
Applications of Generic Interpolants In the Investigation

and Visualization of Approximate Solutions of PDEs on

Coarse Unstructured Meshes

by

Hassan Goldani Moghaddam

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2010 by Hassan Goldani Moghaddam

Abstract

Applications of Generic Interpolants In the Investigation and Visualization of

Approximate Solutions of PDEs on Coarse Unstructured Meshes

Hassan Goldani Moghaddam

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2010

In scientific computing, it is very common to visualize the approximate solution obtained

by a numerical PDE solver by drawing surface or contour plots of all or some components

of the associated approximate solutions. These plots are used to investigate the behavior

of the solution and to display important properties or characteristics of the approximate

solutions. In this thesis, we consider techniques for drawing such contour plots for the

solution of two and three dimensional PDEs. We first present three fast contouring

algorithms in two dimensions over an underlying unstructured mesh. Unlike standard

contouring algorithms, our algorithms do not require a fine structured approximation.

We assume that the underlying PDE solver generates approximations at some scattered

data points in the domain of interest. We then generate a piecewise cubic polynomial

interpolant (PCI) which approximates the solution of a PDE at off-mesh points based on

the DEI (Differential Equation Interpolant) approach. The DEI approach assumes that

accurate approximations to the solution and first-order derivatives exist at a set of discrete

mesh points. The extra information required to uniquely define the associated piecewise

polynomial is determined based on almost satisfying the PDE at a set of collocation

points. In the process of generating contour plots, the PCI is used whenever we need

an accurate approximation at a point inside the domain. The direct extension of the

both DEI-based interpolant and the contouring algorithm to three dimensions is also

ii

investigated.

The use of the DEI-based interpolant we introduce for visualization can also be used

to develop effective Adaptive Mesh Refinement (AMR) techniques and global error es-

timates. In particular, we introduce and investigate four AMR techniques along with

a hybrid mesh refinement technique. Our interest is in investigating how well such a

‘generic’ mesh selection strategy, based on properties of the problem alone, can perform

compared with a special-purpose strategy that is designed for a specific PDE method.

We also introduce an à posteriori global error estimator by introducing the solution of a

companion PDE defined in terms of the associated PCI.

iii

Dedication

I dedicate my thesis to my parents and family, for their understanding, support and

unconditional love. Without these things this thesis could not have been possible.

iv

Acknowledgements

This thesis would be incomplete without a mention of the support given me by my

supervisor, Professor Wayne Enright. I would like to express my sincere appreciation for

his guidance and insight throughout the research.

Special thanks go to my committee members, Professor Ken Jackson, Professor

Christina Christara and Professor Tom Fairgrieve for their valuable suggestions and com-

ments.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Outline . 4

1.4 Scattered Data Interpolation . 5

1.5 DEI: The Differential Equation Interpolant 6

1.6 PCI: The Pure Cubic Interpolant . 9

1.7 Other Two Dimensional Approaches . 13

1.8 Three Dimensional SDI . 14

2 Contouring Algorithms 17

2.1 Introduction . 17

2.2 Previous Work . 19

2.3 Two Dimensional Contouring Algorithms 20

2.3.1 Stage One: Computing the Minimum and Maximum Values . . . 21

2.3.2 Stage Two: Identifying Intersection Points and Dividing Triangles 22

2.3.3 Stage Three: Computing the Accurate Contour Lines 34

2.4 Three Dimensional Contouring Algorithms 44

2.4.1 Stage One: Computing the Minimum and Maximum Values . . . 46

2.4.2 Stage Two: Identifying Intersection Points and Dividing Tetrahedra 46

vi

2.4.3 Stage Three: Computing the Accurate Contour Surfaces 53

3 Adaptive Mesh Refinement 58

3.1 Introduction . 58

3.2 Previous and Related Work . 59

3.3 Mesh Selection Step . 61

3.3.1 ‘Defect-based’ Monitor Function 62

3.3.2 ‘Surface Area’ Monitor Function 62

3.3.3 ‘Stepwise Error’ Monitor Function 63

3.3.4 ‘Interpolation Error’ Monitor Function 63

3.4 Mesh Refinement Step . 64

4 Error Estimation 66

4.1 Introduction . 66

4.2 The Companion Equation . 66

4.3 Parallel Implementation . 70

5 Numerical Results 71

5.1 Test Problems . 71

5.2 Scattered Data Interpolation . 76

5.2.1 Two Dimensional Case . 76

5.2.2 Three Dimensional Case . 81

5.3 Contouring Algorithms . 84

5.3.1 Two Dimensional Case . 84

5.3.2 Three Dimensional Case . 87

5.4 Adaptive Mesh Refinement . 100

5.5 Error Estimation . 113

vii

6 Conclusions 120

6.1 Summary . 120

6.2 Future Work . 121

A Adaptive Mesh Refinement History 123

A.1 Local Refinement . 123

A.1.1 Mid-Point (Centroid) Insertion Algorithm 126

A.1.2 Bisection Algorithm . 126

A.1.3 Regular Refinement Algorithm . 128

A.1.4 Newest-Node Algorithm . 129

A.2 Local Reconnection . 130

A.2.1 Edge Flipping in Two Dimensions 131

A.3 Local Mesh Smoothing . 132

A.3.1 Laplacian Smoothing . 133

A.3.2 Optimization-based Smoothing 134

A.3.3 Combined Laplacian and Optimization-based Smoothing 136

Bibliography 136

viii

List of Tables

5.1 Average error for the PCI and the other interpolants on an unstructured

triangular mesh with different number of mesh points for the fourth test

problem. 77

5.2 Total required time (in terms of seconds) for the PCI and the other inter-

polants on an unstructured triangular mesh with different number of mesh

points for the fourth test problem. 80

5.3 Average error of the three dimensional DEI-based interpolants for the fifth

and sixth test problems. 81

5.4 Total required time (in seconds) of the three dimensional DEI-based in-

terpolants for the fifth and sixth test problems. 82

5.5 Average error for the different methods for a rectangular mesh with 30×30,

40× 40 and 50× 50 mesh points for the first test problem. 85

5.6 Total required time (in terms of seconds) for the different methods for a

rectangular mesh with 30 × 30, 40 × 40 and 50 × 50 mesh points for the

fourth test problem. 85

5.7 Average error for the different methods for an unstructured triangular

mesh with 900, 1600 and 2500 mesh points for the fourth test problem. . 86

5.8 Total required time (in terms of seconds) for the different methods for an

unstructured triangular mesh with 900, 1600 and 2500 mesh points for the

fourth test problem. 86

ix

5.9 Relation between nSide and the number of points and triangles for each

of the two desired situations. 89

5.10 The average error of the computed contour for different initial grids and

different values of nSide for the sixth test problem (v = 0.07). 89

5.11 The average error of the computed contour for different initial grids and

different values of nSide for the seventh test problem (v = 1.1). 95

5.12 First test problem: Average error and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh. 101

5.13 First test problem: Maximum defect and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh. 102

5.14 Second test problem: Average error and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh. 107

5.15 Second test problem: Maximum error and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh. 107

5.16 Second test problem: Maximum defect and ratio of improvement of all

mesh refinement techniques comparing to a uniform mesh. 108

5.17 The average and maximum error in U , Ux, and Uy evaluated on a 100×100

mesh for the third test problem. 114

5.18 CPU Time (in seconds) for different mesh sizes for the first test problem

with β = 20. 115

5.19 CPU Time (in seconds) and speed-up obtained using 2 to 16 processors

for a mesh of size 48× 48 for the first test problem with β = 20. 116

x

List of Figures

1.1 A triangular element and its associated enclosing box. 9

2.1 An example of a surface plot and contour plots in two dimensions. 18

2.2 The recursive algorithm to approximate the extreme values in 2D. 23

2.3 Finding the minimum (or maximum) values of the interpolant. 24

2.4 No intersection: Two new triangles. 26

2.5 One intersection: Two situations, inner tangent and outer tangent. 27

2.6 Three intersections: Two situations, inner tangent and outer tangent. . . 27

2.7 Four intersections: 2-1-1 situations. 28

2.8 Four intersections: 2-1-1 situations (Final triangulation). 29

2.9 Four intersections: 2-2-0 situations. 29

2.10 Four intersections: 2-2-0 situations (Final triangulation). 30

2.11 Four intersections: 3-1-0 situations. 31

2.12 Four intersections: the first 3-1-0 situation (Final triangulation). 31

2.13 Four intersections: the second 3-1-0 situation (Final triangulation). . . . 32

2.14 Four intersections: 4-0-0 situations. 32

2.15 Four intersections: 4-0-0 situations (Final triangulation). 33

2.16 More than four intersections. 34

2.17 The contour curve created by the basic Intercept method. The points

on the contour curve are the intersections between the contour curve and

refinement lines. 35

xi

2.18 An illustration of the difficulty that can arise with the basic Intercept

method. 37

2.19 The recursive algorithm to find middle points. 38

2.20 The contour curve created by the improved Intercept method using a fixed

number of recursions, in this case n = 3, to reduce the chance of missing

a segment of the contour curve. 39

2.21 The contour curve created by the final Intercept method using a threshold

value to control the spacing. 40

2.22 The common situation in contour curves. 41

2.23 A situation where the ODEA method fails if no middle point is considered. 43

2.24 The contour curve plotted by the ODEA method with one middle point. 44

2.25 Desired situations in three dimensions. The tetrahedron e is displayed in

black; the unknown contour surface is displayed (as a wire-frame surface)

in blue; and intersection points with the edges of e are displayed as green

dots. 45

2.26 The recursive approach to approximate the extreme values in 3D. 47

2.27 ‘No intersection’ situation in 3D. 49

2.28 ‘Two intersections with a single edge’ situation in 3D. 51

2.29 ‘Five intersections with four edges’ situation in 3D. 51

2.30 ‘Four intersections with two edges’ situation in 3D. 52

2.31 Two different views of drawing contour surface for ‘three intersections with

three different edges’ situation in 3D. The black dot is the apex and red

triangle is the base. 54

2.32 Two different views of drawing contour surface for ‘four intersections with

four different edges’ situation in 3D. Black stars show the selected points

on two edges with no intersection. 57

3.1 Overview of Stage 3 of our adaptive mesh refinement algorithm. 60

xii

4.1 A mesh of size 2 × 2 on which we solve the companion equation for each

local problem. 68

5.1 First test problem: The surface plot and the contour plots for β = 20. . . 72

5.2 Second test problem: The surface plot and the contour plots for α = 100

and β = .117. 72

5.3 Third test problem: The surface plot and the contour plots. 73

5.4 Fourth test problem: The surface plot and the contour plots. 74

5.5 Fifth test problem: The surface and contour plots for z = 0.5. 74

5.6 Sixth test problem: The surface and contour plots for z = 0.5. 75

5.7 Seventh test problem: The surface and 2D contour plots for z = 0.5. . . . 76

5.8 The contour plots of the PCI and the other interpolants for the fourth test

problem on a triangular mesh with 500 mesh points. 78

5.9 The contour plots of the PCI and the other interpolants for the fourth test

problem on a triangular mesh with 2000 mesh points. 79

5.10 The contour plots of the exact solution and candidate interpolants for the

sixth test problem for z = 0.5 on an unstructured tetrahedron mesh with

512 random mesh points. 83

5.11 The sixth test problem: Wire frame and Rendered contour plots for con-

tour levels v = 0.03, 0.05, 0.07. 88

5.12 Contour plots for the sixth test problem (v = 0.07) generated using Mat-

lab isosurface routine and our algorithm with nSide = 2, 3 starting with

a grid of size 8× 8× 8. 91

5.13 Contour plots for the sixth test problem (v = 0.07) generated using Mat-

lab isosurface routine and our algorithm with nSide = 2 starting with

different initial grids. 92

xiii

5.14 The average error of the computed contour for different initial grids for

Matlab isosurface routine and our algorithm with different values of

nSide for the sixth test problem (v = 0.07). 93

5.15 Rendered contours generated by Matlab isosurface routine and our al-

gorithm with nSide = 2, 3, 4 for the sixth test problem (v = 0.07). 94

5.16 Contour plots for the seventh test problem (v = 1.1) generated using

Matlab isosurface routine and our algorithm with nSide = 2, 3 starting

with a grid of size 8× 8× 8. 96

5.17 Contour plots for the seventh test problem (v = 1.1) generated using

Matlab isosurface routine and our algorithm with nSide = 2 starting

with different initial grids. 97

5.18 The average error of the computed contour for different initial grids for

Matlab isosurface routine and our algorithm with different values of

nSide for the seventh test problem (v = 1.1). 98

5.19 Rendered contours generated by Matlab isosurface routine and our al-

gorithm with nSide = 2, 3, 4 for the seventh test problem (v = 1.1). . . . 99

5.20 First test problem: Final meshes generated by discussed mesh refinement

techniques for 900 points. 103

5.21 First test problem: Final meshes generated by discussed mesh refinement

techniques for 2500 points. 104

5.22 First test problem: Average error of all mesh refinement techniques using

different number of mesh points. 105

5.23 First test problem: Maximum defect of all mesh refinement techniques

using different number of mesh points. 105

5.24 Second test problem: Average error of all mesh refinement techniques using

different number of mesh points. 108

xiv

5.25 Second test problem: Maximum error of all mesh refinement techniques

using different number of mesh points. 109

5.26 Second test problem: Maximum defect of all mesh refinement techniques

using different number of mesh points. 109

5.27 Second test problem: Final meshes generated by discussed mesh refine-

ment techniques for 900 points. 110

5.28 Second test problem: Final meshes generated by discussed mesh refine-

ment techniques for 2500 points. 111

5.29 Second test problem: A symmetric mesh generated by ‘Defect-PCI’ ap-

proach, starting with a symmetric mesh and using a non-random approach.112

5.30 Contour plots of the errors, tru− er, est− er, and imp− er in U for the

third test problem. 117

5.31 Contour plots of the errors, tru− er, est− er, and imp− er in Ux for the

third test problem. 118

5.32 CPU Time (in seconds) for both parts and total applying 2 to 16 processors

for a mesh of size 48× 48 for the first test problem with β = 20. 119

5.33 Speed-up obtained using 2 to 16 processors for a mesh of size 48× 48 for

the first test problem with β = 20. 119

A.1 A typical adaptive mesh refinement algorithm. 124

A.2 Examples of conforming and nonconforming meshes. 125

A.3 The mid-point insertion algorithm preserves the conforming property but

can violate graded and bounded-angle properties. 126

A.4 The bisection algorithm violates conforming property. 127

A.5 The longest edge bisection algorithm. 127

A.6 A worst-case example of propagation of refinement based on Rivara’s al-

gorithm. 128

A.7 The regular refinement algorithm violates conforming property. 129

xv

A.8 Examples of two possible triangulations of four points. 130

A.9 The Delaunay triangulation of a set of vertices does not necessarily solve

the mesh generation problem, because it may contain poor quality triangles

and may omit some of the domain boundaries. 131

A.10 A vertex v and the adjacent triangles whose quality is affected by a change

in the position of v. 132

A.11 A set of triangles for which Laplacian smoothing results in an invalid mesh.133

xvi

Chapter 1

Introduction

1.1 Motivation

Our physical world is often described by a set of laws that describes how a system evolves

over time. These physical laws can often be stated in the form of Partial Differential

Equations (PDEs) describing how the components representing the system change over

time. Such PDEs can provide a precise mathematical model of physical phenomena, and

they make up one of the most widely used tools of applied mathematics. For the vast

majority of real world problems, the underlying PDE used to model the phenomenon

does not have a closed form solution. In these cases, effective numerical methods can

be used to approximate the solution at a discrete set of mesh points in the domain

associated with the problem definition. After approximating the solution, one is often

interested in visualizing some properties of the solution by rendering important proper-

ties or characteristics of the approximate solution. In such a case, a typical coarse mesh

approximation is usually not sufficient to ensure that such visualization will appear con-

tinuous and smooth on a high resolution medium. One approach to address this difficulty

is to determine approximations using the PDE solver on a mesh that is fine enough to

render the solution in a ‘smooth’ fashion. However, this approach often results in much

1

Chapter 1. Introduction 2

more accuracy than what is needed and can be very expensive. An alternative approach

that is often employed is based on the use of a multivariate spline to define a piecewise

interpolant which can then be evaluated to determine the data values required for the

fine mesh.

Although spline interpolation can work quite well in many cases, a more efficient

approach to generate a piecewise approximate with comparable accuracy has been in-

troduced by Enright to approximate the solution at arbitrary points in the domain of

interest [12]. The approach, called Differential Equation Interpolant (DEI), is generic and

can be applied to a large class of methods and problems in two and three dimensions. The

idea is to associate an ‘independent’ (using local information only) multi-variate polyno-

mial with each mesh element. The collection of such polynomials, over all mesh elements,

defines a piecewise polynomial approximation. It assumes that accurate approximations

to the solution and first-order derivatives exist or can be computed at a small additional

cost at the set of discrete mesh points. In the case that extra information is required to

uniquely determine the associated piecewise polynomial (on a given mesh element), the

DEI approach does this by sampling the PDE at a small set of points and solving a small

system of linear equations.

1.2 Objective

In the numerical solution of ODEs, once continuous extensions of discrete Runge-Kutta

formulas were introduced (CRKs), they were used to develop reliable event location

(points where the CRK, S(x), takes on a prescribed value). These piecewise polynomials,

S(x) were then also used to develop mesh refinement schemes for BVPs, and global error

estimates for ODEs. In this thesis, we investigate to what extent DEIs can be used to

develop similar generic strategies or techniques that can produce effective visualization,

mesh refinement and error estimation schemes that are suitable for use with some PDE

Chapter 1. Introduction 3

solvers on some problems.

In the ODE case, for the use of CRKs to be effective we assume that the exact ODE

solution is at least p times differentiable (for a pth order CRK). While the continuous

piecewise polynomial extension, S(x) needs to only be C0 differentiable, it is often in C1

and this can be an advantage. We make a similar assumption when DEIs are applied to

investigate the approximate solution of PDEs. That is, they will be effective when the

underlying exact solution is sufficiently differentiable but won’t be effective if the true

solution is not sufficiently differentiable.

Our main focus is to plot contour curves in 2D and level sets in 3D to visualize the

approximate solution. We introduce three fast contouring algorithms for visualizing the

approximate solution of two dimensional PDEs. We then investigate extending the ap-

proach to three dimensions and present a more detailed justification and implementation

for one of them. Unlike standard contouring approaches, our contouring algorithms do

not require a fine mesh approximation and work efficiently with the original scattered

data.

In the numerical solution of Partial Differential Equations by standard methods the

problem domain must be decomposed into a grid or mesh. A grid is a union of simple

geometric elements such as quadrilaterals or triangles in two dimensions and tetrahe-

dra in three dimensions. The spacing of the grid points affects the efficiency and the

accuracy of the approximate solution. The spacing also determines the number of un-

knowns associated with the approximate solution and therefore the storage requirement

which affects the cost of the computation. Although for well-behaved smooth problems

a uniform mesh might give satisfactory results, there are problems where the solution is

more difficult to approximate in some regions than in others. One could use a uniform

grid with mesh elements fine enough to satisfy the required accuracy in these difficult

regions. A better approach is to use a fine resolution in the difficult regions and a coarser

resolution elsewhere. This approach is called Adaptive Mesh Refinement (AMR) and

Chapter 1. Introduction 4

can be very useful in saving computational resources particularly when solving problems

modeling multi-scale phenomena.

The process of transforming a continuous model of a physical phenomena character-

ized by Partial Differential Equations into a discretized set of equations naturally looses

information. No matter how appropriate a mathematical model is, the computational

results will include some errors. The approximation error is often difficult to estimate

or evaluate by heuristic approaches. However, it can be estimated (at least roughly)

by a post-processing technique (an à posteriori error estimate) using a DEI and we will

investigate an example of this approach.

1.3 Outline

In the following sections, we present an overview of the DEI generic approach followed

by a detailed discussion of our two and three dimensional DEI-based interpolants for

unstructured triangular/tetrahedronal meshes. In Chapter 2, we present an effective

generic scheme for contouring in 2D and 3D based on DEI. We will first introduce three

fast contouring algorithms for visualizing the approximate solution of two dimensional

PDEs. We will then investigate extending the approach to three dimensions and present

a detailed investigation and implementation for one of them. Unlike standard contouring

approaches, our contouring algorithms do not require a fine mesh approximation and

work efficiently with the original scattered data. In Chapter 3, we will discuss a ‘generic’

Adaptive Mesh Refinement approach which attempts to adapt the mesh based on the

properties of the coarse mesh approximate solution (without requiring details of the

underlying PDE method). In Chapter 4, we will introduce an à posteriori error estimator

for the error associated with the DEI using the idea of a companion equation based on

the original PDE. In Chapter 5, the numerical results will be presented. In Chapter 6,

we will summarize the thesis and present some areas for future work.

Chapter 1. Introduction 5

1.4 Scattered Data Interpolation

Scattered data interpolation (SDI) is concerned with the approximation or representation

of mathematical objects using samples taken at an unorganized set of discrete points, a

scattered point cloud. The mathematical object may for instance be the boundary of a

solid body, the graph of a scalar field, or the solution of a partial differential equation.

SDI refers to the problem of fitting a smooth surface through a scattered, or nonuni-

form, distribution of data samples. This subject is of practical importance in many

science and engineering fields, where data is often measured or generated at sparse and

irregular positions. The goal of interpolation is to reconstruct an underlying function (or

a surface) that may be evaluated at any desired set of positions. This serves to smoothly

propagate the information associated with the scattered data onto all positions in the

domain. There are three common sources of scattered data: measured values of physical

quantities, experimental results, and values computed from computer simulations. They

are found in diverse scientific and engineering applications. For example, nonuniform

measurements of physical quantities are collected in geology, meteorology, oceanography,

cartography, and mining; scattered experimental data is produced in chemistry, physics,

and engineering; and non-uniformly spaced computational values arise in the output from

finite element solutions of partial differential equations, and various applications in com-

puter graphics and computer vision. These fields require scattered data interpolation

to determine values at arbitrary positions, not just those at which the data is available.

This facilitates many useful operations for visualizing multidimensional data. For in-

stance, in medical imaging, scattered data interpolation is essential to construct a closed

surface from CT or MRI images of human organs. In geological applications, the derived

interpolation function facilitates a contour map to be plotted.

The SDI problem can be defined in two dimensions as follows. Suppose we have a set

Chapter 1. Introduction 6

of n two-dimensional arbitrary distributed points

Pi = (xi, yi), i = 1, 2, · · · , n

over R2, and scalar values Fi associated with each point satisfying Fi = F (xi, yi) for some

underlying function F (x, y). The problem is to find an interpolating function F ≈ F (x, y)

such that F (xi, yi) = Fi for i = 1, 2, · · · , n [34].

We assume that all the points Pi, referred to as mesh points are distinct. The for-

mulation can be generalized into higher dimensions in a straightforward way. For the

two-dimensional case, the scattered points Pi are on a plane, making the function F a

bivariate function that defines a surface in three-dimensional space.

Given a particular use for the interpolating function F , one may desire certain prop-

erties, such as smoothness, continuity or differentiability. For instance, smooth surfaces

with C1 continuity are sufficient for most of the applications that require visualization of

surfaces. But if one is interested in visualizing a vector field, where the gradient of F is

of relevance, higher order continuity might be preferred. We may also want the function

to be expressed in explicit, implicit or procedural form.

Because there are particular attributes associated with each interpolating method,

there is not a unique way to classify them. For example, the method could be global or

local, based on the nodes needed to evaluate the function F at certain location (x, y).

The form of the interpolating function could also be used for classification, since F could

be a bivariate polynomial, a piecewise bivariate polynomial, or a rational function.

1.5 DEI: The Differential Equation Interpolant

In [12], Enright introduced the Differential Equation Interpolant (DEI) which approxi-

mates the solution of a PDE such that the approximations at off-mesh points have the

same order of accuracy as those at mesh points provided by an underlying numerical

PDE solver. The idea is to associate a multi-variate polynomial with each mesh element

Chapter 1. Introduction 7

and consequently, the collection of such polynomials over all mesh elements will define a

piecewise polynomial approximation. In two dimensions, the DEI is a piecewise bivariate

polynomial, U(x, y), characterized by a number of unknown coefficients determined by

the degree and type of the interpolant. The number of unknowns associated with the

DEI is usually greater than the number of independent linear constraints defined by the

information provided by the PDE solver at the discrete set of mesh points. While the

standard approach in determining these additional constraints is based on enforcing con-

tinuity of higher derivatives of the piecewise polynomial at mesh points, with the DEI

approach these additional constraints are based on introducing additional computation

on each element to ‘almost’ satisfy the PDE at a prescribed set of local ‘collocation’

points.

Before reviewing details of how this is accomplished, for the particular DEIs we will

consider, we note that constructing U(x, y) from the data provided by the PDE method

can be viewed as a post-processing task. The PDE method, in generating its discrete

approximations has provided O(hp) accurate approximations to the solution u(x, y) at

the discrete mesh points. This information is then used (together with some additional

mesh point approximations computed at some extra cost) to determine U(x, y). How this

is done is discussed in detail in [12]. For modest order methods (p ≤ 4), such as those

we investigated in this thesis, the cost required to generate this information is a small

number of evaluations of the PDE (fewer than p sampled evaluations of the PDE for each

element). Note that this post-processing approach to computing U(x, y) is analogous to

the determination of the CRK S(x) in ODEs, when the cost of determining S(x) for an

underlying discrete Runge-Kutta formula requires computing additional sampled deriva-

tive values at each step (which can involve doubling the number of stages), and using

these additional stages (together with the stages of the discrete Runge-Kutta formula)

to determine S(x).

The mesh elements can be rectangles or triangles depending on the distribution of the

Chapter 1. Introduction 8

associated mesh points. In two dimensions, for each element e, the bivariate polynomial

pd,e(x, y) is represented by (d + 1)2 unknown coefficients,

pd,e(x, y) =
d∑

i=0

d∑

j=0

cijs
itj,

where

s =
(x− x1)

D1

, t =
(y − y1)

D2

,

and D1 and D2 depend on the size of the mesh element e in the x and y direction, d is

the degree and (x1, y1) is a mesh point associated with e (for rectangular elements, this

is usually chosen to be the lower left corner of the rectangle).

In [12], the underlying PDE was assumed to be a two-dimensional, second-order

problem of the form

Lu = g(x, y, u, ux, uy), (x, y) ∈ Ω, (1.1)

where L is a given semi-linear differential operator of the form

L = a1(x, y)
∂2

∂x2
+ a2(x, y)

∂2

∂y2
+ a3(x, y)

∂2

∂x∂y
.

In the case that the underlying numerical method produces approximations on an un-

structured mesh, the DEI can be considered to be a scattered data interpolant. In [34],

Ramos and Enright presented an investigation of this problem. They introduced the

Alternate Differential Equation Interpolant (ADEI), a piecewise polynomial interpolant

associated with a scattered data set. Instead of choosing random points or fixed points,

they developed an iterative algorithm to find suitable collocation points based on moni-

toring the magnitude of the coefficients of the resulting interpolant.

Although the ADEI provides a relatively smooth surface, it can still suffer from the

appearance of discontinuities. Moreover, finding a suitable set of collocation points may

require an excessive amount of computer time. In [22], we introduced the PCI, a pure

cubic interpolant, to overcome these deficiencies. The PCI is globally continuous and

Chapter 1. Introduction 9

efficient in terms of time and error. Furthermore, in [23] we extended the definition of

the PCI to a three-dimensional, trivariate interpolant and investigated the most efficient

DEI-based interpolants in three dimensions.

1.6 PCI: The Pure Cubic Interpolant

The pure bivariate interpolant restricts the approximating polynomial to be a bivariate

polynomial of total degree d. For each triangular element e, the interpolant, pd,e(x, y), is

defined by

pd,e(x, y) =
d∑

i=0

d−i∑

j=0

cijs
itj, (1.2)

where

s =
(x− x1)

D1

, t =
(y − y1)

D2

, (1.3)

and, as can be seen in Figure 1.1, (x1, y1) is the lower left corner of the associated

enclosing box of e and D1 and D2 are the dimensions of the box. For a pure interpolant

of degree d, there are (d+1)(d+2)
2

unknown coefficients to be determined for each e.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CC©©©©©©©©©©©©©©©©©©©PPPPPPPPPPPPPPPPPPPPPPP

D1

D2

(x1, y1)

Figure 1.1: A triangular element and its associated enclosing box.

Chapter 1. Introduction 10

For the class of problems we are considering, fourth order accuracy seems to be

standard and we have therefore chosen piecewise bi-cubics (d = 3) for our interpolant.

In this case, we can represent the unknown coefficients by a matrix C of the form

C =

0 0 0 c30

0 0 c21 c20

0 c12 c11 c10

c03 c02 c01 c00

,

and therefore the cubic polynomial associated with e can be represented by,

p3,e(x, y) = ST CT = (s3 s2 s 1)

0 0 0 c30

0 0 c21 c20

0 c12 c11 c10

c03 c02 c01 c00

t3

t2

t

1

.

We call this interpolant the Pure Cubic Interpolant (PCI). For the PCI, we have

10 unknown coefficients. For each of the three mesh points of a triangle we assume we

have 4th order approximations to the function, u, and 3rd order approximations to the

derivatives, ux and uy. As we noted in the previous section, these approximations to

ux and uy are not likely directly available from the PDE solver but are computed at a

small additional cost as a post-processing task. To define the DEI, we require that the

local interpolant (associated with each element) interpolates u, ux, and uy at the 3 mesh

points associated with the element. This results in 9 linear equations, each of which is

in one of the following forms:
3∑

i=0

3−i∑

j=0

cijs
it

j
= u, (1.4)

3∑

i=0

3−i∑

j=0

icijs
i−1t

j
= ux, (1.5)

3∑

i=0

3−i∑

j=0

jcijs
it

j−1
= uy. (1.6)

We still require another independent linear constraint to uniquely determine the 10

coefficients of p3,e(x, y). This can be accomplished by choosing one collocation point,

Chapter 1. Introduction 11

(xm, ym), inside the triangle e and imposing a condition that the interpolant almost

satisfies the underlying PDE at that point. From (1.2) we have

∂2p3,e(x, y)

∂x2
=

1

D2
1

3∑

i=0

3−i∑

j=0

i(i− 1)cij

(x− x0

D1

)i−2(y − y0

D2

)j
, (1.7)

∂2p3,e(x, y)

∂y2
=

1

D2
2

3∑

i=0

3−i∑

j=0

j(j − 1)cij

(x− x0

D1

)i(y − y0

D2

)j−2
, (1.8)

∂2p3,e(x, y)

∂x∂y
=

1

D1D2

3∑

i=0

3−i∑

j=0

ijcij

(x− x0

D1

)i−1(y − y0

D2

)j−1
, (1.9)

and therefore Lp3,e(xm, ym) is a linear combination of the unknown coefficients. From

(1.1) for the point (xm, ym) we impose the additional linear constraint

Lp3,e(xm, ym) = g(xm, ym, Ûm,
∂Ûm

∂x
,
∂Ûm

∂y
), (1.10)

where Ûm is any low order (p = 2) approximation to U(xm, ym) and ∂Ûm

∂x
and ∂Ûm

∂y
are

derivatives of U(xm, ym) at the point (xm, ym) in the x and y directions, respectively

(see [12] for details and justification of why this works). In the case when the order of

U(xm, ym) is 3, as it is for the PCI, Ûm can be a linear approximation to U (and we

will use this choice). Since we need only one collocation point, the obvious choice is

the middle point of the triangle and we have investigated this choice. To determine the

unknown coefficients, we then solve the system of linear equations that is formed by the

9 linear constraints (1.4), (1.5) and (1.6) and the additional linear constraint (1.10). This

system can be written as

Wc = b (1.11)

where W is a matrix that depends on the mesh points, the collocation point, and the

definition of L; while c ∈ R10 is the vector of unknown coefficients; and b ∈ R10 is a

vector that depends on the mesh data and the linear approximations associated with the

collocation point.

One of the advantages of the PCI is its continuity along the boundaries of mesh

elements. The standard DEI finds an accurate interpolation over each element but might

Chapter 1. Introduction 12

suffer from discontinuity along the boundaries of the mesh elements. This will not be

the case for the PCI, which always produces continuous results. This follows since the

associated pure cubic polynomials for two neighbor triangles produce the same value for

each arbitrary point on the shared side. For each of the two mesh points on the shared

side, there are three pieces of information (U , Ux and Uy). If the side is a horizontal

or vertical line, either Ux or Uy expresses the derivative of the function along that side.

In general, where the side is an arbitrary line, we are able to state the derivative of the

function in the direction of the side, Uµ, in terms of Ux and Uy by

Uµ =
∂U

∂x
· xµ +

∂U

∂y
· yµ. (1.12)

Therefore, for each mesh point we know the value of the function and the value of the

derivative in the direction of each of the two adjacent sides. All this information is used

to define the polynomial. Since along each side, the PCI is of degree 3 in µ, it can be

characterized by four unknown coefficients. For the shared side we know exactly four

pieces of information, the associated polynomials for both triangles produce the same

value for each point located on the shared side. In this way, we have satisfied continuity,

one of the most important aspects with regard to visualization.

In addition to continuity, the PCI is efficient in terms of time and accuracy. Since

the linear system that must be solved has only 10 linear independent equations, the PCI

needs less time than the DEI of degree 3, which has 16 linear independent equations, and

much less time than the ADEI that may have to iterate many times to choose the best

location for the collocation points.

It is worth noting that the PCI can also be applied to a high-order PDE solver and

it can be effective to use a low-order interpolant for a high-order PDE solver. As an

example, in COLSYS for ODE problems, the order of accuracy at mesh points is O(h2k)

compared with O(hk+1) at off-mesh points.

Chapter 1. Introduction 13

1.7 Other Two Dimensional Approaches

Although the PCI generally produces excellent results in terms of time, accuracy and

continuity, we are not sure if it is the best interpolant relative to the other DEIs for our

problem. In order to obtain such confidence, we will investigate some other approaches

based on using a DEI. We call these approaches DEIm-n where m is the degree of the

corresponding interpolant and n is the number of the unknown coefficients. The first

two alternative DEIs, DEI3-15 and DEI3-13, are based on the DEI of degree 3 but total

degree 5 and 4 respectively (the standard DEI is basically of total degree 6) and the last

one, DEI4-15, is a pure quartic interpolant of total degree 4. C1, C2 and C3 are the

matrices of unknown coefficients for DEI3-15, DEI3-13 and DEI4-15 respectively and are

defined by

C1 =

0 c32 c31 c30

c23 c22 c21 c20

c13 c12 c11 c10

c03 c02 c01 c00

,

C2 =

0 0 c31 c30

0 c22 c21 c20

c13 c12 c11 c10

c03 c02 c01 c00

,

C3 =

0 0 0 0 c40

0 0 0 c31 c30

0 0 c22 c21 c20

0 c13 c12 c11 c10

c04 c03 c02 c01 c00

.

The results of the comparison between the PCI approach and these alternative DEI

approaches will be presented in chapter 5. As we will observe, the PCI is the best ap-

proach in both time and accuracy. It is also the only approach that always generates

Chapter 1. Introduction 14

continuous results. We will use the interpolant generated by this approach for imple-

menting our fast two-dimensional contouring algorithms.

1.8 Three Dimensional SDI

In [23], we focused on scattered data interpolation associated with the numerical solution

of a three-dimensional second-order elliptic PDE of the form

Lu = g(x, y, z, u, ux, uy, uz),

where L is a given differential operator of the form

L = a1(x, y, z)
∂2

∂x2
+ a2(x, y, z)

∂2

∂y2
+ a3(x, y, z)

∂2

∂z2
.

We assume that there are some accurate numerical results (approximate solution

values, u(x, y, z), as well as approximate derivative values, ux(x, y, z), uy(x, y, z) and

uz(x, y, z)) at some mesh points that are scattered or unstructured in 3D. The mesh

points partition the domain of the problem into a collection of mesh elements which

are tetrahedra. Our approach is to associate with each mesh element e, a tri-variate

polynomial pd,e(x, y, z) of degree d, which approximates u(x, y, z) on mesh element e. In

other words, one can determine a polynomial pd,e(x, y, z) that interpolates the data values

associated with the mesh points of e and ‘almost’ satisfies the PDE at a predetermined

set of collocation points of e. The number of collocation points depends on the degree

d and type of interpolant (tensor product or pure). The collection of such polynomials

over all mesh elements will then define a piecewise polynomial approximation pd(x, y, z),

that is well defined for all (x, y, z) in the domain of interest.

Enright [12] has investigated some aspects of the performance of this approach for

three dimensional problems. He reported that, for tetrahedron meshes, pure tri-cubic

interpolants and tensor product tri-quadratic are the most appropriate candidates.

Chapter 1. Introduction 15

A pure tri-cubic polynomial for a mesh element e is defined by

p3,e(x, y, z) =
3∑

i=0

3−i∑

j=0

3−i−j∑

k=0

cijks
itjvk,

where

s =
(x− x1)

D1

, t =
(y − y1)

D2

, v =
(z − z1)

D3

,

and (x1, y1, z1) is the corner of the associated enclosing box of e with the smallest values

of (x, y, z); and D1, D2 and D3 are the dimensions of the box.

The number of unknown coefficients, cijk, for a pure three-dimensional interpolant of

degree d is (d+1)(d+2)(d+3)
6

. Thus for a pure tri-cubic (where d = 3), there are 20 unknown

coefficients. Since we already have 16 data values associated with e (u, ux, uy and uz for

each of the four nodes of the tetrahedron), we need to add at least 4 collocation points

to uniquely determine the interpolant associated with e.

Alternatively a tensor product tri-quadratic polynomial can be defined by

p2,e(x, y, z) =
2∑

i=0

2∑

j=0

2∑

k=0

cijks
itjvk.

For a tensor product three-dimensional interpolant of degree d, there are (d + 1)3

unknown coefficients. Therefore for a tensor product tri-quadratic, we have 27 unknowns

to identify. Therefore at least 11 collocation points for each mesh element will be required

to determine p2,e.

Note that a pure tri-quadratic polynomial would have total degree 2 and have only

10 unknowns. Since the number of unknowns is less than the number of linear equations

provided by the information at the four mesh points of e, it is not appropriate to inves-

tigate this type of interpolant. However we can consider a tri-quadratic polynomial of

total degree 3 as follows:

p̂2,e(x, y, z) =
2∑

i=0

min(2,3−i)∑

j=0

min(2,3−i−j)∑

k=0

cijks
itjvk.

Since p̂2,e has only 17 unknown coefficients, it requires less time to compute than p2,e,

and our testing has demonstrated that it also seems to generate more accurate results

than p2,e in practice.

Chapter 1. Introduction 16

In section 5.2, we compare these three candidate interpolants and investigate their

performance on a set of three-dimensional elliptic PDEs over an unstructured mesh. As

we will observe, a pure tri-cubic interpolant, p3,e, generates more accurate results than

the tri-quadratic interpolants. This interpolant also is the best in terms of realistic, non

distracting, visualization. However, none of these interpolants are globally continuous

along the boundaries of the mesh elements as they provide continuity on the shared edges,

but not necessarily on the shared faces.

The extension of DEI-based interpolants to more than three dimensions is theoreti-

cally possible. However, the algebra becomes more difficult and it requires more effort

to avoid ill-conditioned linear systems, especially when determining higher order inter-

polants.

Chapter 2

Contouring Algorithms

2.1 Introduction

Most Partial Differential Equations (PDEs) that arise in practical applications do not

have a closed form solution. In these cases, numerical methods can be used to approx-

imate the solution at a discrete set of mesh points in the domain associated with the

problem definition. After approximating the solution at a discrete set of mesh points

by a numerical PDE solver, one might plot contour lines in order to visualize the solu-

tion. Standard contouring algorithms require knowing the function to be contoured on a

regularly-spaced rectangular mesh. In cases where the original mesh is unstructured, a

regular rectangular mesh must be introduced first. In addition, most standard contouring

algorithms use linear interpolation inside each element. With these algorithms the more

mesh points we have, the more accurate contour plot we obtain. To obtain a smooth

contour plot, the numerical method must provide the approximations at a very fine mesh.

In the case that we have an interpolant such as a DEI, we can obtain the refined mesh

data directly from the DEI. Bradbury and Enright [7] investigated the application of

the DEI to visualize the solution of PDEs when the underlying mesh is rectangular and

structured. In addition, they introduced three fast algorithms to compute contour lines

17

Chapter 2. Contouring Algorithms 18

efficiently directly from the DEI. In this chapter, we will introduce fast algorithms to

compute contour lines directly for a particular DEI, the PCI [21]. In addition, we will

extend the algorithm to three dimensions by introducing an algorithm to draw contour

surfaces in three dimensions.

For a function of two variables, a contour curve is a curve along which the function

has a constant value. In general, a level set of a real-valued function f of n variables is

a set of the form

{(x1, x2, · · · , xn)|f(x1, x2, · · · , xn) = c}

where c is a constant. In other words, it is a set where the function takes on a given

constant value. Figure 2.1 shows a surface plot and several different contour plots for the

function z = xe−(x2+y2). Each of the color lines in Figure 2.1 corresponds to a different

contour curve, f(x, y) = c (for different values of c).

(a) The surface plot

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) The contour plots

Figure 2.1: An example of a surface plot and contour plots in two dimensions.

Contour curves are of interest in a number of fields and problems such as:

• Meteorology: A curve connects points on a map that have the same temperature.

Chapter 2. Contouring Algorithms 19

• Cartography: A curve joins points of equal elevation (height) above a given level.

• Geography: Contour curves denote elevation or altitude and depth on maps.

From these contours, a sense of the general terrain can be determined.

• Engineering: Various types of graphs can be presented using contour curves.

Such graphs are useful for visualizing or representing more than two dimensions on

two-dimensional displays.

In particular, in computational science, one way to visualize the approximate solution

obtained by a numerical PDE solver is to draw contour curves of the associated approx-

imate solution, as an alternative to computing a standard surface plot (see Figure 2.1).

In the next section, some related previous investigations are presented.

2.2 Previous Work

In order to have a relatively smooth contour plot, a fine mesh approximation of the

solution is needed. One way to obtain such a fine mesh approximation is to solve the

problem by the numerical PDE solver for the requested accuracy on an associated coarse

mesh and then generate a fine mesh approximation from the coarse mesh approximation

using a DEI. Bradbury and Enright [7] investigated this approach (Matlab/DEI ap-

proach) to generate a fine mesh approximation and then plotted contour lines using a

standard contouring algorithm like the built-in Matlab contour procedure. In addition,

they introduced three fast direct contouring algorithms based on the use of the DEI that

avoid the introduction of a fine mesh. To illustrate the fast contouring algorithms, they

considered an underlying parabolic PDE of the form

Lu = g(x, y, u, ux), (2.1)

L =
∂

∂y
− β(x, y)

∂2

∂x2
(2.2)

Chapter 2. Contouring Algorithms 20

where the DEI is a piecewise bicubic polynomial and the underlying mesh is rectan-

gular. Their results show that the fast contouring algorithms will be better than the

Matlab/DEI approach if the refining factor (the ratio of the fine mesh to the coarse

mesh) is relatively large. In section 2.3, we improve their fast contouring algorithms and

extend them to unstructured triangular meshes. We will extend the algorithm to three

dimensions in section 2.4.

2.3 Two Dimensional Contouring Algorithms

The user can specify either the contour level(s) explicitly or only the desired number of

contour levels. In the latter situation, the contour levels are specified by equally dividing

the range between global minimum and maximum values (This is the interface provided in

the Matlab contour procedure). In this section, we will introduce three fast contouring

algorithms for an unstructured triangular mesh that provide a similar interface. The

results we will discuss, originally appeared in [20] and have been subsequently reported

in [21].

Each algorithm has three stages and shares a common first two stages. These three

stages consist of:

1. Computing the minimum and maximum values of the interpolant for each triangle.

There are at least three advantages in computing the minimum and maximum

values. First of all, it simplifies subsequent intersection tests for all triangles where

we determine whether the triangle contains a segment of the contour line. Secondly,

the situation that a contour curve lies completely inside a triangle can be easily

distinguished (as there will be no intersection between the contour curve and the

triangle’s sides). Thirdly, global minimum and maximum values can easily be

computed from this local information for each triangle and, if the contour levels are

not specified by the user, suitable default values can be determined dynamically

Chapter 2. Contouring Algorithms 21

based on this global information.

2. Identifying the intersection points between contour lines and the sides of the triangle

and recursively dividing the triangles containing more or less than two such inter-

sections into several triangles such that all triangles have two or zero intersections.

A situation where the sides of a triangle have a total of exactly two intersections

with a contour line is called a desired situation. Note that the heuristics we employ

at this stage to accomplish this task do not directly deal with all possible situa-

tions. Only the most likely scenarios are addressed directly with the understanding

that the less likely (or more pathological cases) may result in skipping a section

of the contour curve if an ‘undesirable’ triangle is still present after six recursive

refinement steps.

3. Computing a smooth and accurate contour line connecting the two intersection

points for each triangle. We will introduce three fast and reliable algorithms to

accomplish this task.

In the following, we will present each of these three stages in more detail.

2.3.1 Stage One: Computing the Minimum and Maximum Val-

ues

Finding the minimum and maximum values of the interpolant over each triangle can be

the most expensive stage if we try to identify them to full machine accuracy [7]. The

most accurate method is to find the points inside triangle e such that (pe)x and (pe)y

are simultaneously zero but this can be very expensive in terms of computer time. A

faster method is based on the assumption that the extreme values associated with the

sides of a triangle are acceptable approximations to the extreme values associated with

the whole triangle. This method is relatively fast (it involves only finding zeros of three

polynomials for each triangle) and more reliable than the Matlab contouring procedure

Chapter 2. Contouring Algorithms 22

that assumes the extreme values occur at the mesh points (or vertices of the triangle).

We can also improve this technique to obtain better results by a simple idea. The idea

is a recursive approach where the user can specify the number of recursive steps. Each

recursive step consists of forming a new (smaller) triangle by joining the extreme points

associated with each side and then determine the extreme points of this smaller triangle.

This recursive algorithm is presented in Figure 2.2, and Figure 2.3 illustrates how the

algorithm finds the approximate minimum (or maximum) values of the interpolant for

a triangle through a two-level recursion. The cost of this algorithm is a multiple (≤ 2∗
number of recursive steps) of the cost of the primary algorithm (locating the extreme

values on a side of a triangle). Note that, in some cases, this algorithm might only find

the extreme values along a triangle’s sides and fail to find a more extreme value inside

the triangle. However, when this happens, the only consequence is that a closed segment

of the contour curve which lies entirely inside the triangle and which is associated with

a contour level close to an extreme value may be skipped.

2.3.2 Stage Two: Identifying Intersection Points and Dividing

Triangles

After computing an approximate minimum and maximum values for the interpolant over

each triangle, we can determine whether a given contour line intersects a triangle by

simply comparing the contour level with the minimum and maximum values. Then, for

each triangle e, if the contour level is between the minimum and maximum values over

e, an intersection test is performed for each of three sides of triangle e. The result of this

test can then be used to classify the triangle in terms of total number of intersections

and the most likely situations are:

• No intersection: the contour line lies completely inside the triangle.

Chapter 2. Contouring Algorithms 23

for each triangle e of the mesh

lMin(e) ← recFindMin(e,1)

lMax(e) ← recFindMax(e,1)

end for

gMin ← min(lMin)

gMax ← max(lMax)

function recFindMin(e,level)

recFlag ← False

for each of three sides of triangle e (i=1, 2, 3)

find the extreme of pe(x, y) along the ith side

minPoint(i) ← select the minimum point from the extreme points and two end points

if minPoint(i) is selected from the extreme points

recFlag ← True

end if

end for

if level < MAX LEVEL and recFlag=True

newTriangle ← The triangle formed by connecting minPoint(i) (i=1, 2, 3)

minValue ← recFindMin(newTriangle,level+1)

else

minValue ← min(value of pe(x, y) at minPoint)

end if

return minValue

end function

function recFindMax(e,level)

...

Figure 2.2: The recursive algorithm to approximate the extreme values in 2D.

Chapter 2. Contouring Algorithms 24

Figure 2.3: Finding the minimum (or maximum) values of the interpolant.

• One intersection: the contour line is either an inner or outer tangent to one side at

the intersection point.

• Two intersections: a single contour line passes through the triangle connecting

these two intersection points.

• Three intersections: a single contour line passes through the triangle and it is also

tangent to one side.

• Four intersections: two contour lines pass through the triangle.

• More than four intersections: more than two contour lines pass through the triangle.

Our fast algorithms are based on drawing a contour line between two intersection

points (stage three). Therefore, the ‘two intersections’ case is our desired situation and

for all cases except ‘two intersections’, the triangle should be divided into two or more

triangles such that each new triangle has exactly two intersections with the contour level

(or zero if a new triangle contains no segment of the contour line). We implement this

approach using a recursive function that takes a triangle and the contour level and other

necessary parameters and then computes the contour line. Note that our classification

scheme ignores pathological (and unlikely cases) such as two intersection points of a

triangle corresponding to two tangent points (associated with different segments of the

contour curve). Moreover, at most six recursive steps are applied and after that, any

triangle which is not in a desired situation will be skipped and its contribution to the

Chapter 2. Contouring Algorithms 25

overall contour ignored. This could happen in the regions in which the triangulation

is too coarse to accurately resolve a curvy contour. For each of the above six cases,

excluding the ‘two intersections’ case, an appropriate strategy or heuristic is adapted

which attempts to replace the undesirable triangle with a set of desirable triangles. The

respective strategy we adopt is:

1. For no intersection: A segment of the contour curve will lie completely inside

a triangle. The strategy is to find a line between a vertex of the triangle and its

corresponding opposite side such that it intersects the contour curve at at least

two points. This is easy to do since the location of the approximate maximum and

minimum values of the interpolant (Max, Min respectively) on this triangle are

known and the contour level v satisfies Min ≤ v ≤ Max. In this case, as there are

no intersection with any side, we must have that the values of the interpolant at

each vertex must all be less than v or they must all be greater than v. Figure 2.4

shows the situation where the value at each vertex is less than the contour value v

and the triangle is divided into two triangles by the line drawn through one of the

vertices and the location of Max. A similar division is made when the values at

each vertex are all greater than v (only the dividing line passes through Min). We

will then have, in all but some rare or pathological cases, two triangles in a desired

situation (each has exactly two intersections with the contour curve) and we will

determine the contour segments for each new triangle, separately. Note that, in the

unlikely event that more than two intersections are detected, we recursively apply

the appropriate stage 2 strategy to each of the new triangles.

2. For one intersection: Figure 2.5 illustrates the situations that can result for

one intersection corresponding to an inner tangent or an outer tangent. There are

two different treatments for these two situations. In order to distinguish between

Chapter 2. Contouring Algorithms 26

Max

Figure 2.4: No intersection: Two new triangles.

the inner tangent and outer tangent situations, we consider the line connecting

the intersection point and the corresponding opposite vertex. Then, we compute

the number of intersections between this line and the contour curve. In case that

there is only one intersection (outer tangent), we will do nothing as the contour

segment will be considered by the neighbor triangle. In the other case, when there

are two or more intersection points (inner tangent), we divide the triangle into

two new triangles (see Figure 2.5(a)) and then invoke the recursive function for

each of them separately. In most cases, each new triangle will have exactly two

intersections with the contour curve and consequently we have a desired situation

for each of the new triangles. In a rare case, the contour can be curvy enough to

create triangles with more than two intersections and, again, the recursive function

of the appropriate stage 2 strategy will handle this situation.

3. For three intersections: The situation with three intersections can only arise if

one of the intersections is a tangent and this case can be treated like the situation

with one intersection if the tangent is inner (2.6(a)) and like the situation with two

intersections if the tangent is outer (2.6(b)). In the former case (inner tangent), by

connecting the tangent point to the corresponding opposite vertex, we will have two

Chapter 2. Contouring Algorithms 27

(a) Inner tangent (b) Outer tangent

Figure 2.5: One intersection: Two situations, inner tangent and outer tangent.

(a) Inner tangent (b) Outer tangent

Figure 2.6: Three intersections: Two situations, inner tangent and outer tangent.

new triangles such that each one has two or more intersections with the contour

curve. In the case that there are more than two intersections, we will call the

recursive function again. In the latter case (outer tangent), the tangent point can

simply be ignored and we have a desired situation. In order to determine which

intersection point is the tangent point, we find the tangent line to the contour curve

at all three points and then choose the point whose tangent is coincident with the

corresponding side of the triangle. It is also easy to determine if the tangent is

inner or outer by finding intersections between the contour curve and a line parallel

to the tangent side but slightly shifted to be ‘inside’ the triangle. If there is no

intersection, the tangent is exterior; otherwise it is interior. Note that since the

situation with three intersections happens very rarely, it is not necessary to develop

a very efficient strategy.

Chapter 2. Contouring Algorithms 28

Figure 2.7: Four intersections: 2-1-1 situations.

4. For four intersections: There are several situations that can arise when there

are four intersections with the contour curve. We classify these situations into four

sub-categories according to the position of the intersection points as follows:

(a) Two intersections on one side and one intersection on each of the other sides

(2-1-1 situation): Figure 2.7 shows two such situations. We apply the following

strategy to compute contour lines in these situations:

Find the middle point of two intersections that are on the same side.

Divide the triangle into two triangles by adding a line between this

point and the corresponding opposite vertex and then call the recursive

function for each of the two new triangles.

Figure 2.8 shows the final triangles created by applying this strategy. It works

for the first situation where it results in two triangles that are in a desired

situation. For the second situation, it creates two triangles, each of which has

four intersections with the contour curve. It can be seen from the figure that

both of these new triangles are of the first type and the contour lines will be

computed by applying the strategy one more time.

Chapter 2. Contouring Algorithms 29

Figure 2.8: Four intersections: 2-1-1 situations (Final triangulation).

Figure 2.9: Four intersections: 2-2-0 situations.

(b) Two intersections on two sides and no intersection on the other side (2-2-0

situation): Figure 2.9 illustrates two such situations. We apply the following

strategy to compute contour lines in these situations:

Find the middle points of the intersections that are on the same side.

Draw a line between these two points and also draw a line between one

of the middle points and the corresponding opposite vertex and then

call the recursive function for each of three new triangles separately.

In the first situation (of Figure 2.9), each of the three triangles has exactly

two intersections with the contour curve. In the second situation, one triangle

has two intersections with the contour curve and the other triangles have four

Chapter 2. Contouring Algorithms 30

Figure 2.10: Four intersections: 2-2-0 situations (Final triangulation).

intersections with contour curve (2-1-1 situation) and we apply the recursive

function one more time. Figure 2.10 shows the final triangles created by

applying this strategy recursively.

(c) Three intersections on one side, one intersection on a second side and no

intersection on the last side (3-1-0 situations): Figure 2.11 shows two such

situations. We apply the following strategy to compute contour lines in these

situations:

Find the middle point of two adjacent intersections that are on the

same side. Draw a line between the middle point and the correspond-

ing opposite vertex and then call the recursive function for each of

two triangles separately.

Although this strategy does not directly convert the first case of Figure 2.11

into a desired situation, it converts a 3-1-0 situation into 2-1-1 and 2-2-0

situation, both of which have been discussed before. This strategy converts the

first situation into two new triangles whose category depends on the position

of two chosen adjacent intersections. Figure 2.12 shows the triangles that can

be created by the first situation (of Figure 2.11).

Chapter 2. Contouring Algorithms 31

Figure 2.11: Four intersections: 3-1-0 situations.

Figure 2.12: Four intersections: the first 3-1-0 situation (Final triangulation).

In the first case of Figure 2.12, the triangle is divided into two new triangles,

one with two intersections and the other with four intersections of type 2-1-1

that can be converted to a desired situation by calling the recursive function

two more times (as discussed before). Therefore, the first case is converted

into a desired situation in at most three recursive steps. For the second case

of Figure 2.12, the triangle is divided into two new triangles, both with four

intersections with the contour curve, one of type 2-1-1 and the other of type

2-2-0. Since both new triangles can be obviously converted into a desired

situation in one step, the second case can be converted into a desired situation

in two recursive steps.

Figure 2.13 illustrates the two new cases that can be created by the second

situation (of Figure 2.11). In the first case, the triangle is divided into two

Chapter 2. Contouring Algorithms 32

Figure 2.13: Four intersections: the second 3-1-0 situation (Final triangulation).

Figure 2.14: Four intersections: 4-0-0 situations.

new triangles, both in a desired situation. In the second case, the triangle

is divided into two new triangles, one with four intersections of type 2-1-1

and the other with two intersections. Therefore, this second situation is also

converted into a desired situation in at most two recursive steps.

(d) Four intersections on one side and no intersection on the other two sides (4-

0-0 situations): Figure 2.14 shows the two such situations that can arise. We

apply the following strategy to compute contour lines in these situations:

Find the middle point of the two middle intersection points. Draw a

line between the middle point and the corresponding opposite vertex

Chapter 2. Contouring Algorithms 33

Figure 2.15: Four intersections: 4-0-0 situations (Final triangulation).

and then call the recursive function for each of the two new triangles.

In the first situation (of Figure 2.14), each of the two triangles has exactly two

intersections with the contour curve. In the second situation, each of the two

triangles has four intersections of type 2-2-0 and we apply the recursive step

one more time. Figure 2.15 shows the final triangles created by applying this

strategy recursively.

5. For more than four intersections: In the case that the triangulation is relatively

coarse, we might encounter some triangles that have more than four intersections

with the contour curve. We adopt a simple strategy in order to divide such triangles

into a set of triangles each of which is of the form already considered (especially

those triangles with two and four intersections).

Quadrisect the triangle by connecting the midpoints of the sides.

Figure 2.16 illustrate an example of such a situation. It shows a triangle with six

intersections with the contour curve, and the triangles after the initial step. In most

cases, our strategy converts the triangle into four new triangles such that three of

them have only two intersections (desired situation) and one has no intersection.

Chapter 2. Contouring Algorithms 34

Figure 2.16: More than four intersections.

In case of a more complicated contour, the strategy might create triangles with

more than two intersections which will be handled by subsequent iterations of the

recursive step.

This classification seems to be appropriate for all the cases that can arise in contours.

It is important to note that the recursive algorithm stops after at most six steps. There-

fore, some rare cases might cause slight errors in the contour plot by omitting segments

of contour curves.

2.3.3 Stage Three: Computing the Accurate Contour Lines

The last stage of our fast contouring algorithms is to compute the contour line between

two points located on a triangle’s sides. In the following, at first we introduce three

techniques based on those implemented in Bradbury and Enright [7] for rectangular

grids and then we try to improve each technique separately.

The Intercept Method

The basic idea of the Intercept method is to refine each element in only one direction,

the x or y direction, depending on the location of the intersection points. We then find

Chapter 2. Contouring Algorithms 35

0.52 0.54 0.56 0.58 0.6 0.62 0.64
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Figure 2.17: The contour curve created by the basic Intercept method. The points on

the contour curve are the intersections between the contour curve and refinement lines.

intersections between new lines in the refined direction and the contour line and finally

simply connect the intersection points [7]. Since each refined line is horizontal or vertical

(i.e. parallel to the x or y axis), pe(x, y) reduces to a univariate cubic polynomial (along

the refined line). For a triangular mesh, since we employ a PCI, the following strategy

can be applied

Connect the two intersection points by a line and then consider some regularly-

spaced points on this line. Draw perpendicular lines to this line at the consid-

ered points and then find the intersections between these perpendicular lines

and the contour curve and connect the intersection points.

Figure 2.17 illustrates how this strategy approximates the contour line with a refinement

of eight.

The interpolant used for this problem, pe(x, y), is the Pure Cubic Interpolant (PCI). If

we let s = x−xm

D1
, t = y−ym

D2
where (xm, ym) is a vertex of e and D1, D2 are the dimensions

of a rectangle that enclose e, then

Chapter 2. Contouring Algorithms 36

pe(x, y) = SCT = (s3 s2 s 1)

0 0 0 c30

0 0 c21 c20

0 c12 c11 c10

c03 c02 c01 c00

t3

t2

t

1

.

Although the refined lines are not necessary horizontal or vertical (i.e., parallel to the

x or y axis), the polynomial restricted to each refined line will be a cubic univariate since

the PCI is of total degree three. For each arbitrary line we have s = at + b and if we

replace s with at + b, we will have

pe(x, y) = (a3 3a2b a2 3ab2 2ab a b3 b2 b 1)

c30 0 0 0

0 c30 0 0

c21 c20 0 0

0 0 c30 0

0 c21 c20 0

c12 c11 c10 0

0 0 0 c30

0 0 c21 c20

0 c12 c11 c10

c03 c02 c01 c00

t3

t2

t

1

,

(2.3)

and pe(x, y) will reduce to a cubic univariate polynomial in t. To determine the inter-

sections between the refined line and the contour curve with contour level v, we find the

roots of

k3t
3 + k2t

2 + k1t + k0 = v, (2.4)

where the coefficients k0, k1, k2, and k3 are determined from (2.3).

This strategy works well as long as there is only one intersection between each refined

line and the contour curve. Bradbury and Enright addressed this difficulty and showed

Chapter 2. Contouring Algorithms 37

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(a) True contour curve.

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(b) The contour curve plotted by the ba-

sic Intercept method.

Figure 2.18: An illustration of the difficulty that can arise with the basic Intercept

method.

a simple example where the whole contour curve lies inside one element [7]. We will not

encounter this situation because in our algorithm there will be exactly two intersections

between the contour curve and the sides of the triangle containing a segment of the

contour. We might still have the situation where there is more than one intersection

between a refined line and the contour curve. Note that the PCI can find at most three

intersections. Figure 2.18(a) shows a simple situation and Figure 2.18(b) shows the result

of our basic approach. As can be seen, we lose some sections of the contour curve due

to the fact that the refinement is performed only between two intersections. On the

other hand, refining the area outside of two intersections does not solve this difficulty

because there is more than one intersection and it is not obvious how the intersection

points should be connected. In order to resolve this difficulty, we introduce a recursive

approach that attempts to find some equally spaced points located along the contour

curve.

The idea is to first find the middle point of the contour curve between the initial

two interception points and consider this point as one of the refined points (known to

be on the contour curve) and then recursively treat each of the two new intervals (the

intervals between the new point and each of the initial points). Figure 2.19 presents a

Chapter 2. Contouring Algorithms 38

function recAddMiddlePoint(p1,p2,cnt,· · ·)
pm ←= p1+p2

2

m1 ← the angle of the tangent line of the contour curve at p1

m2 ← the angle of the tangent line of the contour curve at p2

m ← m1+m2

2

p ← the intersection between the contour curve and the line passing pm with an angle m

if cnt > 0

pL ← recAddMiddlePoint(p1,p,cnt-1,· · ·)
pR ← recAddMiddlePoint(p,p2,cnt-1,· · ·)
return pL + p + pR

else

return p

end if

end function

Figure 2.19: The recursive algorithm to find middle points.

more detailed description of this approach. If n is the number of recursive levels, we will

have 2n + 1 points (including the two initial points) all lying on the contour curve.

Figure 2.20 illustrates how this approach draws contour curves by applying a three-

level recursion. An important advantage of this approach is that it locates almost equally

spaced points on the contour curve. However, there is still a remaining difficulty. As can

be seen from Figure 2.20, although the points are located equally spaced inside each

triangle, they are not totally equally spaced if we consider all triangles. In other words,

the number of extra points should not necessarily be equal for all triangles. For example

in Figure 2.20, the number of extra points (7 points) is not enough to give a suitable

representation for the left triangle but more than enough for the right triangle. In order

Chapter 2. Contouring Algorithms 39

to overcome this deficiency, instead of having a fixed level of recursion for all triangles, we

consider a threshold for the distance between the extra points and try to locate the extra

points such that the distance between each two points is less than the desired threshold.

Figure 2.21 illustrates the effect of considering a threshold instead of the same level of

recursion for all triangles. The value of the threshold can be specified by the user.

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

Figure 2.20: The contour curve created by the improved Intercept method using a fixed

number of recursions, in this case n = 3, to reduce the chance of missing a segment of

the contour curve.

The Simple ODE Method (SODE)

The contouring problem can be characterized as an initial value problem [7]. The problem

for the contour level v is to solve

u(x, y(x)) = v, (2.5)

where y is a function of x. If we differentiate both sides of this equation with respect to

x, we obtain

ux(x, y(x)) + uy(x, y(x)) · yx(x) = 0, (2.6)

Chapter 2. Contouring Algorithms 40

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

Figure 2.21: The contour curve created by the final Intercept method using a threshold

value to control the spacing.

or

dy

dx
= yx(x) = −ux(x, y(x))

uy(x, y(x))
. (2.7)

This ODE is satisfied for (x, y(x)) lying on the contour curve. If we consider x as a

function of y, we can similarly derive

dx

dy
= xy(y) = −uy(x(y), y)

ux(x(y), y)
. (2.8)

We can approximate u(x, y),ux(x, y) and uy(x, y) at prescribed values of x and y

using the PCI (and its partial derivatives). We can then solve equation (2.7) or (2.8) by

applying a numerical IVP solver starting from a known intersection point. Furthermore,

rather than applying an IVP solver, we can compute approximations to y(x) and yx(x) (or

x(y) and xy(y)) at prescribed values directly from the PCI. We can then interpolate the

contour curve by using an appropriate order Hermite interpolant. The minimum number

of extra points (in addition to the intersection points) necessary to define the Hermite

interpolant is dependent on the contour curve and some properties of the two intersection

points. Bradbury and Enright considered one middle point for all situations [7]. However,

for some situations that can arise, we need no middle point and the contour curve can

be approximated accurately with only the two intersection points.

Chapter 2. Contouring Algorithms 41

−0.1 −0.05 0 0.05 0.1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 2.22: The common situation in contour curves.

In the case that the gradient of u at the two intersection points has the same sign

(for both x and y directions), we need no middle points and the contour curve can be

computed precisely by applying a cubic Hermite interpolant. Figure 2.22 shows such a

situation. For the other cases, we will use the approach that will be introduced in the

next method, the ODE with arclength. When the magnitude of the respective derivative,

(yx or xy), is much larger than one, the Hermite interpolant may not approximate the

solution of this IVP very well. We apply the ODE with arclength method for such

situations.

The ODE with Arclength Method (ODEA)

In the SODE method, we assumed that y is a function of x (or x is a function of y). An

alternative method is to parameterize with respect to arclength and assume both x and

y to be functions of arclength [7]. In this case, we will have

u(x(s), y(s)) = v, (2.9)

where v is the contour level and s is the arclength. Then if we differentiate (2.9) with

respect to s, we will obtain

ux · xs + uy · ys = 0, (2.10)

Chapter 2. Contouring Algorithms 42

and if we consider a normalization condition for the arclength, we will get

xs
2 + ys

2 = 1. (2.11)

From equations (2.10) and (2.11) we will obtain a system of ODEs,

xs =
±uy√

ux
2 + uy

2
, (2.12)

ys =
∓ux√

ux
2 + uy

2
, (2.13)

which is satisfied on the contour curve. Note that the sign of xs(±) differs from the

sign of ys(∓). In other words, if xs and uy have the same sign, ys and ux should have

different sign and vice versa. In order to identify the proper sign in equations (2.12) and

(2.13), an intersection test can be done along a single line of refinement. Like the SODE

approach, we can obtain approximations of x(s), y(s), xs(s) and ys(s) at each arbitrary

point directly from the PCI using Hermite interpolation to approximate x(s) and y(s)

separately.

In most cases, the data (x(s), xs(s), y(s) and ys(s)) from two intersection points

is adequate to accurately approximate the contour curve. However in some cases, the

Hermite interpolants fail to determine a suitable approximation and at least one extra

point is required. Figure 2.23(a) illustrates one of these situations and Figure 2.23(b)

shows the result of the Hermite interpolant if we apply it with only the two intersection

points. By analyzing the difficulty and observing the result of some special situations,

we realized that if either x(s) or y(s) has more than one extreme point on the contour

curve, the Hermite interpolant may fail to accurately interpolate the contour curve. Note

that since the PCI is of degree 3 in x and y, the corresponding polynomial can have at

most two extreme points in each direction x or y (corresponding to one minimum and

one maximum). We can assume that the middle point of the contour curve locates these

two extreme points in two different sections.

In order to find the middle point of the contour curve, a similar approach to that

employed in the SODE method can be used. After identifying the middle point we

Chapter 2. Contouring Algorithms 43

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(a) True contour curve.

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(b) The contour curve plotted by the

ODEA method with no middle point.

Figure 2.23: A situation where the ODEA method fails if no middle point is considered.

can use two cubic Hermite interpolants for computing the contour curve. Figure 2.24

illustrates the result of the situation corresponding to Figure 2.23 when we consider the

middle point.

One advantage of the ODEA method is its relationship to Hermite interpolation of

the exact contour curve. As mentioned in the previous section, the Hermite interpolant

can fail to approximate the solution of the associated IVP (2.7) or (2.8) accurately if the

derivative is much larger than one in magnitude. However, for the ODEA method, due

to the normalization condition, it is guaranteed that xs and ys are both bounded by one

in magnitude.

Since the ODEA method needs fewer middle points than the Intercept method, it

computes contours much faster than the Intercept method. However, its results may not

be as precise as those of the Intercept method since it is approximating the contours of the

underlying Hermite interpolant of the contour curve. In order to obtain more accurate

results with the ODEA method, we can add some extra ‘middle points’ and then apply

a piecewise cubic Hermite defined over a finer mesh to compute the contour curve. We

call this method, the Alternate ODE with Arclength method (AODEA). Like with the

Chapter 2. Contouring Algorithms 44

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

Figure 2.24: The contour curve plotted by the ODEA method with one middle point.

Intercept method, the user can specify a threshold value δ as the minimum distance

separating neighbor points. For the Intercept method the contribution to the error in

the contour segment will be O(δ2) while, for the AODEA method the contribution to this

error will be O(δ4). The appropriate threshold value for use with AODEA can therefore

be larger than that for the Intercept method.

2.4 Three Dimensional Contouring Algorithms

Three dimensional or volume visualization is associated with the graphical representation

of data sets that are defined on three-dimensional grids. The algorithms presented in

section 2.3 can be directly extended to plot three dimensional contour surfaces. Similar

to the two dimensional case, the user can specify either the contour level(s) explicitly or

only the desired number of contour levels. We assume that we are given an unstructured

tetrahedral mesh associated with the approximate solution of a three dimensional PDE.

For each tetrahedral element, e, we have a PCI, pe(x, y, z). The 3D algorithm has three

stages as follows:

1. Computing approximate minimum and maximum values of the local interpolant

for each tetrahedron. This stage helps in identifying the tetrahedra that include

Chapter 2. Contouring Algorithms 45

some component of the contour surface. Moreover, the situation that a component

of the contour surface lies completely inside a tetrahedron can be identified during

this stage.

2. Identifying the intersection points between the contour surface and each of the six

edges of a tetrahedron. A situation where the tetrahedron has ‘three intersections

on three different edges’ or ‘four intersections on four different edges’ is called a

desired situation (Figure 2.25). After determining the intersection points, a tetra-

hedron which is not in one of the desired situations will be recursively divided into

several tetrahedra such that all tetrahedra are finally in a desired situation.

3. Computing a smooth and accurate contour surface using the intersection points

identified in stage two for each tetrahedron.

(a) Three intersections with three different edges (b) Four intersections with four different edges

Figure 2.25: Desired situations in three dimensions. The tetrahedron e is displayed in

black; the unknown contour surface is displayed (as a wire-frame surface) in blue; and

intersection points with the edges of e are displayed as green dots.

Chapter 2. Contouring Algorithms 46

2.4.1 Stage One: Computing the Minimum and Maximum Val-

ues

Similar to the two dimensional case, the problem of computing the strict minimum and

maximum values of the interpolant over e would involve finding the points inside e such

that pex(x, y, z), pey(x, y, z) and pez(x, y, z) are simultaneously zero. However, this would

be very expensive in terms of required computer time. As with the 2D case, we will

be satisfied with the computation of suitable approximations to these values for each e.

We first observe that the extreme values that occur on the faces of tetrahedra can be

found relatively easily. In order to approximate the extreme values on each face, one

can apply the algorithm presented in Figure 2.2 for two dimensions to each of the four

triangular faces. The resulting approximations to the maximum and minimum values on

each face ((Maxi, Mini), i = 1, 2, 3, 4) allow us to determine if there is an intersection

of the contour surface with any of the faces. A simple improvement is to consider the

extreme values on each face as four nodes of a virtual tetrahedron and then apply the

idea recursively on this new tetrahedron. In the case that there are less than four distinct

nodes (for example when two faces have a shared extreme point), the goal would change

to find the extreme value on a 2D triangle (or even 1D line segment) in 3D space. This

recursive algorithm is presented in Figure 2.26.

2.4.2 Stage Two: Identifying Intersection Points and Dividing

Tetrahedra

In order to determine whether a contour surface at a given contour level has any inter-

section with a tetrahedron, one can simply compare the contour value with the minimum

and maximum values of the interpolant over the selected element. For each tetrahedron

e, if the contour level is between the minimum and maximum values of the interpolant

over e, an intersection test is performed for each of six edges of e. The result of this test

Chapter 2. Contouring Algorithms 47

for each tetrahedron e of the 3D mesh

lMin(e) ← recFindMin3D(e,1)

lMax(e) ← recFindMax3D(e,1)

end for

gMin ← min(lMin)

gMax ← max(lMax)

function recFindMin3D(e,level)

for each of four faces of tetrahedron e (i=1, 2, 3, 4)

minPoint(i) ← Find the point with the minimum value of pe(x, y, z) along the ith face

end for

if level < MAX LEVEL

newTetrahedron ← The tetrahedron formed by connecting minPoint(i) (i=1, 2, 3, 4)

minValue ← recFindMin(newTetrahedron,level+1)

else

minValue ← min(value of pe(x, y, z) at minPoint)

end if

return minValue

end function

function recFindMax3D(e,level)

...

Figure 2.26: The recursive approach to approximate the extreme values in 3D.

Chapter 2. Contouring Algorithms 48

can then be used to classify those tetrahedra (that do contain a segment of the contour

surface) in terms of the number and location of their edge-intersections. The possible

situations are:

• No intersection: a component of the contour surface lies inside the tetrahedron.

• Two or more intersections, two of them with a single edge: the contour surface

passes through a single edge of the tetrahedron in two locations and might have

more intersections with other edges.

• Three intersections: the contour surface passes through three different edges of the

tetrahedron.

• Four intersections: the contour surface passes through four different edges of the

tetrahedron.

The ‘three intersections’ and ’four intersections’ cases are our desired situations and

an example of each is displayed in Figure 2.25. The green dots are the intersections

between the contour surface and the edges of the tetrahedron. For other situations, the

tetrahedron should be divided into two or more tetrahedra such that each new tetrahedron

is in one of the two desired situations. A recursive approach could be applied if after

one step the tetrahedron is still not in a desired situation. Based on our test results, the

recursive approach seems to terminate after at most three or four recursive steps. For

each of the two non-desirable situations, an appropriate strategy is adopted as follows:

1. No intersection: A component of the contour surface lies inside the tetrahedron.

This could happen, for example, when the contour has a closed shape and the mesh

is coarse. The strategy is to find an associated extreme point inside e and divide

the tetrahedron into four new tetrahedra by connecting the extreme point to the

four nodes of the original tetrahedron. The approximate extreme point to choose

is the location of the local approximate maximum or minimum associated with e

Chapter 2. Contouring Algorithms 49

(which must be an interior point of e as there are no edge-intersections with the

contour surface). In the most likely situation, this will create four new tetrahedra

such that each one would have exactly three intersections with the contour surface

on three different edges, which is one of the desired situations. Figure 2.27 shows

the ‘no intersection’ situation and the final tetrahedra after applying the strategy.

The yellow dots show the intersections of the contour surface with the edges of four

new tetrahedra.

(a) Before applying the strategy (b) After applying the strategy (four new tetrahedra)

Figure 2.27: ‘No intersection’ situation in 3D.

2. Two or more intersections, two of them with a single edge: This is the

most likely situation when it is not in a desired situation. If there is one edge

that has exactly two intersections with the contour surface, we apply a simple

strategy, regardless of other intersections. In the case that there are other edges

with two intersections, the algorithm will take care of them in a subsequent recursive

step. The strategy is to find the middle point between the two intersections and

then to divide the tetrahedron into two new tetrahedra by connecting the middle

Chapter 2. Contouring Algorithms 50

point to the two opposite vertices of the original tetrahedron (i.e. the vertices not

adjacent to the edge with two intersections). Figure 2.28 shows an example of this

situation where there are only two intersections, both with the same edge. As can be

seen after applying the strategy, we will obtain two new tetrahedra such that each

has exactly three intersections with the contour surface on three different edges.

Another situation which falls into this category is where there are five intersections

with four edges (two of them with a single edge). Figure 2.29 shows how the strategy

works with only one recursive step. Each of two new tetrahedra has exactly four

intersections with the contour surface on four different edges which is again one

of the desired situations. A more complex situation happens when there are four

intersections with only two edges, two intersections with each. In this situation, by

applying the same strategy for one edge, we will obtain two tetrahedra, one with

three intersections (a desired situation) and the other one with five intersections

with four edges, two of them with a single edge (An example of this situation is

displayed in Figure 2.30(b)). In the next recursive step, the strategy will take care

of the other edge with two intersections. Figure 2.30 illustrates this situation and

the final tetrahedra after two recursive steps.

Chapter 2. Contouring Algorithms 51

(a) Before applying the strategy (b) After applying the strategy

Figure 2.28: ‘Two intersections with a single edge’ situation in 3D.

(a) Before applying the strategy (b) After applying the strategy

Figure 2.29: ‘Five intersections with four edges’ situation in 3D.

Chapter 2. Contouring Algorithms 52

(a) Before applying the strategy (b) After first recursive step

(c) After second recursive step

Figure 2.30: ‘Four intersections with two edges’ situation in 3D.

Chapter 2. Contouring Algorithms 53

2.4.3 Stage Three: Computing the Accurate Contour Surfaces

The last stage of our contouring algorithm is to display components of the contour surface

for each of the two desired situations. Although each of the three techniques discussed in

section 2.3.3 for two dimensions is extendable into three dimensions, we have implemented

only one of them in 3D, the Intercept method.

In two dimensions, the basic idea of the Intercept method was to simply connect

intersections of the contour curve and the perpendicular lines from some regularly-spaced

points on the straight line connecting two intersection points (see Figure 2.17). In this

section, we will extend this basic idea into three dimensions for each of the two desired

situations.

Three intersections with three different edges

As illustrated in Figure 2.25(a), these three intersection points lie on three different edges

sharing a vertex, called the apex. We also call the triangle formed by connecting the other

three vertices of the tetrahedron, the base. The following strategy can be applied for this

situation

Consider some regularly-spaced collection of points covering the base triangle.

Draw lines by connecting each of these regularly-spaced points to the apex and

then find the intersections of these lines with the contour surface. A refined

contour surface will be formed by connecting all the intersection points in an

obvious way.

Figure 2.31 shows how the strategy works to plot wire frame contour surfaces using 4

and 5 points on each side of the base (resulting in a total of 10 and 15 regularly-spaced

points covering the base). We call this number nSide. Note that by filling or coloring

the area of the refined triangles, one can obtain a rendered contour surface instead of

a wire frame plot. As can be seen in the figure, the more regularly-spaced points we

Chapter 2. Contouring Algorithms 54

introduce in our base triangle, the more accurate contour we obtain and the more time

required to plot the contour. On the other hand, in order to get a smooth contour plot,

the number of extra points for a tetrahedron could be determined based on the amount

of the contour surface which lies inside the tetrahedron.

(a) nSide = 4 (total of 10 points) (b) nSide = 4 (another view)

(c) nSide = 5 (total of 15 points) (d) nSide = 5 (another view)

Figure 2.31: Two different views of drawing contour surface for ‘three intersections with

three different edges’ situation in 3D. The black dot is the apex and red triangle is the

base.

Chapter 2. Contouring Algorithms 55

The interpolant used for this problem is p3,e(x, y, z), the pure tri-cubic interpolant

introduced in Chapter 1, which is of the form

p3,e(x, y, z) =
3∑

i=0

3−i∑

j=0

3−i−j∑

k=0

cijks
itjvk,

where

s =
(x− xm)

D1

, t =
(y − ym)

D2

, v =
(z − zm)

D3

,

and (xm, ym, zm) is the corner of the associated enclosing box of e with the smallest values

of (x, y, z); and D1, D2 and D3 are the dimensions of the box.

The parametric equation of a three dimensional line passing through (x1, y1, z1) and

(x2, y2, z2) is of the form

x− x1

x2 − x1

=
y − y1

y2 − y1

=
z − z1

z2 − z1

= m

or

x = x1 + (x2 − x1)m

y = y1 + (y2 − y1)m (2.14)

z = z1 + (z2 − z1)m

In order to find the intersection of a line with the contour surface with a contour level

v, we should solve

p3,e(x, y, z) = v. (2.15)

Since the total degree of the interpolant p3,e is three, after substituting for x, y and z in

equation (2.15) with the expressions in equation (2.14), we will obtain a cubic polynomial

in terms of m which could have up to three real roots. In our case, since we are looking

for the intersections inside the tetrahedron, only the roots in between 0 and 1 are relevant

and in most cases there will only be one such real root between 0 and 1. Note that it is

easy to show that there must be at least one real root between 0 and 1.

Chapter 2. Contouring Algorithms 56

Four intersections with four different edges

The situation is illustrated in Figure 2.25(b). As can be seen, four out of the six edges of

the tetrahedron have exactly one intersection with the contour surface. In other words,

exactly two edges have no intersection with the contour surface. The strategy to draw a

wire frame contour surface in this situation is as follows

Consider some regularly-spaced points on each of the two edges with no inter-

section. Draw lines by connecting each regularly-spaced point from one edge

to all the regularly-spaced points on the other edge and then find the intersec-

tions of these lines with the contour surface. A refined contour surface will

be formed by connecting the intersection points in an obvious way.

Figure 2.32 shows how the strategy works to plot wire frame contour surfaces using

3 and 4 points on each edge of the tetrahedron with no intersection (total of 9 and 16

points). Similar to the ‘three intersections’ situation, we can adjust number of selected

points to have a smooth plot over all tetrahedra.

Chapter 2. Contouring Algorithms 57

(a) nSide = 3 (total of 9 points) (b) nSide = 3 (another view)

(c) nSide = 4 (total of 16 points) (d) nSide = 4 (another view)

Figure 2.32: Two different views of drawing contour surface for ‘four intersections with

four different edges’ situation in 3D. Black stars show the selected points on two edges

with no intersection.

Chapter 3

Adaptive Mesh Refinement

3.1 Introduction

In the numerical solution of many scientific and engineering problems involving Partial

Differential Equations (PDEs), the finite element and finite volume methods are two

commonly used effective tools. Both techniques require a spatial decomposition of the

computational domain into a mesh. A mesh is a union of simple geometric elements such

as quadrilaterals or triangles in two dimensions and hexahedra or tetrahedra in three

dimensions.

Adaptive mesh refinement is an important technique for saving computational re-

sources particularly when solving problems modeling multi-scale phenomena. Rather

than using a uniform grid, which would have to be at the resolution of the smallest fea-

ture of interest, adaptive grids permit one to use a fine resolution where it is needed, and

a coarser resolution elsewhere. This can result in significant time and space savings over

simply using a uniform grid.

As part of our work, we focus on adaptive mesh refinement techniques for two-

dimensional partial differential equations. We introduce a class of adaptive mesh re-

finement algorithms that makes use of DEI-based interpolants to define the associated

58

Chapter 3. Adaptive Mesh Refinement 59

monitor function. We investigate how well such ‘generic’ mesh selection strategies, based

on properties of the problem alone, can perform when compared with special-purpose

monitor functions that are designed for a specific PDE method.

In the following sections, we first present an overview of a standard three-stage algo-

rithm. We then discuss how the DEI can be used to present an AMR approach which

attempts to adapt the mesh based on the properties of the DEI and the PDE.

3.2 Previous and Related Work

In general, the domain of interest of a physical problem can be any irregularly shaped

domain. In such a case, one usually wishes to create an initial mesh that conforms to

the geometry of the problem. In order to generate such meshes, a three-stage algorithm

can be used as follows:

• Stage 1: Generate a minimal (coarse) mesh to reflect the geometry of the domain

and be consistent with the topology of the problem domain. The output of this

stage would be a mesh M1.

• Stage 2: Refine M1 to obtain a mesh preserving the ‘good’ triangular shapes (M2).

For example, a mesh with the minimum angle greater than 25. The input of this

stage is M1 and its output is the mesh bvM2.

• Stage 3: Refine M2 which is assumed to be fine enough to support computing an

approximate solution for which the monitor function used in this stage is in the

asymptotic behaviour range. The input of this stage is M2 and its output is the

mesh M3.

For the first two stages, Delaunay meshing has pretty well proven itself to be the

method of choice. In the early 1990’s a Delaunay refinement method was rigorously

proven to produce meshes with no ‘small’ angles for Stage 2, and its practical performance

Chapter 3. Adaptive Mesh Refinement 60

Start with the mesh generated by the second stage, M2 (with corresponding triangles, T0)

Solve the PDE on M2 and form the associated piecewise polynomial (a DEI)

k = 0

while the termination condition is not satisfied do

(i) Determine a set of triangles, Sk ⊂ Tk, to refine based on a candidate monitor functions

(ii) Refine the triangles in Sk to form Tk+1

Solve the PDE on Tk+1 and form the associated piecewise polynomial

k = k + 1

end do

Figure 3.1: Overview of Stage 3 of our adaptive mesh refinement algorithm.

and computational efficiency was established. The refinement uses the circumcircle center

as the primary choice of insertion vertex. However, a more complex refinement is made

if the circumcircle center lies near, or over, a boundary edge. One can refer to [9] [38]

and [41] for a more detailed description and justification for the three-stage view.

Our focus and contribution to this large topic is on the third stage where we define

and investigate alternative generic monitor functions that are each based on using DEIs.

A monitor function tells us how appropriate an individual triangle is to be selected for

refinement. It may rely on the quality of the triangle or be a direct measure of the error

associated with the triangle. In any case, it must be easy and inexpensive to compute. It

also can be used to identify if the termination criteria of the AMR algorithm is satisfied.

Figure 3.1 illustrates our adaptive refinement algorithm for this stage. Two main steps

are indicated by (i) and (ii) in the figure. In the mesh selection step, denoted by (i),

we identify the mesh elements appropriate to refine based on one of the four monitor

functions, ‘defect’, ‘surface area’, ‘stepwise error’, or ‘interpolation error’. In this step,

we identify a set of triangles where the monitor function is greater than a threshold value

Chapter 3. Adaptive Mesh Refinement 61

(for example twice the average). It is these triangles that are refined on this step. In

the case that the termination condition is an upper bound on the final number of mesh

elements, we also take this into consideration in the mesh selection step. In section 3.3,

the use of the DEI in the mesh selection step will be explained in more detail.

We chose MGGHAT [31] as an example of a standard PDE solver which solves elliptic

PDEs and is callable as a Fortran subroutine. MGGHAT will return the solution on

a mesh of at most K triangles using its own internal monitor function. We first apply

MGGHAT to determine the MGGHAT ‘benchmark’ result for comparison. We can then

determine what the results would have been if one of our monitor functions had been

used for stage 3 by using MGGHAT to determine M2 and then determining M3 (without

reference to MGGHAT) using the stage 3 algorithm of Figure 3.1 with the same stopping

criteria (at most K triangles).

For the mesh refinement step, denoted by (ii) in Figure 3.1, a combined local refine-

ment and local reconnection algorithm is used. In section 3.4, some specific details about

our implementation for this step will be presented.

3.3 Mesh Selection Step

In [13], Enright suggested the use of approximations to ‘arc length’ and ‘defect’ to define

monitor functions, based on CRKs, for mesh refinement in ODEs. Note that, in the case

we are considering, in 1D (ODEs) a mesh element would be a line segment; while in 2D

a mesh element would be a triangle; and in 3D a mesh element would be a tetrahedron.

The mesh points can then be relocated based on ‘equidistributing’ this measure. For

a two-dimensional problem, one can extend the notion of ‘arc length’ to ‘surface area’.

Moreover, as an alternative to ‘defect’ and ‘surface area’ measures, one can locally apply

the difference between the approximations in two consecutive steps (‘stepwise error’) or

the difference between the approximations using two different interpolants (‘interpolation

Chapter 3. Adaptive Mesh Refinement 62

error’) as a monitor function. In the following, a more precise definition for each monitor

function will be provided.

3.3.1 ‘Defect-based’ Monitor Function

Consider the case where the underlying PDE is a two-dimensional second-order elliptic

PDE of the form

∂2u

∂x2
+

∂2u

∂y2
= g(x, y, u, ux, uy),

and U(x, y) is the piecewise polynomial associated with the PCI approach. We define

the associated defect or residual, D(x, y), by

D(x, y) =
∂2U

∂x2
+

∂2U

∂y2
− g(x, y, U, Ux, Uy).

Ux(x, y) and Uy(x, y) are also bivariate piecewise polynomials which are approxima-

tions to ux(x, y) and uy(x, y). The particular monitor function we use in our ‘defect’ mesh

refinement scheme is the product of an estimated maximum defect (on the triangle) and

the area of the triangle. For the mesh element ti, let ri be

ri = Ai ×Di ≈
∫

ti
|D(x, y)| dxdy,

where Di is the magnitude of a sampled defect on ti and Ai is the area of ti. Now since

⋃
i ti = Ω (The whole domain), we have

R ≡
N∑

i=1

ri ≈
∫

Ω
|D(x, y)| dxdy,

and equidistributing the monitor function ri is related to an effective control of
∫
Ω |D(x, y)|dxdy.

3.3.2 ‘Surface Area’ Monitor Function

An approximation to the value of the surface area associated with each triangle, ti,

determined from U(x, y), can also be used to define an appropriate monitor function. If

Chapter 3. Adaptive Mesh Refinement 63

ti, i = 1, 2, · · · , N are the triangles associated with the current mesh then the surface area

associated with ti and the approximate solution U(x, y) is

Ati =
∫∫

ti

√
1 + (

∂U

∂x
)2 + (

∂U

∂y
)2 dxdy,

and this value can be used as the ‘surface area’ monitor function.

3.3.3 ‘Stepwise Error’ Monitor Function

Using the difference between the approximations obtained in two consecutive refinement

steps, one can define another measure of the error which can be used as a basis for a

suitable monitor function. Starting with a coarse mesh along with a DEI, U(x, y), and

one can refine each triangle once and find the associated ‘refined’ piecewise polynomial

interpolant, U(x, y). One can then define

SEi =

∑K
k=1 |U(xk, yk)− U(xk, yk)|

K
, i = 1, 2, · · · , N

where N is the number of mesh elements in the refined mesh, K is the number of sample

points used to find the average error in each mesh element and SEi is the ‘stepwise error’

monitor function associated with ti.

3.3.4 ‘Interpolation Error’ Monitor Function

Another approach that uses DEIs is to use two different DEI approximations for each

triangle and then define their difference as a monitor function [14]. That is, if U(x, y) and

Ũ(x, y) are two bivariate piecewise polynomials which approximate u(x, y) differently, the

‘interpolation error’ monitor function for the element i is

IEi =

∑K
k=1 |Ũ(xk, yk)− U(xk, yk)|

K
, i = 1, 2, · · · , N

where N is the number of mesh elements in the refined mesh and K is the number

of sample points used to approximate the average error associated with each mesh ele-

Chapter 3. Adaptive Mesh Refinement 64

ment. Note that U(x, y) and Ũ(x, y) could be two interpolants of different order or two

interpolants of the same order.

3.4 Mesh Refinement Step

In Appendix A.1, we review the advantages and disadvantages of the four most popu-

lar local refinement algorithms, Mid-point Insertion, Bisection, Regular Refinement and

Newest-Node. In addition, in Appendix A.2, we introduced Delaunay triangulation as

the most widely used local reconnection algorithm. Considering only the local refinement

approach, one could insert a vertex inside the triangle. However, by combining a local

refinement and a local reconnection approach, any vertex inside the circumcircle of the

triangle can be selected since any triangle whose circumcircle includes that vertex will

be refined. Intuitively, in order to get new well-shaped triangles by the node insertion,

one may argue that the new node should be positioned as far from existing nodes as

possible. The position inside the circumcircle of a triangle, which is as far from existing

nodes as possible, is exactly at the center of the circumcircle of the triangle or simply

at the ‘circumcenter’ of the triangle equidistant from its three nodes. As Hjelle argued

in [24], it is also more distant from other nodes in the triangulation than it is from the

three nodes of the triangle. Therefore, the circumcenter of a triangle seems to be a good

choice since it improves the quality of the existing triangles. However, it is not always

possible to insert the circumcenter of a triangle for refinement.

In some cases, the circumcenter may lie outside of the domain. In such cases, we

simply apply the Mid-point algorithm. However, after adding the mid-point of the trian-

gle, we still apply the local reconnection algorithm to make the triangulation Delaunay

again. The Mid-point insertion algorithm might create triangles with small angle since

it halves the existing angles. This could be resolved by the Delaunay algorithm which

maximizes the minimum angle. However, if the triangle locates at a boundary, the small

Chapter 3. Adaptive Mesh Refinement 65

angles might be left even after making the triangulation Delaunay, since Delaunay trian-

gulation might not be able to remove poor triangles at boundaries. A solution is to use

a simple ‘Bisection’ method when the triangle is a boundary triangle with the longest

edge locating at the boundary. Thus, here is our mesh refinement algorithm:

• Find the most appropriate point p to add

¦ Use circumcenter insertion if the circumcenter of the triangle lies inside the

domain.

¦ Use Bisection method if the longest edge of the triangle lies at the boundary.

¦ Use Mid-point insertion otherwise.

• Insert p using an incremental approach of Delaunay triangulation.

Fortunately, inserting a point p into a Delaunay triangulation appears to be a local

process. In most cases only a limited number of triangles near p needs to be rearranged

when inserting p. More precisely, only the triangles whose circumcircle contains p in its

interior will be modified.

Chapter 4

Error Estimation

4.1 Introduction

While an important task in numerical analysis is to develop reliable and efficient algo-

rithms, it is also desirable to be able to estimate the error in the approximate solution

when we solve a problem. An error estimate can help us know how much we can trust

the solution or even the model itself. Our contribution in this area is to investigate the

use of a DEI to introduce a companion equation based on the original PDE and then

use the approximate solution of this companion equation to provide an à posteriori error

estimator for the error associated with the DEI, u− U .

4.2 The Companion Equation

In order to illustrate our approach, we will consider a two-dimensional second-order

elliptic PDE of the form

uxx + uyy = g(x, y, u, ux, uy), (4.1)

defined over a uniform rectangular coarse mesh of size n × n. (ie, (n + 1)2 mesh points

and n2 mesh elements.) We will assume that the DEI, U(x, y), provides O(hp) off-mesh

66

Chapter 4. Error Estimation 67

approximations to the solution u(x, y) for all (x, y) in the domain of interest, Ω (where

h = 1
n
). U(x, y) satisfies a perturbed PDE

Uxx + Uyy = g(x, y, U, Ux, Uy) + δ1(x, y) ‖δ1(x, y)‖ < TOL1, (4.2)

where the value of TOL1 can be estimated by sampling the defect on each mesh element.

(Note that δ1(x, y) can be computed accurately at any point - it is only its maximum

value that we are estimating by TOL1.) Now, we know the exact global error for (x, y)

in Ω is defined by

e(x, y) = u(x, y)− U(x, y). (4.3)

From our assumption above e(x, y) is O(hp). If we differentiate both sides of (4.3) with

respect to x and y, we obtain

ux(x, y) = Ux(x, y) + ex(x, y), (4.4)

uy(x, y) = Uy(x, y) + ey(x, y), (4.5)

exx(x, y) = uxx(x, y)− Uxx(x, y), (4.6)

and

eyy(x, y) = uyy(x, y)− Uyy(x, y). (4.7)

By considering equations (4.1), (4.2), (4.4) and (4.5), if we add equations (4.6) and

(4.7), we observe that e(x, y) satisfies the following PDE

exx + eyy = (uxx + uyy)− (Uxx + Uyy)

= g(x, y, u, ux, uy)− g(x, y, U, Ux, Uy)− δ1(x, y)

= g(x, y, U + e, Ux + ex, Uy + ey)− g(x, y, U, Ux, Uy)− δ1(x, y)

≡ h(x, y, e, ex, ey). (4.8)

We call equation (4.8), the companion equation which can be approximated locally

on each mesh element, using the same PDE method in order to obtain an estimate of the

Chapter 4. Error Estimation 68

global error. For each local problem, we simply consider Dirichlet boundary conditions

e(x, y) = 0. However, for the elements located adjacent to the boundary of the Ω, we can

use the exact boundary condition e(x, y) = u(x, y)− U(x, y) for the edge of the element

that corresponds to the boundary of Ω. We then solve each local problem on a mesh of

size 2× 2 (see Figure 4.1) which corresponds to a global mesh of size 2n× 2n.

Figure 4.1: A mesh of size 2×2 on which we solve the companion equation for each local

problem.

After doing this, we would also determine a bivariate piecewise polynomial, E(x, y)

which is an approximation to the exact error e(x, y) for all (x, y) in the domain of interest,

Exx + Eyy = h(x, y, E, Ex, Ey) + δ2(x, y) ‖δ2(x, y)‖ < TOL2. (4.9)

Note that the value of TOL2 can be estimated by sampling the defect on each element

associated with E(x, y).

Moreover, we might be able to improve the accuracy of the solution of the original

PDE by adding the solution of this companion equation (this technique is similar in spirit

to the use of iterative improvement).

Ũ(x, y) = U(x, y) + E(x, y). (4.10)

Chapter 4. Error Estimation 69

Solving the companion equation for each mesh element can be a time-consuming

process, but one can solve the equations in parallel since each one is a completely local

computation. Furthermore, when we apply the underlying PDE solver to the companion

equation on element e, we should be able to exploit the fact that we need only compute

an approximate solution on the coarsest possible refinement of e (ie., with no error control

or mesh refinement). In the next section, we will discuss a parallel implementation for

solving the companion equation over each mesh element.

The estimates depend only on information that is locally available to each element

and the local PDE associated with each element can be solved in parallel. The difficulty

in using local information only to define the local PDE is that one does not have a

natural definition of what the local boundary conditions should be. We have tried various

approximations to these boundary conditions and some choices lead to a good estimate of

the magnitude of the global error over the whole domain. Such estimates provide a good

measure of the location and magnitudes of the maximum error over the complete domain,

but they are not accurate enough to be used to improve overall accuracy of U(x, y). This is

in contrast with the ODE case where an error estimate based on integrating a companion

ODE (defined in terms of the CRK, S(X)) has a well-defined local IVP associated with

each step, and the estimate can be added to S(x) to significantly improve the accuracy

of approximation.

It is worth noting that there is another approach which is to solve the companion

equation globally on a finer mesh (of size 2n× 2n for example), by considering a simple

Dirichlet boundary condition e(x, y) = u(x, y) − U(x, y) for all (x, y) on the boundary

of the whole domain. However this ‘couples’ all the ‘local’ problems and we lose the

advantage of solving a sequence of independent local problems (for each element).

Chapter 4. Error Estimation 70

4.3 Parallel Implementation

Parallel computing is a form of computation in which many instructions are carried out

simultaneously, operating on the principle that large problems can often be divided into

smaller ones, which are then solved concurrently [1]. There are several different forms of

parallel computing: bit-level parallelism, instruction-level parallelism, data parallelism,

and task parallelism. Data parallelism focuses on distributing the data across different

computing nodes where the same calculation is performed on different sets of data [10].

For example solving the companion equation on a rectangular mesh of size 20× 20 or

higher can be easily divided into several concurrent processes, each working on a part of

the mesh. To do this in parallel, we need very little communication between processes.

In fact, we only need to scatter the domain to the processes at the beginning and gather

information from the processes at the end. In other words, we need no communication

during the solution of each local PDE on each part of the domain.

We have used MPI subroutines [33] to implement data parallelism for solving the

companion equations. In particular, we have used the MPI SCATTER subroutine to

scatter data across the processes and the MPI GATHER subroutine to gather data from

the processes.

Chapter 5

Numerical Results

5.1 Test Problems

We have used several test problems to assess the relative performance of our algorithms.

For the problems with no closed-form solution, in order to assess the accuracy, the ap-

proximation generated by a reliable method on a very fine mesh has been used. The first

test problem (problem 39 in [35]) is a two-dimensional second-order elliptic PDE of the

form,

∂2u

∂x2
+

∂2u

∂y2
+ β(1− e2x)u = 0, (x, y) ∈ [0, 1]× [0, 1],

with Dirichlet boundary conditions u = 1. Figure 5.1 shows its surface and contour plots

generated using a reliable PDE solver for β = 20.

The second test problem (problem 10 in [35]) is a two-dimensional second-order elliptic

PDE,

∂2u

∂x2
+

∂2u

∂y2
= f, (x, y) ∈ [0, 1]× [0, 1],

71

Chapter 5. Numerical Results 72

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) The surface plot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) The contour plots

Figure 5.1: First test problem: The surface plot and the contour plots for β = 20.

with Dirichlet boundary conditions u = 0. The function f is chosen to ensure the solution

is

u(x, y) = (x2 − x)(y2 − y)e−α[(x−.5)2+(y−β)2].

Figure 5.2 shows its surface and contour plots for α = 100 and β = .117.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.005

0.01

0.015

0.02

0.025

0.03

(a) The surface plot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.005

0.01

0.015

0.02

0.025

(b) The contour plots

Figure 5.2: Second test problem: The surface plot and the contour plots for α = 100 and

β = .117.

Chapter 5. Numerical Results 73

The third test problem (problem 28 in [35] for α = 1) is also a two-dimensional

second-order elliptic PDE of the form

∂2u

∂x2
+

∂2u

∂y2
= 1, (x, y) ∈ [0, 1]× [0, 1],

with Dirichlet boundary conditions u = 0. Figure 5.3 shows its surface and contour plots

generated using a reliable PDE solver.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.25

−0.2

−0.15

−0.1

−0.05

0

(a) The surface plot

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.25

−0.2

−0.15

−0.1

−0.05

(b) The contour plots

Figure 5.3: Third test problem: The surface plot and the contour plots.

The fourth test problem is

∂2u

∂x2
+

∂2u

∂y2
= −100e(− (5−10x)2

2
) + (50− 100x)ux − 150e(− (5−10x)2

2
)e(− (5−10y)2

2
)

−75e(− (5−10y)2

2
) + (50− 100y)uy,

on the domain (x, y) ∈ [0, 1]× [0, 1] and its closed-form solution is

u(x, y) = e(− (5−10x)2

2
) + 0.75e(− (5−10y)2

2
) + 0.75e(− (5−10x)2

2
)e(− (5−10y)2

2
). (5.1)

Figure 5.4 shows its surface and contour plots.

Chapter 5. Numerical Results 74

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

(a) The surface plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) The contour plot

Figure 5.4: Fourth test problem: The surface plot and the contour plots.

The fifth test problem is a three-dimensional second-order elliptic PDE:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 2π cos(πx) sin(πy) sin(πz)− 3π2u

on the domain (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1] and its closed-form solution is

u(x, y, z) = x sin(πx) sin(πy) sin(πz).

Figure 5.5 shows its surface and contour plots for fixed z = 0.5.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

z=0.5

y

(a) The surface plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

z=0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) The contour plot

Figure 5.5: Fifth test problem: The surface and contour plots for z = 0.5.

Chapter 5. Numerical Results 75

The sixth test problem is also a three-dimensional second-order elliptic PDE:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 6x(y3 − y2)(z2 + 1) + (x3 − x)(6y − 2)(z2 + 1) + 2(x3 − x)(y3 − y2),

where the domain is (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1] and its closed-form solution is

u(x, y, z) = (x3 − x)(y3 − y2)(z2 + 1).

Figure 5.6 shows its surface and contour plots for fixed z = 0.5.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

z=0.5

y

(a) The surface plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

z=0.5

0.01

0.02

0.03

0.04

0.05

0.06

(b) The contour plot

Figure 5.6: Sixth test problem: The surface and contour plots for z = 0.5.

The seventh test problem is a three-dimensional second-order elliptic PDE:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= (x2y2 + x2z2 + y2z2)exp(xyz)

on the domain (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1] and its closed-form solution is

u(x, y, z) = exp(xyz).

Figure 5.7 shows its surface and 2D contour plots for fixed z = 0.5.

Chapter 5. Numerical Results 76

0
0.2

0.4
0.6

0.8
1

0

0.5

1
1

1.2

1.4

1.6

1.8

x

z=0.5

y

(a) The surface plot

x

y

z=0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(b) The contour plot

Figure 5.7: Seventh test problem: The surface and 2D contour plots for z = 0.5.

5.2 Scattered Data Interpolation

5.2.1 Two Dimensional Case

In this section, we compare the PCI with the standard DEI, the ADEI, DEI3-15, DEI3-13

and DEI4-15. In addition to time and accuracy, we consider visual appearance to show

how the PCI generates a continuous contour or surface plot.

Table 5.1 shows the average error of the PCI and the other interpolants for the fourth

test problem and different number of mesh points. It does not contain the average

error of the ADEI for 2000 and 5000 mesh points due to the long time required for

the computation. The scattered data is generated by using a random approach and

triangularized by the built-in Matlab function delaunay. As can be seen from the

table, the PCI generates the smallest average error for all cases. Table 5.2 presents the

corresponding required CPU time. The PCI is the most efficient interpolant in terms of

time. It also can be seen that the ADEI, that is almost the second best one in terms of

accuracy, needs much more time than the others because of the large number of iterations.

Chapter 5. Numerical Results 77

Mesh Algorithm

Points PCI DEI ADEI DEI3-13 DEI3-15 DEI4-15

100 0.034112 0.105088 0.039668 0.901402 0.161128 0.036194

200 0.004943 0.292204 0.005256 0.005956 0.033420 0.007144

500 0.000703 0.004561 0.000876 0.001542 0.004836 0.000916

1000 0.000208 0.003134 0.000278 0.000426 0.001198 0.000210

2000 0.000071 0.001873 —— 0.000917 0.000407 0.000085

5000 0.000009 0.000077 —— 0.000019 0.000116 0.000011

Table 5.1: Average error for the PCI and the other interpolants on an unstructured

triangular mesh with different number of mesh points for the fourth test problem.

Figures 5.8 and 5.9 show the contour plots generated by different interpolants for the

fourth test problem on a triangular mesh with 500 and 2000 mesh points, respectively.

The PCI is the only one that always generates continuous contour plots. The contour

plots have been generated by the built-in Matlab function contour on a fine grid of size

40*40.

Chapter 5. Numerical Results 78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) The PCI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) The Standard DEI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) The ADEI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) The DEI3-13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) The DEI3-15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) The DEI4-15

Figure 5.8: The contour plots of the PCI and the other interpolants for the fourth test

problem on a triangular mesh with 500 mesh points.

Chapter 5. Numerical Results 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) The PCI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) The Standard DEI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) The ADEI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) The DEI3-13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) The DEI3-15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) The DEI4-15

Figure 5.9: The contour plots of the PCI and the other interpolants for the fourth test

problem on a triangular mesh with 2000 mesh points.

Chapter 5. Numerical Results 80

Mesh Algorithm

Points PCI DEI ADEI DEI3-13 DEI3-15 DEI4-15

100 0.38 1.21 95.63 0.77 1.10 1.10

200 0.77 2.48 628.13 1.59 2.25 2.19

500 2.31 6.54 3570.60 4.22 5.77 5.82

1000 3.85 13.35 19422.59 8.68 11.92 11.81

2000 7.58 26.64 —— 17.25 23.72 23.51

5000 18.68 69.92 —— 44.66 62.23 61.90

Table 5.2: Total required time (in terms of seconds) for the PCI and the other interpolants

on an unstructured triangular mesh with different number of mesh points for the fourth

test problem.

Chapter 5. Numerical Results 81

5.2.2 Three Dimensional Case

In this section, we present results for the three candidate interpolants in terms of the time

required to generate them, the associated accuracy and their suitability for visualization.

For accuracy, the average error over 1000 regular points in the domain has been computed.

The scattered data is generated using a random distribution of points and triangularized

by the built-in Matlab delaunay3 function.

Mesh # Mesh Interpolant

Points Elements p3,e p2,e p̂2,e

64 303 8.4× 10−3 1.065× 10−1 2.95× 10−2

Fifth 512 3146 4.97× 10−4 9.6× 10−3 5.8× 10−3

Test 4096 26880 3.76× 10−5 1.3× 10−3 1.31× 10−4

Problem 32768 219273 5.56× 10−6 1.67× 10−4 4.04× 10−5

Observed Order 3.52 3.10 3.17

64 303 1.5× 10−3 2.03× 10−2 8.6× 10−3

Sixth 512 3146 5.42× 10−5 2.8× 10−3 2.3× 10−3

Test 4096 26880 4.76× 10−6 1.72× 10−4 3.14× 10−5

Problem 32768 219273 4.77× 10−7 2.98× 10−5 1.02× 10−5

Observed Order 3.87 3.14 3.24

Table 5.3: Average error of the three dimensional DEI-based interpolants for the fifth

and sixth test problems.

Table 5.3 shows the average error of the candidate interpolants for different number of

mesh points. As expected, the pure cubic interpolant p3,e delivers the most accuracy for

both test problems. Furthermore, Table 5.4 reports the corresponding required computer

time for the candidate interpolants and both the fifth and sixth test problems. It can

be seen that p̂2,e needs less computer time than p3,e and p2,e as it has fewer unknown

Chapter 5. Numerical Results 82

coefficients to determine. Considering both test problems, the required time depends on

the number of mesh elements and number of unknowns and is almost independent of the

test problem.

Mesh # Mesh Interpolant

Points Elements p3,e p2,e p̂2,e

64 303 1.021 2.193 0.621

First 512 3146 10.71 24.68 6.098

Test 4096 26880 118.9 332.2 56.31

Problem 32768 219273 3976 10682 1143

64 303 1.091 2.003 0.711

Second 512 3146 10.33 21.87 6.259

Test 4096 26880 119.3 291.8 52.81

Problem 32768 219273 3995 10629 1016

Table 5.4: Total required time (in seconds) of the three dimensional DEI-based inter-

polants for the fifth and sixth test problems.

Unfortunately, none of these interpolants are globally continuous along the boundaries

of the mesh elements. In fact, they provide continuity on the shared edges, but not

necessarily on the shared faces. Figure 5.10 shows the contour plots associated with

the different interpolants on a tetrahedron mesh with 512 mesh points for the sixth

test problem. The contour plots have been generated by the built-in Matlab contour

procedure which requires the evaluation of the respective piecewise polynomials on a fine

uniform grid of size 40×40×40. The pure tri-cubic generates the most suitable results for

visualization. As can be seen, tri-quadratic with total degree 3 generates better results

than tensor product tri-quadratic with total degree 6.

Chapter 5. Numerical Results 83

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

z=0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) The exact solution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
y

z=0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) pure tri-cubic (p3,e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

z=0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) tensor product tri-quadratic (p2,e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

z=0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) modified tri-quadratic (p̂2,e)

Figure 5.10: The contour plots of the exact solution and candidate interpolants for the

sixth test problem for z = 0.5 on an unstructured tetrahedron mesh with 512 random

mesh points.

Chapter 5. Numerical Results 84

5.3 Contouring Algorithms

5.3.1 Two Dimensional Case

We have compared our fast contouring algorithms, introduced in section 2.3, with the

Matlab contour procedure and those addressed by Bradbury and Enright in [7]. In

order to compare the methods, a uniform distribution of the data is considered because

the Matlab contour procedure needs the data on a rectangular mesh. Both contouring

algorithms implemented by Bradbury and Enright, FCINT and FCODE, are included for

comparison. Table 5.5 shows the average error of applying the methods on a rectangular

mesh with different number of mesh points for the fourth test problem. For each segment

of the approximate contour curve that lies in a mesh element, a random point on the

curve is considered as a sample point. Therefore the total number of sample points

depends on the size of the underlying mesh and the number of contour curves. The

error reported, for each sample point, is the absolute difference between the true value of

u(x, y) and the value of the contour curve. In addition, Table 5.6 shows the corresponding

required computer time. From Tables 5.5 and 5.6, it can be inferred that our algorithms

can be both more accurate and faster than the Matlab contour procedure, FCINT and

FCODE.

Although the Intercept method is not as accurate as the SODE and ODEA methods

for this rectangular mesh, it was more accurate than the others for the unstructured

triangular meshes we investigated. However the total required time for the Intercept

method is more. Tables 5.7 and 5.8 show the average error and corresponding required

time of applying our fast contouring algorithms on an unstructured triangular mesh

with 900, 1600 and 2500 mesh points for the fourth test problem. In section 2.3, an

alternate ODEA algorithm, the AODEA, was introduced to improve the accuracy of

ODEA method. The results of the AODEA method are also presented in Tables 5.7

and 5.8. As can be seen, the AODEA method is more accurate than the ODEA but

Chapter 5. Numerical Results 85

Mesh Algorithm

Points Matlab FCINT FCODE Intercept SODE ODEA

30× 30 0.3066 0.001900 0.002300 0.00001270 0.00001060 0.00001010

40× 40 0.4522 0.000741 0.000811 0.00000798 0.00000291 0.00000235

50× 50 0.4605 0.000273 0.000234 0.00000766 0.00000213 0.00000183

Table 5.5: Average error for the different methods for a rectangular mesh with 30× 30,

40× 40 and 50× 50 mesh points for the first test problem.

Mesh Algorithm

Points Matlab FCINT FCODE Intercept SODE ODEA

30× 30 14.66 9.78 9.50 9.61 5.33 5.54

40× 40 23.18 17.19 16.59 13.40 9.33 9.50

50× 50 35.40 22.08 21.75 18.95 14.77 15.21

Table 5.6: Total required time (in terms of seconds) for the different methods for a

rectangular mesh with 30 × 30, 40 × 40 and 50 × 50 mesh points for the fourth test

problem.

needs more time as well. The accuracy of the AODEA method can be controlled by the

value of the applied threshold.

Chapter 5. Numerical Results 86

Mesh Algorithm

Points Intercept SODE ODEA AODEA

900 0.00000903 0.000687 0.000687 0.0000247

1600 0.00000655 0.0000299 0.0000226 0.0000156

2500 0.00000546 0.0000128 0.0000123 0.00000663

Table 5.7: Average error for the different methods for an unstructured triangular mesh

with 900, 1600 and 2500 mesh points for the fourth test problem.

Mesh Algorithm

Points Intercept SODE ODEA AODEA

900 10.98 5.43 5.55 6.65

1600 14.11 9.28 9.39 10.49

2500 18.35 13.62 13.79 15.54

Table 5.8: Total required time (in terms of seconds) for the different methods for an

unstructured triangular mesh with 900, 1600 and 2500 mesh points for the fourth test

problem.

Chapter 5. Numerical Results 87

5.3.2 Three Dimensional Case

We have implemented the three dimensional contouring algorithm in Matlab. Matlab

has a function called patch(FV) which can create a 3D patch using structure FV, that

contains the vertices and faces information. Therefore, after constructing final refined

triangles at the third phase of our algorithm, one can simply draw the triangles to have

a 3D wire frame contour surface, or create a set of triangles (faces) and vertices and pass

them to the patch routine to make a rendered graph. Figure 5.11 shows an example of

both wire frame and rendered graphs for the sixth test problem for three different contour

levels, v = 0.03, v = 0.05, and v = 0.07 generated by Matlab isosurface routine.

An important feature of our algorithm is its ability to refine the contour by considering

extra points in the third stage. In other words, one can start with a coarse mesh and

ask for a higher resolution of the contour. Figure 5.12 shows the contour surfaces gener-

ated using Matlab isosurface routine and our algorithm with different number of extra

points, for the sixth test problem. Note that nSide is the number of points considered

on each side of a triangle (in a three intersections situation) and is different from the

actual number of extra points. For example, for nSide = 2, we consider two points on

each side which means no extra points at all (three points in total). nSide = 3 means

three points on each side or three extra points (six points in total). Table 5.9 shows

the relation between nSide and the number of points and triangles for each of the two

desired situations.

Chapter 5. Numerical Results 88

(a) Wire frame plot for v = 0.03 (b) Wire frame plot for v = 0.05 (c) Wire frame plot for v = 0.07

(d) Rendered plot for v = 0.03 (e) Rendered plot for v = 0.05 (f) Rendered plot for v = 0.07

Figure 5.11: The sixth test problem: Wire frame and Rendered contour plots for contour

levels v = 0.03, 0.05, 0.07.

For a fixed value of nSide, the finer the initial grid is, the more accurate the computed

contour will be. Figure 5.13 shows the contour plots generated using Matlab isosurface

routine and our algorithm when nSide = 2, starting with different initial grids. In

Table 5.10, the average error of the computed contour for different initial coarse grids and

value of nSide has been reported. The same results have been represented in Figure 5.14

as a logarithmic graph. The error has been computed by averaging the absolute difference

between the contour value (v) and the exact value of the function at the middle point

Chapter 5. Numerical Results 89

Three Intersections Four Intersections

nSide Extra Points Total Points Total Triangles Extra Points Total Points Total Triangles

2 0 3 1 0 4 2

3 3 6 4 5 9 8

4 7 10 9 12 16 18

5 12 15 16 21 25 32

n n(n+1)
2 − 3 n(n+1)

2 (n− 1)2 n2 − 4 n2 2(n− 1)2

Table 5.9: Relation between nSide and the number of points and triangles for each of

the two desired situations.

of each triangle. It also includes the same computed error for the Matlab isosurface

routine. Note that isosurface accepts only a structured grid as input, while our algorithm

can start with any bounded unstructured initial grid. As can be seen in the table, the

average error decreases as the value of nSide increases. It also decreases when we increase

the number of points in the initial grid. Moreover, it shows that our algorithm is more

accurate than isosurface even when no extra points are introduced.

MATLAB nSide = 2 nSide = 3 nSide = 4

Avg Err #∆ Avg Err #∆ Avg Err #∆ Avg Err #∆

5× 5× 5 4.53e-3 98 1.99e-3 357 1.01e-3 1617 7.93e-4 3608

8× 8× 8 1.76e-3 274 6.16e-4 955 2.17e-4 4299 1.57e-4 9677

10× 10× 10 1.15e-3 420 3.66e-4 1297 1.30e-4 5813 8.95e-5 13107

15× 15× 15 5.30e-4 962 1.45e-4 3372 4.67e-5 15113 2.74e-5 34003

20× 20× 20 2.95e-4 1722 8.08e-5 5842 2.44e-5 26241 1.28e-5 59051

Table 5.10: The average error of the computed contour for different initial grids and

different values of nSide for the sixth test problem (v = 0.07).

Chapter 5. Numerical Results 90

The contour surface generated by our algorithm can be passed to the Matlab patch

routine to create a rendered graph. Figure 5.15 represents such graphs generated by the

Matlab isosurface routine as well as our algorithm for nSide = 2, 3, 4 with an initial

grid 8 × 8 × 8 for the sixth test problem (v = 0.07). As can be seen, it seems that our

algorithm suffers from discontinuity along the patches created by neighboring tetrahedral

elements. However, this discontinuity is basically created by the interpolant we use to

approximate the intersections in the second and third stages of the algorithm and has

nothing to do with our contouring algorithm. As discussed in section 1.8, our DEI-

based three dimensional interpolant has C0 continuity along edges and is not necessarily

continuous along faces.

As discussed earlier, we represent the contour surface as a structure defined by a set

of points and a set of triangles. One might be interested in identifying the number of

final triangles representing the contour surface, before running the contouring routine.

The number of points or triangles in the structure depends on three factors: Value of the

contour level, v; size of initial grid; and number of extra points considered in the third

stage (ie. the value of nSide). Unfortunately, this number cannot be identified before

running the routine. However, after the first stage, we would know how many tetrahedra

are participating in forming the contour surface. Therefore, if we could estimate the

average number of refinements in the second stage (which makes every situation, a desired

one), we would then set the value of nSide in order to obtain a structure with a number

of points or triangles as close as possible to the requested number by the user.

Chapter 5. Numerical Results 91

(a) Default view for Matlab routine (b) Another view for Matlab routine

(c) Default view for nSide = 2 (d) Another view for nSide = 2

(e) Default view for nSide = 3 (f) Another view for nSide = 3

Figure 5.12: Contour plots for the sixth test problem (v = 0.07) generated using Matlab

isosurface routine and our algorithm with nSide = 2, 3 starting with a grid of size 8×8×8.

Chapter 5. Numerical Results 92

(a) Our algorithm for 10× 10× 10 (b) Matlab isosurface for 10×10×10

(c) Our algorithm for 15× 15× 15 (d) Matlab isosurface for 15×15×15

(e) Our algorithm for 20× 20× 20 (f) Matlab isosurface 20× 20× 20

Figure 5.13: Contour plots for the sixth test problem (v = 0.07) generated using Matlab

isosurface routine and our algorithm with nSide = 2 starting with different initial grids.

Chapter 5. Numerical Results 93

5*5*5 8*8*8 10*10*10 15*15*15 20*20*20
10

−5

10
−4

10
−3

10
−2

Size of the initial grid

A
ve

ra
ge

 e
rr

or

MATLAB
nSide=2
nSide=3
nSide=4

Figure 5.14: The average error of the computed contour for different initial grids for

Matlab isosurface routine and our algorithm with different values of nSide for the

sixth test problem (v = 0.07).

Chapter 5. Numerical Results 94

(a) Matlab isosurface routine (b) Our algorithm with nSide = 2

(c) Our algorithm with nSide = 3 (d) Our algorithm with nSide = 4

Figure 5.15: Rendered contours generated by Matlab isosurface routine and our algo-

rithm with nSide = 2, 3, 4 for the sixth test problem (v = 0.07).

Chapter 5. Numerical Results 95

Figure 5.16 shows how the Intercept method works to generate contour surfaces for

Matlab isosurface routine and our algorithm with different values of nSide for the

seventh test problem. Similar to the sixth test problem, introducing extra points, by

increasing the value of nSide, results in a plot with higher resolution. In Table 5.11 or

Figure 5.18, one can see how much it can increase the accuracy of the computed contour

surface. Furthermore, Figure 5.17 illustrates the graphs for Matlab isosurface routine

and our algorithm with nSide = 2 (no extra points), but different initial grids. Finally,

Figure 5.19 represents such graphs generated by the Matlab isosurface routine as well

as our algorithm for nSide = 2, 3, 4 with an initial grid 8 × 8 × 8 for the seventh test

problem (v = 1.1).

MATLAB nSide = 2 nSide = 3 nSide = 4

Avg Err #∆ Avg Err #∆ Avg Err #∆ Avg Err #∆

5× 5× 5 4.58e-3 55 4.44e-3 167 1.41e-3 734 8.92e-4 1665

8× 8× 8 1.48e-3 145 1.25e-3 440 3.79e-4 1990 2.07e-4 4474

10× 10× 10 9.86e-4 235 6.94e-4 593 2.21e-4 2658 1.35e-4 6003

15× 15× 15 4.74e-4 529 3.21e-4 1513 9.67e-5 6783 5.26e-5 15251

20× 20× 20 2.59e-4 931 1.71e-4 2695 4.97e-5 12089 2.55e-5 27169

Table 5.11: The average error of the computed contour for different initial grids and

different values of nSide for the seventh test problem (v = 1.1).

Chapter 5. Numerical Results 96

(a) Default view for Matlab routine (b) Another view for Matlab

routine

(c) Default view for nSide = 2 (d) Another view for nSide = 2

(e) Default view for nSide = 3 (f) Another view for nSide = 3

Figure 5.16: Contour plots for the seventh test problem (v = 1.1) generated using Mat-

lab isosurface routine and our algorithm with nSide = 2, 3 starting with a grid of size

8× 8× 8.

Chapter 5. Numerical Results 97

(a) Our algorithm for 10× 10× 10 (b) Matlab isosurface for 10×10×10

(c) Our algorithm for 15× 15× 15 (d) Matlab isosurface for 15×15×15

(e) Our algorithm for 20× 20× 20 (f) Matlab isosurface 20× 20× 20

Figure 5.17: Contour plots for the seventh test problem (v = 1.1) generated using Mat-

lab isosurface routine and our algorithm with nSide = 2 starting with different initial

grids.

Chapter 5. Numerical Results 98

5*5*5 8*8*8 10*10*10 15*15*15 20*20*20
10

−5

10
−4

10
−3

10
−2

Size of the initial grid

A
ve

ra
ge

 e
rr

or

MATLAB
nSide=2
nSide=3
nSide=4

Figure 5.18: The average error of the computed contour for different initial grids for

Matlab isosurface routine and our algorithm with different values of nSide for the

seventh test problem (v = 1.1).

Chapter 5. Numerical Results 99

(a) Matlab isosurface routine (b) Our algorithm with nSide = 2

(c) Our algorithm with nSide = 3 (d) Our algorithm with nSide = 4

Figure 5.19: Rendered contours generated by Matlab isosurface routine and our algo-

rithm with nSide = 2, 3, 4 for the seventh test problem (v = 1.1).

Chapter 5. Numerical Results 100

5.4 Adaptive Mesh Refinement

The DEI adaptive mesh refinement algorithms have been implemented in both Matlab

and Fortran. In order to evaluate our algorithms for problems with no analytical

solution, we need a reliable PDE solver. After a survey of available packages, we chose

MGGHAT [31] which is written for the solution of second order linear elliptic PDEs.

It solves an elliptic PDE by the finite element method which is callable as a Fortran

subroutine. Having an internal adaptive refinement procedure (based on the Newest-

Node algorithm) makes it possible to qualify the relative performance of our adaptive

refinement algorithms. MGGHAT starts with a ‘regular’ coarse mesh and takes advantage

of the bisection method to keep the triangulation regular during refinement.

Figures 5.20 and 5.21 show the final triangulations using all the techniques discussed

in section 3.3 for the first test problem, for 900 and 2500 mesh points, respectively. Ta-

bles 5.12 and 5.13 report the average error and the maximum defect of the approximated

solution for the first test problem using several mesh selection techniques for 900, 1600,

2500 and 3600 points. Note that, since the mesh refinement section of our algorithm

incrementally inserts points in the current mesh, it is possible to set the stope criterion

to be the final number of points (for example 900). In addition, Figures 5.22 and 5.23

show the same information in semi-log plots. The errors have been computed over a

100× 100 uniform grid inside the domain. The implemented techniques are:

• Uniform Grid: A uniform mesh with no adaptive mesh refinement.

• Surface Area - PQI: ‘Surface Area’ approximation of U(x, y) is used in the mesh

selection step and the PQI is used as the DEI.

• Defect - PCI: ‘Defect’ approximation of U(x, y) is used in the mesh selection step

and the PCI is used as the DEI.

• Stepwise - PCI: ‘Stepwise Error’ measure is used in the mesh selection step and

Chapter 5. Numerical Results 101

the PCI is used as the DEI.

• FQI - PCI: ‘Interpolation Error’ measure is used in the mesh selection step and

the FQI is used as the DEI. The second polynomial DEI in this technique is the

PCI.

• MGGHAT: The MGGHAT’s internal adaptive mesh refinement is used.

What we can see in the table and figures is:

• All techniques try to generate a finer mesh close to the boundaries (specially on

the right side) which is consistent with the behavior of the underlying function.

• While all DEI-based techniques generate similar refined meshes, the ‘Defect’ and

the ‘Interpolation Error’ techniques appear to work slightly better.

Method 900 1600 2500 3600

Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio

Uniform Grid 6.06× 10−6 1.00 1.75× 10−6 1.00 1.03× 10−6 1.00 4.89× 10−7 1.00

Surface Area - PQI 3.45× 10−6 1.75 9.46× 10−7 1.84 6.87× 10−7 1.49 3.37× 10−7 1.45

Defect - PCI 2.32× 10−6 2.61 7.98× 10−7 2.19 3.15× 10−7 3.26 1.54× 10−7 3.17

Stepwise - PCI 3.30× 10−6 1.83 9.70× 10−7 1.80 4.30× 10−7 2.39 2.32× 10−8 2.10

FQI - PCI 2.17× 10−6 2.79 6.84× 10−7 2.55 2.54× 10−7 4.05 1.14× 10−7 4.28

MGGHAT 3.96× 10−6 1.53 9.11× 10−7 1.92 4.15× 10−7 2.48 2.33× 10−7 2.09

Table 5.12: First test problem: Average error and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh.

Chapter 5. Numerical Results 102

Method 900 1600 2500 3600

Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio

Uniform Grid 1.44× 10−1 1.00 9.05× 10−2 1.00 6.01× 10−2 1.00 3.99× 10−2 1.00

Surface Area - PQI 9.53× 10−2 1.51 5.02× 10−2 1.80 3.26× 10−2 1.84 2.72× 10−2 1.46

Defect - PCI 5.39× 10−2 2.67 3.46× 10−2 2.61 2.49× 10−2 2.41 1.50× 10−2 2.66

Stepwise - PCI 7.38× 10−2 1.95 3.96× 10−2 2.28 2.92× 10−2 2.05 1.72× 10−2 2.31

FQI - PCI 7.51× 10−2 1.91 3.18× 10−2 2.75 1.91× 10−2 3.14 1.31× 10−2 3.04

MGGHAT 6.53× 10−2 2.20 3.04× 10−2 2.97 1.99× 10−2 3.02 1.57× 10−2 2.54

Table 5.13: First test problem: Maximum defect and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh.

Chapter 5. Numerical Results 103

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Uniform Grid

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Surface Area - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Defect - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Stepwise - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) PCI - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) MGGHAT

Figure 5.20: First test problem: Final meshes generated by discussed mesh refinement

techniques for 900 points.

Chapter 5. Numerical Results 104

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Uniform Grid

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Surface Area - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Defect - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Stepwise - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) PCI - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) MGGHAT

Figure 5.21: First test problem: Final meshes generated by discussed mesh refinement

techniques for 2500 points.

Chapter 5. Numerical Results 105

500 1000 1500 2000 2500 3000 3500 4000
10

−7

10
−6

10
−5

Number of mesh points

A
ve

ra
ge

 E
rr

or

Uniform Grid
Surface Area − PQI
Defect − PCI
Stepwise − PCI
FQI − PCI
MGGHAT

Figure 5.22: First test problem: Average error of all mesh refinement techniques using

different number of mesh points.

500 1000 1500 2000 2500 3000 3500 4000
10

−2

10
−1

10
0

Number of mesh points

M
ax

im
um

 D
ef

ec
t

Uniform Grid
Surface Area − PQI
Defect − PCI
Stepwise − PCI
FQI − PCI
MGGHAT

Figure 5.23: First test problem: Maximum defect of all mesh refinement techniques using

different number of mesh points.

Chapter 5. Numerical Results 106

Figures 5.27 and 5.28 show the final triangulations using all the techniques discussed

in section 3.3 for the second test problem, for 900 and 2500 mesh points, respectively.

It can be seen that the ‘Surface Area’ technique creates a refined mesh with a pattern

different from what other techniques do for this test problem. Tables 5.14, 5.15 and 5.16

report the average and maximum error in the solution as well as the maximum defect

for the second test problem using several mesh selection techniques for 900, 1600, 2500

and 3600 points. In addition, Figures 5.24, 5.25 and 5.26 show the same information in

semi-log plots. The errors have been computed over a 100× 100 uniform grid inside the

domain.

What we can see in the table and figures is:

• The mesh generated by the ‘Surface area’ technique (Figures 5.27(b) and 5.28(b))

for this problem is very close to the ‘Uniform mesh’ because the height of the peak

is comparable to the size of the mesh elements for this particular problem, and

consequently, there is a little difference in the surface areas.

• All other techniques including the one for MGGHAT generate finer mesh elements

close to the peak (.5,.117).

• For the average error (Table 5.14 and Figure 5.24), all techniques other than ‘Sur-

face Area’ generate results 5 to 10 times better than the ’Uniform mesh’.

• For the maximum error (Table 5.15 and Figure 5.25), the ‘Defect’ and the ‘Inter-

polation Error’ techniques appear to work up to 60 times better than the ’Uniform

mesh’.

• For the maximum defect (Table 5.16 and Figure 5.26), the ‘Defect’, the ‘Stepwise

Error’ and the ‘Interpolation Error’ techniques work 4 to 6 times better than the

’Uniform mesh’.

Chapter 5. Numerical Results 107

Method 900 1600 2500 3600

Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio

Uniform Grid 3.17× 10−6 1.00 9.97× 10−7 1.00 4.07× 10−7 1.00 1.83× 10−7 1.00

Surface Area - PQI 1.66× 10−6 1.90 6.11× 10−7 1.63 2.34× 10−7 1.73 1.04× 10−7 1.75

Defect - PCI 3.06× 10−7 10.35 1.06× 10−7 9.40 4.62× 10−8 8.80 2.16× 10−8 8.47

Stepwise - PCI 6.16× 10−7 5.14 1.88× 10−7 5.30 7.43× 10−8 5.47 3.61× 10−8 5.06

FQI - PCI 3.59× 10−7 8.83 1.28× 10−7 7.78 5.26× 10−8 7.73 2.81× 10−8 6.51

MGGHAT 3.99× 10−7 7.94 1.28× 10−7 7.33 5.59× 10−8 7.28 2.82× 10−8 6.48

Table 5.14: Second test problem: Average error and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh.

Method 900 1600 2500 3600

Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio

Uniform Grid 2.73× 10−4 1.00 8.85× 10−5 1.00 3.93× 10−5 1.00 1.88× 10−5 1.00

Surface Area - PQI 2.01× 10−4 1.35 7.05× 10−5 1.25 2.39× 10−5 1.64 1.42× 10−5 1.75

Defect - PCI 6.42× 10−6 42.52 2.41× 10−6 36.72 7.58× 10−7 51.84 3.14× 10−7 59.87

Stepwise - PCI 2.01× 10−5 13.58 4.25× 10−6 20.82 3.93× 10−6 10.00 1.81× 10−6 10.38

FQI - PCI 4.50× 10−6 60.66 1.79× 10−6 49.44 7.29× 10−7 53.90 4.81× 10−7 39.08

MGGHAT 2.51× 10−5 10.87 4.82× 10−6 18.36 2.37× 10−6 16.58 6.20× 10−7 30.32

Table 5.15: Second test problem: Maximum error and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh.

Chapter 5. Numerical Results 108

Method 900 1600 2500 3600

Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio Avg. Error Ratio

Uniform Grid 6.74× 10−2 1.00 3.72× 10−2 1.00 2.73× 10−2 1.00 1.63× 10−2 1.00

Surface Area - PQI 4.87× 10−2 1.38 2.84× 10−2 1.31 1.80× 10−2 1.51 1.20× 10−2 1.35

Defect - PCI 1.36× 10−2 4.95 7.56× 10−3 4.93 4.63× 10−3 5.89 3.33× 10−3 4.89

Stepwise - PCI 1.65× 10−2 4.08 9.07× 10−3 4.11 5.73× 10−3 4.76 4.21× 10−3 3.87

FQI - PCI 1.39× 10−2 4.84 7.83× 10−3 4.76 5.01× 10−3 5.44 3.51× 10−3 4.64

MGGHAT 5.07× 10−2 1.32 2.78× 10−2 1.34 1.20× 10−2 2.27 6.00× 10−3 2.71

Table 5.16: Second test problem: Maximum defect and ratio of improvement of all mesh

refinement techniques comparing to a uniform mesh.

500 1000 1500 2000 2500 3000 3500 4000
10

−8

10
−7

10
−6

10
−5

Number of mesh points

A
ve

ra
ge

 E
rr

or

Uniform Grid
Surface Area − PQI
Defect − PCI
Stepwise − PCI
FQI − PCI
MGGHAT

Figure 5.24: Second test problem: Average error of all mesh refinement techniques using

different number of mesh points.

Chapter 5. Numerical Results 109

500 1000 1500 2000 2500 3000 3500 4000
10

−7

10
−6

10
−5

10
−4

10
−3

Number of mesh points

M
ax

im
um

 E
rr

or

Uniform Grid
Surface Area − PQI
Defect − PCI
Stepwise − PCI
FQI − PCI
MGGHAT

Figure 5.25: Second test problem: Maximum error of all mesh refinement techniques

using different number of mesh points.

500 1000 1500 2000 2500 3000 3500 4000
10

−3

10
−2

10
−1

Number of mesh points

M
ax

im
um

 D
ef

ec
t

Uniform Grid
Surface Area − PQI
Defect − PCI
Stepwise − PCI
FQI − PCI
MGGHAT

Figure 5.26: Second test problem: Maximum defect of all mesh refinement techniques

using different number of mesh points.

Chapter 5. Numerical Results 110

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Uniform Grid

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Surface Area - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Defect - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Stepwise - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) PCI - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) MGGHAT

Figure 5.27: Second test problem: Final meshes generated by discussed mesh refinement

techniques for 900 points.

Chapter 5. Numerical Results 111

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Uniform Grid

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Surface Area - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Defect - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Stepwise - PCI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) PCI - PQI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) MGGHAT

Figure 5.28: Second test problem: Final meshes generated by discussed mesh refinement

techniques for 2500 points.

Chapter 5. Numerical Results 112

Comparing the final meshes generated by DEI-based techniques with the one gen-

erated by the MGGHAT internal mesh refinement technique in Figures 5.27 and 5.28,

one may wonder where the problem is symmetric with respect to x = 0.5, why our tech-

niques do not generate a symmetric final mesh while MGGHAT does. There are three

main reasons for this behavior. First, the initial mesh used for our techniques was not

symmetric which could generally lead to a non-symmetric final mesh. Secondly, in order

to approximate a measure of the error in the mesh selection step (‘defect’, ‘surface area’

and so on), we use a set of random points which could be different for mesh elements.

And thirdly, as discussed earlier, unlike the PCI in which we use a single fixed point to

generate the piecewise polynomial, we use some random collocation points in order to

define the PQI and the FQI. Apparently, if we address these three issues, we will end up

with a symmetric final mesh for our techniques as well. Figure 5.29 shows a final mesh

with 200 points generated by ‘Defect-PCI’ approach, starting with a symmetric mesh

and using a non-random approach to approximate a measure of the error in the mesh

selection step.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.29: Second test problem: A symmetric mesh generated by ‘Defect-PCI’ ap-

proach, starting with a symmetric mesh and using a non-random approach.

Chapter 5. Numerical Results 113

5.5 Error Estimation

The implementation of the error estimation based on the companion equation has been

done in Fortran. We have used INTCOL and HERMCOL as the underlying PDE

method to solve both the original and the companion equations [25]. Since these sub-

routines are essentially written for a tensor product rectangular mesh and rectangular

domain, in order to implement our error estimation approach, we have implemented the

DEI-based bi-cubic polynomials for a rectangular mesh.

Figure 5.30 shows the results of applying the companion equation to estimate the

error and to improve the solution for the third test problem. In addition, figure 5.31

illustrates the same results for Ux. In these figures, we report the true error, tru − er,

on the left hand side, the estimated error, est − er, in the middle, and the error in the

improved solution U(x, y) + E(x, y), imp− er, on the right hand side. We can see that

• Comparing the left hand side figures with the middle ones, one can see how well

we are able to estimate the error by solving the companion equation.

• Comparing the left hand side figures with the right hand side ones shows that we

are able to improve the solution and decrease the maximum error by adding the

solution of the companion equation to the original solution.

Table 5.17 reports the average and maximum error in U , Ux, and Uy for the built-

in interpolant, for our PCI U(x, y) denoted tru − er, and for our improved interpolant

U(x, y) + E(x, y), denoted imp − er. Each of these statistics were determined over a

100 × 100 mesh for the third test problem. The ratios of improvement have been also

included in the table. The ratio on each line shows the rate of improvement on the next

line comparing to the line before. One can observe that

• The DEI-based piecewise polynomial is more accurate than the built-in interpolant.

Chapter 5. Numerical Results 114

• The maximum error decreases reasonably after adding the solution of the compan-

ion equation.

• We are unable to improve the average accuracy of the solution for this test problem.

mesh U Ux Uy

size Avg Max Avg Max Avg Max

Built-In 7.65× 10−7 6.70× 10−5 1.93× 10−5 2.07× 10−3 1.93× 10−5 2.07× 10−3

Ratio 2.88 2.23 1.78 1.46 1.78 1.46

20× 20 tru− er 2.65× 10−7 3.00× 10−5 1.07× 10−5 1.42× 10−3 1.07× 10−5 1.42× 10−3

Ratio 0.92 3.20 1.79 3.03 1.79 3.03

imp− er 2.87× 10−7 9.36× 10−6 6.02× 10−6 4.67× 10−4 6.02× 10−6 4.67× 10−4

Built-In 4.99× 10−8 1.28× 10−5 2.65× 10−6 7.91× 10−4 2.65× 10−6 7.91× 10−4

Ratio 2.83 1.43 1.86 1.53 1.86 1.53

40× 40 tru− er 1.76× 10−8 8.91× 10−6 1.42× 10−6 5.15× 10−4 1.42× 10−6 5.15× 10−4

Ratio 0.88 5.60 1.64 4.49 1.64 4.49

imp− er 1.99× 10−8 1.58× 10−6 8.61× 10−7 1.14× 10−4 8.61× 10−7 1.14× 10−4

Built-In 3.99× 10−9 3.81× 10−6 2.97× 10−7 1.20× 10−4 2.96× 10−7 1.20× 10−4

Ratio 4.11 4.87 1.48 1.18 1.48 1.18

80× 80 tru− er 9.70× 10−10 7.82× 10−7 1.99× 10−7 1.01× 10−4 1.99× 10−7 1.01× 10−4

Ratio 0.71 4.26 1.60 3.87 1.60 3.87

imp− er 1.35× 10−9 1.83× 10−7 1.24× 10−7 2.61× 10−5 1.24× 10−7 2.61× 10−5

Table 5.17: The average and maximum error in U , Ux, and Uy evaluated on a 100× 100

mesh for the third test problem.

As discussed in section 4.3, solving the companion equation can be a time-consuming

process because a large number of local PDEs are solved and the observation that there is

a considerable amount of overhead involved in ‘setting up’ each local problem. Table 5.18

Chapter 5. Numerical Results 115

shows the required time for solving the original equation (part 1) and also for solving the

companion equation (part 2) for the first test problem. Obviously, solving the companion

equation needs much more CPU time which can be decreased by considering parallel

implementation.

20× 20 40× 40 80× 80

Part 1 0.21 1.31 8.14

Part 2 3.45 20.11 125.61

Total 3.66 21.42 133.75

Table 5.18: CPU Time (in seconds) for different mesh sizes for the first test problem with

β = 20.

Table 5.19 reports the speed-up we obtain by using up to 16 processors in order to

approximate the solution of the first test problem using the companion equation approach

for a mesh of size 48×48. Furthermore, Figure 5.32 shows the required time for each part

and total required time and Figure 5.33 shows a graphical representation of the speed-

up we obtained using up to 16 processors. As expected, the parallel implementation

is scalable and we can speed the execution of the second part by a factor close to the

number of processors. It also can be seen, using 16 processors decreases the execution

time of the second part to 2.25 seconds which is now comparable to the execution time

of the first part (1.76 seconds).

Chapter 5. Numerical Results 116

Number of processors 1 2 3 4 6 8 12 16

Part 1 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76

Part 2 25.36 12.69 8.49 6.50 4.58 3.49 2.41 2.25

Part 2 Speed-up 1.00 1.99 2.98 3.90 5.53 7.26 10.52 11.27

Total 27.12 14.45 10.25 8.26 6.34 5.25 4.17 4.01

Total Speed-up 1.00 1.87 2.64 3.28 4.27 5.16 6.50 6.76

Table 5.19: CPU Time (in seconds) and speed-up obtained using 2 to 16 processors for

a mesh of size 48× 48 for the first test problem with β = 20.

Chapter 5. Numerical Results 117

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

x 10
−5

(a) tru− er (20× 20)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

x 10
−5

(b) est− er (20× 20)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

x 10
−5

(c) imp− er (20× 20)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

x 10
−6

(d) tru− er (40× 40)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

x 10
−6

(e) est− er (40× 40)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

x 10
−6

(f) imp− er (40× 40)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

x 10
−7

(g) tru− er (80× 80)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

x 10
−7

(h) est− er (80× 80)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

x 10
−7

(i) imp− er (80× 80)

Figure 5.30: Contour plots of the errors, tru − er, est − er, and imp − er in U for the

third test problem.

Chapter 5. Numerical Results 118

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2

4

6

8

10

12

14
x 10

−4

(a) tru− er (20× 20)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2

4

6

8

10

12

14
x 10

−4

(b) est− er (20× 20)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2

4

6

8

10

12

14
x 10

−4

(c) imp− er (20× 20)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

(d) tru− er (40× 40)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

(e) est− er (40× 40)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

(f) imp− er (40× 40)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

9

10
x 10

−5

(g) tru− er (80× 80)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

9

10
x 10

−5

(h) est− er (80× 80)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

9

10
x 10

−5

(i) imp− er (80× 80)

Figure 5.31: Contour plots of the errors, tru − er, est − er, and imp − er in Ux for the

third test problem.

Chapter 5. Numerical Results 119

0 1 2 3 4 6 8 12 16
0

5

10

15

20

25

30

Number of Processors

R
eq

ui
re

d
T

im
e

Part1
Part2
Total

Figure 5.32: CPU Time (in seconds) for both parts and total applying 2 to 16 processors

for a mesh of size 48× 48 for the first test problem with β = 20.

0 1 2 3 4 6 8 12 16
0

2

4

6

8

10

12

Number of Processors

S
pe

ed
−

U
p

Figure 5.33: Speed-up obtained using 2 to 16 processors for a mesh of size 48 × 48 for

the first test problem with β = 20.

Chapter 6

Conclusions

6.1 Summary

We have investigated using the DEI to accurately approximate the solution of PDEs at

off-mesh points. We introduced the PCI, a two dimensional piecewise interpolant with

scattered data that accurately approximates the solution of two-dimensional PDEs at

off-mesh points. The main advantage of the PCI is that it generates a continuous repre-

sentation. We have also investigated its extension to three dimensions and investigated

three candidate interpolants defined for second-order elliptic PDEs. Our results indicates

that a pure tri-cubic interpolant is particularly effective. We have also showed that, al-

though it is the best in terms of realistic and non distracting visualizations, it can still

suffer from discontinuities along neighbor elements’ faces.

In addition, we have carried out an investigation of an important application of our

interpolation techniques. The application is scientific visualization where standard ren-

derers require that the function to be displayed be known on a very fine mesh. We have

presented three fast algorithms for drawing contour plots of the approximate solution of

two-dimensional second-order elliptic PDEs. We have also directly extended one of the

approaches to three dimensions and described an algorithm for drawing three-dimensional

120

Chapter 6. Conclusions 121

level sets for the solution of three-dimensional second-order elliptic PDEs. We then pre-

sented numerical results that demonstrate the scalable nature of this algorithm.

As another application, we focused on adaptive mesh refinement for two dimensional

PDEs and introduced some generic algorithms based on the use of DEI-based inter-

polants. Each algorithm has two main steps; the mesh selection and the mesh refinement.

For the mesh selection step, we presented four ‘generic’ strategies based on properties

of the problem alone rather than a special-purpose strategy designed for a specific PDE

method. For the mesh refinement step, we discussed advantages and disadvantages of

well-known mesh refinement algorithms and presented a hybrid method using local re-

finement and local reconnection approaches.

We also introduced a global error estimator by introducing a companion equation

based on the original PDE and a DEI. A single companion equation is then solved for

each mesh element of the coarse mesh. In addition, we discussed how these companion

equations can be solved in parallel. The results show that the parallel approach is able

to decrease the required time for solving the set of local companion equations close to

the time required to solve the original equation itself.

6.2 Future Work

Some interesting directions for future work might be

• We extended one of our two-dimensional contouring algorithms, the Intercept method,

to three dimensions. The extension of other two methods to three dimensions is an

area for future investigation.

• Our focus, in all areas we investigated, was restricted to a second order elliptic

PDE. A generalization to other types of PDEs is another area for future work.

• In our global error estimator, we considered simple Dirichlet boundary conditions

Chapter 6. Conclusions 122

e(x, y) = 0 for each local problem. Finding more realistic boundary conditions

should result in a better estimation of the error.

• Direct extension of our AMR algorithm to three dimensions is another direction

for future study.

Appendix A

Adaptive Mesh Refinement History

Up to now, several approaches have been used to improve the quality of unstructured

meshes. These approaches can be classified into three basic categories:

• Local Refinement: Point insertion or deletion to refine or coarsen a mesh [5] [27] [28] [32] [36].

• Local Reconnection: Change mesh topology by face or edge swapping for a given

set of vertices [11] [18] [26] [41].

• Local Mesh Smoothing: Relocate mesh points to improve mesh quality without

changing mesh topology [6] [8] [15] [16] [18].

In the following, an overview of some specific strategies associated with each category

will be presented.

A.1 Local Refinement

Rather than using a uniform mesh with grid points evenly spaced in a domain, adaptive

mesh refinement techniques place more grid points in areas where the error in the solu-

tion is likely to be largest. The mesh is adaptively refined and/or unrefined during the

computation according to some measure of ‘local error’ or ‘local behavior’ of the approx-

imate solution on the domain. Typically, one begins with an initial mesh conforming

123

Appendix A. Adaptive Mesh Refinement History 124

to a particular geometry. This mesh is selectively refined to construct a modified mesh

that is used to obtain an ‘improved’ approximate solution which hopefully will satisfy

a certain error tolerance. A ‘monitor function’ has to be defined as a measure of the

‘error’ or ‘local behavior’ of a function over a mesh element. A mesh refinement strategy

then refers to an attempt to ‘equidistribute’ this measure over all elements of a mesh by

introducing new mesh points, removing some and/or ‘remeshing’ the current mesh. A

typical adaptive mesh refinement algorithm is shown in Figure A.1.

k = 0

Solve the PDE on the mesh, Tk

Estimate some ‘measure’ associated with each triangle, ti, of Tk

while the measure associated with a triangle is larger than the given tolerance do

Determine a set of triangles, Sk ⊂ Tk, to refine based on the measure estimate

Refine the triangles in Sk, and any other triangles necessary to form Tk+1

Solve the PDE on this new mesh Tk+1

Estimate the measure on each triangle of Tk+1

k = k + 1

end do

Figure A.1: A typical adaptive mesh refinement algorithm.

It begins by assuming that an initial coarse mesh is given by triangulation T0 consis-

tent with the geometry of the problem domain. The focus is on the step in the algorithm

where the current mesh Tk is adaptively refined (the step in bold face in Figure A.1).

Note that the refinement of the mesh must maintain several important properties, given

that finite element approximations are to be determined. Three such properties are:

• Conforming Mesh: A mesh is conforming if the intersection of any two triangles

in Tk is a single vertex, a line segment connecting two vertices, or the empty set.

Appendix A. Adaptive Mesh Refinement History 125

An edge of a triangle is called 1
s+1

-nonconforming if it has s > 0 vertices between

its two endpoints [28]. A triangle is called conforming if none of its edges are

1
s+1

-nonconforming for any s > 0. Figure A.2 shows examples of conforming and

nonconforming meshes.

(a) A conforming mesh (b) A 1
2 -nonconforming

mesh

Figure A.2: Examples of conforming and nonconforming meshes.

• Graded Mesh: A mesh is graded (or smooth) if adjacent triangles do not dif-

fer dramatically in area. A nonsmooth mesh could result in the finite element

approximation being quite far from the real solution [27].

• Bounded (Minimum/Maximum) Angle Mesh: A mesh is bounded-angle if

all angles of the triangles in the mesh are bounded away from 0 and π. The

latter condition is necessary because the discretization error in a finite element

approximation has been shown to grow as the maximum angle approaches π [3].

We would also like to avoid small angles because the condition number of the

matrices arising from mesh elements has been shown to grow as O(1
θmin

), where

θmin is the smallest angle in the mesh [19].

A number of mesh refinement algorithms have been shown to maintain some or all

mesh properties given above. In the following, we briefly review the four most widely

known of these refinement algorithms.

Appendix A. Adaptive Mesh Refinement History 126

A.1.1 Mid-Point (Centroid) Insertion Algorithm

The most obvious means of dividing a triangle to maintain a conforming mesh is to

place a nodal point at the center of the triangle and connect it to the three existing

nodal points [27]. As shown in Figure A.3, this process creates three new triangles.

Unfortunately, repeated refinement of triangles in this way clearly results in angles that

tend toward 0 and π (violating the third property). It also can result in ungraded meshes

as illustrated on the rightmost mesh of Figure A.3.

Figure A.3: The mid-point insertion algorithm preserves the conforming property but

can violate graded and bounded-angle properties.

A.1.2 Bisection Algorithm

Bisection divides the triangle area exactly in half, and the bisected angle is also halved.

This algorithm will result in a nonconforming mesh, as shown in Figure A.4. However

this difficulty can be avoided by propagating the refinement to the ‘newly introduced’

nonconforming triangles. Rivara [36] uses bisection of triangles across the longest edge

(dividing the largest angle) and selective divisions across smaller edges. Moreover, if

triangles are bisected only across their longest edge, one can bound the maximum and

minimum angles of resulting triangles independently of the number of times the resulting

triangles are bisected. If a triangle and its descendants are repeatedly bisected across

their longest edges, the smallest resulting angle is bounded by at worst one-half the

smallest angle in the original triangle [37].

Appendix A. Adaptive Mesh Refinement History 127

Figure A.4: The bisection algorithm violates conforming property.

Rivara has described an effective algorithm for mesh refinement based on bisection

in [36]. The algorithm assumes that an initial set of triangles in Tk have been marked for

refinement based on some associated error estimates. As triangles become nonconforming,

they are also marked for refinement. The algorithm, given in Figure A.5, continues until

a conforming mesh, Tk+1, has been constructed. Rivara shows that this algorithm will

terminate; however no particular bound exists for L, the number of times the while loop

is executed. Figure A.6 shows a worst-case example of refinement propagation for which

L is O(n), where n is the number of triangles in Tk. As mentioned in [27], in practice L

is usually a small constant number independent of n.

Let S0 be the set of marked triangles

i = 0

While (Si is not empty) do

Bisect triangles in Si across their longest edge

Let Si+1 be the set of all remaining nonconforming triangles

i = i + 1

end do

Figure A.5: The longest edge bisection algorithm.

Appendix A. Adaptive Mesh Refinement History 128

Figure A.6: A worst-case example of propagation of refinement based on Rivara’s algo-

rithm.

Rivara has described variants of this algorithm, including one in which simple bisec-

tion is combined with bisection across the longest edge to reduce L [36]. Simple bisection

means bisection across an edge that may not be the longest. In this algorithm, a tri-

angle is first bisected across its longest edge. If either of the two new triangles become

nonconforming, as the result of bisection of a neighbor, they are bisected across the non-

conforming edge. The algorithm yields the same bounds for angles as the longest edge

algorithm.

Stamm et al. have developed a modified longest side bisection algorithm to increase

the lower bound on the smallest angle without increasing the total number of final trian-

gles [42]. Assuming α as the smallest angle in the original triangulation, they showed that

with a small modification to the bisection algorithm, the lower bound on the smallest

angle can be increased to 2
3
α (α

2
for the original bisection algorithm).

A.1.3 Regular Refinement Algorithm

A third means of triangle division is regular refinement where the midpoints of the edges

are connected forming four new triangles [27]. As illustrated in Figure A.7, this approach

can result in a nonconforming mesh. However, a conforming mesh can be obtained by

temporarily refining triangles with one nonconforming edge through bisection [5]. Trian-

gles initially marked for refinement are refined by using regular refinement. As refinement

propagates, any triangle with at least two nonconforming edges is also regularly refined.

Appendix A. Adaptive Mesh Refinement History 129

When only triangles with one nonconforming edge remain, the remaining nonconforming

edges are temporarily bisected. Prior to the next refinement, these bisected triangles are

merged. This algorithm has been used in the software package PLTMG [4]. Note that

no refined mesh angle can be less than half the smallest initial mesh angle since the four

triangles resulting from regular refinement are all similar to original triangle.

Figure A.7: The regular refinement algorithm violates conforming property.

A.1.4 Newest-Node Algorithm

The newest-node algorithm of Sewell [39] is also based on bisection, but without the

restriction on bisecting the longest edge. In this algorithm, a triangle is always bisected

by using its newest node. Unlike bisection and regular refinement algorithms, it avoids

propagations by refining triangles only in pairs. However, because of the pair restriction,

it is possible that a triangle may never be selected to be refined. A modified algorithm

proposed by Mitchell [30] eliminates this deficiency by ensuring that every triangle is

one of a pair of triangles that can be refined. Unfortunately, this modification requires a

recursive refinement of triangles adjacent to unrefined triangles. This refinement results

a propagation similar to the bisection and regular refinement algorithms.

Mitchell compared these three methods in a series of numerical experiments and found

that it was difficult to choose a consistently superior algorithm [30]. In addition, he found

that all three algorithms were superior to using uniform refinement except on smooth

problems.

Appendix A. Adaptive Mesh Refinement History 130

It is worth noticing that in [28] a parallel algorithm for adaptive mesh refinement

based on local refinement approach is presented that is suitable for implementation on

distributed-memory parallel computers.

A.2 Local Reconnection

Local mesh reconnection (reconfiguration) techniques hold the mesh points fixed but

change the connectivity of part of a mesh to improve mesh quality (That is the loca-

tions of the mesh points do not change but the ‘triangulation’ does). These techniques

are widely used and one of the best known examples is edge flipping applied to a two-

dimensional triangular mesh to construct a Delaunay triangulation. Among all triangu-

lations of a vertex set, a Delaunay triangulation maximizes the minimum angle in the

triangulation [41]. Consider four arbitrary points in a plane. As shown in Figure A.8,

there are only two possible triangulations, one is Delaunay and the other is not (A special

case is when the fourth point lies on the circumcircle of the first three points makes both

triangulations Delaunay). As illustrated in Figure A.8, in a Delaunay triangulation, the

circumcircle of each triangle contains no other vertices.

(a) A Delaunay trian-

gulation

(b) A non-Delaunay triangulation

Figure A.8: Examples of two possible triangulations of four points.

Appendix A. Adaptive Mesh Refinement History 131

Figure A.9: The Delaunay triangulation of a set of vertices does not necessarily solve the

mesh generation problem, because it may contain poor quality triangles and may omit

some of the domain boundaries.

A.2.1 Edge Flipping in Two Dimensions

The edge flipping algorithm begins with an arbitrary triangulation and searches for an

edge that is not Delaunay. The definition of a Delaunay edge is exactly the same as the

definition of a Delaunay triangle. That is, its circumcircle does not enclose either of the

vertices opposite the edge in the two triangles that contains the edge. Note that all edges

on the boundary (convex hull) of the triangulation are considered to be Delaunay. An

edge is not flippable when the containing quadrilateral is not convex.

There are a wide variety of measures for the quality of a triangular element, the

most obvious being the smallest and largest angles associated with the element. In [29]

Miller et al. have shown that the most natural and elegant measure for analyzing a

Delaunay refinement algorithm is the circumradius-to-shortest edge ratio of an element.

Fortunately, this ratio is the metric that is naturally optimized by Delaunay triangulation.

In two dimensions, this ratio (r
d
) is related to the smallest angle α by the formula r

d
=

1
2 sin(α)

. The smaller a triangle’s ratio, the larger its smallest angle [41].

Appendix A. Adaptive Mesh Refinement History 132

A.3 Local Mesh Smoothing

Mesh smoothing algorithms try to improve the mesh quality by adjusting the vertex

positions without changing the mesh topology. Local mesh smoothing algorithms adjust

the location of a single mesh point by using only the information at incident vertices

rather than global information in the mesh. A typical vertex, v, and its adjacent set are

shown in Figure A.10. The vertices in the adjacent set are shown as solid circles in the

figure. As the vertex v is moved, only the quality of the elements incident on v, shown

as shaded triangles in the figure, are changed. Vertices shown as unfilled circles are not

adjacent to v and the quality of triangles that contains these vertices are not affected

by a change in the location of v. Since more than one sweep through the mesh might

be required to improve the overall mesh quality, it is important that each individual

adjustment be inexpensive to apply.

v

Figure A.10: A vertex v and the adjacent triangles whose quality is affected by a change

in the position of v.

A significant amount of work has been done in the area of local mesh smoothing. In

the following, an overview of some local mesh smoothing algorithms including Laplacian

smoothing and optimization-based smoothing will be presented.

Appendix A. Adaptive Mesh Refinement History 133

A.3.1 Laplacian Smoothing

Laplacian smoothing is by far the most common local smoothing technique. This ap-

proach, in its simplest form, replaces the position of a vertex v by the average of its neigh-

bors’s positions. The method is computationally inexpensive, but it does not guarantee

improvement in element quality. In fact, the method can produce an invalid mesh con-

taining elements that have negative volume. Figure A.11 shows how Laplacian smoothing

can generate an invalid mesh. The unfilled square, v′, marks the average of the positions

of the vertices adjacent to v. As can be seen the area of the filled elements in the right

of Figure A.11 is negative.

v

v′v′

Figure A.11: A set of triangles for which Laplacian smoothing results in an invalid mesh.

Many researchers have used and extended the capabilities of Laplacian smoothing.

Some variations of Laplacian smoothing include:

• Weighting the contribution of each neighboring node in the average function by

edge length, element area, or other similar criteria.

• Constraining the node movement to avoid the creation of elements with negative

areas.

Appendix A. Adaptive Mesh Refinement History 134

A.3.2 Optimization-based Smoothing

A newer form of smoothing, that is receiving more attention lately, is optimization-based

smoothing. Instead of moving nodes based on an heuristic algorithm, as is done in

Laplacian smoothing, the nodes are moved in an attempt to minimize a given distortion

metric. While optimization-based smoothing is more expensive than Laplacian smooth-

ing, it gives better results especially for concave regions in the geometry. Several such

techniques have been proposed and we briefly review some of them now. The methods

differ primarily in the optimization procedure used or the quantity that is optimized.

In [4] Bank introduced a smoothing procedure for a two-dimensional triangular mesh

that uses a measure of the ‘quality of the shape’ of each element defined by

q(t) =
4
√

3A
∑3

i=1 l2i
,

where A is the area of the triangular element and li is the length of edge i. The maximum

value for q(t) corresponds to an equilateral triangle (where q(t) = 1). Each local submesh

is improved by using a line search procedure. The search direction is determined by

the line connecting the current position of v to the position that results in the worst

element becoming equilateral. The line search terminates when at least one other affected

element’s shape quality value equals that of the improving element. One variant of this

technique attempts to directly compute the new location by using the two worst elements

in the local submesh. In this case the line search procedure is used only in the cases

for which the new position results in a third element, different from the original two

worst elements, with the smallest shape measure. Bank also presented an optimization-

based smoothing algorithm, specifically designed for adaptively improving finite element

triangulations by making use of a posteriori estimates [6].

A similar approach for tetrahedral meshes in three dimensions is described by Shep-

hard and Georges [40]. The measure of quality for each element incident on v is computed

Appendix A. Adaptive Mesh Refinement History 135

by using the formula

q(t) = κ
V 4

(
∑4

i=1 A2
i)

3
,

where V is the volume of the element and Ai is the area of face i. The parameter κ is

chosen so that q(t) has a maximum of one (corresponding to an equilateral tetrahedron).

A line search similar to that done by Bank is performed, where the search direction is

determined by the line connecting the current position of v to the position that improves

the worst element in the local submesh to equilateral.

Freitag et al. proposed a method for two and three-dimensional meshes based on the

steepest descent optimization technique for nonsmooth functions [17] [15] [18]. The goal

of the optimization approach is to determine the position that maximizes the composite

function

φ(x) = min
1≤i≤l

fi(x),

where the functions fi are based on various measures of mesh quality such as max-min an-

gles or element aspect ratios and l is the number of functions defined on the local submesh.

For example, in two-dimensional triangular meshes, maximizing the minimum angle of

a local submesh containing m elements requires l = 3m − 2 function evaluations. The

search direction at each step is computed by solving a quadratic programming problem

that gives the direction of steepest descent from all possible convex linear combinations

of the gradients in the active set. The line search subproblem is solved by predicting the

points at which the set of active functions will change based on the first order Taylor

series approximations of the fi(x).

Amenta et al. show that the optimization techniques used in [17] [15] are equivalent

to the generalized linear programming technique and has an expected linear solution

time [2]. The convex level set criterion for solution uniqueness of generalized linear

programs can be applied to these smoothing techniques, and they determine the convexity

of the level sets for a number of standard mesh quality measures in both two and three

dimensions.

Appendix A. Adaptive Mesh Refinement History 136

A.3.3 Combined Laplacian and Optimization-based Smoothing

Both Shephard and Georges [40] and Freitag and Ollivier-Gooch [17] [18] presented ex-

perimental results that demonstrate the effectiveness of combining a variant of Laplacian

smoothing with their respective optimization-based procedures. The version of Laplacian

smoothing used by Shephard and Georges allows the vertex to move to the centroid of the

incident vertices only if the worst element maintains a shape measure q(t) above a fixed

limit. Otherwise, the line connecting the centroid and the initial position is bisected, and

the bisection point is used as the target position. Freitag and Ollivier-Gooch accept the

Laplacian step whenever the local submesh is improved. In both cases, the Laplacian

smoothing step is followed by optimization-based smoothing for only the worst elements.

Experiments in [17] showed that using optimization-based smoothing when the mini-

mum angle was less than 30◦ in two dimensions and 15◦ in three dimensions significantly

improves the meshes at a small computational cost.

Bibliography

[1] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA, 1989.

[2] Nina Amenta, Marshall Bern, and David Eppstein. Optimal point placement for

mesh smoothing. In SODA ’97: Proceedings of the 8th annual ACM-SIAM sympo-

sium on Discrete algorithms, pages 528–537, Philadelphia, PA, USA, 1997.

[3] I. Babuška and A. K. Aziz. On the angle condition in the finite element method.

SIAM Journal Numerical Analysis, 13:214–226, 1976.

[4] Randolph E. Bank. PLTMG: A Software Package for Solving Elliptic Partial Dif-

ferential Equations. Users’ Guide 8.0. SIAM, Philadelphia, PA, 1998.

[5] Randolph E. Bank, Andrew H. Sherman, and Alan Weiser. Refinement algorithms

and data structures for regular local mesh refinement. In R. Stepleman et al., editor,

Scientific Computing, pages 3–17. IMACS/North-Holland, 1983.

[6] Randolph E. Bank and R. Kent Smith. Mesh smoothing using A posteriori error

estimates. SIAM Journal on Numerical Analysis, 34(3):979–997, 1997.

[7] Emma L. Bradbury and Wayne H. Enright. Fast contouring of solutions to partial

differential equations. ACM Transaction on Mathematical Software, 29(4):418–439,

December 2003.

137

Bibliography 138

[8] Scott A. Canann, Joseph R. Tristano, and Matthew L. Staten. An approach to com-

bined laplacian and optimization-based smoothing for triangular, quadrilateral, and

quad-dominant meshes. In Proceedings of the 7th International Meshing Roundtable,

pages 479–494, 1998.

[9] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR-89-983,

Department of Computer Science, Cornell University, 1989.

[10] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann, August 1998.

[11] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for reg-

ular triangulations. In Proceedings of the 8th ACM Symposium on Computational

Geometry, pages 43–52, 1992.

[12] Wayne H. Enright. Accurate approximate solution of partial differential equations at

off-mesh points. ACM Transaction on Mathematical Software, 26(2):274–292, June

2000.

[13] Wayne H. Enright. On the use of ‘arc length’ and ‘defect’ for mesh selection for

differential equations. Computing Letters (CoLe), 1(2):47–52, 2005.

[14] Wayne H. Enright. Verifying approximate solutions to differential equations. Journal

of Computational and Applied Mathematics, 185(2):203–211, 2006.

[15] Lori Freitag, Mark Jones, and Paul Plassman. An efficient parallel algorithm for

mesh smoothing. In Proceedings of the 4th International Meshing Roundtable, pages

47–58. Sandia National Laboratories, 1995.

[16] Lori Freitag, Mark Jones, and Paul Plassman. A parallel algorithm for mesh smooth-

ing. In Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific

Computing. SIAM, March 1997.

Bibliography 139

[17] Lori Freitag and Carl Ollivier-Gooch. A comparison of tetrahedral mesh improve-

ment techniques. In Proceedings of the 5th International Meshing Roundtable, pages

87–100, 1996.

[18] Lori Freitag and Carl Ollivier-Gooch. Tetrahedral mesh improvement using swap-

ping and smoothing. International Journal for Numerical Methods in Engineering,

40:3979–4002, 1997.

[19] Isaac Fried. Condition of finite element matrices generated from nonuniform meshes.

AIAA Journal, 10:219–221, 1972.

[20] Hassan Goldani Moghaddam. Efficient contouring on unstructured meshes. Master’s

thesis, University of Toronto, 2004.

[21] Hassan Goldani-Moghaddam and Wayne H. Enright. Efficient contouring on un-

structured meshes for partial differential equations. ACM Transactions on Mathe-

matical Software, 34(4), July 2008. Article 19, 25 pages.

[22] Hassan Goldani Moghaddam and Wayne H. Enright. The PCI: A scattered data in-

terpolant for the solution of partial differential equations. In Proceedings of Interna-

tional Conference on Adaptive Modeling and Simulation, ADMOS 2005, Barcelona,

Spain, September 2005.

[23] Hassan Goldani Moghaddam and Wayne H. Enright. A scattered data interpolant

for the solution of three dimensional PDEs. In Proceedings of European Conference

on Computational Fluid Dynamics, ECCOMAS CFD 2006, Netherland, September

2006.

[24] Øyvind Hjelle and Morten Dæhlen. Triangulations and Applications (Mathematics

and Visualization). Springer-Verlag New York Inc., Secaucus, NJ, USA, 2006.

Bibliography 140

[25] E. N. Houstis, W. F. Mitchell, and J. R. Rice. Algorithm 638: INTCOL and HERM-

COL: Collocation on rectangular domains with bicubic Hermite polynomials. ACM

Transactions on Mathematical Software, 11(4):416–418, December 1985.

[26] Barry Joe. Construction of three-dimensional improved-quality triangulations using

local transformations. SIAM Journal on Scientific Computing, 16(6):1292–1307,

1995.

[27] Mark T. Jones and Paul E. Plassmann. Adaptive refinement of unstructured finite-

element meshes. Finite Elem. Anal. Des., 25(1-2):41–60, 1997.

[28] Mark T. Jones and Paul E. Plassmann. Parallel algorithms for adaptive mesh re-

finement. SIAM Journal on Scientific Computing, 18(3):686–708, 1997.

[29] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. A Delau-

nay based numerical method for three dimensions: generation, formulation, and

partition. In Proceedings of the 27th Annual ACM Aymposium on the Theory of

Computing, pages 683–692, May 1995.

[30] William F. Mitchell. A comparison of adaptive refinement techniques for elliptic

problems. ACM Transactions on Mathematical Software, 15(4):326–347, December

1989.

[31] William F. Mitchell. MGGHAT user’s guide version 1.1, 1997.

[32] Carl F. Ollivier-Gooch. Multigrid acceleration of an upwind Euler solver on unstruc-

tured meshes. AIAA Journal, 33(10):1822–1827, 1995.

[33] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers,

Inc., San Francisco, California, 1997.

Bibliography 141

[34] Gonzalo A. Ramos and Wayne H. Enright. Interpolation of surfaces over scat-

tered data. Proceedings of the IASTED International Conference VISUALIZATION,

IMAGING, AND IMAGE PROCESSING, pages 219–224, September 2001.

[35] John R. Rice and Ronald F. Boisvert. Solving elliptic problems using ELLPACK.

Springer-Verlag New York, Inc., New York, NY, USA, 1984.

[36] Maria-Cecilia Rivara. Mesh refinement processes based on the generalized bisection

of simplices. SIAM Journal on Numerical Analysis, 21(3):604–613, 1984.

[37] I. G. Rosenberg and F. Stenger. A lower bound on the angles of triangles constructed

by bisecting the longest side. Mathematics of Computation, 29:390–395, 1975.

[38] Jim Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh

generation. Journal of Algorithms, 18(3):548–585, May 1995.

[39] E. Sewell. A finite element program with automatic user-controlled mesh grading.

In Advances in Computer Methods for Partial Differential Equations III, pages 8–10,

IMACS, New Brunswick, 1979.

[40] M. Shephard and M. Georges. Automatic three-dimensional mesh generation by the

finite octree technique. International Journal for Numerical Methods in Engineering,

32(4):709–749, 1991.

[41] Jonathan Richard Shewchuk. Lecture notes on Delaunay mesh generation, Septem-

ber 1999.

[42] Christoph Stamm, Stephan Eidenbenz, and Renato Pajarola. A modified longest

side bisection triangulation. In Proceedings of the 10th Canadian Conference on

Computational Geometry (CCCG’98), Montreal, Canada, 1998.

