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Abstract

Managing and hedging the risks associated with Variable Annuity (VA) prod-
ucts require intraday valuation of key risk metrics for these products. The
complex structure of VA products and computational complexity of their
accurate evaluation have compelled insurance companies to adopt Monte
Carlo (MC) simulations to value their large portfolios of VA products. Be-
cause the MC simulations are computationally demanding, especially for in-
traday valuations, insurance companies need more efficient valuation tech-
niques. Recently, a framework based on traditional spatial interpolation tech-
niques has been proposed that can significantly decrease the computational
complexity of MC simulation (Gan and Lin, 2015). However, traditional in-
terpolation techniques require the definition of a distance function that can
significantly impact their accuracy. Moreover, none of the traditional spa-
tial interpolation techniques provide all of the key properties of accuracy,
efficiency, and granularity (Hejazi et al., 2015). In this paper, we present
a neural network approach for the spatial interpolation framework that af-
fords an efficient way to find an effective distance function. The proposed
approach is accurate, efficient, and provides an accurate granular view of
the input portfolio. Our numerical experiments illustrate the superiority of
the performance of the proposed neural network approach compared to the
traditional spatial interpolation schemes.
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1. Introduction

A Variable Annuity (VA), also known as a segregated fund in Canada, is
a type of mutual fund that comes with insurance features and guarantees.
VAs allow policyholders to invest in financial markets by making payment(s)
into a predefined set of sub-accounts set up by insurance companies and
enjoy tax-sheltered growth on their investment. The insurer, later, returns
these investments through a lump-sum payment or a series of contractually
agreed upon payments. An attractive feature of VA products are the embed-
ded guarantees that protect the investment of policyholders from downside
market fluctuations in a bear market and mortality risks (TGA, 2013; Chi
and Lin, 2012). For a detailed description of VA products and different types
of guarantees offered in these products, see our earlier paper (Hejazi et al.,
2015) and the references therein.

The innovative structure of embedded guarantees has made VA products
a huge success. Major insurance companies, especially in the past decade,
have sold trillions of dollars worth of these products (IRI, 2011), and have
built up large portfolios of VA contracts, each with hundreds of thousands
of contracts. The embedded guarantees of VA contracts in these portfolios
expose insurance companies to a substantial amount of risk, such as market
risk and behavioral risk. After the market crash of 2008 that wiped out
several big insurance companies, the surviving insurance companies started
major risk management initiatives to dynamically hedge (Hardy, 2003) their
exposures.

An integral part of the aforementioned hedging programs is intraday eval-
uation of VA products to find the Greeks (Hull, 2006) for the portfolios of VA
products so that effective hedging positions can be set up. Most of the aca-
demic methodologies for valuation of VA contracts are tailored to a specific
type of VA contract (Milevsky and Salisbury, 2006; Chen and Forsyth, 2008;
Chen et al., 2008; Dai et al., 2008; Ulm, 2006; Huang and Forsyth, 2011;
Belanger et al., 2009) and/or are computationally too expensive to scale to
large portfolios of VA contracts (Azimzadeh and Forsyth, 2015; Moenig and
Bauer, 2011; Boyle and Tian, 2008). Hence, in practice, insurance compa-
nies have relied on nested MC simulations to find the Greeks of VA portfolios
(Reynolds and Man, 2008). Nested MC simulations, as shown in Figure 1,
consist of outer loop scenarios which span the space of key market variables
and inner loop scenarios consisting of a collection of risk-neutral paths that
are used to project the liabilities of VA contracts (Fox, 2013). Although MC



Figure 1: Pictorial graph of nested MC simulations.

simulations are computationally less expensive than the academic method-
ologies, the amount of computation is still significant and does not scale well
to large portfolios of VA contracts. Because of this, insurance companies are
actively looking for ways to reduce the number of required MC simulations
to find the Greeks for a large portfolio of VA contracts.

As we discuss in Section 2, a framework based on spatial interpolation
(Burrough et al., 1998) has been successful in ameliorating the computa-
tional load of MC simulations by reducing the number of VA contracts that
go through nested MC simulation. However, as we discussed in (Hejazi
et al., 2015), the proposed spatial interpolation framework requires an ef-
fective choice of distance function and a sample of VA contracts from the
space in which the input portfolio is defined to achieve an acceptable accu-
racy level. The appropriate choice of the distance function for the given input
portfolio in the proposed framework requires research by a subject matter
expert for the given input portfolio. In this paper, we propose to replace
the conventional spatial interpolation techniques— Kriging, Inverse Distance
Weighting (IDW) and Radial Basis Function (RBF) (Burrough et al., 1998)—
in the framework of (Hejazi et al., 2015) with a neural network. The pro-
posed neural network can learn a good choice of distance function and use the
given distance function to efficiently and accurately interpolate the Greeks
for the input portfolio of VA contracts. The proposed neural network only
requires knowledge of a set of parameters that can fully describe the types of
VA contracts in the input portfolio and uses these parameters to find a good
choice of distance function.

The rest of this paper is organized as follows. Section 2 provides a brief
summary of existing methods for the valuation of portfolios of VA products.
The main focus of Section 2 is on the spatial interpolation framework of
(Hejazi et al., 2015) that has been successful in providing the Greeks for



a large portfolio of VA products in an efficient and accurate way. Section
3 describes the neural network framework and provides background infor-
mation on neural networks. We provide the intuition behind the proposed
model and the novel training technique used to calibrate (a.k.a. to train)
the network. Section 4 provides insights into the performance of the neural
network framework in estimation of Greeks for a large synthetic portfolio of
VA contracts. Section 5 concludes the paper with a discussion of our future
work and possible applications of the proposed framework.

2. Portfolio Valuation Techniques

If one thinks of VAs as exotic market instruments (Hull, 2006), the tra-
ditional replicating portfolio approach can be used to find the value of a
portfolio of VA products. The main idea behind this approach is to approx-
imate the cash flow of liabilities for a portfolio of VA contracts using well-
formulated market instruments such as vanilla derivatives. The problem is
often formulated as a convex optimization problem where the objective is to
minimize the difference between the cash flow of the input portfolio and the
replicating portfolio. Depending on the norm associated with the problem,
linear programming (Dembo and Rosen, 1999) or quadratic programming
(Daul and Vidal, 2009; Oechslin et al., 2007) is used in the literature to find
the replicating portfolio. The replicating portfolio, in our application of in-
terest, doesn’t provide us with an efficient alternative to MC simulations, as
one still needs to find the cash flow of the input portfolio for each year up to
maturity.

Least Squares Monte Carlo (LSMC) regresses the liability of the in-
put portfolio against some basis functions representing key economic factors
(Longstaff and Schwartz, 2001; Carriere, 1996). LSMC has been proposed
in the literature to reduce the number of inner loop scenarios in nested MC
simulations (Cathcart and Morrison, 2009). Depending on the type of em-
bedded guarantees, size of investment and characteristics of the policyholder,
VA contracts have a significant number of numeric attributes, each covering
a broad range. Therefore, an accurate regression using LSMC requires incor-
poration of many sample points, and hence is computationally demanding.

Recently, Replicated Stratified Sampling (RSS) (Vadiveloo, 2011) and
Kriging based techniques (Gan, 2013; Gan and Lin, 2015) have been pro-
posed to reduce the number of VA contracts that must be included in the
MC simulations. Both of these methods, use the Greeks for samples of the



input portfolio to estimate the Greeks of the full input portfolio. RSS re-
quires several iterations of sample generation and evaluation to converge to
a final result. This makes it more computationally demanding than the
Kriging based techniques of (Gan, 2013; Gan and Lin, 2015) that require
MC simulations results for only one sample. We discuss in our earlier pa-
per (Hejazi et al., 2015) how the Kriging based techniques of (Gan, 2013;
Gan and Lin, 2015) can be categorized under a general spatial interpolation
framework. The spatial interpolation framework generates a sample of VA
contracts from the space in which the VA contracts of the input portfolio are
defined. The Greeks for the sample are evaluated using nested MC simula-
tions. The results of MC simulations are then used by a spatial interpolation
technique to generate an estimate for the Greeks of the input portfolio.

In (Hejazi et al., 2015), we provide numerical and theoretical results com-
paring the efficiency and accuracy of different conventional spatial interpo-
lation techniques, i.e., Kriging, IDW and RBF. Our results demonstrate
that, while the Kriging method provides better accuracy than either the
IDW method or the RBF method, it is less efficient and has a lower reso-
lution. By lower resolution, we mean that the Kriging method can provide
the Greeks for only the input portfolio in an efficient manner, while both the
IDW method and the RBF method approximate the Greeks efficiently for
each VA contract in the input portfolio.

3. Neural Network Framework

As we discuss in our earlier paper (Hejazi et al., 2015), spatial interpola-
tion techniques can provide efficient and accurate estimation of the Greeks for
a large portfolio of VA products. Although IDW and RBF methods provide
better efficiency and resolution than Kriging methods, they are less accurate
than Kriging methods. Our experiments in (Hejazi et al., 2015) demonstrate
the significance of the choice of distance function on the accuracy of IDW
and RBF methods. A manual approach to find the best distance function
that minimizes the estimation error of the IDW and the RBF methods for
a given set of input data is not straightforward and requires investing a sig-
nificant amount of time. The difficulty in finding a good distance function
diminishes the effectiveness of the IDW and the RBF methods.

In order to automate our search for an effective distance function while
maintaining the efficiency of the IDW and the RBF methods, we propose a
machine learning approach. In our proposed approach, we use an extended



version of the Nadaraya-Watson kernel regression model (Nadaraya, 1964;
Watson, 1964) to estimate the Greeks. Assuming y(z1),---,y(z,) are the
observed values at known locations 21, - - - , z,,, the Nadaraya-Watson estima-
tor approximates the value y(z) at the location z by

ZKh Z—Zz X?J(Zz)
Z] lKhZ_ZJ>

where K, is a kernel with a bandw1dth of h. The Nadaraya-Watson estimator
was first proposed for kernel regression applications and hence the choice of
kernel function K} was a necessity. For our application of interest, we choose
to use the following extended version of the Nadaraya-Watson estimator:

Gh,(z — z;) x y(z;)
Z?:l Ghj (Z - Zj)

where GG is a nonlinear differentiable function and the subscript h;, similar
to the bandwidth A of kernels, denotes the range of influence of each y(z;)
on the estimated value. Unlike the Nadaraya-Watson model, the h;s are
not universal free parameters and are location dependent. Moreover, h; is a
vector that determines the range of influence of each pointwise estimator in
each direction of feature space of the input data. As we discuss below, our
decision to calibrate the h; parameters using a neural network necessitated
the properties of G.

In our application of interest, the z;,1 < ¢ < n, in (1) define a set of
VA contracts, called representative contracts, and y(z;), 1 < i < n, are their
corresponding Greek values. Hence, Equation (1) is similar to the equation
for the IDW estimator. The G, (z — z;) in (1) is comparable to the weight
(inverse of the distance) for representative contract z; in the equation of IDW.
Therefore, once we know the particular choices of the h;s for the G function
for each of our n representative VA contracts, we can compute the Greeks
for a large portfolio of N VA contracts in time proportional to N x n, which
preserves the efficiency of our framework. In order to find a good choice of
the G, functions, we propose the use of a particular type of neural network
called a feed-forward neural network. As we describe in more detail below,
our choice of neural network allows us to find an effective choice of the Gy,
functions by finding the optimum choices of the h; values that minimize our
estimation error, and hence eliminate the need for a manual search of a good
choice of distance function.

y(z) = (1)



Hidden Layers

Input Layer
Output Layer

Figure 2: Diagram of a feed-forward neural network. Each circle represents a neuron.

Feed-forward networks are well-known for their general approximation
properties which has given them the name of universal approximators. For
example a one-layer feed-forward network with linear outputs is capable of
approximating any continuous function on a compact domain (Hornik, 1991).
For a thorough study of feed-forward networks, the interested reader is re-
ferred to (Bishop, 2006) and the references therein. For the sake of brevity,
in the rest of this paper, we use the word neural network to refer to this par-
ticular class of feed-forward neural network unless explicitly said otherwise.

3.1. The Neural Network

A feed-forward neural network is a collection of interconnected processing
units, called neurons, which are organized in different layers (Figure 2). The
first and the last layers are respectively called the input layer and the output
layer. Intermediate layers are called the hidden layers. Neurons of each layer
take as input the outputs of the neurons in the previous layer. The neurons
in the first layer serve only as inputs to the network. In other words, the
neurons of the input layer produce what is known as the feature vector.

Assuming w1y, - - - , z, are the inputs of neuron j at hidden level [. First a
linear combination of input variables is constructed at each neuron:

ag-l) = Z wg-)xi + bg-l)
i=1

where parameters w;; are referred to as weights and parameter b; is called

@

the bias. The quantity a;” is known as the activation of neuron j at level
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Figure 3: Diagram of the proposed neural network. Each circle represents a neuron. Each
rectangle represent the set of neurons that contains input features corresponding to a
representative contract.

[. The activation ay) is then transformed using a differentiable, nonlinear

function to give the output of neuron j at level [.

In our framework, we propose to use a neural network with only one
hidden layer (Figure 3). Each neuron in the input layer represents a value in
the set {F°, F~, F*}. Each f in F* assumes the following form

_J0 itz =z

f_{l if . # z.,
where x. represents the category of categorical attribute ¢ for input VA pol-
icy z, and =z, represents the category of categorical attribute c¢ for repre-
sentative VA policy z; in the sample. Each value f in F'~ has the form
f = [t(xy,) — t(x,)]"/R:,, and each value f in F* has the form f =
[t(xn) — t(%n,)]"/Ry,. In both of the aforementioned formulas, x, is the
vector containing the numeric attributes of input VA policy z, x,,, is the vec-
tor containing the numeric attributes of representative VA policy z; in the
sample, ¢(-) is a transformation (linear/nonlinear), determined by the expert



user, that assumes a value in an interval of length R, and [-]7 = max(-,0).
In essence, our choice of input values allows different bandwidths (h; values
in (1)) to be used for different attributes of VA policies and in different di-
rections around a representative VA contract in the sample. Since we are
interested in calibrating the G functions of equation (1), the number of neu-
rons in the output and hidden layer equals the number of representative
contracts in the sample. The inputs of neuron ¢ in the hidden layer are those
values of f in the input layer that are related to the representative VA policy
7. In other words, input values of neuron 7 in the hidden layer determine the
per attribute difference of input VA contract z with the representative VA
contract z; using the features f € {F°, F~, F"}. Each neuron of the hidden
layer transforms its activation using an exponential function to form its out-
put. The output of neuron 7 in the output layer is the normalized version
of the output for neuron ¢ in the hidden layer. Hence the outputs of the
network, i.e., 0;,4 € {1,--- ,n}, in machine learning terminology, correspond
to a softmax of activations in the hidden layer. These outputs can be used to
estimate the value of the Greek for input VA z as g(z) = > 0; X y(z;), in
which y(z;) is the value of the Greek for sample VA policy z;. To summarize,
our proposed neural network allows us to rewrite Equation (1) as

Z exp(wil f(z, z;) + b;) x y(z;) 2)

> i exp(wiTf(z, 25) + by)

where vector f(z, z;) represents the features in the input layer that are re-
lated to the representative VA policy z;, and vector w; contains the weights
associated with each feature in f at neuron ¢ of the hidden layer. Each w; in
(2) can be considered as the pointwise inverse of the bandwidth value h; in

(1).

3.2. Network Training Methodology

Equation (2) is a parametric formulation of our proposed estimator. We
have to calibrate the weights and bias parameters to find an estimator with
minimum estimation error. The calibration process, in neural network lit-
erature, is known as network training. In order to minimize the training
time by reducing the number of VA policies for which the framework has to
do MC estimations, we select a small set of VA policies which we call the
training portfolio as the training data for the network. The objective of the
calibration process is then to find a set of weights and bias parameters that



minimizes the Mean Squared Error (MSE) in the estimation of the Greeks
of the training portfolio.

We choose the training portfolio to be different than the set of repre-
sentative VA policies (i.e., observed points in the model (1)) to avoid data
overfitting. Even with this choice of the training data, one cannot avoid the
issue of overfitting. We discuss in Section 3.3 our solution to this problem.

Following the common practice in neural network literature, we use the
following simple gradient descent scheme (Boyd and Vandenberghe, 2004) to
iteratively update the weight and bias parameters.

[w D, b)) = [w, b — v E(w!, 1) (3)

The parameter 7 > 0 in (3) is known as the learning rate and w® and
b® denote the vectors of the network’s weights and biases, respectively, at
iteration t. F(-) represents the error function that we are trying to minimize
and VFE is the gradient of E.

For a fair comparison with the traditional spatial interpolation techniques
discussed in (Hejazi et al., 2015), training the network to minimize the fol-
lowing MSE in estimation of the Greeks for the training portfolio seems to
be a reasonable approach.

|B|
E(w. 2|B|Z||y fw,b) =y @)

where z;, 1 < k < |B], are the VA policies in the training portfolio.

Depending on the application of interest, the y(z;) values can be too small
(too big) resulting in too small (too big) gradient values for (4). Too small
gradient values increase the training time to reach a local minimum, while
too big gradient values cause big jumps in updates of (3) and hence numerical
instability. Normalizing the values of y(Z;) in (4) and the choice of learning
rate can help to ameliorate this problem?.

Our formulation of error function (4) uses the whole training set to com-
pute the error function and subsequently the gradient of the error function
in each iteration. Training techniques that use the whole training set in each

IRefer to the appendix for a discussion of heuristic ways to choose the free parameters
described in this section.
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iteration are known as batch methods (Bishop, 2006). Because of the re-
dundancy in the data as well as the computational complexity of evaluating
gradients, batch gradient descent is a slow algorithm for training the net-
work. Our experiments, further, corroborated the slowness of batch gradient
descent in training our proposed network. To speed up the training, we used
a particular version of what is known as the mini-batch training method
(Murphy, 2012). In our training method, in each iteration, we select a small
number (< 20) of training VA policies at random and train the network using
the gradient of the error function for this batch. Hence, the error function
in our mini-batch training method has the form

1

E(w®,b) = 2[BO)]

> gz W b®) —y(z)|

keB(®)

where B® is the set of indices for selected VA policies at iteration t.

Gradient descent methods, at each iteration, produce a higher rate of
reduction in the directions of high-curvature than in the directions of lower-
curvature. Big rate reductions in directions of high-curvature cause zig-zag
movements around a path that converges to the local minimum and hence
decrease the convergence rate (Murphy, 2012). However, a slower rate of
reduction in directions of low-curvature allows for a persistent movement
along the path of convergence to the local minimum. We can exploit this
property by changing the weight update policy of gradient descent to use a
velocity vector that increases in value in the direction of persistent reduction
in the objective error function across iterations. This techniques is known
as the momentum method (Polya, 1964). In our training method, we use
Nestrov’s Accelerated Gradient (NAG) method (Nesterov, 1983) which can
be considered as a variant of the classical momentum method (Polya, 1964).
In particular, we use a version of the NAG method described in (Sutskever
et al., 2013) in which the NAG updates can be written as

Vip1 = MgV — EVE([W(t), b(t)] + ppvy)
[w D, ] = [w, bO] + vy
where v; is the velocity vector, p; € [0, 1] is known as the momentum coeffi-

cient and e is the learning rate. In this scheme, the momentum coefficient is
an adaptive parameter defined by

11



j1 = min(1 — 27 losa(lsgH (5)

where fimax € [0, 1] is a user defined constant. For general smooth convex
functions and a deterministic gradient, NAG achieves a global convergence
rate of O(7) ? versus the O(7) convergence rate for gradient descent in
which 7" denotes the number of iterations (Sutskever et al., 2013). In this
context, the rate of convergence is defined as the rate at which the error,
|f(zr) — f(x*)|, goes to zero, where f is a smooth convex function, x* is
the optimum value (value of interest) and xp is the estimation of z* after
iteration 7'

3.3. Stopping Condition

Figure 4 represents a graph of the MSE for a set of training VA policies
as a function of the training iteration number for one run of our training
algorithm. The graph, except at a few points, is a decreasing function of the
iteration number which means that, as the iteration proceeds, the network
is learning and steadily improving the bandwidth parameters for the model
(2). After the first few thousand iterations, the graph of Figure 4 kneels and
the rate of decrease in MSE drops dramatically. Such significant drops in
the rate of MSE reduction is a sign that the network parameters are close to
their respective optimum values. If we train the network for a longer time,
we expect the MSE to continue to decrease slowly. However, the amount of
improvement in the accuracy of the network might not be worth the time
that we spend in further training the network. Hence, it might be best to
stop the training.

If we select VA policies for the training portfolio very close to the rep-
resentative VA policies, training the network for a long time can cause data
overfitting. Because a perfect solution for (2), in this case, is achieved when
the bandwidth values tend to zero or equivalently the weight parameters be-
come very large. However, such a network approximates the Greeks of VA
policies that are not close to the representative VA policies by zero. To avoid
over-training the network in such scenarios, we follow the common practice
in the machine learning literature and track the MSE for a set of VA policies

2f(x) = O(g(x)) means that there exist positive numbers ¢ and M such that Vo > M :
f(@) < cg(x)

12



14310

1.2~ « -

o
[=-]
T
I

MSE Value
(=]
o
|

o
=
|

o
N
T
|

| | . - . I i
00 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Iteration # x10°

Figure 4: MSE of VA policies in the batch as a function of the iteration number.

which we call the validation portfolio (Murphy, 2012). The validation port-
folio is a small set of VA policies that are selected uniformly at random from
the VA policies in the input portfolio. The MSE of the validation set should
decrease at first as the network learns optimal parameters for the model (2).
After reaching a minimum value, the MSE of the validation portfolio often
increases as the network starts to overfit the model (2) (Figure 5). In our
training method, we propose to evaluate the MSE of the validation portfolio
every I'" iteration of training, to avoid significantly slowing down the train-
ing process. We also propose to use a window of length W of the recorded
MSE values for the validation set to determine if the MSE of the validation
set has increased in the past W — 1 recorded values after attaining a mini-
mum. If we find such a trend, we stop the training to avoid overfitting. [
and W are user defined (free) parameters and are application dependent.
As shown in the graph of Figure 5, the actual graph of the MSE for
the validation portfolio as a function of iteration number might be volatile.
However, a general u-shaped trend still exists in the data, which illustrates

13
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Figure 5: The MSE of the validation set and the trend in the MSE as a function of the
iteration number for a run of the training algorithm. The trend is found using a moving
average with a window size of 10 and then fitting a polynomial of degree 6 to the smoothed
data.

an increase in the value of the MSE after the MSE has reached a minimum.
In order to find the trend graph, we use a simple moving average with a
window size of W to smooth the data. We then fit, in the MSE sense, a
polynomial of degree d to the smoothed data. We examine the resulting
trend graph with windows of length W to determine the phenomenon of the
MSE increase after attaining a local minimum. The parameters W and d are
free parameters and are dependent on the application of interest.

So far, we have discussed two events, which we call stopping events, that
can be used as indicators to stop the training. In both events, the network pa-
rameters are close to optimal network parameter values. At this point, each
additional iteration of the training algorithm moves these parameters in a
neighborhood of the optimal values and might make the network parameters
closer to the optimal values or farther from the optimal values. Intuitively,

14



the best time to stop the training is when the network parameters are very
close to the optimal values and further training does not significantly improve
them. In our training algorithm, we propose to use the relative error in an es-
timation of the mean of the Greeks of the validation portfolio as our stopping
criteria. Let Gyy and Gpe denote the mean of the estimated Greeks for
the validation portfolio computed by our proposed neural network approach
and by MC simulations respectively. The relative error in estimation of the
mean of the Greeks for the validation portfolio is then

|Gy — Gucl
== (6)
|G e

If the relative error (6) is smaller than a user defined threshold §, we stop
the training. The idea behind our choice of stopping criteria is that a good
validation portfolio should be a good representative of the input portfolio.
Hence, a network that has, on average, an acceptable accuracy in an esti-
mation of the Greeks for the validation portfolio should, intuitively, have an
acceptable accuracy in an estimation of the Greeks for the input portfolio
as well. In some cases, finding stopping events and satisfying the stopping
criteria may require the training algorithm to go through too many itera-
tions, which can significantly increase the training time of the network and
consequently decrease the efficiency of the method. We propose to stop the
training algorithm once the network has gone through a user defined maxi-
mum number of iterations to limit the training time in such scenarios.

Err

3.4. Sampling

As we discuss in our earlier paper (Hejazi et al., 2015), the choice of an
appropriate sampling method is a key factor in obtaining an effective method
within the proposed spatial interpolation framework. Although we do not
address the issue of selecting an effective sampling method in this paper, in
this section, we describe ways in which the choice of our representative VA
contracts can affect the performance of our proposed method.

Consider a realization of our proposed network with three representative
contracts :cl,xgl) and x3 with similar guarantee types. The VA contracts
1 and a:él) are similar in every attribute except for the numeric attribute
a, and they differ with VA contract x3 in every attribute. Now, consider
another realization of our proposed network in which we replace xgl) in the

aforementioned realization with $§2). We choose w§2) such that it has similar

15



categorical attributes as xgl); however, its numeric attributes assume the av-
erage of the corresponding numeric values for x; and z3. Assume we train
both networks for a similar number of iterations I. The gradient values of
the error function depend only on the network architecture and the choice
of input values. Since the input values for the corresponding hidden layer
neurons for x; and a:él) in the former network are almost equal we expect the
corresponding weight vectors ng) and ng) for these neurons to be approxi-
mately equal as well. However, because of the dissimilarity of the x; and xéQ)
contracts in the second network, we expect the input values and hence the
corresponding weights wf) and Wé2) of the hidden layer neurons correspond-
ing to these contracts to be quite different. Consequently, the latter network
can provide a better differentiation between the z; and xg) contracts while
the former network requires more training time to provide the same level
of accuracy in differentiating x; and a:él). Moreover, in approximating the
Greeks for VA contracts other than z, x(zl), xg) and x3, the former network,

(1) )

because of the similarity in weights w;~ and wél , puts more emphasis on

)

the corresponding Greeks of the contracts x; and xgl . Moreover, the latter

network, because of the choice of $§2), can provide better accuracy for VA
contracts that are quite different than both x; and x3. Therefore, as demon-
strated by this example, a bad sample can hurt the efficiency of the proposed
method by requiring more training time. Moreover, a bad sample can hurt
the accuracy of the proposed network in estimation of the Greeks of VA con-
tracts that assume attribute values that are different than the representative
contracts, in particular those VA contracts that are quite distant from any
representative contract.

4. Numerical Experiments

In this section, we provide numerical results illustrating the performance
of the proposed neural network framework in comparison with the tradi-
tional spatial interpolation schemes (i.e., Kriging, IDW, and RBF) discussed
in (Hejazi et al., 2015). The input portfolio in all experiments is a synthetic
portfolio of 100,000 VA contracts with attribute values that are chosen uni-
formly at random from the space described in Table 1. Similar to (Hejazi
et al., 2015), we allow guarantee values to be different than the account val-
ues. The guaranteed death benefit of contracts with a GMWB rider is set to
be equal to their guaranteed withdrawal benefit. The account values of the
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Attribute Value

Guarantee Type | {GMDB, GMDB + GMWB}
Gender {Male, Female}

Age {20,21,...,60}

Account Value [led, 5eb]

Guarantee Value | [0.5e4, 6eb]

Withdrawal Rate | {0.04,0.05,0.06,0.07,0.08}
Maturity {10,11,...,25}

Table 1: GMDB and GMWB attributes and their respective ranges of values.

contracts follow a simple log-normal distribution model (Hull, 2006) with a
risk free rate of return of p = 3%, and volatility of o = 20%.

In our experiments, we use the framework described in (Gan and Lin,
2015) to value each VA contract. In each MC simulation, even in the cali-
bration stage of the interpolation schemes to value representative contracts,
we use 10,000 scenarios. Fewer scenarios results in a noticeable difference,
as big as 5%, between the computed delta value from successive runs. In
our experiments, we use mortality rates of the 1996 I AM mortality tables
provided by the Society of Actuaries.

We implement the framework in Java and run it on machines with dual
quad-core Intel X5355 CPUs. We do not use the multiprocessing capability
of our machine in these experiments; however, in our future work, we will
demonstrate that even the serial implementation of our proposed framework
can provide better efficiency than parallel implementation of MC simulations.

4.1. Representative Contracts

As we discuss above in Section 3, we do not address the issue of an
effective sampling method in this paper. Hence, in all of the experiments
in this section, we use a simple uniform sampling method similar to that in
(Hejazi et al., 2015). In each set of experiments, we select 300 representative
contracts from the set of all VA contracts constructed from all combinations
of points defined in Table 2. In a set of experiments, we select a set of
representative contracts at the beginning of the experiment, and use the
same set for various spatial interpolation methods that we examine in that
experiment. This allows for a fair comparison between all methods.
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Experiment 1

Guarantee Type | {GMDB, GMDB + GMWB}
Gender {Male, Female}

Age {20, 30, 40, 50, 60}

Account Value {le4, 1eb, 2eb5, 3e5, 4eb, 5eb}
Guarantee Value | {0.5e4, 1eb, 2e5, 3eb, 45, 5eb, 6eb}
Withdrawal Rate | {0.04,0.08}

Maturity {10, 15,20, 25}

Table 2: Attribute values from which representative contracts are generated for experi-
ments.

Experiment 1

Guarantee Type | {GMDB, GMDB + GMWB}

Gender {Male, Female}

Age (23,27,33,37, 43,47, 53,57}

Account Value {0.2e5, 1.5e5, 2.5eb, 3.5¢5,4.5e5}
Guarantee Value | {0.5e5,1.5e5,2.5¢5, 3.5¢5, 4.5e5, 5.5e5}
Withdrawal Rate | {0.05,0.06,0.07}

Maturity (12,13, 17, 18,22, 23}

Table 3: Attribute values from which training contracts are generated for experiments.

4.2. Training/Validation Portfolio

Unlike traditional spatial interpolation schemes, we need to introduce
two more portfolios to properly train our neural network. In each set of
experiments, we select 250 VA contracts uniformly at random from the input
portfolio as our validation portfolio.

For the training portfolio, we select 200 contracts uniformly at random
from the set of VA contracts of all combinations of attributes specified in Ta-
ble 3. The attributes of Table 3 are intentionally different from the attributes
of Table 2 to avoid unnecessary overfitting of the data.

4.3. Parameters Of The Neural Network

In our numerical experiments, we use the following set of parameters to
construct and train our network. We choose a learning rate of 1. We set fipax
in (5) to 0.99. We use a batch size of 20 in our training. We fix the seed of the
pseudo-random number generator that we use to select batches of the training

18



data so that we can reproduce our network for a given set of representative
contracts, training portfolio, and validation portfolio. Moreover, we initialize
our weight and bias parameters to zero.

The categorical features in F¢ are rider type and gender of the policy-
holder. The following numeric features make up F'*.

e,z = AL Al M)

t € {maturity, age, AV, GD/AV, GW/AV, withdrawal rate}

where AV is the account value, GD is the guaranteed death benefit, GW
is the guaranteed withdrawal benefit, R; is the range of values that ¢ can
assume, x is the vector of numeric attributes for input VA contract z, and
x; is the vector of numeric attributes for representative contract z;. The
features of F'~ are defined in a similar fashion by swapping x and z; on the
right side of Equation (7).

We record MSE every 50 iterations. We compute a moving average with
a window of size 10 to smooth the MSE values. Moreover, we fit, in a least
squares sense, a polynomial of degree 6 to the smoothed MSE values and
use a window of length 4 to find the trend in the resulting MSE graph. In
addition, we choose a 0 of 0.005 as our threshold for the relative error in
estimation of the Greeks for the validation portfolio.

4.4. Performance

In these experiments, we compare the performance (i.e., accuracy, effi-
ciency, and granularity) of our proposed neural network scheme, referred to
as NN in the results tables, with that of the traditional spatial interpolation
schemes. From the set of interpolation techniques discussed in (Hejazi et al.,
2015), we choose only the following interpolation methods with a correspond-
ing distance function which exhibited the most promising results in (Hejazi
et al., 2015).

e Kriging with Spherical and Exponential variogram models,
e IDW with power parameters PP of 1 and 100,

e Gaussian RBF with free parameter € of 1.
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The distance function for the Kriging and RBF methods is

Th — Yn > 5
X y,7 \/Z max;, — Hlll'lh + v Z (Iha yh)

heC

where N = {AV, GD, GW, maturity, age, withdrawal rate} is the set of nu-
merical values and C' = {gender, rider} is the set of categorical values, and
v =1

For the IDW methods we choose the following distance function that
provided the most promising results in (Hejazi et al., 2015).

D(Xv Y, '7) = \/f(xagm yage)Qage(Xa y) + Z gh(X7 Y) + v Z 5(1'11’ yh)

heN heC

Lage + Yage
2

gn(%,y) = (exp(—r,)xs — exp(—ry)yn)*

f(xagey yage) = exp ( — M)

where C' = {gender, rider}, N = {maturity, withdrawal rate}, r = 4% and

M is the maximum age in the portfolio. “r

Because we randomly select our representative contracts according to the
method described in Section 4.1, we compare the performance of the interpo-
lation schemes using 6 different realizations of the representative contracts,
Si,1 < i < 6. For our proposed neural network approach, we use the same
training portfolio and validation portfolio in all of these 6 experiments. We
study the effect of the training portfolio and the validation portfolio in a
different experiment.

Table 4 displays the accuracy of each scheme in estimation of the delta
value for the input portfolio. The accuracy of different methods is recorded
as the relative error

Am - AMC
_ 8
Ao (8)

where Ao is the estimated delta value of the input portfolio computed by
MC simulations and A,, is the estimate delta value of the input portfolio
computed by method m. The results of Table 4 show the superior perfor-
mance of our proposed neural network (NN) framework in terms of accuracy.
Except in a few cases, the accuracy of our proposed NN framework is better

Err,, =
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Relative Error (%
Method ST 52 53 Si v 55 36
Kriging (Sph) 060 | 055 | 7.62 | 286 |25% |359
Kriging (Exp) —-0.29 |1.73 8.09 4.77 | 3.46 4.38
IDW (p =1) —21.43 | —14.48 | —21.76 | —7.22 | —12.47 | —11.77
IDW (p = 100) —11.74 | —7.81 —4.36 | —0.07 | =2.72 | —2.45
RBF (Gau, €= 1) —0.76 —5.21 —10.45 | —7.83 | 2.47 4.11
NN —1.16 | 0.84 1.56 0.85 1.66 —1.46

Table 4: Relative error in estimation of the portfolio’s delta value by each method.

than all of the other interpolation schemes. The Spherical Kriging has the
best performance amongst the traditional interpolation schemes. Compar-
ing the accuracy results of our proposed neural network scheme with that of
Spherical Kriging shows that the relative error of the proposed scheme has
lower standard deviation and hence is more reliable.

In Table 5, the average training and estimation time of each method is
presented for two scenarios: (1) the method is used to estimate only the
delta value of the entire portfolio and (2) the method is used to estimate
the delta value of each policy in the input portfolio. Because of the complex
calculations required to train the proposed NN method, the running time of
the proposed NN method is longer than that of the traditional interpolation
scheme. However, it still outperforms the MC simulations (speed up of >
x15).

In this experiment, assuming no prior knowledge of the market, we used
the value of zero as our initial value for weight/bias parameters which is
far from the optimal value and causes the performance of the proposed NN
method to suffer from a long training time. In practice, insurance compa-
nies estimate the Greeks of their portfolios on frequent intraday basis to do
dynamic hedging. Assuming a small change in the market condition, one
does not expect the Greek values of the VA policies to change significantly.
Hence, intuitively, the change in the optimal values of weight/bias param-
eters of the network under the previous and the current market conditions
should be small. In our future paper, in the context of estimating the prob-
ability distribution of the one year loss, we will demonstrate how we exploit
this fact to reduce the training time of the network from an average of 4000
iterations to less than 200 iterations and hence reduce the training time sig-
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Method Portfolio | Per Policy
MC 10617 10617
Kriging (Spherical) 41 > 10617
Kriging (Exponential) | 41 > 10617
DW (P = 1) 29 29

IDW (P = 100) 28 23

RBF (Gaussian, e = 1) | 41 41

NN 539 539

Table 5: Simulation time of each method to estimate the delta value. All times are in
seconds.

nificantly. In particular, assuming a neural network that has been calibrated
to the previous market conditions, we construct a new network that uses the
values of the weight/bias parameters of the previous network as the initial
values for the weight/bias parameters in the training stage.

A comparison of the running time in the two columns of Table 5 shows
that the proposed NN method, similar to IDW and RBF, can be used to
efficiently provide a granular view of the delta values in the input portfolio.
Figure 6 shows a granular view of the estimated delta values by our pro-
posed NN scheme for the validation portfolio. As shown in the figure, the
NN estimated delta values closely follow their corresponding MC estimated
values (plotted data values are very close to the line y = x). In particular,
the majority of data points are within a distance of 0.1 of the y = z line (the
red line). Moreover, the data points are distributed almost uniformly around
the red line. In other words, the amount of over estimations by the neural
network is close to the amount of under estimations by the neural network.
Therefore, the estimation errors, in aggregate, cancel each other out, result-
ing in a smaller portfolio error than might be expected from looking at the
maximum absolute error alone in Figure 6.

The graph also shows a cluster of points around the origin. In fact,
the majority of the points are very close to the origin with only a few points
deviating relatively far in each direction. These few points do not significantly
affect the accuracy, especially when the estimations are accurate for big delta
values.
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Figure 6: Estimated delta values of the validation portfolio by MC simulations and the
neural network.

4.5. Sensitivity to Training/Validation Portfolio

The training of our proposed NN method requires the selection of three
VA portfolios. In the experiments of Section 4.4, we fix the selection of two
of these portfolios (i.e., training portfolio and validation portfolio) while we
measured the performance of our proposed method by changing the set of
representative contracts. In the experiments of this section, we investigate
the sensitivity of the accuracy and efficiency of our proposed method to the
choice of training and validation portfolio. We conduct two sets of experi-
ments in which we fix the choice of representative contracts and either the
training portfolio or the validation portfolio, while training the network with
different realizations of the remaining portfolio. In the first set of experi-
ments, we fix the choice of the representative contracts and the validation
portfolio. We train the network with 5 different choices of the training port-
folio and estimate the delta value of the input portfolio in each experiment.
In the second set of experiments, we fix the choice of the representative
contracts and the training portfolio and train the network with 5 different
realizations of the validation portfolio. We then use the trained network to
estimate the delta value of the input portfolio in each experiment. We used
the same set of representative contracts in both set of experiments.
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: .| Relative Error (%) | Running Time
Variable Portfolio Mean | STD Mean | STD
Training 0.27 1.52 660 246
Validation —0.62 | 1.51 523 38

Table 6: Statistics on the running time sensitivity and accuracy sensitivity of the training
network with different sets of training and validation portfolios. The recorded errors are
relative errors as defined in (8). All times are in seconds.

The statistics for the running time (training and estimation) and accuracy
of each set of experiments are presented in Table 6. The relatively big values
of the standard deviations indicate that the accuracy of the estimation is
sensitive to the choice of the training portfolio and the validation portfolio.
Despite this sensitivity, the method remains accurate.

The choice of the training portfolio can significantly affect the running
time of the neural network; however, the running time of the network is fairly
insensitive to changes in the choice of validation portfolio. The validation
portfolio in the training is mainly used as a guard against over fitting. It
is a useful stopping criteria to fine tune the network once we are close to
the local optimum. But the training portfolio controls the path that the
training takes to arrive at a neighborhood close to the local optimum. A
bad training portfolio can slow the training by introducing a large deviation
from a consistent path towards the local optimum. Hence the choice of
the training portfolio has a more significant effect than the choice of the
validation portfolio on the running time.

4.6. Sensitivity to Sample Sizes

In the previous experiments, we examined the sensitivity of our proposed
neural network framework to the selection of the training portfolio, the vali-
dation portfolio, and the set of representative contracts. In this section, we
conduct experiments that assess the sensitivity of our proposed framework
on the size of these portfolios. In each experiment, we fix two out of the three
required portfolios while changing the size of the third portfolio. For each
selected size of the latter portfolio, we train the network with 5 realizations
of the portfolio and record the running time and accuracy of the method.

Table 7 contains the statistics on the recorded running time and the
relative error for each set of selected portfolio sizes. Each row in the table
begins with a tuple (r,¢,v) denoting the size of the set of representative
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. Relative Error (%) | Running Time
Portfolio Sizes Moan | STD Mean | STD
(300, 200, 250) | 0.38 1.35 539 120
(250,200, 250) | —0.73 | 1.42 373 73
(200, 200,250) | —1.62 | 1.52 310 85
(300, 200, 250) | 0.27 1.52 539 246
(300, 150,250) | —4.31 | 7.66 708 254
(300, 100, 250) | 6.50 14.47 669 303
(300, 200,250) | —0.62 | 1.51 023 38
(300, 200,200) | 0.70 3.23 011 24
(300,200, 150) | 2.31 3.67 082 188

Table 7: Statistics on running time sensitivity and accuracy sensitivity of training network
with portfolios of various sizes. The recorded errors are relative errors as defined in (8).
All times are in seconds.

contracts, the training portfolio, and the validation portfolio, respectively.
In the scenarios corresponding to the first three rows, we changed the size
of representative contracts. The second three rows show the results for the
scenarios in which we changed the size of the training portfolio. Finally, in
the scenarios corresponding to the third three rows, we changed the size of
the validation portfolio.

The results of Table 7 show that decreasing the number of representative
contracts increases the efficiency of the network. Furthermore, the amount
of decrease in running time is proportional to the amount of decrease in the
number of representative contracts. This result is expected since the num-
ber of calculations in the network is proportional to the number of neurons
in the hidden layer which is proportional to the number of representative
contracts. Although the accuracy of the method deteriorates as we decrease
the number of representative contracts, the accuracy of the worst network is
still comparable to the best of the traditional spatial interpolation techniques
(see Table 4). Hence, if required, we can sacrifice some accuracy for better
efficiency.

According to the statistics in the second set of three rows of Table 7, de-
creasing the size of the training portfolio can significantly affect the accuracy
of the method. Decreasing the number of training VA contracts results in a
poorer coverage of the space in which the network is trained. In the space
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where the training VA contracts are sparse, the parameters of the represen-
tative VA contracts are not calibrated well, resulting in poor accuracy of
estimation. Although the mean of the simulation time does not consistently
decrease with the decrease in the size of the training portfolio, the standard
deviation of the simulation time increases significantly. The increase in the
standard deviation of the network’s simulation time is a further proof that
the network is struggling to calibrate its parameters for the smaller training
portfolios.

The results in the last three rows of Table 7 suggest that decreasing the
size of validation portfolio decreases the accuracy of the proposed framework.
The deterioration in the performance of the network is more apparent from
the amount of increase in the standard deviation of the relative error values.
As one decreases the size of the validation portfolio, the VAs in the validation
portfolio provide a poorer representation of the input portfolio. Although the
change in the accuracy of the method is significant, the running time of the
method is less affected by the size of the validation portfolio, except for the
validation portfolio of the smallest size, where one can see a big increase in
the standard deviation of the running time.

As we mentioned earlier in Section 4.5, the validation portfolio only af-
fects the last stage of the training where the network parameters are close
to their local optimal values. When the size of the validation portfolio is too
small, various realizations of the validation portfolio may not adequately fill
the space resulting in portfolio delta values that differ significantly from one
realization to another. Hence, the overlap between the § neighborhood of the
portfolio delta values for various validation portfolios and the local neighbor-
hood of the optimal network parameter values may vary in place and size
significantly. The network stops the training as soon as it finds a set of net-
work parameters that are within the aforementioned common neighborhood.
Therefore, the training time of the network can vary significantly based on
the size and the place of the common neighborhood. As the size of the com-
mon neighborhood increases, the network spends less time searching for a set
of network parameters that are within the common neighborhood. Because
the training time is a significant part of the running time of the proposed
neural network scheme, the standard deviation of the running time increases
as the result of the increase in the standard deviation of the training time.
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5. Concluding Remarks

In recent years, a spatial interpolation framework has been proposed to
improve the efficiency of valuing large portfolios of complex insurance prod-
ucts, such as VA contracts via nested MC simulations (Gan, 2013; Gan and
Lin, 2015; Hejazi et al., 2015). In the proposed framework, a small set of
representative VA contracts is selected and valued via MC simulations. The
values of the representative contracts are then used in a spatial interpolation
method that finds the value of the contracts in the input portfolio as a linear
combination of the values of the representative contracts.

Our study of traditional spatial interpolation techniques (i.e., Kriging,
IDW, RBF) (Hejazi et al., 2015) highlights the strong dependence of the
accuracy of the framework on the choice of distance function used in the es-
timations. Moreover, none of the traditional spatial interpolation techniques
can provide us with all of accuracy, efficiency, and granularity, as defined in
(Hejazi et al., 2015).

In this paper, we propose a neural network implementation of the spa-
tial interpolation technique that learns an effective choice of the distance
function and provides accuracy, efficiency, and granularity. We study the
performance of the proposed approach on a synthetic portfolio of VA con-
tracts with GMDB and GMWRB riders. Our results in Section 4 illustrate
the superior accuracy of our proposed neural network approach in estimation
of the delta value for the input portfolio compared to the traditional spatial
interpolation techniques.

Although the proposed NN framework, compared with traditional spatial
interpolation techniques, requires longer training time, it can interpolate the
delta values of an input portfolio of size N in a time proportional to n x N (n
is the number of samples), which is essentially the same as the time required
by the most efficient traditional spatial interpolation techniques IDW and
RBF. Moreover, the proposed NN approach provides an efficient solution to
the issue of choosing a distance function.

Training of the network requires us to introduce two additional sets of
sample VA contracts, i.e., the training portfolio and the validation portfolio,
compared to the traditional frameworks (Hejazi et al., 2015). Our experi-
ments in Section 4 show that, if each of the aforementioned sample sets is
sufficiently large, a random selection of these sets from a predefined set of
VA contracts that uniformly covers the space of the input portfolio does not
significantly affect the accuracy and efficiency of the method. However the
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size of each of these sample sets can significantly affect the performance of
our proposed neural network approach.

Although this paper studies an important application of the proposed neu-
ral network framework, in the future, we will extend the approach to compute
other key risk metrics. In particular, we will demonstrate the efficiency and
accuracy of this framework in estimating the probability distribution of the
portfolio loss, which is key to calculate the Solvency Capital Requirement.
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Appendix A. How To Choose The Training Parameters

The training method that we discuss in Section 3 is dependent on the
choice of numerous free parameters such as the learning rate and piy.. In
this appendix, we discuss heuristic ways to choose a value for each of these
free parameters and justify each choice.

In order to determine a good choice of the learning rate and the batch
size, we need to train the network for some number of iterations, say 3000,
and study the error associated with the training portfolio as a function of
the number of iterations. If the graph has a general decreasing trend and it
does not have many big jumps between consecutive iterations, then we say
that the choice of the learning rate/batch size is stable. Otherwise, we call
the choice of the learning rate/batch size unstable.

From (3), we see that the choice of the learning rate parameter affects
the amount of change in the weight and bias parameters per iteration. As we
discuss in Section 3.2, too small of a change increases the training time while
too big of a change causes numerical instability. From Figure A.7, we see that,
as we increase the value of the learning rate, the graph of the error values
moves downwards which means that the training has sped up. However,
for a learning rate equal to 2, we see many big jumps in the graph which
suggests numerical instability. The numerical instability is more obvious
from the moving average smoothed curve of error values. More specifically,
starting from iteration 2000, the smoothed MSE error graph for a learning
rate of 2 has big jumps which are signs of numerical instability. Note that the
smoothed MSE error graphs for learning rates 0.5 and 1 are much smoother.

28



+R=05 ' +R=05
oLR=1 olR=1
#LR=2 | 4LR=2 |

O w0 om0t 20 zoo 300 a0 50 b0 o e 2w 2500 3000 3500 4000 4500 5000
Iteration Number Iteration Number

Figure A.7: The MSE error graph (left) and the moving average smoothed MSE error
graph (right) of the training portfolio as a function of iteration number and learning rate.

To find a good choice of the learning rate, we can start from a value of 1
for the learning rate and determine if that choice is stable? If the choice of
learning rate is stable, we double the value of the learning rate and repeat
the process until we find a learning rate which is unstable. At this point, we
stop and choose the last stable value of the learning rate as our final choice
of the learning rate. If the learning rate equal to 1 is unstable, we decrease
the value of learning rate to half of its current value and repeat this process
until we find a stable learning rate.

The batch size controls the speed of training and the amount of error that
we get in approximating the gradient of the MSE for the entire training set.
Small batch sizes increase the speed of training; however, they also increase
the amount of error in approximating the gradient of the MSE error. A good
batch size should be small enough to increase the speed of training but not
so small as to introduce a big approximation error. To find a good batch
size value, we start with a small value, say 5, and determine if this choice of
batch size is stable. If so, we stop and choose it as our final choice of the
batch size. If the batch size is unstable, we double the batch size and repeat
the process until we find a stable batch size.

Figure A.8 shows that small batch size values are associated with many
big jumps and hence are unstable. As we increase the batch size value, the
error graph becomes much more stable— fewer jumps and a more consistent
decreasing trend.
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Figure A.8: The MSE error graph (left) and the moving average smoothed MSE error
graph (right) of the training portfolio as a function of iteration number and batch-size.

Notice that, in the aforementioned processes for finding the appropriate
value of the learning rate and batch size, doubling the values may seem too
aggressive as the values may increase or decrease too quickly. To alleviate this
problem, upon reaching a desired value, we can do a binary search between
the final choice of parameter’s value and the next best choice (the value of
parameter before the final doubling) of the parameter’s value.

Nesterov, (Nesterov, 2003, 1983), advocates a constant momentum coef-
ficient for strongly convex functions and advocates Equation (A.1) when the
function is not strongly convex (Sutskever et al., 2013).

3
t+5

Equation (5), suggested in (Sutskever et al., 2013), blends a proposal
similar to Equations (A.1) and a constant momentum coefficient. Equation
(A.1) converges quickly to values very close to 1. In particular, for ¢t > 25,
iy > 0.9. Hence, as suggested in (Sutskever et al., 2013), we should choose
large values (0.9,0.99,0.995,0.999) of fimax to achieve better performance and
that is what we suggest too.

In Section 3.3, we proposed a mechansim to detect stopping events and
avoid over-training of the network. As part of this mechanism, we need to
record the MSE of the validation set every I iteration. Too small values of
I can slow down the training process while too big values of I can result in
losing the information regarding the trend that exists in the MSE graph. In

e =1 (A.1)
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Figure A.9: The MSE error graph (left) and the moving average smoothed MSE error
graph (right) of the validation portfolio as a function of iteration number and I value.

order to find a good value of I that neither slows down the training too much
nor creates excessive information loss, we can use a multiplicative increase
process similar to that described above for the batch size. We start with
a small value of I, say 10, and train the network for some 4000 iterations
and draw the graph of MSE values. We then double the I value and graph
the MSE for the new value of I. If the MSE graph for the new value of
I has a similar trend as the MSE graph for the previous value of I, we
keep increasing the I value and repeat the process. But, if the resulting
graph has lost significant information regarding increasing/decreasing trends
in the previous graph, then we stop and choose the previous value of I as
the appropriate choice of I. For example, in Figure A.9, the MSE graph
corresponding to the value of 100 has fewer big valleys and big peaks than
the MSE graph for the value of 50. Hence, we have lost a significant amount
of information regarding trends in the graph. However, the MSE graph for
the value of 10 has a roughly similar number of big valleys and big peaks
compared with the MSE graph for the value of 50. Hence, the value of 50
is a much better choice for I than either 100 or 10. The value of 50 allows
for a faster training than the value of 10 and has more information regarding
increasing/decreasing trends in the MSE error graph than the value of 100.

We use data smoothing and polynomial fitting to extract the major u-
shape trend in the MSE graph and hence find stopping events. In order to
find a good choice for the smoothing window, we start with a small value of

31



-*Raw Data
1 -e-Smoothing Window of 5
0.05/- --Smoothing Window of 10

0.04

Error Value
_O o
(=} o
s

e

o

=
T

1] Il i Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration Number

Figure A.10: The MSE error graph of the validation portfolio as a function of iteration
number and smoothing window value.

the smoothing window and calculate the smoothed curve. If the small peaks
and valleys of the orignial curve are supressed and big peaks and big valleys
of the original curve are significantly damped, then we choose that value of
the smoothing window as our final choice for the smoothing window. For
example, in Figure A.10, the smoothed curve with a smoothing window of 5
still has a big valley around iteration number of 400. However the valley is
dampened in the smoothed graph resulting from smoothing window of 10.

The primary goal of the polynomial fitting is to find the u-shaped trend
in the graph so that we can detect the stopping event. The u-shaped trend
therefore suggests that the polynomial should go to infinity as its argument
goes to either plus or minus infinity. Therefore, the degree of the polynomial
should be even. Since we are only interested in detecting a u-shaped trend, it
is sufficient to use polynomials of low degree (< 10). High degree polynomials
overfit the data and they can’t detect a slowly increasing trend such as the one
in Figure A.10 after iteration 2500. On the other hand, a simple polynomial
of degree 2 does not always work well. A quadratic polynomial on a MSE
graph similar to Figure A.10 falsely detects a u-shape trend in the big valley
between iteration numbers 0 and 500. However a polynomial of degree 4 or
higher will not make such a detection. Because we smooth the data before
we fit any polynomials and we choose our learning parameter such that we
expect an initial decreasing trend, we suggest polynomials of degree 4,6 or 8
to be used to fit the data to find u-shaped trends.
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Finally for the value of window length to detect that we have reached
the minimum, we choose a value of W such that the number of iterations
in the window (W x I) is big enough (around a hundred iterations) that
we can confidently say the graph of the MSE error has reached a minimum
value and started to increase in value (an increasing trend). Notice that the
window length should not be too big so that we can start the search in the
local neighborhood and minimize the training time.
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