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Abstract

Variable Annuity (VA) products expose insurance companies to considerable
risk because of the guarantees they provide to buyers of these products. Man-
aging and hedging these risks requires insurers to find the value of key risk
metrics for a large portfolio of VA products. In practice, many companies
rely on nested Monte Carlo (MC) simulations to find key risk metrics. MC
simulations are computationally demanding, forcing insurance companies to
invest hundreds of thousands of dollars in computational infrastructure per
year. Moreover, existing academic methodologies are focused on fair valua-
tion of a single VA contract, exploiting ideas in option theory and regression.
In most cases, the computational complexity of these methods surpasses
the computational requirements of MC simulations. Therefore, academic
methodologies cannot scale well to large portfolios of VA contracts. In this
paper, we present a framework for valuing such portfolios based on spatial
interpolation. We provide a comprehensive study of this framework with
existing interpolation schemes. Our numerical results show superior perfor-
mance, in terms of both computational efficiency and accuracy, for these
methods compared to nested MC simulations. We also present insights into
the challenge of finding an effective interpolation scheme in this framework,
and suggest guidlines that help us build a fully automated scheme that is
efficient and accurate.
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1. Introduction

Variable annuities are unit-linked products that are wrapped with a life
insurance contract. These products allow a policyholder to invest into pre-
defined sub-accounts set up by the insurance company. Sub-account funds are
invested in bonds, the money market, stocks and other financial products. An
insurer offers differnt types of sub-accounts that are tailored to the appetite
of policyholders with differnet level of tolerance for risk. The investment can
be made via a lump-sum payment or a series of investment purchases. In
return, the insurance company offers tax sheltered growth and guarantees
that protect the policyholder in a bear market (Chi and Lin, 2012).

Upon entering into a contract, the policyholder is given two accounts: 1)
keeps track of the performance of investments in the sub-accounts 2) keeps
track of the amount of guarantee provided by the insurnace company. The
value of former account is called the account value and the value of latter
account is called the benefit base. During a period called the accumulation
phase, the policyholder accumulates assets on his investments in sub-accounts
and the value of his benefit base appreciates by contractually agreed roll ups,
ratchets and resets without taxation. At the end of the accumulation phase,
the benefit base is locked in and the insurer guarantees to return at least the
benefit base as a lump sum payment or as a stream of payments during a
period called the withdrawal phase.

The most prevalent of the guarantees are the Guaranteed Minimum Death
Benefit (GMDB), the Guaranteed Minimum Withdrawal Benefit (GMWB),
the Guaranteed Minimum Income Benefit (GMIB), and the Guaranteed Min-
imum Accumulation Benefit (GMAB). The GMDB guarantees a specified
lump sum payment on death regardless of the performance of the underlying
account. The most basic guarantee offered now is the return of benefit base
adjusted for any partial withdrawals. The GMWB guarantees the ability to
partially withdraw up to a pre-determined percentage (called the withdrawal
rate) of the benefit base for a specified number of years. The decision to
withdraw is made annually and the maximum amount of withdrawal is a
function of the age of the policyholder. The GMIB guarantees a stream of
income for life contingent on the survival of the policyholder, and the GMAB
guarantees a lump sum payment on maturity of the contract regardless of the
performance of the underlying funds. For further details, see (TGA, 2013).
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Embedded guarantees are the key selling feature of VA products. These
guarantees have allowed insurance companies to sell trillions of dollars worth
of these products worldwide, in 2010 alone (IRI, 2011). As a result, major
insurance companies are now managing large portfolios of VA contracts, each
with hundreds of thousands of contracts.

Although the embedded guarantees are attractive features to the buyer of
VA products, they expose the insurers to substantial risk (e.g., market and
behavioral risk). Because of that, major insurance companies have started
risk management and hedging (Boyle and Hardy, 1997; Hardy, 2003) pro-
grams, especially after the market crash of 2008, to reduce their exposures.
An integral part of a risk management program is finding the value of key
statistical risk indicators, e.g., the Greeks (Hull, 2006), and the Solvency Cap-
ital Requirement (SCR) (Bauer et al., 2012), on daily, monthly and quarterly
bases.

Most of the academic research to date has focused on fair valuation of
individual VA contracts (Coleman and Patron, 2006; Milevsky and Salisbury,
2006; Boyle and Tian, 2008; Lin et al., 2008; Belanger et al., 2009; Gerber
et al., 2012; Chen et al., 2008; Dai et al., 2008; d’Halluin et al., 2005; Az-
imzadeh and Forsyth, 2013; Chen and Forsyth, 2008; Huang and Forsyth,
2011; Moenig and Baue, 2011; Ulm, 2006). Most of the methodologies devel-
oped in these research papers are based on ideas from option pricing theory,
and are tailored to the type of studied VA. In addition, almost all of the pro-
posed schemes are computationally expensive and the results they provide
for a VA contract cannot be re-used for another VA contract, even of similar
type. Each VA contract is unique in terms of its key attributes, i.e., age,
gender, account value, guaranteed value, maturity of contract, fund type,
etc. Hence, VA portfolios are non-homogeneous pools of VA contracts, and
academic methodologies cannot scale well to be used to calculate key risk
statistics of large VA portfolios.

Although the nature of the guarantees in the VA products makes them
path dependent, in practice, insurance companies relax the assumptions on
guarantees and rely heavily on stochastic simulations to value these products
and manage their risks. In particular, nested MC simulations are the industry
standard methodology in determining key risk metrics (Bauer et al., 2012;
Reynolds and Man, 2008). Nested simulations consist of outer loops that
span the space of key market variables (risk factors), and inner loops that
project the liability of each VA conract along many simulated risk-neutral
paths (Fox, 2013). As explained in Section 4, MC simulations are computa-
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tionally demanding, forcing insurance companies to look for ways to reduce
the computational load of MC simulations.

In this paper, we focus on the issue of efficient approximation of the
Greeks for large portfolios of VA products. In particular, we provide an
extensive study of a framework based on metamodeling that can approximate
the Greeks for large portfolios of VAs in a fast and accurate way. The rest of
this paper is organized as follows. Section 2 reviews existing efforts to reduce
the computational requirements of MC simulations. Section 3 introduces
the spatial interpolation framework that offers fast and accurate valuation
of large VA portfolios. We discuss various ways that this method can be
empolyed with existing interpolation schemes to approximate the Greeks
of VA portfolios. Section 4 provides insights into the performance of the
proposed framework via extensive simulations. Finally, Section 5 concludes
the paper.

2. Review of Existing Methods

VAs can be considered to be a type of exotic market instrument (Hull,
2006). Hence, in this section, we provide a summary of the main existing
approaches to the more general problem of valuing large portfolios of exotic
market instruments. As we discussed earlier, MC simulations are the industry
standard approach to value path dependent products. The problem with
MC simulations is that they are computationally demanding and do not
scale well to large portfolios of exotic instruments. The existing methods try
to alleviate the computational burden of MC simulations by approximating
the surface that defines a mapping between the key risk metrics of interest
and the key economic factors. Most of these approaches are based on ideas
in regression theory and require a time consuming calibration to find the
regression coefficients.

A well-studied approach in the literature is the method of replicating
portfolios. In a replicating portfolio, the main idea is to regress the cash flow
of the input portfolio, at each time step, against the cash flow of a portfo-
lio of well-formulated financial instruments, in particular, vanilla derivatives.
The financial instruments that are used in regression often have closed form
formulas for liability values. Hence, simplifying the calculation of cash flows
and subsequently reducing the cost of finding regression coefficients. The
problem of determining a replicating portfolio is often formulated as a mini-
mization problem with respect to a norm. Depending on the choice of norm,
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quadratic programming (Daul and Vidal, 2009; Oechslin et al., 2007) and lin-
ear programming (Dembo and Rosen, 1999) approaches have been proposed
to solve the optimization problem. However, constructing the replicating
portfolio via either method is time consuming because it requires projecting
the cash flow at each time step. Moreover, depending on the desired level
of accuracy, the number of regression variables can grow polynomially with
the number of attributes of the instruments in the input portfolio. Another
major issue with replicating portfolios is the difficulty in incorporating the
actuarial risk factors. The usual practice in the literature is to assume that
these values follow their expected value.

Another important regression approach is the method of Least Squares
Monte Carlo (LSMC). In LSMC, the liability value is regressed on key eco-
nomic factors (Cathcart and Morrison, 2009). The common practice is to
choose powers of key economic factors as basis functions and approximate
the liability as a linear combination of the basis functions (Carriere, 1996;
Longstaff and Schwartz, 2001). Hence, the Greeks of the input portfolio can
be calculated as the sum of the estimated Greeks for each VA in the input
portfolio. In order to find regression coefficients, LSMC uses poor MC esti-
mates of liability at each point in the space of regression variables. Cathcart
and Morrison (Cathcart and Morrison, 2009) provide examples in which the
number of MC projection paths to estimate liability at each point in the space
is reduced to one and yet the regression function provides fairly accurate es-
timates. However, to achieve a reasonable accuracy, LSMC usually requires
many sample points for numeric explanatory variables that can assume values
in a large interval. Each VA product has several numeric attributes, some of
which are unique to the type of VA contract. Therefore, the LSMC method
incurs significant computational costs to accurately regress the liability of
contracts in a portfolio consisting of different types of VA products.

Recently, a new spatial functional data analysis approach (Gan and Lin,
2015; Gan, 2013a,b) has been proposed that addresses the computational
complexity of nested simulations by reducing the number of VA contracts in-
cluded in the MC simulations. The proposed methods first select a small set
of representative VA policies, using various data clustering (Gan et al., 2007)
or sampling methods, and price only these representative policies via MC
simulations. The representative contracts and their Greeks are then fed as
training samples to a machine learning algorithm (Bishop, 2006) called Krig-
ing (Cressie, 1993), which then estimates the Greeks of the whole portfolio.
In the rest of the paper, we provide a study of the more general framework of
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spatial interpolation, including Kriging methods, and provide more insights
into why spatial interpolation can be much more efficient and accurate than
other approaches in the literature. In this paper, we use the term interpo-
lation in the general context of estimating the values at unknown locations
using the known data at a finite number of points. In this context, an interpo-
lation method that predicts the values at points for which the data values are
known to be the known values is called an exact interpolator. Interpolation
methods that do no staisfy this constraint are called inexact interpolation
methods (Burrough et al., 1998).

3. Spatial Interpolation Framework

The proposed methods in (Gan and Lin, 2015; Gan, 2013a,b) can be
categorized under the general framework of spatial interpolation. Spatial
interpolation is the procedure of estimating the value of data at unknown lo-
cations in space given the observations at sampled locations (Burrough et al.,
1998). As the definition suggests, spatial interpolation requires a sampling
method to collection information about the surface of interest and an inter-
polation method that uses the collected information to estimate the value
of the surface at unknown locations. As discussed in (Gan and Lin, 2015;
Gan, 2013a,b), the choice of sampling method and interpolation method can
noticeably impact the quality of the interpolation. In this paper, we choose
to focus on the latter, and leave for another paper a discussion of the choice
of an appropriate sampling method.

In the functional data analysis literature, there exist two main classes of
interpolation methods (Burrough et al., 1998):

• Deterministic Interpolation: Creates surfaces from measured points
on the basis of either similarity or degree of smoothness.

• Stochastic Interpolation: Utilizes statistical properties of measured
points, such as auto-correlation amongst measured points, to create the
surface.

In what follows, we study three (one stochastic, and two deterministic)
of the most prominent of these interpolation techniques— Kriging, Inverse
Distance Weighting (IDW) and Radial Basis Function (RBF)— in the con-
text of our problem of interest. In particular, we study these interpolation
techniques to estimate the delta value for a large portfolio of VA products.
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Although our study focuses on estimation of the delta value, the framework
is general and can be applied to estimate other Greeks as well. We compare
the performance of these methods in terms of computational complexity and
accuracy at the micro (contract) level and at the macro (portfolio) level.

Although (Gan and Lin, 2015; Gan, 2013a) provide some insights into the
performance of the Kriging interpolation methods, we provide further insights
into the efficiency and accuracy of Kriging based methods in comparison to
other interpolation techniques. Moreover, we shed some light on how Kriging
achieves its documented performance and discuss some issues regarding the
choice of variogram model and distance function.

3.1. Sampling Method

In this paper, we focus on studying synthetic portfolios that are generated
uniformly at random in the space of selected variable annuities. In (Gan,
2013b), the Latin Hypercube Sampling (LHS) method (McKay et al., 1979)
is used to select representative contracts. LHS provides a uniform coverage
of the space including the boundary VA contracts. The results of (Gan,
2013b) indicate that LHS increases the accuracy of the estimation compared
to other sampling methods. In order to preserve the properties of LHS,
we select our representative contracts by dividing the range of each numeric
attribute of a VA contract into almost equal length subintervals, selecting the
end points of resulting subintervals and producing synthetic contracts from
all combinations of these end points and choices of categorical attributes.

3.2. Kriging

Kriging is a stochastic interpolator that gives the best linear unbiased esti-
mation of interpolated values assuming a Gaussian process model with prior
covariance (Matheron, 1963; Krige, 1951). Various Kriging methods (i.e.,
Simple Kriging, Ordinary Kriging, Universal Kriging, etc.) have been devel-
oped based on assumptions about the model. In our experiments, we didn’t
find any significant advantages in choosing a particular Kriging method.
Therefore, for the sake of simplicity of analysis, and based on the results
of (Gan and Lin, 2015), we choose to study ordinary Kriging in this paper.

Assume Z(x) represents the delta value of a VA contract represented in
space by the point x. Let Z(x1), Z(x2), . . . , Z(xn) represent the observed
delta values at locations x1, x2, . . . , xn. Ordinary Kriging tries to find the
best, in the Mean Squared Error (MSE) sense, unbiased linear estimator
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Ẑ(x) =
∑n

i=1 ωiZ(xi) of Z(x) by solving the following system of linear equa-
tions to find the wis.


γ(D(x1, x1)) γ(D(x1, x2)) . . . γ(D(x1, xn)) 1

...
...

. . .
...

...
γ(D(xn, x1)) γ(D(xn, x2)) . . . γ(D(xn, xn)) 1

1 1 . . . 1 0



w1
...
wn

λ

 =


γ(D(x1, x))

. . .
γ(D(xn, x))

1


(1)

where λ is the Lagrange multiplier(Boyd and Vandenberghe, 2004), γ(·) is
the semi-variogram function, to be discussed shortly, and D(·, ·) is a distance
function that measures the distance between two points in the space of VA
contracts. The last row enforces the following constraint to allow an unbiased
estimation of Z(x).

n∑
i=1

wi = 1 (2)

In this formulation of the Kriging problem, the system of linear equations
(1) should be solved once for each VA policy (point in space). Solving a sys-
tem of linear equations, with standard methods, takes Θ(n3)1 time. Hence,
estimating the delta value for a portfolio of N VA contracts by summing
the estimated delta value of each contract requires Θ(N × n3) time which is
computationally expensive. Because of this, Kriging methods are inefficient
in finding a granular view of the portfolio. However, if we are only interested
in the Greeks of the portfolio, and not the Greeks of each individual policy,
we can follow the approach of (Gan and Lin, 2015; Gan, 2013a,b) and use the
linearity of the systems of linear equations to sum them across the portfolio
in Θ(n × N) and to solve only the resulting system of linear equations in
time proportional to n3. Hence estimating the delta of a portfolio requires
Θ(n3 + n × N) time. To sum the systems of linear equations, we sum the
corresponding weights and Lagrange multipliers on the left hand side of the
equations and sum the corresponding terms, i.e., γ(D(xi, x)), i = 1, 2, . . . , n,
and constants, on the right hand side of the equations.

1f(x) = Θ(g(x)) means that there exists positive numbers c1, c2, and M such that
∀x > M : c1g(x) ≤ f(x) ≤ c2g(x).
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3.2.1. Variogram

Kriging assumes the Gaussian process Z(x) is second order stationary,
i.e., the covariance of the Gaussian process in two locations is a function of
distance between the two locations. Assuming a zero mean, the Gaussian
process covariance function can be defined in terms of a variogram function
2γ(h)

CovZ(x+ h, x) =E
[
Z(x+ h)Z(x)

]
=

1

2
E
[
Z2(x+ h) + Z2(x)−

(
Z(x+ h)− Z(x)

)2]
=V ar(Z)− 1

2
(2γ(h)) (3)

In practice, for a set of sample points xi, 1 ≤ i ≤ n, the variogram can be
estimated as

2γ̂(h) =
1

N(h)

N(h)∑
i=1

(
Z(xi + h)− Z(xi)

)2
(4)

where N(h) is the number of pairs in the sample separated by a distance h
from each other. The function 2γ̂(h) is often called the empirical variogram.

Because of the noise in measurements, the estimated empirical variogram
may not represent a valid variogram function. Since methods like Kriging
require valid variograms at every distance h, empirical variograms are of-
ten approximated by model functions ensuring the validity of the variogram
(Chiles and Delfiner, 1999). Variogram models are usually described in terms
of three important variables:

• Nugget (n): The height of the discontinuity jump at the origin.

• Sill (s): The Limit of the variogram as the lag distance h approaches
infinity.

• Range (r): The distance at which the difference of the variogram from
the sill becomes negligible.

Figure 1 shows an example of an empirical variogram and the model
variogram. In our study, we choose to focus on the following three prominent
variogram models (Chiles and Delfiner, 1999; Cressie, 1993):
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Figure 1: Example of a variogram.

• Exponential Variogram

γ(h) = (s− n)
(

1− exp
(
− h

(ra)

))
+ n1(0,∞)(h)

• Spherical Variogram

γ(h) = (s− n)
(

(
3h

2r
− h3

2r3
)1(0,r)(h) + 1[r,∞)(h)

)
+ n1(0,∞)(h)

• Gaussian Variogram

γ(h) = (s− n)
(

1− exp
(
− h2

r2a

))
+ n1(0,∞)(h)

In Exponential and Gaussian variogram models, a is a free parameter
that is chosen so that the variogram better fits the data.

3.3. Inverse Distance Weighting

Inverse Distance Weighting (IDW) is a deterministic method that esti-
mates the value at an unknown position x as a weighted average of values at
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known positions x1, . . . , xn. Assuming the delta values Z(x1), Z(x2), . . . , Z(xn)
of representative VAs x1, x2, . . . , xn, we can estimate the delta value Z(x) of
a VA at a point x as

Ẑ(x) =

{∑n
i=1 wi(x)Z(xi)∑n

i=1 wi(x)
∀i : D(x, xi) 6= 0

Z(xi) ∃i : D(x, xi) = 0
(5)

where wi(x) = D(x, xi)
−p, and D(·, ·) is a distance function (Shepard, 1968).

The parameter p in wi(x) is a positive real number called the “power param-
eter”. The choice of power parameter depends on the distribution of samples
and the maximum distance over which an individual sample is allowed to
influence the surrounding points. Greater values of p assign greater influ-
ence to values closest to the interpolating point. The choice of the power
parameter also influences the smoothness of the interpolator by changing the
influence radius of sample points.

In comparison to Kriging, IDW requires only Θ(n) operations to esti-
mate the delta value of each new VA contract using the delta values of n
representative contracts. Assuming a portfolio of N VA contracts, we can
estimate the delta value of the portfolio by summing the estimated delta
value of contracts in time proportional to n × N . Hence, we expect IDW
to be faster than Kriging to estimate the delta value of the portfolio. The
difference in speed is more apparent if we want a more granular view of the
portfolio. In other words, if we are interested in the estimated delta value
of each VA contract in the portfolio, Kriging is much slower than IDW. We
provide further insights into this matter in Section 4.

3.4. Radial Basis Functions

In the RBF method, we approximate the delta value of a VA contract x as
a weighted linear combination of radial functions centered at representative
contracts x1, x2, . . . , xn:

Ẑ(x) =
n∑

i=1

wiΦ(||x− xi||) (6)

where || · || is a norm, usually chosen to be Euclidean distance.
In RBF interpolation, the weights are chosen so that RBF is exact at the

xi, 1 ≤ i ≤ n, points. In other words, given the values Z(x1), . . . , Z(xn) at
points x1, . . . , xn, the following linear set of equations is solved for wi:
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Φ(||x1 − x1||) . . . Φ(||x1 − xn||)
...

. . .
...

Φ(||xn − x1||) . . . Φ(||xn − xn||)


w1

...
wn

 =

Z(x1)
...

Z(xn)

 (7)

In our research, we chose the following commonly used radial basis func-
tions

• Gaussian
Φ(x) = exp(−εx2) (8)

• Multi-Quadratic
Φ(x) =

√
1 + (εx)2 (9)

These two functions represent two classes of radial basis functions: 1) the
class in which the value of the radial function increases with the distance
from its center, 2) the class in which the value of radial function decreases
with the distance form its center. Although the latter class of RBF functions,
which is represented by Gaussian radial function in our study, seems more
suitable for our application of interest, for the sake of compeletness, we chose
to experiment with the former class as well in our study. In both of the
above-mentioned functions, ε is a free parameter that defines the significance
of known points on the value of their neighbor points.

Similar to IDW, RBF interpolation has a running time that is propor-
tional to n for the delta value estimation of each VA contract, and a running
time of Θ(n×N) to estimate the delta value of a portfolio of N VA contracts.
But in addition we need extra Θ(n3) time to solve (7). Hence, in total, the
computational complexity of RBF interpolation to estimate the delta value
of a portfolio is Θ(n×N + n3). Similar to IDW, the RBF interpolation can
provide us more granularity in a faster time than the Kriging method.

4. Numerical Experiements

In this section, we present numerical results on the performance of each
interpolation method in the context of the proposed framework. In all of our
experiments, our goal is to estimate the delta value of a synthetic portfolio of
100, 000 VA contracts which are chosen uniformly at random from the space
defined by attributes listed in Table 1. The range of attributes are similar
to the ones reported in (Gan and Lin, 2015; Gan, 2013a) which allows us to
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Attribute Value
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {20, 21, . . . , 60}
Account Value [1e4, 5e5]
Guarantee Value [0.5e4, 6e5]
Widthrawal Rate {0.04, 0.05, 0.06, 0.07, 0.08}
Maturity {10, 11, . . . , 25}

Table 1: GMDB and GMWB attributes and their respective ranges of values.

fairly compare our results with the reported findings in (Gan and Lin, 2015;
Gan, 2013a). However, for the sake of generality, we allow VA contracts,
with guarantee values that are not equal to the account value. Moreover, for
VA contracts with a GMWB rider, we set the guaranteed death benefit value
to be equal to the guaranteed withdrawal benefit.

In our experiments, we use the framework of (Bauer et al., 2008) to value
each VA contract, and assume the output of a MC simulation with 10, 000
inner loop scenarios as the actual value of the contract. Inner loop scenarios
are generated assuming a simple log-normal distribution model (Hull, 2006)
with a risk free rate of return of µ = 3%, and volatility of σ = 20%. Our
mortality rates follow the 1996 I AM mortality tables provided by the Society
of Actuaries.

In the training (calibration) stage of our proposed framework, we use MC
simulations with 10, 000 inner loop scenarios to find the delta value of our
representative contracts. The reason behind our choice is that, when fewer
inner loop scenarios are used, e.g. 1000 as used in (Gan, 2013a), we observed
a noticeable difference between the computed delta value from successive
runs. The observed difference when 1000 is used can be as big as 5%.

4.1. Performance

In this set of experiments, our objective is to provide a fair comparison of
accuracy and computational efficiency of each proposed estimation method
when the k-prototype distance function of (Gan, 2013a) is used. Since we al-
low the guaranteed value of VAs in the synthetic portfolio to be different than
their account value, we have modified the distance function to the following.
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Experiment 1
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {20, 30, 40, 50, 60}
Account Value {1e4, 1.25e5, 2.5e5, 3.75e5, 5e5}
Guarantee Value {0.5e4, 3e5, 6e5}
Withdrawal Rate {0.04, 0.08}
Maturity {10, 15, 20, 25}

Table 2: Attribute values from which representative contracts are generated for experi-
ments.

D(x,y, γ) =

√∑
h∈N

(
xh − yh

maxh−minh

)2 + γ
∑
h∈C

δ(xh, yh) (10)

where N = {AV, GD, GW, maturity, age, withdrawal rate} is the set of nu-
merical values and C = {gender, rider} is the set of categorical values.

Similar to (Gan and Lin, 2015; Gan, 2013a), we choose γ = 1. Moreover,
we form the set of representative contracts, via the sampling method of Sec-
tion 3.1, from all combinations of end points presented in Table 2. Because
of the constraints on the guaranteed values, some of the entries are duplicate,
which we remove to obtain a sample of size 1800.

In order to be thorough in our experiments and comprehensive in our
analysis, we present the results for all variants of Kriging, IDW, and RBF
methods. For Kriging, we choose to experiment with all three major vari-
ogram models, i.e., spherical, exponential, and gaussian. For IDW, we choose
to experiment with different choices of the power parameter to see the effect
of this free parameter on the accuracy of results. For RBF, we study two
of the most popular radial functions, Gaussian and multi-quadratic, and for
each type of radial function, we experimented with two choices for the free
parameter ε. In Table 3, the relative error in estimation of the delta value of
the portfolio is presented. The relative error for method m is calculated as
follows.

Errm =
∆m −∆MC

|∆MC |
(11)

where ∆MC is the estimated delta value of the portfolio computed by MC
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Method Relative Error (%)
Kriging (Spherical) −0.03
Kriging (Exponential) −1.61
Kriging (Guassian) < −500
IDW (p = 1) 9.11
IDW (p = 10) 13.12
IDW (p = 100) 11.99
RBF (Gaussian, ε = 1) −1.79
RBF (Gaussian, ε = 10) 37.89
RBF(Multi-Quad, ε = 1) −71.62
RBF(Multi-Quad, ε = 10) −10.86

Table 3: Relative error in estimation of delta value via each method.

simulations and ∆m is the estimate delta value of the portfolio computed by
method m. While two of the Kriging methods provide accurate estimates,
the accuracy of IDW, and multi-quadratic RBF methods is moderate. One
interesting observation is that the choice of variogram model has substantial
impact on the accuracy of the method and it confirms the result of (Gan,
2013a) that the spherical method provides the best accuracy. Another inter-
esting observation is the effect of the free parameters p and ε on the accuracy
of the IDW and RBF methods. The results suggest that the effective use of
either method requires a careful tuning of these free parameters.

Table 4 presents the running time of each algorithm in two scenarios: 1)
estimating the delta value of the portfolio only 2) estimating the delta value
of each VA policy in the portfolio and summing them to get the delta value
of the portfolio. While the former does not provide a granular view of the
portfolio, the latter gives a more refined estimation process and allows for
deeper analysis and insights. Note that the times in Table 4 represent only
the time that it took to estimate the values once we knew the delta values
of the representative contracts. To get the total simulation time, add 187
seconds to these times, which is the time that it took to estimate the delta
value of representative contracts via MC simulations. The results show the
superiority of the proposed framework over MC simulation (speed up > 15×)
except when Kriging is used for per policy estimation of delta. Because the
IDW and RBF methods by definition require the estimation of the delta of
each policy and sum the estimations to get the delta value of the portfolio,
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Method Portfolio Per Policy
MC 10617 10617
Kriging (Spherical) 312 > 320000
Kriging (Exponential) 333 > 320000
Kriging (Guassian) 383 > 320000
IDW (P = 1) 285 286
IDW (P = 10) 288 287
IDW (P = 100) 287 301
RBF (Gaussian, ε = 1) 295 306
RBF (Gaussian, ε = 10) 294 315
RBF(Multi-Quad, ε = 1) 289 289
RBF(Multi-Quad, ε = 10) 297 292

Table 4: simulation time of each method to estimate the delta value. All times are in
seconds.

we can see that simulation times for these methods are approximately equal
in the two presented scenarios. Moreover, these methods are more efficient
than the Kriging method, which confirms our analysis in Section 3.

4.2. Accuracy

The accuracy results of Table 3 may misleadingly suggest that the Kriging
method with the Spherical variogram model is always capable of providing
very accurate interpolations. In the experiments of this section, we provide
results on the accuracy of different methods that contradicts this hypothesis.

For our experiments in this section, we replicated the experiments of
Section 4.1 with sets of representative contracts that are produced from the
set of representative contracts in Section 4.1 by removing 100, 200, 400,
600 and 800 VA contracts at random. Table 5 presents the mean and the
standard deviation of the relative error, in estimation of the delta value of
the VA portfolio, for each method in these experiments. The results of Table
5 show high variance values for the accuracy of the Kriging methods, which
contradicts our hypothesis. Another interesting observation is that the IDW
methods and the RBF methods with a Gaussian kernel, in comparison to the
Kriging methods, have a lower variance value for the relative error.
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Method Mean (%) STD (%)
Kriging (Spherical) 0.47 1.76
Kriging (Exponential) −0.58 2.19
Kriging (Guassian) 1109.02 3289.81
IDW (p = 1) 9.14 1.75
IDW (p = 10) 13.14 0.42
IDW (p = 100) 12.06 0.23
RBF (Gaussian, ε = 1) −1.78 0.48
RBF (Gaussian, ε = 10) 38.87 1.42
RBF(Multi-Quad, ε = 1) −58.65 16.84
RBF(Multi-Quad, ε = 10) −9.15 3.56

Table 5: Mean and standard deviation of relative error in estimation of delta value via
each method.

4.3. Distance Function

A key element in the definition of each estimation method is the choice
of a distance function. While the RBF method requires the choice of a
proper distance function, Kriging and IDW can work with any choice of dis-
tance function. A proper distance function satisfies non-negativity, identity
of indiscernibles, symmetry and the triangle inequality (Stein and Shakarchi,
2009). We call any function that has the non-negativity and a subset of other
aforementioned properties a distance function. In this set of experiments, we
investigate the importance of the choice of distance function on the accuracy
of estimation for each interpolation method.

To achieve this goal, we conduct two sets of experiments. In the first set of
experiments, we study the effect of the γ variable in (10) by reducing the value
of γ from 1 to 0.05. γ determines the relative importance of the categorical
attributes compared to the numerical attributes, which has not been studied
previously. In the second set of experiments, we use the following distance
function in our method with γ = 1.
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D(x,y, γ) =

√
f(xage, yage)gage(x,y) +

∑
h∈N

gh(x,y) + γ
∑
h∈C

δ(xh, yh)

f(xage, yage) = exp
(xage + yage

2
−M

)
gh(x,y) = (exp(−rx)xh − exp(−ry)yh)2 (12)

where C = {gender, rider}, N = {maturity, withdrawal rate}, r = AV
GD

and
M is the maximum age in the portfolio.

If we view the embedded guarantees in the VA contracts as options that
a policyholder can choose to exercise, the ratio r represents the moneyness of
that option. If r � 1, then the account value is enough to cover the amount
of guaranteed value. However, if r � 1, the account value is insufficient to
cover the guaranteed value and the insurer has a potential liability. Hence,
in estimating the delta value for a VA contract with r � 1, the delta value is
close to zero and the choice of representative contract(s) should not affect the
outcome of the estimation as long as the selected representative contract(s)
have r � 1. The choice of function g(·, ·) in (12) captures the aforementioned
idea. In addition, as the age of the policyholder increases their mortality rate
also increases (consult the data of 1996 I AM mortality table). Hence, the
liability and delta value of similar contracts which differ only in the age of
the policyholder increases with age. Because of this, more emphasis should
be placed on estimating the delta value for senior policyholders, which is the
motivation behind the introduction of the function f(·, ·) in (12).

Table 6 presents the accuracy of our estimation by each method in both
experiments. In experiment one, the choice of γ = 0.05, in general, has
improved the accuracy of most interpolation schemes. Kriging interpolation
with a Spherical variogram, the IDW method with P = 10, and the RBF
method with Gaussian kernel and ε = 1 are the only schemes for which the
accruacy deteriorated. In experiment two, the Kriging and RBF methods
encounter singularities with (12); however, the choice of (12) has improved
the accuracy of the IDW methods. In general, it seems that the choice of
distance function and free parameters plays a key role in the accuracy of the
interpolation schemes.

4.4. Variogram
As mentioned in Section 3.2, Kriging methods work with variogram mod-

els. The choice of variogram model is dictated by its closeness to the empirical
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Relative Error (%)
Method Experiment 1 Experiment2
Kriging (Spherical) 1.94 ∗
Kriging (Exponential) −0.37 ∗
Kriging (Guassian) < −500 ∗
IDW (p = 1) 8.97 −4.87
IDW (p = 10) 13.21 3.90
IDW (p = 100) 11.99 2.32
RBF (Gaussian, ε = 1) −2.56 ∗
RBF (Gaussian, ε = 10) 37.89 ∗
RBF(Multi-Quad, ε = 1) −35.74 ∗
RBF(Multi-Quad, ε = 10) −6.88 ∗

Table 6: Relative error in the estimation of the delta value by each method. In experiment
1, (10) is used with γ = 0.05, and in experiment 2, (12) is used with γ = 1. “∗” indi-
cates that the method cannot work with the choice of distance function because it causes
singularities in the computations.

variogram. In the previous experiments, we showed that we can have better
results using a spherical variogram model; however, we haven’t provided any
analysis supporting why this variogram is a better choice. In this section,
we address this subject. In particular, we conduct experiments to explore
whether we can increase the accuracy of the Kriging method by choosing a
variogram function that can better approximate the empirical variogram.

To compute the empirical variogram, we partition the x-axis into 20 in-
tervals of equal length hmax

20
where hmax is the maximum distance between

two VA policies using the distance function (10) and with γ = 1. In each
interval, to approximate (4), we use the average of the squared difference
of the delta value of all pairs of VA policies that have a distance that falls
into that interval as the representative for the empirical variogram for that
interval. We call the piece-wise linear function that is formed by connecting
the representative value for each interval the empirical variogram.

To approximate the empirical variogram, we use polynomials of degree 1,
2, 3 and 4. The polynomials are best MSE approximations of the empirical
variogram in the interval between zero and range. At any distance above the
range, the estimated value is assumed to be the value of the polynomial at
the range (Figure 2). This is necessary in order to have a proper variogram
model (Cressie, 1993) without producing jumps in the variogram.
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(a) Spherical vari-
ogram.

(b) Exponential vari-
ogram.

(c) Gaussian vari-
ogram.

(d) Linear approxi-
mation.

(e) Quadratic ap-
proximation.

(f) Cubic approxima-
tion.

(g) Quartic approxi-
mation.

Figure 2: Comparing the variogram models with the empirical variogram.

The accuracy of Kriging using each approximation of the empirical var-
iogram is presented in Table 7. An interesting, yet counter intuitive, ob-
servation is that the accuracy of Kriging is worst for the quartic MSE ap-
proximation variogram model that best fits the empirical variogram. Even
comparing the graph of the exponential and spherical variogram models with
the empirical variogram, the exponential variogram model seems to fit the
empirical variogram model better than the spherical variogram model, but
the accuracy of Kriging with the exponential variogram model is worse than
the accuracy of Kriging with the spherical variogram model.

Because of these counter intuitive results, we took a closer look at the
data from which the empirical variogram was generated. Figure 3 shows a
graph of the squared differences of delta values of a pair of VA contracts
versus their distance from each other. Surprisingly, the point values do not
look similar to their average, i.e., the empirical variogram. We expected to
see a graph similar to Figure 1 where the point values are in close proximity
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Method Relative Error (%)
Spherical −0.03
Exponential −1.61
Guassian < −500
Deg 1 −6.00
Deg 2 −32.17
Deg 3 −2.78
Deg 4 < −500

Table 7: Relative error in estimation of the delta value via Kriging with different variogram
models.

Figure 3: Squared difference of delta values of VA pairs in representative contracts.

to the empirical variogram and the variogram model. However, the data do
not suggest the existence of any pattern from which a variogram model can
be estimated. In particular, the data contradict the second-order stationary
assumption underlying the Kriging method, and hence brings into question
the appropriateness of the Kriging method for our application of interest.

5. Concluding Remarks

As we discussed in Sections 1 and 4, valuing a large portfolio of VA
contracts via nested MC simulations is a time consuming process (Fox, 2013;
Reynolds and Man, 2008). Recently, Gan and Lin (Gan, 2013a) proposed
a Kriging framework that ameliorates the computational demands of the
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valuation process. The proposed method is a special case of a more general
framework called spatial interpolation. The spatial interpolation framework
works as follows: A group of representative VA contracts is selected via a
sampling method. For each contract in the sample, the Greeks are estimated
via a MC simulation. Then a spatial interpolation method is used to find
the Greeks for each contract in the portfolio as a linear combination of the
Greeks of the contracts in the sample.

Two integral parts of the spatial interpolation framework are the choice
of sampling method and the choice of interpolation scheme. In this paper,
we studied various interpolation methods (i.e., Kriging, IDW, RBF) that
can be used in this framework and postponed the discussion of the choice
of sampling method to a future paper. In our experiments, we focused on
a synthetic portfolio of VA contracts with GMDB and GMWB riders and
compared the efficiency and accuracy of interpolation methods to estimate
the delta value of this portfolio. As we discuss in detail in Section 4, while
Kriging can provide better accuracy than the IDW and RBF methods, it has
a slower running time than either of these deterministic methods, because
Kriging has to solve (1) that in general takes Θ(n3) time (n is the number of
samples). The computational cost of Kriging is exacerbated if we compute
the delta value of each VA policy in the portfolio. In general, a more granular
view of the portfolio with Kriging comes at the expense of a much longer
running time.

Our experiments also provided more insights into the importance of the
choice of a distance function in the accuracy of various interpolation schemes.
While Kriging methods, with exponential and spherical variogram models,
can provide relatively accurate estimates using (10), they fail, due to numer-
ical instability, to provide any estimates using (12). However, in comparison
to (10), (12) allows IDW methods to provide better estimates. Our exper-
iments also showed that achieving the best result with either (10) or (12)
requires fine tuning the free parameters in these distance functions or in the
methods themselves.

An interesting observation from our experiments is the non-existence of
any pattern that supports the validity of the second-order stationary assump-
tion that underlines the Kriging method. Our observation was the result of
our experiments to accurately estimate the empirical variogram. Our hope
was that a more accurate estimation of the empirical variogram would in-
crease the accuracy of Kriging methods. Despite our intial belief, the exper-
iments showed no relation between the accuracy of the Kriging method and
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the closeness of the variogram model to the empirical variogram. Hence, it
is not clear why the Kriging method provides accurate estimates despite the
fact that the second-order stationary assumption does not seem to hold for
the Greeks of the VA portfolio.

From our results, none of traditional spatial interpolation methods enjoy
all three properties of accuracy, efficiency, and granularity. While Kriging
based methods are accurate and fairly efficient at the portfolio level, they
lack efficiency when a granular view of the portfolio is required. On the
other hand, IDW and RBF based methods are efficient, and can provide a
granular view of the portfolio, but they are not as accurate as Kriging based
methods. In addition, the accuracy of all methods is dependent on the choice
of an appropriate distance function, which requires tuning from expert users.
It is not yet clear to us what is the best approach to find an appropriate
distance function for each method. In a future paper, we will discuss how we
can circumvent this issues and still achieve accuracy, efficiency, and granu-
larity via a neural network approach to spatial interpolation. The proposed
framework resolves the issues of the choice of distance function by learn-
ing an appropriate distance function to be used for each portfolio given the
characteristics of the portfolio.

In the future, we also plan to address the problem of choosing an effective
sampling method via a novel approach that uses statistical characteristics of
the input portfolio to provide the output sample from the space in which the
input portfolio is defined.
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