if and only if

|e(tl
n
)− e(tl

n−1)|
hl

n

≤
MAX
Nint

− |e(tl
n−1)− e(tl−1)|

∆tl
n−1

(3.4)

For a method satisfying equation (3.4) we have

|e(tl
n
)− e(tl

n−1)|∆tl
n−1

hl
n

≤ MAX
Nint

−+|e(tl
n−1)− e(tl−1)|

|e(tl
n
)− e(tl

n−1)| ≤ MAX
Nint

− |e(tl
n−1)− e(tl−1)|

since ∆tln−1

hl
n

< 1. It follows that

|e(tl
n
)− e(tt

n−1)| + |e(tl
n
)− e(tl)| ≤ MAX

Nint

Therefore, since the triangle inequality implies that |e(tl
n
)−e(tl)| ≤ |e(tl

n
)−e(tt

n−1)|+|e(tl
n
)−

e(tl)|, we have |e(tl
n
)− e(tl)| ≤ MAX

Nint
. This inequality follows for all steps except possibly for

those steps that span a subinterval boundary. By adjusting the stepsize selection strategy to

ensure that the step does not enter into the next subinterval it is possible to make this equality

hold for all steps. In practice, the few steps where this inequality may not be satisfied do not

substantially affect the energy drift and we assume all steps are contained within the subinterval
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in order to simplify the already cumbersome notation. Since the energy drift over an arbitrary

subinterval is bounded by MAX
Nint

we ensure that the drift over the entire integration is bounded

by MAX .

In obtaining the numerical results presented in this section, we arbitrarily chose Nint = 100

but this number could potentially be given a default value, and be updated as the simulation

progresses. In any realistic MD simulation there will be billions of steps taken so choosing an

appropriate Nint does not present a significant difficulty.

Numerical Results
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Figure 3.3: Energy drift using the stepsize selection strategy (3.4) with Nint = 100.

Table 3.3 reports the energy drift obtained using strategy (3.4). The modified strategy is

seen to have in a six-fold increase in the energy drift which is observed to be within an order of

magnitude of the predicted value. As expected, this results in increased average stepsize and
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Verlet-Stormer Runge-Kutta

Scaled Stepsize 4.6294× 10−4 5.5112× 10−4

RMS Error 5.9438× 10−4 3.6323× 10−3

Max Energy Drift 1.8770× 10−3 6.3522× 10−3

Table 3.3: Scaled stepsize, RMS error, and maximum energy drift for the benchmark Verlet

method and the stepsize selection strategy (3.4) applied for rkd56.

increased �RMS. Since these values are substantially larger than those obtained using the Verlet

method this particular simulation is difficult to compare to the benchmark in terms of efficiency

and accuracy, although it is evident that our approach performs quite well in maximizing the

average stepsize subject to the specified energy drift.

3.1.4 Higher order methods

Our previous experiments have demonstrated that novel stepsize selection strategies are able to

perform comparably to the Verlet method when considering �RMS and scaled stepsize for a par-

ticular order of RK formula. The closest-matched trials have shown a slightly smaller stepsize

coupled with a significantly improved RMS error with respect to the benchmark simulation.

In this section we determine the performance gains that can be realized by moving to an 8th

order RK method with the stepsize selection strategy (3.3) described in section 3.1.2 (since this

strategy proved to be most similar to Verlet in terms of performance).

Numerical Results

There is a marked difference in the behavior of the energy drift as t tends to tend when using

the higher order RK method. Figure 3.4, when compared to figure 3.2, shows that the sudden

increase in the observed energy drift when using lower order method is greatly reduced. The

cause of this increased consistency is unclear, but we hypothesize that it is the result of the
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differing values for p in (1.6). This hypothesis is supported by the fact that the
�

TOL

estn

� 1
p term

is noticeably steeper for the 6th order method when TOL is close to estn, and that the fraction

of failed steps is 5% smaller for the higher order method.
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Figure 3.4: Energy drift using the 8th order RK method rkd78 and the stepsize selection strat-

egy (3.3).

In addition to this improved qualitative behavior, table 3.4 shows that the higher order

method is using a substantially larger portion of the drift provided by the parameter MAX .

While we still have an order of magnitude of unused drift (recall that the value of MAX provided

to the RK method is 1.877× 10−2) the results from the 8th order method are 30 percent closer

to the target value.

Perhaps the most significant improvement obtained with the higher order method is the

increased efficiency. With an �RMS close to the Verlet benchmark we are able to take a step-

size nearly 20 percent larger. Although RK methods are commonly cited in the literature as
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Verlet-Stormer Runge-Kutta

Scaled Stepsize 4.6294× 10−4 5.4792× 10−4

RMS Error 5.9438× 10−4 6.8510× 10−4

Max Energy Drift 1.8770× 10−3 1.2436× 10−3

Table 3.4: Scaled stepsize, RMS error, and maximum energy drift for the benchmark Verlet

method and the stepsize selection strategy (3.3) applied with rkd78.

being unsuitable for long MD simulations[10] [5] [17] it is evident that they can be modified

to perform competitively even when compared to the commonly used symplectic methods.

Since these modifications also provide the user with the novel ability to adaptively bound the

total energy drift over an integration, we suggest that RK methods should not be ruled out of

consideration for MD applications.



Chapter 4

PBC and cutoffs

4.1 Description

The numerical results presented in the previous chapter were computed using the full force

calculation and the simplest possible boundary conditions. This results in optimal energy con-

servation and was useful as a best-case comparison, but it is not practical for realistic biomolec-

ular simulations. Most biomolecular systems involve the behavior of molecules in bulk fluid,

and the conditions set up in the previous chapter will create excessive simulation artifacts due

to the large fraction of particles interacting with the free boundary. Further, the full force cal-

culation is prohibitively expensive for large systems and approximations of the force must be

introduced to reduce the computer time required for the force evaluations.

In practice, periodic boundary conditions (PBCs) are often used to simulate bulk matter

with a small number of particles. The simulation is treated as a lattice of repeated cubical cells

of width wbox, each cell being an exact replica of the first. As a particle leaves from one side

of a cell it’s image from an adjacent cell enters via the opposite side, maintaining a constant

number of particles per box (see Figure 4.1). Without further approximation the particles in the

simulation are able to interact with particles in any other cell, resulting in an infinite number

of terms in equation 1.3. As such, a method of damping the intermolecular forces to zero after

34
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a cutoff distance roff must be introduced, if one is to evaluate the forces involved in a PBC

system. That is, in computing the forces on a particle at time t only the forces due to particles

within roff of this particle need be computed.

Figure 4.1: Periodic boundary conditions. As the shaded atom leaves the simulation box it’s

mirror image from the adjacent cell enters, maintaining a constant number of particles at all

times.

The minimum image convention is the simplest cutoff scheme, where the ith particle inter-

acts only with nearest image of the jth particle. This convention is equivalent to specifying

a cutoff distance that forms a cube of width wbox
2 centered at each atom. The most common

switching technique used in practice is known as spherical switching, and involves a switching

function s(r) defined to be 1 for r ∈ (−∞, ron), 0 for r ∈ (roff ,∞) and decreasing monoton-

ically from 1 to 0 for r ∈ [ron, roff ] [16]. See figure 4.2 for an example of one such switching

function. This function is then multiplied by the potential function V (r) or the force function

F (r) to ignore the effects of particles at distances greater than roff .

The hard cutoff method takes ron = roff so that the force is abruptly truncated to 0 for r ≥

roff . Both the minimum image convention and the hard cutoff method introduce discontinuities

in the force function which create unphysical artifacts in biomolecular simulation [1]. For
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this reason, and since the discontinuities introduced by these methods will cause our adaptive

integrators to be less competitive, or to fail without nontrivial modification, we restrict our

attention to the most commonly used switching functions with values for ron and roff that are

generally agreed upon in the literature.

4.2 Potential Cutoff Scheme

We will be analyzing cutoff schemes with the switching function

s(r) =






1 if x < ron

1 + y(r)2[2y(r)− 3] if ron ≤ x ≤ roff ,

0 if x > roff

(4.1)

where y(r) = r2−r2
on

r2
off−r2

on
. This switching function is used in many MD simulations [17] [16] and

is one of the switching techniques included in the popular CHARMM MD package [1]. When

applied as a potential switch, this function gives a continuous force function (4.2), although

higher derivatives of this force function will suffer from discontinuities:
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Figure 4.2: Plot of the potential cutoff function with ron = 1 and roff = 2.
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F (r) =
dφ(r)s(r)

dr
=






φ(r) if x < ron

dφ(r)
dr

s(r) + ds(r)
dr

φ(r) if ron ≤ x ≤ roff

0 if x > roff

(4.2)

In this equation ds(r)
dr

= 6(y(r)2 dy(r)
dr

− y(r)dy(r)
dr

)), dy(r)
dr

= 2r

r2
off−r2

on
and dφ(r)

dr
takes the same

form as in chapter 2.

The effects of the parameters ron and roff in realistic biomolecular simulations have been

well studied [1], [16], [17], [4]. It is generally agreed in the literature that the distance between

ron and roff should be at least 4Å and ron should be greater than or equal to 12Å. Subsequent

numerical results that we determine were computed with ron = 12Å and roff = 16Å in order

to evaluate the performance of our novel energy control strategies in a situation that is relevant

to the MD community.

4.2.1 Standard Integrators

Initially, we apply the benchmark Verlet and standard RK methods to the PBC system outlined

above. It should be noted that once cutoffs are introduced there are two possible interpretations

of the energy of the system. The first is to consider the energy calculated using the modified

potential function, with cutoffs. The second possibility is to consider the modified system an

inexact approximation to the true system, and use the original function without cutoffs when

calculating the energy.

The modified energy, modified potential and modified forces are subsequently referred to

as E, V and F , while the unmodified counterparts are denoted by Etrue, Vtrue and Ftrue. We

subsequently examine the implications of each interpretation and how they relate to the quality

of the appropriate solution.
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Numerical Results

Figure 4.3 demonstrates the typical behavior of the modified and true energy drift using the

Verlet and sixth order standard RK integrators. It can be seen that, when using the modified

energy, the qualitative behavior of the two methods is consistent with the observations from

previous chapters. The Verlet method exhibits it’s characteristic oscillatory behavior and the

RK method demonstrates a smooth, steady drift over the course of integration.
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Figure 4.3: Modified energy drift (top) and true energy drift (bottom) using the Verlet integrator

(left) and the rkd56 integrator (right) using the potential cutoff scheme with ron = 12Å and

roff = 16Å

However, when the true energy is used as a measure of the qualitative behavior of the energy

drift, the situation changes substantially. Although the Verlet integrator still displays its typical

oscillatory behavior, the amplitude of the oscillations are an order of magnitude larger. This

increased error in the energy drift is also seen in the RK integration, so that the comparatively

small extra energy drift due to the RK integration is almost negligible.

Table 4.1 shows the �RMS and maximum energy drifts for the two methods using both inter-

pretations of the energy. The columns corresponding to the true energy drift are seen to have

�RMS and drift values that are nearly the same for the two integrators, while this is not the case

when considering the modified energy columns. We will report only the performance mea-

sures related to the modified energy in subsequent sections. Note that when using an energy
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Verlet, True Verlet, Modified RKD56, True RKD56, Modified

Scaled Stepsize 4.6294× 10−4 4.6294× 10−4 5.4722× 10−4 5.4722× 10−4

RMS Error 1.0852× 10−2 6.9155× 10−4 1.1944× 10−2 1.0344× 10−3

Max Energy Drift 6.4864× 10−2 3.0934× 10−3 5.6491× 10−2 1.7675× 10−3

Table 4.1: Results for the Verlet and rkd56 methods with a potential cutoff function. Both the

true, and modified energy are presented for comparison.

preserving method with a modified approximate force function one can only expect to observe

the preservation of E rather than Etrue.

4.2.2 Novel Integrators

In analyzing the performance of energy-based stepsize selection using PBCs, the stepsize se-

lection strategy outlined in section 3.1.2 was used. Although this strategy was not as efficient

as the one presented in section 3.1.3 it has the advantage of producing a scaled stepsize com-

parable to the one used in the benchmark Verlet integrations. Since it is not possible to directly

estimate the scaled stepsize before a simulation is complete, this choice will allow us to most

accurately determine the relative performance of the novel stepsize selection scheme. All pa-

rameters for the integration were left to the values from chapter 3, unless otherwise stated.

Numerical Results

Table 4.2 shows the results of the novel stepsize selection strategy when used with the 6th and

8th order RK methods. Plots of the energy drift are not included here since the qualitative

behavior is identical to that seen in the top right pane of figure 4.3. With a potential cutoff

function the 6th order RK method significantly outperforms the 8th order integrator. This ob-

servation is consistent with the fact that the potential cutoff introduces discontinuities in the

higher order derivatives of the force function.
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The introduction of a potential cutoff function substantially reduces the effectiveness of

the higher order RK integrators. While the 6th order method is able to perform comparably to

the Verlet benchmark, the 8th order method is forced to take a scaled stepsize that is only half

the size1. In each case the energy conservation is noticeably worse than that seen in previous

sections. In the next section it will be shown that this degradation in performance relative

to what was seen in chapter 3 is due to the introduction of discontinuities in the lower-order

derivatives of the associated force function, and this can be corrected.

RKD56 RKD78

Scaled Stepsize 4.0708× 10−4 2.5746× 10−4

RMS Error 1.5893× 10−3 1.3812× 10−3

Max Energy Drift 7.8743× 10−3 7.9312× 10−3

Table 4.2: Performance of novel integration schemes using a potential cutoff

4.3 Force cutoff

The cutoff function (4.1) can also be applied to the force function directly. Although potential

cutoff schemes are more commonly used in practice, force function cutoffs have the advantage

that they can be used to separate the distinct time-scales inherent in biomolecular systems [15],

resulting in increased computational efficiency. Since the presence of an additional continuous

derivative of the force function will likely have an effect on the performance of high-order

integrators we analyze the performance of our proposed stepsize selection strategies when

applied to a system with force cutoffs.

When a force cutoff is used, the potential energy of the modified system must be calculated

by integrating the modified force function:

1This is the result of the reduced observed order of high order RK methods when solving a problem with
discontinuous low order derivatives, while still using the larger number of stages associated with a high order RK
method.
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V (r) =






Vtrue(r) + ∆V if x ≤ ron

−
�

r

roff
s(r�)Ftrue(r�)dr� if ron < x ≤ roff

0 if x > roff

(4.3)

Here, ∆V is chosen to obtain continuity of V (r). In our case ∆V ≈ 8.5904×10−4 and the

integral in (4.3) was computed using symbolic integration in Mathematica to be

−32.839

r−12
+

8.7614

r−10
− 0.68888

r−8
+

32.857

r−6
− 10.951

r−4
+

1.3777

r−2
+ 5.3246× 10−2 log r

Again, the parameters for the numerical experiments in this section are identical to those used

in chapter 3.

4.3.1 Standard Integrators

The benchmark Verlet and standard RK methods are again applied to the PBC system, with

the force function cutoff described above. The same qualitative behavior between the two

methods and two interpretations for energy as seen in figure 4.3 were observed, and the plot

of the energy drift is not duplicated here. The energy error introduced by the force function

approximation is again seen to dominate the effects of the integrators so that it is appropriate

to determine comparative performance by exclusively using the modified energy measures.

Numerical Results

Table 4.3 shows substantial similarity with the results obtained using the potential cutoff func-

tion. The true energy drifts are an order of magnitude greater than the modified energy drifts,

and the relative performance of the two integrators cannot be determined using the true energy.

Using the modified energy, the RK method again performs comparably to the Verlet benchmark

with a slightly smaller stepsize taken to achieve a slightly greater �RMS and smaller maximum

energy drift.
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Verlet, Modified Verlet, True RKD56, Modified RKD56, True

Scaled Stepsize 4.6294× 10−4 4.6294× 10−4 4.5254× 10−4 4.5254× 10−4

RMS Error 5.4317× 10−4 1.3915× 10−2 1.0198× 10−3 1.2749× 10−2

Max Energy Drift 3.1618× 10−3 8.0515× 10−2 1.7637× 10−3 8.8655× 10−2

Table 4.3: Results for the Verlet and rkd56 methods with a force cutoff function. Both the true

and modified energy are presented for comparison.

4.3.2 Novel Integrators

The stepsize selection strategy described in section 3.1.2 was again used in order to obtain valid

comparisons with the previous chapter. Both 6th and 8th order RK methods are subsequently

compared. Unless otherwise stated all integration parameters were left to the values specified

in chapter 3.

Numerical Results

Table 4.4 contains the results of the novel stepsize strategy when using the force cutoff func-

tion. The 6th order integrator took a slightly smaller timestep than in the previous section, but

obtained an �RMS smaller than the Verlet benchmark by a factor of two. Likewise, the maximum

energy drift over the interval was nearly an order of magnitude smaller. Due to the difference

in the scaled stepsize it is difficult to draw definitive conclusions about the performance under

the force cutoff.

RKD56 RKD78

Scaled Stepsize 3.4032× 10−4 4.6370× 10−4

RMS Error 2.4697× 10−4 7.7165× 10−4

Max Energy Drift 1.3245× 10−3 1.3607× 10−3

Table 4.4: Performance of novel integration schemes using a force cutoff
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The data associated with the 8th order RK method provides more conclusive evidence that

an increase in the number of continuous derivatives of the force function can improve the

performance. With a stepsize slightly larger than the benchmark Verlet method it was possible

to obtain an �RMS nearly identical to that seen using Verlet, and a maximal energy drift less than

half the size.

4.4 C∞ cutoffs

The previous results suggest that increasing the number of continuous derivatives in the cutoff

function will improve the performance of the higher order integrators. It is possible to test this

hypothesis using a slight modification to the “bump” function commonly used in functional

analysis. Using the classical C∞ function

f(r) =






e
−1
r2 if r > 0

0 if r ≤ 0

an associated C∞ cutoff function can be defined with (4.2) and s(r) given by:

s(r) =






f(roff−|r|)
f(|r|−ron)+f(roff−|r|) if r > ron

1 if r ≤ ron

(4.4)

It is easy to show that this cutoff function ∈ C∞, and evaluates to 0 for r > roff and 1 for

r < ron [13]. When this smooth cutoff is applied to the potential function the force can be

calculated, as it was for (4.2), with

ds(r)

dr
=






− df
dr (roff−r)[f(|r|−ron)+f(roff−|r|)]−[ df

dr (|r|−ron)− df
dr (roff−|r|)]f(roff−|r|)

[f(|r|−ron)+f(roff−|r|)]2 if r > ron

0 if r ≤ ron

,
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and

df(r)

dr
=






2
r3 e

−1
r2 if r > 0

0 if r ≤ 0
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Figure 4.4: The smooth C∞ cutoff function (top) and the standard potential cutoff function

(bottom).

To our knowledge, the performance of this cutoff function in a biomolecular context has

not been evaluated in the MD literature. With the values ron = 3.5242∗ and roff = 4.6990∗

(discussed in section 4.2) the C∞ cutoff is sharper than the standard cutoff function considered

earlier, and may introduce physically unrealistic forces near the cutoff boundary. However, this

function is sufficient for our purposes and can be used to demonstrate the effectiveness of our

stepsize selection strategies. There are other related modifications to (4.4) that could potentially

improve the physical realism of the truncated force evaluations. Further, the appropriateness of

these modifications can be verified using the methods presented in [16] although that is beyond
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the scope of this thesis.

Numerical Results

In order to closely match the energy drift seen in the Verlet integration, the MAX parameter

was given a value of 6.4309×10−3 when using both sixth and eight order modified RK methods.

This value was determined by performing two integrations with the higher order method, one

with MAX = 1.877×10−3 and the other with MAX = 1.877×10−2. A corresponding tenfold

increase in the energy drift was observed. The final value for MAX was chosen to match the

energy drift for the Verlet run by assuming that the observed energy drift depends linearly on

MAX .

Verlet RKD56 RKD78

Scaled Stepsize 4.6370× 10−4 3.7303× 10−4 5.0652× 10−4

RMS Error 7.2571× 10−4 4.0646× 10−4 1.5694× 10−3

Max Energy Drift 2.6543× 10−3 1.0814× 10−3 2.7522× 10−3

Table 4.5: Performance of novel integration schemes using a C∞ potential cutoff

Table 4.5 demonstrates an improvement in the performance of our stepsize selection strate-

gies when applied with an increased number of continuous derivatives in the cutoff function.

The value for MAX above can be seen to provide an energy drift very close to that observed

in the Verlet integration. For a maximum energy drift on the order of that seen when using the

Verlet method it is possible to take a 10% larger scaled timestep with the higher order method.

Again, the 6th order RK method is outperformed by its higher order counterpart. It is

interesting to note that with the C∞ cutoff function the 6th order performs only slightly better

than it did with the force cutoff, whereas the 8th order method demonstrates improvement. This

is consistent with the hypothesis that the decreased performance seen with previous cutoffs was

due to order reduction, and demonstrates that some care must be taken in choosing appropriate

cutoff functions when applying high order integrators to molecular dynamics simulations.
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Conclusions and Future Work

5.1 Summary

In this paper we have developed several stepsize selection strategies that can be used with a

variable stepsize Runge Kutta integrators to directly control the energy drift in a molecular

dynamics simulation. These methods provide the MD practitioner with the ability to bound the

total energy drift over the course of a simulation, and are able to do so in a computationally

efficient manner. When applied to a modified system with a C∞ force function, the higher order

RK methods can outperform the widely used Verlet method. Discontinuities in the derivatives

of the approximate force function were found to significantly effect the performance of the

higher order methods, although they were able to perform comparably to the Verlet benchmark

when force cutoffs were used.

The simplest stepsize selection strategy presented herein was found to significantly overes-

timate the energy drift in a simulation, which resulted in an unnecessarily small scaled stepsize.

We presented two modifications to this strategy that were able to improve on the achievable

energy drift. The first method is able to increase the scaled stepsize substantially by keeping

track of the unused drift as the simulation progresses. This results in improved performance by

increasing the stepsize towards the end of the integration.

46
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It was possible to achieve a more consistent energy drift by introducing an additional ad-

hoc parameter splitting the integration into distinct subintervals. The energy drift over each

interval, and over the entire integration was monitored in each interval resulting in another

substantial performance boost. Finally, this approach resulted in a far more uniform energy

drift over the interval as a whole.

5.2 Future Work

There are several promising areas for future research that extend the results presented herein.

One area to investigate involves mirroring the work previously done in developing variable

stepsize symplectic integration methods [15]. Since these methods involve splitting the MD

system into distinct timescales using a force cutoff function, it should be possible to capitalize

on the good performance observed with our method when using a force cutoff. It is not entirely

clear how the energy drift would be distributed between the different timescales, and some

experimentation would be needed to find a reasonable resolution of this difficulty.

With GPU computing gaining more widespread use in molecular dynamics simulation the

achievable timescale has increased tenfold [3]. Since the systematic energy drift experienced

by non symplectic methods will be more problematic for longer time intervals it will be neces-

sary to determine whether or not the performance of our novel strategies is able to stay feasible.

In many of the experiments presented in this thesis there was significant leeway for our method

to remain competitive so it is quite possible that the methods presented herein will be applicable

to simulations run on GPU clusters.

Finally, it may be possible to exploit the continuous approximation to the solution given

by rkd56 and rkd78 in order to salvage some of the work done on failed timesteps. In our ex-

periments it was noted that the vast majority of failed steps did not greatly exceed the required

energy bound. For the cost of a small number of additional function evaluations it may be

possible to use a large fraction of the work done over failed steps which could lead to a further
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improvement in performance.
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