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Abstract

Efficient numerical methods for evaluating the loss distributions of synthetic CDOs are

important for both pricing and risk management purposes. In this paper we discuss

several methods for loss distribution evaluations. We first develop a stable recursive

method. Then the improved compound Poisson approximations proposed by Hipp [12]

are introduced. Finally, the normal power approximation method that has been used

in actuarial science is described. The recursive method computes the loss distribution

exactly, whereas the other two methods compute the loss distribution approximately.

Numerical results based on these three and some known methods for synthetic CDO

pricing are given.
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1 Introduction

Pricing and risk management of synthetic collateralized debt obligations (CDOs) have been

well studied by researchers from both the financial industry and academia. Efficient methods

for synthetic CDO pricing are in demand for these purposes. One way to improve the efficiency

is to simplify the pricing models so that analytic or at least semi-analytic pricing expressions

can be obtained. Factor models, such as the reduced-form model proposed by Laurent and

Gregory [16] and the structural model proposed Vasicek [23] and Li [17] are widely used in

practice to obtain analytic or semi-analytic formulas to price synthetic CDOs efficiently. For

a comparative analysis of different factor models, please see the paper by Burtschell, Gregory

and Laurent [4].

Another way to improve the performance of pricing methods is to develop fast algorithms

for basic numerical problems. One issue common to synthetic CDO pricing and related risk

management is how to evaluate the pool’s loss distribution accurately and efficiently. From

a computational point of view, Monte Carlo simulation is the last resort because of its ineffi-

ciency, despite its flexibility. Widely used methods can be divided into two classes. The first

class evaluates a pool’s loss distribution exactly, based on the assumption that all obligors’

losses-given-default sit on a common lattice. Among these methods are the ASB method

proposed by Andersen, Sidenius and Basu [2], the LG method by Laurent and Gregory [16],

and the HW method by Hull and White [14]. Note that both the ASB and LG methods are

directly applicable to inhomogeneous pools. Although the HW method is directly applicable

to homogeneous pools only, it can be applied indirectly to inhomogeneous pools by noting

that in practice an inhomogeneous pool can usually be partitioned into a small number of

homogeneous pools to which the HW method can be applied. Experiments show that the

ASB method is generally faster than the LG method, while the HW method is faster than

the ASB method for homogeneous or low-dispersion inhomogeneous pools. However, a naive

implementation of the HW method can suffer from numerical stability problems due to over-

flow and cancellation in floating-point operations. The second class of methods evaluates

a pool’s loss distribution approximately. De Prisco, Iscoe and Kreinin’s compound Poisson
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approximation method [6] is an example of a method of this class.

In this paper, we focus on efficient numerical algorithms for the evaluation of a pool’s loss

distribution for a synthetic CDO. The correlation structure of default events is described by

a Gaussian copula. The first proposed method computes the pool loss distribution exactly

provided that each name’s recovery-adjusted notional value sits on a common lattice. It

formulates the problem in a way different from HW’s approach. Analysis shows this recursive

procedure is efficient and stable. Although it is directly applicable to homogeneous pools only,

it can be extended to inhomogeneous pools in the same way as the HW method. Thus it differs

from the ASB method. However, for a pool in which all recovery-adjusted notional values are

either distinct or all the same, our method is the same as the ASB method. We also generalize

our approach to multi-state problems. The second proposed method is based on the improved

compound Poisson approximation of Hipp [12] to improve the accuracy of the basic compound

Poisson approximation [6]. The third proposed method uses a normal power approximation,

widely used in actuarial science, to approximate the pool’s loss distribution. This approach is

especially suitable for large pools for which the names’ losses are not necessarily sitting on a

common lattice.

The remainder of the paper is organized as follows. The basic pricing equation is described

in Section 2. The one-factor Gaussian copula framework for CDO pricing is described in

Section 3. The recursive procedure and its generalization are presented in Section 4. The

improved compound Poisson approximation and the normal power approximation methods

are described in Section 5. Accuracy and performance comparisons between the methods

introduced in this paper and the ASB, the HW and the basic compound Poisson approximation

methods are presented in Section 6. The paper ends with some conclusions in Section 7.

2 Pricing equation

We consider a synthetic CDO tranche of size S with an attachment point ℓ, a threshold that

determines whether some of the pool losses shall be absorbed by this tranche. If the realized
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losses of the pool are less than ℓ, then the tranche will not suffer any loss, otherwise it will

absorb losses up to its size S. The threshold S + ℓ is called the detachment point of the

tranche.

Assume there are K names in the pool. For name k, its notional value and the recovery

rate of the notional value of the reference asset are Nk and Rk, respectively. Then the loss-

given-default or the recovery-adjusted notional value of name k, is LGDk = Nk(1 −Rk). Let

0 = t0 < t1 < t2 < · · · < tn = T be the set of premium dates, with T denoting the maturity of

the CDO tranche. Assume that the interest rates are deterministic. Then the set of discount

factors, denoted by d1, d2, . . . , dn, are deterministic. Let L P
i be the pool’s cumulative losses

up to time ti. Then the losses absorbed by the specified tranche up to time ti, denoted by

Li, is Li = f(L P
i ; ℓ, S + ℓ) = min

�
S, (L P

i − ℓ)+
�
, where x+ = max(x, 0). In this paper,

the function f is called the payoff function of the specified tranche. It is also known as the

stop-loss function in actuarial science [3], [15].

Assume that the fair spread for the tranche is a constant s per annum. The two important

quantities to be determined in synthetic CDO tranche valuation are the present value of the

default leg — the expected losses of the tranche over the life of the contract; and the present

value of the premium leg — the expected premiums that the tranche investor will receive

over the life of the contract. Mathematically, the two legs’ present values are

PV[Premium leg] = E

"
nX

i=1

s(S − Li)(ti − ti−1)di

#
, (1)

PV[Default leg] = E

"
nX

i=1

(Li − Li−1)di

#
. (2)

Noting that the discount factors di are deterministic, the fair spread s is

s =

Pn
i=1 E [Li − Li−1] diPn

i=1 E [S − Li] (ti − ti−1)di

, (3)

where E [L0] = 0, due to a natural assumption that there is no default at t0, the start of the

contract. If the value of the spread is known, then the value of the tranche to the tranche

investor today is

s · PV[Premium leg] − PV[Default leg]. (4)
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Noting that the tranche size S is a given constant and the time periods ti − ti−1 are fixed,

it follows from (3) and (4) that the valuation problem is now reduced to the computation of

the expected cumulative losses E [Li], i = 1, 2, . . . , n. In order to compute these expectations,

we have to specify the default processes for each of the names and the correlation structure

of the default events.

3 One-factor model

Factor models in the conditional independence framework are the most popular approach for

synthetic CDO valuation due to their tractability. Factor models were first introduced by

Vasicek [23] to estimate the loan loss distribution of a pool of loans. In this paper, we use a

one-factor model to illustrate our algorithms.

Assume that the risk-neutral default probabilities πk(t) = P (τk < t), k = 1, 2, . . . , K,

that describe the default-time distributions of all K names are available1, where τk is the

default time of name k. The dependence structure of the default times is determined by the

creditworthiness indexes Yk through a one-factor copula. The creditworthiness indexes Yk are

defined by

Yk = βkX + σkεk, k = 1, 2, . . . , K, (5)

where X is the systematic risk factor, εk are idiosyncratic factors that are mutually indepen-

dent and are also independent of X; βk and σk ≥ 0 are real constants satisfying β2
k + σ2

k = 1.

The risk-neutral default probabilities and the creditworthiness indexes are related by the cop-

ula model

πk(t) = P (τk < t) = P (Yk < Hk(t)) , (6)

where Hk(t) is the default barrier of the k-th name at time t. The copula model was first

introduced by Li [17] and then used in portfolio credit risk analyses, including synthetic CDO

valuation, by Gordy and Jones [10], Hull and White [14], De Prisco, Iscoe and Kreinin [6],

1These default probabilities are input to the described synthetic CDO valuation model. They can be

evaluated, for example, using a method for CDS pricing [8], [13], [22].
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Laurent and Gregory [16], and Schönbucher [19], to name just a few. Thus the correlations of

default events are captured by the systematic risk factor X. Conditional on a given value x

of X, all default events are independent. If we further assume that X and εk follow standard

normal distributions, as we do in this paper, then we have the so called one-factor Gaussian

copula model and from (6) we have that Hk(t) = Φ−1 (πk(t)). The correlation between two

different indexes Yi and Yj is βiβj. Note that if X is a random vector then we have a multi-

factor copula model. On the other hand, if we assume that X and εk follow two student

t-distributions of different degrees of freedom, then we obtain a double-t copula [14]. Other

generalizations can be found in [4].

The conditional risk-neutral default-time distribution is defined by

πk(t;x) = P (Yk < Hk(t)|X = x) . (7)

Thus from (5) and (7) we have

πk(t;x) = Φ

�
Hk(t) − βkx

σk

�
. (8)

The conditional and unconditional risk-neutral default-time probabilities at the premium date

ti are denoted by πk(i;x) and πk(i), respectively.

In this conditional independence framework, the expected cumulative tranche losses E [Li]

can be computed as

E [Li] =
Z ∞

−∞
Ex [Li] dΦ(x), (9)

where Ex [Li] = Ex

�
f(L P

i ; ℓ, S + ℓ)
�

= Ex

�
min

�
S, (L P

i − ℓ)+
��

is the expectation of Li con-

ditional on X = x, where L P
i =

PK
k=1 LGDk1{Yk<Hk(ti)}, and the indicators 1{Yk<Hk(ti)} are

mutually independent conditional on X. Generally, the integration in (9) needs to be approx-

imated numerically using a quadrature rule:

E [Li] ≈
MX

m=1

wmExm

�
f(L P

i ; ℓ, S + ℓ)
�
, (10)

where xm and wm are abscissas and weights of the chosen quadrature rule. One possible

choice is Gaussian quadrature. The abscissas and weights of Gaussian quadrature rules for
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small values of M can be found in Chapter 25 of [1], while parameters for large values of M

can be generated using well developed routines, such as those in [18].

We see from (10) that the fundamental numerical problem in synthetic CDO tranche

valuation is how to evaluate the conditional expectation Exm

�
f(L P

i ; ℓ, S + ℓ)
�

for a fixed

abscissa xm at a fixed time ti for the fixed attachment and detachment points ℓ and S + ℓ. In

the remainder of this paper, this expectation is denoted as E
�
f(L P ; ℓ, S + ℓ)

�
, dropping the

abscissa xm and the time index i and writing L P =
PK

k=1 LGDk1{k}, where 1{k} = 1{Yk<Hk(ti)}.

4 Recursive method for loss distribution evaluation

Note that, in practice, the loss-given-default values of the referred assets are not necessarily

the same; thus a CDO pool is not necessarily homogeneous. However, the assets in a pool

can usually be divided into a few groups such that in each group all assets have the same

loss-given-default value. Therefore, an important basic problem is how to evaluate the loss

distribution for a homogeneous pool.

4.1 Loss distribution for a homogeneous pool

For a homogeneous pool the problem reduces to computing the distribution of the random

variable 1{L P } =
PK

k=1 1{k} noting that without loss of generality we can assume the common

LGD = 1. Assume that the loss distribution of a homogeneous sub-pool of k names, 1 ≤ k <

K, is already known. Let pk = (pk,k, pk,k−1, . . . , pk,0)
T , where pk,j = P

�
1{L P }(k) = j

�
, and

1{L P }(k) =
Pk

i=1 1{i}. Then the loss distribution of the pool consisting of the first k names

plus the (k + 1)-st name with default probability Qk+1 can be calculated using the recursive
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formula

pk+1 =

0BBBBBBBBBBBB�
pk+1,k+1

pk+1,k

...

pk+1,1

pk+1,0

1CCCCCCCCCCCCA =

�
pk 0

0 pk

Ǒ�
Qk+1

Sk+1

Ǒ
, (11)

where Sk = 1 − Qk. In this way, pK can be evaluated after K − 1 iterations, starting from

the initial value p1 = (p1,1, p1,0)
T = (Q1, S1)

T .

The algorithm based on formula (11) is numerically stable. Let ε be the machine epsilon

(see Golub and Van Loan [9] or Heath [11] for the definition) for a floating-point system.

Assume that the input probabilities Qk are exactly representable in the computer system.

Then the floating-point approximation to Sk is Ŝk = Sk+δkSk, where |δk| ≤ ε. Let ǫk = pk−p̂k,

k = 1, 2, . . . , K, where p̂k is the loss distribution evaluated using formula (11) in a floating-

point system:

p̂k+1 = eval

��
p̂k 0

0 p̂k

Ǒ�
Qk+1

Ŝk+1

ǑǑ
, p̂1 =

�
Q1

Ŝ1

Ǒ
. (12)

Then we have the following result:

Proposition 1 The error vector ǫk+1 satisfies

‖ǫk‖∞ ≤
�
1.001k−1c− 3001

�
ε, for k = 1, 2, . . . , K, (13)

where ‖ · ‖∞ is the max norm of a vector and c = 3002, provided that 4ε ≤ 0.001.

See the Appendix for a proof of Proposition 1.

If it is assumed that both Qk and Sk are exactly representable in the computer system,

then ‖ǫ1‖∞ = 0 and the error bound (26) for ‖ǫk+1‖ in the proof of Proposition 1 in the

Appendix reduces to

‖ǫk+1‖∞ ≤ 1.001‖ǫk‖∞ + 2.001ε, for k = 1, 2, . . . , K − 1. (14)
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In this case, the relation (13) reduces to

‖ǫk‖∞ ≤
�
1.001kc′ − 2001

�
ε, for k = 1, 2, . . . , K, (15)

where c′ = 2001/1.001.

Inequalities (13) and (15) ensure that the recursive formula (11) is numerically stable.

4.2 Loss distribution for an inhomogeneous pool

In this section we discuss how to compute the loss distribution of a general inhomogeneous

pool. Suppose that an inhomogeneous pool consists of I homogeneous sub-pools with loss-

given-defaults LGD1, LGD2, . . . , LGDI sitting on a common lattice and the loss distribution

for the i-th group is (pi,0, . . . , pi,di
), i = 1, 2, . . . , I, where di is the upper bound on the number

of defaults in group i, which implies that the largest possible loss for this group is diLGDi

units. To compute the loss distribution of this inhomogeneous pool, we use the following

method. Suppose that the loss distribution of a pool consisting of the first i groups has been

determined, denoted by (p
(i)
0 , p

(i)
1 , . . . , p

(i)
Ai

), where p(i)
a is the probability of a units of losses in

the pool that consists of the first i groups, a = 0, 1, . . . , Ai, Ai =
Pi

j=1 djLGDj. Then the loss

distribution of the bigger pool consisting of the first i groups plus the (i+ 1)-st group is

p(i+1)
a =

X
l ∈ {0, . . . , Ai}

(a− l)/LGDi+1 ∈ {0, . . . , di+1}

p
(i)
l · pi+1,(a−l)/LGDi+1

for a = 0, 1, . . . , Ai+1 = Ai + di+1LGDi+1. To start the iteration, the loss distribution

(p1,0, . . . , p1,d1
) of the first group needs to be mapped to (p

(1)
0 , p

(1)
1 , . . . , p

(1)
d1LGD1

) by

p(1)
a =

8>><>>:p1,a/LGD1
if a/LGD1 is an integer;

0 otherwise,

where a = 0, 1, . . . , A1 = d1LGD1. After I − 1 iterations, the loss distribution of the pool

is computed. We call the method based on the one described in subsection 4.1 and the one

outlined in this subsection, JKM.
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It can be shown that JKM is equivalent to ASB [2] when the underlying pool is either

homogeneous or completely inhomogeneous2. Since JKM exploits the property that the pool

can usually be divided into a small number of homogeneous pools, we expect it to be faster

than the ASB method. Performance comparisons shown in Section 6 support this conjecture.

4.3 Generalization to multiple states

In the previous section we proposed a recursive algorithm for computing the loss distribution of

a sum of mutually independent Bernoulli random variables. This algorithm can be generalized

to computing the distribution of a sum of multi-value random variables in the following way.

Suppose that, for each name k, there is an random variable 1{k;M} that takes an integer value

from {0, 1, . . . ,M − 1} with probability Qk,m, where
PM−1

m=0 Qk,m = 1, and that 1{k;M} are

mutually independent. Then the probability distribution of the random variable 1{L P ;M} =PK
k=1 1{k;M} can be computed by the recursive formula

pk+1 =

0BBBBBBBB�pk+1,(M−1)(k+1)

...

pk+1,1

pk+1,0

1CCCCCCCCA =

0BBBBBBBB�pk 0 · · · 0

0 pk
. . .

...
...

...
. . . 0

0 0 · · · pk

1CCCCCCCCA
0BBBBBBBB�Qk+1,M−1

...

Qk+1,1

Qk+1,0

1CCCCCCCCA , (16)

where pk,j denotes the probability of the pool consisting of the first k names having a loss of

j units, pk = (pk,(M−1)k, . . . , pk,1, pk,0)
T and p1 = (Q1,M−1, . . . , Q1,1, Q1,0)

T . Assume that Qk,m

are exactly representable in the computer system. Let ǫk = pk − p̂k, k = 1, 2, . . . , K, where

p̂k is the distribution evaluated using formula (16) in a floating-point system. A result similar

to that of Proposition 1 holds:

Proposition 2 The error associated with the recursive formula (16) satisfies

‖ǫk‖∞ ≤
�
1.001kc′ − (1000M + 1)

�
ε, for k = 1, 2, . . . , K, (17)

where ‖·‖∞ is the max norm of a vector and c′ = (1000M+1)/1.001, provided that (M+2)ε ≤

0.001.
2By completely inhomogeneous we mean all the LGDk’s are unique.
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Numerical results comparing the efficiency of this generalized recursive method with the

FFT based convolution method [5, Chapter 32] are presented in Table 1. Both methods are

coded in C++ and run on a Pentium III 700MHZ PC in the .NET environment. For the

convolution, we used the convolution function c06ekc from the NAG C library [21], which is

optimized for .NET. A divide-and-conquer technique was used to speed-up the implementation

of the convolution method. The complexity of the divide-and-conquer convolution method is

O(MK log2M log2K). The complexity of our algorithm is O(M2K2). Thus the FFT based

convolution method should be asymptotically faster than our recursive method.

M

K 2 4 8 16 32

64 0.0001:0.0008 0.0004:0.0012 0.0006:0.0022 0.0026:0.0040 0.0122:0.0076

128 0.0004:0.0020 0.0008:0.0030 0.0028:0.0052 0.0112:0.0094 0.0495:0.0186

256 0.001:0.0044 0.0032:0.0064 0.011:0.0118 0.0439:0.0220 0.2077:0.0459

512 0.004:0.0101 0.0121:0.0140 0.0551:0.0271 0.2223:0.0531 0.9914:0.1092

100 0.0002:0.0014 0.0004:0.0026 0.0018:0.0046 0.0068:0.0086 0.0302:0.0170

200 0.0006:0.0030 0.002:0.0062 0.0068:0.0108 0.0268:0.0202 0.1208:0.0427

300 0.0012:0.0048 0.0042:0.0078 0.0152:0.0198 0.0635:0.0426 0.2976:0.0887

500 0.003:0.0081 0.012:0.0151 0.0511:0.0260 0.2103:0.0511 0.9424:0.1062

Table 1: CPU times (in seconds) for the generalized recursive method and the FFT based

convolution method

The experiment was carried out for several combinations of K and M . Entries of the

form x:y in Table 1 represent the CPU time used by our generalized recursive method and

the FFT based convolution method, respectively, to compute the loss distribution with the

corresponding parameters K and M . For example, the entry 0.0006:0.0030 for K = 200 and

M = 2 means that for these values of K and M the recursive and the FFT based convolution

methods used 0.0006 seconds and 0.0030 seconds, respectively, to compute the loss distribution

of the pool.
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From Table 1 we can see that the recursive method is faster than the FFT based con-

volution method for practical problems, say when M ≤ 16 and K ≤ 200. However, the

recursive method is slower than the FFT based convolution method when K or M is large,

as is predicted by the complexities of the two methods. Curves in Figure 1 show the values

of K and M for which the CPU time used by the two methods is almost the same. When

(K,M) lies in the region above the curves, the FFT based convolution method is faster than

the recursive method; in other cases, the recursive method is faster than the FFT based con-

volution method. The solid line in the bottom plot is a linear fit in the log-log scale to the

experimental data. The equation for the line is log2M = −0.6869 log2K+8.5185. For a given

pair (K,M) one can decide, based on this equation, which method to choose. For example for

K = 200,M = 8, which is represented by “o” in the two plots, we can see that the recursive

method is faster.
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Figure 1: Comparison of computational speed between the recursive and the FFT based

convolution methods
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5 Approximation methods for loss distribution evalua-

tion

In Section 4 a stable recursive method was proposed. It is efficient if the underlying pool

is homogeneous or it has a low dispersion in terms of LGDs. For a high dispersion pool,

approximation methods are preferable. A method of this kind is the compound Poisson

approximation introduced for synthetic CDO valuation by De Prisco, Iscoe and Kreinin [6].

Though it is shown by the authors that this method usually gives reasonably accurate spreads

compared to the Monte Carlo method, the spreads computed using this method may differ

from the exact ones by as much as 20 basis points (or 0.6%) for an equity tranche. Therefore

the accuracy of this approximation is not always satisfactory. As a natural extension, we

introduce in subsection 5.1 the improved compound Poisson approximations of Hipp [12] for

better accuracy. Both the recursive and the compound Poisson approximations require that

the LGDs must sit on some common lattice, i.e., the LGDs must be integer multiples of some

properly chosen monetary unit. A small monetary unit may result in a high dispersion pool,

for which neither of these methods works well. To ameliorate this deficiency, we introduce in

subsection 5.2 the normal power approximation method to approximate the distribution of

L P =
PK

k=1 LGDk1{k}.

5.1 Compound Poisson approximations

Instead of computing the distribution of L P exactly, we can approximate it using an ap-

proximation to its characteristic function. The characteristic function, φk(t), of LGDk1{k}

is

φk(t) = 1 +Qk (exp(it · LGDk) − 1) = 1 +Qk (gk(t) − 1) = exp (ln (1 +Qk(gk(t) − 1))) ,

where gk(t) = exp(it · LGDk). Note that LGDk1{k} are conditionally mutually independent.

Thus, the characteristic function, φL P (t), of L P can be written in product form as

φL P (t) =
KY

k=1

φk(t).
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When |x| is small,
PJ

j=1
(−1)j+1

j
xj gives a good approximation to ln(1+x) even for a small

J . Thus, it is expected that

φ
(J)
k (t) = exp

�
JX

j=1

(−1)j+1

j
[Qk (gk(t) − 1)]j

�
(18)

will be a good approximation to φk(t) if Qk is small. Based on this approximation, the

characteristic function φL P (t) is approximated by

φ
(J)
L P (t) =

Y
k

φ
(J)
k (t) = exp

�
KX

k=1

JX
j=1

(−1)j+1

j
[Qk(gk(t) − 1)]j

�
.

Choosing J = 1 we obtain the first order approximation to the original characteristic

function:

φL P (t) ≈ φ
(1)
L P (t) = exp

 
KX

k=1

Qk(gk(t) − 1)

!
= exp

"
KX

k=1

Qk

 
KX

k=1

QkPK
k=1Qk

gk(t) − 1

!#
.

Let λ1 =
PK

k=1Qk, ψ1 =
PK

k=1
Qk

λ1
gk(t), then

φ
(1)
L P (t) = exp (λ1(ψ1(t) − 1)) ,

which is the characteristic function of a compound Poisson distributed random variable with

Poisson parameter λ1 and common distribution function

ϕ1(L) =
X

LGDk=L

Qk

λ1

.

Thus, the distribution function of L P is approximated by

µL P = exp(−λ1)
∞X

r=0

λr
1

r!
ϕ∗r

1 , (19)

where ϕ∗r
1 is the r-fold self-convolution of ϕ1 defined by a) ϕ∗0

1 = (1, 0, 0, . . . , 0) of lengthPK
k=1 LGDk, and b) ϕ

∗(r+1)
1 = ϕ∗r

1 ∗ϕ1. This approximation is also obtained in [6]. We denote

it by CPA1 in this paper.

By choosing J > 1 in (18), we might expect to improve the approximation to φL P (t). For

J = 2, we obtain a compound Poisson approximation with Poisson parameter λ2 and common
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distribution function ϕ2 defined by

λ2 =
KX

k=1

�
Qk +

Q2
k

2

�
,

ϕ2(L) =
1

λ2

24 X
LGDk=L

(Qk +Q2
k) −

1

2

X
2LGDk=L

Q2
k

35 .
Similarly, for J = 3, the corresponding Poisson parameter λ3 and the common distribution

function ϕ3 are

λ3 =
KX

k=1

�
Qk +

Q2
k

2
+
Q3

k

3

�
,

ϕ3(L) =
1

λ3

24 X
LGDk=L

(Qk +Q2
k +Q3

k) −
X

2LGDk=L

�
Q2

k

2
+Q3

k

�
+

1

3

X
3LGDk=L

Q3
k

35 .
For these two approximations, the corresponding distribution function for L P is evaluated

similarly to (19) except that λ1 and ϕ1 are replaced by λJ and ϕJ for J = 2 or J = 3,

respectively. The improved compound Poisson approximations corresponding to J = 2 and 3

are called CPA2 and CPA3, respectively, in this paper.

Note that the compound Poisson approximation CPA1 matches the first moment of the

true distribution; CPA2 matches the first two moments of the true distribution; and CPA3

matches the first three moments [7].

5.2 Normal power approximation

In actuarial science, the payoff function f(L P
i ; ℓ, S + ℓ) is called the stop-loss function. It

indicates that the reinsurer pays that part of the total amount of claims L P which exceeds a

certain amount, say ℓ, with the additional constraint that the reinsurer’s liability is limited to

an amount of S. The distribution of L P can also be approximated by the normal power (NP)

distribution. Thus, E
�
f(L P

i ; ℓ, S + ℓ)
�

can be expressed in terms of the cumulative distrib-

ution function Φ and the probability density function φ of the standard normal distribution.

In this paper, we give the basic formulas only; more details can be found in [3], [15], [20].
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Under the NP approximation, the expected loss of a tranche with protection level ℓ ≥ 0

and tranche size S ≥ 0 is

ESL

�
L

P ; ℓ, S
�
= ESL

�
L

P ; ℓ+ S
�
− ESL

�
L

P ; ℓ
�
, (20)

where

ESL

�
L

P ; z
�
= (µ− z)(1 − Φ(yz)) + σ(1 + γyz/6)φ(yz) (21)

is the expected loss of a tranche with a zero attachment point and loss capped by z. The

subscript SL stands for “Stop Loss”, µ, σ and γ are the mean, standard deviation and the

skewness, respectively, of the pool loss L P =
PK

k=1 LGDk1{k} (recall that 1{k} are mutually

independent conditional on X),

yz = ν−1
γ

�
z − µ

σ

�
,

where

ν−1
γ (f) =

8>><>>:f − g(f 2 − 1) + g2(4f 3 − 7f) ·H(f0 − f) if f < 1;�
1 + 1

4g2 + f
g

�1/2
− 1

2g
otherwise,

with g = γ/6, f0 = −
È

7/4 and

H(x) =

8>><>>:0 if x < 0

1 otherwise

is the Heaviside function.

The NP approximation matches all the first three moments of the approximated distribu-

tion and also captures some other important properties of it, such as fat tails and asymmetry.

The normal approximation matches the first two moments of the distribution. Thus, it is ex-

pected that the normal power approximation might approximate the true distribution better

than the normal approximation.
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6 Numerical Results

In this section we present numerical results that illustrate the accuracy and computational cost

of our new methods: the recursive method JKM, the improved compound Poisson approxi-

mations CPA2 and CPA3 and the normal power approximation (NP). We also provide similar

numerical results for the other three known methods: the HW method, the ASB method, and

the compound Poisson approximation method CPA1.

6.1 Two points about implementations

We should mention two points about the implementations of the proposed algorithms. The

first point concerns a truncation technique used for the loss distribution evaluation. Suppose

there are m tranches in a general CDO. Note that once the expected losses of the first m− 1

tranches are available the expected loss of the last tranche can be easily evaluated through

E[loss of last tranche] =
KX

k=1

LGDkQk −
m−1X
i=1

E[loss of tranche i].

The second point concerns the stopping criterion for evaluating the infinite sum (19). In

our implementation, the summation is stopped once the l1-norm of the difference between the

two distributions µ̄
(R)
L P and µ̄

(R+1)
L P is less than ǫ, where

µ̄
(R)
L P = exp(−λJ)

RX
r=0

λr
J

r!
ϕ∗r

J ,

for J = 1, 2, or 3. An alternative stopping criterion is based on the relative change of the

accumulated distribution functions. In this case, the summation is stopped once

‖µ̄
(R+1)
L P − µ̄

(R)
L P ‖1

‖µ̄
(R)
L P ‖1

< ǫ,

where ǫ is a specified tolerance. These two criteria are approximately equivalent, since

‖µ̄
(R)
L P ‖1 ≈ ‖µL P ‖1 = 1. In our implementation we set the tolerance ǫ = 10−4.
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6.2 Test problems

The results presented below are based on a sample of 15 pools. For each pool, the number

of names K is either 100, 200, or 400. The number of homogeneous groups in each pool is

either 1, 2, 4, 5, or K/10, and all homogeneous groups in a given pool have an equal number

of names. The notional values for each pool are summarized in Table 2. For example, the

200-name pool with local pool ID = 3 consists of four homogeneous groups with the notional

values 50, 100, 150, and 200, respectively. For convenience, we also labeled each pool with a

global pool ID. For each of the 100-name pools, the global and the local IDs coincide. For

each of the 200- and 400-name pools, its global pool ID (GID) is its local pool ID plus 5 or

10, respectively. For example, a 200-name pool with local ID = 3 has GID = 8.

Local Pool ID 1 2 3 4 5

Notional values 100 50, 100 50, 100, 150, 200 20, 50, 100, 150, 200 10, 20, . . . , K

Table 2: Selection of notional values of K-name pools

For each name, the risk-neutral cumulative default probabilities are randomly assigned

one of two types, I and II, as defined in Table 3.

Type 1 yr. 2 yrs. 3 yrs. 4 yrs. 5 yrs.

I 0.0007 0.0030 0.0068 0.0119 0.0182

II 0.0044 0.0102 0.0175 0.0266 0.0372

Table 3: Risk-neutral cumulative default probabilities

The recovery rate is assumed to be 40% for all names. Thus the LGD of name k is

0.6Nk. The maturity of a CDO deal is five years (i.e., T = 5) and the premium dates are

ti = i, i = 1, . . . , 5 years from today (t0 = 0). The continuously compounded interest rates

are r1 = 4.6%, r2 = 5%, r3 = 5.6%, r4 = 5.8% and r5 = 6%. Thus the corresponding discount

factors, defined by di = exp(−tiri), are 0.9550, 0.9048, 0.8454, 0.7929 and 0.7408, respectively.

All CDO pools have five tranches that are determined by the attachment points (ℓ’s) of the
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tranches. For this experiment, the five attachment points are: 0, 3%, 4%, 6.1% and 12.1%.

The constants βk lie in [0.3, 0.5]. In practice, the βk’s are known as tranche correlations and

are taken as input to the model.

All methods for this experiment were coded in Matlab and the programs were run on a

Pentium III 700 PC. The results presented in Tables 4 and 5 are based on the pricing of the

first four tranches of each pool, as explained above.

6.3 Analysis of results

The accuracy results are presented in Table 4. The four numbers in each pair of brackets

in the main part of the table are the spreads, in basis points, for the first four tranches of

the corresponding pool. For example, (2248, 928, 606, 248) are the spreads, evaluated by an

exact method for the first four tranches of the 200-name homogeneous pool (GID=1). Since

all exact evaluation methods produce the same set of spreads for each pool, we use “Exact”

in the table to represent the spreads obtained from all the exact evaluation methods: ASB,

HW and JKM. From the table we can see that CPA1 produces reasonably accurate spreads,

though for most pools the spreads differ somewhat from those of the exact evaluation results.

For example, for the 100-name pool with GID=5, the spread difference is 21 basis points, or

about 0.6%, for the equity tranche. Also from the table we can say that both CPA2 and CPA3

produce very accurate results, except for the homogeneous pools with GID=6 and GID=11,

where the spreads for the 4-th tranches are 7 and 14 basis points higher than the exact ones,

respectively. Fortunately, for a homogeneous pool we can use our efficient recursive method

JKM. The last two columns in the table illustrate that neither the normal power nor the

normal approximations is suitable for high-spread tranche pricing. If accurate results are

required, the exact evaluation methods, CPA2 and CPA3 are recommended.

The computational costs are presented in Table 5. Since CPA2 is generally faster than

CPA3 and NP requires almost the same computational costs as the normal approximation,

we list only the computational times for each of HW, ASB, CPA1, CPA2 and NP divided by
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GID Exact CPA1 CPA2(3) NP Normal

1 (2168, 926, 617, 256) (2159, 922, 614, 256) (2168, 926, 617, 256) (2200, 939, 616, 256) (2230, 940, 615, 255)

2 (2142, 945, 616, 257) (2133, 941, 613, 257) (2142, 945, 616, 257) (2186, 941, 618, 257) (2223, 941, 617, 257)

3 (2128, 941, 619, 259) (2119, 936, 616, 259) (2128, 941, 619,259) (2175, 942, 619, 259) (2217, 943, 619, 258)

4 (2098, 943, 622, 262) (2087, 937, 619, 261) (2097, 943, 622, 262) (2153, 945, 623, 262) (2205, 946, 623, 261)

5 (3069, 1166, 639, 154) (3048, 1157, 637, 157) (3069, 1166, 639, 154) (3117, 1168, 640, 155) (3188, 1180, 642, 154)

6 (2248, 928, 606, 248) (2244, 926, 604, 248) (2248, 928, 606, 255) (2261, 931, 606, 248) (2272, 931, 605, 248)

7 (2238, 931, 606, 249) (2233, 929, 605, 249) (2238, 931, 606, 249) (2252, 932, 607, 249) (2267, 932, 607, 249)

8 (2229, 932, 607, 250) (2224, 929, 606, 250) (2229, 932, 607, 250) (2246, 933, 608, 250) (2262, 933, 607, 250)

9 (2213, 934, 609, 251) (2206, 931, 608, 251) (2213, 934, 609, 251) (2233, 934, 609, 251) (2254, 935, 609, 251)

10 (3350, 1172, 606, 127) (3337, 1167, 605, 129) (3350, 1172, 606, 127) (3350, 1172, 606, 127) (3391, 1177, 607, 126)

11 (2291, 926, 600, 244) (2289, 925, 600, 245) (2291, 926, 601, 258) (2295, 927, 600, 244) (2300, 927, 600, 244)

12 (2286, 927, 601, 245) (2283, 926, 600, 245) (2286, 927, 601, 245) (2291, 927, 601, 245) (2296, 927, 601, 245)

13 (2282, 927, 601, 245) (2279, 926, 601, 245) (2282, 927, 601, 245) (2288, 928, 601, 245) (2294, 928, 601, 245)

14 (2273, 928, 602, 246) (2270, 927, 602, 246) (2273, 928, 602, 246) (2280, 928, 602, 246) (2288, 928, 602, 246)

15 (3428, 1158, 591, 122) (3420, 1155, 591, 123) (3428, 1158, 591, 122) (3432, 1158, 592, 122) (3440, 1159, 592, 122)

Table 4: Accuracy comparison between exact and approximate methods
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that of JKM. From the table we can see that for all tested pools JKM is always faster than

HW and CPA2, and much faster than ASB. For most cases JKM is slightly faster than CPA1,

but slower than NP. As expected, CPA1 is faster than CPA2.

By considering both the accuracy and the computational cost of each method, we suggest

using either the recursive method JKM or the second order compound Poisson approximation

method CPA2 for pricing, where accuracy is generally more important than computational

cost, and NP for risk management, where computational cost is generally more important

than accuracy.

GID HW/JKM ASB/JKM CPA1/JKM CPA2/JKM NP/JKM

1 1.24 4.26 1.39 1.52 1.98

2 1.44 4.13 1.56 1.56 1.90

3 1.51 3.67 1.23 1.37 1.60

4 1.97 3.50 1.36 1.71 1.30

5 1.75 2.56 0.99 1.11 1.08

6 1.34 5.56 1.35 1.42 1.30

7 1.41 5.34 1.30 1.45 1.21

8 1.48 4.93 1.24 1.35 0.98

9 1.89 4.29 1.30 1.84 0.71

10 2.12 2.36 0.74 1.02 0.39

11 1.37 5.66 1.04 1.13 0.66

12 1.36 5.38 1.01 1.19 0.58

13 1.33 4.91 0.97 1.14 0.50

14 2.38 4.54 1.11 2.31 0.27

15 3.07 2.02 0.56 1.01 0.08

Table 5: The computational times for each of HW, ASB, CPA1, CPA2 and NP divided by

that of JKM
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7 Conclusions

Two types of methods for the evaluation of the loss distribution of a synthetic CDO pool are

introduced in this paper. Error analysis and numerical results show that the proposed exact

recursive method JKM is stable and efficient. It can be applied to CDO pricing and risk

management when the underlying pool is homogeneous or has a low dispersion of loss-given-

defaults. For high dispersion pools, the second order compound Poisson approximation CPA2

is recommended for pricing where accuracy is generally more important than computational

cost. The normal power approximation is useful for risk management where computational

cost is generally more important than accuracy.
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Appendix: Proof of Proposition 1

Proof Note that for any nonnegative l-vector a = (a1, a2, . . . , al)
T and nonnegative constants

c and d, which are all exactly representable in a floating-point system, we have






�a 0

0 a

Ǒ�
c

d

Ǒ
− eval

��
a 0

0 a

Ǒ�
c

d

ǑǑ







∞

≤ (2ε+ ε2)








�a 0

0 a

Ǒ�
c

d

Ǒ







∞

≤ (2ε+ ε2) (c+ d) ‖a‖∞ . (22)
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Applying (22) to (12) results in 






�p̂k 0

0 p̂k

Ǒ�
Qk+1

Ŝk+1

Ǒ
− p̂k+1









∞

≤ (2ε+ ε2)
�
Qk+1 + Ŝk+1

�
‖p̂k‖∞

≤ (2ε+ ε2) (1 + ε) ‖p̂k‖∞ . (23)

Noting that when 4ε ≤ 0.001, we have

(2ε+ ε2) (1 + ε) ≤ 2.001ε.

Thus (23) can be written as






�p̂k 0

0 p̂k

Ǒ�
Qk+1
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Ǒ
− p̂k+1









∞

≤ 2.001ε ‖p̂k‖∞ . (24)

On the other hand, using the triangle inequality we have
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�Qk+1

Ŝk+1

Ǒ







∞

≤ ε‖pk‖∞ + (1 + ε)‖ǫk‖∞. (25)

Noting that

‖p̂k‖∞ ≤ ‖pk‖∞ + ‖ǫk‖∞ ≤ 1 + ‖ǫk‖∞,

where we used ‖pk‖∞ ≤ 1, from (24) and (25) we have

‖ǫk+1‖∞ ≤ ε‖pk‖∞ + (1 + ε)‖ǫk‖∞ + 2.001ε ‖p̂k‖∞

≤ ε‖pk‖∞ + (1 + ε)‖ǫk‖∞ + 2.001ε+ 2.001ε‖ǫk‖∞

≤ (1 + 3.001ε)‖ǫk‖∞ + 3.001ε

≤ 1.001‖ǫk‖∞ + 3.001ε.

Thus we have

‖ǫk+1‖∞ ≤ 1.001‖ǫk‖∞ + 3.001ε, for k = 1, 2, . . . , K − 1. (26)
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Noting that ‖ǫ1‖∞ ≤ ε, (26) implies that

‖ǫk‖∞ ≤
�
1.001k−1c− 3001

�
ε, for k = 1, 2, . . . , K,

where c = 3002. This upper bound is obtained by using the result that the solution to the

linear recurrence equation xn+1 = axn + b, where a 6= 1, is xn = b
1−a

+ anc for n ≥ 1, where

c = x1(a−1)+b
a(a−1)

.

This completes the proof.
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