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In this thesis, we develop a numerical approach for solving multi-dimensional optimal stopping

problems (OSPs) under stochastic volatility (SV) that combines least squares Monte Carlo (LSMC)

with partial differential equation (PDE) techniques. The algorithm provides dimensional reduction

from the PDE and regression perspective along with variance and dimensional reduction from the

MC perspective.

In Chapter 2, we begin by laying the mathematical foundation of mixed MC-PDE techniques for

OSPs. Next, we show the basic mechanics of the algorithm and, under certain mild assumptions,

prove it converges almost surely. We apply the algorithm to the one dimensional Heston model

and demonstrate that the hybrid algorithm outperforms traditional LSMC techniques in terms of

both estimating prices and optimal exercise boundaries (OEBs).

In Chapter 3, we describe methods for reducing the complexity and run time of the algorithm

along with techniques for computing sensitivities. To reduce the complexity, we apply two meth-

ods: clustering via sufficient statistics and multi-level Monte Carlo (mlMC)/multi-grids. While

the clustering method allows us to reduce computational run times by a third for high dimensional

problems, mlMC provides an order of magnitude reduction in complexity. To compute sensitivities,

we employ a grid based method for derivatives with respect to the asset, S, and an MC method

that uses initial dispersions for sensitivities with respect to variance, v. To test our approxima-

tions and computation of sensitivities, we revisit the one dimensional Heston model and find our

approximations introduce little-to-no error and that our computation of sensitivities is highly ac-

curate in comparison to standard LSMC. To demonstrate the utility of our new computational

techniques, we apply the hybrid algorithm to the multi-dimensional Heston model and show that

the algorithm is highly accurate in terms of estimating prices, OEBs, and sensitivities, especially

in comparison to standard LSMC.

In Chapter 4, we highlight the importance of multi-factor SV models and apply our hybrid
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algorithm to two specific examples: the Double Heston model and a mean-reverting commodity

model with jumps. Again, we were able to obtain low variance estimates of the prices, OEBs, and

sensitivities.
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Chapter 1

Introduction

Optimal stopping problems (OSPs) are an important class of problems that arise in probability

and statistics, especially in the field of mathematical finance. In statistics they arise in Bayesian

quickest detection problems where one detects the presence of a drift in a Weiner process or the

jump intensity of a Poisson process [51]. In mathematical finance, their applications include prob-

lems pertaining to portfolio allocation, production-consumption, irreversible investment, valuation

of natural resources and American style options [52].

While the theory of such problems has been extensively analyzed within the continuous time

stochastic control literature [51], [52], [60], and in some cases solved in closed form [43], [37], [51],

their numerical solution still remains an active area of research. Following the classification scheme

of [57], we refer to problems of dimension 1 as low dimensional, 3 - 5 as medium dimensional

and problems greater than 5 as high dimensional. Low and most medium dimensional problems

are often solved using accurate grid-based deterministic methods. More complex medium and

high dimensional problems must be solved using simulation techniques developed in [47], [62] and

improving their accuracy is a topic of active research. In this thesis, we develop a numerical

method to effectively handle discrete time OSPs under stochastic volatility which are classified as

medium to high dimensional. Our approach is a hybrid between gridded methods and simulation

approaches making it ideal for the types of problems we consider.

In the sections that follow we outline the basic theory of discrete optimal stopping and discuss

its connections to continuous time problems. Afterwards, we discuss the history and literature on

their numerical solutions ranging from deterministic to probabilistic approaches followed by the

relatively new field of hybrid approaches. Finally, we outline the main contributions of this thesis,

setting the stage for developing the new hybrid algorithm.

1.1 Optimal Stopping Problems

1.1.1 Theoretical Results

We begin by discussing various classical results that theoretically characterize the solution of fully

observed, Markovian, discrete time OSPs and provide the foundation for numerical approaches.

Our presentation follows the manuscript of [51] which, for the interested reader, also contains

1
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detailed proofs of the results that we discuss.

Classical Results on Optimal Stopping

Let {t0 = 0, t1, . . . , tN−1, tN = T} be an ordered set of times and (Ω,F , (Fn)Nn=1,Q) a filtered

probability space. Let Xn be a stochastic process on Rd that is adapted to Fn, h : Rd → R a

Borel measurable function and Zn = hn(Xn), where Zn is adapted to Fn. We refer to Zn as our

reward process, hn as our payoff function, and Xn as our underlying driving process. Finally, let

MN
n be the set of stopping times adapted to Fn that take value in {tn, . . . , tN}.
We suppose that at each time, tn, an agent has a one-time claim to the reward process Zn and

must eventually claim the reward by time tN . We define an optimal stopping problem to be the

problem of characterizing and computing Vn as defined by

Vn = sup
τ∈MN

n

E [Zτ ] . (1.1)

To motivate the main result regarding such problems, we describe a process SNn which pro-

vides a stochastic characterization of the agent’s choice at each time tn. At time N , the agent’s

claim on Zn expires and so she must immediately exercise to obtain SNN = ZN . At time tN−1,

the agent may choose to claim the reward and obtain ZN−1 or may hold on and continue un-

til time tN , in which case the value of her position is E[ZN | FN−1]. As a result, we set

SNN−1 = max (ZN−1,E[ZN | FN−1]) . This argument may be extended backwards for all preceding

times which leads to the following description of SNn

SNN = ZN

SNn = max (Zn,E [Zn+1 | Fn]) ∀ n = N − 1, . . . , 0.

This formulation of the agent’s optimal choice also provides a potential candidate for the optimal

stopping time in (1.1)

τNn = min
{
k | SNk = Zk, k = n, . . . , N

}
. (1.2)

The following theorem shows that the agent’s process, SNn , is indeed the optimal strategy and that

the supremum in (1.1) is achieved at τNn . By taking expectations, Theorem 1 also shows us that

Vn = E[ZτNn ].

Theorem 1 ( [51],Theorem 1.2). Let 0 ≤ n ≤ N and suppose E
(
supn≤k≤N |Zk|

)
<∞. Then

SNn ≥ E[Zτ | Fn] ∀ τ ∈MN
n

SNn = E[ZτNn | Fn]

where τNn is as defined in (1.2). Furthermore:

1. The stopping time τNn is optimal.

2. If τ∗ is an optimal stopping time, then τNn ≤ τ∗, Q a.s.
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The last point shows that while we do not guarantee uniqueness of the optimal stopping time,

τNn is a.s. the earliest optimal stopping time.

It is worth noting an alternative way to characterize SNn is by means of the Snell-envelope of

Zn:

SNn = ess supτ∈MN
n
E[Zτ | Fn]

This approach is useful for extending the above results to infinite horizon and continuous time

problems.

We now turn to a characterization of optimal stopping problems when the underlying process

Xn is a time inhomogeneous Markov Chain. We modify our probability space to be of the form

(Ω,F , (Fn),Qn,x) such that Xn = x a.s. and the mapping x 7→ Qn,x(F ) is measurable on Rd for

all F ∈ F . It may then be shown that the mapping x 7→ EQ
x [Y ] is also measurable for any random

variable Y on our space.

In this case, we define our optimal stopping problem to be the characterization and computation

of

V N (n, x) = sup
τ∈MN−n

0

EQ
n,x[h(n+ τ,Xn+τ )] (1.3)

and yields a solution that is analogous to Theorem 1. As before, we set

SNN = h(XN )

SNn+k = max
(
h(Xn+k),EQ

n,x

[
V N (Xn+k+1) | Fn+k

])
∀ k = 0, . . . , N − n− 1

and

τNn+k = min{ l | n+ k ≤ l ≤ N,SNl = h(l,Xl)}.

With these definitions, one can then show SNn+k = V N (n+k,Xn+k) and motivates us to introduce

the continuation and stopping sets C and D

C = {(n, x) ∈ {0, . . . , N} ×Rd | V (n, x) > h(n, x)}

D = {(n, x) ∈ {0, . . . , N} ×Rd | V (n, x) = h(n, x)}

along with the first entry time τNn into D via

τNn,x = min{ k | n ≤ k ≤ N, (k,Xk) ∈ D}.

Theorem 2. Let Ex
[
sup0≤k≤N |h(k,Xk)|

]
< ∞ for all x ∈ Rd. Then the value function V N

satisfies the Wald-Bellman equations

V N (n, x) = max(h(n, x), TV N (n, x)) (1.4)

for n = N − 1, . . . , 1, 0 where TV N (n, x) = EQ
n,x[h(n+ 1, Xn+1)] and x ∈ Rd. Moreover, we have

• The stopping time τNn,x is optimal in (1.3)
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• If τ∗ is an optimal stopping time in (1.3) then τD ≤ τ∗ Px-a.s. for every x ∈ Rd.

As we shall see, the Wald-Bellman equations (1.4) plays a fundamental role in the numerical

solution of the optimal stopping problems we consider.

Connections to Continuous Time Problems

While we focus on discrete time problems, finite horizon continuous time problems are an important

class of optimal stopping problems. Analogous to the discrete time problem, we seek to compute

the value of

V T
t = sup

τ∈MT
t

E[Zτ ]. (1.5)

In a continuous time framework, previous arguments for deriving the optimal strategy do not carry

over and we instead define St using the Snell envelope for Z

St = ess supτ≥tE [Zτ | Ft]

along with

τt = inf {s ≥ t | Ss = Zs} .

From here, results that are similar in nature to Theorems 1 and 2 may be derived which show that

under certain circumstances, τt is the optimal stopping for the problem (1.5).

What interests us the most is that under fairly mild assumptions, these problems may be

approximated by discrete time problems where the number of exercise dates tends to infinity.

Following [5] we let

π = {0 = t0, t1, . . . , tN−1, tN = T}

and

Sπt = ess supτ∈T π
[t,T ]

E [Zτ | Ft]

which we think of as a π-discrete time approximation to St.

Omiting certain mild regularity assumptions on Z, the following result justifies our approach

of using discrete approximations to numerically solve continuous time problems and shows that

our approximating process converges uniformly in L2.

Theorem 3. Given St and Sπt as before, we have

max
i≤N

E
[∣∣Sti − Sπti∣∣2] 1

2 ≤ O(|π|
1
4 )

where |π| = maxi<N |ti+1 − ti|.

Beyond these facts, the numerical analysis of continuous time processes lays outside the scope

of this thesis and we continue with our discrete time framework.
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1.1.2 Solutions via Numerical Approaches

As seen in Section 1.1.1, solving an OSP may be reduced to solving the Wald-Bellman equa-

tions shown in (1.4); this in turn reduces to developing an algorithm for computing conditional

expectations of the form

EQ
tn,x[h(n+ 1, Xn+1)] := EQ[h(n+ 1, Xn+1) | Xtn = x]. (1.6)

Developing numerical methods for accurately computing (1.6) has been an active area of research

over the past several decades, particularly in the context of mathematical finance. In such situa-

tions, the driving process (Xtn)Nn=0 arises from sampling an SDE of a process (Xt)t≥0. Methods

for computing (1.6) can be categorized as deterministic, probabilistic, and as of late, hybrid.

Determinstic Numerical Approaches

Most deterministic approaches revolve around using the Markov property for X and Itô’s Lemma

to generate a PDE which the conditional expectation must solve:
∂g

∂t
(t, x) + Lg(t, x) = 0 ,

g(tn+1, x) = V (tn+1, x)

(1.7)

over [tn, tn+1] with some additional spatial boundary conditions. Here

g(tn, x) = Etn,x[V (tn+1, Xtn+1)]

and L is the infinitesimal generator of Xt.

This PDE may then be solved using a variety of fully numerical methods. If Xt is, for instance,

an Ito process then (1.7) defines a parabolic PDE which may be solved numerically using a variety

of state-of-the-art methods as outlined in [17].

The main draw back of this approach is the well known Curse of Dimensionality : the compu-

tational costs of such methods grow exponentially with d, and effectively limit these approaches

to problems where d ≤ 3. Examples and discussions of high dimensional implementations may be

found in [14], [54].

While fully numerical methods are appealing within their dimensionality constraints they often

miss special properties of the model that allow for more efficient computations. For instance if the

density, or a special transform of the density, of Xt is known analytically, one may apply quadrature

or various numerical transform techniques to compute (1.6). These more efficient approaches may

be found in [59], [48], [21], [57], and others.

When applicable, deterministic numerical methods tend to be the best approach for solving

OSPs. By obtaining non-probabilistic estimates of Etn,x
[
V (tn+1, Xtn+1)

]
, one may estimate the

holding and exercise regions with excellent accuracy; an issue which plagues probabilistic ap-

proaches. Also, the solutions they produce are global in that one obtains Etn,x
[
h(tn+1, Xtn+1)

]
for

an entire grid of values for x as opposed to a relatively small region of points.
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Probabilistic Numerical Approaches

In recent decades, several probabilistic approaches have emerged to deal with multi-dimensional

OSPs. These methods include random trees, state based partitioning, stochastic mesh methods

and least-squares/regression MC (LSMC). While our main focus in this section will be on LSMC,

the reader should see [27] for a detailed overview of other methods. Also, as the literature on

LSMC is vast, this introduction/survey is meant to be non-exhaustive.

LSMC is a powerful family of methods for solving OSPs that was first introduced by [9] and

further popularized by [47] (LS), [62] (TV). These methods are popular due to their simplicity

and applicability to a wide range of models, especially of high dimension. The classical approach

is based on the following, given E [Vn+1 | Xn = x] we attempt to write

E [Vn+1(Xn+1) | Xn = x] ≈
L∑
l=1

an,l φl(x) (1.8)

for some coefficient vector an ∈ RL where {φl}Ll=1 is an independent set of functions on Rd.

Assuming (1.8) holds, we project E [Vn+1(Xn+1) | Xn = x] onto an · φ(x) which results in the

following identities for an

an = A−1
n E [φ(Xn)Vn+1(Xn+1)] where

An = E
[
φ(Xn)φ(Xn)T

]
and refer to an as the idealized coefficient. As the above expectations are usually not computable

in closed form, we estimate an via MC and regression. LSMC then typically takes the following

approach

1. Simulate N independent paths of Xt on {0 = t0, . . . , tM = T} denoted as Xj
m and set V j

M =

h(Xj
M ).

2. Set ANM−1 = 1
N

∑N
j=1 φ(Xj

M−1)φ(Xj
M−1)T and aNn = [ANM−1]−1 1

N

∑N
j=1 φ(Xj

M−1)V j
M

3. Set CNM−1(X) = aNn · φ(X)

4. At this stage the TV and LS approaches diverge slightly and we take one of two actions

TV: Set V j
M−1 = max(h(Xj

M−1), CNM−1(Xj
M−1)

LS: Set

V j
M−1 =

{
h(Xj

M−1) if h(Xj
M−1) ≥ CNM−1(Xj

M−1)

V j
M if h(Xj

M−1) < CNM−1(Xj
M−1)

(1.9)

5. We then repeat the above steps, moving backwards in time, until we obtain {V j
1 }Nj=1, set

V d,N
0 =

1

N

N∑
j=1

V j
1



Chapter 1. Introduction 7

and refer to V N
0 as the direct estimator.

This initial computation provides us with several estimates: the value V d,N
0 , continuation and

exercise regions CN , DN ⊂ {t1, ..., tM−1} ×Rd. The regions CN and DN are estimates of the true

continuation and exercise regions and provide an approximation of the optimal stopping time τn

τNn = min { k | n ≤ k ≤M,Xk ∈ Dk}

which leads to the expression

V l,N
0 = E

[
h(τN0 , XτN0

)
]

that may be computed by a usual MC simulation. As τN0 is by definition sub-optimal, V l,N
0 is

biased low, hence we use the superscript l. The estimator V d,N
0 for the TV approach tends to be

biased high due to the convexity of the max function, however, demonstrating this mathematically

often requires extra assumptions on one’s model and simulation framework [40]. It is worth noting

that the direct estimator in LS tends to be lower than that of TV [27]. While V d,N
0 produces

estimates that tend to be biased high, they often greatly over estimate V0. By means of duality

estimates [32], [55], one may obtain true upper bounds on V0 that are fairly sharp.

In the LS approach, V0 is computed using less information than TV, specifically in that one

simply needs to know the sign of the statistic

TNn := hn − CNn

to obtain V N
n as opposed to knowing the entire function CNn . Thus, one only needs to know the

location of the boundary at time n and this observation is exploited in [49]. The structure of the

payoff in TV is more similar to PDE approaches, and lends itself to stochastic grid interpretations

such as in [6], [40]. Also, the work of [20] describes an algorithm that in some sense interpolates

between the TV and LS approaches.

Regarding theoretical results, the authors of [62] show that aNn → an almost surely for the

TV algorithm. In [12], the authors provide a detailed analysis of the LS approach. Under certain

assumptions the authors prove aNn → an a.s. and develop a CLT for aNn , thus establishing a rate

of convergence. Both [62] and [12] keep the number of basis functions fixed at some degree L.

In [29], [58] convergence is analyzed when the number of basis functions is taken into account. The

work of [19] applies the language and methodology of statistical learning theory to analyze the

convergence of LSMC for general learning procedures, beyond least-squares regression. In their

work they provide an analysis that extends the results of [12].

Since these seminal works, numerous shortcomings have been identified which has led to a

number of improvements and extensions of the original algorithms. The traditional approaches to

LSMC have now been classified as Regress-Now algorithms in contrast to newer approaches which

Regress-Later. Examples of regress-later algorithms may be found in [6], [40] and are further

discussed in [28]. These algorithms have closed-form features built in which allow for variance

reduction and tend to perform better than regress-now algorithms. Also, notable approaches for

computing sensitivities may be found in [40], [64], [7].
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A notable shortcoming of LSMC is referred to as the Basis Selection Problem: the LSMC

algorithm is sensitive to the choice of basis functions, and a set of basis functions that work for

one problem may not work for another [1], [5]. Thus, there is no general consensus on the choice

of basis functions, and one must find a family that suits their own problem best. If the quality

of the regression step is poor at any given step n, one is not able to estimate CNn (X) accurately,

and cannot determine the exercise region Dn which undermines the entire computation for later

time stages and yields nonsensical results. One of the issues arises from trying to globally fit a

polynomial to the data and is addressed by local regression [5], [40].

Interestingly, LSMC tends to perform relatively poorly for SV models. One needs to simulate

millions of paths in order to obtain a good estimate of V0 and the optimal exercise boundaries, even

for a 2d problem [34], [49]. To improve the method in these circumstances, certain model specific

approaches have been proposed such as in [34], [1], [24]. On a side note, the work of [53] deals

with the situation of non-Markovian OSPs where the volatility process is unobservable. While this

appears to be the most realistic formulation, we note that a practitioner may always calibrate their

model to various sources of real-world data to measure the current level of volatility, at least up to

some level of confidence. As mentioned before, the purpose of this thesis is to develop methods to

improve the convergence of LSMC for fully-observed SV problems, especially in high dimensions.

Beyond OSPs, LSMC has seen applications in areas such as computing exposure profiles in

counter-party credit risk [24], the numerical solutions of backwards SDEs [4] and optimal switching

problems [8].

1.2 Mixed Monte Carlo-Partial Differential Equations Methods

When numerically computing expectations of the form (1.6)

g(x) = E [h(XT ) | X0 = x]

there are two notable numerical approaches: deterministic methods as in Section 1.1.1 and direct

MC. In the case where d is large, only MC methods are applicable, however, they converge at a

rate σX√
N

, where the constant σX increases considerably with d.

In [35], [44] a hybrid approach, which combines probabilistic and deterministic methods, was

developed for models that possess a property known as one-way coupling. In a financial context,

suppose Xt = (St, vt) on R2 where St represents an asset price, vt is its variance where vt may

be simulated independently of St. This latter property is known as one way coupling and will be

formally described in Section 2.2. We then compute g(S, v) as follows

1. Simulate N independent paths of vt on [0, T ] stemming from v0.

2. Compute

E[ h(ST ) | X0 = (S0, v0), [vj ]T0 ] := E[ h(ST ) | X0 = (S0, v0),FvT ]

in closed or semi-closed form.



Chapter 1. Introduction 9

3. Estimate g(s, v) to be

1

N

N∑
j=1

E[h(ST ) | X0 = (S, v), [vj ]T0 ].

By computing E[h(ST ) | X0 = (S, v), [vj ]T0 ], one essentially “integrates out” the randomness with

respect to S and the variance of our MC estimator is significantly reduced in comparison to a full

MC simulation. Also, the deterministic numerical analysis problem is on R rather than R2. In the

last decade this method has seen renewed interest in [46], [45], [63] where it is more fleshed out.

Also, with the emergence of complex foreign exchange (FX) option pricing models this method

has been applied in the works of [3], [15], [13], [16]. In this case one typically has four types of

variables: an exchange rate St, a domestic and foreign interest rate rdt , r
f
t and a volatility process

for the exchange rate σt. As interest rates may be multi-factor, these models have dimension d ≥ 4

and so benefit greatly from the hybrid approach. For certain models, conditional on a path of σt,

the FX system falls within the affine class of models so that Step 2 above may be computed very

efficiently.

Theoretically, the algorithm’s convergence is provided by the Strong Law of Large Numbers

(SLLN) and Central Limit Theorem (CLT) when vt is simulated exactly, or when its SDE is

discretized for a fixed number of time steps. An interesting problem is the quanification of the

variance reduction which has been discussed to some extent in [13], [15].

In [45], the hybrid algorithm is extended to allow g(s, v) to be computed for a wide range of

v using regression. From there, the authors show how one can also price Bermudan style options,

however, the method is briefly touched on and demonstrated with a simple two period problem.

The purpose of this thesis is to study this hybrid LSMC-PDE algorithm. In what follows, we

provide the theoretical foundation, a proof of almost sure convergence, methods to improve the

run times and compute sensitivities, along with numerous examples.

1.3 Outline of Thesis

In this thesis, we develop a numerical approach for solving multi-dimensional discrete time op-

timal stopping problems under SV that combines LSMC with PDE techniques. The algorithm

provides dimensional reduction from the PDE and regression perspective along with variance and

dimensional reduction from the MC perspective.

In Chapter 2, we lay the mathematical foundations for mixed MC-PDE techniques. Next, we

prove the basic mechanics of the algorithm and, under certain mild assumptions, demonstrate

it converges almost surely using methods from point-set topology. Afterwards, we apply the

algorithm to the one dimensional Heston model and compare it to traditional approaches to LSMC

in terms of prices and optimal exercise boundaries.

In Chapter 3, we describe methods for reducing the complexity and run time of the algorithm

along with a technique for computing sensitivities. To reduce the complexity, we apply two meth-

ods: clustering via sufficient statistics and mlMC. In order to compute sensitivities, we employ a

grid based method for derivatives with respect to the asset, S, and the MC based method of [64]
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using initial dispersions for sensitivities with respect to v. For the standard Heston model, we vali-

date our complexity reduction approximations and sensitivities again with respect to the reference

solution. Finally, we consider the multi-dimensional Heston model and demonstrate the quality of

the hybrid algorithm’s new additions.

In Chapter 4, we highlight the importance of multi-factor SV models and apply our hybrid algo-

rithm to two specific examples: the Double Heston model and a mean-reverting commodity model

with jumps. For each example, we report prices, sensitivities, and optimal exercise boundaries.

1.4 Notation

In this section we briefly discuss some notational conventions that appear throughout this thesis.

• Given a function f : R+ × Rn 7→ R (i.e., f(t, Z)) we often denote the canonical stochastic

processes corresponding to it as (ft)t∈[0,T ] with ft := f(t, Zt), where Zt is some n-dimensional

stochastic process.

• When defined, we denote the Fourier transform of f as F [f ](ξ), f̂(ξ) or (f)̂(ξ).

• For x ∈ Rn or x ∈Mn×m(R), we define its Euclidean norm by |x|.

• Given any function h : Rn → R, we write ||h||∞ := supx∈Rn |h(x)| and supp h := cl{x ∈
Rn | |h(x)| > 0}.

• Let A ⊂ Rn, we let C0(A) denote the set of continuous functions that vanish at infinity. That

is, for ε > 0 if f ∈ C0(A) then {x | |f(x)| ≥ ε} is compact. Furthermore, we define f ∈ Cc(A)

to be the set of compactly supported continuous functions on A.

• We often work with a set of dates {t0, ..., tM} ⊂ [0, T ] with ∆tk = tk+1 − tk and functions

hti(S) : RdS → R at each date. To simplify notation, we sometimes suppress the subscript k

in ∆tk and hk.

• Throughout this thesis, we also assume a risk free rate of interest, r > 0.



Chapter 2

A Hybrid LSMC/PDE Algorithm

2.1 Introduction

In this chapter we introduce the hybrid LSMC/PDE algorithm that is the central focus of this

thesis. We begin by providing the theoretical foundation of mixed MC-PDE approaches for com-

puting future expected values. Once we have this formulation, we proceed to describe the workings

of our algorithm followed by a discussion of its most salient features. We then proceed to study the

algorithm from a theoretical perspective and prove that it converges almost surely under suitable

conditions. Finally we apply the hybrid algorithm to the Heston model and compare it to standard

LSMC where we see it provides considerably better estimates of prices and OEBs.

2.2 Probability Spaces, SDEs, and Conditional Expectations

Initial Probability Space

We suppose the existence of a probability space (Ω,F,Q) which may accomodate a dS +dv dimen-

sional stochastic process X = (S
(1)
t , ..., S

(ds)
t , v

(1)
t , ...v

(dv)
t )t∈[0,T ] satisfying a system of SDEs with a

strong, unique solution. We further suppose this system of SDEs exhibits one-way coupling in a

sense which we describe below. We begin by defining mappings

µS : [0, T ]×RdS+dv → RdS ,

µv : [0, T ]×Rdv → Rdv ,

σS : [0, T ]×RdS+dv →MdS×dW (R) ,

σv : [0, T ]×Rdv →Mdv×dW,v(R) ,

and a dW -dimensional Brownian motion, W = (Wt)t∈[0,T ], with independent components where

dW,v < dW . We also denote the final dW,v components of Wt as W v
t , i.e., W v,i

t = W
i−dW+dW,v
t

∀ i ∈ {dW − dW,v + 1, . . . , dW }. The process X = (Xt)t∈[0,T ] is assumed to satisfy the following

11
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system of SDEs

dSt = µS(t, St, vt)dt+ σS(t, St, vt) · dWt , and

dvt = µv(t, vt)dt+ σv(t, vt) · dW v
t .

While our algorithm may be formulated for such a general system of SDEs, our theoretical results

and numerical examples assume that there exist mappings µ̃S , σ̃S such that

µ
(i)
S (t, S, v) = S(i)µ̃(i)(t, v)

σ
(i)
S (t, S, v) = S(i)σ̃(i)(t, v) (2.1)

where the superscript i indicates the ith component of the vector S and ith row of the matrices

µS , σS , µ̃S and σ̃S .

Finally, let Fvs,t = σ(vu)u∈[s,t], FSs,t = σ(Su)u∈[s,t] and FW v

s,t = σ(W v
u )u∈[s,t]. To extend this

notation, we sometimes write FZt := FZ0,t for some process Z.

Given tn ∈ [0, T ], we define a new class of (conditional) probability measures Qtn,S via

Qtn,S(B) = Q(B | Stn = S) for B ∈ FStn,T ∨ F
v
tn,T

.

For a realization of vt and W v
t on [tn, tn+1], which we denote as [v]

tn+1

tn , we assume there exists

a finite-dimensional statistic of the path,

Λn : C0([tn, tn+1])dv+dWv → RdΛ ,

such that the following Markovian-like relation holds

EQ[ h(Stn+1 , vtn+1) | Stn = S , FW v

tn,tn+1
]

= EQ[ h(Stn+1 , vtn+1) | Stn = S , Λn([v]
tn+1

tn ), vtn+1 ] (2.2)

where h : RdS+dv → R is Borel measurable such that the expectations are well-defined. Intuitively,

the conditional expectation generates a PDE over [tn, tn+1]×RdS which depends on the simulated

path, [v]
tn+1

tn as follows 
∂g

∂t
(t, S) + L[v]g(t, S) = 0 ,

g(tn+1, S) = hn+1(S, vtn+1) .

The vector Λn([v]
tn+1

tn ) captures the dependency of g on [v]
tn+1

tn over [tn, tn+1), as induced by L[v],

and vtn+1 corresponds to the PDE’s boundary conditions. For example, in the Heston model, it

can be shown that Λn takes the following form

Λn([v]n+1
n ) =

( ∫ tn+1

tn

√
vs dW

v
s ,

∫ tn+1

tn

vs ds

)
.

It is worth noting that generating the conditional PDE for (2.2) is, in general, non-trivial and

to the best of our knowledge there are two approaches in the literature: the drift discretization

method in [45], [13], [15] and conditionally-affine decomposition of [16]. Since our numerical
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examples assume that (2.1) holds, conditional on a volatility path, our model is affine, and we

employ the latter technique followed by Fourier Space Time-Stepping (FST) (see [59]) to solve the

associated conditional PDEs.

In our algorithm we will often consider expectations of the form

E
[
φ(vtn)h(Stn+1 , vtn+1)

∣∣ Stn = S , FW v

tn,tn+1

]
which leads us to define

Θn([v]n+1
n ) = (vtn ,Λn([v]n+1

n ), vtn+1)

where φ : Rdv → R. In later sections we will replace Θn([v]n+1
n ) with [v]

tn+1

tn and simply write

E
[
φ(vtn)h( Stn+1 , vtn+1 )

∣∣ Stn = S , [v]
tn+1

tn

]
:= E

[
φ(vtn)h(Stn+1 , vtn+1)

∣∣ Stn = S ,Θn([v]n+1
n )

]
.

Equation (2.2) gives rise to the mappings Gf,tn,S defined by

Gf,tn,S : RdΘ → R ,

Gf,tn,S(θ) = EQ [ f(Stn+1 , vtn+1 , vn) | Stn = S, Θn = θ ]
(2.3)

and the conditional probability measures Qtn,S,θ,v defined via

Qtn,S,θ(B) := Q( B | Stn = S, Θn = θ)

for B ∈ σ(Stn+1) ∨ σ(vtn+1) ∨ σ(vtn). Letting Q̃Θn denote the distribution of Θn on RdΘ we have

the following relation

EQ [ f(Stn+1 , vtn+1 , vtn) | Stn = S ]

=

∫
RdΘ

∫
Ω
f(Stn+1(ω), vtn+1 , vtn) dQtn,S,θ(ω) dQ̃Θn(θ). (2.4)

Inherited Sampling Probability Space

A consequence of one-way coupling is the ability to simulate paths of vt independently of St. We

now make sense of the notion of an iid collection of sample paths of vt. Since we only realize vt

through the statistics Θn, we only describe how to generate iid copies of Θn.

Denote the ordered subset {0 = t0, ..., tn, tn+1, ..., tN = T} ⊂ [0, T ], and let {[tn, tn+1]}N−1
n=0 be

the corresponding intervals. Given a path vt on [0, T ], define the dΘ ×N dimensional matrix

Θ([v]) = [ Θ0([v]10) , . . . , ΘN−1([v]NN−1) ].

This random matrix induces a measure Q̃Θ on RNdΘ . Given Q̃Θ, we introduce a new probability

space (Ω′,F ′,Q′) equipped with a collection of independent random matrices

{Θ([vj ])}∞j=1 ,
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such that each Θ([vj ]) has distribution Q̃Θ on RNdΘ . This construction follows from Kolmogorov’s

Extension Theorem applied to measures on RNdΘ (see Appendix A ). It then follows that each

column Θn([vj ]n+1
n ) has distribution Q̃Θn on RdΘ . Although the process St is not defined on Ω′,

we can still compute relevant expectations involving this process using Gf,tn,S(Θ) as defined in

(2.3). When taking limits in our algorithm, we consider expressions of the form

lim
N→∞

1

N

N∑
j=1

EQ [ f(Sn+1, vtn+1 , vtn) | Stn = S, [vj ]n+1
n

]
which, by the SLLN, will converge to EQ′ [Gf,tn,S (Θ ([v]

tn+1

tn )) ] a.s. under Q′. For our purposes,

however, we require convergence to

EQ [ f(Stn+1 , vtn+1 , vtn) | Stn = S
]
.

To establish the equivalence between these expressions, we note

EQ′ [Gf,tn,S (Θ ([v]
tn+1

tn )) ] =

∫
Ω′
Gf,tn,S(Θn([v(ω′)]n+1

n )) dQ′(ω′)

=

∫
RdΘ

Gf,tn,S(θ) dQ̃Θn(θ)

=

∫
RdΘ

EQ [f(Stn+1 , vtn+1 , vtn) | Stn = S,Θn = θ ] dQ̃Θn(θ)

=

∫
RdΘ

∫
Ω
f(Stn+1(ω), vtn+1 , vtn) dQtn,S,θ,n(ω) dQ̃Θn(θ)

= EQ [f(Stn+1 , vtn+1 , vtn) | Stn = S ] (2.5)

where the second equality follows from Θ([v]
tn+1

tn ) being Q̃Θn distributed.

2.3 Algorithm Overview

We now describe a hybrid-method for computing Vk(S, v) which is based on the [62] approach, but

uses conditional PDEs to incorporate dimensional and variance reduction. We begin by giving an

intuitive explanation and provide a formal, pseudo-code based, description in 2.A.

2.3.1 Description

We simulate N paths of v starting from the initial value v0. Each path of vt over [tk, tk+1] is

represented as [v]k+1
k . Given a product set S ⊂ RdS , we compute Vk over the domain S×Rdv . The

set S is the domain of the conditional expectations that we compute; theoretically it is treated as

a continuum whereas in practice it is the grid for our numerical PDE solver. We abuse notation

and simply write S for both situations where the distinction is clear from context. We suppose the

discretized form of S has Ns points in each dimension so that there are NdS
s points in total. Given

the value Vk+1(Sk+1, vk+1) of the option at time tk+1 we proceed to compute the continuation

value at tk. The algorithm begins at time tM = T where VM (SM , vM ) = hM (SM ).
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Figure 2.1: The pre and completed continuation surface. The pre-surface is generated by solving
a PDE along each path. It is smooth along the S axis, and noisy across the v axis. The completed
surface is generated by regressing across the v-axis.

Solving along S to obtain the pre-surface

For each simulation path j ∈ {1, . . . , N}, at time k = M − 1, we compute

Cjk(si) := e−r∆t EQ
[
Vk+1(Sk+1, v

j
k+1) | Sk = si , [vj ]k+1

k

]
for all si ∈ S. These may be computed globally over S for each path using a numerical PDE solver,

or, if the model conditional on vj admits a closed or semi-analytic closed-form solution, then this

may be used for each si ∈ S for each path.

Regress across v to obtain the completed surface

For each sj ∈ S, from the previous step, we have N realizations of the continuation value from

each volatility path, i.e., {Cjk(si)}
N
j=1.

Next, apply least-squares regression to project this onto a family {φl(·)}Ll=1 of linearly inde-

pendent basis functions over our volatility space. This results in a vector of coefficients a(si) of

length L, and provides the continuation value at Stk = si for any point in the volatility space as

follows:

Ck(si, v) =

L∑
l=1

al,k(si)φl(v) = ak(si) · φ(v).

Obtaining the Option Value

The price of the option is then given by Vk(si, v) = max(hk(si), Ck(si, v)). These steps are repeated

for all times tk where k = M − 1, ..., 1.
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A Direct Estimate on the Time Zero Value

Since, at time zero, there is only a single value for v0 we obtain an estimate for our value function

as

Vh,0(si, v0) = max

ht0(si) ,
1
N

N∑
j=1

e−r∆t EQ [V1(S1, v1) | S0 = si , [vj ]10
]  .

This estimate tends to be biased high, although as discussed in Section 1.1.2, as with standard

LSMC, it is not clear that this holds in general. In [40], additional conditions are given under

which this estimator is indeed biased high and one may attempt to extend their work to the

current setting. In Corollary 6, we discuss its convergence properties.

A Lower Estimate on the Time Zero Value

Given our estimated regression coefficients, we obtain a sub-optimal exercise policy τ(t, S, v) de-

fined on {t1, ..., tM−1} × S ×Rdv . Thus, we may define a lower estimate via the expectation

EQ [ e−rτh(Sτ ) | S0, v0

]
. (2.6)

In traditional LSMC, one simulates a new independent set of paths (St, vt) to approximate (2.6).

While in some cases this approach for a low estimator may be appealing, we describe a hybrid

method for computing (2.6) which is reminiscent of pricing a barrier option from a financial

perspective.

To this end, we denote the tk holding and exercise regions by Γk and Γck, respectively. We then

simulate N new independent paths of vt on [0, T ], compute

EQ [ e−rτh(Sτ ) | S0, [v
j ]T0
]

(2.7)

via a PDE approach for each j, and take the average. To compute (2.7), for each j, first set

V j
M (S, v) = h(S). Next, compute

U jM−1(S) = e−r∆t EQ
[
V j
M (SM , v

j
M ) | StM−1 = S, [vj ]MM−1

]
via a PDE method for all S ∈ S. The value surface at time t = tM−1 is then given by

V j
M−1(S) = U jM−1(S) · I

(S,vjM−1)∈ΓM−1
+ h(S) · I

(S,vjM−1)∈ΓcM−1
.

After repeating this procedure for times k = M − 2, ..., 1 we obtain the lower estimate

Vl,0(S, v0) =
1

N

N∑
j=1

e−r∆t EQ
[
V j

1 (S1, v
j
1) | St1 = S, [vj ]10

]
(2.8)

for all S ∈ S. It should be mentioned, however, that in practice this estimator may not be truly

biased low due to the bias introduced by the discretization of our PDE solver.
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2.3.2 Discussion

We refer the reader to 2.A for a pseudo-code based formal description.

Although we solve a PDE over thousands of paths of vt over each time interval [tn, tn+1] and

solve a linear-regression problem for each si ∈ S and tn, the computational costs and run time are

not as high as they may seem. First, the PDEs over each volatility path, and the regressions at

si ∈ S, are independent and can be parallelized. Also, based on (2.11), the regression problems at

time tn require only one matrix inversion, and its result is applied to each of the NdS
s regression

sites. Finally, in Chapter 3, we discuss two model-free methods which allow us to significantly

reduce the algorithm’s complexity.

We immediately see that our algorithm provides dimensional reduction from the PDE and

regression perspective, and variance reduction from the MC perspective. If one employs a fully

numerical scheme to solve the conditional PDEs, the algorithm is capable, in principle, of handling

3 + n dimensional problems where one solves a PDE over three dimensional asset space and

simulates n volatility variables. Although our set up is described in the context of an asset-

volatility space setting, the algorithm can be applied to any situation where certain variables

appear in the payoff and others appear in the background. For these settings, one should simulate

the background variables and solve PDEs over the variables that appear in the payoff function.

As we shall see, the algorithm tends to be accurate, for a given computational budget, in

determining the time-zero value surface, optimal exercise regions and sensitivities with respect to

S. This may be attributed to the stability provided by our PDE grid, S. When the conditional

PDEs are solved along each path, we obtain our pre-surface as described in Section 2.3.1. At this

point one has two choices: global or local regression. As seen when standard LSMC is applied to

SV problems, direct global regression, using polynomials, tends to perform quite poorly due to a

lack of flexibility. One may then turn to some type of fixed or adaptive local regression as in [5]

or [40] which is essentially what we do in Section 2.3.1. Our regression approach can be viewed as

a special type of local regression which is tailored to the presence of S and is equivalent to local

regression onto NdS
s carefully chosen bundles. If Ns = 512 and dS = dv = 2, we are regressing onto

262, 144 families of basis functions at the cost of inverting a single matrix of size, L×L where L is

only 10, and carrying out matrix multiplication at each S ∈ S. Also, Cn(sj , v) is typically simple

to fit as a function of v and does not require more than three or four monomials in each volatility

dimension thus eliminating the Basis Selection Problem referred to in Section 1.1.2.

Working with S has other advantages as well. In comparison to standard approaches to LSMC,

there is a fundamental shift in how we compare the continuation value to the exercise value and

locate the exercise boundary. At time n, when setting the value of Vn for each si ∈ S we have

V N
n (si, v) = max

(
hn(si), C

N
n (si, v)

)
,

and note that hn(si) is a deterministic constant as opposed to a function of a random variable.

Thus, we have reduced the problem of locating the boundary from a global problem over the

variables S, v to a sequence of lower dimensional problems which are simpler in nature and exhibit

less noise. Our approach essentially stores a function in v-space within each element of S and
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allows us to write our continuation surface using the separating representation

CNn (si, v) = aNn (si) · φ(v).

This leads us to name to our algorithm Grid Path Separation Method (GPSM) which is in line

with the naming schemes currently in the literature. Another possible name is LSMC-PDE which

is given in [23] as the algorithm may be viewed as a down the middle hybrid between LSMC and

PDE approaches. We also refer to LSMC as Least Squares Method (LSM).

From the design of experiments perspective, our algorithm may be viewed as a batched design

nested within a probabilistic design. The simulation of vt stemming from v0 on [0, T ] and the

repeated use of its paths, corresponds to a probabilistic design for the variable v. The solving of

the conditional PDEs may be viewed as a sort of batched design for S in the following sense. At

time tn, we solve a conditional PDE over [vj ]n+1
n and obtain the pre-regression continuation value

of the option along this path for each S ∈ S. This procedure is equivalent to selecting batches at

each S ∈ S, simulating an “infinite” number of paths of St on [tn, tn+1] conditional on Stn = S

and [vj ]n+1
n and equating the pre-regression continuation value for [vj ]n+1

n to the average payoff of

these “infinite” number of paths.

2.4 Theoretical Aspects of the Algorithm

2.4.1 Coefficient Identities

In this section, we show that the GPSM, as described in Section 2.3, is well defined and converges

probabilistically. For notational convenience, we suppose the risk free rate is 0.

Idealized Coefficients

For each n, we consider a family of idealized continuation functions, Cn, which are constructed

by means of backwards induction. We begin by writing CM ≡ 0 and Cn(S, v) = an(S) · φ(v) for

n < M where an(S) results from regressing the random variable

EQ [max(hn+1(Sn+1), Cn+1(Sn+1, vn+1)) | Sn = S, vn ] onto the basis {φl(·)}Ll=1

for each S ∈ S. The coefficient vector an(S) is the vector that minimizes the mapping Hn,S :

RL → R defined by

Hn,S(a) = EQ
[(

EQ [fn+1(Sn+1, vn+1) | Sn = S, vn ]− a · φ(vn)
)2
| Sn = S

]
(2.9)

where

fn(S, v) = max(hn(S), Cn(S, v)) for n < M , and

fM (S, v) = hM (S) .
(2.10)
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To minimize H, we obtain the first order conditions and obtain the normal equations, resulting in

the coefficients

an(S) = A−1
n · EQ [φ(vn)fn+1(Sn+1, vn+1) | Sn = S ]

where An = EQ[φ(vtn)φ(vtn)ᵀ].

Almost Idealized Coefficients

Next, for a fixed tn, we define a new type of continuation value, called the almost-idealized contin-

uation functions, C̃Nn (S, v) = ãNn (S) · φn(v). These random variable are obtained by running the

dynamic programming algorithm with the idealized continuation value at all times k = M, . . . , n+1.

At time step n we then estimate ãNn (S) using our N paths of vt and future idealized continuation

values. This gives us the following regression coefficients for each ω′ ∈ Ω′

ãNn (S, ω′) =
[
ANn (ω′)

]−1 1

N

N∑
j=1

φ(vjn(ω′)) · EQ
[
fn+1(Sn+1, v

j
n+1(ω′)) | Sn = S, [vj(ω′)]n+1

n

]

where ANn (ω′) = 1
N

∑N
j=1 φ(vjn(ω′))φ(vjn(ω′))T . Note that fn+1 involves the idealized continuation

value at time n+ 1.

Estimated Coefficients

The estimated continuation functions are the continuation functions produced from our algorithm:

CNn (S, v) = aNn (S) · φn(v). The regression coefficients are given by

aNn (S, ω′) =
[
ANn (ω′)

]−1 · 1

N

N∑
j=1

φ(vjn(ω′)) · EQ
[
fNn+1(Sn+1, v

j
n+1(ω′), ω′) | Sn = S, [vj(ω′)]n+1

n

]
(2.11)

where

fNn (S, v, ω′) = max(hn(S), CNn (S, v, ω′)) for n < M , and

fNM (S, v, ω′) = hM (S).

2.4.2 Truncation Scheme

We now state the following truncation scheme for our least-squares regression. It ensures that the

coefficients produced by the algorithm are well defined and converge in a sense to be described

later on.

Assumption 1 (Truncation Conditions).

1. The basis functions {φl}Ll=1 are bounded and supported on a compact rectangle.
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2. The norm of the matrix

[
ANn (ω′)

]−1
=

 1

N

N∑
j=1

φ(vjn(ω′))φ(vjn(ω′))T

−1

is uniformly bounded for all N , n, provided the inverse is defined.

3. For each i = 1, ...,M , the exercise values hti(·) are bounded with compact support in S ⊂ RdS .

Condition (1) may be imposed by limiting the support of {φl} on a bounded domain as they

are typically smooth. By making supp φ ⊂ Rdv to be a very large rectangle, the value function is

essentially unaffected.

Condition (2) is imposed by replacing [ANn ]−1 with [ANn ]−1In,NR where In,NR is the indicator

of the event that [ANn ]−1 is uniformly bounded by some constant R. If R > |A−1
n | then we have

[ANn ]−1In,NR → A−1
n Q′-a.s. Again, by making R a very large constant, this has essentially no effect

on the values obtained by the algorithm.

Condition (3) on the functions h are always satisfied in practice as numerically solving a PDE

involves truncation of h’s domain. As well, many payoffs such as put and digital options are

already bounded. Unfortunately, this approach rules out certain parameter regimes of SV models

with low order moment explosions as in [2].

Lemma 1. Given the truncation conditions, the functions Hn,S defined in (2.9) are finite valued

for all n = 1, ...,M − 1.

The proof is omitted due to its simplicity. The next lemma establishes a useful relationship

between the idealized, almost idealized and estimated coefficients.

Lemma 2. Let n ∈ {1, ...,M − 2}, S ∈ S. There exists a constant, c, which depends on our

truncation conditions, such that

|aNn (S)− an(S)| ≤ c ·BN
n (S) + δNn (S)

where

BN
n (S) =

1

N

N∑
j=1

EQ [ |aNn+1(Sn+1)− an+1(Sn+1)| | Sn = S, [vj ]n+1
n

]
.

and

δNn (S) = |ãNn (S)− an(S)| (2.12)

Proof. Given n ∈ {1, ...,M − 1} and S ∈ S we have

|aNn (S)− an(S)| ≤ |aNn (S)− ãNn (S)|+ |ãNn (S)− an(S)|.
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After simplifying, we find

|aNn (S)− ãNn (S)|

≤ |[ANn ]−1
RA
|· 1
N

N∑
j=1

EQ
[
|fNn+1(Sn+1, v

j
n+1)− fn+1(Sn+1, v

j
n+1)| | Sn = S, [vj ]n+1

n

]
· |φ(vjn)|

≤ c′ · 1

N

N∑
j=1

EQ
[
|fNn+1(Sn+1, v

j
n+1)− fn+1(Sn+1, v

j
n+1)| | Sn = S, [vj ]n+1

n

]
(2.13)

We then focus on the difference within the expectation. Using the inequality |max(a, b)−max(a, c)| ≤
|b− c| we find

EQ
[
|fNn+1(Sn+1, v

j
n+1)− fn+1(Sn+1, v

j
n+1)| | Sn = S, [vj ]n+1

n

]
= EQ

[
|max(hn+1(Sn+1), CNn+1(Sn+1, v

j
n+1))−max(hn+1(Sn+1), Cn+1(Sn+1, v

j
n+1))| | Sn = S, [vj ]n+1

n

]
≤ EQ

[
|CNn+1(Sn+1, v

j
n+1)− Cn+1(Sn+1, v

j
n+1)| | Sn = S, [vj ]n+1

n

]
≤ EQ [ |aNn+1(Sn+1)− an+1(Sn+1)| | Sn = S, [vj ]n+1

n

]
· |φ(vn+1)|

≤ c′′ · EQ [ |aNn+1(Sn+1)− an+1(Sn+1)| | Sn = S, [vj ]n+1
n

]
(2.14)

where c′, c′′ depend on our truncation conditions. Substituting (2.14) into (2.13), we obtain the

result.

2.4.3 Separable Models and Almost-Sure Convergence

Overview

In this section we prove the following theorem assuming certain separability properties that we

discuss below. At the end of the proof, we also state two Corollaries.

Theorem 4. Let n ∈ {1, . . . ,M − 1} and S ∈ S be fixed, then we have

lim
N→∞

|aNn (S)− an(S)| = 0

Q′-almost surely

Proving the analogous theorem for standard LSMC, as shown in [62], [12], tends to be fairly

straightforward, with few assumptions on the model, and uses the following arguments

1. Bound |aNn − an| in terms of |aNn+1 − an+1|

2. Iterate this bound until the final time step, M − 1.

3. Due to independence over time M −1 to M , the Strong of Large Numbers (SLLN) implies that

limN→∞ |aNM−1 − aM−1| = 0 a.s.

Although this seems like the natural approach for proving Theorem 4, certain complications arise

from the fact that the process St is not simulated and only “lives” in Q as opposed to Q′. At time
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n we may observe Sn = S and the distribution of Sn+1 conditional on Θn([v]n+1
n ), but Sn+k for

k > 1, is not tangible. To complicate matters further, in Step 2, we have that Sn+1 feeds into

E[ · | Sn+1 = S] which is an unknown, non-linear, function of S. To mimic the proof of standard

LSMC, we then turn to somehow trying to separate the non-linearities in S from the expectation.

To carry out the separation, we mainly suppose that if Sn = S a.s. then we may express Sn+1 as

Sn+1 = S �Rn

where S � R := (S(1)R(1), . . . , S(dS)R(dS)). From a financial perspective, we think of Rn as being

the return of St over the nth time interval. With this assumption, we are then able to write

EQ[ h(Sn+1) | Sn = S] = EQ[ h(S �Rn) ]

which takes care of the difficulties with conditioning. The next step is to bring the dependence

on S outside of the expectation which may be handled using the Stone-Weierstrass (SW) theorem

(See Appendix A). Loosely speaking, using the SW theorem, we can approximate the function

h(S �R) by a function of the form

ψ(S,R) =
m∑
i=1

ψi,S(S)ψi,R(R)

which, upon taking expectations, provides the separating approximation we desire. However,

since the SW theorem is a topological result, one needs to impose compactness and continuity

assumptions on the model which motivates the following.

Assumption 2 (Separability Conditions). Let n ∈ {1, ...,M − 1}

1. The process St, for all t ∈ [0, T ], takes values in

S =
{

(S(1), ..., S(dS)) ∈ RdS | S(i) > 0, ∀i = 1, ..., dS

}
, a.s.

2. If Sn = S almost surely, then Sn+1 = S � Rn = (S
(1)
n R

(1)
n , ..., S

(ds)
n R

(dS)
n ) where Rn is adapted

to ∨tMt=tnFt and does not depend on the value of Sn. Rn takes values in S a.s.

3. The exercise function, h, is continuous with compact support in S. The basis functions φ are

compactly supported and continuous on Rdv . That is, h ∈ Cc(S) and φi ∈ Cc(Rdv).

Condition (1) limits our analysis to assets which take only positive values such as equities and

foreign exchange rates.

Condition (2) allows us to separate our future asset price as a product of its current price and

return.

The assumption that Rn take values in S implies that they are finite valued a.s. As a result,
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letting ε > 0, there exists tuples {(r(i)
l , r

(i)
h )}dSi=1, where r

(i)
l > 0 such that

Ωε
rl,rh

=
{
r

(i)
l ≤ R

(i)
n ≤ r

(i)
h | ∀ n ∈ {1, . . . ,M − 1}, ∀ i ∈ {1, . . . , dS}

}
⊂ Ω (2.15)

satisfies Q(Ωε
rl,rh

) > 1− ε. We also write

Eεrl,rh =
{
R ∈ RdS | r(i)

l ≤ R
(i) ≤ r(i)

h ,∀ i ∈ {1, . . . , dS}
}
.

Given Eεrl,rh , we may find an open set U ε such that Eεrl,rh ⊂ U ε and U ε ( S. By Urysohn’s

Lemma/Tietze’s Extension theorem (see [50]), there exists a map ηE : S → R such that ηE = 1

on Eεrl,rh , ηE = 0 on S \U ε and ||ηE ||∞ ≤ 1, i.e. a bump function supported on E. In most cases,

our notation will suppress dependence on rl, rh, ε.

Condition (3) allows us to apply the Stone-Weierstrass (SW) theorem which underlies the

‘separation technique’ that will be demonstrated in upcoming Lemmas. We apply the version of

SW for functions on locally compact spaces that vanish at infinity (see [25]). Suppose we are

given the payoff function for a call option, i.e. g : R → R where g(x) = (x − K)+. To modify

g such that it falls within our assumption, we first truncate its support to obtain a function

f(x) = (x−K)+I(0,R1)(x) where R1 is large number. Finally, we continuously extend f on R such

that f = 0 on (R2,∞) where R2 > R1. A similar construction may be done for a put option payoff

near 0.

The proof takes the following steps

1. Lemma 3. Carry out a geometric construction that allows us to approximately separate func-

tions h of Stn that are continuous and compactly supported in S. The function that provides

the approximate separation is denoted as ψ.

2. Lemma 4. Use the geometric construction to show the explicit relationship between h and the

separating functions, ψ and thus demonstrate what is referred to as a separating estimate.

3. Lemma 5. Prove the theorem for n = M−1 and also obtain an almost-sure separating estimate

for |aNM−1(S)− aM−1(S)|.

4. Lemma 6. Prove the theorem for n = M−2 and also obtain an almost-sure separating estimate

for |aNM−2(S)−aM−2(S)|. The separating estimate for n = M−2 involves the function δNM−2(S)

as defined in (2.12).

5. Lemma 7. Develop an almost-sure separating estimate for δNn for all n ∈ {1, . . . ,M − 2}.

6. Proposition 1 . Prove the theorem for n ∈ {1, . . . ,M − 3} using Lemma 6 and Lemma 7.

Also obtain an almost-sure separating estimate for |aNn (S) − an(S)| which is used during the

induction.

As evident from Assumption 2, our proof is for a stylized version of the algorithm where our

PDE grid is the continuum, S, as opposed to a finite grid of points. We also note that we suppose

the number of basis functions, L, is fixed and that the proof is agnostic to the exact type of basis
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functions. Different choices of basis functions and L will lead to more accurate results produced

by the algorithm, however, we leave the quantification of this error for future study.

Proofs

Lemma 3. Let ε > 0 and h : S → R be continuous and compactly supported in S. Let h̃ : S×S →
R be defined via

h̃(S,R) = h(S �R) · ηE(R)

where E results from (2.15). There exists a map ψ : S × S → R of the form

ψ(S,R) =
k∑
i=1

ψi,S(S)ψi,R(R)

such that ψi,S , ψi,R ∈ C0
c (S) and ||h̃− ψ||∞ < ε

Proof. It follows from the properties of the mapping i(S,R) = S �R and compact support of ηE

and h, that h̃ is compactly supported in S. We also have that h̃ is continuous on S × S.

To construct ψ, we begin by defining the algebra of functions

A :=

{
k∑
i=1

ψi,S(S)ψi,R(R) | ψi,S , ψi,R ∈ C0
c (S), k ∈ N

}

where C0
c (S) is the set of continuous functions that are compactly supported in S. We now use

SW to show A is dense in C0(S × S) under the uniform metric.

Given two distinct points {(Si, Ri)}2i=1, without loss generality, we assume S1 6= S2. We

now find bump functions ηS,1, ηS,2 ∈ C0
c (S) that separate S1, S2, i.e., ηS,1(S1) = 1, ηS,1(S2) = 0,

ηS,2(S1) = 0, ηS,2(S2) = 1, along with a bump function ηR ∈ C0
c (S) that is supported on R1 and

R2. Letting ψ1(S,R) = ηS,1(S) · ηR(R) and ψ2(S,R) = ηS,2(S) · ηR(R), we have that A separates

points. Since A contains bump functions supported at each point (S,R) ∈ S × S, it vanishes

nowhere.

Lemma 4. Let ε > 0 and h : S → R be continuous and supported in S. Let h̃ be as in the

statement of Lemma 3 and ψ(S,R) be a separable ε-approximation of h̃. There exists a random

variable F (S) on Ω′ and function G(S) such that

EQ [φ(vn)h(Sn+1) | Sn = S, [v(ω′)]n+1
n

]
= F (S, ω′) + φ(vn(ω′))

k∑
i=1

ψS,i(S)EQ [ψR,i(Rn) | [v(ω′)]n+1
n

]
EQ [φ(vn)h(Sn+1) | Sn = S] = G(S) +

k∑
i=1

ψS,i(S)EQ [ φ(vn)ψR,i(Rn)]

where |F (S, ω′)| ≤ c ε, |G(S)| ≤ c′ ε for all S ∈ S, ω′ ∈ Ω′ where c, c′ depend on our truncation

and separability conditions.
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Proof. We will only show the first inequality as they are similar.

EQ [φ(vn)h(Sn+1) | Sn = S, [v(ω′)]n+1
n

]
= EQ[φ(vn)h(S �Rn)(1− ηE(Rn)) | Sn = S, [v(ω′)]n+1

n ] + EQ [φ(vn)h(S �Rn)ηE(Rn) | Sn = S, [v(ω′)]n+1
n

]
= F1(S, ω′) + EQ

[
φ(vn)h̃(S �Rn) | Sn = S, [v(ω′)]n+1

n

]
= F1(S, ω′) + EQ

[
φ(vn)(h̃(S �Rn)− ψ(S,Rn)) | Sn = S, [v(ω′)]n+1

n

]
+ EQ [φ(vn)ψ(S,Rn) | Sn = S, [v(ω′)]n+1

n

]
= F1(S, ω′) + F2(S, ω′) + EQ [φ(vn)ψ(S,Rn) | Sn = S, [v(ω′)]n+1

n

]
= F1(S, ω′) + F2(S, ω′) + EQ [φ(vn)ψ(S,Rn) | Sn = S, [v(ω′)]n+1

n

]
= F1(S, ω′) + F2(S, ω′) + φ(vn(ω′))

k∑
i=1

ψS,i(S)EQ [ψR,i(Rn) | [v(ω′)]n+1
n

]
It then follows that |Fi(S, ω′)| < ε for all S ∈ S, ω′ ∈ Ω′, i = 1, 2. Finally, we set F (S, ω′) =

F1(S, ω′) + F2(S, ω′).

Lemma 5. Let ε > 0. There exists a set Ω′M−1 ⊂ Ω′ with Q′(Ω′M−1) = 1 such that for ω′ ∈ Ω′M−1

we have the following

|aNM−1(S, ω′)− aM−1(S, ω′)| ≤ cM−1 ε+

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′) · ψS,iM−1

(S)

where α
iM−1,N
M−1,M are random variables that depend on {[vj ]MM−1}∞j=1 and

lim
N→∞

α
iM−1,N
M−1,M (ω′) = 0,

ψS,iM−1
satisfy the conditions of Lemma 4 and cM−1 depends on our truncation and separability

conditions.

Proof.

Given ε > 0 we have

|aNM−1(S)− aM−1(S)| = | [ANM−1]−1 1

N

N∑
j=1

φ(vjM−1)EQ[h(SM ) | [vj ]MM−1, SM−1 = S]

−A−1
M−1E

Q[h(SM ) φ(vM−1) | SM−1 = S] |.
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By Lemma 4 we can find a constant c and an separable ε-approximation, ψM−1(S,R) such that

|aNM−1(S)− aM−1(S)| ≤ |
[
ANM−1

]−1 1

N

N∑
j=1

φ(vjM−1)

kM∑
iM−1=1

ψS,iM−1
(S)EQ [ψR,iM−1

(RM−1) | [vj ]MM−1

]
−A−1

M−1

kM∑
iM−1=1

ψS,iM−1
(S)EQ [φ(vM−1)ψR,iM−1

(RM−1)
]
|+ c ε

≤
kM−1∑
iM−1=1

|ψS,iM−1
(S)| · αiM−1,N

M−1,M + c ε

where the last line follows from interchanging the summations, c depends on our truncation and

separability conditions and

α
iM−1,N
M−1,M = | [ANM−1]−1 1

N

N∑
j=1

φ(vjM−1)EQ [ψR,iM−1
(RM−1) | [vj ]MM−1

]
−A−1

M−1E
Q [φ(vM−1)ψR,iM−1

(RM−1)
]
|. (2.16)

By the SLLN, there exists a set Ω′M−1 with Q′(Ω′M−1) = 1 such that limN→∞ α
iM−1,N
M−1,M = 0 on

Ω′M−1 for all iM−1 ∈ {1, ..., kM}.

Lemma 6. Let ε > 0. There exists a set Ω′M−2 such that Q′(Ω′M−2) = 1 and that for ω′ ∈ Ω′M−2

|aNM−2(S, ω′)− aM−2(S, ω′)| ≤ cNM−2(ω′) ε+

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′)

kM−2∑
iM−2

α
iM−2,iM−1,N
M−2,M−1 (ω′)ψS,iM−2,iM−1

(S)

+ δNM−2(S, ω′)

where α
iM−1,N
M−2,M−1 are random variables that depend on {[vj ]M−1

M−2}∞j=1 and satisfy

lim sup
N→∞

α
iM−2,N
M−2,M−1(ω′) <∞.

Also, lim supN→∞ c
N
M−2(ω′) <∞ with a bound depending only on our truncation and separability

conditions and ψS,iM−1,iM−2
satisfy the conditions of Lemma 4. Lastly, δNM−2 is as defined in (2.12).

Proof. Given ε > 0, and using Lemma 2 and 5 we have that for ω′ ∈ Ω′M−1

|aNM−2(S, ω′)− aM−2(S, ω′)| ≤ c̃ 1

N

N∑
j=1

EQ
[
|aNM−1(SM−1, ω

′)− aM−1(SM−1, ω
′)| | SM−2 = S, [vj(ω′)]M−1

M−2

]
+ δNM−2(S, ω′)

≤ c′ε+

kM−1∑
iM−1

α
iM−1,N
M−1,M (ω′)

1

N

N∑
j=1

EQ
[
ψS,iM−1

(SM−1) | SM−2 = S [vj(ω′)]M−1
M−2

]
+ δNM−2(S, ω′)
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For each ψS,iM−1
, we apply Lemma 4, and obtain a separable ε-approximating function ψiM−1(S,R)

of the form

ψiM−1(S,R) =

kM−2∑
iM−2=1

ψS,iM−2,iM−1
(S)ψR,iM−2,iM−1

(R)

and apply it to the expectation. This results in

|aNM−2(S, ω′)− aM−2(S, ω′)| ≤ (c′ + c̃NM−2(ω′))ε+

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′)

kM−2∑
iM−2=1

α
iM−2,iM−1,N
M−2,M−1 (ω′)ψiM−2,iM−1(S)

+ δNM−2(S, ω′)

where limN→∞ c̃
N
M−2(ω′) = 0 and

α
iM−2,N
M−2,M−1 =

1

N

N∑
j=1

EQ
[
ψR,iM−2,iM−1

(RM−2) | [vj ]M−1
M−2

]
. (2.17)

By the SLLN, for each tuple (iM−1, iM−2) there exists a set of full measure such that α
iM−2,N
M−2,M−1

converges. Thus, we may find a set Ω̃′M−2 with Q′(Ω̃′M−2) = 1 on which they all converge. Also,

δNM−2(S) converges to 0 on a set of full measure Ω
′δ
M−2. We then define Ω′M−2 = Ω̃′M−2 ∩Ω′M−1 ∩

Ω
′δ
M−2 and cNM−2 = c′ + c̃NM−2 which implies the lemma.

Lemma 7. Let n ∈ {1, ...,M − 2}, δNn (S) as in (2.12) and ε > 0. There exists a set Ω
′δ
n ⊂ Ω′ with

Q′(Ω′δn ) = 1 such that for ω′ ∈ Ω
′δ
n we have

δNn (S, ω′) ≤ c · ε+

kn∑
in=1

βin,Nn,n+1(ω′)ψin(S)

where βin,Nn,n+1 are random variables that depend on {[vj ]n+1
n }∞j=1, limN→∞ β

in,N
n,n+1(ω′) = 0, c depends

on our truncation and separability conditions, and ψin satisfy the conditions of Lemma 4.

Proof. We break the proof up into multiple stages.

Preliminary estimates on ak, fk.

Let fk be as defined in (2.10). We begin by showing that for each j ∈ {n, ...,M − 1} that

aj(S) = Fj(S) +Gj(S)

fj(S, v) = Hj(S, v) + Jj(S, v)

where |Fk(S)| ≤ ckε, |Hk(S, v)| ≤ c′kε with ck, c
′
k depending on our truncation conditions and

separability conditions. The functions Gj admit the representation

Gj(S) =

kj∑
ij=1

cij ,jψS,ij (S)

where cij ,j ∈ RL and ψS,ij ∈ Cc(S). Finally Jj(S, v) = max(h(S), Gj(S) · φ(v)). To this end, we
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let j = M − 1 and have that

aM−1(S) =A−1
M−1E

Q [φ(vM−1)h(SM ) | SM−1 = S]

=A−1
M−1E

Q[φ(vM−1)h(S �RM−1)(1− ηE(RM−1)) ]

+A−1
M−1E

Q [φ(vM−1)h(S �RM−1)ηE(RM−1)] (2.18)

where E is as in (2.4.3) and focus on the second term. We let

Ξ̃M−1 : R2dS+dv → RL

Ξ̃M−1(S,R, v1) = φ(v1)h(S �R)ηE(R)

= φ(v1)h̃(S,R)

and apply Lemma 3 to find an ε-separating function of the form

ψM−1(S,R) =

kM−1∑
iM−1=1

ψS,iM−1
(S)ψR,iM−1

(R)

where ψS,iM−1
, ψR,iM−1

∈ C0
c (S) and ||h̃− ψM−1||∞ < ε. This allows us to write

Ξ̃M−1(S,R, v1) = F2,M−1(S,R, v1) + φ(v1)ψM−1(S,R)

where F2,M−1(S,R, v1) = φ(v1)(h̃(S,R)−ψM−1(S,R)) and EQ[F2,M−1(S,RM−1, vM−1)] < c ε with

c depending on our truncation and separability conditions.

Returning to our expression in (2.18), we find

aM−1(S) = FM−1(S) +

kM−1∑
iM−1=1

ciM−1,M−1ψS,iM−1
(S)

=: FM−1(S) +GM−1(S)

where |FM−1(S)| ≤ cM−1 ε for all S ∈ S , cM−1 depends on our truncation and separability

conditions, and

ciM−1,M−1 = EQ [φ(vM−1)ψR,iM−1
(RM−1)

]
.

We now turn to fM−1(S, v)

fM−1(S, v) = max(h(S), aM−1(S) · φ(v))

= max(h(S), FM−1(S) · φ(v) +GM−1(S) · φ(v))

=
[

max(h(S), FM−1(S) · φ(v) +GM−1(S) · φ(v))−max(h(S), GM−1(S) · φ(v))
]

+ max(h(S), GM−1(S) · φ(v)).
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Equating HM−1(S, v) to the term in brackets and

JM−1(S, v) := max(h(S), GM−1(S) · φ(v)),

gives us the required form and concludes the claim for j = M − 1.

Now let j ∈ {1, ...,M − 2}, we have

aj(S) = A−1
j EQ [φ(vj)fj+1(Sj+1, vj+1)]

= A−1
j EQ [φ(vj)Hj+1(Sj+1, vj+1)]

+A−1
j EQ [φ(vj) max(h(S �Rj), Gj+1(S �Rj) · φ(vj+1))(1− ηEj+1(Rn)))

]
+A−1

j EQ [φ(vj) max(h(S �Rj), Gj+1(S �Rj) · φ(vj+1))ηEj+1(Rn)
]
,

where Ej+1 is as in (2.15) so that Q(Ωεj+1,c) < ε
||Jj+1||∞ , and focus on the final term. By assump-

tion, Gj+1(S) =
∑kj+1

ij+1=1 cij+1ψS,ij+1(S) where cij+1 ∈ RL. Letting dij+1(v) = cij+1 · φ(v), we are

led to consider the function

Ξ̃j : R2dS+2dv → RL

Ξ̃j(S,R, v1, v2) = φ(v1) max(h(S �R)ηEj+1(R),

kj+1∑
ij+1=1

dij+1(v2)ψS,ij+1(S �R)ηEj+1(R))

= φ(v1) max(h̃(S,R),

kj+1∑
ij+1=1

dij+1(v2)ψ̃S,ij+1(S,R))

where ψ̃S,ij+1(S,R) = ψS,ij+1(S,R)ηEj+1(R). Before carrying out a construction very similar to

the j = M − 1 case, we let

Aj+1 = ||h̃||∞ +

kj+1∑
ij+1=1

||dij+1 ||∞||ψ̃S,ij+1 ||∞.

Next, we note that

max

h̃, kj+1∑
ij+1=1

dij+1ψ̃S,ij+1

 ∈ C0
c (S2 ×Rdv)

and find a function of the form

ψj(S,R, v) =

kj∑
ij=1

ψS,ij (S)ψR,v,ij (R, v)



Chapter 2. A Hybrid LSMC/PDE Algorithm 30

such that ψS,ij ∈ C0
c (S), ψR,v,ij ∈ C0

c (S ×Rdv) and∣∣∣∣∣∣
∣∣∣∣∣∣max

h̃, kj+1∑
ij+1=1

dij+1ψ̃S,ij+1

− ψj
∣∣∣∣∣∣
∣∣∣∣∣∣
∞

< ε.

Finally, we write

aj(S) = Fj,1(S) + Fj,2(S) + Fj,3(S) +

kj∑
ij=1

cij ,jψS,ij (S)

where

Fj,1(S) = A−1
j EQ [φ(vj)Hj+1(Sj+1, vj+1) | Sj = S] ,

Fj,2(S) = A−1
j EQ [φ(vj) max(h(S �Rj), Gj+1(S �Rj) · φ(vj+1))(1− ηEj+1(Rn)))

]
,

Fj,3(S) = EQ
[

Ξ̃j(S,Rj , vj , vj+1)− φ(vj)ψj(S,Rj , vj+1)
]

so that for i = 1, 2, 3, we have ||Fj,i||∞ ≤ c′j,iε where c′j,i depend on our truncation and separability

conditions and

cij ,j = E
[
φ(vj)ψR,v,ij (Rj , vj+1)

]
.

Also we have that ψS,ij (S) ∈ C0
c (S) . Writing Fj = Fj,1 + Fj,2 + Fj,3 and Gj(S) to be the final

term completes the claim for aj(S). Showing the result for fj(Sj , vj) is analogous to the base case

and so we omit the proof.

Estimates of δNn (S)

We write

δNn (S) = |
[
ANn
]−1 1

N

N∑
j=1

EQ [φ(vn)fn+1(Sn+1, vn+1) | Sn = S, [vj ]n+1
n

]
−A−1

n EQ [φ(vn)fn+1(Sn+1, vn+1) | Sn = S] |

≤ |
[
ANn
]−1 1

N

N∑
j=1

EQ [φ(vn)Jn+1(Sn+1, vn+1) | Sn = S, [vj ]n+1
n

]
−A−1

n E [φ(vn)Jn+1(Sn+1, vn+1) | Sn = S] + c ε

≤ |
[
ANn
]−1 1

N

N∑
j=1

φ(vjn)EQ [max(h(Sn+1), Gn(Sn+1) · φ(vn+1))ηE(Rn) | Sn = S, [vj ]n+1
n

]
−A−1

n EQ [φ(vn) max(h(Sn+1), Gn(Sn+1) · φ(vn+1))ηE(Rn) | Sn = S] | + c′ ε

where c and c′ depend on our truncation conditions. We now focus on the expression within our



Chapter 2. A Hybrid LSMC/PDE Algorithm 31

expectations and define the function

Ξ̃′n : R2dS+2dv → RL

Ξ̃′n(S,R, v1, v2) = φ(v1) max(h(S �R), Gn(S �R) · φ(v)) ηE(R)

= φ(v1) max(h(S �R) ηE(R), Gn(S �R)ηE(R) · φ(v2))

= φ(v1) max(h̃(S,R), G̃n(S,R) · φ(v2)).

Applying techniques that are exaclty analogous to previous steps, we obtain a separating estimate

for Ξ̃′ of the form

Ξ̃′n(S,R, v1, v2) = F (S,R, v1, v2) + φ(v1)

kn∑
in=1

ψS,in(S)ψR,v,in(R, v2)

where F is appropriately bounded and ψS,in ∈ C0
c (S). This leads to

δNn (S) ≤ c ε+

kn∑
in=1

|ψS,in(S)| · βin,Nn,n+1

where c again depends on our truncation conditions and

βl,Nn,n+1 = |
[
ANn
]−1 1

N

N∑
j=1

φ(vjn)EQ [ψR,v,in(Rn, vn+1) | [vj ]n+1
n

]
−A−1

n EQ [φ(vjn)ψR,v,in(Rn, vn+1)
]
|.

By the SLLN, for each in, we have that limN→∞ β
in,N
n,n+1 = 0 a.s. As a result, we may find a set Ω′δn

with Q′(Ω′δn ) = 1 such that they all converge which completes the proof.

Proposition 1. Let n ∈ {1, ...,M − 3} and ε > 0. There exists a set Ω′n such that Q′(Ω′n) = 1

and for ω′ ∈ Ω′n we have

|aNn (S, ω′)− an(S, ω′)| ≤ cNn (ω′) ε+ δNn (S, ω′) + αNn (S, ω′) +

M−2∑
l=n+1

βNl,n(S, ω′) (2.19)

where

αNn (S, ω′) =

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′)

kM−2∑
iM−2=1

α
iM−2,iM−1,N
M−2,M−1 (ω′) . . .

kn∑
in=1

α
in,...,iM−1,N
in,in+1

(ω′) · ψn,αin,...,iM−1
(S),

βNl,n(S, ω′) =

pl∑
il=1

βl,il,Nl−1,l (ω′)

pl−1∑
il−1=1

β
l,il,il−1,N
l−2,l−1 (ω′) . . .

pn∑
in=1

βl,il,...,in,Nn,n+1 (ω′) · ψn,βil,...,in(S),

lim
N→∞

α
iM−1,N
M−1,M (ω′) = 0, lim sup

N
α
ij ,...,il,N
k−1,k (ω′) <∞, ∀ k ∈ {n, ...,M − 1}
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and

∀ l ∈ {n+ 1, . . . ,M − 2}, ∀j ∈ {n, . . . , l}

lim
N→∞

βl,il,Nl−1,l (ω′) = 0, lim sup
N

β
l,ij ,...,il,N
k−1,k (ω′) <∞.

The bounds on lim supN c
N
n depend on our truncation and separability conditions and ψk,αil,...,in , ψ

k,β
il,...,in

satisfy the conditions of Proposition 3.

Proof. We begin by letting n = M−3 and by Lemma 2 and Lemma 6 we have on ω′ ∈ Ω′M−2∩Ω
′δ
M−2

|aNM−3(S, ω′)− aM−3(S, ω′)|

≤ δNM−3(S, ω′) + c̃
1

N

N∑
j=1

EQ
[
|aNM−2(SM−2, ω

′)− aM−2(SM−2, ω
′)| | SM−3 = S, [vj(ω′)]M−2

M−3

]
≤ δNM−3(S, ω′) + cNM−2(ω′)

+ c̃

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′)

kM−2∑
iM−2

α
iM−2,iM−1,N
M−2,M−1 (ω′)

1

N

N∑
j=1

EQ
[
ψS,iM−2,iM−1

(SM−2) | SM−3 = S, [vj(ω′)]M−2
M−3

]
(2.20)

+ c̃
1

N

N∑
j=1

EQ[δNM−2(SM−2, ω
′) | SM−3 = S, [vj(ω′)]M−2

M−3 ] (2.21)

Line (2.20) may be handled just as in the proof of Lemma 6. As for line (2.21), we use Lemma 7

and write

1

N

N∑
j=1

EQ[δNM−2(SM−2, ω
′) | SM−3 = S, [vj(ω′)]M−2

M−3 ]

≤ c ε+

pM−2∑
iM−2=1

β
M−2,iM−2,N
M−2,M−1 (ω′)

1

N

N∑
j=1

EQ[ψiM−2(SM−2) | SM−3 = S, [vj(ω′)]M−2
M−3]

where limN→∞ β
M−2,iM−2,N
M−3,M−2 (ω′) = 0 and we apply the usual separation technique, the details of

which we omit. We then obtain a set Ω′M−3 such that Q′(Ω′M−3) = 1 and for ω′ ∈ Ω′M−3

|aNM−3(S, ω′)− aM−3(S, ω′)|

≤ cNM−3(ω′) + δNM−3(S, ω′)

+

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′)

kM−2∑
iM−2

α
iM−2,iM−1,N
M−2,M−1 (ω′)

kM−3∑
iM−3

α
iM−3,iM−2,iM−1,N
M−3,M−2 (ω′) · ψM−3,α

S,iM−3,iM−2,iM−1
(S)

+

kM−2∑
iM−2=1

β
M−2,iM−2,N
M−2,M−1 (ω′)

mM−3∑
iM−3=1

β
M−2,iM−2,iM−3,N
M−3,M−2 (ω′)ψM−2,β

iM−3,iM−2
(S)

which corresponds to l = M − 2 and the above random variables satisfy the necessary conditions.

We now suppose the claim is true for n = m+ 1 where m+ 1 ≤ M − 3 and show it holds for
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n = m. Again, using Lemma 2 for ω′ ∈ Ω′m we have

|aNm(S, ω′)− am(S, ω′)|

≤ δNm(S, ω′) + c̃
1

N

N∑
j=1

EQ [ |aNm+1(Sm+1, ω
′)− am+1(Sm+1, ω

′)| | Sm = S, [vj(ω′)]m+1
m

]
applying our induction hypothesis to the summation in the second term, we find

1

N

N∑
j=1

EQ [ |aNm+1(Sm+1, ω
′)− am+1(Sm+1, ω

′)| | Sm = S, [vj(ω′)]m+1
m

]
≤ cNm+1(ω′)ε+

1

N

N∑
j=1

EQ[δNm+1(Sm+1, ω
′) | Sm = S, [vj(ω′)]m+1

m ] (2.22)

+
1

N

N∑
j=1

EQ[αNm+1(Sm+1, ω
′) | Sm = S, [vj(ω′)]m+1

k ] (2.23)

+

M−2∑
l=m+2

1

N

N∑
j=1

EQ[βNl,m(Sm+1, ω
′) | Sm = S, [vj(ω′)]m+1

m ] (2.24)

and focus on each average separately. For line (2.22), again, we apply Lemma 7 to obtain an

ε-separation, followed by the usual separation technique and find a set Ω
′δ
m such that Q′(Ω′δm) = 1

and

1

N

N∑
j=1

EQ[δNm+1(Sm+1, ω
′) | Sm = S, [vj(ω′)]m+1

m ]

≤ c ε+

km+1∑
im+1=1

β
m+1,im+1,N
m+1,m+2 (ω′)

1

N

N∑
j=1

EQ[ψim+1(Sm+1) | Sm = S, [vj(ω′)]m+1
m ]

≤ cNδ,m(ω′) ε+

km+1∑
im+1=1

β
m+1,im+1,N
m+1,m+2 (ω′)

km∑
im=1

β
m+1,im,im+1,N
m,m+1 (ω′)ψm+1,β

im,im+1
(S) (2.25)

where limN→∞ β
m+1,im+1,N
m+1,m+2 (ω′) = 0, and lim supN→∞ c

N
m+1(ω′) only depends on our truncation

and separability conditions along with the other usual conditions. We now label the second term

in (2.25) as βNm+1,m. Then we turn to line (2.23) and find

1

N

N∑
j=1

EQ[αNm+1(Sm+1, ω
′) | Sm = S, [vj(ω′)]m+1

m ]

=

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′)

kM−2∑
iM−2=1

α
iM−2,iM−1,N
M−2,M−1 (ω′) . . .

km+1∑
im+1=1

α
im+1,...,iM−1,N
im+1,im+2

(ω′)
1

N

N∑
j=1

EQ[ψm+1,α
im+1,...,iM−1

(Sm+1) | Sm = S, [vj(ω′)]m+1
m ]
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which may be handled using the usual separation technique to obtain a set Ω′m such that Q′(Ω′m) =

1 and

1

N

N∑
j=1

EQ[αNm+1(Sm+1, ω
′) | Sm = S, [vj(ω′)]m+1

m ]

≤ cNα,m(ω′)ε+

kM−1∑
iM−1=1

α
iM−1,N
M−1,M (ω′)

kM−2∑
iM−2=1

α
iM−2,iM−1,N
M−2,M−1 (ω′) · · ·

km∑
im=1

α
im,...,iM−1,N
im,im+1

(ω′)ψm,αim,im+1
(S).

Next we turn to line (2.24) and analyze each term of the form 1
N

∑N
j=1 EQ[βNl,m(Sm+1, ω

′) | Sm =

S, [vj(ω′)]m+1
m ] for l = m + 2, . . . ,M − 2. Again, applying the usual techniques, we obtain a set

Ω
′β
l,m with Q′(Ω

′β
l,m) = 1 such that

1

N

N∑
j=1

EQ[βNl,m+1(Sm+1, ω
′) | Sm = S, [vj(ω′)]m+1

m ]

=

pl∑
il=1

βl,il,Nl−1,l (ω′)

pl−1∑
il−1=1

β
l,il,il−1,N
l−2,l−1 (ω′) . . .

pm+1∑
im+1=1

βl,il,...,im,Nm+1,m+2 (ω′)
1

N

N∑
j=1

EQ[ψm+1,β
il,...,im+1

(Sm+1) | Sm = S, [vj(ω′)]m+1
m ]

≤ cNβ,m(ω′)ε+

pl∑
il=1

βl,il,Nl−1,l (ω′)

pl−1∑
il−1=1

β
l,il,il−1,N
l−2,l−1 (ω′) · · ·

pm∑
im=1

βl,il,...,im,Nm,m+1 (ω′)ψm,βil,...,im
(S)

with the usual conditions being satisfied. We then set

βNl,m(S, ω′) =

pl∑
il=1

βl,il,Nl−1,l (ω′)

pl−1∑
il−1=1

β
l,il,il−1,N
l−2,l−1 (ω′) · · ·

pm∑
im=1

βl,il,...,im,Nm,m+1 (ω′)ψm,βil,...,im
(S)

for each l = m + 2, . . . ,M − 2. Upon collecting all terms of the form cNm and βNl,m, for l =

m+ 1, . . . ,M − 2 and intersecting our sets of full measure, we obtain the result for n = m which

implies the result.

Now that we are finished proving Theorem 4 we turn to showing Corollary 5 holds.

Corollary 5. Let S ∈ S and n ∈ {1, ...,M−1}, then we have limN→∞ EQ′ [ ∣∣aNn (S)− an(S)
∣∣ ] = 0.

Proof of Corollary 5. We prove the result for n ∈ {1, ...,M−3}, the cases where n = M−1,M−2

are, of course, simpler. Let ε > 0 and recall (2.19). We begin with the expression

αNn (S) =

kM−1∑
iM−1=1

α
iM−1,N
M−1,M

kM−2∑
iM−2=1

α
iM−2,iM−1,N
M−2,M−1 . . .

kn∑
in=1

α
in,...,iM−1,N
in,in+1

· ψn,αin,...,iM−1
(S)
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and note that, by (2.17), for k ≤ M − 2, each random variable of the form αi,Nk,k+1 is uniformly

bounded over N and the ψn,αi are bounded as well. Here the superscript i represents an indexing

tuple. As well, recalling equation (2.16), the boundedness of [ANM−1]−1 and the SLLN imply that

α
iM−1,N
M−1,M → 0 in L1. Thus we conclude αNn (S)→ 0 in L1. Next, we turn to the expressions βNl,n(S)

where

βNl,n(S) =

ml∑
il=1

βl,il,Nl−1,l

ml−1∑
il−1=1

β
l,il,il−1,N
l−2,l−1 . . .

mn∑
in=1

βl,il,...,in,Nn,n+1 · ψn,βil,...,in(S)

and note again, for k ≤ l − 2, the random variables βl,i,Nk,k+1 are uniformly bounded over N and

ψn,βi are bounded functions. Also, just as with α
iM−1,N
M−1,M , we have that βl,il,Nl−1,l → 0 in L1. Thus, we

conclude each βNl,n → 0 in L1.

The same reasoning shows that δNn (S)→ 0 in L1 as well.

Finally we turn to cNn and note that cNn = c′ + c̃Nn where c′ depends on our truncation and

separability conditions and

|c̃Nn | ≤ C

kM−1∑
iM−1

α
iM−1,N
M−1,M +

kn∑
l=n+1

ml∑
il=1

βl,il,Nl−1,l


for some C > 0. As each α

iM−1,N
M−1,M , β

l,il,N
l−1,l → 0 in L1, this completes the proof.

The next Corollary, which we state without proof due to its simplicitiy, states that our con-

tinuation functions converge almost surely and in L1. This implies that our direct estimator also

converges in each sense.

Corollary 6. Let S ∈ S, v ∈ Rdv and n ∈ {0, 1, ...,M − 1}, then limN→∞C
N
n,d(S, v) = Cn(S, v)

Q′ a.s. and limN→∞ EQ′ [CNn,d(S, v)] = Cn(S, v) .

2.5 A 1d+ 1d Example: Heston Model

We consider a Bermudan put option written on the Heston model [33] as the typical type of prob-

lem the GPSM is designed to handle. Due to its low dimensionality, well established deterministic

methods may be applied which form a reference to check the GPSM’s performance. The low di-

mensionality also allows us to fully visualize the exercise regions produced by the hybrid algorithm

which may be compared to deterministic implementations.

2.5.1 Model Description and Framework

We suppose the existence of a probability space (Ω,F ,Q), just as in Section 2.2, such that Q is a

risk neutral measure. On this space, we have the following process (St, vt) defined as

dSt = St(r dt+
√
vt dW

S
t ) , and dvt = κ(θ − vt) dt+ γ

√
vt dW

v
t
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where d[WS ,W v]t = ρ dt. Writing WS
t = ρ W v

t +
√

1− ρ2 W⊥,vt , where W⊥,v is a Brownian

motion independent of W v, we have the model falls into the class described in Section 2.2. Next,

let h(S) = (K − S)+ be the payoff of a put option and suppose we have a collection of dates

{t0 = 0, . . . , tM = T} where the holder of the option may exercise. We refer to K and T as the

option’s strike and maturity, respectively.

2.5.2 Derivation of Pricing Formulas

To compute E
[
e−r∆tnf(Sn+1, vn+1) | Sn = si, vn = v

]
we begin by iterating the total expectation

and writing our expression in terms of Xt = logSt where

dXt =
(
r − 1

2vt
)
dt+

√
1− ρ2

√
vt dW

⊥,v
t + ρ

√
vt dW

v
t .

We then consider a payoff of the form

g(X, v) = f(exp(X), v) ,

so that

E
[
e−r∆tnf(Sn+1, vn+1) | Sn, vn

]
= e−r∆tnE

[
E
[
g(Xn+1, vn+1) | [v]n+1

n , Xn

]
| Xn, vn

]
. (2.26)

Deriving the Conditional PDE

Focusing on the inner expectation, treating [v]n+1
n as a deterministic path on [tn, tn+1], and repre-

senting it as a function of time vt, we then write

Xt = Yt + Zt , where

Yt = Xtn +

∫ t

tn

(
r − 1

2vs
)
ds+

∫ t

tn

√
1− ρ2

√
vsdW

v,⊥
s , and Zt =

∫ t

tn

ρ
√
vsdW

v
s .

Re-writing the inner expectation in the rhs of (2.26) in terms of the process Yt we have

E
[
g(Xn+1, vn+1) | [v]n+1

n , Xn

]
= E

[
g(Yn+1 + Zn+1, vn+1) | [v]n+1

n , Yn
]

:= u(t, Yn).

By the Feynman-Kac theorem, the function u(t, y) can be written as the solution to the following

PDE {
∂tu(t, y) + at ∂yu(t, y) + bt ∂

2
yu(t, y) = 0 ,

u(tn+1, y) = g(y + Ztn+1 , vtn+1) ,
(2.27)

where at = r − 1
2vt and bt = (1− ρ2)vt are deterministic functions of time.

From here, we may also identify our finite dimensional path statistic Λ as

Λ([v]n+1
n ) =

(∫ tn+1

tn

vs ds,

∫ tn+1

tn

√
vs dW

v
s

)
which is interesting for theoretical purposes and will be further utilized in Chapter 3.
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FFT Based Solution

Taking the Fourier transform of (2.27), as in the FST method of [59], and letting û(t, ω) denote

the Fourier transform of u(t, y) in the second argument, we have{
∂tû(t, ω) + (atiω − 1

2btω
2)û(t, ω) = 0 ,

û(tn+1, ω) = eiωZtn+1 ĝ(ω, vn+1) ,

which is an ODE wrt time for û. Thus,

û(tn, ω) = û(tn+1, ω) exp

{
iω

∫ tn+1

tn

asds−
1

2
ω2

∫ tn+1

tn

bsds

}
.

Writing Ψ(ω, tn, tn+1) = iωZtn+1 + iω
∫ tn+1

tn
as ds − 1

2ω
2
∫ tn+1

tn
bs ds or more compactly Ψn,n+1 :=

Ψ(·, tn, tn+1), and using the FST’s discretization methodology with fast Fourier transforms (FFT),

we have the recursion

un = FFT−1
[
FFT

[
gn+1

]
exp(Ψn,n+1)

]
,

where gk, uk are discretizations of g(tk, y), u(tk, y).

2.5.3 Numerical Experiments, Results, and Discussion

In this section we carry out various tests to check the performance of the GPSM in comparison to

both LSM and a finite difference implementation which we use as a reference.

For each set of model parameters that we test, we carry out the following procedure for LSM,

GPSM, and finite differences.

Procedure for LSM

We run Ntrial of an LSM implementation as follows.

1. Simulate Nsims paths of (S, v) on [0, T ] with Euler discretization 1/Nstep.

2. Carry out the high estimate of the TV approach to LSM using the NS,v
lsm simulation of (S, v)

and a two state-variable basis with dimension Llsm.

• Retain the estimated coefficients.

3. Independently simulate NS,v
lsm paths of (S, v) on [0, T ] with Euler discretization 1/Nstep.

4. Carry out the low estimate of the TV approach to LSM using the simulation of (S, v) and the

coefficients from the previous stages.

For the hybrid algorithm, we use a monomial basis {xl}deghybl=0 and define Lhyb = deghyb + 1 to be

the total number of basis functions used.
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Procedure for the GPSM

We run Ntrial of the GPSM as follows.

1. Simulate Nv
gpsm paths of (v,∆W v) on [0, T ] with Euler discretization 1/Nstep.

2. Carry out the direct estimate for GPSM with NS ∈ {NS1 , NS2 , NS3 } points in the log-space grid.

Use a one state-variable basis of dimension Lmix.

• Retain the estimated coefficients for each resolution level.

3. Independently simulate Nv
gpsm paths of (v,∆W v) on [0, T ] with Euler discretization 1/Nstep.

4. Carry out the low estimate version of the GPSM in the same manner using estimated coefficients

from the previous stage at each resolution.

For LSM, our basis consists of functions of all functions of the form φj,k(S, v) = Sjvk and φi(S) =

(K−S)i+ such that j+k+ i ≤ deglsm. The quantity Llsm denotes the total dimension of the basis.

Details for the Finite Difference Method

We employ an explicit finite difference scheme with equally spaced grid points. Our boundary

conditions are as outlined in [36]. Let Ns and Nv be the number of points in our spatial and

volatility grids, Nt be the number of time steps taken, and Smin, Smax, vmin, vmax be the end

points of our grids. These parameters have been found to be stable in determining the time-zero

prices and exercise boundary. We use cubic spline interpolation to obtain the time zero prices.

Settings for Trials

We carry out three main sets of tests that vary the maturity and number of exercise dates. Our

finite difference parameters are as in Table 2.2. Our model parameters are fixed across trials and

Trial Type Maturity (yrs) No. Exercise Dates

1 0.25 10
2 1.00 12
3 2.50 30

Table 2.1: Settings for the three main trials. Subtrial settings will be presented in Table 2.4. All
exercise opportunities are equally spaced out.

Trial Ns Nv Nt vmin vmax Smin Smax

1 29 27 105 0 1.00 0 20
2 29 27 106 0 1.25 0 53
3 29 27 106 0 1.50 0 112

Table 2.2: parameters used in of our finite difference computation.
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S0 v0 κ θ γ ρ K r

10 0.15 5 0.16 0.9 0.1 10 0.02

Table 2.3: Model parameters used across trials.

Ntrials (logS/S0)min (logS/S0)max

100 -3 3

Subtrial Type Nhyb
sims deghyb Lhyb N lsm

sims deglsm Llsm

a 1.0 · 104 3 4 1.0 · 105 3 13
b 2.5 · 104 4 5 2.5 · 105 4 19
c 5.0 · 104 5 6 5.0 · 105 5 28

Table 2.4: Simulation and regression parameters used across subtrials for LSM and GPSM.

listed in Table 2.3. These parameters are similar to [36] except that we set r to be 2% as opposed

to 10% which is more in line with current financial circumstances. Within each trial, we carry

out three subtrials where we increase the number of paths and basis functions according to Table

2.4.

Numerical Results

We refer the reader to Appendices 2.B and 2.C where we collect all pricing statistics and optimal

exercise boundaries (OEBs) respectively.

Discussion of Results

As indicated in Table 2.5 to Table 2.7, the LSM is capable of computing the time zero value for

only two digits when simulating 100 000 to 500 000 paths. As expected, the standard deviation is

fairly low given the relatively high number of paths, however, a bias persists in both the direct and

low estimator from the inability to accurately locate the exercise boundaries as seen in Figure 2.3.

While the boundary is accurate for the final exercise date, the middle dates are fairly inaccurate

while the early dates are completely inaccurate. Our plot in Figure 2.3 corresponds to Trial 2(c)

and is meant to showcase the LSM’s best case scenario which took, on average, about 48 seconds

for the direct estimator, and 38 seconds for the low estimator.

In Tables 2.9 to 2.10 we see that the GPSM is able to match the reference price to 3 digits

when NS = 27 and to 4 digits when NS = 29. In Table 2.8, however, one is able to match 2 digits

when NS = 27 and 3 digits when NS = 29. This shows that the GPSM is slightly less accurate for

earlier maturities. Also, the level of variance at 10 000 simulated paths is comparable to that of

LSM with 100 000 paths. This is of course owed to the conditioning technique of our algorithm.

Interestingly, while the variance decreases as the number of paths increase from 10 000 to 50 000,

we see that the bias is unaffected and is mostly a function of our grid resolution. One thing we

note here is that the direct and low estimators that we produce are identical for up until 3 or



Chapter 2. A Hybrid LSMC/PDE Algorithm 40

4 digits with comparable levels of accuracy. We conclude that our low estimator is better than

that of LSMC, and that the GPSM’s regression component introduces very little bias due to the

accuracy of the direct estimator.

In Figure 2.4, we show the OEB for the GPSM for Trial 2(a) with NS = 29 and should be

compared to the OEB for LSM pictured in Figure 2.3. We see the GPSM is highly accurate in

locating the exercise boundary across exercise dates, with only a slight error on the interface of

the exercise and holding regions. Beyond the variance reduction obtained by solving conditional

PDEs, we can attribute this accuracy to our regression method as discussed in Section 2.3.2 and

our simplification of how the boundary is located. Although we don’t show it, this discrepancy is

further diminished in Trial 2(c) where we used 50 000 simulations. We show the result of Trial

2(a) to indicate that the worst-case run for GPSM is considerably better than the best-case run

for LSM.

In Section 3.2, we will use the low-biased estimation procedure as a means to compute

∂V N
0

∂v
(S0, v0)

as opposed to a redundant estimate of V N
0 (S0, v0).

We use a Fourier based approach due to its numerical simplicity and speed. The approach of

separating X into components Y,Z is also employed in [16]. It is worth noting that the FST is

likely not the most efficient known approach as it requires a large uniform grid and is used solely

for its simplicity. It seems one may be able to solve the conditional PDEs more efficiently using

the method outlined in [21].

This 1d+ 1d example is used to show how LSM, GPSM and deterministic methods compare in

terms of computing time-zero prices and determining the exercise boundaries. It is worth noting

that a deterministic method is likely the most efficient way to solve this problem, either using PDE

methods as described in [36] or quadrature based approach in [22]. Later on, in Section 3.4, we

apply the GPSM to a 2d+ 2d analogue in which deterministic approaches will not apply.
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2.A Pseudo-code Description

Algorithm 1 GPSM: Exercise Boundaries and Direct Estimate

1: Simulate N paths of vt
2: for n = M : 2 do
3: if n == M then
4: Set Vn(si, v) = hn(si) . For i = 1, ..., NdS

s

5: end if . Initialize boundary for PDE solver
6: for j = 1 : N do

7: Compute E
[
Vn(Sn, v

j
n) | Sn−1 = si, [v

j ]nn−1

]
. For i = 1, ..., NdS

s

8: end for
9: for i = 1 : NdS

s do

10: Regress { e−r∆tE
[
Vn(Sn, v

j
n) | Sn−1 = si, [v

j ]nn−1

]
}Nj=1 onto {φl(v)}Ll=1

. Obtain [an(si)]
N
dS
s

i=1

11: Set Cn−1(si, v) = an−1(si) · φ(v)
12: end for . Obtain a matrix of dimension NdS

s × L
13: Set Vn−1(si, v) = max(hn−1(si), Cn−1(si, v)) . For i = 1, ..., NdS

s

14: end for
15: for j = 1 : N do

16: Compute e−r∆tE
[
V1(S1, v

j
1) | S0 = si, [v

j ]10

]
. For i = 1, ..., NdS

s

17: end for
18: Set V h

0 (si, v0) = max
(
h0(si),

1
N

∑N
i=1 e

−r∆tE
[
V1(S1, v

i
1) | S0 = si, [v

i]10
])

. For i = 1, ..., NdS
s

. High estimate of the time-zero prices
19: return Vh,0(si, v0) for i = 1, ..., NdS

s

Algorithm 2 GPSM: Lower Price

1: Simulate Nv,2 paths of vt
2: for j = 1, ..., Nv,2 do
3: for n = M : 2 do
4: if n == M then
5: Set V j

n (si, v
j
M ) = hn(si) . For i = 1, ..., NdS

s

6: end if
7: Compute U jn−1(si) = e−r∆tE[Vn(Sn, v

j
n) | Sn−1 = si, [v

i]nn−1]

8: Set V j
n−1(si) = U jn−1(si)IΓn(si, v

j
n−1) + h(si)IΓcn(si, v

j
n−1) . For i = 1, ..., NdS

s

9: end for
10: Set V j

l,0(si) = e−r∆tE[V1(S1, v
j
1) | S0 = si, [v

i]nn−1] . For i = 1, ..., NdS
s

11: end for
12: Set Vl,0(si) = 1

Nv,2

∑Nv,2
j=1 V

j
l,0(si) . For i = 1, ..., NdS

s

13: return Vl,0(si, v0) for i = 1, ..., NdS
s
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2.B Pricing Statistics

Subtrial Type Estimate Type Mean Price Std Dev Mean Run Time (s)

a Direct 0.7390 2.560 · 10−3 5.66
Low 0.7381 2.833 · 10−3 5.17

b Direct 0.7399 2.293 · 10−3 19.27
Low 0.7392 1.822 · 10−3 17.13

c Direct 0.7399 1.325 · 10−3 40.26
Low 0.7395 1.199 · 10−3 35.60

Table 2.5: Numerical Results for LSM Trial 1. T = 0.25 with 10 equally spaced exercise dates.
The reference value is 0.7416

Subtrial Type Estimate Type Mean Price Std Dev Mean Run Time (s)

a Direct 1.4481 5.5530 · 10−3 6.68
Low 1.4473 5.2402 · 10−3 5.27

b Direct 1.4483 3.3610 · 10−3 19.96
Low 1.4477 3.1173 · 10−3 17.42

c Direct 1.4494 2.0117 · 10−3 48.36
Low 1.4487 2.3288 · 10−3 38.38

Table 2.6: Numerical Results for LSM Trial 2. T = 1 with 12 equally spaced exercise dates. The
reference value is 1.4528.

Subtrial Type Estimate Type Mean Price Std Dev Mean Run Time (s)

a Direct 2.1998 7.6403 · 10−3 7.76
Low 2.1979 7.9606 · 10−3 5.23

b Direct 2.2008 4.5664 · 10−3 26.63
Low 2.1988 4.2684 · 10−3 19.25

c Direct 2.2025 3.1398 · 10−3 72.27
Low 2.2013 3.2480 · 10−3 43.24

Table 2.7: Numerical Results for LSM Trial 3. T = 2.5 with 30 equally spaced exercise dates.
The reference value is 2.2111.



Chapter 2. A Hybrid LSMC/PDE Algorithm 43

Subtrial Type NS Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 0.7438 9.5027 · 10−4 4.64
Low 0.7436 8.6641 · 10−4 4.81

28 Direct 0.7423 9.5351 · 10−4 5.83
Low 0.7421 8.7197 · 10−4 4.88

29 Direct 0.7419 9.5426 · 10−4 8.11
Low 0.7417 8.7139 · 10−4 6.69

b 27 Direct 0.7435 5.5137 · 10−4 11.79
Low 0.7436 5.8161 · 10−4 9.07

28 Direct 0.7420 5.5341 · 10−4 15.09
Low 0.7421 5.8552 · 10−4 12.01

29 Direct 0.7416 5.5387 · 10−4 20.54
Low 0.7417 5.8625 · 10−4 17.37

c 27 Direct 0.7437 4.0581 · 10−4 23.35
Low 0.7435 3.9400 · 10−4 18.75

28 Direct 0.7422 4.0731 · 10−4 30.48
Low 0.7420 3.9555 · 10−4 24.89

29 Direct 0.7418 4.0765 · 10−4 41.16
Low 0.7417 3.9583 · 10−4 34.95

Table 2.8: Numerical Results for GPSM Trial 1. T = 0.25 with 10 equally spaced exercise dates.
The reference value is 0.7416.

Subtrial Type NS Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 1.4539 1.3654 · 10−3 5.23
Low 1.4537 1.3923 · 10−3 4.24

28 Direct 1.4532 1.3667 · 10−3 6.82
Low 1.4530 1.3921 · 10−3 5.74

29 Direct 1.4530 1.3670 · 10−3 9.59
Low 1.4528 1.3934 · 10−3 8.31

b 27 Direct 1.4541 8.9978 · 10−4 13.71
Low 1.4539 9.6078 · 10−4 10.95

28 Direct 1.4534 9.0053 · 10−4 18.46
Low 1.4532 9.6214 · 10−4 14.43

29 Direct 1.4532 9.0072 · 10−4 24.87
Low 1.4530 9.6251 · 10−4 21.28

c 27 Direct 1.4539 6.3971 · 10−4 27.34
Low 1.4537 5.8203 · 10−4 21.74

28 Direct 1.4532 6.4043 · 10−4 35.96
Low 1.4530 5.8366 · 10−4 28.63

29 Direct 1.4530 6.4055 · 10−4 49.61
Low 1.4529 5.8330 · 10−4 41.88

Table 2.9: Numerical Results for GPSM Trial 2. T = 1 with 12 equally spaced exercise dates.
The reference value is 1.4528.
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Subtrial Type NS Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 2.2117 1.1953 · 10−3 12.64
Low 2.2118 1.2116 · 10−3 9.68

28 Direct 2.2114 1.1960 · 10−3 16.53
Low 2.2114 1.2124 · 10−3 13.53

29 Direct 2.2113 1.1962 · 10−3 23.88
Low 2.2113 1.2128 · 10−3 19.71

b 27 Direct 2.2119 5.9960 · 10−4 33.05
Low 2.2119 8.1975 · 10−4 24.87

28 Direct 2.2116 6.0000 · 10−4 42.85
Low 2.2116 8.2126 · 10−4 34.17

29 Direct 2.2115 6.0001 · 10−4 60.73
Low 2.2114 8.2071 · 10−4 49.25

c 27 Direct 2.2119 5.2746 · 10−4 65.04
Low 2.2118 5.4734 · 10−4 51.14

28 Direct 2.2115 5.2777 · 10−4 86.93
Low 2.2115 5.4745 · 10−4 68.37

29 Direct 2.2114 5.2787 · 10−4 120.18
Low 2.2114 5.4781 · 10−4 101.94

Table 2.10: Numerical Results for GPSM Trial 3. T = 2.5 with 30 equally spaced exercise dates.
The reference value is 2.2111.
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2.C Optimal Exercise Boundaries

Figure 2.2: Reference optimal exercise boundaries generated by a finite difference scheme. Black
indicates exercise, white indicates hold.
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Figure 2.3: Difference optimal exercise boundaries generated by LSM Trial 2(c) compared to the
reference. Dark blue indicates incorrectness with probability 1, yellow indicates correctness with
probability 1.
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Figure 2.4: Difference optimal exercise boundaries generated by GPSM Trial 2(a), NS = 29,
compared to the reference. Dark blue indicates incorrectness with probability 1, yellow indicates
correctness with probability 1.



Chapter 3

Complexity Reduction Methods and

Sensitivities

In this chapter we address secondary issues surrounding the hybrid algorithm such as reducing the

complexity and runtimes along with the computation of sensitivities.

As mentioned in Chapter 2, if dS > 1 and one does not have a closed form solution, solving

several thousand conditional PDEs at the required resolution can be computationally demanding.

To improve matters, we introduce two approximation methods to speed up our computations. The

first method is a clustering approach which allows us to reduce the number of paths for which we

solve conditional PDEs. The second is a multi-level Monte Carlo/multi-grid method that allows us

to solve the majority of our conditional PDEs at a coarse resolution and relatively few conditional

PDEs at the required fine resolution. We also show how the two methods may be combined to

further reduce the complexity.

Computing the value function’s sensitivities to underlying state variables is an important topic

in real world applications, especially mathematical finance. When a financial institution writes a

Bermudan style option, they will first value it using the hybrid algorithm and afterwards hedge

their position using the option’s sensitivities. Given their importance, we describe a technique

to compute derivatives of our value function with respect to our state variables, S and v. For

S-sensitivities we apply a gridded finite difference approach, whereas for v-sensitivities we apply a

common MC method that uses initial dispersions.

After describing our complexity reduction approximations and sensitivity techniques, we return

to the 1d + 1d Heston model to check their effectiveness. We also compute sensitivities using

standard LSMC and compare them to the estimates obtained by the hybrid algorithm. Finally, we

apply our hybrid algorithm to the multi-dimensional Heston model, which is a 2d + 2d example,

and compare the results to standard LSMC.

48
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3.1 Complexity Reduction

3.1.1 Clustering

As described in Section 2.2, we suppose our model satisfies the following Markov-like property

E
[
φ(vtn)h(Stn+1 , vtn+1)

∣∣ Stn = S , FW v

tn,tn+1

]
= E

[
φ(vtn)h(Stn+1 , vtn+1)

∣∣ Stn = S , Θn([v])
]

where

Θn([v]) = (vtn ,Λn([v]), vtn+1)

takes values in some RdΘ . This property indicates that the numerical solutions to conditional

expectations do not depend on every point of the path [v], which is an infinite dimensional object,

but rather on a finite-dimensional statistic, Θn([v]). With this observation, if we simulate two

paths of v, [v1] and [v2], and have Θn([v1]) ≈ Θn([v2]) then we may achieve computational savings

by only solving a PDE over one of the paths, or perhaps over

Θ∗n = 1
2(Θn([v1]) + Θn([v2])),

and use the resulting numerical solution as a representative for both paths. More generally, given a

time stage [tn, tn+1], suppose we simulate N paths {[vj ]}Nj=1 over which we must solve conditional

PDEs and compute coefficients aNn (S). Instead of solving a PDE over each path, we first compute

{Θj
n([v])}Nj=1 and cluster them into Ln clusters of size Ln,k. Given the kth cluster, we obtain a

representative Θ∗n,k as

Θ∗n,k = (v∗n,Λ
∗
n([v]), v∗n+1) =

1

Ln,k

Ln,k∑
j=1

Θn([vk,j ])

where {[vk,j ]}Ln,kj=1 are the paths within the kth cluster. Finally we compute the coefficient aNn (S)

via the modified formula

aNn (S) ≈ [ANn ]−1 1

N

Ln∑
k=1

LN,k φ(vk,∗n ) EQ
[
fNn+1(Sn+1, v

k,∗
n+1) | Sn = S,Θ∗n,k

]
(3.1)

where the matrix ANn is constructed using the unclustered paths {[vk]}Nj=1. There are numerous

approaches and software packages available for clustering the paths such as k-means, Gaussian mix-

ture models, or hierarchical clustering. As we typically need to cluster about 104 paths into a few

thousand clusters, the most practical method is agglomerative hierarchical clustering. ‘Top down’

methods struggle with a large number of clusters, whereas agglomerative hierarchical clustering is

only sensitive to the number of paths and not the number of clusters.

Agglomerative clustering produces a hierarchical tree with successive levels joining together

clusters from lower levels based on their proximity. The method begins by joining individual

paths, observed as Θ([v]), into pairs. The next step is to join pairs of paths that are closest to each

other and to continue this process until the data is consolidated into a single cluster. To define
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proximity, given two path statistics Θn([v(1)]),Θn([v(2)]) we set

d(Θn([v(1)]),Θn([v(2)])) = |Θn([v(1)])−Θn([v(2)])|

and for clusters C(1), C(2)

d(C(1), C(2)) = max
{
d(Θn([v(1)]),Θn([v(2)])) | Θn([v(i)]) ∈ C(i)

}
Given a hierarchical tree as in Figure 3.1, there are at least two approaches to selecting the
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Figure 3.1: An example of a hierarchical tree produced for 100 observations of Θn([v]) for the
1d+ 1d Heston model of Section 2.5. In practice one typically has at least 104 observations.

clusters.

1. Select a number, Ncl, of clusters and make a branch cut at the lowest height such that there are

at most Ncl clusters. Unfortunately, the value Ncl must be chosen based on user-experience.

As one lowers Ncl the quality of their cluster representative depreciates and our experiments in

this thesis show that one can typically reduce the number of paths by approximately a half.

2. Select a cutoff number c, such that if a node in the tree has inconsistency value less than c,

take all observations corresponding to this node as a cluster. The inconsistency value measures

the height of a node compared to the average height of all other nodes in its level. A higher

inconsistency value indicates that a node and its observations are less similar to all other nodes

and their observations

Approach (1) is more convenient to implement than (2), however, the adaptive nature of (2) makes

it more efficient across time intervals. In this thesis, we use Approach (1) and leave Approach (2)

for future study. Our use of clustering is applied in obtaining the direct estimate and not in the

computation of the low biased estimates. The low biased estimator takes the following form

Vl,0(S, v0) =
1

N

N∑
j=1

P j0 (S)

where P j0 is the solution obtained from the low estimator. As P j0 (S) depends on {Θn([vj ])}M−1
n=0 ,

where M is the number of time intervals, applying our clustering adjustment would involve clus-

tering N observations in RMdΘ which is prohibitively high dimensional.
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3.1.2 Multi-Level Monte Carlo (mlMC)/Multi-Grids

Overview of mlMC

Suppose we wish to compute EQ′ [X] where X is a random variable that is computationally expen-

sive to simulate. If we know of another random variable Y that closely approximates X and is less

expensive to simulate, we may write

EQ′ [X] = EQ′ [Y ] + EQ′ [X − Y ]

≈ 1

N0

N0∑
j=1

Y
(j)

0 +
1

N1

N1∑
j=1

(
X

(j)
1 − Y (j)

1

)
where N0 � N1 and the samples in each batch are independent of each other. If X and Y have

similar variances and high positive correlation, then the variance of the second summation will be

low and N1 does not need to be made large. To further extend this notion, given a sequence of

random variables {Xk}Kk=0, with Xk less expensive to simulate than Xk+1, we may similarly write

EQ′ [XK ] ≈ 1

N0

N0∑
j=1

X
(j)
0 +

K∑
k=1

1

Nk

Nk∑
j=1

(
X

(j)
k −X

(j)
k−1

)
(3.2)

where Nk > Nk+1 and N0 � Nk for k ≥ 1 and the batches are independent of each other.

In [26], this idea is developed and numerous types of applications and examples are presented.

One of the more interesting applications of mlMC is the numerical solution of stochastic PDEs

(SPDEs). In such examples one considers Xl to be the numerical solution of a PDE, conditional

on a random sample, with grid resolution an increasing function of l. In this case, Xl has a vector

output and one must interpolate the PDE grid for (3.2) to hold. As seen in (2.11), on each time

interval, [tn, tn+1], the estimated coefficients we obtain may be viewed as the expectation of the

solution of an SPDE generated by our finite-dimensional statistics, Θn([v]), multiplied by φ(vtn).

With this observation we proceed to apply mlMC to improve the complexity in computing our

estimated coefficients.

mlMC for Computing the Estimated Coefficients

Assume we have K independent sets of simulations of vt on [0, T ], denoted {(v(j,k)
t )∞j=1}Kk=0 with Nv

k

paths where Nv
k > Nv

k+1. Also, let P
(j,k)
n (S) denote the numerical solution of the conditional PDE

on the jth path with grid resolutions NSk , in each dimension, over [tn, tn+1] where NSk < NSk+1.

Applying mlMC as outlined in (3.2), we may write

aNn (S) ≈
[
AN0
n

]−1

[
1

Nv
0

N0∑
j=1

φ(vj,0n ) ·P (j,0)
n (S) +

K∑
k=1

1

Nk

Nv
k∑

j=1

φ(vj,kn ) · (P (j,k)
n (S)−P (j,k−1)

n (S))

]
(3.3)

where each of P
(j,k)
n (S) is interpolated to have a resolution that matches level K.

As mentioned before, the grids in (3.3) must be interpolated to the highest level in order for

the expression to be well defined. Below we describe an efficient scheme that is independent of the
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number of simulated paths.

I1. Instead of interpolating P
(j,k+1)
n (S) and P

(j,k)
n (S) for each j ≥ 1 directly to a level K resolution,

it is far more efficient to first compute

1

Nv
k

Nv
k∑

j=1

φ(vj,kn )P (j,k+1)
n (S) and

1

Nv
k

Nv
k∑

j=1

φ(vj,kn )P (j,k)
n (S),

interpolate to level K, and then calculate their difference.

I2. When one has carried out the computation over [tn+1, tn+2] and turns to the interval [tn, tn+1]

their terminal condition is given by the expression

fNn+1(Sn+1, v
j
n+1) = max(hn+1(Sn+1), aNn+1(Sn+1) · φ(vjn+1))

where aNn+1(S) is of level K resolution. When computing P
(j,k)
n (S) for k < K one must inter-

polate fNn+1(S, vjn+1) to a level k resolution. To avoid having to do this for each j ∈ {1, . . . , Nk}
one may pre-interpolate aNn+1(S) to a level k resolution and use it to compute fNn+1(Sn+1, v

j
n+1)

and eventually {P (j,k)
n (S)}Nkj=1.

mlMC for Low Estimates of the Time Zero Price

We again carry out K independent simulations of vt on [0, T ], denoted as {(v(k)
t )}Kk=0, with Nv

k

paths where Nv
k > Nv

k+1. Letting P
(j,k)
0 (S) denote the numerical solution of the conditional PDE

on the jth path with grid resolution NSk over [0, T ] where NSk < NSk+1 we have

Vl,0(S, v0) ≈ 1

Nv
0

Nv
0∑

j=1

P
(j,0)
0 (S) +

K−1∑
k=0

1

Nv
k

Nv
k∑

j=1

(P (j,k+1)
n (S)− P (j,k)

n (S))

where again we interpolate the lower resolution grids to match the highest resolution grid. In this

case, we make use of (I1) but do not require (I2). We do not provide a pseudo-code description

for this part as it is relatively simple.

A Comment On Optimized Path Allocations and Number of Levels

An important question in the application of mlMC is how to choose the number of paths Nv
k that

are allocated to the kth level. In the case of a single period problem, it is relatively easy to derive

the optimal allocation using Lagrange multipliers [26]. In our setting, the main computation is

the generation of our OEBs and direct estimates of the time-zero value. As this is a multi-period

computation carried out over a grid of dimension L ×NdS
S , the approach in [26] does not appear

to carry over. We leave this interesting and important question of how to optimally allocate paths

for the direct estimator for future study. It is possible, however, to apply the traditional allocation

scheme to the low estimator, although we do not implement it here.
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3.1.3 Combining Clustering and mlMC

Clustering and mlMC may be combined to further improve the algorithm’s complexity.

On a time increment [tn, tn+1], when computing the coefficients in equation (2.11), we begin

with the approximation (3.3). Next, since typically Nv
0 � Nv

k for k = 1, ...,K, we cluster the paths

of the 0-level simulation of vt and apply approximation (3.1) to compute 1
Nv

0

∑Nv
0

j=1 φ(vj,0n ) ·P j,0n (S).

We refer to the new algorithm with clustering and mlMC as LSMC-PDE-PRML (path reduced,

multi-level), as named in [23], or prml-GPSM. To better understand the effects of clustering and

mlMC, suppose at each time stage one must solve 10, 000 2-dimensional PDEs at a grid resolution

of 29. If we apply the prml-GPSM, we may set Nv
0 = 10, 000, Nv

1 = 100, Ncl = 4, 500, NS0 = 26

and NS1 = 29. Assuming the complexity and run time of the numerical PDE solver is proportional

to the number of points in the PDE grid, using a two level approximation we may find

Complexity0

Complexityprml
≈ 10000 · 29 × 29

4500 · 26 × 26 + 100 · (26 × 26 + 29 × 29)
≈ 58

As a result, the prml algorithm may decrease the complexity by a factor of 58 times for this

particular example. This back of the envelope calculation ignores the costs of interpolations and

clustering which tend to be outweighed by PDE solving costs, at least for higher dimensional

problems.

3.2 Computing Sensitivities

In this section we discuss how one can compute the sensitivities of the value function, V N
n (S, v),

with respect to the variables S and v for value functions whose continuation surface is twice

differentiable in S and once in v. As V N
n is computed via a mix of numerical PDE methods

and MC, one may expect a hybrid approach for computing sensitivities as well. As we shall see,

sensitivities with respect to S are handled from a numerical PDE perspective, whereas sensitivities

with respect to v, are computed using familiar MC methods. Mixed sensitivities take a hybrid

approach between the two, as we will see.

From the MC perspective there are a number of well known approaches for computing sensitiv-

ities for expected values, many of which may be extended to value functions arising from optimal

stopping problems. These methods include bumping, pathwise differentiation and likelihood ratios

and are discussed in [27]. The method of bumping is computationally expensive and is typically

used as a last resort. Pathwise differentiation is based on interchanging derivatives and expecta-

tions and sometimes requires smoothing to avoid singularities [7]. The method of likelihood ratios

requires one to know the density of their model in closed form which presents challenges. When

computing sensitivities with respect to v, we adopt the methodology of [64] which is a model-free

approach that requires a slight modification of the GPSM but ultimately adds little extra com-

putation. While the associated variances tend to be relatively high, the extensive benchmarking

presented in [64] shows that they are usually on the same order of magnitude as the pathwise

differentiation and likelihood ratio methods.

From the PDE perspective, a natural approach for computing sensitivities is, upon solving the
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PDE numerically, to use finite differences or interpolating splines on the PDE grid. This approach

is appealing as it requires essentially zero extra computation and tends to be very accurate. We

use this approach for computing our sensitivities with respect to S.

3.2.1 Modifying the Low Estimator

Initial Dispersions and Limitations

Before discussing our methodology for taking derivatives of the value function, we discuss how

the modified-LSM (MLSM) of [64] may be applied to the GPSM, leading to the modified GPSM

(MGPSM). This alteration of the algorithm will allow us to compute sensitivities of the value

function with respect to v at time zero when carrying out the low estimator.

As mentioned in Section 2.3, we select an initial point for v(t), v0, and have our N simulations

stem from this initial point. This provides an estimate for the time zero continuation value

V N
l,0 (S, v0) = EQ [e−rτNh(SτN ) | S0 = S, v0 = v

]
(3.4)

for all S ∈ S but only v0 ∈ Rdv with no information for v 6= v0 where τN is determined from the

direct estimator. To obtain sensitivities with respect to v, at v0, we must modify our simulation

to stem from a neighbourhood around v0 which is commonly referred to as the initial dispersion,

A.

For each S ∈ S, we then obtain a collection of values {V j,N
0,l (S, vj0)}Nj=1 which we again regress

onto a basis {φl}Ll=1 yielding coefficients

aN0 (S) = [AN0 ]−1 1

N

N∑
j=1

φ(vj0)V j,N
0,l (S, vj0)

where AN0 = 1
N

∑N
j=1 φ(vj0)φ(vj0)T . Finally we set

CN0 (S, v) = aN0 (S) · φ(v) and

V N
l,0 (S, v) = max(h0(S), CNl,0(S, v)).

As documented in [64], [42], [40], selecting an appropriate choice for A is a non-trivial task

even in one dimension. The original work of [64] is focused on options written on one or more

stocks, S(t), following a geometric Brownian motion (GBM). In the one dimensional example, they

suggest an initial dispersion generated via

Sj(0) = S(0)eασ
√
TZj

where Zj ∼ N(0, 1), σ is the stock’s volatility, T is the option’s maturity, and α is a tunable

parameter. One then sets A = {Sj(0)}Nj=1 where N is the number of simulations. Intuitively, this

initial dispersion mimics the true distribution of S(t) although a proper theoretical justification

for this choice remains missing from the literature and is beyond the scope of this thesis. To

further complicate matters, when the dimension of S is two or more, the variances tend to increase
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by at least an order of magnitude. To remedy the situation, [64] recommend computing multi-

dimensional sensitivities one at a time. Although this approach may provide some improvements,

it requires an extra computation for each sensitivity and does not assist with mixed sensitivities.

Another issue documented in [42] is a variance-bias trade off that occurs in one dimensional

problems when the spread, α, is varied. To obtain low biased estimates with low variance they

recommend a “structured” approach which replaces estimating sensitivities based on (3.4) with

EQ [e−r∆tVt1(St1 , vt1) | S0 = S, v0 = v
]

as both are available upon carrying out the direct estimator. The quality of this estimate relies

on an accurate estimate of the regression coefficients at time t1, which is never guaranteed, and

its quality will diminish as the number of exercise dates increase as is shown in [40] for a similar

type of computation. Thus, we proceed with the approach discussed in [64] without structuring.

Initial Dispersion for Mean Reverting Volatility Processes

In our setting we must select an initial dispersion for randomizing the initial value of v(t) which

is often a mean reverting process with level θ ∈ Rdv . Following the approach of [64], we wish

to mimic the distribution of v(t), however, in our case, the exact distribution of v(t) may not be

known. As a result, we take an empirical approach as follows

1. Set θ = v(0)

2. Simulate N paths of v(t) on [0, T ∗]

3. Set A = {vj(T ∗)}Nj=1.

The final horizon T ∗ functions in a manner similar to the spread parameter α, and our backtests

show that setting T ∗ = 1 provides reasonable results for most purposes.

3.2.2 Approaches for Computing Sensitivities

Due to the inherently high variances associated with computing sensitivities with respect to v,

we offer two approaches for computing prices and sensitivities depending on which quantities the

user requires. The main difference between the two is how many paths the user simulates. If one

simulates N paths in approach (1) to obtain reasonable results, they typically need about k · N
paths for approach (2) where k is roughly 5 or 10 or so. In what follows β ∈ {0, 1, 2}dS .

1. Computing the time-zero value and sensitivities with respect to S

(a) Direct estimator

• Uses the standard procedure and may be coupled with the prml additions.

• Obtain V N
0,d(S, v) for v = v0 and all S ∈ S and the OEBs.

• Obtain estimates of
∂βV N

0,d

∂Sβ
(S, v0)
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(b) Low estimator

• Uses the standard procedure and may be coupled with mlMC additions.

• Obtain V N
0,l (S, v) for v = v0 and all S ∈ S.

• Obtain estimates of
∂βV N

0,l

∂Sβ
(S, v0)

for all S ∈ S

2. Computing the time-zero value, sensitivities with respect to S and v

(a) Direct estimator

• Uses the standard procedure and may be coupled with the prml additions.

• Obtain V N
0,d(S, v) for v = v0 and all S ∈ S and the OEBs.

• Obtain estimates of
∂βV N

0,d

∂Sβ
(S, v0)

(b) A modified low estimate of the time-zero surface using the methodology of [64]. This method

involves randomizing the initial value of v(t) with initial dispersion A as outlined in Section

3.2.1.

• May be coupled with mlMC as discussed before.

• May use a “structured” approach as discussed in [42]

• Obtain V N
0,l (S, v) for a small neighbourhood of v0 and all S ∈ S.

• Obtain an estimate of

∂V N
0,l

∂v
(S, v0) ,

∂V N
0,l

∂Sv
(S, v0) and

∂βV N
0,l

∂Sβ
(S, v0)

for S ∈ S.

3.2.3 Details for Computing Partial Derivatives

As our value function is determined using a max of two functions

V N
n (S, v) = max(hn(S), CNn (S, v))

we have that V N
n may not be smooth on S × Rdv . Given (S, v) ∈ S × Rdv we must first check

whether it is an interior point of either the holding or exercise region. Once we determine the

region, we then differentiate the appropriate component of V N
n . In what follows, we suppose we

have detected (S0, v0) to be in the continuation region. As the approaches are relatively simple,

we do not provide a pseudo-code description in Appendix 3.4.3.

Computing Sensitivities with Respect to S

We compute sensitivities with respect to S using the direct, low and modified low estimation

procedures.
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Direct and Low Estimator

By construction, our time-zero continuation value function is a grid CN0,j,v0
:= {CN0,j(Si, v0)}|S|i=1

where |S| = NdS
S and j ∈ {d, l}. We then construct a gridded-interpolant for CN0,j,v0

, denoted as

C
N
0,j(S, v0), and compute derivatives with respect to S via finite differences. As an example, if

dS = 1, we set

∂V N
0,j(S0, v0)

∂S
=
C
N
0,j(S + h, v0)− CN0,j(S − h, v0)

2h
. (3.5)

Higher order and mixed derivatives may be computed via analogous finite difference formulas. In

practice, a difference spacing of h = 10−3 is sufficient.

Modified Low Estimator

By construction, our time zero continuation value is a function of our time-zero coefficient grid

{aN0 (Si)}|S|i=1. We obtain a grid for the continuation value CN0,l,v0
:= {CN0,l(Si, v0)}|S|i=1 where CN0,l =

aN0 (Si) · φ(v0) and again construct a gridded-interpolant C
N
0,l(S, v0). Finally, we take derivatives

with respect to S as before.

Computing Sensitivities with Respect to v

Modified Low Estimator

For notational simplicity, we suppose dv = 1. As φ(v) is known analytically, and is often a

polynomial, we begin by computing ∂φ(v0)
∂v . Next, we compute the grid {∂vCN0,l(Si, v0)}|S|i=1 via the

formula ∂vC
N
0,l(Si, v0) := aN0 (Si) · ∂φ(v0)

∂v . Finally, to extend our computation for S /∈ S, we again

generate a gridded-interpolant ∂vC
N
0,l,v0

(S).

Computing Sensitivities with Respect to (S, v)

Modified Low Estimator

Following the procedure for computing sensitivities with respect to v, we obtain ∂vC
N
0,l,v0

(S)

which may be further differentiated with respect to S using finite differences as before.

3.3 Revisiting the 1d+ 1d Heston Model

To test our complexity reduction and sensitivity computation methods, we re-consider the 1d+ 1d

Heston model from Section 2.5.

3.3.1 Testing Clustering and mlMC

We test out the effects of clustering and mlMC, first separately, and then in a combined manner.

We present our results with time horizons indicated in Table 2.1, repeated in Table 3.3.1, while

working within Subtrial (a) from Table 2.4 in terms of number of basis functions and FFT spatial

discretization. We keep our model parameters fixed as in Table 2.3 and set Ntrial = 100 through-

out. Our overall procedure follows the one listed in Section 2.5.3 except that our ml- and prml-

implementations.
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Trial Type Maturity (yrs) No. Exercise Dates

1 0.25 10
2 1.00 12
3 2.50 30

Table 3.1: Maturity and exercise dates for the three main trials that are used for testing clustering,
mlMC, and combined clustering and mlMC.

Sub-trial Type Number of Clusters

a 3 000
b 4 500
c 6 000

Table 3.2: Subtrial settings for the pr-GPSM indicating the number of clusters. We set Nsims =
10 000 throughout.

3.3.2 Testing the Computation of Sensitivities

We now implement our methods for computing sensitivities for the MGPSM, prml-GPSM and

MLSM. For the MLSM we apply an approach that is analogous to our sensitivities for MGPSM:

we carry out the direct estimator as usual and obtain the boundary, afterwards we modify the low

estimator with an initial dispersion constructed as in Section 3.2.1.

We work with the same parameters as in Table 2.3 and set Ntrial = 100 throughout. In terms

of time horizons and algorithm settings, for the MGPSM we work with the parameters of Trial 2 in

Table 3.3.1, and Subtrial (a) of Table 2.4. For the MLSM we use the same settings as in Subtrial

(a) of Table 2.4 as well. For the MGPSM approach, we keep T ∗ = 1 fixed throughout our tests

and vary our grid resolutions as in Table 3.7. For MLSM, we set T ∗ = 0.25 which provides a good

balance between bias and variance. For the MLSM, when applying the direct estimator, we include

powers of our payoff function within our basis, however, as these functions are not differentiable,

we do not include them to the modified low estimator when carrying out the time-zero regression.

Thus, we set Ldlsm = 19 and Lllsm = 15

In order to obtain a reference for the sensitivities, we use our finite difference scheme as outlined

in Trial 2 of Table 2.2. Our sensitivities are obtained via generating a gridded-interpolant for the

time-zero surface that is obtained. Afterwards, we differentiate the surface that we obtain.

3.3.3 Results and Discussion

In Appendix 3.B and 3.C we present the pricing statistics, sensitivities and OEBs for testing

clustering, mlMC and sensitivities for the standard Heston model.

When viewing the results of clustering in Tables 3.9, 3.10, 3.11 in comparison to the standard

GPSM in Table 2.9, we find relatively low amounts of added bias or variance. We also find that

the variance is largely unaffected as one varies the number of clusters from 3 000 to 6 000. Our run

times are higher as computing thousands of 1d FFTs is faster than clustering at each time stage.

For problems where dS > 1 the costs of solving the conditional PDEs will largely outweigh that
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Sub-trial Type NS
1

a 27

b 28

c 29

Table 3.3: Subtrial settings for the ml-GPSM indicating the grid resolutions for the higher levels.
We keep NS

0 = 26, Nv
sim,0 = 10 000, Nv

sim,1 = 100 fixed throughout subtrials.

Sub-trial Type NS
1

a 27

b 28

c 29

Table 3.4: Subtrial settings for the prml-GPSM indicating the grid resolutions for the higher levels.
We keep NS

0 = 26, Nv
sim,0 = 10 000, Nv

sim,1 = 100, Ncl = 4 500 fixed throughout subtrials.

of clustering and so we will reap the advantages in those situations. When regarding our mlMC

results in Tables 3.15, 3.16, 3.17 in comparison to the standard GPSM results in Table 2.9, we

again see that the bias and variance of the algorithm is essentially unchanged. The same may be

said of the prml version whose results are presented in Tables 3.9, 3.10, 3.11. Our run times for the

Direct estimator are somewhat lower for mlMC due to the savings provided by carrying most of

our FFTs at a resolution of 26. While there are some added interpolations in these computations,

we find they do not affect the run times. Our OEBs for the prml version of the algorithm in Figure

3.3 show that the prml-GPSM is also able to closely approximate the true OEBs. Naturally, the

OEBs for the pr-GPSM and ml-GPSM will be of even higher quality, and so we omit presenting

their OEBs.

In Tables 3.18, 3.19, 3.20, 3.21 we present our results for computing sensitivities using finite

differences, the MLSM, MGPSM and prml-MGPSM, respectively. First, from Tables 3.20, 3.21

we note that including the prml adjustments again has almost no effect on the sensitivities and

their associated variances. Moreover, we see that the hybrid algorithm is highly accurate when

compared to the finite difference solution in Table 3.18. Turning to the MLSM shown in Table

3.19, we see that, in comparison to Table 2.6 , our initial dispersion has added a slight bias to

the price V N
0,l and interestingly made it closer to the reference value, although with some added

variance; interestingly, the MGPSM has very little bias or variance added. In terms of the MLSM

sensitivities, we see that they are mostly unbiased except for the computation of ∂SvV
N

0,l . In

comparison to the MGPSM’s sensitivities, however, they are an order of magnitude worse in terms

of standard deviations. Another striking feature is the variance that is added as a consequence

of using an initial dispersion to estimate prices and sensitivities in the modified low estimator.

The fact that the GPSM is able to get low variance estimates of S-sensitivities, without an initial

dispersion, using the direct estimator is a major advantages over the MLSM.

As alluded to before, our sensitivities with respect to v tend to be considerably worse than

those with respect to S. Intuitively, there is a certain “stability” that arises when working with a
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grid for computing S-sensitivities that is not present when computing v-sensitivities. As we shall

see, being able to only determine ∂vV
N

0,l to one decimal place with a moderately high number of

paths will be a recurrent issue. Interestingly, the variance of ∂SvV
N

0,l decreases for both the MLSM

and MGPSM, although the decrease is more significant for the MGPSM, possibly owing to the

presence of the grid.

3.4 A 2d+ 2d Example: Multi-dimensional Heston Model

In this section we consider the multidimensional Heston model which is an example of a high

dimensional optimal stopping problem. The model is a natural and important extension of the

standard Heston model that arises in financial applications.

3.4.1 Model Description and Framework

We work with the following version of the two stock price Heston model

dS
(1)
t = S

(1)
t (rdt+

√
v

(1)
t dW

(1)
t ) , dv

(1)
t = κ1(θ1 − v(1)

t )dt+ η1

√
v

(1)
t dW

(3)
t ,

dS
(2)
t = S

(2)
t (rdt+

√
v

(2)
t dW

(2)
t ) , dv

(2)
t = κ2(θ2 − v(2)

t )dt+ η2

√
v

(2)
t dW

(4)
t

where (W (i))4
i=1 is a 4-dimensional Brownian motion with full correlation structure ρ = [ρi,j ].

Switching to log-space for our asset prices X
(i)
t = logS

(i)
t , i = 1, 2, and applying the Cholesky

decomposition to the matrix ρ, we obtain the following system:

dX
(1)
t = (r − 1

2v
(1)
t )dt+

√
v

(1)
t

4∑
j=1

a1,jdB
(j)
t ,

dX
(2)
t = (r − 1

2v
(2)
t )dt+

√
v

(2)
t

4∑
j=2

a2,jdB
(j)
t ,

dv
(1)
t = κ1(θ1 − v(1)

t )dt+ η1

√
v

(1)
t

4∑
j=3

a3,jdB
(j)
t ,

dv
(2)
t = κ2(θ2 − v(2)

t )dt+ η2

√
v

(2)
t a4,4dB

(4)
t ,

where (B
(i)
t )4

i=1 are independent Brownian motions and [ai,j ] is an upper triangular matrix satis-

fying the usual conditions with a4,4 = 1, and ρ = aaᵀ.

3.4.2 Derivation of Pricing Formulas

We follow the same approach as in Section 2.5, to compute E[e−r∆tnf(Sn+1, vn+1) | Sn = S, vn = v]

where St = (S
(1)
t , S

(2)
t ), vt = (v

(1)
t , v

(2)
t ). Again, writing g(X, v) = f(exp(X), v) we have

E [f(Sn+1, vn+1) | Sn, vn ] = E
[
e−r∆tE

[
g(Xn+1, vn+1) | [v]n+1

n , Xn

]
| Xn, vn

]
. (3.6)
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Deriving the Conditional PDE

Focusing on the inner expectation, and treating [v]n+1
n = ([v(1)]n+1

n , [v(2)]n+1
n ) as a deterministic

path in R2, leads to the following decompositions

X
(1)
t = Y

(1)
t + Z

(1)
t ,

Y
(1)
t = X

(1)
tn +

∫ t

tn

(r − 1
2v

(1)
s )ds+

∫ t

tn

√
v

(1)
t

2∑
j=1

a1,jdB
(j)
t ,

Z
(1)
t =

∫ t

tn

√
v

(1)
t

4∑
j=3

a1,jdB
(j)
t ,

and similarly

X
(2)
t = Y

(2)
t + Z

(2)
t ,

Y
(2)
t = X

(2)
tn +

∫ t

tn

(r − 1
2v

(2)
s )ds+

∫ t

tn

√
v

(2)
t a2,2dB

(2)
t ,

Z
(2)
t =

∫ t

tn

√
v

(2)
t

4∑
j=3

a2,jdB
(j)
t .

Writing the inner expectation on the rhs of (3.6) in terms of (Y
(1)
t , Y

(2)
t ) leads to

E
[
g(X

(1)
n+1, X

(2)
n+1, v

(1)
n+1, v

(2)
n+1) | [v]n+1

n , Xn

]
= E

[
g(Y

(1)
n+1 + Z

(1)
n+1, Y

(2)
n+1 + Z

(2)
n+1, v

(1)
n+1, v

(2)
n+1) | [v]n+1

n , Yn = y
]
. =: u(t, y)

By the Feynman-Kac theorem, the function u(t, y1, y2) can be written as the solution to the

following PDE


0 = ∂tu(t, y) +At ∂y1u(t, y) +Bt ∂y2u(t, y)

+Ct∂
2
y1
u(t, y) +Dt∂

2
y1,y2

u(t, y) + Et∂
2
y2
u(t, y)

u(tn+1, y1, y2) = g(y1 + Z
(1)
tn+1

, y2 + Z
(2)
tn+1

, v
(1)
tn+1

, v
(2)
tn+1

) ,

(3.7)

where

At = r − 1

2
v

(1)
t Bt = r − 1

2
v

(2)
t

Ct =
1

2
(a2

1,1 + a2
2,2)v

(1)
t Dt = a1,2a2,2

√
v

(1)
t

√
v

(2)
t Et =

1

2
a2

2,2v
(2)
t .
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FFT Based Solution

Taking the Fourier transform of (3.7), as in the FST method of [59] , and letting û(t, ω) denote

the Fourier transform of u(t, y) in the second argument, we have{
∂tû(t, ω) + (iAtω1 + iBtω2 − Ctω2

1 −Dtω1ω2 − Etω2
2)û(t, ω) = 0 ,

û(tn+1, ω) = e
iω1Z

(1)
tn+1

+iω2Z
(2)
tn+1 ĝ(ω1, ω2, v

(1)
n+1, v

(2)
n+1) ,

which is an ODE in Fourier space, wrt time, for each fixed ω = (ω1, ω2). Solving this ODE in

closed form we find

û(tn, ω) = û(tn+1, ω) exp

{∫ tn+1

tn

(
iAsω1 + iBsω2 − Csω2

1 −Dsω1ω2 − Esω2
t

)
ds

}
.

Using the FST’s discretization methodology, we then have

un = FFT−1
2 [FFT2[gn+1] exp(Ψn,n+1)]

where FFT2 denotes the 2d FFT and

Ψn,n+1(ω1, ω2) = iω1Z
(1)
tn+1

+ iω2Z
(2)
tn+1

+

∫ tn+1

tn

(
iAsω1 + iBsω2 − Csω2

1 −Dsω1ω2 − Esω2
2

)
ds.

Statistics for Clustering and Path Reduction

From (3.4.2), we identify the following path statistic for [v]n+1
n = ([v(1)]n+1

n , [v(2)]n+1
n ):

Λn([v]n+1
n ) =

 ∫ t

tn

√
v

(1)
t

4∑
j=3

a1,jdB
(j)
t ,

∫ t

tn

√
v

(2)
t

4∑
j=3

a2,jdB
(j)
t ,

∫ tn+1

tn

v
(1)
t dt,

∫ tn+1

tn

v
(2)
t dt,

∫ tn+1

tn

√
v

(1)
t

√
v

(2)
t dt

)
so that

Θ([v]n+1
n ) = (v

(1)
tn , v

(2)
tn ,Λ([v]n+1

n ), v
(1)
tn+1

, v
(2)
tn+1

).

3.4.3 Numerical Experiments, Results, and Discussion

In this section we carry out various tests to check the performance of the prml-GPSM in comparison

to both LSM. In a separate test, we also compute sensitivities using the modified GPSM. From a

deterministic perspective, this a 4d problem and so it is not tractable from a purely finite difference

approach. Also, due to the correlations, the model is not of the affine class and so is not amenable

to direct Fourier techniques.

Procedure for LSM and prml-GPSM

We run Ntrial of an LSM and prml-MGPSM implementation as in Section 2.5.3 and Section 3.3.1.

Our basis for LSM consists of all functions of the form φi,j,k,l(S1, S2, v1, v2) = Si1 · S
j
2 · vk1 · vl2
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and φm(S1, S2) = h(S1, S2)m such that i + j + k + l ≤ deglsm and m ≤ deglsm, where φm is the

exercise function. Our basis for GPSM consists of all functions of the form φi,j(v1, v2) = vi1 · v
j
2

with i+ j ≤ deggpsm.

The quantities Llsm, Lgpsm denote the total dimension of the basis for LSM and GPSM, re-

spectively.

Procedure for the MLSM and prml-MGPSM sensitivities

We run Ntrial of the MLSM and prml-MGPSM with modified low estimator. For the MLSM we

again apply the analogous approach as the GPSM with an initial dispersion constructed as in

Section 3.2.1.

For the MGPSM and MLSM, we set T ∗ = 1 and T ∗ = 0.25, respectively. We find these

approaches provide a good balance between bias and variance. As mentioned in Section 3.2.2,

when dv > 1 the variances associated with ∂vV
N

0,l (S0, v0) tend to increase substantially. Thus, to

obtain sensible results, we solve considerably more conditional PDEs as shown in Table 3.6. To

provide a fair comparison with MLSM, we also simulate many more paths than before as shown

in Table 3.6.

Settings for Trials

We work with a Bermudan max-put option with exercise function

h(S1, S2) = (K −max(S1, S2))+.

Our model and option parameters are fixed across trials and listed in Table 3.5. The parameters

for the numerical aspect of our computations are provided in Table 3.6.

T K Exercise Frequency r S
(1)
0 v

(1)
0 κ1 θ1 η1 S

(2)
0 v

(2)
0 κ2 θ2 η2

1 10 T/12 0.025 10 0.45 1.52 0.45 0.4 10 0.3 1.3 0.30 0.43

[ρi,j ] =


1 ρS1,S2 ρS1,v1 ρS1,v2

ρS2,S1 1 ρS2,v1 ρS2,v2

ρv1,S1 ρv1,S2 1 ρv1,v2

ρv2,S1 ρv2,S2 ρv2,v1 1

 =


1 0.2 −0.3 −0.15

0.2 1 −0.11 −0.35
−0.3 −0.11 1 0.2
−0.15 −0.35 0.2 1


Table 3.5: Parameters used in our option pricing model.

Results and Discussion

In Appendices 3.B and 3.C we present the pricing statistics and OEBs for LSM and GPSM. We

also present sensitivities for GPSM.

We begin by comparing our pricing statistics for the LSM and prml-GPSM as shown in Tables

3.22 and 3.23. We find that the LSM’s low estimator is 1.17 with a very high direct estimate,

whereas the prml-GPSM provides a better low estimate of 1.18 that is also attainable from the
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Ntrial NS,v
LSM Nv

sim,0 Nv
sim,1 Nclust Nstep

100 500 000 10 000 100 4 500 1 000

degfull degmix Lfull Lmix

4 4 61 10

NS0 (logS(i)/S
(i)
0 )min (logS(i)/S

(i)
0 )max

26 -3 3

Table 3.6: Parameters fixed when pricing using the prml-GPSM and LSM.

Sub-trial Type NS
1

a 27

b 28

c 29

Table 3.7: Subtrial settings for pricing using the prml-GPSM indicating the grid resolutions for
the higher levels. We keep NS

0 = 26, Nv
sim,0 = 10 000, Nv

sim,1 = 100 fixed throughout subtrials.
These settings have no effect on the computation of sensitivities.

Ntrial degfull degmix Ldfull Llfull Lmix

100 4 4 61 57 10

Level 0 1 2 3

Nv
k 50 000 500 250 100

NSk 25 26 27 28

Nv
LSM 1 250 000

Table 3.8: ml-GPSM and MLSM settings used for the computation of sensitivities. Only a single
type of trial is used for GPSM sensitivities unlike pricing. We fix T ∗ = 1 and T ∗ = 0.25 in our
initial dispersions for the GPSM and MLSM, respectively.

direct estimator. The agreement of the direct and low estimators for the prml-GPSM is similar

to the 1d + 1d example considered in Section 2.5. In that case, we saw the prices matched the

reference value to two or three decimal places. Both algorithms produce a standard deviation

that is on the order of 10−3, except that the LSM used 500 000 paths of (S, v) and prml-GPSM

effectively only used 4 500 + 100 paths of (v,∆W v). We also note that the prml-GPSM provides

estimates of the price for all S ∈ S and not just a single value (along with S-sensitivities), unlike

the LSM.

In Figures 3.4 - 3.9, we plot three types of slices of the OEBs for both types of algorithms.

As the four dimensional objects may be parametrized via dS-dimensional v-slices, we may gain

some insight by looking at slices for certain meaningful choices of v. Also, for fixed v, we have
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some intuition with regards to how the slices should look considering the structure of the max-put

option. Thus, for this example, and also the examples in Chapter 4, we consistently plot our

boundaries at three levels:

1. v1 = 0.5 · θv1 , v2 = 1.5 · θv2

• Figures 3.4 and 3.5

2. v1 = θv1 , v2 = θv2

• Figures 3.6 and 3.7

3. v1 = 1.5 · θv1 , v2 = 0.5 · θv2

• Figures 3.8 and 3.9

Based on our heat map colour scheme, we see that the LSM tends to be 75− 80% inconsistent

in deciding whether to exercise or not in many different regions whereas prml-GPSM is almost

always consistent, except for the very earliest dates in Figures 3.5, 3.9. We also note that for many

dates, the LSM and prml-GPSM describe different exercise policies. As we are more inclined to

trust the prml-GPSM, this suggests that some of the regions described by the LSM are consistently

inaccurate which explains the slight pricing differences that we observe and mirrors the situation

in Chapter 2.

We now consider our results for computing sensitivities for the prml-MGPSM and MLSM as

shown in Tables 3.24 and 3.25. Firstly, our initial dispersion of T ∗ = 0.25 for MLSM has added a

very slight upwards bias to V N
0,l , whereas, our dispersion adds a negligible bias to the MGPSM,

similar to the standard Heston model. While we do not have a reference value for our sensitivities,

the agreement of our direct and low-type sensitivity estimates in Table 3.25 suggest that we

correctly determined our S-sensitivities to three or four decimal places. This is further confirmed

by the fact that the MLSM produces similar values until two decimal places for ∂S1V
N

0,l , ∂S2V
N

0,l

before being drowned out by the variance. Second order S-sensitivities for the MLSM have fairly

low variance, however, we see they differ somewhat from the MGPSM. We also observed this,

however, in the standard Heston model when comparing to the reference solution. For sensitivities

wrt to v, we see again both the MGPSM and MLSM have considerably higher variances, than

S-sensitivities, however, they are not unreasonably poor. These estimates resulted from 50 000

paths at level-0 for MGPSM and 1 250 000 paths for LSM, which is much higher than the number

of paths needed to get reasonable price and boundary estimates. In the case of the standard Heston

model, we obtained roughly the same level of accuracy in our v-sensitivities, except we used the

same number of paths as for pricing: 10 000 and 100 000 for MGPSM and MLSM, respectively.

This reveals the major problem that arises when dv > 1. In our backtests, we found that setting

ρ = I eliminates the disproportionate increase and sheds some light on the causes. Thus, the

choice of the number of paths should be chosen to reflect the underlying correlations of the model.

It also seems possible that other time-zero regression approaches on the modified estimator along

with different choices of the initial dispersion may improve results.
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Figure 3.2: Numerical issues with the computation of ∂v1V
N

0,l for the MLSM. The mean of the
second mode is 0.3215.

Finally, we notice a discrepancy in the MLSM and GPSM’s estimate of ∂vV
N

0,l along with the

fact that the MLSM’s is negative, which is certainly incorrect. To analyze the results, we consider

Figure 3.2 above. We see that there is some numerical instability with this estimated quantity.

Upon closer inspection, the second mode has 10 points with a mean of 0.3215, and standard

deviation of 0.0181. This shows that 10% of the time, the MLSM computes ∂v1V
N

0,l with relatively

high accuracy, but has numerical inconsistencies which need to be studied more in the future. We

note, that the GPSM does not demonstrate such stability issues.

In terms of run times, again, we note that the FST is not the most efficient way to solve our

conditional PDEs and that our prml features are not optimized. Thus, we should view our prml-

GPSM and ml-MGPSM run times as strict upper bounds. Our choice of the number of simulated

paths for the LSM and MLSM were such that their run times were comparable with the prml-

GPSM and ml-MGPSM, respectively. With this in mind, we make the following observations.

First, the LSM’s price estimates have variances that are comparable to that of the GPSM, which

suggests that there is no variance reduction in prices. However, since the prices are wide in their

range, it is difficult to reach any conclusions and one may need to carry out a duality estimate

as in [32], [55], adding to the LSM’s run time, to get a tight upper bound. Beyond time-zero

prices, however, we clearly see variance reduction in OEBs and most sensitivities. Thus, overall,

we may conclude that the prml-GPSM and ml-MGPSM are more efficient than the LSM and

MLSM, respectively.
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3.A Pseudo-code Descriptions

3.A.1 Clustering

Here we describe the clustering procedure that takes place when solving over intervals [tn, tn+1].

We suppose the algorithm has been run for all times {tn+1, ..., tM}.

Algorithm 3 Clustering

1: Fix [Θ]i,j where i = 1, ..., N , j = 1, ...m . m is the dimension of the path statistic that we
cluster.

2: Apply agglomerative (bottom-up) hierarchical clustering on the N observations with maximum
distance joining.

. Obtain a hierarchical tree for the clusters.
3: Cut the hierarchical tree to obtiain a maximum of Ln clusters.
4: For each cluster

• record the number of paths, Ln,k

• Compute the average of the cluster, Θ∗k ∈ RdΘ

5: Use the values Ln, {Ln,k} and the paths [vk∗]n+1
n when computing (3.1)

3.A.2 mlMC/Multi-grids

We provide guidelines for computing an(S) over the time interval [tn, tn+1] in a manner that keeps

the number of interpolations to a minimum. Given our coefficient matrix an+1(S) at level K, we

carry out the following.

Algorithm 4 mlMC/Multi-Grids For an(S)

1: for k = 0 : K − 1 do
2: Interpolate an+1(S) from resolution level K to level k.
3: end for
4: for k = K − 1 : 0 do
5: for j = 1 : Nv

k do
6: Generate boundary conditions for the PDEs to be solved at resolutions k and k + 1.

. Requires computing the matrix an(S) · φ(vjn) using an(S) at grid level k, k + 1.

7: Compute P j,kn (S) and P j,k+1
n (S) via a numerical PDE technique.

8: end for
9: Compute 1

Nv
k

∑Nv
k

j=1 φ(vj,kn )P j,kn (S) and 1
Nv
k

∑Nv
k

j=1 φ(vj,kn )P j,k+1
n (S)

10: Interpolate both to grid level K

11: Compute 1
Nv
k

∑Nv
k

j=1 φ(vj,kn )
(
P j,k+1
n (S)− P j,kn (S)

)
12: end for

Repeat the above procedure for level 0 and compute an(S) which is defined on grid level
K as in (3.3).
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3.B Pricing Statistics

Clustering Results for the 1d+ 1d Heston model.

Subtrial Type Ncl Estimate Type Mean Price Std Dev Mean Run Time (s)

a 3 000 Direct 0.7420 8.4562 · 10−4 19.51
Low 0.7418 1.0134 · 10−3

b 4 500 Direct 0.7420 9.1536 · 10−4 21.25
Low 0.7417 8.2428 · 10−4

c 6 000 Direct 0.7421 8.2547 · 10−4 21.71
Low 0.7417 8.8071 · 10−4

Table 3.9: Numerical Results for pr-GPSM Trial 1. T = 0.25 with 10 equally spaced exercise
dates. NS = 29 and Nsims = 10 000. The reference value is 0.7416.

Subtrial Type Ncl Estimate Type Mean Price Std Dev Mean Run Time (s)

a 3 000 Direct 1.4534 1.3606 · 10−3 23.64
Low 1.4530 1.5887 · 10−3

b 4 500 Direct 1.4533 1.4194 · 10−3 25.60
Low 1.4530 1.3965 · 10−3

c 6 000 Direct 1.4534 1.2893 · 10−3 26.77
Low 1.4529 1.3549 · 10−3

Table 3.10: Numerical Results for pr-GPSM Trial 2. T = 1.0 with 12 equally spaced exercise
dates. NS = 29 and Nsims = 10 000. The reference value is 1.4528.

Subtrial Type Ncl Estimate Type Mean Price Std Dev Mean Run Time (s)

a 3 000 Direct 2.2121 1.1538 · 10−3 58.58
Low 2.2113 1.3435 · 10−3

b 4 500 Direct 2.2117 1.1625 · 10−3 62.45
Low 2.2115 1.2465 · 10−3

c 6 000 Direct 2.2117 1.1086 · 10−3 65.81
Low 2.2114 1.1589 · 10−3

Table 3.11: Numerical Results for pr-GPSM Trial 3. T = 2.5 with 30 equally spaced exercise
dates. NS = 29 and Nsims = 10 000. The reference value is 2.2111.
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mlMC Results for the 1d+ 1d Heston model.

Subtrial Type NS
1 Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 0.7439 8.6588 · 10−4 6.81
Low 0.7435 9.8859 · 10−4 5.24

b 28 Direct 0.7436 8.3096 · 10−4 6.72
Low 0.7435 9.1579 · 10−4 5.33

c 29 Direct 0.7438 8.2342 · 10−4 6.68
Low 0.7435 9.1904 · 10−4 5.29

Table 3.12: Numerical Results for ml-GPSM Trial 1. T = 0.25 with 10 equally spaced exercise
dates. Nv

0 = 10 000, NS
0 = 26, Nv

1 = 100. The reference value is 0.7416.

Subtrial Type NS
1 Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 1.4538 1.3852 · 10−3 7.68
Low 1.4539 1.4801 · 10−3 6.40

b 28 Direct 1.4532 1.4691 · 10−3 8.02
Low 1.4535 1.4200 · 10−3 5.93

c 29 Direct 1.4531 1.2420 · 10−3 7.83
Low 1.4528 1.4329 · 10−3 6.15

Table 3.13: Numerical Results for ml-GPSM Trial 2. T = 1 with 12 equally spaced exercise dates.
Nv

0 = 10 000, NS
0 = 26, Nv

1 = 100. The reference value is 1.4528.

Subtrial Type NS
1 Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 2.2118 1.1207 · 10−3 16.68
Low 2.2119 1.2268 · 10−3 12.91

b 28 Direct 2.2114 1.1117 · 10−3 16.68
Low 2.2115 1.2100 · 10−3 12.98

c 29 Direct 2.2113 1.1405 · 10−3 17.12
Low 2.2115 1.2191 · 10−3 12.78

Table 3.14: Numerical Results for ml-GPSM Trial 3. T = 2.5 with 30 equally spaced exercise
dates. Nv

0 = 10 000, NS
0 = 26, Nv

1 = 100. The reference value is 2.2111.
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prml Results for the 1d+ 1d Heston model.

Subtrial Type NS
1 Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 0.7437 9.4084 · 10−4 18.94
Low 0.7435 1.0106 · 10−3

b 28 Direct 0.7422 9.4893 · 10−4 18.91
Low 0.7421 1.0181 · 10−3

c 29 Direct 0.7418 9.9186 · 10−4 18.88
Low 0.7416 1.0327 · 10−3

Table 3.15: Numerical Results for prml-GPSM Trial 1. T = 0.25 with 10 equally spaced exercise
dates. Nv

0 = 10 000, NS
0 = 26, Nv

1 = 100, Ncl = 4 500. The reference value is 0.7416.

Subtrial Type NS
1 Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 1.4540 1.3834 · 10−3 22.89
Low 1.4538 1.5052 · 10−3

b 28 Direct 1.4534 1.3946 · 10−3 23.07
Low 1.4532 1.5198 · 10−3

c 29 Direct 1.4531 1.3948 · 10−3 22.97
Low 1.4530 1.5032 · 10−3

Table 3.16: Numerical Results for prml-GPSM Trial 2. T = 1 with 12 equally spaced exercise
dates. Nv

0 = 10 000, NS
0 = 26, Nv

1 = 100, Ncl = 4 500. The reference value is 1.4528.

Subtrial Type NS
1 Estimate Type Mean Price Std Dev Mean Run Time (s)

a 27 Direct 2.2120 1.1290 · 10−3 56.73
Low 2.2119 1.2280 · 10−3

b 28 Direct 2.2117 1.1443 · 10−3 56.69
Low 2.2115 1.2500 · 10−3

c 29 Direct 2.2116 1.1344 · 10−3 56.48
Low 2.2115 1.2225 · 10−3

Table 3.17: Numerical Results for prml-GPSM Trial 3. T = 2.5 with 30 equally spaced exercise
dates. Nv

0 = 10 000, NS
0 = 26, Nv

1 = 100, Ncl = 4 500. The reference value is 2.2111.
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Sensitivities Results for the 1d+ 1d Heston model.

V0 ∂SV0 ∂SSV0 ∂vV0 ∂SvV0

1.4528 -0.4142 0.1050 0.9961 0.03255

Table 3.18: Numerical results for computing sensitivities using finite differences. T = 1 with 12
equally spaced exercise dates.

Estimated V N
0,l ∂SV

N
0,l ∂SSV

N
0,l ∂vV

N
0,l ∂SvV

N
0,l

Mean 1.4526 -0.4149 0.09630 0.9794 0.04462
Std Dev 7.4085 · 10−3 3.9961 · 10−3 2.0228 · 10−3 9.4700 · 10−2 3.1261 · 10−2

Table 3.19: Numerical results for computing sensitivities using the MLSM where T ∗ = 0.25. For
each run, we use N = 100 000 paths of S(t), v(t). We do not report prices and standard deviations
for the direct estimator as they are the same as in Section 2.5.3

NS
1 Estimated V N

0,d ∂SV
N

0,d ∂SSV
N

0,d

27 Mean 1.4542 -0.4141 0.1048
Std Dev 1.4486 · 10−3 2.7866 · 10−4 1.6487 · 10−4

28 Mean 1.4533 -0.4142 0.1049
Std Dev 1.5571 · 10−3 3.0417 · 10−4 1.7428 · 10−4

29 Mean 1.4530 -0.4142 0.1049
Std Dev 1.4215 · 10−3 2.8221 · 10−4 1.6168 · 10−4

NS
1 Estimated V N

0,l ∂SV
N

0,l ∂SSV
N

0,l ∂vV
N

0,l ∂SvV
N

0,l

27 Mean 1.4542 -0.4142 0.1048 0.9983 0.03301
Std Dev 1.8779 · 10−3 3.7349 · 10−4 2.0964 · 10−4 1.6607 · 10−2 3.3528 · 10−3

28 Mean 1.4529 -0.4143 0.1050 0.9963 0.03254
Std Dev 1.8079 · 10−3 3.6504 · 10−4 2.0152 · 10−4 1.6630 · 10−2 3.3466 · 10−3

29 Mean 1.4525 -0.4144 0.1050 0.9945 0.03220
Std Dev 1.9412 · 10−3 3.8712 · 10−4 2.1930 · 10−4 1.8011 · 10−2 3.5712 · 10−3

Table 3.20: Numerical results for computing sensitivities using the modified GPSM where T ∗ = 1.
The top table uses the standard direct estimator. The bottom table corresponds to the modified
low estimator. For each run, we use N = 10 000 paths of v(t).
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NS
1 Estimated V N

0,d ∂SV
N

0,d ∂SSV
N

0,d

27 Mean 1.4542 -0.4141 0.1048
Std Dev 1.3650 · 10−3 2.6980 · 10−4 1.5209 · 10−4

28 Mean 1.4538 -0.4142 0.1049
Std Dev 1.3400 · 10−3 2.6413 · 10−4 1.5252 · 10−4

29 Mean 1.4533 -0.4142 0.1049
Std Dev 1.3258 · 10−3 2.5783 · 10−4 1.5212 · 10−4

NS
1 Estimated V N

0,l ∂SV
N

0,l ∂SSV
N

0,l ∂vV
N

0,l ∂SvV
N

0,l

27 Mean 1.4536 -0.4142 0.1048 0.9926 0.03189
Std Dev 1.9438 · 10−3 3.7831 · 10−4 2.1841 · 10−4 1.8305 · 10−2 3.5825 · 10−3

28 Mean 1.4532 -0.4143 0.1050 0.9963 0.03265
Std Dev 1.9548 · 10−3 3.8643 · 10−4 2.2225 · 10−4 1.8232 · 10−2 3.5012 · 10−3

29 Mean 1.4528 -0.4143 0.1050 0.9932 0.03174
Std Dev 1.986 · 10−3 4.1660 · 10−4 2.3852 · 10−4 1.7744 · 10−2 3.4623 · 10−3

Table 3.21: Numerical results for computing sensitivities using the modified prml-GPSM where
T ∗ = 1. The top table uses the standard direct estimator. The bottom table corresponds to the
modified low estimator. We set NS0 = 26, Nv

0 = 10 000, Ncl = 4 500
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Pricing Results for the 2d+ 2d Heston model

Estimate Type Mean Price Std Dev Run Time (s)

Direct 1.2121 5.4457 · 10−3 88.56
Low 1.1765 2.9584 · 10−3 74.13

Table 3.22: Resulting price statistics for the LSM algorithm.

NS1,i Estimate Type Mean Price Std Dev Run Time (s)

29 Direct 1.1852 5.7030 · 10−3 157.25
Low 1.1818 6.0549 · 10−3 129.53

28 Direct 1.1858 5.6317 · 10−3 83.96
Low 1.1823 6.090 · 10−3 82.95

27 Direct 1.1878 5.6099 · 10−3 67.88
Low 1.1842 5.5971 · 10−3 74.34

Table 3.23: Resulting price statistics for the prml-GPSM algorithm. We fix NS0 = 26, Nv
sim,0 =

10000, Nv
sim,1 = 100, and Ncl = 4500.
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Sensitivities Results for the 2d+ 2d Heston model

Estimated V N
0,l ∂S1V

N
0,l ∂S1S1V

N
0,l ∂S2V

N
0,l ∂S2S2V

N
0,l ∂S1S2V

N
0,l

Mean 1.1838 -0.1388 0.009937 -0.1995 0.02597 0.026786
Std Dev 3.0243 · 10−3 9.4522 · 10−3 4.1055 · 10−4 1.2464 · 10−3 5.4466 · 10−4 2.7114 · 10−4

Estimated ∂v1V
N

0,l ∂v2V
N

0,l ∂v1S1V
N

0,l ∂v1S2V
N

0,l ∂v2S1V
N

0,l ∂v2S2V
N

0,l

Mean -0.4617 0.7462 0.07030 -0.07537 -0.1505 0.1130
Std Dev 2.8673 · 10−1 3.4498 · 10−2 7.1656 · 10−3 7.8605 · 10−3 1.3510 · 10−1 9.9115 · 10−3

Estimate Type Run Time (s)

Direct 232.71
Modified Low 199.88

Table 3.24: Numerical results for computing sensitivities using the MLSM with T ∗ = 0.25.
T = 1 with 12 equally spaced exercise dates. The top table gives the settings for our multi-level
computation.

Estimated V N
0,d ∂S1V

N
0,d ∂S1S1V

N
0,d ∂S2V

N
0,d ∂S2S2V

N
0,d ∂S1S2V

N
0,d

Mean 1.1837 -0.1316 0.01152 -0.1912 0.02858 0.02821
Std Dev 2.4314 · 10−3 2.1060 · 10−4 7.3302 · 10−5 2.4665 · 10−4 1.080 · 10−4 5.6083 · 10−5

Estimated V N
0,l ∂S1V

N
0,l ∂S1S1V

N
0,l ∂S2V

N
0,l ∂S2S2V

N
0,l ∂S1S2V

N
0,l

Mean 1.1835 -0.1317 0.01156 -0.1912 0.02870 0.02824
Std Dev 3.8697 · 10−3 6.3512 · 10−4 2.2764 · 10−4 9.8522 · 10−4 3.9627 · 10−4 3.8970 · 10−4

Estimated ∂v1V
N

0,l ∂v2V
N

0,l ∂v1S1V
N

0,l ∂v1S2V
N

0,l ∂v2S1V
N

0,l ∂v2S2V
N

0,l

Mean 0.3724 0.8110 0.09030 -0.08909 -0.1370 0.1465
Std Dev 3.1264 · 10−2 3.5558 · 10−2 4.7515 · 10−3 7.0874 · 10−3 4.5716 · 10−3 6.4022 · 10−3

Estimate Type Mean Run Time (s)

Direct 218.29
Modified Low 173.31

Table 3.25: Numerical results for computing sensitivities using the ml-GPSM with T ∗ = 1.
T = 1 with 12 equally spaced exercise dates. The top table gives the settings for our multi-level
computation.
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3.C Optimal Exercise Boundaries

Figure 3.3: Difference optimal exercise boundaries generated by the prml-GPSM Trial 2(c), NS =
29, compared to the reference. Dark blue indicates incorrectness with probability 1, yellow indicates
correctness with probability 1.
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Figure 3.4: A slice of the LSM OEB with v1 = 0.5 · θv1 and v2 = 1.5 · θv2 . Dark blue regions
indicate exercising with probability 1, yellow regions indicate holding with probability 1. This
computation corresponds to a grid resolution of NS1 = 28.
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Figure 3.5: A slice of the prml-GPSM OEB with v1 = 0.5 · θv1 and v2 = 1.5 · θv2 . Dark blue
regions indicate exercising with probability 1, yellow regions indicate holding with probability 1.
This computation corresponds to a grid resolution of NS1 = 28.
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Figure 3.6: A slice of the LSM OEB with v1 = θv1 and v2 = θv2 . Dark blue regions indicate
exercising with probability 1, yellow regions indicate holding with probability 1. This computation
corresponds to a grid resolution of NS1 = 28.
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Figure 3.7: A slice of the prml-GPSM OEB with v1 = θv1 and v2 = θv2 . Dark blue regions indicate
exercising with probability 1, yellow regions indicate holding with probability 1. This computation
corresponds to a grid resolution of NS1 = 28.
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Figure 3.8: A slice of the LSM OEB with v1 = 1.5 · θv1 and v2 = 0.5 · θv2 . Dark blue regions
indicate exercising with probability 1, yellow regions indicate holding with probability 1. This
computation corresponds to a grid resolution of NS1 = 28.
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Figure 3.9: A slice of the prml-GPSM OEB with v1 = 1.5 · θv1 and v2 = 0.5 · θv2 . Dark blue
regions indicate exercising with probability 1, yellow regions indicate holding with probability 1.
This computation corresponds to a grid resolution of NS1 = 28.



Chapter 4

Multi-Factor Stochastic Volatility

Models

4.1 Introduction

In previous chapters we applied our hybrid algorithm to the single and multi-variable Heston model

and tested the effectiveness of our algorithm along with various extensions that we have developed.

In this chapter, we apply our algorithm to single asset multi-factor SV models. As noted by [11],

single factor SV models may capture smiles and smirks via the parameter ρ, but they are unable to

model the differing of skewness across maturities. This limitation stems from to the correlational

parameter being constant. To improve model fits, the authors in [11] introduce a two factor

Heston model, sometimes referred to as the Double Heston model, which allows for stochastic

correlation between the underlying returns and the volatility process, and effectively captures the

maturity dependent slope. They calibrate their model to a time series of volatility surfaces, and

they succeed in meaningfully characterizing the contributions of their volatility factors. They find

one volatility component typically has high mean reversion and is able to describe short term

correlations between returns and volatility, whereas the second component has low mean reversion

and is able to describe long term correlations.

Due to the importance of multi-factor SV models, we explore how our hybrid algorithm per-

forms for two different examples. The first example is the Double Heston model as described

in [11] where we also use real world calibrated parameters from [56]. Our second example is a

model for the spot price of a commodity that is a hybrid between the models presented in [61]

and [10]. The work of [61] introduces a multi-factor SV model for the spot price of a commodity

is used to study whether volatility is unspanned in commodity markets. There, they model the

spot price and cost of carry, analyze a time series of option data written on futures contracts, and

find that including a second volatility factor considerably enhances their calibration. The model

in [10] is driven by a mean-reverting jump and mean-reverting diffusive process where the diffusive

component contains a SV process. The authors then use the model to study ambiguity aversion

in commodity markets. Our model is essentially that of [10] except that it includes a second

volatility factor driving the diffusive component, similar to [61]. Admittedly, the model has not

82
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been calibrated to the market and it seems that excellent calibration to observed option data can

be obtained with two volatility factors. On the other hand, it is well documented that commodity

prices exhibit jumping behaviour, including spikes, and we aim to capture this feature through the

jump component. We price a Bermudan option on the spot price as opposed to the futures. The

model contains some novel properties such as jumps and mean reversion in the asset dynamics,

and serves as an interesting example for the final application considered in this thesis. Finally,

while our theoretical formulation of the algorithm assumed purely diffusive drivers of our assets,

we note that replacing our Brownian motions with Lévy processes has no effect on our proofs of

convergence.

Since, in previous chapters, we have already demonstrated that the GPSM is more effective

than the LSM in determining prices, OEBs and sensitivities, we dispense with the LSM and focus

on how the GPSM performs for multi-factor SV models.

4.2 The Double Heston Model

4.2.1 Model Description and Framework

We work with the following system of SDEs

dSt = St(rdt+

√
v

(1)
t dW

(1)
t +

√
v

(2)
t dW

(2)
t ),

dv
(1)
t = κ1(θ1 − v(1)

t )dt+ η1

√
v

(1)
t dW

(3)
t ,

dv
(2)
t = κ2(θ2 − v(2)

t )dt+ η2

√
v

(2)
t dW

(4)
t ,

where (W (i))4
i=1 is a 4-dimensional risk-neutral Brownian motion with full correlation structure

ρ = [ρi,j ]. Switching to log-space for our asset prices Xt = logSt and applying the Cholesky

decomposition to the matrix ρ, we obtain the following system:

dXt = (r − 1
2qt)dt+

√
v

(1)
t

4∑
j=1

a1,jdB
(j)
t +

√
v

(2)
t

4∑
j=2

a2,jdB
(j)
t ,

dv
(1)
t = κ1(θ1 − v(1)

t )dt+ η1

√
v

(1)
t

4∑
j=3

a3,jdB
(j)
t ,

dv
(2)
t = κ2(θ2 − v(2)

t )dt+ η2

√
v

(2)
t a4,4dB

(4)
t ,

with

qt = v(1)
s + v(2)

s + 2ρ1,2

√
v

(1)
s

√
v

(2)
s ,

where (B(i))4
i=1 are independent Brownian motions and [ai,j ] is an upper triangular matrix satis-

fying the usual conditions with a4,4 = 1, and ρ = aaᵀ.
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4.2.2 Derivation of Pricing Formulas

We follow the same approach as in Section 2.5, to compute E[e−r∆tf(Sn+1, vn+1) | Sn = S, vn = v]

where vt = (v
(1)
t , v

(2)
t ). Again, writing g(X, v) = f(exp(X), v) we have

E [f(Sn+1, vn+1) | Sn, vn ] = E
[
e−r∆tE

[
g(Xn+1, vn+1) | [v]n+1

n , Xn

]
| Xn, vn

]
. (4.1)

Deriving the Conditional PDE

Focusing on the inner expectation, and treating [v]n+1
n = ([v(1)]n+1

n , [v(2)]n+1
n ) as a deterministic

path in R2, leads to the following decompositions

Xt = Yt + Zt ,

Yt = Xtn +

∫ t

tn

(r − 1
2qs)ds+

∫ t

tn

a1,1

√
v

(1)
s dB(1)

s +

∫ t

tn

(
a1,2

√
v

(1)
s + a2,2

√
v

(2)
s

)
dB(2)

s ,

Zt =

∫ t

tn

(a1,3

√
v

(1)
s + a2,3

√
v

(2)
s )dB(3)

s +

∫ t

tn

(
a1,4

√
v

(1)
s + a2,4

√
v

(2)
s

)
dB(4)

s .

Writing the inner expectation on the rhs of (4.1) in terms of Yt leads to

E
[
g(X

(1)
n+1, v

(1)
n+1, v

(2)
n+1) | [v]n+1

n , Xn

]
= E

[
g(Yn+1 + Zn+1, v

(1)
n+1, v

(2)
n+1) | [v]n+1

n , Yn = yn

]
=: u(t, y)

By the Feynman-Kac theorem, the function u(t, y) can be written as the solution to the fol-

lowing PDE

{
0 = ∂tu(t, y) +At ∂yu(t, y) +Bt ∂

2
yu(t, y)

u(tn+1, y) = g(y + Ztn+1 , v
(1)
tn+1

, v
(2)
tn+1

) ,
(4.2)

where

At = r − 1

2
qt Bt = a2

1,1v
(1)
t +

(
a1,2

√
v

(1)
t + a2,2

√
v

(2)
t

)2

.

FFT Based Solution

Taking the Fourier transform of (4.2), as in the FST method of [59] , and letting û(t, ω) denote

the Fourier transform of u(t, y) in the second argument, we have{
∂tû(t, ω) + (iAtω −Btω2)û(t, ω) = 0 ,

û(tn+1, ω) = eiωZtn+1 ĝ(ω, v
(1)
n+1, v

(2)
n+1) ,

which is an ODE in Fourier space, wrt time, for each fixed ω ∈ R. Solving this ODE in closed

form we find

û(tn, ω) = û(tn+1, ω) exp

{∫ tn+1

tn

(
iAsω −Bsω2

)
ds

}
. (4.3)
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Using the FST’s discretization methodology, we then have

un = FFT−1[FFT[gn+1] exp(Ψn,n+1)]

where

Ψn,n+1(ω) = iωZtn+1 +

∫ tn+1

tn

(
iAsω −Bsω2

)
ds.

Statistics for Clustering and Path Reduction

From (4.3), we identify the following path statistic for [v]n+1
n = ([v(1)]n+1

n , [v(2)]n+1
n ):

Λn([v]n+1
n ) =

(∫ tn+1

tn

qsds,

∫ tn+1

tn

a2
1,1v

(1)
s +

(
a1,2

√
v

(1)
s + a2,2

√
v

(2)
s

)2

ds, Ztn+1

)

so that

Θ([v]n+1
n ) = (v

(1)
tn , v

(2)
tn ,Λ([v]n+1

n ), v
(1)
tn+1

, v
(2)
tn+1

).

4.2.3 Numerical Experiments, Results, and Discussion

Procedure for pricing and sensitivites for the GPSM

Since dS = 1 we use ml-GPSM without clustering and carry out Ntrial trials for all of our compu-

tations. Again, our basis for GPSM consists of all functions of the form φi,j(v1, v2) = vi1 · v
j
2 with

i+ j ≤ deggpsm . The quantity Lgpsm denotes the total dimension of the basis for the GPSM.

Settings for Trials

We work with a Bermudan put option with exercise function h(S) = (K − S)+. Our model and

option parameters are fixed across trials and listed in Table 4.1. These parameters are taken

from [56] where the model is calibrated to the volatility surface corresponding to put options

written on the ticker DIA, an ETF that tracks the Dow Jones Industrial Average, on May 10,

2012. The surface has strikes ranging from K = 124 to K = 136 with ∆K = 1 and maturities of

37, 72, 135 and 226 days. In [11], the authors show that one can price vanilla European options

in closed-form when certain cross-correlations are set to zero, as the model fits within the affine

class. As calibration often requires a highly efficient pricing formula, [56] use the same correlation

settings as in [11]. Our mixed MC-PDE approach for computing conditional expectations is,

however, unaffected by non-zero cross correlations.

The parameters for the numerical aspect of our computations are provided in Table 4.1.

Results and Discussion

We present our results for pricing, sensitivities in Table 4.9, 4.10, and OEBS in Figures 4.4 - 4.6. As

mentioned before, since dS = 1 in this case, clustering is counter-productive as its computational

costs outweigh the cost of computing 1d-FFTs. Hence we only use ml-GPSM for all computations.
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T K Exercise Frequency r S0

1 130 T/12 0.025 130

v
(1)
0 κ1 θ1 η1 v

(2)
0 κ2 θ2 η2

0.0258 3.059 0.0317 1.985 0.0092 1.8467 0.0605 0.7149

[ρi,j ] =


1 ρW 1,W 2 ρW 1,W 3 ρW 1,W 4

ρW 2,W 1 1 ρW 2,W 3 ρW 2,W 4

ρW 3,W 1 ρW 3,W 2 1 ρW 3,W 4

ρW 4,W 1 ρW 4,W 2 ρW 4,W 3 1

 =


1 0 0.0643 0
0 1 0 −0.975

0.0643 0 1 0
0 −0.975 0 1


Table 4.1: parameters used in our option pricing model.

Ntrial Nstep degmix Lmix (logS/S0)min (logS/S0)max

100 1 000 4 10 -3 3

Table 4.2: parameters fixed when testing ml-GPSM for price and sensitivty computations.

Sub-trial Type NS
1

a 27

b 28

c 29

Table 4.3: Subtrial settings for pricing using the ml-GPSM indicating the grid resolutions for the
higher levels. We keep NS

0 = 26, Nv
sim,0 = 50 000, Nv

sim,1 = 100 fixed throughout subtrials. These
settings have no effect on the computation of sensitivities.

Level 0 1

Nv
k 100 000 500

NSk 25 28

Table 4.4: mlMC settings used for the computation of sensitivities. Only a single type of trial is
used for sensitivities unlike pricing.

For the choice of parameters in Table 4.1 we observe much higher variances, especially for

the low estimator, compared to previous sections and hence require more paths than before. We

use 50 000 for level-0 when computing prices and boundaries, and 100 000 paths at level-0 for

sensitivities. These computations are not prohibitively expensive. Another issue we observe is

a slightly higher than average discrepancy between the direct and low biased time-zero prices,

perhaps due to the high variance demonstrated by the low estimator. Our backtesting shows that

the root cause is the very high correlation of −97.5% for ρW 2,W 4 . When this parameter is lowered,

these high variances and discrepancies vanish. The financial meaning of this parameter is that the

DIA’s risk-neutral skewness at later maturities is highly negative, and this feature stems from the

second volatility component describes the behaviour for later maturities as confirmed in [56]. Thus,

for equities with less skewed distributions at later maturities, we expect improved performance.
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Figure 4.1: Histograms for computed mixed sensitivities

With regards to sensitivities, we see accurate results for S-sensitivities, and moderately accurate

results for ∂v1V
N

0,l , ∂v2V
N

0,l , but this time, mixed partial derivatives have relatively high variances

which again we may attribute to the high negative correlation. We show the results in Figures 4.1,

and note that the outliers we see do not play a significant role.

The OEBs shown in Figures 4.4 - 4.6, appear excellent with only a little noise along the interface

of the holding and exercise regions.

4.3 A Mean Reverting Commodity Model with Jumps

4.3.1 Model Description and Framework

We work with the following risk-neutral model for the spot price of a commodity St = eXt+Yt+θt

where

dYt = −κY Yt dt+ dJ̃t

dXt = −κXXt dt+

√
v

(1)
t dWX1

t +

√
v

(2)
t dWX2

t

dv1
t = κv,1(θ1 − v(1)

t ) dt+ η1

√
v

(1)
t dW v1

t

dv2
t = κv,2(θ2 − v(2)

t ) dt+ η2

√
v

(2)
t dW v2

t

with X0 = Y0 = 0, (WXi
,W vi)2

i=1 are risk-neutral Brownian-motions with correlations ρ = [ρi,j ], J̃t

is a compensated compound Poisson process with risk-neutral Levy measure ν, θt is a deterministic

function that describes the seasonal component of St, and the risk free rate is r > 0. Carrying out

a Cholesky decomposition, we obtain an upper triangular matrix, a, satisfying the usual conditions
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with a4,4 = 1, ρ = aaᵀ, and standard Brownian vector (W
(i)
t )4

i=1 such that

dYt = −κY Yt dt+ dJ̃t

dXt = −κXXt dt+

√
v

(1)
t

4∑
j=1

a1,jdW
(j)
t +

√
v

(2)
t

4∑
j=2

a2,jdW
(j)
t

dv
(1)
t = κv,1(θ1 − v(1)

t ) dt+ η1

4∑
j=3

a3,j

√
v

(1)
t dW

(j)
t

dv
(2)
t = κv,2(θ2 − v(2)

t ) dt+ η2 a4,4

√
v

(2)
t dW

(4)
t .

4.3.2 Derivation of Pricing Formulas

We follow the same approach as in Section 2.5, to compute

E[e−r∆tf(tn+1, Xn+1, Yn+1, vn+1) | Xn = X,Yn = Y, vn = v]

where vt = (v
(1)
t , v

(2)
t ). Again, writing g(t, x, y, v) = f(exp(x+ y + θt), v) we have

E [f(tn+1, Xn+1, Yn+1, vn+1) | Xn, Yn, vn ] (4.4)

= E
[
e−r∆tE

[
g(tn+1, Xn+1, Yn+1, vn+1) | [v]n+1

n , Xn, Yn
]
| Xn, Yn, vn

]
.

Deriving the Conditional PDE

Focusing on the inner expectation, and treating [v]n+1
n = ([v(1)]n+1

n , [v(2)]n+1
n ) as a deterministic

path in R2, leads to the decomposition Xt = X̃t +X ′t where X̃ and X ′ satisfy the SDEs

dX̃t = −κXXtdt+

2∑
j=1

a1,j

√
v

(1)
t dW

(j)
t + a2,2

√
v

(2)
t dW

(2)
t

= −κXXtdt+ a1,1

√
v

(1)
t dW

(1)
t +

(
a1,2

√
v

(1)
t + a2,2

√
v

(2)
t

)
dW

(2)
t

dX ′t =

√
v

(1)
t

4∑
j=3

a1,jdW
(j)
t +

√
v

(2)
j

4∑
j=3

a2,jdW
(j)
t ,

We then have

E
[
g(tn+1, Xn+1, Yn+1, v

(1)
n+1, v

(2)
n+1) | [v]n+1

n , Xn = x, Yn = y
]

= E
[
g(tn+1, X̃n+1 +X ′n+1, Yn+1, v

(1)
n+1, v

(2)
n+1) | [v]n+1

n , X̃n = x, Yn = y
]

=: u(t, x, y)
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By the Feynman-Kac theorem, the function u(t, x, y) can be written as the solution to the following

PDE

0 =∂tu(t, x, y)− κXx∂xu(t, x, y)− (κY y + γ)∂yu(t, x, y) (4.5)

+
1

2

(
a2

1,1v
(1)
t + (a1,2

√
v

(1)
t + a2,2

√
v

(2)
t )2

)
∂2
xxu(t, x, y)

+

∫
R

(u(t, x, y + z)− u(t, x, y)) dν(z)

u(tn+1, x, y) = g(tn+1, x+X ′n+1, y)

where γ =
∫
R
z dν(z).

FFT Based Solution

We now take the Fourier transform of (4.5), as in the mean-reverting FST method of [38]. We

note the identity

(x ∂xf(x)) ̂ (ω) = −f̂(ω)− ω∂ωf̂(ω)

which follows from integration by parts and basic properties of the Fourier transform. Letting

û(t, ω1, ω2) denote the Fourier transform of u(t, x, y) over real space, we have

0 = ∂tû(t, ω) + κXω1∂ω1 û(t, ω) + κY ω2∂ω2 û(t, ω)

+

(
κX + κY − γiω2 −

1

2

(
a2

1,1v
(1)
t + (a1,2

√
v

(1)
t + a2,2

√
v

(2)
t )2

)
ω2

1

+

∫
R

(eizω2 − 1)dν(z)

)
û(t, ω)

û(tn+1, ω1, ω2) = e
iω1X′tn+1 ĝ(tn+1, ω1, ω2, v

(1)
tn+1

, v
(2)
tn+1

)

which is a PDE in Fourier space. Solving this PDE in closed form we find

û(tn, ω1, ω2) = exp
(∫ tn+1

tn

h(s, α(s, ω1), β(s, ω2))ds
)
û(tn+1, α(tn+1, ω1), β(tn+1, ω2))

where

h(t, ω1, ω2) = κX+κY −γiω2−
1

2

(
a2

1,1v
(1)
t +(a1,2

√
v

(1)
t +a2,2

√
v

(2)
t )2

)
ω2

1 +

∫
R

(eizω2−1)dν(z) (4.6)

and

α(s, ω1) = ω1e
κX(s−tn)

β(s, ω2) = ω2e
κY (s−tn).
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Using the FST’s discretization methodology, we then have

un = FFT−1
2 [FFT2 [un+1 (αn+1(·), βn+1(·))] exp(Ψn,n+1)] (4.7)

where

Ψn,n+1(ω1, ω2) = iω1X
′
tn+1

+

∫ tn+1

tn

h(s, α(s, ω1), β(s, ω2)) ds.

A Note on Extrapolation

As discussed in [38], since |α(s, ω1)| > |ω1| and |β(s, ω2)| > |ω2| for s ∈ [tn, tn+1], equation

(4.7) implies that we must extrapolate our Fourier space grid. To convert extrapolations into

interpolations, we may use the following Fourier identity for compositions with linear maps

[f ◦ T ] ̂ (ω) = | det T |−1(f̂ ◦ S)(ω) (4.8)

where S = (T ∗)−1 and ∗ denotes the conjugate-transpose [25]. In our case

S =

[
exp(κX(tn+1 − tn)) 0

0 exp(κY (tn+1 − tn))

]
,

T =

[
exp(−κX(tn+1 − tn)) 0

0 exp(−κY (tn+1 − tn))

]
,

and |detT | = exp(−(κX + κY )(tn+1 − tn)).

Applying (4.8) to equation 4.7

û(tn+1, α(tn+1, ω1), β(tn+1, ω2))

=e−(κX+κY )(tn+1−tn)[ u(tn+1, α̃(tn+1, x), β̃(tn+1, y) ] ̂ (ω1, ω2)

so that

FFT2[u](tn+1, α(tn+1, ω1), β(tn+1, ω2))

=e−(κX+κY )(tn+1−tn)FFT2[ u(tn+1, α̃(tn+1, x), β̃(tn+1, y)) ] (ω1, ω2)

where

α̃(tn+1, x) = x · e−κX(tn+1−tn)

β̃(tn+1, y) = y · e−κY (tn+1−tn)

allowing us to interpolate our real space grid as opposed to extrapolating our Fourier space grid.
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Statistics for Clustering and Path Reduction

From (3.4.2), we identify the following path statistic for [v]n+1
n = ([v(1)]n+1

n , [v(2)]n+1
n ):

Λn([v]n+1
n ) =

(
a2

1,1v
(1)
t +

(
a1,2

√
v

(1)
t + a2,2

√
v

(2)
t

)2

, X ′tn+1

)

so that

Θ([v]n+1
n ) = (v

(1)
tn , v

(2)
tn ,Λ([v]n+1

n ), v
(1)
tn+1

, v
(2)
tn+1

).

4.3.3 Numerical Experiments, Results, and Discussion

Procedure for pricing and sensitivites for the GPSM

Since dS = 2 we use the prml-GPSM for pricing and for sensitivities we use the ml-MGPSM. Again,

our basis for GPSM consists of all functions of the form φi,j(v1, v2) = vi1 · v
j
2 with i+ j ≤ deggpsm

. The quantity Lgpsm denote the total dimension of the basis the GPSM.

Settings for Trials

We examine a Bermudan put option with exercise function h(t,X, Y ) = (K − eX+Y+θ(t))+. Our

model and option parameters are fixed across trials and listed in Table 4.5. Our jump process Jt

is assumed to be compound Poisson with double exponential jumps as in [41], so that

dν(z) = λ (pf+(z) + (1− p)f−(z)) dz

where f+(z) = 1
a+ exp(− 1

a+ z) and f−(z) = 1
a− exp( 1

a− z)

Our parameters for v(1), v(2) reflect the observation that one volatility process typically has

high values for κ, η and the other has low values which enhance the fit of the term structure of

volatility and we allow for a full correlational structure between the Brownian motions. The process

Yt jumps 10 times a year with an average up and down jump size of 0.3 and 0.25, respectively.

Our choice of mean-reversion parameter, κY , in this case, does not capture spikes, however, our

back-tests show that a higher value for this parameter yields results of the same quality in terms

of prices and OEBs.

The full set of parameters for the numerical aspect of our computations are provided in Table

4.5. We also display the seasonal component along with five sample paths of the commodity price

in Figures 4.2 and 4.3, respectively.

Results and Discussion

We present our results for pricing and sensitivities in 4.11, 4.12, and OEBs in Figures 4.7 - 4.9.

From Table 4.7, we see the usual consistency in our price estimates. This 2d + 2d example

has relatively high run times in comparison to the multi-dimensional Heston model in Chapter 3

seeing as our exercise frequency is only T/6 as opposed to T/12. The slow down is due to the

extra extrapolations carried out for each path when computing integrals of h as defined in (4.6).
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Figure 4.2: Mean level of the commodity price given by exp(θ(t)) which represents seasonal changes
in the price.
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Figure 4.3: Five sample paths of S(t) on the time interval [0, 1]
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T K Exercise Frequency r

1 20 T/6 0.025

κX κY p a+ a− λ

1.2 3.7 0.45 0.3 0.25 10

v
(1)
0 κ1 θ1 η1 v

(2)
0 κ2 θ2 η2

0.03 0.4 0.3 0.3 0.21 3.86 0.21 0.85

[ρi,j ] =


1 ρWX1,WX2 ρWX1,W v1 ρWX1,W v2

ρWX2,WX1 1 ρWX2,W v1 ρWX2,W v2

ρW v1,WX1 ρW v3,WX2 1 ρW v1,W v2

ρW v2,WX1 ρW v2,WX2 ρW v2,W v1 1

 =


1 −0.3 −0.25 0.2
−0.3 1 0.3 −0.4
−0.25 0.3 1 0.1

0.2 −0.4 0.1 1


θ(t) = log(1.1) sin(2πt) + log(20)

Table 4.5: parameters used in our option pricing model.

Ntrial Nstep degmix Lmix (logS(i)/S
(i)
0 )min (logS(i)/S

(i)
0 )max Ncl

100 1 000 4 10 -3 3 4 500

Table 4.6: parameters fixed when testing the GPSM for price and sensitivity computations.

Sub-trial Type NS
1

a 27

b 28

c 29

Table 4.7: Subtrial settings for pricing using the prml-GPSM indicating the grid resolutions for
the higher levels. We keep NS

0 = 26, Nv
sim,0 = 10 000, Nv

sim,1 = 100, Ncl = 4 500 fixed throughout
subtrials. These settings have no effect on the computation of sensitivities.

Level 0 1 2 3

Nv
k 50 000 500 250 100

NSk 25 26 27 28

Table 4.8: mlMC settings used for the computation of sensitivities. Only a single type of trial is
used for sensitivities unlike pricing.

The sensitivities provided in Table 4.12, show strong results for gridded sensitivities in the direct

estimator, with higher variance for the low estimator, especially for the jump component, Y . We

also see that ∂Y Y V
N

0,d, ∂Y Y V
N

0,l differ considerably, unlike in other examples. These discrepancies

are due to the presence of the initial dispersion. Sensitivities with respect to the variable v behave

similar to other examples where dv > 1, and mixed sensitivities involving X and vi are fairly

accurate. Unfortunately, we see mixed sensitivities with respect to Y and vi are not very accurate,

similar to other Y -sensitivities using the low estimator and initial dispersion. An in-depth analysis
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of this phenomenon, however, lies beyond the scope of this study.

Fortunately, we see the prml-GPSM is able to consistently locate the exercise boundaries across

volatility slices and exercise dates as seen in Figures 4.7 - 4.9. These boundaries are of higher quality

than those shown for the multi-dimensional Heston model Chapter 3.
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4.A Pricing Statistics

Pricing and Sensitivity Results for the Double Heston Model

NS1,i Estimate Type Mean Price Std Dev Run Time (s)

29 Direct 11.969 6.246 · 10−2 47.07
Low 11.819 1.091 · 10−1 38.87

28 Direct 11.972 6.236 · 10−2 47.72
Low 11.818 1.105 · 10−1 37.54

27 Direct 11.986 6.231 · 10−2 44.51
Low 11.841 1.113 · 10−1 36.01

Table 4.9: Resulting price statistics for the ml-GPSM algorithm. We fix NS0 = 26, Nv
sim,0 =

50000, Nv
sim,1 = 100.

Estimated V N
0,d ∂SV

N
0,d ∂SSV

N
0,d

Mean 11.971 -0.3478 0.01351
Std Dev 7.968 · 10−2 1.5755 · 10−3 7.5221 · 10−5

Estimated V N
0,l ∂SV

N
0,l ∂SSV

N
0,l

Mean 11.841 -0.3439 0.01381
Std Dev 2.9899 · 10−1 9.3165 · 10−3 1.0199 · 10−3

Estimated ∂v1V
N

0,l ∂v2V
N

0,l ∂Sv1V
N

0,l ∂Sv2V
N

0,l

Mean 15.144 43.08 0.1366 -0.4199
Std Dev 3.2965 7.0346 1.2790 · 10−1 1.9465 · 10−1

Estimate Type Run Time (s)

Direct 80.00
Modified Low 74.14

Table 4.10: Numerical results for computing sensitivities using the ml-GPSM with T ∗ = 1. T = 1
with 12 equally spaced exercise dates. We fix NS0 = 25, NS1 = 28, Nv

sim,0 = 100 000, Nv
sim,1 = 500.
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Pricing and Sensitivity Results for the Commodity Spot Model

NS1,i Estimate Type Mean Price Std Dev Run Time (s)

29 Direct 9.6196 4.9821 · 10−3 114.61
Low 9.6161 5.2557 · 10−3 124.21

28 Direct 9.6222 5.0093 · 10−3 63.00
Low 9.6186 5.2157 · 10−3 88.04

27 Direct 9.6284 5.0339 · 10−3 51.99
Low 9.6251 5.2443 · 10−3 74.89

Table 4.11: Resulting price statistics for the ml-GPSM algorithm. We fix NS0 = 26, Nv
sim,0 =

10000, Nv
sim,1 = 100, and Ncl = 4500.

Estimated V N
0,d ∂XV

N
0,d ∂XXV

N
0,d ∂Y V

N
0,d ∂Y Y V

N
0,d ∂XY V

N
0,d

Mean 9.6199 -3.6406 0.1822 -0.7706 1.4409 0.5244
Std Dev 2.0330 · 10−3 9.7139 · 10−4 6.0315 · 10−4 6.9026 · 10−4 6.3511 · 10−2 6.2546 · 10−4

Estimated V N
0,l ∂XV

N
0,l ∂XXV

N
0,l ∂Y V

N
0,l ∂Y Y V

N
0,l ∂XY V

N
0,l

Mean 9.6191 -3.6406 0.1825 -0.7710 1.3722 0.5246
Std Dev 4.5448 · 10−3 2.4648 · 10−3 3.0841 · 10−3 1.3161 · 10−2 9.7223 · 10−2 3.0313 · 10−3

Estimated ∂v1V
N

0,l ∂v2V
N

0,l ∂v1XV
N

0,l ∂v1Y V
N

0,l ∂v2XV
N

0,l ∂v2Y V
N

0,l

Mean 0.2045 0.03610 0.5431 -0.001768 0.1281 0.005875
Std Dev 4.8380 · 10−2 3.8423 · 10−2 2.4009 · 10−2 1.2338 · 10−1 2.0699 · 10−2 1.0373 · 10−1

Estimate Type Run Time (s)

Direct 215.79
Modified Low 215.90

Table 4.12: Numerical results for computing sensitivities using the ml-GPSM with T ∗ = 1.
T = 1 with 6 equally spaced exercise dates. The top table gives the settings for our multi-level
computation.
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4.B Optimal Exercise Boundaries
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Figure 4.4: A slice of the GPSM OEB with v1 = 0.5 · θv1 and v2 = 1.5 · θv2 for the double Heston
model. Dark blue regions indicate exercising with probability 1, yellow regions indicate holding
with probability 1. This computation corresponds to a grid resolution of NS1 = 29.
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Figure 4.5: A slice of the GPSM OEB with v1 = θv1 and v2 = θv2 for the double Heston model.
Dark blue regions indicate exercising with probability 1, yellow regions indicate holding with
probability 1. This computation corresponds to a grid resolution of NS1 = 29.
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Figure 4.6: A slice of the GPSM OEB with v1 = 1.5 · θv1 and v2 = 0.5 · θv2 for the double Heston
model. Dark blue regions indicate exercising with probability 1, yellow regions indicate holding
with probability 1. This computation corresponds to a grid resolution of NS1 = 29.

Figure 4.7: A slice of the GPSM OEB with v1 = 0.5 · θv1 and v2 = 1.5 · θv2 for the commodity spot
model. Dark blue regions indicate exercising with probability 1, yellow regions indicate holding
with probability 1. This computation corresponds to a grid resolution of NS1 = 28.
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Figure 4.8: A slice of the GPSM OEB with v1 = θv1 and v2 = θv2 for the commodity spot
model. Dark blue regions indicate exercising with probability 1, yellow regions indicate holding
with probability 1. This computation corresponds to a grid resolution of NS1 = 28.
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Figure 4.9: A slice of the GPSM OEB with v1 = 1.5 · θv1 and v2 = 0.5 · θv2 for the commodity spot
model. Dark blue regions indicate exercising with probability 1, yellow regions indicate holding
with probability 1. This computation corresponds to a grid resolution of NS1 = 28.



Chapter 5

Conclusions

5.1 Summary of Contributions

In this thesis, we developed a numerical approach for solving multi-dimensional discrete time

optimal stopping problems under SV that combines LSMC with PDE techniques. The algorithm

provides dimensional reduction from the PDE and regression perspective along with variance and

dimensional reduction from the MC perspective.

In Chapter 2, we began by making rigorous the mathematical foundation for mixed MC-PDE

techniques. Next, we provided the basic mechanics of the algorithm and, under certain mild as-

sumptions, proved it converges almost surely using methods from point-set topology. Afterwards,

we applied the algorithm to the one dimensional Heston model and showed that the hybrid algo-

rithm outperforms traditional LSMC techniques in terms of estimating prices and optimal exercise

boundaries.

In Chapter 3, we described methods for reducing the complexity and run time of the algorithm

along with a technique for computing sensitivities. To reduce the complexity, we applied two

methods: clustering via sufficient statistics and mlMC. While the clustering method allows us to

reduce computational run times by a factor of a half for high dimensional problems, mlMC provides

an order of magnitude reduction in complexity. In order to compute sensitivities, we employ

a grid based method for derivatives with respect to the asset, S, and the MC based method

of [64] using initial dispersions for sensitivities with respect to v. We find that S-sensitivities

are highly accurate, whereas v-sensitivities are noisy when dv > 1. To test our approximations

and computation of sensitivities we revisited the one dimensional Heston model and found our

approximations introduced little-to-no error and that our computation of sensitivities were highly

accurate in comparison to the reference values and standard LSMC. To demonstrate the utility of

our new computational techniques, we apply the hybrid algorithm to the multi-dimensional Heston

model and show that the algorithm is highly accurate in terms of estimating prices, OEBs, and

sensitivities, especially in comparison to standard LSMC.

In Chapter 4, we highlight the importance of multi-factor SV models and apply our hybrid

algorithm to two specific examples: the Double Heston model and a mean-reverting commodity

model with jumps. Again, we were able to obtain low variance estimates of the prices, OEBs, and

101
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sensitivities with respect to S, along with reasonable estimates of sensitivities with respect to v.

5.2 Future Work

Modified Simulation Frameworks

An interesting framework that remains to be tested are Bermudan style options written on futures

prices or interest rate swaps on models with SV and one-way coupling. Such frameworks have an

exercise function that depends on the simulated process v and not just the underlying asset or

interest rate. It would be interesting to see how the algorithm applies to this class of problems

along with extensive benchmarking and backtesting.

Throughout this thesis we focused on SV models with one-way coupling, Xt = (St, vt), sim-

ulated paths of vt in Rdv and solved conditional PDEs over RdS . When solving PDEs over RdS

we work with a grid, S, that provides stability in terms of locating the boundary and computing

sensitivities with respect to S. The idea of treating some variables on a grid and simulating others

may potentially be useful in the context of basket options written on a multi-dimensional GBM.

For instance, we may consider the following model

dS
(i)
t

S
(i)
t

= r dt+ σ(i) dW
(i)
t

for i ∈ {1, . . . , d} where Wt is a d-dimensional Brownian motion with mean zero and correlation

matrix ρ. Upon switching to log-space variables and applying a Cholesky decomposition, one may

observe that this model also has one-way coupling. It may be useful to apply the GPSM to a

Bermudan style option written on this system where one simulates d− 2 or d− 3 of the processes

S(i) and solves conditional PDEs over the remaining two or three variables. It may be that, based

on the values of σ(i) and ρ, that it is advantageous to integrate over certain stocks and simulate

others. In this case, our exercise function h(S) will, similar to the case described above, depend

on the simulated processes {S(i)}d−2
i=1 which could potentially compromise results, although this

remains to be tested.

Optimized Implementations

An issue not addressed in this thesis is ways in which the hybrid algorithm may be optimized.

Throughout this thesis, we encountered one and two dimensional conditional PDEs that were gen-

erated via Feynmann-Kac for Levy processes and solved them using Fourier Space Time-stepping,

an FFT technique. While FFT methods have complexity O(Nd log N), methods such as the FST

or CONV [48] require N to be relatively large. Also, the presence of numerically stored functions

hinders the efficiency of the 2d-COS method [57]. One possibility could be to return to the models

presented in this thesis and apply a highly optimized finite difference scheme that is second order

in space and time, using a scheme which requires few points in S to obtain a comparable bias.

Such an algorithm would benefit from the multi-index MC schemes described in [26]. Furthermore,

one can implement the algorithm on GPUs to exploit the independence of the conditional PDEs
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we solve.

As described in Chapter 3, it still remains to develop a scheme for optimally allocating paths

to each level for mlMC applied to the direct estimator. An important topic not discussed in this

thesis this is computational complexity that results from applying mlMC. Future investigations will

involve fixing a model, implementing a highly efficient PDE solver and analyzing, both theoretically

and numerically, the savings brought about by mlMC using the celebrated Multi-Level Monto-Carlo

Theorem [26]. Some partial results on this front may be found in [23].

There is also the question of adaptive approaches to clustering which remains to be developed

and tested.

Rates of Convergence, Variance Reduction Analysis, and Initial Dispersions

In Chapter 2 we proved Theorem 4 which showed that under certain conditions the hybrid al-

gorithm’s coefficients converge almost surely to the idealized coefficients. Our proof borrowed

techniques from the works of [12] and [62] and generalized them using the Stone-Weierstrass The-

orem. While [62] only discusses almost sure convergence of their algorithm, the work of [12] also

proves a Central Limit Theorem (CLT) result and thus establishes a rate of convergence for the

LS version of LSMC. The analogous result remains to be proven for our algorithm, and it seems

the methods we have developed will not transfer.

Based on [12], the starting point for proving the CLT for our algorithm is to prove the following

weak-type estimate:

Proposition 2 (conjecture). Given certain truncation and separability conditions, let n ∈ {1, . . . ,M−
1}, S ∈ S, and δ > 0. There exists a constant Cn(S) > 0 such that

Q′
(
|aNn (S)− an(S)| ≥ δ

)
≤ Cn(S)

δ4N2
.

At a first glance, one may hope to obtain the above conjecture via Proposition 1. However, the

lack of control over the bounding term, ε · cNn , makes this infeasible. One needs to be more careful

when constructing cNn and must take the rate at which it decreases into account. When applying

SW, we have a function h(S,R) that is compactly supported and continuous on its support and

we obtain a function of the form

ψNn (S,R) =

kNn∑
i=1

ψN,n,i(S)ψN,n,i(R) (5.1)

such that ||h − ψNn ||∞ < εN . At the next step of our induction, we approximate each ψN,n,i by

another sum of separable functions that is εN close to ψN,n,i. Since SW is an existence theorem,

it seems we cannot control the number of separable functions kNn in our approximation which

interferes with obtaining a rate. Presumably, as εN → 0, we have kNn → ∞ although it is not

clear how this relationship behaves. As a result, we likely need an approach for carrying out the
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separating approximations that uses an integral as opposed to a discrete sum. For instance, we

may be able to construct an approximation to the identity of the following form

ψNn (S,R) =

∫
R2dS

φS,N (S − S′)φR,N (R−R′)h(S′, R′)dS′dR′

where φS,N , ψR,N are compactly supported and smooth on RdS such that ψNn (S,R) → h(S,R)

uniformly on compact sets of R2dS . Such a family of functions has the same separability properties

as that of (5.1) and may ultimately allow us to prove Proposition 2, although there may be other

complications. Lastly, to establish the CLT, one may use the L2 martingale technique presented

in the latter part of [12] along with Proposition 2.

Another topic of interest is quantifying the variance reduction that is obtained in computing

time-zero values, OEBs and sensitivities. A common observation is that working with our PDE

grid, S, provides a certain form of “stability” for most of our estimated quantities. Ultimately, one

must compute the variances of the estimated quantities from the LSM and GPSM and compare

their ratios. On a related topic, the variances of our estimator for ∂vV0,l(S, v) when dv > 1 remains

difficult to explain and warrants future study. It may be that the choice of initial dispersion and

regression method are not suited for the correlation structure of v(t).

Optimal Switching Problems

Optimal switching problems are a natural generalization of optimal stopping problems where

instead of deciding on whether to hold or stop at each time stage, the agent may alternate between

different payoff regimes with constraints on how many times they may switch. These problems

arise in the context of energy production and consumption where an electricity company may hedge

their risks to changes in demand or price of their commodity. An important example of optimal

switching problems are swing options. The reader may consult [8] for an in-depth discussion of

swing options as a stochastic control problem along with a discrete dynamic programming principle

(DPP) and numerical solution via LSMC. In terms of PDE approaches, we refer the reader to [38].

As one may expect, it is possible to extend the GPSM to such problems as the DPP reduces

their solution to the evaluation of conditional expectations that are analogous to the optimal

stopping case.



Appendix A

Mathematical and Computational

Background

In this chapter we review various mathematical and computational methods that are used through-

out this thesis.

A.1 Probability Theory and Point Set Topology

Kolmogorov Extension Theorem

In this thesis, we use the Kolmogorov Extension Theorem (KET) in Chapter 2 to construct the

“inherited sampling probability space” (Ω′,F ′,Q′) from the original space (Ω,F ,Q). The sampling

space allows us to makes sense of an iid collection of paths, {[vj ]}∞j=1.

The need for the KET is often motivated by the following example: When studying general

probability spaces we make statements such as “Let {Xi}∞i=1 be independent random variables on

R with distribution {νi}∞i=1, such that . . . .” The reader may then wonder if there even exists a

space that may accommodate such random variables with these distributions. The KET answers

this question affirmatively assuming certain consistency conditions are met. The following results

are taken from [18].

We begin by letting

RN = {(ω1, ω2, . . .) : ωi ∈ R}

and let RN be the σ-algebra on RN generated by finite dimensional rectangles.

Theorem 7 (Kolmogorov’s Extension Theorem). Suppose we are given probability measures µn

on Rn that are consistent, that is,

µn+1((a1, b1]× . . .× (an, bn]×R) = µn((a1, b1]× . . .× (an, bn])

Then there is a unique probability measure P on (RN, RN) with

P ({ω | ωi ∈ (ai, bi], 1 ≤ i ≤ n}) = µn((a1, b1]× . . .× (an, bn]).

105
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To see how the result answers the concern we raised above, we first set Ω′ = RN and F ′ = RN.

Next, we consider the measures µn on Rn defined via

µn((a1, b1]× . . .× (an, bn]) =
n∏
i=1

νi((ai, bi])

and note that, because they are consistent, by the KET, they induce a measure Q′ on Ω′. Finally,

we define our random variables Xn : Ω′ → R via Xn(ω) = ωn and note that they are independent

and have distribution νn.

The above construction is specific to random variables taking values in R, however, in Chapter

2 our construction is for random vectors in RdΘ . For the analogous statement and proof on more

general spaces than R, we refer the reader to [31].

Stone-Weierstrass Theorem

The Stone-Weierstrass Theorem (SWT) plays a fundamental role in our proof of Theorem 4. While

we only require the result on spaces like Rd, we state it in a more general context. The following

is taken from [25].

Let X be a non-compact locally compact, Hausdorff space, and C0(X) be the space of continu-

ous functions onX that vanish at infinity, endowed with the uniform metric. The Stone-Weierstrass

Theorem is a result that gives sufficient conditions for a collection of functions, A ⊂ C0(X), to

be dense. We say A is an algebra of functions if A is a vector space that is also closed under

point-wise multiplication, A vanishes at a point, x, if f(x) = 0 for all f ∈ A and A separates

points if for x, y ∈ K, there exists f ∈ A such that f(x) 6= f(y). The SWT for says the following

Theorem 8. If X is a non-compact, locally compact Hausdorff space and A ⊂ C0(K) is an algebra

that vanishes nowhere and separates points then A is dense in C(K).

Tietze-Extension Theorem and Urysohn’s Lemma

Some other topological results that we require for our proof of Theorem 4 are the Tietze Extension

Theorem and Urysohn’s Lemma. While the two results are equivalent, we present them in the

order that they are usually developed. The theorems are viewed as powerful existence results that

allow one to extend a continuous map defined on a closed subset of a space X, where X may be a

fairly general topological space. The following is adapted from [50], stated on a metric space X.

Theorem 9 (Urysohn’s Lemma). Let X be a metric space; let A and B be disjoint closed subsets

of X. Let [a, b] be a closed interval in the real line. Then there exists a continuous map

f : X → [a, b]

such that f(x) = a for every x in A, and f(x) = b for every x in B.

Theorem 10 (Tietze Extension Theorem). Let X be metric space; let A be a closed subspace of

X. Any continuous map of A into the closed interval [a, b] of R may be extended to a continuous

map of all of X into [a, b].
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A.2 Fourier-Space Time Stepping

Throughout this thesis, using the Feynmann-Kac theorem, we derived conditional partial (integro)-

differential equations (PIDEs) generated from stochastic processes driven by Levy processes. To

solve such conditional PIDEs, we resorted to a numerical Fourier transform method known as

Fourier Space Time-stepping as developed in [59] and [38]. In this section, we summarize the basic

mechanics of the algorithm. For notational simplicity, we state the standard FST algorithm for a

one-dimensional Levy process.

Theoretical Set Up

Given a Levy process Xt defined on [0, T ] with triple (γ, σ, ν), we generate the following PIDE to

compute E[h(Xtn+1) | Xtn = x] where [tn, tn+1] ⊂ [0, T ]:

(∂t + L)g(t, x) = 0

g(tn+1, x) = h(x)

and

Lg(x) =

(
γ∂x +

1

2
σ∂2

x

)
g(x) +

∫
R\{0}

(
g(x+ y)− g(y)− y∂xf(x)I|y|<1

)
dν(y).

To solve the PIDE, we take continuous Fourier transforms and, for each ω ∈ R, obtain the following

ODE in Fourier space

∂tF [g](t, ω) + Ψ(ω)F [g](t, ω) = 0 ,

F [g](tn+1, ω) = F [h](ω) .

where

Ψ(ω) = iγω − 1

2
σω2 +

∫
R

(
eiωy − 1− iyωI|y|<1

)
dν(y)

For each ω ∈ R, we solve the ODE and invert back to real space to find

g(tn, x) = F−1
[
F [g](tn+1, ω)eΨ(ω)(tn+1−tn)

]
(x) (A.1)

Numerical Approximation

We now turn to numerically computing g(tn, x) via the formula (A.1). We begin by setting a

domain in real space Ω = [tn, tn+1] × [xmin, xmax] and partition the spatial component as xn =

xmin + n∆x where ∆x = (xmax − xmin)/(N − 1) and n ∈ {0, . . . , N − 1}. Next, we consider our

Fourier domain Ω̂ = [tn, tn+1] × [ωmin, ωmax] where we set ωmax = π/∆x, ωmin = −ωmax and

discretize via ωn = ωmin +n∆ω where n ∈ {1, . . . , N} and ∆ω = 2ωmax/N . It may then be shown
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that

gn = FFT−1
[
FFT[gn+1]eΨ∆t

]
where gn, gn+1 are restictions of g to our real-space discretization at times tn, tn+1, and Ψ is our

characteristic exponent restricted to our Fourier space discretization.
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