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Abstract

The hockey stick (HS) function plays an important role in pricing and risk management

of many financial derivatives. This paper considers approximating the HS function by a

sum of exponentials. This enables the efficient computation of an approximation to the

expected value of the HS function applied to a sum of conditionally independent nonneg-

ative random variables, a task that arises in pricing many financial derivatives, CDOs

in particular. The algorithm proposed by Beylkin and Monzón is used to determine the

parameters of the exponential approximation to the hockey stick function. Theoretical

properties of the approximation are studied and numerical results are presented.
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1 Introduction

In this paper, we describe how to approximate the hockey stick (HS) function

h(x) =





1 − x if 0 ≤ x ≤ 1;

0 if x > 1,

(1)

by a sum of exponentials

hexp(x) =
N∑

n=1

ωn exp(γnx) (2)

over X = [0,∞), where ωn and γn are complex numbers.

The function

h(x; t) =





t − x if 0 ≤ x ≤ t;

0 if x > t,

where t is a positive number, is often also called the hockey stick function. The two functions,

h(x) and h(x; t), are closely related. Obviously, h(x) = h(x; 1). On the other hand, for a fixed

positive t, h(x; t) = t·h (x/t). Therefore, we can take h(x) as the basic function. Consequently,

we focus our attention on h(x) throughout this paper.

The HS function is ubiquitous in financial engineering. For example, in the valuation of

synthetic collateralized debt obligations [7], the central problem is how to compute efficiently

the conditional expectation E [h(X)], where E denotes the expected value calculated under a

given probability measure, X =
∑K

k=1 Xk and Xk are conditionally independent nonnegative

random variables. Due to the piecewise linearity of h, it is clear that once the distribution of

X is known, the expected value E [h(X)] can be readily computed. All the methods described

in [9] follow this approach. When the distribution function of X is computationally expensive

to obtain from the distributions of the random variables Xk, this approach may be inefficient.

However, if h(x) can be approximated by a sum of exponentials as in (2), then E [h(X)] ≈
E[hexp(X)] and

E [hexp(X)] = E

[
N∑

n=1

ωn exp(γnX)

]
=

N∑

n=1

ωnE

[
exp

(
γn

K∑

k=1

Xk

)]
=

N∑

n=1

ωn

K∏

k=1

E [exp (γnXk)] ,
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where the last equality follows from the independence of the Xk’s. This shows that to ap-

proximate E [h(X)], we need only to compute E [exp (γnXk)] for each of the K conditionally

independent random variables, Xk. Thus, the second approach avoids the computation of the

distribution of X =
∑K

k=1 Xk and may be significantly more efficient than the first approach

in some cases, particularly if E [exp (γnXk)] is known in closed form, as is often the case in

practice. For a more complete discussion of the second approach, see [7].

The approximation problem considered here is in the sense of Chebyshev approximation.

For such an approximation, the weights ωn and the exponents γn should be chosen to solve

the minimization problem

min
ωn,γn∈C

∥∥∥∥∥h(x) −
N∑

n=1

ωn exp(γnx)

∥∥∥∥∥
∞

, (3)

where C denotes the set of complex numbers, and ‖f‖∞ = supx∈X|f(x)| is the Chebyshev

norm (also known as the uniform norm or the sup-norm) of f over X = [0,∞). Theoretically,

the existence of such an optimal approximation is generally not guaranteed [3, Chapters VI

and VII]. Classic numerical methods for linear Chebyshev approximations, such as the Remez

exchange algorithm and its improvements, do not work well for solving nonlinear Chebyshev

approximation problems such as (3) [10]. Most algorithms for nonlinear Chebyshev approx-

imations resort to solving discrete Chebyshev approximation subproblems. For exponential

approximation problems, such a discrete Chebyshev approximation subproblem is equivalent

to an exponential fitting problem, which is often badly-conditioned [4]. Consequently, we must

find a method that works well for (3). In this paper, we apply the method recently proposed

by Beylkin and Monzón [2] to determine the coefficients ωn and γn in (3).

The remainder of the paper is organized as follows. Beylkin and Monzón’s method and

its application to the HS function are discussed in Section 2. Properties of the exponential

approximation are discussed in Section 3. The paper ends with numerical results in Section 4.
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2 Beylkin and Monzón’s method and its application to

the HS function

2.1 Beylkin and Monzón’s method

In a recent paper [2], Beylkin and Monzón proposed an effective numerical method to find

a good exponential approximation to a function f . Instead of finding optimal ωn and γn

satisfying (3), their method finds such parameters so that the exponential approximation

satisfies a given accuracy requirement. More specifically, for a given function f defined on

[0, 1] and a given ε, their method seeks to find the minimal (or nearly minimal) number of

complex weights ωn and nodes exp(γn) such that

∣∣∣∣∣f(x) −
N∑

n=1

ωn exp(γnx)

∣∣∣∣∣ ≤ ε, ∀x ∈ [0, 1]. (4)

This continuous problem is in turn approximated by a discrete problem: Given a positive

integer M, find the minimal positive integer number N ≤ M of complex weights ωn and

complex nodes ζn such that

∣∣∣∣∣f
( m

2M
)
−

N∑

n=1

ωnζm
n

∣∣∣∣∣ ≤ ε, for all integers m ∈ [0, 2M]. (5)

Then, for the continuous problem, the weights and the exponents are ωn and

γn = 2M log ζn, (6)

respectively, where log z is the principal value of the logarithm.

To describe their method in more detail, we introduce some additional notation. For

theoretical background and a more detailed description of the method, see [2].

For a real (2M+ 1)-vector h = (h0, h1, . . . , h2M), the (M+ 1)× (M+ 1) Hankel matrix
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Hh defined in terms of h is

Hh =




h0 h1 · · · hM

h1 · · · · · · hM+1

... . .
. ...

hM−1 hM · · · h2M−1

hM · · · h2M−1 h2M




.

That is, Hh(i, j) = hi+j for 0 ≤ i, j ≤ M. It is clear that Hh is a real symmetric matrix.

By the Corollary in §4.4.4 of [6, pp. 204], there exists a unitary matrix U and a nonnegative

diagonal matrix Σ such that

Hh = UΣUT ,

where the superscript T denotes transposition. This decomposition is called the Takagi fac-

torization [6, pp. 204].

The main steps of Beylkin and Monzón’s method are:

1. Sample the approximated function f at 2M + 1 points uniformly distributed on [0, 1].

That is, let hm = f
(

m
2M

)
, 0 ≤ m ≤ 2M.

2. Form h = (h0, h1, . . . , h2M) and the Hankel matrix Hh.

3. Compute the Takagi factorization of Hh = UΣUT , where Σ = diag(σ0, σ1, . . . , σM) and

σ0 ≥ σ1 ≥ . . . ≥ σM ≥ 0.

4. Find the largest σN satisfying σN ≤ ε.

5. Let u = (u0, u1, . . . , uM)T be the (N + 1)-st column of U.

6. Find N roots of the polynomial
∑M

m=0 umzm with the largest moduli and denote these

roots by ζ1, ζ2, . . . , ζN .

7. Compute the N weights ωn, 1 ≤ n ≤ N , by solving the linear least squares problem for

the overdetermined Vandermonde system

hm =
N∑

n=1

ωnζm
n , for 0 ≤ m ≤ 2M.
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8. Compute parameters γn using formula (6).

Remark 1 The algorithm outlined above is applicapable to functions defined on [0, 1]. To

extend it to a function f defined on a finite interval [a, b], we could apply the algorithm to the

function f̂(t) = f (t(b − a) + a) for t ∈ [0, 1]. For a function f defined on an infinite interval,

such as [0,∞), the interval could first be truncated to a finite interval, say [a, b] ⊂ [0,∞), then

the approach outlined above could be used to compute an accurate exponential approximation

to f on [a, b]. This exponential sum could also be viewed as an approximation to f on [0,∞),

but one should check that the approximation is sufficiently accurate on [0,∞)\[a, b], since the

approach described above does not take the approximation error on [0,∞)\[a, b] into account.

Remark 2 In practice it is not necessary to compute Hh’s Takagi factorization explicitly.

From the spectral theorem for Hermitian matrices [6, pp. 171], we know that there is a real

orthogonal matrix V and a real diagonal matrix Λ = diag(λ0, λ1, . . . , λM), with |λi| non-

increasing, such that Hh = VΛVT . Since Hh is not necessarily positive semidefinite, Λ

may have negative elements. Thus VΛVT is not necessarily the Takagi factorization of Hh.

However, we can easily construct a Takagi factorization based on its spectral decomposition

in the following way. Let Σ = diag(|λ0|, |λ1|, . . . , |λM|) and U = (u0,u1, . . . ,uM), where

um = vm if λm ≥ 0; and um =
√
−1vm, if λm < 0. It is easy to check that U is a unitary

matrix and Hh = UΣUT is the Takagi factorization of Hh.

Remark 3 To compute ωn from the linear least squares problem in Step 7, the N roots de-

termined in Step 6 must be distinct. If this condition is not met, ωn should be computed by

a different method, as discussed in [2, 8]. This condition may be difficult to verify in theory.

For numerical solutions, we should check its validity, as suggested by Beylkin and Monzón.

2.2 Application to the HS function

In this subsection, we apply Beylkin and Monzón’s method to the HS function h(x). Recall

that h(x) is defined on [0,∞). Following the approach outlined in Remark 1, the infinite
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interval is first truncated to a finite interval [0, b] for a sufficiently large b. (In fact, b = 2 is

sufficiently large, as explained below.) Then h(b · t), t ∈ [0, 1], is sampled at 2M + 1 points:

hm = h (btm) =





1 − btm if btm ≤ 1

0 otherwise

,

where tm = m
2M for m = 0, 1, . . . , 2M. Numerical results suggest that more accurate ap-

proximations are obtained if the critical point x = 1 of h(x) is included in the sample points

{btm : m = 0, . . . , 2M}. Therefore, in the remainder of this paper, we assume btm = 1 for

some m. This implies that 2M
b

must be an integer.

The corresponding Hankel matrix Hh is

Hh =




1 1 − b
2M

1 − 2 b
2M

· · · b
2M

0 · · · 0

1 − b
2M 1 − 2 b

2M · · · · · · 0 0 · · · 0

1 − 2 b
2M

· · · · · · · · · 0 0 · · · 0
· · · · · ·

b
2M

0 0 · · · 0 0 · · · 0
· · · · · ·
0 0 0 · · · 0 0 · · · 0




.

To keep this neat form of Hh, it is sufficient to choose b ≥ 2. If b < 2, the last nonzero row

of Hh may have more than one nonzero element. A direct consequence of this is that the

properties of the approximation discussed in Section 3 may not hold. Thus, we assume b ≥ 2

throughout the remainder of the paper.

Let N = 2M
b

and

HN =




N N − 1 N − 2 · · · 1

N − 1 N − 2 · · · · · · 0

N − 2 · · · · · · · · · 0

· · · · · ·
1 0 0 · · · 0




. (7)

Then we have

Hh =
b

2M

[
HN 012

0T
12 022

]
(8)

7



where 012 and 022 are zero matrices of the proper dimensions.

Let UΣUT be a Takagi factorization of HN , where Σ = diag(σN1, σN2, . . . , σNN ) and

σN1 ≥ σN2 ≥ · · · ≥ σNN ≥ 0. Then a Takagi factorization of Hh can be obtained by

Hh =
b

2M


U 012

0T
12 I22




 Σ 012

0T
12 022




UT 0T

12

012 I22


 =


U 012

0T
12 I22




 Σ̂ 012

0T
12 022




UT 0T

12

012 I22




where Σ̂ = b
2MΣ.

Remark 4 Proposition 1 in Section 3, together with Theorems 2 and 3 of [2], implies that,

for a given accuracy ε in (5), M must be large enough so that 1
4

b
2M

≤ ε. From this relation

and noting that N = 2M
b

, we can see that the only requirements are b ≥ 2, 2M
b

is an integer

and

N ≥ 1

4ε
. (9)

Thus we choose b = 2 for simplicity and N = M ≥ 1
4ε

.

Thus, for N = N + 1, Beylkin and Monzón’s method described above for computing an

exponential approximation to a general function f(x) reduces to the following algorithm for

determining the coefficients ωn and γn for an accurate exponential approximation hexp(x) of

the form (2) to the HS function h(x).

1. Input ε, the required accuracy.

2. Find the smallest integer N such that N ≥ 1
4ε

.

3. Compute the spectral decomposition of the matrix HN = VΛVT .

4. Let u = (u0, u1, . . . , uN−1)
T be the last column of V.

5. Find all roots ζ1, ζ2, . . . , ζN−1 of the polynomial
∑N−1

n=0 unzn = 0 and check whether they

are distinct. If they are not distinct, then exit.

6. Solve hm =
∑N−1

n=1 ωnζm
n , 0 ≤ m ≤ 2N , in the least squares sense for ωn.
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7. Compute γn = 2N log ζn.

Before ending this section, we want to say a little about ωn and γn. As mentioned in

Remark 2, uN is either a real vector or the product of a real vector and the imaginary unit,
√
−1. In either case, the roots of

∑N−1
n=0 unz

n = 0 are either real or pairwise conjugate.

Thus, the corresponding ωn are also real or pairwise complex conjugate. That is, ζn is real

if and only if ωn is real; ζi and ζj are conjugate if and only if ωi and ωj are conjugate.

Furthermore, since γn = 2N log ζn, exp(γn) = ζ2N
n possesses the same conjugacy property.

Thus, ωn exp (γnx) are either real or pairwise conjugate for all real x. This result simplifies

the calculation of hexp(x) =
∑N−1

n=1 ωn exp(γnx). For real ωn, the term ωn exp(γnx) is evaluated

as usual, whereas, for the complex conjugate pair indexed by i and j, only one term needs

to be evaluated, say ωi exp (γix), and then the contribution of the complex conjugate pair of

terms is 2< (ωi exp (γix)), where <(z) denotes the real part of the complex number z.

Another point is that, although Remark 3 discusses the possibility of multiple roots in

step 6 of Beylkin and Monzón’s original algorithm outlined in subsection 2.1 and similarly in

step 5 of our adapted algorithm described above in this subsection, we have not encountered

this problem in any of the many numerical examples we have considered.

Finally, in our adapted algorithm described above in this subsection, the coefficients ωn and

γn are determined based on the sampled HS function values over [0, 2]. However, our intention

is to use hexp(x) to approximate h(x) over the infinite interval [0,∞). In the next section, we

show that <(γn) < 0 for all n = 1, . . . ,N − 1. Therefore, hexp(x) =
∑N−1

n=1 ωn exp(γnx) → 0

as x → ∞. Since h(x) = 0 for x ≥ 1, this ensures that hexp(x) → h(x) as x → ∞. Moreover,

our adapted algorithm described above in this subsection ensures that

|hexp(n/N )| = |hexp(n/N ) − h(n/N )| ≤ ε for n = N ,N + 1, . . . , 2N ,

where ε is the tolerance parameter in (5). This suggests that

|hexp(x)| = |hexp(x) − h(x)| / ε ∀x ∈ [1, 2].

Furthermore, since hexp(x) =
∑N−1

n=1 ωn exp(γnx) and <(γn) < 0 for all n = 1, . . . ,N − 1, it is
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not unreasonable to expect that

max
x∈(2,∞)

|hexp(x) − h(x)| = max
x∈(2,∞)

|hexp(x)| / max
x∈[1,2]

|hexp(x)| = max
x∈[1,2]

|hexp(x) − h(x)| / ε.

This does not guarantee that

max
x∈[0,∞)

|hexp(x) − h(x)| ≤ ε

but it does suggest that hexp(x) should be an accurate approximation to h(x) for all x ∈ [0,∞).

This is indeed the case for all of the many numerical examples we have considered, a sample

of which is shown in Section 4. Nevertheless, as noted in Remark 1, it is advisable to check

that hexp(x) is a sufficiently accurate approximation to h(x) over (2,∞), since no accuracy

requirements are explicitly imposed there.

3 Properties of the approximation

In this section, we discuss some properties of the exponential approximation (2) to the HS

function (1).

Since the diagonal matrix Σ appearing in the Takagi factorization of HN is the same as the

diagonal matrix appearing in HN ’s singular value decomposition, we call σNn, n = 1, 2, . . . ,N ,

the singular values of HN .

Direct calculation shows that

H−1
N =




1

1 −2

1 −2 1

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

1 −2 1

1 −2 1




(10)
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Proposition 1 As N → ∞, the smallest singular value σNN of the matrix HN tends to 1/4.

Proof Since HN is nonsingular, its singular values are all positive. Proving that σNN → 1/4

as N → ∞ is equivalent to proving that σ−1
NN , the largest singular value of H−1

N , tends to 4

as N → ∞.

From Gerschgorin’s theorem [5, pp. 320] [6, pp. 344], we know that all eigenvalues of H−1
N

lie in the disc

D = {z ∈ C : |z| ≤ 4}.

Since H−1
N is a real symmetric matrix, all its singular values are bounded by 4. To show that

σ−1
NN → 4 as N → ∞, note that, if A is a real symmetric matrix, then maxx6=0

x
T
Ax

xT x
= λmax,

where λmax is the largest eigenvalue of A. Hence, if for each N , we can find a vector xN

such that the Rayleigh quotient
xT

N
H

−T

N
H

−1

N
xN

xT

N
xN

→ 16 as N → ∞, then we can conclude that

σ−1
NN → 4 as N → ∞.

For even N ≥ 6, let N = 2n. Define a vector xN = (x1, x2, . . . , xN )T by

x1 = 1,

xi = xN−i+2 = (−1)i−1(i − 1), for i = 2, 3, . . . , n,

xn+1 = −xn.

By direct calculation, we obtain

xT
NxN = 1 + 2

n−1∑

i=1

i2 + (n − 1)2, (11)
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and

H−1
N xN =




−1
4
−8
...

(−1)n−14(n − 2)

(−1)n(4n − 5)

(−1)n+14(n − 1)

(−1)n(4n − 5)

(−1)n−14(n − 2)

...
−8
5




,

which implies

xT
NH−T

N H−1
N xN = 10 + 2 · 42

n−2∑

i=1

i2 + 42(n − 1)2 + 2(4n − 5)2. (12)

Equations (11) and (12) imply that, for N even,

xT
NH−T

N H−1
N xN

xT
NxN

→ 2 · 42
∑n−1

i=1 i2

2
∑n−1

i=1 i2
= 16

as N → ∞. Therefore, for N even, the largest singular value of H−1
N → 4 as N → ∞.

For odd N ≥ 7, let N = 2n + 1. Define a vector xN = (x1, x2, . . . , xN )T by

xi = xN−i+1 = (−1)ii, for i = 1, 2, . . . , n,

xn+1 = −xn.

Similar to the case for even N , we have

xT
NxN = 2

n∑

i=1

i2 + n2, (13)
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H−1
N xN =




−1
4
−8
...

(−1)n4(n − 1)

(−1)n+1(4n − 1)

(−1)n4n

(−1)n+1(4n − 1)

(−1)n4(n − 1)

...
−8




,

xT
NH−T

N H−1
N xN = 17 + 2 · 42

n∑

i=3

(i − 1)2 + 2(4n − 1)2 + 42n2. (14)

Thus, from (13) and (14), we have that, for N odd,

xT
NH−T

N H−1
N xN

xT
NxN

→ 2 · 42
∑n

i=1 i2

2
∑n

i=1 i2
= 16

as N → ∞. Therefore, for N odd, the largest singular value of H−1
N → 4 as N → ∞. This

completes the proof.

As explained before, uN is either a real vector or the product of a real vector and the

imaginary unit,
√
−1. In either case, the results in the remainder of this section hold. For

simplicity, we assume in the proofs that uN is a real vector.

Proposition 2 For all N ≥ 2, the smallest singular value σNN and the associated eigenvector

uN = (u0, u1, . . . , uN−1)
T of HN have the following properties:

1. σN+1,N+1 < σNN and

2. u0 6= 0 and uN−1 6= 0.

Proof We prove these two results in three steps. First we prove a result that is weaker than

result 1:

σN+2,N+2 < σNN for all N ≥ 2. (15)
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Then we prove result 2 using (15). Finally, we prove result 1 using result 2.

Let λN be the eigenvalue of HN corresponding to σNN and let uN = (u0, u1, . . . , uN−1)
T ∈

R
N be an associated eigenvector. Thus, HNuN = λNuN . Without loss of generality, assume

uN is normalized so that ‖uN‖2 = 1. Consequently, uT
NH−2

N uN = σ−2
NN .

To begin, we show that, for any N ≥ 2, u0 and u1 cannot both be zero. For N = 2, this

follows immediately from u2 = (u0, u1)
T and ‖u2‖2 = 1. For N > 2, we prove the result by

contradiction. To this end, suppose u0 = u1 = 0 for some N > 2. Note that H−1
N uN = λ−1

N uN .

That is, 


1

1 −2

1 −2 1

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

1 −2 1

1 −2 1







u0

u1

u2

...

...

uN−2

uN−1




= λ−1
N




u0

u1

u2

...

...

uN−2

uN−1




. (16)

By comparing the two sides of the system of equations (16), we obtain

1. uN−1 = λ−1
N u0 = 0 from the first equation in the system (16) and the assumption u0 = 0;

2. uN−2 = uN−2 − 2uN−1 = λ−1
N u1 = 0 from uN−1 = 0 proved in item 1 above, the second

equation in the system (16) and the assumption u1 = 0;

3. u2 = u0 − 2u1 + u2 = λ−1
N uN−1 = 0 from the assumption u0 = u1 = 0, the last equation

in the system (16) and uN−1 = 0 proved in item 1 above;

4. u3 = u1−2u2 +u3 = λ−1
N uN−2 = 0 from the assumption u1 = 0, the result u2 = 0 proved

in item 3 above, the second to last equation in the system (16) and uN−2 = 0 proved in

item 2 above.

Continuing this process, we obtain uN = 0, which contradicts ‖uN‖2 = 1. Therefore, we have

shown that u0 and u1 cannot both be zero.
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For any N ≥ 2, let ūN+2 = (0, 0,uT
N )T = (0, 0, u0, u1, . . . , uN−1)

T . Then ‖ūN+2‖2 = 1 and

H−1
N+2ūN+2 =




H−1
N uN

−2u0 + u1

u0


 .

Furthermore, we have

σ−2
N+2,N+2 = max

‖x‖=1
xT H−2

N+2x ≥ ūT
N+2H

−2
N+2ūN+2

= uT
NH−1

N H−1
N uN + (u1 − 2u0)

2 + u2
0

= σ−2
NN + (u1 − 2u0)

2 + u2
0

> σ−2
NN ,

where the last inequality follows from the observation above that u0 and u1 cannot both be

zero. This proves (15).

Next we prove result 2. From the first equation in the system (16), we see that u0 = 0 if

and only if uN−1 = 0. So we need only show that u0 6= 0. We prove this result by contradiction.

First consider the case N = 2. Suppose u0 = 0. From the discussion above, this implies

uN−1 = 0 too. However, N − 1 = 1 in this case. So, u1 = uN−1 = 0. Consequently,

u2 = (u0, u1)
T = (0, 0)T , which contradicts ‖u2‖2 = 1. Therefore, u0 6= 0 in this case.

Next consider the case N = 3. Suppose u0 = 0. Again, from the discussion above, this

implies uN−1 = 0 too. However, N −1 = 2 in this case. So, u2 = uN−1 = 0. From u0 = u2 = 0

and the last equation of the system (16), we get −2u1 = u0 − 2u1 + u2 = λ−1
3 u2 = 0, whence

u1 = 0 too. Consequently, u3 = (u0, u1, u2)
T = (0, 0, 0)T , which contradicts ‖u3‖2 = 1.

Therefore, u0 6= 0 in this case either.

For the general case, suppose that, for some N ≥ 4, u0 = 0. Again, from the discussion

above, this implies uN−1 = 0 too. Since u0 = uN−1 = 0, deleting the first and the last rows

as well as the first and the last columns of H−1
N and correspondingly the first and the last
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elements of uN (i.e., u0 and uN−1) results in the new system of equations



1
1 −2

. .
.

. .
.

. .
.

. .
.

1 −2 1







u1

u2

...

...
uN−2




= λ−1
N




u1

u2

...

...
uN−2




which is equivalent to H−1
N−2ûN−2 = λ−1

N ûN−2, where ûN−2 = (u1, . . . , uN−2)
T . Moreover,

ûN−2 6= 0, since uN = (0, ûT
N−2, 0)T and ‖uN‖2 = 1. Consequently, λN is an eigenvalue of

HN−2. By definition, σN−2,N−2 ≤ |λN |, since σN−2,N−2 is the smallest singular value of HN−2,

but we also have the |λN | = σNN , whence σNN ≥ σN−2,N−2. Since N −2 ≥ 2, this contradicts

(15). Thus, we conclude that u0 6= 0, which completes the proof of result 2.

Now we prove result 1. First consider the case N = 2. Direct calculation shows that the

eigenvalues of H2 are 1±
√

2. Therefore, the smallest singular value of H2 is σ22 =
√

2−1 > 0.4.

On the other hand, the characteristic polynomial of H3 is p(x) = x3−4x2−2x+1 and p(0) = 1

and p(0.4) = −0.376. Thus, p(x) has a root in the interval (0, 0.4), whence 0 < σ33 < 0.4 < σ22.

This proves result 1 for the case N = 2.

For the general case N ≥ 3, let ūN+1 = (0,uT
N )T = (0, u0, u1, . . . , uN−1)

T . Note that

‖ūN+1‖2 = 1, since ‖uN‖2 = 1, and that

H−1
N+1ūN+1 =


H−1

N uN

u1 − 2u0


 .

Therefore,

σ−2
N+1,N+1 = max

‖x‖=1
xTH−2

N+1x ≥ ūT
N+1H

−2
N+1ūN+1

= uT
NH−1

N H−1
N uN + (u1 − 2u0)

2

= σ−2
NN + (u1 − 2u0)

2. (17)

Thus, to prove that σ−2
N+1,N+1 > σ−2

NN , it suffices to prove that (u1 − 2u0)
2 > 0 (i.e., u1 6= 2u0).

We prove this by contradiction.

Suppose that u1 = 2u0. Since u0 6= 0, we can define vN = 1
u0

uN = (v0, v1, . . . , vN−1)
T .

Then v0 = 1, v1 = 2 and vN is an eigenvector of H−2
N with corresponding eigenvalue σ−2

NN .
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For N ≥ 3, direct calculation shows that

H−2
N =




1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 6




.

We begin by showing that σ−2
NN > 10 for all N ≥ 3. To this end, note that, from the

theorem [6, Theorem 4.3.8] about the interlacing of eigenvalues for bordered matrices, we

know that σ−2
NN ≤ σ−2

N+1,N+1. Therefore, it suffices to show that σ−2
3,3 > 10. To show this, note

that the characteristic polynomial of H−2
3 is p(x) = x3 − 12x2 + 20x− 1 and that p(10) = −1

and p(11) = 98. Thus, H−2
3 has an eigenvalue in the interval (10, 11), whence σ−2

3,3 > 10.

Next, for any N ≥ 3, we show by induction on k that

vk+1 > 4vk > 0, for all k = 1, 2, . . . ,N − 2. (18)

For k = 1, we have from the first equation of the system

H−2
N vN = σ−2

NNvN (19)

that

v0 − 2v1 + v2 = σ−2
NNv0,

whence

v2 − 4v1 = σ−2
NNv0 − 2v1 − v0 = σ−2

NN − 5 > 0.

Thus, (18) holds for k = 1.

For k = 2, we have from the second equation of the system (19) that

v3 − 4v2 = σ−2
NNv1 − 5v1 + 2v0 > 20 − 10 + 2 > 0.

Thus, (18) holds for k = 2.
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For the induction step, assume that 2 ≤ K < N − 2 and that (18) holds for all k ≤ K.

Then, from the (K + 1)-st equation of the system (19), we obtain that

vK+2 − 4vK+1 = (σ−2
NN − 6)vK + 4vK−1 − vK−2,

which together with (18) and σ−2
NN > 10 implies that

vK+2 > 4vK+1 > 0.

Thus, (18) holds for k = K + 1 also, completing the induction proof of (18).

For k = N − 2, (18) becomes

vN−1 > 4vN−2 > 0. (20)

On the other hand, the first two equations of (16) together with u1 = 2u0 imply that uN−2 =

4uN−1, whence, by the definition of vN , we have that vN−2 = 4vN−1, which contradicts (20).

Thus, u1 6= 2u0, which implies that (u1 − 2u0)
2 > 0. Therefore, from (17), we know that

σ−2
N+1,N+1 > σ−2

N ,N , which implies that σN+1,N+1 < σNN . This completes the proof.

Since u0 6= 0, zero is not a root of
∑N−1

n=0 unz
n = 0. That is, ζn 6= 0 for any n. Furthermore,

we can prove that

Proposition 3 All the roots ζ1, ζ2, . . . , ζN−1 of the polynomial
∑N−1

n=0 unz
n = 0 are within the

unit circle and they are either real or pairwise complex conjugate.

Proof As explained in Section 2.2, all roots ζ1, ζ2, . . . , ζN−1 of
∑N−1

n=0 unz
n = 0 are either real

or pairwise complex conjugate. To prove that all roots are within the unit circle, it suffices to

prove, according to the Schur-Cohn criterion [1], that the so-called Bezoutian matrix,

CTC − DTD,

is positive definite, where

C =




uN−1 uN−2 · · · u1

uN−1 · · · u2

· · · · · ·
uN−1




, D =




u0 u1 · · · uN−2

u0 · · · uN−3

· · · · · ·
u0




. (21)
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From Proposition 2, we know that uN−1 6= 0, so C−1 exists. Therefore

CTC − DTD = CT
(
I − C−TDTDC−1

)
C.

Let Y = DC−1. A straightforward, but tedious, calculation shows that

Y = λN




1 −2 1

· · · · · ·
· · · · · ·

1 −2 1

1 −2

1




(N−1)×(N−1)

= λNPH−1
N−1,

where λN 6= 0 is the eigenvalue of HN that corresponds to the eigenvector uN (i.e., HNuN =

λNuN ) and

P =




1

1

. .
.

1




(N−1)×(N−1)

is a permutation matrix. Consequently,

YTY = λ2
NH−T

N−1P
T · PH−1

N−1 = σ2
NNH−T

N−1H
−1
N−1 = σ2

NNH−2
N−1

since |λN | = σNN and PTP = I. Let HN−1 = VN−1ΛN−1V
T
N−1 be the spectral decomposition

of HN−1, where ΛN−1 = diag(λ1, λ2, . . . , λN−1), |λn| = σN−1,n, for 1 ≤ n ≤ N − 1, and

VT
N−1VN−1 = I. Thus,

I−YTY = VN−1

[
I − σ2

NNΛ−2
N−1

]
VT

N−1 = VN−1

[
I − σ2

NN [diag(σN−1,1, . . . , σN−1,N−1)]
−2]

VT
N−1.

Since σN−1,1 ≥ . . . ≥ σN−1,N−1 > σNN > 0, I − σ2
NN [diag(σN−1,1 . . . , σN−1,N−1)]

−2 is a

diagonal matrix with all diagonal elements positive. Since C and VN−1 are nonsingular,

CTC − DTD is positive definite. This completes the proof.

Since γn = 2N log ζn, we have from Proposition 3 that

Corollary 1 The real parts of all γn are negative (i.e., <(γn) < 0 for n = 1, . . . ,N − 1).
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4 Numerical results

We present some numerical results in the table and two figures below. Table 1 lists the values

of ωn and γn for the 25-term exponential approximation. Conjugacy of ωn and also γn is clearly

shown in the table. Figure 1 contains a plot of the singular values of the Hankel matrix 1
N HN

associated with this 25-term exponential approximation. Figure 2 contains a plot of the error

|h(x)− hexp(x)| for each of the 25-, 50-, 100-, 200-, and 400-term exponential approximations

to the HS function over the interval [0, 30]. In each of these five plots, we see that the error

|h(x) − hexp(x)| converges to zero as x increases. Moreover, as mentioned in Remark 4 in

Section 2, the errors decrease linearly with N as N increases (i.e., ε = 1
4N ).
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n <(ωn) =(ωn) <(γn) =(γn)

1 1.68E-04 -3.16E-05 -5.68E-02 1.45E+02

2 1.68E-04 3.16E-05 -5.68E-02 -1.45E+02

3 2.04E-04 -5.98E-05 -1.72E-01 1.32E+02

4 2.04E-04 5.98E-05 -1.72E-01 -1.32E+02

5 2.69E-04 -1.02E-04 -3.51E-01 1.20E+02

6 2.69E-04 1.02E-04 -3.51E-01 -1.20E+02

7 3.87E-04 -1.70E-04 -5.98E-01 1.07E+02

8 3.87E-04 1.70E-04 -5.98E-01 -1.07E+02

9 6.02E-04 -2.94E-04 -9.25E-01 9.49E+01

10 6.02E-04 2.94E-04 -9.25E-01 -9.49E+01

11 1.01E-03 -5.39E-04 -1.35E+00 8.24E+01

12 1.01E-03 5.39E-04 -1.35E+00 -8.24E+01

13 1.87E-03 -1.09E-03 -1.89E+00 6.99E+01

14 1.87E-03 1.09E-03 -1.89E+00 -6.99E+01

15 3.86E-03 -2.53E-03 -2.58E+00 5.74E+01

16 3.86E-03 2.53E-03 -2.58E+00 -5.74E+01

17 9.17E-03 -7.44E-03 -3.50E+00 4.49E+01

18 9.17E-03 7.44E-03 -3.50E+00 -4.49E+01

19 2.45E-02 -3.19E-02 -4.73E+00 3.24E+01

20 2.45E-02 3.19E-02 -4.73E+00 -3.24E+01

21 7.57E-03 -2.10E-01 -6.44E+00 2.04E+01

22 7.57E-03 2.10E-01 -6.44E+00 -2.04E+01

23 3.81E+00 0.00E+00 -9.65E+00 0.00E+00

24 -1.46E+00 1.03E-01 -8.54E+00 9.38E+00

25 -1.46E+00 -1.03E-01 -8.54E+00 -9.38E+00

Table 1: Real and imaginary parts of ωn and γn for the 25-term exponential approximation

to the HS function.
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Figure 1: The singular values associated with the 25-term exponential approximation to the

HS function.
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Figure 2: Plots from top to bottom of the errors |h(x) − hexp(x)| for the 25-, 50-, 100-, 200-,

and 400-term exponential approximations to the HS function over [0, 30].
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