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Abstract

As part of the new regulatory framework of Solvency II, introduced by the Eu-
ropean Union, insurance companies are required to monitor their solvency by
computing a key risk metric called the Solvency Capital Requirement (SCR).
The official description of the SCR is not rigorous and has lead researchers
to develop their own mathematical frameworks for calculation of the SCR.
These frameworks are complex and are difficult to implement. Recently
(Bauer et al., 2012) has suggested a nested Monte Carlo (MC) simulation
approach to calculate the SCR. But the proposed MC approach is compu-
tationally expensive even for a simple insurance product. In this paper, we
propose a neural network approach to compute the SCR that significantly
reduces the computational complexity in the calculation. We study the per-
formance of our neural network approach in estimating the SCR for a large
portfolio of an important type of insurance products called Variable Annuities
(VAs). Our experiments show that the proposed neural network framework
is both efficient and accurate.

Keywords: Variable annuity, Spatial interpolation, Neural network,
Portfolio valuation, Solvency Capital Requirement (SCR)

1. Introduction

The Solvency II Directive is the new insurance regulatory framework
within the European Union. Solvency II enhances consumer protection by
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requiring insurers to monitor the risks facing their organization. An integral
part of Solvency II is the Solvency Capital Requirement (SCR) that reduces
the risk of insurers’ insolvency. SCR is the amount of reserves that an insur-
ance company must hold to cover any losses within a one year period with a
confidence level of 99.5%.

The calculation standards are described in the documents of the Commit-
tee of European Insurnace and Occupational Pensions Supervisors (CEIOP)
(e.g., (CEIOP, 2011)). The regulation allows insurance companies to use
either the standard formula or to develop an internal model based on a
market-consistent valuation of assets and liabilities. Because of the impre-
cise language of the aforementioned standards, many insurance companies are
struggling to implement the underlying model and to develop efficient tech-
niques to do the necessary calculations. In (Christiansen and Niemeyer, 2014;
Bauer et al., 2012), rigorous mathematical definitions of SCR are provided.
Moreover, (Bauer et al., 2012) describes an implementation of a simplified,
but approximately equivalent, notion of SCR using nested Monte Carlo (MC)
simulations.

The results of the numerical experiments in (Bauer et al., 2012) to find
the SCR for a simple insurance product show that the proposed nested MC
simulations are too expensive, even for the simplified notion of SCR. Hence,
insurance companies cannot directly use the proposed MC approach to find
the SCR for their large portfolios of insurance products. In this paper, we
propose a neural network approach to ameliorate the computational com-
plexity of MC simulations which allows us to efficiently compute the SCR
for large portfolios of insurance products. We provide insights into the effi-
ciency of the proposed framework by studying its performance in computing
the SCR for a large portfolio of Variable Annuities (VAs), a well-known and
important type of insurance product.

A VA is tax-deferred retirement vehicle that allows a policyholder to
invest in financial markets by making payment(s) into a predefined set of sub-
accounts set up by an insurance company. The investment of the policyholder
should be payed back as a lump-sum payment or a series of contractually
agreed upon payments over a period of time in the future. VA products
provide embedded guarantees that protect the investment of a policyholder
in a bear market and/or from mortality risk (TGA, 2013). For a detailed
description of VA products and the different types of guarantees offered in
these products, see our earlier paper (Hejazi et al., 2015) and the references
therein.
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Because of the innovative structure of embedded guarantees in VA prod-
ucts, insurance companies have been successful in selling large volumes of
these products (IRI, 2011). As a result, VA products are a large portion of
the investment market around the globe and big insurance companies have
accumulated large portfolios of these products. The embedded guarantees of
VA products expose insurers to a substantial amount of market risk, mortal-
ity risk, and behavioral risk. Hence, big insurance companies have developed
risk management programs to hedge their exposures, especially after the
market crash of 2008.

The rest of this paper is organized as follows. In Section 2, we describe
the mathematical definition of SCR as well its simplified, almost equivalent,
version described in (Bauer et al., 2012). In Section 3, we describe the nested
simulation approach of (Bauer et al., 2012) that we use to approximate the
SCR. Furthermore, we define a simple asset and liability structure that
allows us to remove the assets from the required calculation of the SCR for
the portfolio. In Section 4, we describe the neural network framework that
we use to estimate the one-year probability distribution of liability for the
input portfolio of VA products. In Section 5, we compare the efficiency and
accuracy of our method to that of a simple nested MC approach. In Section
6, we conclude the paper.

2. Solvency Capital Requirement

A rigorous treatment of SCR1 requires the definition of Available Capital
(AC) which is a metric that determines the solvency of a life insurer at
each point in time. The AC is the difference between the Market Value of
Assets (MVA) and Market Value of Liabilities (MVL):

ACt = MVAt −MVLt (1)

where the subscript t denotes the time, in years, at which each variable is
calculated.

Assuming the definition (1) of AC, the SCR, under Solvency II, is defined
as the smallest amount of AC that a company must currently hold to insure
a positive AC in one year with a probability of 99.5%. In other words, the
SCR is the smallest amount x that satisfies the following inequality.

1The material in this section is based largely on the discussion in (Bauer et al., 2012).
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P (AC1 ≥ 0|AC0 = x) ≥ 99.5% (2)

In practice, it is hard to find the SCR using definition (2). Hence, Bauer
et al. use a simpler, approximately equivalent notion of the SCR which is
based on the one-year loss function evaluated at time zero

∆ = AC0 −
AC1

1 + r
(3)

where r is the one-year risk-free rate. The SCR is then defined as the one-year
Value-at-Risk (VaR)

SCR = argminx{P (∆ > x) ≤ 0.5%} (4)

This is the definition of the SCR that we use in the rest of this paper.

3. Nested Simulation Approach

A key element in both definitions (2) and (4) of the SCR is the calcula-
tion of AC. From (1) we see that the calculation of AC requires a market
consistent valuation of assets and liabilities. Insurance companies can follow
a mark-to-market approach to value their assets in a straightforward way.
However, the innovative and complex structure of insurance products does
not allow for such straightforward calculation of liabilities. In practice, insur-
ance companies often have to calculate the liabilities of insurance products
by direct valuation of the cash flows associated with them (direct method
(Girard, 2002)). Hence, the difficulty in calculation of SCR is primarily as-
sociated with the difficulty in calculation of liabilities.

In order to focus on the problem of calculating the liabilities and to make
the analysis more tractable, we assume that the company has taken a passive
approach (i.e., no hedging is involved) and the only asset of the company
is a pool of shareholders’ money M0 that is invested in a money market
account and hence accrues risk-free interest. The assets are adjusted yearly
as required. This structure of assets allows us to eliminate the assets in the
definition of ∆ in (3) as follows.
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∆ = AC0 −
AC1

1 + r

= (M0 −MVL0)− (
(M0(1 + r)−MVL1)

1 + r
)

= −MVL0 +
MVL1

1 + r
(5)

Hence, the problem of calculating the SCR reduces to the problem of calcu-
lating the current liability and the distribution of the liability in one-year’s
time. The value of the liability at time zero can be determined according
to the risk-neutral valuation formula as the expected sum of discounted li-
ability cash flows under some risk-neutral measure. We can estimate the
probability distribution of MVL in one year by the nested simulation ap-
proach of (Bauer et al., 2012). In the nested simulation approach, we first
draw N independent identically distributed sample paths O(i), 1 ≤ i ≤ N, for
the development of financial market. For each sample path O(i), we use the
aforementioned risk-neutral valuation technique to find the liability MVL

(i)
1

assuming the state of the financial market. The values MVL
(i)
1 , 1 ≤ i ≤ N ,

can be used to determine the empirical distribution of liability in one-year’s
time. In order to compute the 99.5%-quantile for AC1 (or negative of liability
as defined in (5)), as required by the definition of the SCR, we can sort the

−1 ×MVL
(i)
1 , 1 ≤ i ≤ N , values and choose the bN × 0.995 + 0.5c element

amongst the sorted values. Call the negative of this value ˆMVL1. Using the
estimated value of liability at time zero, ˆMVL0, and the value of ˆMVL1, we
can then estimate the SCR as

ˆSCR = − ˆMVL0 +
ˆMVL1

1 + r
(6)

This approach to estimating the liability, requires the calculation of the
liability at various points in time and under different market conditions. In
(Bauer et al., 2012), a MC simulation approach is suggested to calculate the
liability at different points in the space. Moreover, through mathematical
analysis, an optimal number of projections for the number of MC projection
paths and the value ofN is suggested. The proposed MC scheme, even for one
insurance contract, requires a significant amount of computation and hence
does not scale well to large portfolios of insurance products. As we discuss
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in detail in (Hejazi et al., 2015), traditional portfolio valuation techniques
such as replication portfolio (Dembo and Rosen, 1999; Oechslin et al., 2007;
Daul and Vidal, 2009) and Least Squares Monte Carlo (LSMC) (Cathcart
and Morrison, 2009; Longstaff and Schwartz, 2001; Carriere, 1996) are not
effective in reducing the computational cost. The computational complex-
ity of these methods for sophisticated insurance products, such as VAs, is
comparable to, or more than, the computational complexity of MC schemes.
Reducing the amount of computation in these methods often requires signif-
icant reduction in the accuracy of these methods.

Recently, a spatial interpolation scheme (Hejazi et al., 2015; Gan, 2013;
Gan and Lin, 2015) has been proposed to reduce the required computation of
the MC scheme by reducing the number of contracts that must be processed
by the MC method. The spatial interpolation framework, first, generates
a sample of contracts in the space in which the insurance products of the
input portfolio are defined. The value of interest, i.e., liability in this paper,
for the sample contracts are evaluated using MC simulations. The outputs
of the MC scheme are then used to estimate the value of interest for other
contracts in the input portfolio by a spatial interpolation scheme. In (He-
jazi and Jackson, 2015), we describe how a neural network approach to the
spatial interpolation can not only solve the problem associated with finding
a good distance metric for the portfolio but also provide a better balance
between efficiency, accuracy, and granularity of estimation. Although the
numerical experiments of (Hejazi and Jackson, 2015) provided insights into
the performance of our proposed neural network approach in estimation of
Greeks for a portfolio of VAs, we show in this paper how the same type of
network can be used to find the liabilities and subsequently the SCR for an
input portfolio of VA products in an efficient and accurate manner.

4. Neural Network Framework

In this section, we provide a brief review of our proposed neural network
framework. For a detailed treatment of this approach, in particular the reason
behind our choice of network and training method, see our paper (Hejazi and
Jackson, 2015).

4.1. The Neural Network

Our proposed estimation scheme is an extended version of the Nadaraya-
Watson kernel regression model (Nadaraya, 1964; Watson, 1964). Assuming
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y(z1), · · · , y(zn) are the observed values at known locations z1, · · · , zn, our
model estimates the value at an unknown location z as

ŷ(z) =
n∑

i=1

Ghi
(z − zi)× y(zi)∑n
j=1Ghj

(z − zj)
(7)

where G is a nonlinear differentiable function and the subscript, hi, denotes
the range of influence of each y(zi) on the estimated value. The variable hi
is a location dependent vector that determines the range of influence of each
pointwise estimator in each direction of feature space of the input data. In
our application of interest in this paper, y(·) is the MC estimation of liability.
The variables zi, 1 ≤ i ≤ n, are n vectors in Rm representing the attributes
of a sample set of n representative VA contracts in the space of the input
portfolio.

We choose to implement our model (7) using a feed-forward neural net-
work (Bishop, 2006) that allows us to fine-tune our model to find the optimum
choices of the hi values that minimize our estimation error.

As shown in Figure 1, our feed-forward neural network is a collection of
interconnected processing units, called neurons, which are organized in three
layers. The first and the last layers are, respectively, called the input layer
and the output layer. The intermediate layer is called the hidden layers.

The neurons in the first layer provide the network with the feature vector
(input values). Each neuron in the input layer represents a value in the set
{F c, F−, F+}. Each f in F c has the form

f =
{0 if xc = xci

1 if xc 6= xci
(8)

where xc represents the category of categorical attribute c for input VA pol-
icy z, and xci represents the category of categorical attribute c for repre-
sentative VA policy zi in the sample. Each f in F− has the form f =
[t(xni

)−t(xn)]+/Rth , and each f in F+ has the form f = [t(xn)−t(xni
)]+/Rth .

In both of these formulas, xn is the vector containing the numeric attributes
of input VA policy z, xni

is the vector containing the numeric attributes
of representative VA policy zi in the sample, t(·) is a transformation (lin-
ear/nonlinear), determined by the expert user, that assumes a value in an
interval of length Rt and [·]+ = max(·, 0). In essence, our choice of input
values allows different bandwidths (hi values in (7)) to be used for different
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Figure 1: Diagram of the proposed neural network. Each circle represents a neuron. Each
rectangle represent the set of neurons that contains input features corresponding to a
representative contract.

attributes of VA policies and in different directions around a representative
VA contract in the sample.

Since we are interested in calibrating the G functions of equation (7), the
number of neurons in the output and hidden layer are equal to the number
of representative contracts in the sample. The inputs of neuron i in the
hidden layer are those values of f in the input layer that are related to the
representative VA policy i. In other words, the input values of neuron i in the
hidden layer determine the per attribute difference of the input VA contract z
with the representative VA contract zi using the features f ∈ {F c, F−, F+}.
Assuming x1, · · · , xn are the inputs of neuron j at the hidden level, first a
linear combination of input variables is constructed

aj =
n∑

i=1

wijxi + bj (9)

where parameters wij are referred to as weights and parameter bj is called the
bias. The quantity aj is known as the activation of neuron j. The activation
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aj is then transformed using an exponential function to form the output of
neuron j.

The output of neuron i in the output layer is the normalized version of the
output for neuron i in the hidden layer. Hence the outputs of the network,
i.e., oi, i ∈ {1, · · · , n}, represent a softmax of activations in the hidden layer.
These outputs can be used to estimate the value of the liability for input
VA z as ŷ(z) =

∑n
i=1 oi × y(zi), in which y(zi) is the value of the liability

for representative VA policy zi. In summary, our proposed neural network
allows us to rewrite equation (7) as

ŷ(z) =
n∑

i=1

exp(wi
T fi(z) + bi)× y(zi)∑n

j=1 exp(wj
T fj(z) + bj)

(10)

where vector fi represents the features in the input layer that are related to
the representative VA policy zi, and vector wi contains the weights associated
to each feature in fi at neuron i of the hidden layer.

4.2. Network Training Methodology

In order to calibrate (train) the network and find the optimal values of
weights and bias parameters, we select a small set of VA policies, which we
call the training portfolio, as the training data for the network. The objective
of the calibration process is to find a set of weights and bias parameters that
minimizes the Mean Squared Error (MSE) in estimation of liability values of
the training portfolio. In other words, our objective function is

E(w,b) =
1

2n

n∑
k=1

||ŷ(zk,w,b)− y(zk)||2 (11)

We use an iterative gradient descent scheme (Boyd and Vandenberghe,
2004) to train the network. However, to speed up the training process, we
do mini-batch training (Murphy, 2012) with Nestrov’s Accelerated Gradient
(NAG) method (Nesterov, 1983). In mini-batch training, in each iteration,
we select a small number of training VA policies at random and compute the
gradient of the following error function for this batch.

E(w(t),b(t)) =
1

2|B(t)|
∑

k∈B(t)

||ŷ(zk,w
(t),b(t))− y(zk)||2 (12)

where B(t) is the set of indices for the selected VA policies and superscript
t denotes the iteration number. Instead of updating the weights and biases
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by the gradient of (12), in the NAG method, we use a velocity vector that
increases in value in the direction of persistent reduction in the objective
error function across iterations. We use a particular implementation of the
NAG method described in (Sutskever et al., 2013). In this implementation
of NAG, weights and biases are updated according to the rules

vt+1 = µtvt − ε∇E([w(t),b(t)] + µtvt)

[w(t+1),b(t+1)] = [w(t),b(t)] + vt+1 (13)

where vt is the velocity vector, µt ∈ [0, 1] is known as the momentum coef-
ficient and ε is the learning rate. The momentum coefficient is an adaptive
parameter defined by

µt = min(1− 2−1−log2(b
t
50
c+1), µmax) (14)

where µmax ∈ [0, 1] is a user defined constant.
Because of the amount of investments and the structure of guarantees

in VA products, the liability values can become large. Big liability values
can result in big gradient values which produce big jumps in the updates of
(13). Therefore, to avoid numerical instability, only in the training stage, we
normalize the values of y(zi) in (12), by dividing each y(·) value by the range
of guarantee values in the input portfolio.

If we allow the network to train for a long enough time, it will start to
converge towards a local optimum. Depending on our choice of the represen-
tative contracts and the training data, further training of the network after a
certain number of iterations might result in overfitting or might not result in
significant change in the value of weights and biases, and the associated error.
To avoid these pitfalls, we use a set of randomly selected VA policies from
the input portfolio as our validation portfolio (Murphy, 2012) and stop the
training using a two step verification process. First, we observe if the MSE
of the training data drops dramatically or if there is an initial decrease in the
MSE of the validation portfolio to a local minimum followed by an increase
in the MSE of the validation portfolio. Once any of these events, called stop-
ping events, happens, we train the network for a few more iterations until
the mean of network’s liability estimates for the validation portfolio is within
a δ relative distance of the mean of MC estimated liability of the validation
portfolio via MC simulations or a maximum number of training iterations is
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reached. The relative distance between network estimated liablity LNN and
the MC estimated liability LMC is calculated as

dist = |LNN − LMC

LMC

| (15)

As shown in the graph of Figure 2, the actual graph of the MSE for the
validation portfolio or the training portfolio as a function of iteration number
might be volatile. However, a general trend exists in the data. To make the
trend clearer, we use a simple moving average with a window of W̄ to smooth
the data and polynomial fitting of the smoothed data. We detect stopping
events using a window of length W on the polynomial approximation of the
MSE values. A stopping event occurs if the MSE of the validation set has
increased in the past W − 1 recorded values after attaining a minimum.
We evaluate the MSE values of the validation set every I th iteration of the
training, to avoid slowing down the training process. I, W and W̄ are user
defined parameters and are application dependent.

5. Numerical Experiments

In order to provide insights into the performance of the proposed neural
network framework, we estimate the SCR for a synthetic portfolio of 100, 000
VA contracts. Each contract in the portfolio is assigned attribute values
uniformly at random from the space defined in Table 1. The guarantee
values (death benefit and withdrawal benefit) of GMWB riders are chosen to
be equal2, but they are different than the account value. The account values
of the contracts follow a simple log-normal distribution model (Hull, 2006)
with a risk free rate of return of µ = 3%, and volatility of σ = 20%.

We use the framework of (Gan and Lin, 2015) to value each VA contract.
Similar to (Hejazi et al., 2015), we use 10, 000 MC simulations to value each
contract. In our experiments, we use the mortality rates of the 1996 I AM
mortality tables provided by the Society of Actuaries.

We implement our experiments in Java and run them on a machine with
a dual quad-core Intel X5355 CPUs. For each valuation of the input portfolio
using the MC simulations, we divide the input portfolio into 10 sub-portfolios,
each with an equal number of contracts and run each sub-portfolio on one

2This is typical of the beginning of the withdrawal phase.
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Figure 2: MSE of the validation set and the trend in the MSE as a function of the iteration
number for a run of the training algorithm. The trend is found using a moving average
with a window size of 10 and then polynomial fitting with a polynomial of degree 6.

Attribute Value
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {20, 21, . . . , 60}
Account Value [1e4, 5e5]
Guarantee Value [0.5e4, 6e5]
Widthrawal Rate {0.04, 0.05, 0.06, 0.07, 0.08}
Maturity {10, 11, . . . , 25}

Table 1: GMDB and GMWB attributes and their respective ranges of values.

thread, i.e., a total of 10 threads, to value these 10 sub-portfolios in parallel.
Although we use the parallel processing capability of our machine for MC
simulations, we do not use parallel processing to implement our code for our
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Experiment 1
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {20, 30, 40, 50, 60}
Account Value {1e4, 1e5, 2e5, 3e5, 4e5, 5e5}
Guarantee Value {0.5e4, 1e5, 2e5, 3e5, 4e5, 5e5, 6e5}
Withdrawal Rate {0.04, 0.08}
Maturity {10, 15, 20, 25}

Table 2: Attribute values from which representative contracts are generated for experi-
ments.

proposed neural network scheme: our neural network code is implemented
to run sequentially on one core.

5.1. Network Setup

Although a sagacious sampling scheme can significantly improve the per-
formance of the network, for the sake of simplicity, we use a simple uniform
sampling method similar to that used in (Hejazi and Jackson, 2015). We
postpone the discussion on the choice of a better sampling method to our
future work. We construct a portfolio of all combinations of attribute values
defined in Table 2. In each experiment, we randomly select 300 VA contracts
from the aforementioned portfolio as the set of representative contracts.

As discussed in Section 4, in addition to the set of representative con-
tracts, we need to introduce two more portfolios, the training portfolio and
the validation portfolio, to train our neural network. For each experiment,
we randomly select 250 VA contracts from the input portfolio as our vali-
dation portfolio. The training portfolio, in each experiment, consists of 200
contracts that are selected uniformly at random from the set of VA contracts
of all combinations of attributes that are presented in Table 3. In order to
avoid unnecessary overfitting of the data, the attributes of Table 3 are chosen
to be different than the corresponding values in Table 2.

We train the network using a learning rate of 20, a batch size of 20 and
we set µmax to 0.99. Moreover, we fix the seed of the pseudo-random number
generator that we use to select mini batches to be zero. For a given set of the
representative contracts, the training portfolio, and the validation portfolio,
fixing the seed allows us to reproduce the trained network. We set the initial
values of the weight and bias parameters to zero.
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Experiment 1
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {23, 27, 33, 37, 43, 47, 53, 57}
Account Value {0.2e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5}
Guarantee Value {0.5e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5, 5.5e5}
Withdrawal Rate {0.05, 0.06, 0.07}
Maturity {12, 13, 17, 18, 22, 23}

Table 3: Attribute values from which training contracts are generated for experiments.

We estimate the liability of the training portfolio and the validation port-
folio every 50 iterations and record the corresponding MSE values. We
smooth the recorded MSE values using a moving average with a window
size of 10. Moreover, we fit a polynomial of degree 6 to the smoothed MSE
values and use a window size of length 4 to find the trend in the MSE graphs.
In the final stage of the training, we use a δ of 0.005 as our threshold for
maximum relative distance in estimation of the liabilities for the validation
portfolio.

We use the rider type and the gender of the policyholder as the categorical
features in F c. The numeric features in F+ are defined as follows.

f(z, zi) =
[t(x)− t(xi)]+

Rt

t ∈ {maturity, age, AV, GD, GW, withdrawal rate} (16)

where AV is the account value, GD is the guaranteed death benefit, GW
is the guaranteed withdrawal benefit, Rt is the range of values that t can
assume, x and xi are vectors denoting the numeric attributes of the input
VA contract z and the representative contract zi, respectively. We define the
features of F− in a similar fashion by swapping x and xi on the right side of
equation (16).

5.2. Performance

The experiments of this section are designed to allow us to compare the
efficiency and the accuracy of the proposed neural network framework with
the MC simulations. In each experiment, we define N = 40, 000 realization
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of the market by describing the relative change of account values. Assuming
a price of A0 as the current account value of a VA, each realization gives us a
coefficient C1, from the above-mentioned log-normal distribution, that allows
us to determine the account value in one year’s time as A1 = C1 ∗ A0. We
determine a range (interval) based on the maximum value and the minimum
value of realized coefficients and divide that range into 99 sub-intervals, using
100 end points. We value, using MC simulations or the proposed neural
network framework, the one year projection of liability for the input portfolio
assuming the realization of the market by each of these end points. Using the
estimated values, we use piecewise-linears to approximate the value of each
of the original 40, 000 realizations. We chose piecewise-linear approximation
because of the smoothness, as we demonstrate shortly, of the curve describing
the relation between liability values and the aforementioned coefficients. We
use the liability values for these 40, 000 realizations to define the 99.5%-
quantile of AC1 as described in Section 3. We then use the estimated 99.5%-
quantile and the estimation of current liability to determine the SCR of the
input portfolio as in (6).

Given a selection of representative contracts, the training portfolio, and
the validation portfolio, we train the network using the current liability of
VAs to estimate the liability of the network at time 0 (current liability). We
use the trained network to estimate the one year liability of the input port-
folio for each end point. However, before each estimation, we perform the
last stage of the training method to fine-tune the network. In other words,
we train the network for a maximum of 200 iterations until the network esti-
mated liability for the validation portfolio is within δ = 0.01 relative distance
of the MC estimated liability of the validation portfolio. Notice that in (10),
we use the estimated one year liability of the representative contracts for the
given realization of the market as the y(zi), 1 ≤ i ≤ n, values. If the fine-
tuning of the network was unable to estimate the liability of the validation
portfolio within the defined δ relative distance, we define a new network using
the set of representative contracts, the training portfolio and the validation
portfolio and train the new network. We then use the new trained network in
the subsequent liability estimation. With each realization of the market, the
local minimum of the network for the validation portfolio may change. If the
local minimum in the new realization is close to the previous local minimum,
the fine-tuning stage allows us to reach that local minimum without going
through our computationally expensive training stage that searches for the
local minimum in the whole space. If the fine-tuning stage fails, then we
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Value Of Interest
Relative Error (%)

S1 S2 S3 S4 S5 S6
SCR −0.85 0.69 −0.81 −3.58 3.02 1.52
MVL0 0.22 0.52 0.96 −0.36 −0.27 0.70

MVL
(99.5)
1 0.43 0.11 0.91 0.97 −1.20 −0.05

Table 4: Relative error in the estimation of the current liability value, one year liability
value, and the SCR for the input portfolio.

can conclude that the local minimum has changed significantly and hence a
re-training in the whole space is required.

We compare the performance of the interpolation schemes using 6 differ-
ent realization, Si, 1 ≤ i ≤ 6, of the representative contracts, the training
portfolio, and the validation portfolio. Table 4 denotes the accuracy of our
proposed scheme in estimating the MVL0, the 99.5%-quantile of MVL1, and
the SCR value for each scenario. Accuracy is recorded as the relative error

Err =
X −XMC

|XMC |
(17)

where XMC is the value of interest (liability or the SCR) in the input portfolio
computed by MC simulations and X is the estimation of the value of interest
computed by the proposed neural network method.

The results of Table 4 provide strong evidence that our neural network
method is accurate. Except in a few scenarios, S4 and S5, the proposed ap-
proach is very accurate in its estimation of the MVL0, the MVL

(99.5)
1 , and the

SCR. Our numerical experiments in (Hejazi and Jackson, 2015) show that
our proposed neural network framework has low sensitivity to the particular
realization of the representative contracts, and the training/validation port-
folio once the size of these portfolios are fixed. The results of Table 4 further
corroborate our finding in (Hejazi and Jackson, 2015) as the realization of
the representative contracts, and the training/validation portfolio is different
in each scenario.

The accuracy of the proposed method can be further examined by con-
sidering Figure 3 in which the estimated liability values, for the end points
of the interval, by the proposed method is compared with their respective
MC estimations. The graphs of Figures 3b and 3c show that the liabil-
ity estimated values by the proposed method are very close to those of the
MC method, which demonstrates the projection capabilities of the proposed
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Method
Running Time
Mean STD

MC 49334 0
NN 8370 2465

Table 5: simulation time of each method to estimate the SCR. All times are in seconds.

framework. The smoothness of the MC liability curve allows us to use piece-
wise linear interpolation to estimate the value of the liability for points inside
the sub-intervals. However, the estimation of this curve using the proposed
framework does not result in a smooth curve. Therefore, we might be able to
increase the accuracy of the proposed framework by using a non-linear curve
fitting technique. In this work, we tried to avoid using different curve fitting
techniques so that we can have a fair pointwise comparison between the pro-
posed technique and the MC technique. Furthermore, the curve fitting stage
is independent of the liability estimation, and our focus, in this paper, is on
the performance of the proposed framework for estimating the liability.

Table 5 presents the statistics on running time of the proposed method
(denoted as NN in this table and elsewhere in the paper) and the MC method.
The results suggest a speed-up of 4 − 8 times, depending on the scenario,
and an average speed-up of 6 times. Considering that the implementation
of the neural network was sequential and we compared the running time of
the neural network with the implementation of MC simulations that uses
parallel processing on 4 cores, we observe that even a simple implementation
of the network can be highly efficient. Notice that we used a moderate num-
ber of MC simulation scenarios compared to the suggested values in (Bauer
et al., 2012). An increase in the number of MC scenarios will not increase
the running time of our neural network significantly because we only need
MC simulations for representative contracts and for the validation/training
portfolio; however, it increases the running time of the MC simulations sig-
nificantly. In general, a similar argument shows that any more complex
implementation of the per policy valuation process increases the efficiency of
our proposed framework relative to MC simulation, as the number of policies
that must go through the valuation process is limited.
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6. Concluding Remarks

The new regulatory framework of Solvency II has been introduced by Eu-
ropean Union to reduce the risk facing insurance/re-insurance companies. An
important part of the new regulation is the calculation of the SCR. Because
of the imprecise language used to describe the standards, many insurance
companies struggle to understand and implement the framework.

In recent years, mathematical frameworks for calculation of the SCR have
been proposed to address the former issue (Christiansen and Niemeyer, 2014;
Bauer et al., 2012). Furthermore, (Bauer et al., 2012) has suggested a nested
MC simulation approach to calculate the SCR to address the later issue. The
suggested MC approach is computationally expensive, even for one simple
insurance contract. Hence, it cannot be easily generalized to a large portfolio
of insurance products.

In this paper, we propose a spatial interpolation approach to the compu-
tation that uses a neural network engine to interpolate the liability values
of insurance products based on the known liability values of a small repre-
sentative set of these product. We study the performance of the proposed
approach in finding the SCR value for a portfolio of VA products. The results
of our numerical experiments in Section 5 corroborate the superior accuracy
and efficiency of the sequential implementation of our proposed neural net-
work approach compared with an implementation of the MC approach that
uses parallel processing.

Although our method requires us to train our neural network using three
small (< 1% of the input portfolio) portfolios that are selected uniformly at
random, but given the size of each of the small portfolios, the performance of
the method has low sensitivity to the particular realization of these portfolios.

Despite the superior performance of the proposed approach that uses a
simple uniform sampling method to select the small portfolios required to
train the network, we believe our neural network approach can be further
improved by incorporating a more sophisticated sampling method that takes
into account the distribution of the input portfolio. We intend to address
this issue in our future research.

In this paper, we chose to study the performance of our neural network
approach on estimation of liabilities; however, the application of our proposed
approach is much more general than that. In particular, one can change the
type of the insurance product and the approach used to value individual
insurance products and incorporate them with our framework to estimate
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the value of a large portfolio of the aforementioned insurance product.
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(a) Estimated one year liability values by the neural network framework and the
MC method.

(b) Historgram of difference at each
end point of sub-intervals in estima-
tion of the liability via the neural net-
work approach and the MC simula-
tions.

(c) Historgram of the relative differ-
ence (17) at each end point of sub-
intervals in estimation of liability via
the neural network approach and the
MC simulations.

Figure 3: Comparing estimation of one year liability values of the input portfolio by the
proposed neural network framework and the MC method.
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