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Abstract

Correlation-dependent derivatives, such as Asset-Backed Securities (ABS) and Col-

lateralized Debt Obligations (CDO), have grown rapidly. Factor models in the condi-

tional independence framework are widely used in practice to capture the correlated

default events of the underlying obligors. An essential part of these models is the ac-

curate and efficient evaluation of the expected loss of the specified tranche, conditional

on a given value of a systematic factor (or values of a set of systematic factors). Unlike

other papers that focus on how to evaluate the loss distribution of the underlying pool,

in this paper we focus on the tranche loss function itself. It is approximated by a sum of
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exponentials so that the conditional expectation can be evaluated in closed form without

having to evaluate the pool loss distribution. As an example, we apply this approach to

synthetic CDO pricing. Numerical results show that it is efficient.

1 Introduction

Correlation-dependent derivatives, such as Asset-Backed Securities (ABS) and Collateralized

Debt Obligations (CDO), have grown rapidly. An ABS is a security based on a pool of

non-mortgage assets. To create an ABS, a corporation creates a trust or a special purpose

vehicle to which it sells the assets. While it is common to speak of the corporation as the

issuer of the ABS, legally, it is the trust or the special purpose vehicle that sells securities to

investors. An ABS can be structured into different tranches that have different credit ratings.

A CDO is a security based on a pool of, generally non-mortgage, assets. Depending on the

nature of the collateralized assets, a CDO may be called a collateralized loan obligation,

a collateralized bond obligation or a synthetic CDO if it holds only loans, bonds or credit

default swaps. Like an ABS, a CDO is usually structured into tranches offering investors

various maturity and credit risk characteristics. Tranches are categorized as senior, mezzanine,

and subordinated/equity, according to their degree of credit risk. If there are defaults or

the CDO’s collateral otherwise underperforms, scheduled payments to senior tranches take

precedence over those of mezzanine tranches, and scheduled payments to mezzanine tranches

take precedence over those to subordinated/equity tranches. Senior tranches typically have

credit ratings of A to AAA, mezzanine tranches typically have ratings of B to BBB, while

equity tranches are usually not rated. The ratings reflect both the credit quality of the

underlying collateral as well as the amount of protection a given tranche is afforded by tranches

that are subordinate to it.

Factor models in the conditional independence framework are widely used in practice to

price these correlation-dependent derivatives so that analytic or semi-analytic formulas are

available. An essential part of these models is the accurate and efficient evaluation of the
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expected loss of the specified tranche, conditional on a given value of a systematic factor (or

correspondingly values of a set of systematic factors). To be specific, the problem is how to

evaluate the conditional expectation of the piecewise linear payoff function of the loss Z

f(Z) = min
�
u − ℓ, (Z − ℓ)+

�
, (1)

where x+ = max(x, 0), Z =
PK

k=1 Zk, Zk are conditionally mutually independent, but not nec-

essarily identically distributed, nonnegative random variables in a conditional independence

framework (see Section 2 for explanations), and ℓ and u are the attachment and the detach-

ment points of the tranche, respectively, satisfying u > ℓ ≥ 0. Generally Zk, for obligor k, is

the product of the two components: a random variable directly related to its credit rating and

a loss-given-default or mark-to-market related value. The payoff function, f , is also known as

the stop-loss function in actuarial science [3], [16].

Note that the expectation of a function of a random variable depends on two factors: the

distribution of the underlying random variable and the function itself. A standard approach

to compute the expectation of a function of a random variable is to compute firstly the

distribution of the underlying random variable, Z in our case, and then to compute the

expectation of the given function, possibly using its special properties. Almost all research in

finance [1], [7], [10], [15], [17] and in actuarial science [5], [19], to name a few, has focused on

the first part due to the piecewise linearity of the payoff function.

In this paper, we propose a new approach to solving the problem. We approximate the

non-smooth function f by a sum of exponentials over [0,∞). Based on this approximation, the

conditional expectation can be computed from a series of simple expectations. Consequently,

we do not need to compute the distribution of Z.

The remainder of this paper is organized as follows. The details of our approach out-

lined above are described in Section 2. As an example, this method is applied to synthetic

CDO pricing in Section 3. The paper ends with some conclusions in Section 4, in which we

summarize the advantages of our method over others, and indicate its scope of applicability.
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2 Conditional expectation based on an exponential ap-

proximation

In the conditional independence framework, a central problem is how to evaluate the expec-

tation

E[f(Z)] =
Z

M
EM [f (Z)] dΦ(M),

where Φ(M) is the distribution of an auxiliary factor M (which can be a scalar or a vector),

EM [f (Z)] ≡ E [f (Z) |M = M ]

and

Z =
KX

k=1

Zk, (2)

where Zk ≥ 0 are mutually independent random variables, conditional on M . It is obvious

that Z is nonnegative. We denote by ΨM the distribution of Z conditional on M = M , so

that

EM [f (Z)] =
Z

z
f (z) dΨM(z). (3)

Due to the piecewise linearity of the function f defined by (1), it is clear that once the

distribution ΨM is obtained, the conditional expectation
R
z f (z) dΨM(z) can be readily com-

puted. Most research has focused on how to evaluate the conditional distribution of Z given

the conditional distributions of Zk. A fundamental result about a sum of independent random

variables states that Z’s distribution can be computed as the convolution of Zk’s distributions.

Numerically, this idea is realized through forward and inverse fast Fourier transformations

(FFT). A disadvantage of this approach is that it may be very slow when there are many

obligors due to the number of convolutions to be calculated. For pools with special struc-

tures, it might be much slower than methods that are specially designed for those pools, such

as recursive methods proposed by De Pril [5] and Panjer [19] and their extensions discussed

in [3] and [16], and the one proposed by Jackson, Kreinin, and Ma [15] for portfolios where

the Zk sit on a properly chosen common lattice. To avoid computing too many convolutions,

the target distribution can be approximated by parametric distributions matching the first
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few moments of the true distribution. For a large pool, a normal approximation is a natural

choice as a consequence of the central limit theorem and due to its simplicity, although it may

not capture some important properties, such as skewness and fat tails.

To capture these important properties for medium to large portfolios, compound approx-

imations, such as the compound Poisson [13], improved compound Poisson [9], compound

binomial and compound Bernoulli [20] distributions have been used. They have proved to be

very successful, since they match not only the first few moments, but, most importantly, they

match the tails much better than either normal or normal power distributions do. A key step

in a method based on these compound approximations is the computation of convolutions by

FFTs. As a result, the computational complexity of such an algorithm is superlinear in K,

the number of terms in the sum (2).

As an alternative, in this paper, we propose an algorithm for which the computational

complexity is linear in K. We focus on the stop-loss function f , instead of the distribution ΨM

of Z. To emphasis the role of the attachment and the detachment points ℓ and u, we denote

f(x) by f(x; ℓ, u) and introduce an auxiliary function h(x) defined on [0,∞): h(x) = 1 − x if

x ≤ 1, 0 otherwise. Then we have

f(x) = f(x; ℓ, u) = u
�
1 − h

�x

u

��
− ℓ

�
1 − h

�x

ℓ

��
. (4)

In particular, if ℓ = 0, we have

f(x; 0, u) = min
�
u, x+

�
= min (u, x) = u

�
1 − h

�x

u

��
.

Note that h(x) is independent of the constants ℓ and u. Therefore, if it can be approxi-

mated by a sum of exponentials over [0,∞), it is clear that f(x; ℓ, u) can be approximated by

a sum of exponentials. Let

h(x) ≈
NX

n=1

ωn exp(γnx), (5)

where ωn and γn are complex numbers. Then from (4) we can see that f(x; ℓ, u) can be
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approximated by a sum of exponentials:

f(x; ℓ, u) ≈ u

"
1 −

NX
n=1

ωn exp
�
γn

x

u

�#
− ℓ

"
1 −

NX
n=1

ωn exp
�
γn

x

ℓ

�#
≈ (u − ℓ) − u

NX
n=1

ωn exp
�γn

u
x
�

+ ℓ
NX

n=1

ωn exp
�γn

ℓ
x
�

. (6)

Based on this expression the conditional expectation EM [f (Z)] defined in (3) can be

computed as follows:

EM [f (Z)]

=
Z

z
f (z) dΨM(z)

≈
Z

z

"
(u − ℓ) − u

NX
n=1

ωn exp
�γn

u
z
�

+ ℓ
NX

n=1

ωn exp
�γn

ℓ
z
�#

dΨM(z)

= (u − ℓ) − u
NX

n=1

ωn

Z
z
exp

�γn

u
z
�

dΨM(z)

+ℓ
NX

n=1

ωn

Z
z
exp

�γn

ℓ
z
�

dΨM(z)

= (u − ℓ)

−u
NX

n=1

ωn

Z
z1,...,zK

KY
k=1

exp
�γn

u
zk

�
dΨM,1(z1) · · · dΨM,K(zK)

+ℓ
NX

n=1

ωn

Z
z1,...,zK

KY
k=1

exp
�γn

ℓ
zk

�
dΨM,1(z1) · · · dΨM,K(zK)

= (u − ℓ) − u
NX

n=1

ωn

KY
k=1

EM

�
exp

�γn

u
Zk

��
+ℓ

NX
n=1

ωn

KY
k=1

EM

�
exp

�γn

ℓ
Zk

��
, (7)

where ΨM,k is the conditional distribution of Zk, EM [exp (cZk)] is the conditional expectation

of exp (cZk), for c = γn

ℓ
or γn

u
, respectively. The last equality holds by noting that Zk, thus

cZk, are mutually independent conditional on a given value of M . In this way we can see that,

to compute the conditional expectation EM [f (Z)], we only need to compute the conditional

expectations EM [exp (cZk)] of individual obligors.

Since h(z) is independent of the constants ℓ and u, for a given approximation accuracy

the coefficients ωn and γn for (5) need to be computed only once and the number of terms
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required can be determined a priori. As shown in a separate paper by the authors [12], the

maximum absolute error in the approximation (5) is roughly proportional to 1/N :

N 25 50 100 200 400

Max absolute error 6.4×10−3 3.2×10−3 1.6×10−3 8×10−4 4×10−4

Table 1: The maximum absolute error in the approximation (5) for several values of N
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Figure 1: The exponents and the weights of the 25-term exponential approximation

As an example, the parameters γn and ωn for a 25-term approximation are plotted in

Figure 1. The top panel shows the values of ωn; the bottom panel shows the values of γn. It is

proved in [12] that, if γn is real, then ωn is also real, and if γi and γj are a complex conjugate

pair, then the corresponding ωi and ωj are also a complex conjugate pair, and vice versa.

The data plotted in Figure 1 has this property. Exploiting this property, we can simplify the

summations in (7) by noting that the sum of the complex conjugated i-th and j-th terms

equals twice the real part of either one of these two terms. The bottom panel also shows that

the real part of each γn is strictly negative. This property guarantees that the exponential
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approximation of (5) converges to zero as x → ∞, and thus guarantees the existence of the

conditional expectation EM [exp (cZk)]. For a more complete discussion of the exponential

approximation (5), see [12]. In particular, it is proved therein, that each γn has a nonpositive

real part for any N .

3 Pricing synthetic CDOs

3.1 Overview of pricing methods

We illustrate our new method by applying it to synthetic CDO pricing. The underlying

collateral of a synthetic CDO is a set of credit default swaps (CDSs). Factor models, such

as the reduced-form model proposed by Laurent and Gregory [17] and the structural model

proposed Vasicek [22] and Li [18] are widely used in practice to obtain analytic or semi-

analytic formula to price synthetic CDOs efficiently. For a comparative analysis of different

copula models, please see the paper by Burtschell, Gregory and Laurent [4].

Both exact and approximate methods for loss-distribution evaluation have been studied

in [15]. Here we apply the exponential-approximation method to synthetic CDO pricing.

An important advantage of our new approach is that it applies to more general models that

incorporate dynamic interest rates, dynamic recovery rates, and other dynamic properties.

However, as with many existing methods, our new method depends on the conditional inde-

pendence framework.

3.2 The pricing equation and the Gaussian copula model

To illustrate our method, we use a simple one-factor Gaussian copula model. It is assumed

that the interest rates are deterministic and the recovery rate corresponding to each under-

lying name is constant. Let 0 < t1 < t2 < · · · < tn = T be the set of premium dates,

with T denoting the maturity of the CDO, and d1, d2, . . . , dn be the set of corresponding
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discount factors. Suppose there are K names in the pool with recovery-adjusted notional

values LGD1, LGD2, . . . , LGDK in properly chosen units. Let L P
i be the pool’s cumulative

losses up to time ti and ℓ be the attachment point of a specified tranche of thickness S. An

attachment point of a tranche is a threshold that determines whether some losses of the pool

shall be absorbed by this tranche, i.e., if the realized losses of the pool are less than ℓ, then

the tranche will not suffer any loss, otherwise it will absorb an amount up to S. Accordingly,

the detachment point of the tranche is u = S + ℓ. Thus the loss absorbed by the specified

tranche up to time ti is Li = min
�
S, (L P

i − ℓ)+
�
. If we further assume the fair spread s for

the tranche is a constant, then it can be calculated from the equation (see e.g., [6], [13])

s =
E [
Pn

i=1(Li − Li−1)di]

E [
Pn

i=1(S − Li)(ti − ti−1)di]
=

Pn
i=1 E [(Li − Li−1)di]Pn

i=1 E [(S − Li)(ti − ti−1)di]
, (8)

with t0 = 0 and E [L0] = 0.

Since the discount factors di are deterministic, it follows from (8) that the problem of

computing the fair spread s reduces to evaluating the expected cumulative losses E [Li], i =

1, 2, . . . , n. In order to compute this expectation, we have to specify the default processes for

each name and the correlation structure of the default events. One-factor models were first

introduced by Vasicek [22] to estimate the loan loss distribution and then generalized by Li

[18], Gordy and Jones [8], Hull and White [10], Iscoe, Kreinin and Rosen [14], Laurent and

Gregory [17], and Schönbucher [21], to name a few.

Let τk be the default time of name k. Assume the risk-neutral default probabilities πk(t) =

P (τk < t), k = 1, 2, . . . , K, that describe the default-time distributions of all K names are

available, where τk and t take discrete values from {t1, t2, . . . , tn}. The dependence structure

of the default times are determined in terms of their creditworthiness indices Yk, which are

defined by

Yk = βkX + σkεk, k = 1, 2, . . . , K, (9)

where X is the systematic risk factor, εk are idiosyncratic factors that are mutually indepen-

dent and are also independent of X; βk and σk are constants satisfying the relation β2
k +σ2

k = 1.

These risk-neutral default probabilities and the creditworthiness indices are related by the

9



threshold model

πk(t) = P (τk < t) = P (Yk < Hk(t)) , (10)

where Hk(t) is the default barrier of the k-th name at time t.

Thus the correlation structure of default events is captured by the systematic risk factor X.

Conditional on a given value x of X, all default events are independent. If we further assume,

as we do, that X and εk follow the standard normal distribution, then Yk is a standard normal

random variable and from (10) we have Hk(t) = Φ−1 (πk(t)). Furthermore, the correlation

between two different indices Yi and Yj is βiβj.

The conditional, risk-neutral default-time distribution is defined by

πk(t; x) = P (Yk < Hk(t)|X = x) . (11)

Thus from (9) and (11) we have

πk(t; x) = Φ

�
Hk(t) − βkx

σk

�
. (12)

The conditional and unconditional risk-neutral default-time probabilities at the premium date

ti are denoted by πk(i; x) and πk(i), respectively.

In this conditional independence framework, the expected cumulative tranche losses E [Li]

can be computed as

E [Li] =
Z ∞

−∞
Ex [Li] dΦ(x), (13)

where Ex [Li] = Ex

�
min

�
S, (L P

i − ℓ)+
��

is the expectation of Li conditional on the value of

X being x, where L P
i =

PK
k=1 LGDk1{Yk<Hk(ti)}, and the indicators 1{Yk<Hk(ti)} are mutu-

ally independent conditional on X. Generally, the integration in (13) needs to be evaluated

numerically using an appropriate quadrature rule:

E [Li] ≈
MX

m=1

wmExm

�
min

�
S, (L P

i − ℓ)+
��

. (14)

In the notation of Section 2, Z = L P
i , Zk = LGDk1{Yk<Hk(ti)}, and M = X.
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3.3 CDO pricing based on the exponential approximation

Notice from formula (14) that the fundamental problem in CDO pricing is how to evaluate

the conditional expected loss Exm

�
min

�
S, (L P

i − ℓ)+
��

with a given value xm of X. Since

min
�
S, (L P

i − ℓ)+
�

= f(L P
i ; ℓ, ℓ + S), (15)

from (6) we see that

min
�
S, (L P

i − ℓ)+
�
≈(ℓ + S)

"
1 −

NX
n=1

ωn exp

�
γn

L P
i

ℓ + S

�#
− ℓ

"
1 −

NX
n=1

ωn exp

�
γn

L P
i

ℓ

�#
=S − (ℓ + S)

NX
n=1

ωn exp
�

γn

ℓ + S
L

P
i

�
+ ℓ

NX
n=1

ωn exp
�γn

ℓ
L

P
i

�
.

As a special case of (7) we have

Exm

�
min

�
S, (L P

i − ℓ)+
��

≈S − (ℓ + S)
NX

n=1

ωnExm

"
exp

 
γn

ℓ + S

KX
k=1

LGDk1{Yk<Hk(ti)}

!#
+ ℓ

NX
n=1

ωnExm

"
exp

 
γn

ℓ

KX
k=1

LGDk1{Yk<Hk(ti)}

!#
=S − (ℓ + S)

NX
n=1

ωn

KY
k=1

Exm

�
exp

�
γn

ℓ + S
LGDk1{Yk<Hk(ti)}

��
+ ℓ

NX
n=1

ωn

KY
k=1

Exm

�
exp

�γn

ℓ
LGDk1{Yk<Hk(ti)}

��
, (16)

where

Exm

�
exp

�
γn

ℓ + S
LGDk1{Yk<Hk(ti)}

��
= πk(i; xm) exp

�
γn

ℓ + S
LGDk

�
+ (1 − πk(i; xm)) ,

Exm

�
exp

�γn

ℓ
LGDk1{Yk<Hk(ti)}

��
= πk(i; xm) exp

�γn

ℓ
LGDk

�
+ (1 − πk(i; xm)) ,

since 1{Yk<Hk(ti)} = 1 with probability πk(i; xm) and 0 with probability 1 − πk(i; xm), and

LGDk is a constant.

3.4 Numerical results

In this section we present numerical results comparing the accuracy and the computational

time for our new exponential-approximation method and the exact method, which we denote
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by JKM, proposed in [15]. The results presented below are based on a sample of 15 pools. For

each pool, the number of names K is either 100, 200, or 400. The number of homogeneous

groups in each pool is one of 1, 2, 4, 5, or K/10, and all homogeneous groups in a given pool

have an equal number of names. The notional values for each pool are summarized in Table 2.

For example, the 200-name pool with local pool ID = 3 consists of four homogeneous groups

with the notional values 50, 100, 150, and 200, respectively. For convenience, we also labeled

each pool with a global pool ID. For each of the 100-name pools, the global and the local IDs

coincide. For each of the 200- and 400-name pools, its global pool ID (GID) is its local pool

ID plus 5 or 10, respectively. For example, a 200-name pool with local ID = 3 has GID = 8.

Local Pool ID 1 2 3 4 5

Notional values 100 50, 100 50, 100, 150, 200 20, 50, 100, 150, 200 10, 20, . . . , K

Table 2: Selection of notional values of K-name pools

For each name, the risk-neutral cumulative default probabilities are one of two types, I

and II, as defined in Table 3.

Type 1 yr. 2 yrs. 3 yrs. 4 yrs. 5 yrs.

I 0.0007 0.0030 0.0068 0.0119 0.0182

II 0.0044 0.0102 0.0175 0.0266 0.0372

Table 3: Risk-neutral cumulative default probabilities

The recovery rate is assumed to be 40% for all names. Thus the LGD of name k is

0.6Nk. The maturity of a CDO deal is five years (i.e., T = 5) and the premium dates are

ti = i, i = 1, . . . , 5 years from today (t0 = 0). The continuously compounded interest rates

are r1 = 4.6%, r2 = 5%, r3 = 5.6%, r4 = 5.8% and r5 = 6%. Thus the corresponding discount

factors, defined by di = exp(−tiri), are 0.9550, 0.9048, 0.8454, 0.7929 and 0.7408, respectively.

All CDO pools have five tranches that are determined by the attachment points (ℓ’s) of the

tranches. For this experiment, the five attachment points are: 0, 3%, 4%, 6.1% and 12.1%.
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The constants βk’s lie in [0.3, 0.5]. In practice, the βk’s are known as tranche correlations and

are taken as input to the model.

All methods for this experiment were coded in Matlab and the programs were run on a

Pentium III 700 PC. The results are presented in Tables 4, 5 and 6.

The accuracy comparison results are presented in Table 4. The four numbers in each

pair of brackets in the main part of the table are the spreads in basis points for the first

four tranches of the corresponding pool. For example, (2248.16, 927.59, 605.52, 248.31) are the

spreads evaluated by the JKM method for the first four tranches of the 200-name homogeneous

pool (with global pool ID, GID = 6). The entries under “25-term”, “100-term”, and “400-

term” are the spreads evaluated using the exponential-approximation method with 25, 100

and 400 terms, respectively. From the table we can see that, as the number of terms increases,

the accuracy of the spreads improves. To better illustrate the accuracy of our new approach,

the relative errors in the spreads obtained using exponential approximations, with different

numbers of terms, compared to the spreads computed by the exact JKM method are plotted

in Figures 2 and 3.

The CPU times used by the JKM method and the exponential-approximation method

using different numbers of terms for the test pools are presented in Tables 5 and 6, respectively.

In Table 5 the numbers under “First tranche” and “First four tranches” are the times in

seconds used by the exact JKM method to evaluate the spread for the first tranche and the

spreads for the first four tranches of each pool, respectively. In Table 6 the numbers under

“First tranche” and “First four tranches” are the times in seconds used by the exponential-

approximation method using 25, 50, 100, 200 and 400 terms to evaluate the spread for the

first tranche and the spreads for the first four tranches of each pool, respectively. Note that,

for the exponential-approximation method, its CPU time is independent of the pool structure:

its computational cost depends only on the number of names and the number of terms in the

exponential approximation. It is interesting to note that, for a given pool, to evaluate any

single tranche using the exponential-approximation method takes about as much time as to

evaluate any other tranche. On the other hand, for the exact method, calculating the spread
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GID Exact 25-term 100-term 400-term

1 (2167.69, 925.62, 616.56, 255.67) (2165.21, 930.60, 615.90, 255.66) (2167.06, 926.63, 616.59, 255.65) (2167.54, 925.88, 616.56, 255.67)

2 (2142.13, 945.03, 615.79, 257.43) (2141.54, 943.15, 616.96, 257.50) (2141.94, 944.66, 616.03, 257.43) (2142.08, 944.94, 615.85, 257.42)

3 (2128.39, 941.00, 618.88, 258.75) (2128.80, 940.35, 618.92, 258.89) (2128.25, 941.19, 618.85,258.77) (2128.35, 941.05, 618.86, 258.75)

4 (2097.58, 942.75, 622.30, 261.58) (2097.24, 943.30, 622.47, 261.79) (2097.46, 942.90, 622.26, 261.58) (2097.55, 942.78, 622.29, 261.58)

5 (3069.39, 1165.62, 638.87, 154.37 (3069.45, 1165.84, 639.05 154.43) (3069.29, 1165.80, 638.80, 154.37) (3069.35, 1165.65, 638.88, 154.37)

6 (2248.16, 927.59, 605.52, 248.31) (2246.74, 930.51, 605.30, 248.64) (2247.83, 928.13, 605.50, 248.28) (2248.07, 927.72, 605.52, 248.31)

7 (2237.60, 931.25, 606.10, 249.15) (2236.79, 931.45, 606.74, 249.46) (2237.36, 931.27, 606.22, 249.15) (2237.54, 931.26, 606.12, 249.15)

8 (2229.45, 931.73, 607.47, 249.80) (2229.10, 932.34, 607.63, 250.12) (2229.31, 931.97, 607.44, 249.79) (2229.41, 931.78, 607.47, 249.80)

9 (2212.52, 933.62, 609.33, 251.27) (2212.51, 933.93, 609.54, 251.56) (2212.45, 933.68, 609.32, 251.29) (2212.50, 933.64, 609.33, 251.26)

10 (3350.42, 1171.60, 605.99, 127.05) (3350.44, 1172.09, 606.28, 127.10) (3350.37, 1171.63, 606.02, 127.05) (3350.40, 1171.60, 606.00, 127.05)

11 (2291.12, 925.82, 600.30, 244.49) (2290.57, 926.86, 600.67, 244.97) (2290.93, 926.17, 600.24, 244.49) (2291.07, 925.88, 600.30, 244.49)

12 (2285.92, 926.99, 600.81, 244.90) (2285.72, 927.32, 601.22, 245.39) (2285.80, 926.97, 600.84, 244.92) (2285.89, 926.99, 600.81, 244.90)

13 (2281.84, 927.31, 601.32, 245.25) (2281.82, 927.68, 601.66, 245.71) (2281.77, 927.40, 601.32, 245.27) (2281.82, 927.33, 601.32, 245.25)

14 (2273.15, 928.22, 602.32, 245.99) (2273.27, 928.50, 602.63, 246.43) (2273.12, 928.26, 602.34, 246.01) (2273.14, 928.23, 602.32, 245.99)

15 (3427.70, 1157.67, 591.47, 122.31) (3427.84, 1158.17, 591.77, 122.40) (3427.70, 1157.70, 591.48, 122.31) (3427.70, 1157.67, 591.47, 122.31)

Table 4: Accuracy comparison between the exact JKM method and the exponential-approximation method using 25, 100

and 400 terms
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Figure 2: The graphs from top to bottom are the plots of the relative errors of the tranche

spreads computed by our new method based on 25-, 50-, and 100-term exponential approxima-

tions compared to the exact spreads computed by the JKM method, for the tranches [0%, 3%],

[3%, 4%], [4%, 6.1%], and [6.1%, 12.1%], respectively. The solid line is for the 25-term approx-

imation. The line marked with small asterisks is for the 50-term approximation. The line

marked with small circles is for the 100-term approximation.

for the j-th tranche takes as much time as calculating the spreads for the first j tranches.

4 Conclusions

A new method for pricing correlation-dependent derivatives has been proposed. The method

is based on an exponential approximation to the “hockey stick” function. With this approx-

imation, the evaluation of the conditional expectation of the stop-loss function of the credit

portfolio can be computed by calculating a series of conditional expectations for individual

obligors. In Section 3, we applied this method to synthetic CDO pricing where the correlation

structure of the underlying obligors is specified through a simple one-factor Gaussian copula
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Figure 3: The graphs from top to bottom are the plots of the relative errors of the tranche

spreads computed by our new method based on 100-, 200-, and 400-term exponential ap-

proximations compared to the exact spreads computed by the JKM method, for the tranches

[0%, 3%], [3%, 4%], [4%, 6.1%], and [6.1%, 12.1%], respectively. The solid line is for the 100-

term approximation. The line marked with small asterisks is for the 200-term approximation.

The line marked with small circles is for the 400-term approximation.

model. This method could be applied to more general models provided that they belong to

the conditional independence framework, such as the affine Markov chain model proposed

by Hurd and Kuznetsov [11]. Also our new method should be applicable to a wide class of

derivatives, not just those mentioned above. For example, it can be applied to the pricing

of single tranche CDOs, and options on spreads of single tranche CDOs. From formula (7)

we see that there are no restrictions on the distribution of Zk. So this method has a wide

range of applications. Compared to the saddlepoint approximation method used by Antonov,

Mechkov, and Misirpashaev [2] and Yang, Hurd and Zhang [23], the main advantage of our

new approach is that the coefficients can be computed in advance, whereas the saddlepoint

method must compute some parameters dynamically.
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GID First tranche First four tranches

1 0.39 0.46

2 0.44 0.48

3 0.52 0.57

4 0.57 0.70

5 0.81 0.85

6 0.53 0.71

7 0.58 0.76

8 0.67 0.88

9 0.76 1.26

10 1.41 2.32

11 0.86 1.41

12 0.95 1.56

13 1.06 1.86

14 1.32 3.38

15 4.50 12.31

Table 5: CPU time in seconds used by the JKM method to evaluate the first and the first

four tranches of the test pools
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[7] Alain Debuysscher and Marco Szegö. The Fourier transform method – technical doc-

ument. Working report, Moody’s Investors Service, January 2003. Courtesy of Henry

Tabe and Claudio Albanese.

[8] Michael Gordy and David Jones. Random tranches. Risk, 16(3):78–83, March 2003.

[9] Christian Hipp. Improved approximations for the aggregate claims distribution in the

individual model. ASTIN Bulletin, 16(2):89–100, 1986.

[10] John Hull and Alan White. Valuation of a CDO and an nth to default CDS without

Monte Carlo simulation. Journal of Derivatives, (2):8–23, 2004.

[11] Tom Hurd and Alexey Kuznetsov. Affine Markov chain models of multifirm credit mi-

gration. Available from http://www.math.mcmaster.ca/tom/tom.html, 2004.

18



[12] Ian Iscoe, Ken Jackson, Alex Kreinin, and Xiaofang Ma. On exponential approximaton

to the hockey-stick function. In preparation, January 2007.

[13] Ian Iscoe and Alex Kreinin. Valuation of synthetic CDOs. submitted to the Journal of

Banking & Finance, 2005.

[14] Ian Iscoe, Alex Kreinin, and Dan Rosen. An integrated market and credit risk portfolio

model. Algo Research Quarterly, 2(3):21–38, September 1999.

[15] Ken Jackson, Alex Kreinin, and Xiaofang Ma. Loss distribution evaluation for synthetic

CDOs. In preparation, January 2007.

[16] Stuart A Klugman, Harry H Panjer, and Gordon E Willmot. Loss Models From Data to

Decisions. John Wiley & Sons, Inc., 1998.

[17] Jean-Paul Laurent and Jon Gregory. Basket default swaps, CDOs and factor copulas.

Available from http://www.maths.univ-evry.fr/mathfi/JPLaurent.pdf, September 2003.

[18] David X Li. On default correlation: A copula function approach. Technical Report 99-07,

The RiskMetrics Group, 44 Wall St., New York, NY 10005, April 2000.

[19] Harry H Panjer. Recursive evaluation of a family of compound distributions. ASTIN

Bulletin, 12(1):22–26, 1981.

[20] Susan M Pitts. A functional approach to approximations for the individual risk model.

ASTIN Bulletin, 34(2):379–397, 2004.
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