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Abstract

The hockey stick function is a basic function in pricing and risk management of many

financial derivatives. This paper considers approximating the hockey stick function by a

sum of exponentials. The algorithm proposed by Beylkin and Monzón[1] is used to deter-
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1 Introduction

In this paper we describe how to approximate the function

h(x) =

8>><>>:1 − x if 0 ≤ x ≤ 1;

0 if x > 1,

(1)

by a sum of exponentials

hexp(x) =
NX

n=1

ωn exp(γnx) (2)

over [0,∞), where ωn and γn are complex numbers. This function is a special case of the

function

h(x; t) =

8>><>>:t − x if 0 ≤ x ≤ t;

0 if x > t,

where t is a positive number. This function plays a critical role in finance, from pricing

European options [7] to pricing and risk management of correlation-dependent derivatives [8].

Since, for a fixed positive t, h(x; t) = t · h (x/t), we can take h(x) as the basic function. In

this paper we call function h(x) the hockey stick (HS) function.

The approximation problem considered here is in the sense of Chebyshev approximation.

For such an approximation, the weights ωn and the exponents γn should be chosen to solve

the minimization problem

min
ωn,γn∈C






h(x) −
NX

n=1

ωn exp(γnx)







∞

, (3)

where C denotes the set of complex numbers, and ‖f‖∞ = supx∈X|f(x)| is the Chebyshev

norm (also known as the uniform norm or the sup-norm) of f . Theoretically, the existence

of such an optimal approximation is generally not guaranteed [2, Chapters VI and VII].

Numerically, exponential fitting problems are badly-conditioned [4]. Consequently, classical

optimization methods, such as Newton type methods [3], do not work well for the minimization

problem (3). Fortunately, we can find numerical approximations satisfying some accuracy

requirements. In this paper, we apply the method proposed by Beylkin and Monzón[1] to

solve (3) approximately .
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The remainder of the paper is organized as follows. Beylkin and Monzón’s method and

its application to the HS function are discussed in Section 2. Properties of the exponential

approximation are discussed in Section 3. The paper ends with numerical results.

2 Beylkin and Monzón’s method and its application to

the HS function

2.1 Beylkin and Monzón’s method

In a recent paper [1], Beylkin and Monzón proposed a numerical method to find a good

exponential approximation to a function f . Instead of finding optimal ωn and γn satisfying

(3), their method finds such parameters so that the exponential approximation satisfies a

given accuracy requirement. More specifically, for a given function f defined on [0, 1] and a

given ǫ, their method seeks the minimal (or nearly minimal) number of complex weights ωn

and nodes exp(γn) such that�����f(x) −
NX

n=1

ωn exp(γnx)

����� ≤ ǫ, ∀x ∈ [0, 1]. (4)

This continuous problem is in turn approximated by a discrete problem: Given a positive

integer M, find the minimal positive integer number N ≤ M of complex weights ωn and

complex nodes ζn such that�����f � m

2M
�
−

NX
n=1

ωnζ
m
n

����� ≤ ǫ, for all integers m ∈ [0, 2M]. (5)

Then for the continuous problem the weights and the exponents are ωn and

γn = 2M log ζn, (6)

respectively, where log z is the principal value of the logarithm.

To describe their method, we introduce some additional notation. For theoretical back-

ground and a more detailed description of the method, see [1].
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For a real (2M + 1)-vector h = (h0, h1, . . . , h2M), the (M + 1) × (M + 1) Hankel matrix

Hh defined in terms of h is

Hh =

26666666666664
h0 h1 · · · hM

h1 · · · · · · hM+1

... . ..
...

hM−1 hM · · · h2M−1

hM · · · h2M−1 h2M

37777777777775 ,

that is Hi,j = hi+j for 0 ≤ i, j ≤ M. It is clear that Hh is a real symmetric matrix. By the

Corollary in §4.4.4 of [6, pp. 204], there exists a unitary matrix U and a nonnegative diagonal

matrix Σ such that

Hh = UΣUT ,

where the superscript T denotes transposition. This decomposition is called the Takagi fac-

torization [6, pp. 204].

The main steps of the method are:

1. Sample the approximated function f at 2M + 1 points uniformly distributed on [0, 1].

That is, let hm = f
�

m
2M

�
, 0 ≤ m ≤ 2M.

2. Form h = (h0, h1, . . . , h2M) and the Hankel matrix Hh.

3. Compute the Takagi factorization of Hh = UΣUT , where Σ = diag(σ0, σ1, . . . , σM) and

σ0 ≥ σ1 ≥ . . . ≥ σM ≥ 0.

4. Find the largest σN satisfying σN ≤ ǫ.

5. Let u = (u0, u1, . . . , uM)T be the (N + 1)-st column of U.

6. Find N roots of the polynomial
PM

m=0 umzm with the largest moduli and denote these

roots by ζ1, ζ2, . . . , ζN .
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7. Compute the N weights ωn, 1 ≤ n ≤ N , by solving the linear least squares problem for

the overdetermined Vandermonde system

hm =
NX

n=1

ωnζ
m
n , for 0 ≤ m ≤ 2M.

8. Compute parameters γn using formula (6).

Remark 1 This algorithm works for functions defined on [0, 1]. To apply it to a function f

defined on a finite interval [a, b], a < b, we could consider the function f̂(t) = f (t(b − a) + a)

for t ∈ [0, 1]. For a function defined on an infinite interval, such as [0,∞), the interval could

first be truncated to a finite interval, say [a, b] ⊂ [0,∞), then the finite interval could be mapped

to the standard interval [0, 1] and the same approximation could be applied to [0,∞)\[a, b].

Remark 2 For a general function the number of sample points is not known in advance. Thus

M should be large enough or be increased gradually until a satisfactory accuracy is achieved.

All critical points of the approximated function should be sampled. For example, for the HS

function h(x), both x = 0 and x = 1 should be sampled.

Remark 3 In practice it is not necessary to compute Hh’s Takagi factorization explicitly.

From the spectral theorem for Hermitian matrices [6, pp. 171] we know that there is a real

orthogonal matrix V and a real diagonal matrix Λ = diag(λ0, λ1, . . . , λM), with |λi| decreas-

ing, such that Hh = VΛVT . Noting that generally Hh is not positive semidefinite, Λ may

have negative element(s). Thus VΛVT is not necessarily the Takagi factorization of Hh.

However, we could construct a Takagi factorization based on its spectral decomposition in the

following way. Let Σ = diag(|λ0|, |λ1|, . . . , |λM|) and U = (u0,u1, . . . ,uM), where um = vm

if λm ≥ 0; and um =
√
−1vm, if λm < 0. It is easy to check that U is a unitary matrix and

Hh = UΣUT .

Remark 4 To compute ωn from the linear least squares problem in Step 7, the N roots de-

termined in Step 6 must be distinct. If this condition is not met, ωn should be computed by

a different method [1], [9]. This condition may be difficult to verify in theory. For numerical

solutions, we should check its validity, as suggested by Beylkin and Monzón.
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2.2 Application to the HS function

In this subsection we apply Beylkin and Monzón’s method to the hockey stick function h(x).

Recall that h(x) is defined on [0,∞). The infinite interval is first truncated to a finite interval

[0, b] for a large enough b. (In fact b = 2 is large enough as explained below.) Then h(b · t) is

sampled at 2M + 1 points:

hm = h (btm) =

8>><>>:1 − btm if btm ≤ 1

0 otherwise

,

where tm = m
2M

and 0 ≤ m ≤ 2M. To guarantee the critical point x = 1 of h(x) is sampled, it

suffices that btm = 1 for some m. This implies that 2M
b

must be an integer. The corresponding

Hankel matrix Hh is

Hh =

2666666666664
1 1 − b

2M
1 − 2 b

2M
· · · b

2M
0 · · · 0

1 − b
2M

1 − 2 b
2M

· · · · · · 0 0 · · · 0

1 − 2 b
2M

· · · · · · · · · 0 0 · · · 0
· · · · · ·

b
2M

0 0 · · · 0 0 · · · 0
· · · · · ·
0 0 0 · · · 0 0 · · · 0

3777777777775 .

To keep the neat form of Hh it may require that b ≥ 2. If b < 2, the last nonzero row of Hh

may have more than one nonzero elements. A direct consequence of this is that the properties

of the approximation discussed in Section 3 may not hold. Thus in the remainder of this paper

it is assumed that b ≥ 2. Let N = 2M
b

and

HN =

26666666666664
N N − 1 N − 2 · · · 1

N − 1 N − 2 · · · · · · 0

N − 2 · · · · · · · · · 0

· · · · · ·
1 0 0 · · · 0

37777777777775 . (7)

Then we have

Hh =
b

2M

24HN 012

0T
12 022

35 . (8)
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where 012 and 022 are zero matrices of the proper dimensions.

Let UΣUT be a Takagi factorization of HN , where Σ = diag(σN1, σN2, . . . , σNN ) and

σN1 ≥ σN2 ≥ · · · ≥ σNN ≥ 0. Then a Takagi factorization of Hh can be obtained by

Hh =
b

2M

264U 012

0T
12 I22

375 264 Σ 012

0T
12 022

375 264UT 0T
12

012 I22

375 .

Remark 5 Proposition 1 in Section 3 together with Theorems 2 and 3 of [1] imply that, for a

given accuracy ǫ, M must be large enough such that 1

4

b
2M

≤ ǫ. From this relation and noting

that N = 2M
b

, we can see the only requirements are b ≥ 2, 2M
b

is an integer and

N ≥ 1

4ǫ
. (9)

Thus we choose b = 2 for simplicity and N = M ≥ 1

4ǫ
.

Once HN ’s Takagi factorization is computed, we take uN = (u0, u1, . . . , uN−1)
T to be the

last column of U. Then find the N−1 roots ζ1, ζ2, . . . , ζN−1 of the polynomial
PN−1

n=0 unz
n = 0.

Next the N − 1 weights ωn are obtained by solving

hm =
N−1X
n=1

ωnζ
m
n , for 0 ≤ m ≤ 2M,

in the least squares sense. Finally, parameters γn are obtained following formula (6).

In summary, the algorithm for determining coefficients ωn and γn is (note that b = 2):

1. Input ǫ as given accuracy.

2. Find the smallest integer N such that N ≥ 1

4ǫ
.

3. Compute the spectral decomposition of the matrix HN = VΛVT .

4. Let u = (u0, u1, . . . , u
T
N−1) be the last column of V.

5. Find all roots ζ1, ζ2, . . . , ζN−1 of the polynomial
PN−1

n=0 unzn = 0 and check whether they

are distinct. If they are not distinct then exit.
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6. Solve hm =
PN−1

n=1 ωnζ
m
n , 0 ≤ m ≤ 2N , in the least squares sense for ωn.

7. Compute γn = 2N log ζn.

Before ending this section we want to say a little about ωn and γn. As mentioned in

Remark 3, uN is either a real vector or the product of a real vector and the imaginary

unit
√
−1. In either case, the roots of

PN−1
n=0 unz

n = 0 will always be either real or pairwise

conjugate. Thus ωn are also real or pairwise complex conjugate, correspondingly. That is, if ζn

is real, then ωn is real too; whereas, if ζi and ζj are conjugate, then ωi and ωj are conjugate too,

and vice versa. Furthermore, since γn = 2N log ζn we can see that exp(γn) = ζ2N
n possesses

the same conjugacy property. Thus ωn exp (γnx) are either real or pairwise conjugate for all

real x. This result simplifies the calculation of hexp(x) =
PN−1

n=1 ωn exp(γnx). For real ωn the

term ωn exp(γnx) is evaluated as usual, whereas for the conjugate pair indexed by i and j, only

one term needs to be evaluated, say ωi exp (γix), and then the contribution of the complex

conjugate pair of terms is 2ℜ (ωi exp (γix)), where ℜ(z) denotes the real part of the complex

number z.

3 Properties of the approximation

In this section we discuss some properties related to this approximation. Noting that the

diagonal matrix Σ is the same as the diagonal matrix of HN ’s singular value decomposition,

we call σNn, n = 1, 2, . . . ,N , its singular value. Direct calculation shows that

H−1
N =

266666666666666666664
1

1 −2

1 −2 1

. .. . .. . ..

. .. . .. . ..

1 −2 1

1 −2 1

377777777777777777775 (10)
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Proposition 1 As N tends to infinity, the smallest singular value σNN of the matrix HN

tends to 1/4.

Proof Since HN is nonsingular, its singular values are positive. Proving that σNN tends to

1/4 as N tends to infinity is equivalent to proving that σ−1
NN , the largest singular value of

H−1
N , tends to 4 as N tends to infinity.

From Gerschgorin’s theorem [5, pp. 320] [6, pp. 344] [12, pp. 71], we know that all

eigenvalues of H−1
N lie in the disc

D = {z ∈ C : |z| ≤ 4}.

Since H−1
N is real symmetric, we can conclude that all singular values of H−1

N are bounded

by 4. Therefore, it suffices to prove that σ−1
NN approaches 4. To this end, note that, if A is

a symmetric matrix, then maxx 6=0
x

T
Ax

xT x
= λmax, where λmax is the largest eigenvalue of A.

Hence, if for each N , we can find a vector xN such that the Rayleigh quotient
x

T

N
H

−T

N
H

−1

N
xN

xT

N
xN

→
16 as N → ∞, then we can conclude that σ−1

NN → 4 as N → ∞.

For even N ≥ 6, let N = 2n. Define a vector xN = (x1, x2, . . . , xN )T by

x1 = 1,

xi = xN−i+2 = (−1)i−1(i − 1), for i = 2, 3, . . . , n,

xn+1 = −xn.

Through direct calculation we obtain

xT
NxN = 1 + 2

n−1X
i=1

i2 + (n − 1)2, (11)
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and

H−1
N xN =

26666666666666666666666666664

−1
4
−8
...

(−1)n−14(n − 2)

(−1)n(4n − 5)

(−1)n+14(n − 1)

(−1)n(4n − 5)

(−1)n−14(n − 2)

...
−8
5

37777777777777777777777777775
,

which implies

xT
NH−T

N H−1
N xN = 10 + 2 · 42

n−2X
i=1

i2 + 42(n − 1)2 + 2(4n − 5)2.

This result together with (11) implies that for large even N

xT
NH−T

N H−1
N xN

xT
NxN

≈ 2 · 42
Pn−1

i=1 i2

2
Pn−1

i=1 i2
= 16.

Therefore, the largest singular value of H−1
N approaches 4 as N → ∞.

For odd N ≥ 7, let N = 2n + 1. Construct an N -vector xN = (x1, x2, . . . , xN )T with

xi = xN−i+1 = (−1)ii, for i = 1, 2, . . . , n,

xn+1 = −xn.

Similar to the case for even N , we have

xT
NxN = 2

nX
i=1

i2 + n2, (12)
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H−1
N xN =

26666666666666666666666664

−1
4
−8
...

(−1)n4(n − 1)

(−1)n+1(4n − 1)

(−1)n4n

(−1)n+1(4n − 1)

(−1)n4(n − 1)

...
−8

37777777777777777777777775
,

xT
NH−T

N H−1
N xN = 17 + 2 · 42

nX
i=3

(i − 1)2 + 2(4n − 1)2 + 42n2. (13)

Thus, from (12) and (13) we have that for large odd N

xT
NH−T

N H−1
N xN

xT
NxN

≈ 2 · 42
Pn

i=1 i2

2
Pn

i=1 i2
= 16.

The proof is completed.

As explained before, uN is either a real vector or the product of a real vector and the

imaginary unit. In either case, the next three propositions hold. For simplicity we assume in

the proofs that uN is a real vector.

Proposition 2 The smallest singular value σNN satisfies the relation σN+2,N+2 < σNN , N ≥
2.

Proof Let λN be the eigenvalue of HN corresponding to σNN and uN = (u0, u1, . . . , uN−1)
T ∈

R
N be a corresponding eigenvector. Thus HNuN = λNuN . Without loss of generality, assume

‖uN‖2 = 1. Consequently, uT
NH−2

N uN = σ−2
NN .
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Now we show that u0 and u1 cannot be zero simultaneously. Suppose u0 = u1 = 0 for

some N > 2. Note that H−1
N uN = λ−1

N uN . That is266666666666666666664
1

1 −2

1 −2 1

. .. . .. . ..

. .. . .. . ..

1 −2 1

1 −2 1

377777777777777777775
266666666666666666664

u0

u1

u2

...

...

uN−2

uN−1

377777777777777777775 = λ−1
N

266666666666666666664
u0

u1

u2

...

...

uN−2

uN−1

377777777777777777775 . (14)

By comparing the two sides of the system of equations, we obtain uN−1 = 0 from the first

row; then uN−2 = 0 from the second row; and then u2 = u3 = 0 from the last two rows.

Continuing this process we end with uN = 0, which contradicts uN 6= 0.

Let uN+2 = (0, 0, u0, u1, . . . , uN−1)
T , then ‖uN+2‖2 = 1, and

H−1
N+2uN+2 =

266664 H−1
N uN

−2u0 + u1

u0

377775 .

Furthermore we have

σ−2
N+2,N+2 = max

‖x‖=1
xTH−2

N+2x
T ≥ uT

N+2H
−2
N+2uN+2

= uT
NH−1

N H−1
N uN + (u1 − 2u0)

2 + u2
0

= σ−2
NN + (u1 − 2u0)

2 + u2
0

> σ−2
NN .

The last inequality follows from the observation above that u0 and u1 cannot both be zero.

This completes the proof.

Proposition 3 u0 6= 0 and uN−1 6= 0 for N ≥ 4.

Proof From equation (14) we know that u0 = 0 implies uN−1 = 0, and vice versa. We will

finish the proof by way of contradiction. Suppose that for some N we have u0 = 0. Then by
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equation (14) we have26666666666664
1

1 −2
1 −2 1

. .. . .. . ..

. .. . .. . ..

1 −2 1
1 −2 1

37777777777775
26666666666664

u0

u1

u2

...

...
uN−2

uN−1

37777777777775 = λ−1
N

26666666666664
u0

u1

u2

...

...
uN−2

uN−1

37777777777775 .

Since u0 = uN−1 = 0, deleting the first and the last rows (columns) of the matrix and

correspondingly the first and the last elements of uN , i.e., u0 and uN−1, results in a new

system of equations 2666666664 1
1 −2

. .. . ..

. .. . ..

1 −2 1

3777777775
2666666664 u1

u2

...

...
uN−2

3777777775 = λ−1
N

2666666664 u1

u2

...

...
uN−2

3777777775 ,

which says that λN is an eigenvalue of HN−2. Note (u1, . . . , uN−2)
T 6= 0, otherwise uN = 0,

which contradicts the definition of an eigenvector. By definition, σN−2,N−2 ≤ |λN |. However,

σNN = |λN |, whence σNN ≥ σN−2,N−2, which contradicts Proposition 2. Thus we conclude

that u0 6= 0. This completes the proof.

Since u0 6= 0, zero is not a root of
PN−1

n=0 unz
n = 0, i.e., ζn 6= 0. To locate ζn we apply

Schur’s Theorem:

Theorem 1 (Schur) [11, pp. 220] [10, pp. 109] The roots of the polynomial

c0 + c1z + · · · + cn−1z
n−1 + cnz

n = 0

are on or within the unit circle if and only if the quadratic form

n−1X
i=0

�
(cnxi + cn−1xi+1 + · · · + ci+1xn−1)

2 − (c0xi + c1xi+1 + · · · + cn−i−1xn−1)
2
�

(15)

is positive semidefinite.
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Proposition 4 All the roots ζ1, ζ2, . . . , ζN−1 of the polynomial
PN−1

n=0 unzn = 0 are on or

within the unit circle and they are either real or pairwise complex conjugate.

Proof Let N̂ = N − 1; then the polynomial of interest can be written as
PN̂

n=0 unzn = 0.

As explained in Section 2.2, all its roots ζ1, ζ2, . . . , ζN−1 are either real or pairwise complex

conjugate. To prove that all roots are on or within the unit circle, it suffices to prove the

quadratic form

N̂−1X
n=0

h�
uN̂xn + uN̂−1xn+1 + · · · + un+1xN̂−1

�2 −
�
u0xn + u1xn+1 + · · · + uN̂−n−1xN̂−1

�2
i

(16)

is positive semidefinite. Note that this claim is implied by the positive semidefiniteness of the

quadratic form

N̂X
n=0

h�
uN̂xn + · · · + un+1xN̂−1 + unxN̂

�2 −
�
u0xn + · · · + uN−n−1xN−1 + uN̂−nxN̂

�2
i
,

or equivalently the positive semidefiniteness of the matrix

CTC − DTD,

where

C =

2666666664uN̂ uN̂−1 · · · u0

uN̂ · · · u1

· · · · · ·
uN̂

3777777775 , D =

2666666664u0 u1 · · · uN̂

u0 · · · uN̂−1

· · · · · ·
u0

3777777775 . (17)

From Proposition 3 we know that uN̂ 6= 0, so C−1 exists. Therefore

CTC − DTD = CT
�
I − C−TDTDC−1

�
C.

Let Y = DC−1. It is easy to verify that

Y = λN

26666666666666664
1 −2 1

· · · · · ·
· · · · · ·

1 −2 1

1 −2

1

37777777777777775 = λNPH−1
N ,
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where λN 6= 0 is the eigenvalue of HN that corresponds to the eigenvector uN , i.e., HNuN =

λNuN , and

P =

2666666664 1

1

. ..

1

3777777775
is a permutation matrix. Consequently,

YTY = λ2
NH−T

N P · PH−1
N = σ2

NNH−T
N H−1

N = σ2
NNH−2

N

since |λN | = σNN and P−1 = P. Let HN = VΛVT be the spectral decomposition of HN ,

where Λ = diag(λ1, λ2, . . . , λN ), |λn| = σNn, for 1 ≤ n ≤ N , and VTV = I. Thus

I − YTY = V
�
I − σ2

NNΛ−2
�
VT = V

�
I − σ2

NN [diag(σN1, σN2, . . . , σNN )]−2
�
VT .

Since σN1 ≥ σN2 ≥ . . . ≥ σNN > 0, I − σ2
NN [diag(σN1, σN2, . . . , σNN )]−2 is positive semidefi-

nite. Thus CTC − DTD is positive semidefinite. This completes the proof.

Since γn = 2M log ζn, Proposition 4 implies that ℜ(γn) ≤ 0, but all our numerical results

show that all roots ζn are strictly within the unit circle, whence ℜ(γn) < 0. Thus exp(γnx)

converges to zero as x goes to infinity. This leads to the following conjecture.

Conjecture 1 All the roots ζ1, ζ2, . . . , ζN−1 of the polynomial
PN−1

n=0 unzn = 0 are strictly

within the unit circle.

4 Numerical results

Presented below are plots related to different numbers, N , of terms in the exponential ap-

proximation hexp(x) to the hockey stick function h(x). In Figure 1 we plot the parameters for

the 25-term exponential approximation. Conjugacy of ωn and also γn is clearly shown in the

plot. In Figure 2 we present the singular values of the Hankel matrix 1

N
HN associated with

this 25-term exponential approximation.
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Figure 1: The parameters ωn and γn for the 25-term exponential approximation

Finally in Figure 3 we plot the approximation errors of the 25-, 50-, 100-, 200-, and

400-term approximations over the interval [0, 30]. From these plots we can see that the

approximation errors for all five choices of N converge to zero as the variable x increases.
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Figure 3: The panels from top to bottom are the approximation errors of the 25-term to 400-

term exponential approximations to the HS function over [0, 30], with the number of terms

doubling in successive panels.
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