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Agent-based simulation has emerged as a promising research alternative to the tradi-

tional analytical approach in studying financial markets. The idea behind agent-based

simulation is to constructively model a market in a bottom-up fashion using artificial

agents. This thesis aims to accomplish four objectives. The first objective is to present a

high-quality software platform that is capable of carrying out agent-based financial mar-

ket simulations. The second objective is to simulate a double-auction market with this

software platform, using homogeneous zero-intelligence agents. The simulation is based

on the artificial market model proposed by Smith, Farmer, Gillermot and Krishnamurthy

(2003). The third objective is to study the microstructure properties of the simulated

double-auction market. In particular, we investigate certain statistical properties for

the mid-price, bid-ask spread and limit order book. The fourth and the last objective

is to explore and evaluate trading strategies associated with the time-constrained asset

liquidation problem through computational agents.
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Chapter 1

Introduction

With the advance of computing power and modeling tools, computer simulations have

become increasingly important in many financial applications, such as derivative pricing

and risk management. Now the already-booming family of financial simulations is wit-

nessing the rise of a new member: agent-based market simulation. Since the beginning

of the 1990’s, there has been a surge of interest within the finance community (both in

industry and academia) in employing agent-based methods to obtain insights about mar-

ket microstructure and to experiment with trading strategies. Research in agent-based

financial markets naturally provides an excellent opportunity for interdisciplinary collabo-

rations, because it often involves joint projects involving financial engineers, economists,

computer scientists, mathematicians, statisticians, physicists, etc. This thesis aims to

contribute to the field of agent-based computational finance from the perspective of a

computer scientist, by introducing a flexible simulation and modeling environment for

double-auction markets.

1
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1.1 Background

1.1.1 Agent-based financial markets

Agent-based financial markets are market simulations populated with artificial agents

that fill the roles of participants of a real market, such as traders and market makers.

These agents can vary from simple random zero-intelligence (ZI) agents as in Gode and

Sunder (1993) to sophisticated inductive learning agents as in the Santa Fe artificial stock

market (LeBaron, Arthur, and Palmer 1999). Regardless of this variation in the levels

of agent intelligence, most research in agent-based artificial markets centers on modeling

financial markets as dynamic structures that emerge from the interactions of individual

agents.

The general agent-based modeling method is not new and it has already been applied

in many different economic and social contexts.1 However, there are certain reasons

which make financial markets particularly appropriate and appealing for agent-based

modelers. As LeBaron (2001) points out, financial markets are one of the most important

applications for agent-based modeling because issues of price and information aggregation

and dissemination tend to be sharper in financial settings, where objectives of agents are

usually clearer. Further, the availability of massive amounts of real financial data allows

for comparison with the results of agent-based simulations. As of now, agent-based

financial modeling has emerged as a third major research approach to the analysis of

market microstructure, rivaling theoretical and empirical approaches.

The fast-growing interest and popularity of agent-based financial modeling is moti-

vated by the desire for an alternative research methodology (in studying financial mar-

kets) to the traditional theoretical approach, which tends to focus on constructing ana-

lytic frameworks based on the assumption of rational behaviors and the simplification of

1Readers interested in the more general field of Agent-based Computational Economics
(ACE) should see the comprehensive and extensive guide maintained by Leigh Tesfatsion at
http://www.econ.iastate.edu/tesfatsi/ace.htm.
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market complexities. A common criticism of the traditional theoretical approach is that

actual markets often exhibit evidence that contradicts the perfect rationality assump-

tion. Also the simplification of market complexities often makes the analytical models

less applicable in the real world. Agent-based modeling allows one to overcome these

shortcomings of the theoretical approach and to gain insights into market phenomena

through computational experiments. As Das (2003) points out: “The artificial market

approach allows a fine-grained level of experimental control that is not available in real

markets. Thus, data obtained from artificial market experiments can be compared to

the predictions of theoretical models and to data from real-world markets, and the level

of control allows one to examine precisely which settings and conditions lead to the

deviations from theoretical predictions usually seen in the behavior of real markets.”

Because of the surge of activities in developing artificial financial markets, today

we are faced with so many different styles of agent-based simulations that it is almost

impossible to classify them. However, most of the research in this field seems to fall into

the following two categories.

1. The first category focuses on the studies of market microstructure. Typically, the

goal of research in this category is to replicate observed properties of financial time

series observed in real markets and to try to explain the cause of these properties.

For example, Chiarella and Iori (2002) construct an agent-based simulation of a

double-auction market, from which they are able to gain some insights into the

determinants of order flow dynamics, such as tick size, liquidity and average order

life time. The working mechanism of their artificial market is reviewed in section

2.1.

2. The second category focuses more on the design and evaluation of trading strategies.

It is often either infeasible or too costly to carry out trading strategy experiments

in real markets. Researchers in this category use agent-based artificial markets as

underlying testbeds, on which they can test many trading strategies by deploying
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special agents (agents that are programmed to follow specific trading strategies) to

trade in these simulated markets. For example Das (2003) describes and evaluates

a market-making algorithm for setting prices in financial markets with asymmetric

information. His experimental results are obtained from a simulated double-auction

market populated by artificial agents that represent either informed or uninformed

traders. We review Das’ model in section 2.2.

LeBaron (2000) provides a summary of some of the early and influential research work

on agent-based computational finance.

1.1.2 Double-auction markets

This thesis focuses on the agent-based simulation of a continuous double-auction market.

In what follows, we provide a brief introduction to the basic microstructure and trading

mechanism of a standard double-auction market, on which most modern financial markets

are based.

Impatient traders submit market orders, which are requests to buy or sell a given

number of shares immediately at the best available price. More patient traders submit

limit orders, which also state a limit price corresponding to the worst allowable price

for the potential transcation. Market orders guarantee execution, but not price. On the

other hand, limit orders normally guarantee price, but not execution. Since limit orders

often fail to result in immediate transactions, they frequently accumulate as they arrive

at the market and form a limit order book, inside which limit buy orders are stored in

decreasing order of limit price and limit sell orders are stored in increasing order of limit

price. Limit buy orders are often called bids and limit sell orders are often called asks.

The limit order book is the key to understanding the double-auction market. A snapshot

of a typical limit order book is illustrated in Table 1.1.



Chapter 1. Introduction 5

Limit Buy Orders Limit Sell Orders

Size Price Size Price

20 $1.10 25 $1.17

20 $1.08 30 $1.18

25 $1.03 20 $1.21

35 $1.02 30 $1.29

20 $1.00 30 $1.33

40 $0.97 35 $1.36

...... ......

Table 1.1: A snapshot example of a limit order book

Limit Buy Orders Limit Sell Orders

Size Price Size Price

15 $1.03 25 $1.17

35 $1.02 30 $1.18

20 $1.00 20 $1.21

40 $0.97 30 $1.29

30 $1.33

35 $1.36

...... ......

Table 1.2: The limit order book, after the execution of a market sell order of 50 shares
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Limit orders (either buy or sell) are the source of liquidity in the market as they

provide the necessary pools of supply and demand. For a normal double-auction market,

the best (highest) bid price is always less than the best (lowest) ask price. The difference

between the two is called the spread of the market. For example, the limit order book

shown in Table 1.1 has a market spread of $0.07. Market orders, on the other hand,

consume the liquidity, because, when they arrive, they get executed against limit orders

on the opposite side of the book. For example, when a market sell order for 50 shares

arrives at the market (assuming that the market at this moment has the limit order book

shown in Table 1), it would first get executed against the current best bid (i.e., the limit

buy order that has the highest limit price) which is located at the top of the bids list (25

shares at $1.17 per share). Since the size of the market sell (50 shares) is greater than

that of the best bid (25 shares), the remainder of the market sell order (25 shares) will

then get executed against the next best bid (20 shares at $1.08 per share) and so on,

until it has been completely satisfied. After this trade, the limit order book will change

to Table 1.2. And the market spread now widens to $0.14. The trader’s revenue from

the sale is

$1.10× 20 + $1.08× 20 + $1.03× 10 = $53.90

Note limit orders at prices within the spread cause the spread to narrow as they arrive

at the market, whereas market orders may widen the spread as they get executed.

1.2 Contributions

The research described in this thesis can be viewed as an attempt to bridge the gap be-

tween the relevant disciplines (such as finance, computer science, mathematics, statistics,

physics, etc.) involved in the field of agent-based computational finance. In particular, we

hope that our work can bring the following benefits to researchers from those disciplines

who wish to enter the field of agent-based financial modeling.
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1. This thesis introduces the “big picture” of agent-based computational finance by

identifying and explaining the key building blocks and applications.

2. This thesis contributes a high-quality software platform that is specifically designed

to carry out agent-based simulations of financial markets. The platform is flexi-

ble enough to accommodate many different kinds of agent-based artificial market

models.

3. This thesis presents experimental results for the properties of the artificial double-

auction market proposed by Smith, Farmer, Gillemot, and Krishnamurthy (2003)

(referred to as SFGK henceforth) , such as the mid-price, bid-ask spread and limit

order book.

4. This thesis explores and evaluates trading strategies for the practical time-constrained

asset liquidation problem through extensive simulation experiments.

1.3 Overview

This thesis is structured as follows. Chapter 2 surveys three research papers on artificial

double-auction markets which we think are representative. Chapter 3 presents the soft-

ware simulation platform, explains its properties and describes its design and structure.

It also shares some insights about building simulation software of this kind. Chapter

4 formally introduces the SFGK artificial market model. It justifies why we choose to

use this particular model in this thesis, explains how the model generates market dy-

namics and how it is implemented in an agent-based setting on top of our simulation

platform. Chapter 5 investigates the market microstructure of the SFGK artificial mar-

ket. In particular, it shows certain statistical results for the mid-price, bid-ask spread and

limit order book. Chapter 6 focuses on trading strategy experiments. It describes the

time-contrained asset liquidation problem and introduces two different trading strategies
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Study of
Market Microstructure

Experiment with
Trading Strategies

SFGK artificial market model

Application Layer

Market Dynamics Layer

Software Simulation Platform

Infrastructure Layer

Figure 1.1: Illustraction of thesis layout

associated with it. Through simulation experiments, it evaluates the performance of the

two strategies and shows that on average one strategy outperforms the other. Chapter 7

summarizes the work of this thesis and suggests avenues for future research.

Figure 1.1 gives an illustration of the structure and key components of this thesis.



Chapter 2

Survey of artificial double-auction

markets

Agent-based financial markets have been undergoing significant growth in recent years.

The ever-increasing number of artificial market models and the huge variations among

them make it a daunting task for anyone who wishes to survey the entire literature. In

this chapter, we survey a few research paper which we think are representative in terms of

modeling double-auction markets through computational agents. To give readers a good

taste of the agent-based modeling methodology, the survey focuses on the mechanisms

that are used in these papers to generate the market dynamics of a double-auction market,

not on the experimental results or statistical conclusions that are obtained from the

simulations of these artificial models.

2.1 The Chiarella-Iori model

Chiarella and Iori (2002) introduce an artificial double-auction market model with het-

erogeneous agents which set bids and asks and post market and limit orders according

to certain pre-defined rules. The model makes the following assumptions.

9
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• A single asset is traded in the market. Orders arrive at the market sequentially

and at random times and have a finite life time τ . Each agent can trade one stock

only at a time.

• Agents know the fundamental value pf of the asset, and pf is taken to be constant

in their model.

• The demands of agents (traders) are assumed to consist of three components, a

fundamentalist component, a chartist component and a noise-induced component.

• All agents have access to the past history of prices. At any time t, the price pt is

given by the price at which a transaction occurs, if a transaction occurred at time

t. If no transaction occurred at time t, the price pt is set to the mid-point price

(i.e., the average price of the highest bid and the lowest ask) at time t.

• Agents can submit limit orders at any limit price on a pre-specified grid, defined

by the tick size ∆.

The way the model generates market dynamics is as follows. At any time t, a trader i

is chosen, with a given probability λ, to enter the market. The chosen agent, using both

the fundamental value and chartist rules, predicts a spot return r̂it,t+τof the asset that he

thinks will prevail in the time period (t, t + τ). The precise formula that the agent uses

to compute his expectation of the spot return r̂it,t+τ is

r̂it,t+τ = gi1
(pf − pt)

pt
+ gi2r̄Li + niεt

The quantities gi1 > 0 and gi2 represent the weights given to the fundamentalist and

chartist components respectively. The sign of gi2 indicates a trend chasing (> 0) or

contrarian (< 0) chartist strategy. Since the degree of fundamentalism and chartism

will vary across agents, Chiarella and Iori model these parameters as random variables

independently chosen for each agent with gi1 ∼ |N(0, σ1)|, gi2 ∼ N(0, σ2), ni ∼ N(0, n0)
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and εt ∼ N(0, 1), where εt represents noise. Note that a trader for whom gi1 = gi2 = 0 is

a noise trader.

The quantity r̄Li is the spot return averaged over the time interval Li. The reason

that L has a subscript i is because L is uniformly and independently distributed across

agents over the interval (1, Lmax) and Li indicates the particular value randomly assigned

to agent i. The computational formula for r̄Li is

r̄Li =
1

Li

Li∑
j=1

pt−j − pt−j−1

pt−j−1

Hence the future asset price expected at time t+ τ by agent i is given by

p̂it+τ = pt · er̂
i
t,t+τ τ

If the agent expects a price increase (decrease), he decides to buy (sell) one unit of

the stock at a price bit (ait) that is lower (higher) than his expected future price p̂it+τ .

More precisely, bit and ait are given as

bit = p̂it+τ (1− ki)

ait = p̂it+τ (1 + ki)

where ki is uniformly drawn from the interval (0, kmax) with 0 < kmax ≤ 1.

Let bqt and aqt denote the highest bid price and the lowest ask price, respectively,

quoted in the limit order book at time t. Now the trading action taken by the agent is

determined as follows. If bit (ait) is smaller (larger) than aqt (bqt ), the agent submits a limit

buy (sell) order with a limit price of bit (ait). Otherwise, if bit (ait) is larger (smaller) than

aqt (bqt ), the trader submits a market order and the trade is executed at the price of aqt

(bqt ). At the end of the period τ unmatched limit orders are removed from the limit order

book (recall that every limit order has a finite time τ).

Given the above model that generates the dynamics of a double-auction market,

Chiarella and Iori focuses on studying, through numerical simulations, how the dynamics
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of price and spread are affected by liquidity (λ), tick size (∆) and the average life of an

order (τ). The results of their simulations are not reviewed here. Interested readers can

refer to the original paper (Chiarella and Iori 2002) for the details of their results and

conclusions.

One attractive feature of the Chiarella-Iori model is that it has a very creative, clean

and simple way to model the phenomena that fundamentalist, chartist and noise compo-

nents often co-exist in real markets. The model also introduces a rich set of parameters,

which gives the flexibility needed to allow modelers to gain insights into market mi-

crostructure issues in a variety of settings. One major drawback of the Chiarella-Iori

model comes from the assumption that there exists a constant fundamental value of the

asset that all agents know. This assumption is troublesome because (1) it is not realistic

and (2) it eliminates the possibility for studying the influence of informational issues on

order flow dynamics.

2.2 The Das model

Das (2003) proposes and evaluates a market-making algorithm in the context of an artifi-

cial double-auction market that has an asymmetric informational structure. Das’ model

is unique because, unlike other agent-based markets, which generally produce the un-

derlying market dynamics through the interactions of traders, his model centers around

the role of a market maker and generates the market dynamics through the interaction

between the traders and the market maker. Also the agent that represents the market

marker is highly sophisticated and equipped with machine learning techniques that allow

it to induce price information from the activities of traders. The setting of the model is

as follows.

The market modeled in Das’ paper is a discrete-time dealer-type double-auction mar-

ket (such as the NYSE) with only one stock. The dealer or market maker sets bid and
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ask prices (P i
b and P i

a respectively) at which he is willing to buy or sell one unit of the

stock at time period i. All transactions occur with the market-maker taking one side of

the trade and a trader taking the other side of the trade.

The stock has a true underlying value (or fundamental value) V i at time period i.

The market marker is informed of V 0 at the beginning of a simulation, but does not

receive any direct information about V thereafter. That is, the only signals the market

marker receives about the true value of the stock are through the buy and sell orders

placed by the traders. At time period i, a single trader is selected and allowed to place

either a (market) buy or (market) sell order for one unit of the stock. There are two types

of traders in the market, uninformed traders and informed traders. An uniformed trader

will place a buy or sell order for one unit at random if selected to trade. An informed

trader knows V i and will place a buy order if V i > P i
a, a sell order if V i < P i

b and no

order if P i
b ≤ V i ≤ P i

a.

The true underlying value of the stock evolves according to a jump process. At

time i + 1, with probability p (p is typically small, of the order of 1 in 1000 in most of

Das’ simulations), a jump in the true value occurs: V i+1 = V i + ω̃(0, σ) where ω̃(0, σ)

represents a sample from a normal distribution with mean 0 and variance σ2. Modeling

the true value as a jump process reflects the belief that the true value evolves as a

result of occasional news arrivals. When a jump occurs, the informed traders are in an

advantageous position. The periods immediately following the jumps are the periods in

which informed traders can trade most profitably, because the information they have on

the true value has not been disseminated to the market yet, and the market marker is not

informed of changes in the true value. Thus it is important for the market maker to track

the true value persistently through the orders placed by the traders. The price dynamics

in Das’ model is entirely caused by the market maker’s updates of his posted bid and ask

prices. The following paragraph briefly describes the market-making algorithm.

The market maker sets his bid and ask prices based on the following formulas when
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he receives a market sell order (a signal for him to update his bid price) or market buy

order (a signal for him to update his ask price).

Pb = E[V |Sell]

=

∫ ∞
o

xPr(V = x|Sell)dx

Pa = E[V |Buy]

=

∫ ∞
o

xPr(V = x|Buy)dx

The above equations are solved approximately by discretizing the price into intervals,

with each interval representing one cent. For example, the formula for Pb becomes

Pb =
Vmax∑

Vi=Vmin

ViPr(V = Vi|Sell)

Applying Bayes’ rule and simplifying, we get

Pb =
Vmax∑

Vi=Vmin

ViPr(Sell|V = Vi)Pr(V = Vi)

Pr(Sell)

Note that, since the prior probability Pr(Sell) = 1/2 and Vmin < Pb < Vmax, we have

Pb = 2
Vmax∑

Vi=Vmin

ViPr(Sell|V = Vi)Pr(V = Vi)

= 2

Pb∑
Vi=Vmin

ViPr(Sell|V = Vi)Pr(V = Vi) + 2
Vmax∑

Vi=Pb+1

ViPr(Sell|V = Vi)Pr(V = Vi)

By splitting Pb into the sum of two terms as above, we can calculate the appropriate

value for Pr(Sell|V = Vi) in each of the terms. An uninformed trader is equally likely

to sell whatever the market maker’s bid price. On the other hand, an informed trader

will sell if V ≤ Pb and not if V > Pb. Suppose the proportion of informed traders in the

trading crowd is α, then

Pr(Sell|V ≤ Pb) =
1

2
· (1− α) + 1 · α

= (1 + α)/2

Pr(Sell|V > Pb) =
1

2
· (1− α) + 0 · α

= (1− α)/2
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Hence the computational formula for Pb becomes

Pb = (1 + α)

Pb∑
Vi=Vmin

ViPr(V = Vi) + (1− α)
Vmax∑

Vi=Pb+1

ViPr(V = Vi)

In order to use the above equation to set the value of Pb, the market marker needs

to estimate the quantity Pr(V = Vi) for various Vis. To do so, he maintains an online

estimate of the probability density function (PDF) of the true value as follows. At the

beginning of the simulation, he sets the PDF to be a normal distribution1 centered at V0

(the initial true value of the stock). During the simulation, each time that the market

maker receives a signal about the true value by receiving a market buy (sell) order, he

updates the PDF by setting P (V = Vi) to the posterior probability P (V = Vi|Buy)

(P (V = Vi|Sell)) for each Vi. The posterior probability can be easily computed using

Bayes’ rule. For example, if a market sell order is received,

Pr(V = Vi|Sell) =
Pr(Sell|V = Vi)Pr(V = Vi)

Pr(Sell)

where the prior probability Pr(V = Vi) is known from the current density estimate,

the prior probability of a sell order Pr(Sell) = 1/2 and Pr(Sell|V = Vi) is given by

Pr(Sell|V = Vi, Vi ≤ Pb) = (1 + α)/2 and Pr(Sell|V = Vi, Vi > Pb) = (1 − α)/2 as

described earlier.

This concludes the basic algorithm used by the market-making agent in Das’ artificial

market model. Note that the computational formula for updating Pa can be derived using

a similar argument. Please refer to Das (2003) for many extensions to the basic strat-

egy described above, such as the inclusion of noisy informed traders, inventory control

constraints, etc.

1The distribution is actually a discrete approximation of the normal distribution with probability
mass from Vmin to Vmax. The distribution is also maintained in a normalized state at all times whenever
it is updated. See Das (2003) for details about constructing the initial distribution estimate.
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2.3 The Smith-Farmer-Gillemot-Krishnamurthy (SFGK)

model

Strictly speaking, the SFGK artificial double-auction market is more of a statistical

random model than an agent-based one. There is no explicit use of artificial agents in their

original simulations. However the research initiative and the underlying order-generating

mechanism both fit very well in the context of agent-based modeling. The most amazing

feature of the SFGK model is that, although it is very simple (completely random and

zero-intelligence), it has the power to simulate the evolution of the seemingly complex

structure of double-auction markets. The SFGK model shares the spirit of the zero-

intelligence model proposed by Gode and Sunder (1993) who made the famous claim that

the “Allocative efficiency of a double-auction market derives largely from its structure,

independent of traders’ motivation, intelligence, or learning. Adam Smith’s invisible

hand may be more powerful than some may have thought; it can generate aggregate

rationality not only from individual rationality but also from individual irrationality.”

The SFGK artificial market is central to much of the research work carried out in

this thesis (see Figure 1.1). We choose to implement the SFGK model in an agent-

based setting on top of our simulation platform so that we are able to examine the

quality of the simulation software. We also study the microstructure properties of the

model through extensive simulation experiments and use it as an underlying testbed for

evaluating trading strategies. Section 4.2 describes the SFGK model in detail.



Chapter 3

Building the agent-based simulation

platform

Agent-based modeling in the financial context often requires researchers to construct a

robust and reliable software system, on which they can implement particular types of

market models and artificial agents, run the simulation and record statistical results for

future analysis. Therefore a software simulation platform is a fundamental and important

component to agent-based modeling that cannot be ignored. However building a high-

quality software platform with desirable properties such as scalability, high-performance

and accuracy is often a difficult and challenging task for many researchers in finance who

have no or little computer science background. In this chapter, I will present our software

platform that is specifically designed for agent-based modeling and simulation of double-

auction markets (CDAM). In creating such a software system, we hope to be able to

bridge or narrow the gap between computer science and finance by providing researchers

interested in agent-based financial modeling with a ready-to-use simulation environment

so that they can focus more on other issues such as designing market and agent models,

analyzing simulation results, etc. I will also share some insights and experience that I

learned through developing such a software system, with those who may be interested in

17
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building their own agent-based simulation environment.

3.1 Design and structure overview

Our simulation platform is a distributed (client/server architecture) and multi-threaded

computing environment that is capable of simulating a variety of financial markets for

different research purposes. Central to the simulation platform is an artificial market

(implemented as the server) which takes requests from market participants (implemented

as clients) and processes them according to rules that are consistent with the type of the

artificial market. The artificial market currently implemented on the simulation platform

is a continuous double-auction market. Market participants can either be real people or

artificial agents with varying levels of intelligence.

3.1.1 General properties of the software platform

Throughout the development process, we consistently strived to develop a software plat-

form with the following properties.

1. Scalability is a common term used in the software engineering literature and is

defined as “the ease with which a system or component can be modified to fit the

problem area” (Software Engineering Institute, Carnegie Mellon University 2003).

Scalability is a desirable property because it allows a researcher to change his or her

underlying market or agent model without having to recode much of the current

simulation platform. For example, it is often the case that for a given market model,

a researcher may want to experiment with different types of artificial agents. With

a scalable simulation platform, the researcher can achieve that by simply replacing

the current agent class (in which agent logic is coded) with a new one, leaving the

rest intact.
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2. The server must achieve high performance. In other words, we want the server

(market) to be able to process incoming requests and generate responses at a very

fast pace. High-performance simulation software should be able to map the real

world times to significantly smaller ones in the simulated world so that a researcher

who wants to simulate a 50-year-long time series of the price of some stock doesn’t

have to actually wait for 50 years. In the context of agent-based simulation, software

performance can be significantly improved by choosing efficient data structures and

reducing unnecessary communications between threads.

And of course, most importantly, the system must also be correct. We want the soft-

ware platform to produce results that accurately reflect the underlying model. Accuracy

is especially critical for large-scale and fast-paced simulations because even a tiny error

may cause an accumulated and compounded impact which over time may entirely distort

the property of the underlying model. A systematic testing strategy will help to ensure

correctness.

In the following two subsections, I will provide an overview of the structure and

working mechanism of our simulation platform. The overview provided below is from an

high-level perspective and it deliberately omits some lower-level details in order not to

distract a reader’s attendion from the big picture.

3.1.2 Server side structure and working mechanism

Figure 3.1 illustrates the high-level structure of the server, from which we can identify

several key components.

After the server is started, the main process will listen and monitor the main socket

port for incoming agent connections. Everytime an agent sends a connection request, the

server spawns a pair of threads (read thread and write thread) that will be dedicated to

serve the agent throughtout its connection lifetime. The read thread is mainly responsible

for fetching the agent’s requests from the peer socket port, pre-processing the request
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Figure 3.1: High-level server structure diagram. Shapes with solid borders on the server

side represents essential data structures residing in computer memory and shapes with

dashed borders represents major processes/threads running on the server. A link between

a thread and a data structure (represented by a thick arrow) suggests that the thread

can access and modify the content of the data structure.
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and pushing the pre-processed request into the central queue for execution. At the very

beginning, it also authenticates the agent and synchronizes the agent’s trading account

with the server’s clearinghouse. The write thread is responsible for writing responses

(from the server) to the agent. Responses are typically generated after an agent’s requests

get executed. Both the read and write threads will terminate when an agent leaves the

market and disconnects.

The central processing thread is the brain of the server. It determines how agents’

requests are to be treated and it has to make sure that the executions of those requests are

100% consistent with the underlying market model. In our case, since we have chosen the

market model to be of double-auction type, the central processing thread is responsible

for maintaining a limit order book and properly handling order matchings.

The last key thread on the server side is the dynamic scheduler thread. It, as its

name suggests, performs a job-scheduling task and the job in our case is to maintain a

priority queue which stores the expiration times associated with limit orders and removes

limit orders from the limit order book as they expire. The prefix dynamic alludes to this

thread’s need to constantly re-balance the priority queue in real time as random orders

with random expiration times arrive at the market.

The two major data structures on the server side are the Limit order book and the

Clearinghouse. The limit order book is central to a double-auction market: it stores both

limit buy and limit sell orders. An augmented heap data structure was used to implement

the limit order book (actually there are two such heaps, one for limit sell orders and one for

limit buy orders). A heap is the most efficient choice of data structure for implementing

a limit order book as most trading operations can be completed with either O(1) time

(such as querying the current best bid and ask price) or O(log n) time (such as executing

market orders, adding new limit orders and deleting expired limit orders). The term

clearinghouse in the investment literature commonly refers to a financial organization,

typically associated with one or more exchanges, that matches the buy and sell orders
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that are submitted during the day and keeps track of the obligations and payments

required of the members of the clearinghouse. In the context of our simulation software,

it is a dictionary type data structure that stores up-to-date account information (such

as cash and asset balance) for each registered client. The central processing thread will

modify the clearinghouse (update the accounts of relevant parties) each time a transaction

occurs.

Notice in Figure 3.1 that the central processing thread and the dynamic scheduler

thread can both access and modify the limit order book. This creates a problem that

occurs frequently in multithreaded (or multiprocessed) programing and is referred as

the concurrency control problem. Concurrency issues must be handled carefully because

they could not only introduce significant errors to the simulation results but also create

tremendous difficulties for programmers to debug the system.

3.1.3 Client side structure and working mechanism

Figure 3.2 identifies the key threads and data structures that are associated with an

artificial agent. An important feature of the agent structure is that a functional agent

can be viewed as two separate and interacting parts: the “physical body part” and the

“head (or brain) part”. Such a high-level design is consistent with our goal of achieving

software scalability, since it provides great ease and flexibility for building artificial agents

with completely different logic and levels of intelligence. The working mechanism of the

artificial agent is analogous to the two-way interaction between a real human being’s brain

and body: the brain part is responsible for making logical decisions and instructing the

body to act based on its decisions. The human body also provides feedback to the brain

about its dealing with the outside world. In our simulation framework, an artificial agent

is very much like a plug-and-play device: to experiment with a new agent, one simply

needs to code the agent’s logic into the brain part, plug the brain part into the body and

start the simulation.
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Figure 3.2: High-level structure diagram for an artificial client. Rectangles with dashed

borders represent threads and those with solid borders represents data structures. Black

arrows linking a thread to a data structure indicate that the thread can access or modify

the content of the data structure. An oval represents a set of available operations for the

agent to interact with the market.
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An agent can also be a human being. The client side structure for a human agent

is almost identical to that of an artificial one as they both share the same “physical

body”. The only difference between them lies in the “head” part: a human agent can

actively take trading actions through a graphical user interface; whereas an artificial agent

is controlled by some artificial thread into which the agent’s logic is pre-programmed.

Figure 3.3 illustrates the software structure of a human trader and Figure 3.4 gives a

snapshot of the GUI through which a human trader interacts with the market.
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Figure 3.3: High-level structure diagram for a human client. Rectangles with dashed

borders represent threads and those with solid borders represents data structures. Black

arrows linking a thread to a data structure indicate that the thread can access or modify

the content of the data structure. An oval represents a set of available operations for the

agent to interact with the market. Note the similarity between this diagram and the one

for the artificial client: both clients share the same “physical body”.
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Figure 3.4: The graphical user interface (GUI ) through which a human trader interacts

with the market.
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3.2 Issues and our advice

This section addresses some important issues associated with building an agent-based

simulation platform in the hope that the insights provided in this section will be helpful

to those who are interested in building such software systems of their own.

3.2.1 Choice of programming language

There is no easy answer to the question of what programming language is best for im-

plementing an agent-based simulation system. However, there are certain important

considerations that a person has to take into account before making his selection of a

particular programming language.

System complexity is one consideration. If the desired simulation system involves

complex structure and multiple processes, an object-oriented language (such as C++,

Java and Python) is likely to be the only feasible choice. A high-complexity simulation

system also suggests that one choose a language that has a relatively rich library providing

supports for data structures, operating system services, etc, so that the developer does

not have the burden of programming everything from scratch. In terms of library support,

Java and Python are more desirable than the standard C++ language.

Performance is another consideration. Depending on the nature and purpose of the

artificial market model, certain agent-based simulations can be very computationally

intensive. For example, of the three artificial market models surveyed in Chapter 2,

the Das model has a much higher demand for high-performance computing than the

Chiarella-Iori and SFGK models. In general, assuming everything else is equal, a fully

compiled language (such as C++) can result in a faster and more efficient simulation

platform than a “half-way compiled” language (such as Java) and interpreted languages

(such as Python).

The last main consideration is portability. If one wants to allow the simulation soft-
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ware to be able to run on different operating system platforms (such as Linux, Unix

and Windows), one should choose a platform-independent language such as Java and

Python. Based on our experience, agent-based simulation software often needs to use

low-level system calls (such as those that deal with socket communication and threads)

that are platform-dependent. Thus, if one implements a simulation software with C++

on Linux and later decides to migrate it to Windows, one will very likely have to undergo

a considerable revision of the code.

Our agent-based simulation platform is implemented using the Python1 programming

language (version 2.3.4). We are very pleased with what Python has offered us throughout

the development process. In particular, Python’s extremely elegant and clean syntax

(comparing to C++ or even Java) allows us to write code faster and with less bugs. For

this particular research project, Python is a good language choice that satisfies all the

considerations mentioned above.

3.2.2 Distributed computing

In general, an agent-based simulation platform should provide a distributed computing

environment with a client/server type of architecture that mimics the exchange/trader

setting of real financial markets. However, programming a distributed system can be

a daunting task, especially for those with little computer science background. In what

follows, we will provide a few insights into some common issues associated with building

a distributed simulation platform.

The first issue concerns socket programming. In a client/server architecture, clients

and the server communicate through sockets. Most high-level programming languages

have library support for socket programming and they provide programmers with a pair

of seemingly straightforward functions: “send()” and “recv()”. An inexperienced pro-

grammer may think that he could simply place a call to the two functions whenever

1Details about the language can be found at http://www.python.org
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he wants to send or receive a message and those functions would take care of the rest.

Unfortunately, it is not that simple. The “send()” function returns the number of bytes

actually sent out, which might be less than the length of the outgoing message. Hence

a programmer must always check whether the value returned by “send” matches the

length of the string he wants to send out. If it doesn’t, the programmer is responsible

for repeatedly calling “send()” until the remaining bytes are also sent out. Similarly, the

“recv()” function returns the number of bytes actually received from the socket stream,

which could be less than the number in a message that a programmer is expecting.

What’s worse is that the bytes returned by “recv()” might contain fractions of multiple

messages. Based on our experience, a program should do the following two things to

ensure the integrity of the incoming messages. First, all messages should have a consis-

tent and well-defined format.2 They can either be of fixed-length or delimited. Second,

the program must write its own buffer function to accumulate and process data returned

from “recv()”. It is very important for programmers to follow the above procedures when

they use “send()” and “recv()”. Being careless about the subtle deficiencies of the two

functions can cause the simulation program to crash in a random and bizarre fashion.

Also it can be extremely frustrating and difficult to debug errors resulting from message

disintegrity.

The second issue concerns multithreaded programming. As soon as one starts to

program the server part of a distributed computing system, one is likely to face a tough

design question: what mechanism the will serve adopt to handle multiple clients? One

has the following two choices.

1. The event-driven multiplexing approach: the server has a single process only which

serves all clients. The basic idea behind this approach is that the single process

2The message format we used in our simulation platform is rather simple. Every message contains a
fixed number of fields which are delimited by the special character “|” and is terminated by “\r\n”. For
more serious applications, we recommend the FIX (Financial Information eXchange) protocol, which is a
messaging standard developed specifically for the real-time electronic exchange of securities transactions.
Details of the FIX protocol can be found at http://www.fixprotocol.org.
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continuously monitors all connected clients until some clients trigger an event (such

as an incoming message), at which point the process starts to serve those clients

one by one before going back to the monitoring stage.

2. The multithreaded approach: the server has multiple processes (threads), each of

which is dedicated to a particular client. The basic idea behind this approach is

that the server has a main process which continuously listens for new connections

and once a client makes a connection, the main process spawns a new thread to

deal with that client for as long as the client stays connected.

Both approaches have pros and cons. The multiplexing approach is relatively efficient

and simple, since it involves only one process and a programmer doesn’t need to be

concerned about the overhead associated with multithreaded programming. However,

we find that it has limited ability to handle more complex distributed system, especially

those that require state-dependent and persistent two way communications. On the other

hand, the multithreaded approach is more powerful and more flexible. The downside of

it is that multithreaded programming can be very complicated and a programmer must

handle the often tricky tasks of thread synchronization and concurrency control. From

our experience, if the agent-based simulation is sophisticated or the simulation platform

being built needs to be scalable (to allow further extensions), the multithreaded approach

is very likely the only way to go.



Chapter 4

Experiments with the SFGK model

There are two main components in agent-based financial modeling: a computational

environment for simulation and an artificial model that drives the simulation. Having

successfully constructed a software simulation platform (or the first component), the

next step is to choose a particular artificial market model with which we can experiment

on our platform. In this chapter, we justify our choice of adopting the SFGK artificial

market and present the model and its implementation in detail.

4.1 Why do we choose the SFGK model?

As we mentioned earlier, there are many agent-based market models available that differ

from one another in how “smart” their artificial agents are. The SFGK model is designed

to be as analytically tractable as possible while capturing key features of a double-auction

market. In terms of the intelligence level of the participating agents, the model only uses

the so-called zero intelligence (ZI) agents, which are agents that do not possess any

inductive learning abilities. That is, there are no machine learning algorithms embedded

in the agents that would allow them to improve their performance with time by learning

from experience. We have decided to implement the SFGK model on top of our simulation

platform for the following four reasons.

31
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First, the model presents a very simple and elegant way to mimic the microdynamics

of a continuous double-auction market. Simulating a double-auction market is more

complicated than just building price movement dynamics (which could be easily done by

simple Monte Carlo simulations) because our interest in studying the microstructure of

double-auction markets is really centered around the evolution of the limit order book (not

just a one dimensional price). However SFGK achieved this seemingly complicated task

of modeling the dynamics of a double-auction market by essentially using and combining

only a series of Poisson processes. The simplicity of the model provides several benefits.

First since it doesn’t involve any learning procedures for agents, it considerably reduces

the computational complexity required to generate the market dynamics. If agents were

too intelligent (i.e., they were made to participate in market activities according to

sophisticated machine learning algorithms), it would often result in very large-scale and

time-consuming real-time computations. Second, because of the simplicity of the model,

many time-series properties for this artificial market are analytically tractable, which

allows us to make certain predictions about quantities such as the stationary mean and

the volatility of the mid price.

Second, as we mentioned earlier in Chapter 3, large scale and multithreaded simula-

tion software requires extensive and rigorous testings to ensure its accuracy. By imple-

menting and running the SFGK model on our simulation platform, we are able to debug

and stress-test (i.e., test the server when it’s being stretched to its processing capacity)

the platform in a comprehensive and sustainable fashion. The SFGK model is better in

the testing context than some other more complex models because its core logical opera-

tions directly interact with the software platform (whereas, for some other more complex

models, there may be several additional layers of code sitting between the platform and

the models’ high-level logical operations) and thus it is relatively easier to identify the

source of an error should it occurred.

Third, we are interested in studying statistical properties associated with the SFGK
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artificial double-auction market. In particular, we are interested in the evolution of

the market mid-price, bid-ask spread and order book structure. The detailed statistical

analysis and results are presented in Chapter 5.

Fourth and last, we are also interested in exploring some simple liquidation strategies

in the context of double-auction markets by designing special agents (each coded with

a different trading strategy) and observing their liquidation results. However, before we

can experiment with those special agents, we first must have active market dynamics

that mimics a double-auction market. Thus, when we take the agent-based approach

to study optimal trading strategies, the SFGK model serves the purpose of proving a

underlying market environment. Trading strategy experiments (for the time-constrained

asset liquidation problem) are carried out in Chapter 6.

4.2 Market mechanism of the SFGK model

4.2.1 The original version of SFGK model

The original SFGK model proposed by Smith, Farmer, Gillemot, and Krishnamurthy

(2003) is described in detail below.

All order flows to the market (including limit orders and market orders) are modeled

as Poisson processes. Market orders arrive at the market in chunks of σ shares where

σ is a fixed integer, at an average rate of µ shares per unit time. A market order may

either be a buy market order or a sell market order with equal probability, which means

that the Poisson process followed by market buy orders or sell orders individually has an

average arrival rate of µ/2.

Limit orders arrive at the market in chunks of σ shares, at an average rate of α shares

per unit price per unit time. A limit order may either be a limit buy order or a limit sell

order with equal probability, which implies that limit buy orders or sell orders individually



Chapter 4. Experiments with the SFGK model 34

Bid

Spread
Logarithmic price

Instantaneous price range, from which limit sell prices are drawn

Instantaneous price range, from which limit buy prices are drawn

Legend:
Limit buy orders
Limit sell orders

Ask

Figure 4.1: Limit order generating mechanism

have an average Poisson arrival rate of α/2 shares per unit price per unit time.1. Recall

that in addition to order size, a limit order must also specify a limit price. The logarithm

of limit prices are chosen randomly from uniform distributions. Specifically, the log of

limit buy prices are drawn from a uniform distribution on the price interval of (−∞, a(t)),

where a(t) denotes the best (lowest) ask price in the double-auction market at time t.

Similarly the log of limit sell prices are drawn from a uniform distribution on the price

interval of (b(t),∞), where b(t) denotes the best (highest) bid price in the market at

time t. Note that in their original model, prices are not continuous, but rather have

discrete quanta called ticks (represented by dp). The limit order generating mechanism

is illustrated in Figure 4.1.

Note that since all limit prices are generated in the logarithmic space in the SFGK

model, before limit orders are submitted to the market, the limit prices associated with

them must be first transformed to their corresponding physical prices. The use of loga-

1In their original paper, SFKG used α as the arrival rate for both limit buy orders and limit sell
orders. Thus the total limit order arrival rate in their paper is actually 2 · α
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Parameter Description Dimension

α avg. limit order rate share/price·time

µ avg. market order rate share/time

δ avg. limit order decay rate 1/time

σ order size share

dp tick size price

Table 4.1: Summary of parameters: SFGK model

rithmic prices has the advantage that it ensures the prices seen by the market are always

positive.

When a market order (either a buy or sell) arrives at the market, it results in an

immediate transaction: a buy market order removes the current best (lowest) ask from

the limit order book (note that the trade is executed at price a(t)) and moves the best ask

price up from a(t) to the next occupied price tick (which is higher than a(t)). Similarly, a

sell market order removes the current best (highest) bid from the limit order book (note

that the trade is executed at price b(t)) and moves down the current best bid price down

to the next occupied price tick (which is lower than b(t)). Please note that the above

market order effect is only true when we make the assumption that all orders are of the

same size (in this case σ) otherwise a single market order may not even have any effect

on the market’s current bid or ask price.

SFGK also allow limit orders to expire (or be cancelled) after being placed in the

market so that limit orders can be removed spontaneously from the limit order book

without a transaction having taken place. Limit order expiration (or cancellation) is also

modeled by a Poisson process, with an average decay rate of δ per unit time.

Table 4.1 summarizes all the relevant parameters of the SFGK model.

The relatively simple design of the SFGK model allows us to make certain analytical

predictions about some properties of the simulated double-auction market. For example,
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we can claim that the projected mean spread (denoted by s̄) should be

s̄ =
µ+ 2δ

α

The reasoning is as follows. Inside the spread, limit order removals are either caused by

arriving market orders or expirations. Hence the total removal rate within the spread is

equal to µ + 2δ shares per second. 2δ is the combined expiration rate for limit orders

currently at the best bid or ask (i.e., the two end points of the spread). On the other

hand, limit order arrivals fill the spread at a rate of s̄ · α shares per second. Therefore

in order for s̄ to be the stationary mean spread, the two opposing forces must balance,

which implies

µ+ 2δ = s̄ · α ⇐⇒ s̄ =
µ+ 2δ

α

Note that when δ is close to zero (i.e., when limit order removal by expiration is dominated

by market order execution), s̄ is approximately µ/α.

4.2.2 The practical version of the SFGK model

The actual artificial market model implemented on our simulation platform is the same

as the original SFGK theoretical model except for the following.

• The tick size or the parameter dp is almost 0. In other words, the price in our

simulation is nearly continuous. The near-zero tick size is a result of using high-

precision floating point numbers to represent price.

• The order size (or σ) is set to 1 in our simulation. In other words, all limit and

market orders arrive at the market in chunks of 1 share, at all times.

Also the price intervals, within which limit prices are drawn, are capped. Recall that

SFGK’s theoretical model requires that limit prices are generated from a uniform distri-

bution on price interval (−∞, a(t)) for limit buy orders and on price interval (b(t),∞)

for limit sell orders. Clearly we have to deal with the notion of infinity in practical
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simulations as the computing environment is finite.2 In order to avoid the infinity prob-

lem, we introduced a cap L (where L is some sufficiently large number) on the price

intervals. Thus for our simulation, limit buy prices are uniformly drawn from the price

interval (a(t)− L, a(t)) and limit sell prices are uniformly drawn from the price interval

(b(t), b(t) + L)

4.3 Implementing the SFGK model

Technically speaking, one doesn’t have to use a distributed environment to experiment

with the SFGK model. In fact, the model is not even intrinsically related to agent-based

simulations. A researcher with sufficient programming background probably could im-

plement the model as a single-process program without introducing any agents. However

as mentioned earlier, our goal isn’t just to see what the model can produce. We are

also interested in exploring optimal trading strategies and testing the quality of our sim-

ulation software, both of which would naturally require the model to be implemented

in a distributed and agent-based environment. The role of agents in implementing the

SFGK model is to generate order flows to the market and hence the central part of the

implementation is to correctly program the logic of the participating agents so that, when

they act together, the aggregate effect they create is consistent with what the underlying

model requires. There are a few possible ways to implement the SFGK model using mul-

tiple agents that differ from one another only in terms of how trading tasks are assigned

across all agents. For our implementation, we employ N (N is chosen to be 50 in our

simulations) independent and homogeneous artificial agents, each of which can generate

all four types of order flows (i.e., limit buys, limit sells, market buys and market sells)

and submit them to the market. An alternative way to using homogeneous agents would

2More precisely, infinity poses two problems: first, we can not represent a infinitely large price on
computers. Second, if the price interval is of infinite length, the limit order arrival rate (shares/second)
will also be infinite, which will certainly crash the market server.
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be, for example to separate agents into two groups and dedicate one group for generating

limit orders and the other for generating market orders.

The implementation process consists of two main steps: parameter determination and

logic codification. The following two subsections explain each of the two steps in more

detail.

4.3.1 Parameter determination

There are two categories of parameters involved in the implementation process: the

model-level parameters and the agent-level parameters. Model-level parameters are sim-

ply those parameters that are introduced in the SFGK model. As we mentioned earlier,

for the practical implementation purpose, the relevant model-level parameters are:

α = aggregate limit order rate

µ = aggregate market order rate

δ = limit order decay rate

Agent-level parameters are those that are responsible for controlling an agent’s be-

havior during the simulation, such as how frequent the agent should generate orders, how

much it should favor limit orders over market orders and so on. The values of agent-level

parameters often depend on the desired model-level parameters and they can be derived

after the model-level parameters have been set.

We first discuss the choices in selecting model-level parameters. Technically speaking,

one is free to assign any arbitrary values to model-level parameters. However, in practice,

we do need to impose certain constraints on these model-level parameters so that the

simulation software can run stably and the simulation results are reasonably realistic.3 For

3Reasonably realistic is a rather weak condition, by which we mean the simulated market only needs
to resemble some general features of a double-auction market reasonably well. Calibrating model pa-
rameters to replicate real financial markets is a more difficult task, which we do not address in this
thesis.
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Model-level parameter Parameter value

s̄ 0.015 (log price)

µ 1 share/second

δ 0.2 per second

α = (µ+ 2δ)/s̄ 93.33 shares/(second · log price)

L = 75 · s̄ 1.125 (log price)

Table 4.2: The setting of model-level parameters

example, assigning arbitrarily large values for model parameters may cause the server’s

processing capacity limit to be exceeded and result in a crash of the simulation. Similarly

if the limit order rate is too low (relative to the market order rate), we may frequently

exhaust the liquidity in the simulated market4, which is not desirable in most cases, in

part because it can cause discontinuities in the time series produced by the simulation.

Besides the above rather obvious concerns, we may also decide to impose a constraint

on the projected stationary spread (by simply fixing it at a certain level) so that we can

have some control over the simulated market. As described in the earlier sections, fixing

the stationary spread effectively reduces the degrees of freedom of the model from three

to two. The setting of model-level parameters in our simulation is summarized in Table

4.2.

After having decided the values for model-level parameteres, we can now consider the

agent-level parameters and their values. The set of agent-level parameters are summa-

rized below.

• τ : mean time interval between successive order submissions.

4In the theoretical SFGK model, liquidity will never be exhausted because the price interval from
which limit prices are drawn is infinite, which yields an infinite number of limit orders filling the order
book at all times. However, the liquidity can be exhausted in the practical implementation of the SFGK
model because the price interval is capped by a finite number L.
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• p: probability that a limit order is generated for submission.

• N : number of participating artificial agents.

We first give the formulas for τ and p respectively and then verify that the setting of τ

and p conforms to the required model-level parameters.

The formula for τ is

τ =
N

µ+ α · L
(4.1)

and the formula for p is

p =
α · L

µ+ α · L

Verification:

For each individual agent, events (submitting an order) are generated by a Poisson process

with average rate 1/τ . A generated event can either be a limit order submission with

probability p or a market order submission with probability 1 − p. Therefore the limit

order submissions by a single agent follow a Poisson process with an average rate of p/τ

and similarly the market order submissions by a single agent follow a Poisson process

with an average rate of (1 − p)/τ . Since all agents operate independently, the overall

limit order arrivals seen by the market will be a Poisson process with an average arrival

rate of N · p/τ orders per second (i.e., it is the sum of the individual agents’ limit order

submission rates) and the overall market order arrivals seen by the market will also be a

Poisson process with an average arrival rate of N · (1− p)/τ orders per second. Now, if

we substitute the formulas of τ and p into the above quantities, we obtain the following:

• Aggregate limit order rate: N · p/τ = N · α·L
µ+α·L ·

µ+α·L
N

= α · L

• Aggregate market order rate: N · (1− p)/τ = N · µ
µ+α·L ·

µ+α·L
N

= µ

The above result verifies that the formulas for τ and p are consistent with the required

model-level parameters.

For the given model-level parameters in Table 4.2, the values of τ and p are
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• τ = 50
1+93.33×1.125

≈ 0.4717 (seconds)

• p = 93.33×1.125
1+93.33×1.125

≈ 0.99

The agent-level parameter N (the number of participating agents) has been chosen

to be 50 in our simulation. Although it seems that N is merely a scaling parameter that

can not affect the intrinsic properties of the theoretical model, the value of N does need

to be chosen with some care. In the actual implementation of the SFGK model (on a

client-server type of architecture), before an agent can submit a limit buy (sell) order

to the market, it must first query the market to get the current ask (bid) price (recall

that limit price is drawn from a price interval that depends on the current bid or ask

price). Although at first glance, the average quering time (the length of time that an

agent has to wait before the query result arrives from the market) may seem pretty small

(the average is about 0.004 second), it could still become a relatively significant delay

when it is close to 1/τ , the average time interval between successive events generated by

a particular agent. This is because, for a given set of model parameters and chosen N ,

an agent needs to be at a certain hardworking level, measured by how often it generates

orders, which is in turn measured by 1/τ . When the quering time is close to 1/τ , it

can no longer be neglected, because the average time interval between successive order

submissions effectively becomes 1/τ + the quering time. Hence each agent is working

less hard than it should. Consequently, the simulation results coming from the above

scenario will not be consistent with what the true model would produce. To overcome

this problem, one must choose N to be sufficiently large so that 1/τ is significantly larger

than the quering time. Note from equation (4.1) that 1/τ is proportional to N . Putting it

simply, the more agents we have, the less hard each agent has to work. In our simulation,

the choice of N = 50 yields 1/τ = 0.4717 second, which is significantly larger than the

average quering time of 0.004 second.
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4.3.2 Logic codification

After setting the agent-level parameters, we can proceed to code the brain or the logic

of the agents. Since we use homogeneous agents, all agents share the same code. The

pseudo code for the agent’s logic is presented below.
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while simulation not terminated:

generate t from EXPONENTIAL(tau)

sleep for t seconds

generate independent U1, U2 from UNIFORM(0,1]

if U1 <= p: /* a limit order to be submitted */

if U2 <= 0.5: /* the limit order will be a buy order */

query server for the current best ask a

wait until query result is received

generate limit price c from UNIFORM(a - L, a]

generate expiration time w from EXPONENTIAL(1/delta)

submit limit buy order [exp(c), w]

else: /* the limit order will be a sell order */

query server for the current best bid b

wait until query result is received

generate limit price c from UNIFORM(b, b + L]

generate expiration time w from EXPONENTIAL(1/delta)

submit limit sell order [exp(c), w]

else: /* a market order to be submitted */

if U2 <= 0.5: /* the market order will be a buy order */

submit market buy order

else: /* the market order will be a sell order */

submit market sell order

end while

Figure 4.2: The pseudo code for an artificial agent



Chapter 5

Statistical results and analysis

Having properly implemented the SFKG double-auction market model on our distributed

and agent-based platform, we are able to carry out thorough and large-scale simulations,

from which we can obtain various relevant data in sufficient amounts. By performing

certain statistical analyses on these data, we can investigate and explore many interesting

properties of the artificial market. In particular, we want to understand the evolution of

the market’s mid-price, spread and order book structure.

5.1 The mid-price

Statistical analysis on mid-price is done in the logarithmic space. To avoid endless

repetition, throughout this section, the word mid-price will actually mean the logarithm

of the mid-price. Table 5.1 and Table 5.2 present two independent sample time series

of the market’s mid-price, each of which was produced by running the simulation for

about 24 hours and each contains approximately 200, 000 data points. These tables

allow readers to take a close look at the time series on different time scales.

We are interested in comparing the sample paths of the simulated market’s mid-price

to those of a Brownian motion process. A variable X, which follows a general Brownian

44
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Figure 5.1: Sample time series #1 of mid-price with multi-level zooms. The north-west

graph plots the complete time series and the box inside the graph indicates the portion

to be zoomed in and shown on the next graph (i.e., the north-east one). Similarly the

box inside the north-east graph indicates the portion to be zoomed in and shown on the

next graph (i.e., the south-west one) and so on.
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Figure 5.2: Sample time series #2 of mid-price with multi-level zooms. The north-west

graph plots the complete time series and the box inside the graph indicates the portion

to be zoomed in and shown on the next graph (i.e., the north-east one). Similarly the

box inside the north-east graph indicates the portion to be zoomed in and shown on the

next graph (i.e., the south-west one) and so on.
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Figure 5.3: Sample time series of a standard Brownian motion with multi-level zooms.

The north-west graph plots the complete time series and the box inside the graph indi-

cates the portion to be zoomed in and shown on the next graph (i.e., the north-east one).

Similarly the box inside the north-east graph indicates the portion to be zoomed in and

shown on the next graph (i.e., the south-west one) and so on.
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motion, can be described by the equation

X(t) = µ · t+ σ ·W (t) (5.1)

where W(t) denotes a standard one-dimensional Brownian motion. Table 5.3 shows a

sample path (or a sample time series) of a pure Brownian motion, for which the drift

coefficient µ is 0 and the diffusion coefficient σ is 1. This Brownian motion sample path

is constructed by running a Monte Carlo simulation (Glasserman 2004) on random and

discrete times (t0 < t1 < ... < tN). The set up of Table 5.3 is entirely analogous to that of

the Tables 5.1 and 5.2. Also the values of N and tN are set to match their counterparts

in the mid-price time series so that the graphs in all three tables are comparable.

By comparing the graphs in Tables 5.1, 5.2 and 5.3, we can see that the evolution of

the mid-price of the simulated market does have certain similarities to a Brownian motion

process. In particular, in Tables 5.1 and 5.2, we are able to roughly observe the well-

known statistically self-similar property of a Brownian motion process , which intuitively

means that all zoomed graphs of a Brownian motion process should look similar.

But how similar is the mid-price evolution to a pure Brownian motion process? If

there are differences between them, what are they? Staring at the graphs of the sample

time series won’t help much to answer these questions. Instead, one effective way to

find the difference or similarity between time-series for the mid-price (let’s call it P ) and

for a variable X that follows a Brownian motion is to investigate the variance of the

time series for P and X with varying time lags. More precisely, from the mid-price time

series obtained from the simulation, we would like to measure the following quantity for

different values of τ (which denotes the time lag between sampled data points)

1

τ
· V ar(P(j+1)τ − Pjτ )

where Pjτ denotes the value of P at time jτ .

Suppose a variable X follows a pure Brownian motion process X(t) = σW (t). It is
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well known that

X(j+1)τ −Xτ = σ ·
√
τ · ξj

where ξjs are independent and identically distributed (IID) standard normal random

variables. Let E[·] denote the mean value of [·] and N denote the total number of data

points in the complete Brownian motion time series (hence N/τ is the sample size). Then

we have

E[(X(j+1)τ −Xjτ )
2] = σ2 · τ · E[ξj

2]

= σ2 · τ · (1±O((N/τ)−
1
2 ))

= σ2 · τ · (1±O(
√
τ/N)) (5.2)

Since X has 0 drift (i.e. E[(X(j+1)τ −Xjτ )] = 0), we can rewrite equation 5.2 as

E[(X(j+1)τ −Xjτ )
2] = V ar(X(j+1)τ −Xjτ )

= σ2 · τ · (1±O(
√
τ/N)) (5.3)

or equivalently

1

τ
· V ar(X(j+1)τ −Xjτ ) = σ2 · (1±O(

√
τ/N)) (5.4)

Equation (5.4) suggests an important property of a pure Brownian motion process: the

time-lag-scaled variances of change corresponding to varying time lags should on average

remain flat at the level of σ2 (where σ is the diffusion coefficient of the underlying

Brownian motion) but deviate more and more from the average as the time lag τ increases.

This property also allows us to estimate the diffusion coefficient of a sample path of an

unknown Brownian motion process. Figure 5.4 shows the time-lag-scaled variances versus

time lags plot for a pure Brownian motion process with drift 0 and diffusion coefficient

1.

Now we construct the time-lag-scaled variances (of change) plot for the mid-price time

series of the simulated market. The plot creation procedure is described in the following

steps:
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Figure 5.4: Time-lag-scaled variance versus time lag plot for a Brownian motion process

X(t) = W(t). One can observe from the graph that the variances remain flat around 1

and deviate more and more from 1 as the time lag τ increases.
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1. We first need to interpolate the data points from the original time series, because

the times (t0 < t1 < ... < tN − 1) in the time series produced by the simulation

are not uniformly spread out along the time axis. In fact, ti+1 − ti is exponentially

distributed due to the fact that all market events in the SFKG artificial market

are modeled by Poisson processes. The interpolation is done using the nearest

neighbour method, which assigns the interpolated value of an intermediate point

to the value of its closest neighbour.

2. For a given time lag τ , we extract data points at 0, τ , 2τ , 3τ , ..., etc from the

interpolated time series, form these sample points into a sub-time-series. We mea-

sure the variances of change (scaled by 1/τ) for this sub-time-series. We repeat

this procedure for different values of the time lag τ and graph the results, which

is a plot of time-lag-scaled variances (of change) vs. their corresponding time lags.

Such a plot is shown in Figure 5.5.

Figure 5.5 suggests a significant difference between the mid-price evolution and a

Brownian motion process. More specifically, the change of mid-price exhibits anti-

correlations on small time scales. That is, the successive changes of mid-price are not

independent (as in the case for a pure Brownian motion) but instead, they are negatively

correlated. The anti-correlation effect decreases gradually as the time lag increases.

5.2 The bid-ask spread

Spread is an another important characteristic of double auction markets. Being able to

understand and to model the evolution of the spread is central to many optimization

problems in finance. In this section, we develop a simple model for the spread in our

artificial double-auction market using a Brownian motion process with deterministic, but

spread-dependent, drift and diffusion coefficients. In other words, suppose the spread
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Figure 5.5: Time-lag-scaled variance versus time lag plot for the mid-price. One can

observe from the graph that the variances first decrease linearly and then become quite

flat as the time lag increases. The flat region is similar to its Brownian motion counterpart

(shown in Figure 5.4). Also note that the anti-correlation decays to zero at about 10 sec.
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(denoted by S) can be modeled by the stochastic differential equation

dS(t) = µ(S) · dt+ σ(S) · dW (t) (5.5)

where W (t) is a standard Brownian motion. We want to estimate the functional form of

µ(t) and σ(t) from the spread time series generated by the simulation. Again, as for the

mid-price, the statistical analysis for the spread is done in the logarithmic space. That

is, the word “spread” and the symbol S used throughout this section actually refer to

the logarithm of the spread.

To estimate the functional forms of the drift and diffusion, we first discretize equation

(5.5)

∆Sj ≈ µ(Sj) ·∆tj + σ(Sj) ·
√

∆tj · ξj (5.6)

where the notation Sj means the value of the spread at time tj, ∆Sj = Sj+1 − Sj,

∆tj = tj+1 − tj and the ξjs are IID standard normal random variables.

From equation (5.6) the drift function can be written as

µ(Sj) ≈
∆Sj
∆tj
− σ(Sj)√

∆tj
· ξj (5.7)

Let’s define a set T containing times, at which the spread S is close to a given value Ŝ

T (Ŝ) = {k | |Sk − Ŝ| < ε}

where ε is a small positive number. Then equation (5.7) implies that the value of the

drift function at a particular value Ŝ can be estimated as

µ(Ŝ) = E(
∆Sk
∆tk

− σ(Sk)√
∆tk
· ξk | k ∈ T (Ŝ))

= E(
∆Sk
∆tk

| k ∈ T )− E(
σ(Sk)√

∆tk
· ξk | k ∈ T (Ŝ))

= E(
∆Sk
∆tk

| k ∈ T (Ŝ))− 0

=
1

|T (Ŝ)|

∑
k∈T (Ŝ)

∆Sk
∆tk

(5.8)

Equation (5.8) suggests the following procedure for estimating the drift function from

a given time series of the spread.
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1. We first sample the spread data points at uniformly spaced time points t0 < t1 <

t2... < tn, where tj+1− tj = ∆t for all j. Interpolation may be required in this step.

2. For each Sj (Sj is short for the value of S at time tj), j is from 1 to n-1, compute

∆Sj/∆t = (Sj+1 − Sj)/∆t and form the n − 1 by 2 vector [Sj ∆Sj/∆t]. Sort the

rows of the vector by its first column (i.e., by values of Sj) in an ascending order.

3. Separate the rows of the sorted vector into N bins. For each bin, compute the

average of the second column (i.e., the average of ∆S/∆t). Also record the center

value for each bin (i.e., the median value of S belonging to the bin).

4. Now we have N data pairs, each of which contains the median center of the bin and

the corresponding average value of ∆S/∆t for the bin. Plot the N data pairs. This

plot gives an estimated functional form of the drift coefficient.

Figure 5.6 is a plot resulting from the above drift function estimation procedure.

From the plot, one can observe some clear patterns of the drift function: it is a smooth,

decreasing, concave-down function that crosses zero at almost exactly 0.015. This implies

that the stochastic process followed by the spread is mean-reverting and the mean or

stationary level of the spread is about 0.015. In other words, when the spread is greater

than 0.015, the drift of the spread becomes negative, which creates a tendency to pull

back the spread to 0.015; and when the spread is less than 0.015, the drift becomes

positive, which creates a tendency to push the spread back up to 0.015. Note that the

mean spread 0.015 seen on Figure 5.6 is consistent with the given model-level parameters

(see Table 4.2). This is strong evidence of the correctness and reliability of our software

simulation platform.

To estimate an algebraic form of the drift function, we can fit or regress (in the least

square sense) the data points (shown as circles) from the resulting plot on a second-degree

polynomial. The best-fit quadratic approximation of the drift function is

u(S) = −30.7064 · S2 + 0.1309 · S + 0.0046 (5.9)
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and it is shown in Figure 5.6 as the solid curve going through the circles.

Now we estimate the functional form of the diffusion coefficient for the spread. From

equation (5.6) we have

σ(Sj) · ξj =
∆Sj√

∆tj
− u(Sj) ·

√
∆tj (5.10)

As we did for estimating the drift function, let’s define a set T containing times at which

the spread S is close to a given value Ŝ:

T (Ŝ) = {k | |Sk − Ŝ| < ε}

where ε is a small positive number. Then equation (5.10) suggests that σ(Ŝ) is approx-

imately equal to the standard deviation of the following random sample (denoted by

D(Ŝ)):

D(Ŝ) = { ∆Sk√
∆tk
− u(Ŝ) ·

√
∆tk | k ∈ T (Ŝ)}

In other words, the value of the diffusion function at some given value Ŝ can be estimated

as

σ(Ŝ) = Std[D(Ŝ)] (5.11)

where Std is short for standard deviation. Note that since u(Ŝ) ·
√

∆tk is a constant term

for a given Ŝ (assuming time points are equally spaced, i.e., ∆t is constant). Therefore,

the estimation of σ(Ŝ) can be further reduced to

σ(Ŝ) = Std[D̄(Ŝ)] (5.12)

where D̄(Ŝ) is a random sample defined as

D̄(Ŝ) = { ∆Sk√
∆tk
| k ∈ T (Ŝ)}

Based on equation (5.12) we have the following procedure for estimating the spread’s

diffusion function.

1. We first sample spread data points at uniformly spaced time points t0 < t1 < t2... <

tn, where tj+1 − tj = ∆t for all j. Interpolation may be required in this step.
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Figure 5.6: The functional form of the spread’s drift coefficient estimated from the spread

time series. The circles are the original plot produced by the estimation procedure and

the solid curve is a second-degree polynomial that best fits (in the least square sense) the

original plot. The estimation becomes more noisy at the far right end as there are fewer

spread data points that fall into those high value regions. This figure suggests that the

stochastic process followed by the spread is mean-reverting and the long-term stationary

mean spread (where the drift function crosses 0) is about 0.015.
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2. For each Sj (Sj is short for the value of S at time tj), j is from 1 to n-1, compute

∆Sj/
√

∆t = (Sj+1− Sj)/
√

∆t and form the n− 1 by 2 vector [Sj ∆Sj/
√

∆t]. Sort

the rows of the vector by its first column (i.e., by values of Sj) in an ascending

order.

3. Separate the rows of the sorted vector into N bins. For each of the N bins, com-

pute the standard deviation of the second column (i.e., the standard deviation of

∆S/
√

∆t). Also record the center value for each bin (i.e., the median value of S

belonging to the bin).

4. Now we have N data pairs, each of which contains the median center of the bin

and the corresponding standard deviation of ∆S/
√

∆t for the bin. Plot these N

data pairs. This plot gives an estimated functional form of the spread’s diffusion

coefficient.

Figure 5.7 is the plot resulting from the above diffusion function estimation procedure.

From the plot, we see that the diffusion function is smooth, increasing and concave up.

To estimate an algebraic form of the diffusion function, we fit or regress (in the least

square sense) the data points (shown as circles) from the resulting plot on a second-

degree polynomial. The best-fit quadratic function is computed to be

σ(S) = 7.752 · S2 + 0.2399 · S + 0.0052 (5.13)

It is shown in Figure 5.7 as the solid curve going through the circles. Note that the

quadratic function for σ(S) does not go to zero as S becomes close to zero. As a result,

theoretically speaking, there is a possibility (however slim) that the solutions to the SDE

dS(t) = µ(S) · dt + σ(S) · dW (t) may cross zero. This is a limit of the SDE model

developed above.
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Figure 5.7: The functional form of the spread’s diffusion coefficient estimated from the

spread time series. The circles are the original plot produced by the estimation procedure

and the solid curve is a second-degree polynomial that best fits (in the least square sense)

the original plot. The estimation becomes more noisy at the far right end as there are

fewer spread data points that fall into those high value regions.
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5.3 The limit order book

The limit order book is a central component of double-auction markets and it is relevant

to many optimization problems in finance. However, a challenge for researchers to study

the structural properties of the limit order book is that the empirical data regarding limit

order books are much less accessible than other real world financial data, such as stock

prices, spreads, etc. Information about the limit order book is termed Level 2 Data in

the financial world and the scarcity of level 2 data may either be caused by the natural

difficulty to compose and record them or by the fact that many exchanges (such as NYSE

and NASDAQ) charge fees for accessing them. The use of agent-based artificial markets,

on the other hand, can provide us sufficient simulated level 2 data and, to a certain

extent, allow us to gain insights about the structure of the limit order book.

This section focuses on limit order densities in the limit order book. In particular, we

present several “snapshots” of the cumulative limit order density plot, taken at random

times during a simulation run of the agent-based SFGK artificial market. For limit

buy orders, the cumulative density plot is a step plot, for which the X axis records the

limit buy prices (denoted by Pb) currently existing in the book and the Y axis gives

the corresponding number of buy orders whose limit prices are greater than or equal

to Pb. Similarly, for limit sell orders, its cumulative order density plot is a step plot

where the X axis records the limit sell prices (denoted by Ps) and the Y axis gives the

corresponding number of sell orders whose limit prices are smaller than or equal to Ps.

The cumulative order density plot interests many people because it is closely related to

the price impact function for selling or buying a large block of assets. For example, if a

financial institution submits a market sell order of size 1000 to a double-auction market,

the price impact (of the average selling price) from this sale can be estimated from the

cumulative limit buy order density a follows. Let D(p) be a continuous function that

approximates the cumulative buy order density. And let b denote the current bid price

and k denote the limit price such that D(k) = 1000. Then the price impact P̄ can be



Chapter 5. Statistical results and analysis 60

estimated by calculating the integral

P̄ =

∫ k

b

D(p)dp

Hence with a good understanding of the cumulative order density in a double-auction

market, it is possible for a financial institution to estimate price impact for large trans-

actions.

This section does not intend to rigorously model the cumulative order density from

the level 2 data obtained from simulations. Rather, it simply produces some sample

cumulative order density plots by processing the “snapshots” of the limit order book,

taken at random times during a simulation run. Figure 5.8 provides two such sample

plots for limit orders that reside reasonably close to the spread region. These plots can

give a decent indication of the cumulative order density associated with the SFGK model.

Serious researchers who want an accurate picture of the cumulative order density should

develop a reasonable and systematic technique to average these sample plots.
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Figure 5.8: Sample cumulative order density plots for limit orders that are close to the

spread region. The empty circles represent limit orders stored in the limit order book.

The X axis gives the logarithmic distance of limit prices away from the mid-point. The

left (right) half of each plot gives the cumulative order density for limit buy (sell) orders.

The Y axis gives the cumulative number of shares for a given limit price. Note that on

the grid line Y = 0, the gap between the two disconnected circles indicates the current

spread.



Chapter 6

Trading strategy experiments

The software platform together with the SFGK model provide us with an agent-based

simulation laboratory for a double-auction market. The role of the software platform is

to lay out the necessary infrastructure for the market and the role of the SFGK model

is to generate certain market dynamics which allows the artificial market to evolve auto-

matically itself and to mimic reasonably the behaviors of a real financial market. Such

a simulation laboratory can give researchers and financial institutions an edge in solving

many optimization problems in finance because it allows them to carry out experiments

and test strategies on a simulated market instead of on an actual market (which could

be very costly). In this chapter, we will show how one can take advantage of our sim-

ulation laboratory to explore and experiment with trading strategies associated with

time-constrained asset-liquidation.

6.1 The time constrained asset liquidation problem

The problem that we explore here is how to find good trading strategies for liquidating a

large block of assets with a given time constraint. Such problems arise frequently for large

institutional investors (such as pension funds, hedge funds and insurance companies). For

example, a financial institution may need to liquidate part of its portfolio to fund short-
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term cash obligations coming due or it may be the case that it is required to sell portions of

a portfolio (as part of the portfolio rebalancing effort) to meet risk management criteria.

In either case, the financial institution will need to complete the liquidation process

within a given period of time.

What trading strategies should the financial institution adopt in order to maximize

its revenue from liquidating the asset? The answer to this question is not trivial. Markets

have finite liquidity and the asset under liquidation is often significant in size compared

to the available liquidity in the market. Hence it is either impossible or infeasible to

liquidate instantly the entire block of assets: the market either may simply not have

sufficient liquidity to satisfy the order or, even if it does, selling the entire asset at once

may yield an unacceptably low average selling price. Recall that in the context of a

double-auction market (the most common form of financial market today), such as the

one whose limit order book is shown in Table 1.1, market liquidity is provided by limit

orders residing in the limit order book and the larger the size of a market sell order

being placed on the market, the deeper it will go below the current best bid price to get

satisfied and the poorer the average selling price will be. Given the above argument, it

is clear that the liquidation must be done in a “chunk-wise” fashion. In other words, the

financial institution must divide the whole block of asset into chunks and sell them one

chunk at a time.

However, what remains unclear is at what rhythm those chunks should be sold to

the market. In the next section, we present two simple and feasible strategies for the

asset liquidation problem. In the following section, we perform simulation experiments

to evaluate the performance of the two strategies. It should be noted that this paper does

not intend to provide a rigorous and theoretical treatment to the general optimization

problem of asset liquidation. Rather, we are primarily interested in taking an experi-

mental approach to explore a subset of the time-constrained asset liquidation strategies,

for which we assume that the liquidation is done though market sell orders only. One
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purpose of such an exploration is to demonstrate how our simulation laboratory can ben-

efit institutional investors by allowing them to experiment with and vet various trading

strategies. For a comprehensive and mathematical treatment to the general asset liqui-

dation problem (especially about the optimal trajectory for the rate of trading), please

see the paper written by Almgren and Chriss (2000) who pioneered much of the early

research in this field.

6.2 Two different trading strategies

Perhaps the most obvious choice of the liquidation rhythm is to sell the chunks of the

asset at fixed and uniformly-spaced time points: given that the size of the asset is X,

the deadline for completing the liquidation is T and the asset is divided into N chunks,

the “uniform rhythm” strategy instructs a trader to sell X/N shares every T/N seconds,

regardless of the market conditions. Now the question is: Can we find a better trading

strategy than the “uniform rhythm” one just described?

The answer is yes. With the help of our simulation laboratory, we are able to take

an experimental approach to search for other possible trading strategies that can yield

a better average selling price for the asset. In what follows, we will propose a “non-

uniform rhythm” trading strategy and in the next section we will show through simulation

experiments that this strategy can outperform the “uniform rhythm” strategy in the

average sense.

Unlike the “uniform rhythm” strategy, which sells chunks of the asset at fixed time-

points (uniformly spaced) regardless of market conditions, the “non-uniform rhythm”

strategy is more sophisticated in that it dynamically decides when to initiate selling

based on the current spread in the market. More precisely, given that X is the total

amount of asset to be liquidated, T is the length of time within which the liquidation

process must be completed and N is the number of chunks that the asset is divided into,
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the “non-uniform rhythm” trading strategy does the following.

1. Before starting to sell, the strategy first picks a threshold for the spread. The

spread threshold should be small. For example, it can be set to be a small fraction

of the mean spread observed in the market. The liquidation timeline (from t = 0

to t = T ) is divided into N segments, each of which has a length of T/N seconds

and, within each time segment, X/N amount of shares must be sold.

2. So far, the “non-uniform rhythm” strategy is almost identical to its uniform coun-

terpart. What distinguishes them is that, instead of selling the X/N shares of the

asset at a fixed time point within each time segment (which is the case for the “uni-

form rhythm” strategy), the “non-uniform rhythm” strategy requires a trader to

continuously observe the market spread and initiates the selling of the X/N shares

as soon as the current market spread, for the first time within the time segment,

falls below the pre-determined spread threshold. If the market spread never falls

below the spread threshold for a time segment, the strategy will sell the X/N shares

at the end of the time segment.

Figure 6.1 illustrates the difference between the two trading strategies.

6.3 Performance evaluation experiment

In the previous section, we introduced two trading strategies associated with the asset

liquidation problem. To evaluate the performance of the two strategies, we implement two

special artificial agents, each of which is programmed to follow one of the two strategies

to liquidate a certain amount of asset within a fixed length of time. Each agent (or

strategy) is tested individually on the simulated double-auction market for 200 runs.

The final evaluation result will be based on the agents averaged performance on these

tests. The detailed layout of our experiment is summarized below.
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"Uniform Rhythm" strategy:

t=0 t=T

t=0

"Non-uniform Rhythm" strategy:

Selling always occur at fixed and uniformly spaced time points.

Within each time segment, the trader continuously observes the market spread and
he/she initiates the selling as soon as the market spread, for the first time, falls below
a pre-defined threshold. If the market spread never falls below the threshold during a
time segment, the trader sells the chunk of the asset at the end of that time segment.

t=T
Legend:

indicate the time period during which the trader is idle.

indicate the time period during which the trader is
continuously observing the market spread.

indicate the time point at which the trader initiate a selling

Figure 6.1: An illustraction of the “uniform rhythm” and “non-uniform rhythm” trading

strategies.
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1. Both special agents are given the same objective, which is to liquidate 20 shares

within 5 minutes of time. Note the number of shares and the time duration of the

liquidation are both scaled down to be consistent with the scales in the “simulated

world”. In particular, the size of the asset under liquidation (20 shares) is actually

quite significant compared to the available liquidity in the simulated market. The

total asset is divided into 10 chunks, each of which contains 2 shares that will be

sold within a time segment of 30 seconds.

2. Implement two special agents A (with “uniformand rhythm” strategy) and B (with

“non-uniform rhythm” strategy) by coding new artificial threads in the simulation

framework (see Figure 3.2). For agent B, the required spread threshold is chosen to

be one-eighth of the stationary mean spread of the simulated double-auction mar-

ket, (i.e., the spread threshold is equal to 0.125× 0.015 = 0.001875, in logarithmic

space).

3. Each special agent will be tested individually on the simulated market for 200 runs.

At the end of each test, we calculate and record the following quantity

Gi =
P̄i

VWAPi

where P̄i denotes the average selling price per share realized for the ith run and

VWAPi denotes the corresponding VWAP1 associated with the time period of the

ith test (300 seconds in length). Gi is a performance measure benchmarked to

VWAP, which tells us how much better or worse an agent performs during the ith

test comparing to the market. It is important to use the benchmarked measure Gi,

rather than Pi, as the evaluation criterion because market fluctuations can make

Pi a very noisy and biased measure. In other words, a bigger Pi alone doesn’t

1VWAP is the abbreviation of “Volume Weighted Average Price” and it is an objective and effective
measure of the average execution price taking place in the market for a given period of time. In the
real financial world, VWAP is commonly used as a benchmark to measure the efficiency of institutional
trading or the performance of traders themselves.
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necessarily mean a better performance. For example, when the market is bullish, a

trader will generally get higher values of Pi than when the market is bearish, but

in order to fairly judge their performance, we benchmark it to the market.

4. The last stage of the experiment is to evaluate the test results (from the previous

step) for both agents and to draw conclusions about their performance. Let GA

(GB) denote the random variable representing the benchmarked performance for

agent A (agent B), for which we have collected a sample that contains 200 realiza-

tions: GA
i (GB

i ), i = 1, 2, ...200 in the previous step. We compute the sample mean

and sample standard deviation for both GA and GB, from which a conclusion is

drawn about whether there is a significant difference between the two strategies.

6.4 Performance evaluation results

Now we report the results from the evaluation experiment:

• For Agent A (based on the “uniform rhythm” strategy): GA has a sample mean of

0.99436 and a sample standard deviation of 0.0042, which implies that agent A on

average underperforms the market by 56.4± 2.97 basis points.2

• For agent B (based on the “non-uniform rhythm” strategy): GB has a sample mean

of 1.00034 and a sample standard deviation of 0.0052, which implies that agent B

on average outperforms the market by 3.4± 3.68 basis points.

Figure 6.2 plots the empirical cumulative distribution functions (CDFs) for both GA

and GB. Observe that there is a clear gap between the two CDFs and that the CDF

for GB is to the right of that for GA, which suggests that on average agent B (based

on the “non-uniform rhythm” strategy) outperforms agent A (based on the “uniform

2The number 2.97 gives the approximated error range (or standard deviation) of the sample mean.
It is calculated by dividing the sample standard deviation (0.0042 or 42 basis points) by the square root
of the sample size (200).
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Figure 6.2: Empirical cumulative distribution functions (CDFs) for GA and GB. We

can observe a clear gap between the two CDFs. Moreover the CDF for GB is to the right

of the one for GA, which is statistical evidence suggesting that on average agent B (based

on the “non-uniform rhythm” strategy) outperforms agent A (based on the “uniform

rhythm ” strategy).

rhythm” strategy). The “non-uniform rhythm” trading strategy introduced here was

actually inspired by traders in the real financial world who use similar strategies to

liquidate large blocks of assets. Our experiment and the statistical results from it suggest

that such a strategy is indeed quite effective. A trader using the “non-uniform rhythm”

strategy will have almost a 60-basis-point advantage over another trader using the simpler

“uniform rhythm” trading strategy, which in a large transaction could mean a difference

of thousands of dollars.



Chapter 7

Conclusion and future work

7.1 Conclusion

The main contributions of this thesis include the presentation of an agent-based simu-

lation environment, the investigation of market microstructure properties of an artificial

double-auction market and the evaluation of trading strategies for the time-constrained

asset-liquidation problem. In particular, we have achieved the following objectives.

1. We successfully built a high-quality software platform that is specifically designed

to carry out agent-based simulations of financial markets. The software platform is

fully multi-threaded, employs a client/server architecture and offers a distributed

computing framework on which researchers can experiment with their own agent-

based artificial markets. The high scalability of the software makes the integration

of new artificial agents (or the replacement of existing ones) as easy as dealing with

plug-and-play devices.

2. We implement the SFGK artificial model in an agent-based setting on top of our

software platform. The SFGK model provides a simple and robust mechanism

for simulating the evolution of a double-auction market. It is central to much of

the research work carried out in this thesis because it not only provides a natural
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and comprehensive test case for our software infrastructure but, more importantly,

generates the necessary and reasonably realistic market dynamics that allows us to

study its market microstructure properties and to use it as a testbed to evaluate

trading strategies.

3. We perform an in-depth investigation on the microstructure properties of the SFGK

artificial market through extensive simulation experiments. We first study the

mid-price dynamics produced by the model and compare it to a pure Brownian

motion process. We find that the mid-price in the SFGK model has “short-term

memory” (or anticorrelation) which gradually diminishes over time. We then study

the evolution of the bid-ask spread. In particular, we model the spread using a

stochastic differential equation of the form dS(t) = µ(S) · dt+ σ(S) · dW (t) and we

show that the drift coefficient µ(S) and the diffusion coefficient σ(S) can both be

approximated well by simple quadratic functions. We also look into the limit order

book structure by providing sample cumulative order density plots.

4. We evaluate trading strategies for the time-constrained asset liquidation problem,

based on simulation experiments conducted on the SFGK artificial double-auction

market. We propose and compare two feasible trading strategies, one of which

employs a fixed and uniform selling rhythm, and the other of which employs a

dynamic and non-uniform selling rhythm. We implement two special agents, each

of which is programmed to follow one of the strategies. And we individually and

repeatedly evaluate each special agent’s trading performance (benchmarked to the

market) on the simulated market. The experimental results show that on average

the dynamic non-uniform strategy outperforms the uniform one by almost 60 basis

points.
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7.2 Future work

The agent-based simulation environment (consisting of the software platform and the

SFGK artificial market model) presented in this thesis has the advantage of being flexible

enough to allow for many extensions and applications. In what follows, we suggest two

avenues of future research work that can directly proceed from here.

The first avenue involves possible enhancements to the SFGK model. Recall that in

the current model, the log of limit prices are chosen randomly from uniform distribu-

tions. For example, the log limit buy prices are drawn uniformly over the price interval

(−∞, a(t)), where a(t) denotes the lowest ask price at time t. The setting that assigns

equal weight or probability (because of the uniform distribution) to all limit prices is

wasteful because it results in many “not-so-useful” limit orders whose limit prices are un-

reasonably far way from the spread. One possible enhancement is to replace the uniform

distribution with an exponential distribution, which assigns more weight or probability

to limit prices that are close to the spread than those that are further away from it.

Smith, Farmer, Gillemot, and Krishnamurthy (2003) suggest several other enhancements

in their original paper that interested readers may refer to.

The second avenue involves possible applications of our simulation environment. As

we have demonstrated in this thesis, the simulation environment can be used as a testbed

for exploring and evaluating trading strategies. On a broader front, it may be interesting

to see how it can be applied to the area of risk management. For example, the SFGK

model has the potential to simulate various disastrous scenarios such as a market crash

or a liquidity crisis, which could be very useful in risk management. To simulate a

market crash using the SFGK model, for example, one can simply adjust the relevant

rate parameters of the model to cause an imbalance of buy orders and sell orders arriving

at the market. The excess of sell orders (supply) over buy orders (demand) will result

in a price decrease. The duration, severity and frequency of such market crashes can be

completely manipulated by setting the agent-level parameters appropriately. Similarly,
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to simulate a liquidity crisis, one can simply adjust the ratio of the arrival rate of limit

orders versus that of the market orders to cause an imbalance of limit orders and market

orders arriving at the market. The excess of market orders over limit orders will decrease

the market liquidity and widen the spread. Again, the duration, severity and frequency

of a liquidity crisis can be completely controlled.
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