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Abstract

Modeling multi-factor financial derivatives by a

Partial Differential Equation approach with

efficient implementation on Graphics Processing Units

Duy Minh Dang

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2011

This thesis develops efficient modeling frameworks via a Partial Differential Equation

(PDE) approach for multi-factor financial derivatives, with emphasis on three-factor

models, and studies highly efficient implementations of the numerical methods on novel

high-performance computer architectures, with particular focus on Graphics Processing

Units (GPUs) and multi-GPU platforms/clusters of GPUs. Two important classes of

multi-factor financial instruments are considered: cross-currency/foreign exchange (FX)

interest rate derivatives and multi-asset options.

For cross-currency interest rate derivatives, the focus of the thesis is on Power Reverse

Dual Currency (PRDC) swaps with three of the most popular exotic features, namely

Bermudan cancelability, knockout, and FX Target Redemption. The modeling of PRDC

swaps using one-factor Gaussian models for the domestic and foreign interest short rates,

and a one-factor skew model for the spot FX rate results in a time-dependent parabolic

PDE in three space dimensions. Our proposed PDE pricing framework is based on

partitioning the pricing problem into several independent pricing subproblems over each

time period of the swap’s tenor structure, with possible communication at the end of

the time period. Each of these subproblems requires a solution of the model PDE. We
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then develop a highly efficient GPU-based parallelization of the Alternating Direction

Implicit (ADI) timestepping methods for solving the model PDE. To further handle

the substantially increased computational requirements due to the exotic features, we

extend the pricing procedures to multi-GPU platforms/clusters of GPUs to solve each

of these independent subproblems on a separate GPU. Numerical results indicate that

the proposed GPU-based parallel numerical methods are highly efficient and provide

significant increase in performance over CPU-based methods when pricing PRDC swaps.

An analysis of the impact of the FX volatility skew on the price of PRDC swaps is

provided.

In the second part of the thesis, we develop efficient pricing algorithms for multi-asset

options under the Black-Scholes-Merton framework, with strong emphasis on multi-asset

American options. Our proposed pricing approach is built upon a combination of (i) a

discrete penalty approach for the linear complementarity problem arising due to the free

boundary and (ii) a GPU-based parallel ADI Approximate Factorization technique for

the solution of the linear algebraic system arising from each penalty iteration. A timestep

size selector implemented efficiently on GPUs is used to further increase the efficiency of

the methods. We demonstrate the efficiency and accuracy of the proposed GPU-based

parallel numerical methods by pricing American options written on three assets.
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Chapter 1

Introduction

The rapid growth of the financial markets over the past few decades has spawned many

intellectually challenging problems to be solved. These problems have evolved from the

simple one-factor Black-Scholes-Merton equation [7, 50] to highly-complex multi-factor

models with constraints that originate from important practical applications. For in-

stance, option contracts can have more than one underlying asset and different types of

payoff functions, including, in particular, path-dependent payoffs. Also, option contracts

with optionalities, such as early exercise features, have become very popular. Moreover,

the financial markets have become more diverse, with trading not only of stocks, but

also of numerous types of financial derivatives. For example, multi-currency interest rate

derivatives, especially those with exotic features, such as Bermudan cancelability, have

become increasingly important and are traded in large quantities in Over-the-Counter

(OTC) markets. These challenging problems are now spawning radical changes in com-

putational methods in finance: more mathematically sophisticated and efficient compu-

tational methods are in great demand for the valuation and risk-management of complex

financial instruments.

Closed-form solutions, such as the Black-Scholes-Merton [7, 50] formula for vanilla

European put and call options, are not available for most financial derivatives. Hence,

1



CHAPTER 1. INTRODUCTION 2

such derivatives must be priced by numerical techniques. Although several pricing ap-

proaches can be used, such as Monte Carlo (MC) simulation [19, 21, 48], or tree-based

(lattice) methods [32, 39], for problems in low dimensions, i.e. less than five dimensions,

the Partial Differential Equation (PDE) approach is a very popular choice, due to its

efficiency and global nature. In addition, accurate hedging parameters, such as delta and

gamma, which are essential for risk-management of the financial derivatives, are generally

much easier to compute via a PDE approach than via other methods.

When solving multi-factor problems in finance by a PDE approach, each stochastic

factor in the model gives rise to a spatial variable in the PDE. Due to the “curse of

dimensionality” associated with high-dimensional PDEs, the pricing of such derivatives

via the PDE approach is challenging. In addition, for many financial contracts, such as

multi-currency interest rate derivatives, additional complexity may arise from multiple

cash flow dates and exotic features. Moreover, when stochastic processes in the pricing

model are correlated, as is common in financial modeling, the resulting PDE possesses

cross spatial derivatives, which makes solving the associated problems numerically even

more challenging.

For the numerical solution of low-dimensional PDE models in finance, such as a three-

factor model for PRDC swaps, the valuation of the securities can be efficiently calculated

by utilizing a level-splitting scheme of the Alternating Direction Implicit (ADI) type

along the time-dimension, the computation of which requires the solution of a sequence

of tridiagonal linear systems at each timestep. Examples of applications of different ADI

schemes in finance can be found in [5, 17, 35, 46, 66]. Among them, the most popular

are perhaps the ADI schemes proposed by Craig and Sneyd in [13] and by Hundsdorfer

and Verwer [33, 34], because they can handle effectively cross spatial derivatives. More

specifically, these two schemes, when combined with second-order central finite differ-

ences (FD) for the discretization of the space variables, are unconditionally stable and
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efficient second-order methods in both space and time when applied to PDEs with cross

derivative terms. However, a disadvantage of the Craig and Sneyd scheme is that it can-

not maintain both unconditional stability and second-order accuracy when the number

of spatial dimensions is greater than three [13, 36], which potentially prevents extending

the method to higher-dimensional applications. In addition, it has been noted in [35]

that the Craig and Sneyd scheme may exhibit undesirable convergence behavior when

the payoff functions are non-smooth, which is quite common for financial applications.

Hence smoothing techniques, such as Rannacher timestepping [60], may be required. On

the other hand, the ADI scheme introduced by Hundsdorfer and Verwer is uncondition-

ally stable for arbitrary spatial dimensions [36], and, at the same time, also effectively

damps the errors introduced by non-smooth payoff functions [35]. It is worth noting

that classical ADI algorithms, such as the Douglas and Rachford scheme [15], although

unconditionally stable, are only first-order in time and second-order in space when cross

spatial derivatives are present.

Over the last few years, the rapid evolution of Graphics Processing Units (GPUs)

into powerful, cost-efficient, programmable computing architectures for general purpose

computations has provided application potential beyond the primary purpose of graphics

processing. In computational finance, although there has been great interest in utilizing

GPUs in developing efficient pricing architectures for computationally intensive prob-

lems, the applications mostly focus on MC simulations applied to option pricing (e.g.

[1, 2, 51, 67]). The literature on GPU-based PDE methods for pricing options writ-

ten on multiple assets is rather sparse, with scattered work presented at conferences or

workshops [20]. The literature on GPU-based PDE methods for pricing multi-currency

interest rate derivatives is even less developed.

In a broad sense, the thesis presents new and highly efficient modeling frameworks

via a PDE approach for multi-factor financial derivatives that can be easily tailored
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and extended to a variety of applications. More specifically, the thesis studies (i) new

and efficient PDE-based pricing methods for two important classes of multi-factor finan-

cial derivatives, namely cross-currency/foreign-exchange (FX) interest rate derivatives

and multi-asset options, i.e. options written on several assets; (ii) a highly efficient im-

plementation of the aforementioned computational methods on novel high-performance

computer architectures, such as GPUs and multi-GPU platforms/clusters of GPUs, to

further increase their efficiency; and (iii) an investigation of important modeling issues

pertaining to FX interest rate derivatives, such as the sensitivity of the computed prices

of these derivatives to the FX volatility skew.

In the remainder of this chapter, we present a brief introduction to the areas of cross-

currency/foreign-exchange interest rate derivatives and multi-asset options. Also, we

discuss the motivation for the research of the thesis and highlight the main contributions

of this work to the area of numerical modeling of multi-factor financial derivatives. The

outline of the thesis is presented towards the end of this chapter.

1.1 Cross-currency/FX Interest Rate Derivatives

In the current era of wildly fluctuating exchange rates, cross-currency interest rate deriva-

tives, especially FX interest rate derivatives, are of enormous practical importance. The

emphasis of the research work in this area is on long-dated (maturities of 30 years or more)

FX interest rate derivatives, namely Power Reverse Dual Currency (PRDC) swaps, one

of the most widely traded and liquid cross-currency interest rate derivatives [64]. As

such, the modeling of such instruments is of great interest to practitioners and academics

alike.

Cross-currency/FX interest rate derivatives can be viewed as financial contracts whose

values are contingent on the evolution of the two interest rates, namely the domestic and

foreign interest rates, and the spot FX rate that links the two currencies. While a wide
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variety of interest rate derivatives are traded on the financial markets, interest rate swaps

occupy a position of central importance in the OTC derivatives market [32]. An interest

rate swap in general, and a cross-currency/FX interest rate swap in particular, can be

viewed as an agreement between two parties to exchange fund flows in the future. The

agreement specifies (i) the set of dates when the fund flows are exchanged, referred to

as the swap’s tenor structure, and (ii) the way in which they are to be calculated. In a

cross-currency/FX interest rate swap, such as a PRDC swap, the calculation of the fund

flows involves the future values of one or both interest rates, the spot FX rate between

the two currencies, and possibly, other market variables.

As long-dated FX interest rate derivatives, such as PRDC swaps, are exposed to moves

in both the spot FX rate and the interest rates in both currencies, multi-factor pricing

models must have at least three factors, namely the domestic and foreign interest rates

and the spot FX rate. The most common pricing approach for long-dated FX interest

rate derivatives is MC simulation. The open literature on pricing methods for cross-

currency interest rate swaps via a PDE approach is very sparse [14, 49]; discussions focus

on ”vanilla” cross-currency swaps or swaptions only. The practical importance of highly

complex cross-currency/FX interest rate derivatives, such as PRDC swaps, especially

those with exotic features, and the lack of published work in the literature on efficient

PDE-based pricing frameworks for such derivatives formed the main motivation for our

research in this area.

In this thesis, we discuss the modeling of PRDC swaps using two one-factor Gaussian

models for the two stochastic interest short rates, and a one-factor FX skew model with

a local volatility function for the spot FX rate as proposed in [58]. (The focus of [58] is

efficient calibration techniques for local volatility functions in a cross-currency framework.

The numerical solution of PRDC swaps was not considered there.) This pricing model

gives rise to a time-dependent parabolic PDE in three space dimensions. Variations of
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PRDC swaps with exotic features, such as Bermudan cancelability, knockout, or FX

Target Redemption (FX-TARN), are much more popular than “vanilla” PRDC swaps.

While pricing “vanilla” PRDC swaps presents by itself a computational challenge, due

to the high-dimensionality of the PDE and multiple fund flow dates of the swaps’ tenor

structure, the exotic features significantly increase the complexity of the pricing, due to

their very different natures, as well as their levels of suitability to a PDE-based pricing

approach.

In the first part of the thesis, we develop a comprehensive and highly efficient PDE-

based pricing framework for long-dated FX interest rate swaps, with strong emphasis on

PRDC swaps. The three most popular exotic features, namely Bermudan cancelability,

knockout and FX-TARN, are investigated in detail. The first contribution of this re-

search is a flexible PDE pricing framework that can efficiently handle the early exercise

features of Bermudan cancelability, as well as strong path-dependency of the FX-TARN

feature. More specifically, our general PDE pricing framework for these derivatives is

based on partitioning the pricing problem into multiple independent pricing subprob-

lems over each time period of the swap’s tenor structure, each of which requires the so-

lution of the model-dependent PDE. In our case, the model PDE is a three-dimensional

time-dependent parabolic PDE with all cross derivatives, due to the correlation between

stochastic processes in the pricing model. In particular, over each time period of the

swap’s tenor structure, the pricing of a Bermudan cancelable PRDC swap can be divided

into two independent pricing subproblems, while the pricing of an FX-TARN PRDC swap

can be divided into multiple independent pricing subproblems, with possible communi-

cation at the end of the time period. Each of these subproblems can be solved efficiently

using the second-order central FD methods for the spatial discretization combined with

the ADI timestepping technique for the time discretization of the model PDE. We focus

on the ADI scheme introduced by Hundsdorfer and Verwer [34], due to its favorable
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characteristics.

The second contribution of this work is a highly efficient implementation of the

PDE-based pricing framework on novel high-performance computer architectures, namely

GPUs and multi-GPU platforms/clusters of GPUs. More specifically, we use the parallel

architectural features of GPUs together with the Compute Unified Device Architecture

(CUDA) framework to design and implement an efficient GPU-based parallel algorithm

for solving the model PDE via a parallelization of the ADI timestepping technique. The

main components of our GPU-based parallelization of the ADI scheme are (i) an efficient

parallel implementation of the explicit Euler predictor step, and (ii) a parallel solver

for the independent tridiagonal systems arising in the three implicit, but unidirectional,

corrector steps. Although we focus on the ADI scheme introduced by Hundsdorfer and

Verwer [34], the parallelization method presented in this thesis can be easily tailored

for other ADI schemes. To further handle the substantially increased computational re-

quirements due to the exotic features, which give rise to multiple independent pricing

subproblems/PDEs, we extend the pricing procedures to multi-GPU platforms/clusters

of GPUs to solve these independent PDEs on a separate GPU, with possible communi-

cation at the dates of the swap’s tenor structure. Numerical results indicate that the

proposed GPU-based parallel pricing methods are very efficient.

An important issue in the modeling of long-dated FX interest rate derivatives is

the sensitivity of the price of these derivatives to the skews observed in the FX volatility

smiles. In this regard, the research also focuses on quantifying the exposure of long-dated

FX interest rate swaps in general, and PRDC swaps in particular, to the FX volatility

skew. More specifically, we study and compare the improvements of the FX skew model,

in which a local volatility function is employed for generating the skews present in the

FX volatility smiles, over the log-normal model. The results of our investigation indicate

a strong sensitivity of the price of PRDC swaps to the skew of the FX volatility smiles.
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These findings highlight the importance of having a proper FX skew model for pricing

and risk managing PRDC swaps.

1.2 Multi-asset Options

A multi-asset option, i.e. an option written on more than one asset, is a contract between

the holder and the writer that gives the right, but not an obligation, to the holder to buy

or sell a specified basket of more than one underlying asset by a certain time for a given

price. In particular, a multi-asset call option gives the holder the right to buy, whereas

a multi-asset put option gives the holder the right to sell its basket of underlying assets,

for a prescribed amount, known as the strike price. It is important to determine a fair

price for an option accurately.

An important feature of such contracts is the time when the contract holders can

exercise their rights. If this occurs only at the maturity date, the option is classified as

a European option. If holders can exercise any time up to and including the maturity

date, the option is said to be an American option.

Option pricing theory has advanced tremendously since the seminal work by Black and

Scholes [7] and Merton [50]. At the forefront of these advances has been the development

of option pricing solutions within the original framework of Black-Scholes and Merton, in

which the interest rate is constant and the volatility is a deterministic functions of time

and/or the underlying assets. Within this framework, the price of a multi-asset European

option satisfies the so-call multi-dimensional Black-Scholes-Merton PDE [43, 73]. The

solution of this time-dependent parabolic PDE in a high-dimensional application, such

as options written on three assets, presents a computational challenge. In this case, the

multi-dimensional Black-Scholes-Merton PDE can be efficiently solved using the GPU-

based parallel ADI timestepping techniques in combination with FD methods for the

space discretization, similar to those developed for PRDC swaps. However, most options
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traded on exchanges are of American-style. For American options, the Black-Scholes-

Merton model results in a free boundary problem, due to the early exercise feature of

the options [66, 70]. Since explicit closed-form solutions to the American option pricing

problem cannot be found in general, sophisticated numerical methods must be used for

the pricing of an American option.

Using a PDE approach, the American option pricing problem can be formulated as

a time-dependent linear complementarity problem (LCP) with the inequalities involv-

ing the Black-Scholes-Merton PDE and some additional constraints [69]. Consequently,

the problem of pricing multi-asset American options, such as options written on three

assets, is both mathematically challenging and computationally intensive. In the area

of option pricing, the focus of the thesis is on multi-asset American options, due to the

aforementioned challenges.

Recently, several approaches for handling the LCP have been developed. In particular,

various penalty methods were discussed in [18, 54, 55, 74]. In the thesis, we adopt the

penalty method of [18] to solve the LCP. In this approach, a penalty term is added to

the discretized equations to enforce the early exercise constraint. The solution of the

resulting discrete nonlinear equations at each timestep can be computed via a penalty

iteration.1 An advantage of the penalty method of [18] is that it is readily extendible

to handle multi-factor problems. In a multi-dimensional application, applying direct

methods, such as LU factorization, to solve the linear system arising at each penalty

iteration can be computationally expensive. A very popular alternative is to use iterative

methods, such as Biconjugate Gradient Stabilized (BiCGStab), in combination with a

preconditioning technique, such as an Incomplete LU factorization [66]. Another possible

approach is to employ ADI Approximate Factorization (AF) techniques, which involve

solving only a few tridiagonal systems in each spatial dimension. It is rather surprising

1The penalty iteration described in [18] is essentially a Newton iteration, but, to be consistent with
[18], we use the term “penalty iteration” throughout this thesis.
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that, while these efficient techniques have been widely used in the numerical solution of

multi-dimensional nonlinear PDEs arising in computational fluid dynamics [72], to the

best of our knowledge, these techniques have not been successfully extended to multi-asset

American option pricing. These shortcomings motivated our work.

In the second part of the thesis, we develop efficient pricing algorithms for multi-asset

options under the Black-Scholes-Merton framework, with strong emphasis on multi-asset

American options. Our pricing approach for multi-asset American options is built upon

a combination of the discrete penalty approach of [18] for the LCP arising due to the free

boundary and a GPU-based parallel ADI-AF technique combined with FD discretization

methods for the solution of the linear algebraic system arising from each penalty iteration.

Although we primarily focus on options written on three assets, many of the ideas and

results developed here can be naturally extended to higher-dimensional applications with

constraints.

The ADI-AF techniques developed in this thesis can be viewed as being based on the

idea of the splitting techniques of the ADI timestepping methods described in the previous

section, but at the (discrete) matrix level. More specifically, using FD methods for

the space discretization and a standard timestepping technique, such as Crank-Nicolson

(CN), the pricing of an American option written on three assets via the penalty approach

of [18] requires the solution of a matrix problem of the form

Av = b

at each penalty iteration. Here, v is the vector of unknowns, A is the matrix of FD

approximation to the differential operator, and b is a vector of known values. We then

develop a technique to approximately factorize the matrix A into a product of 3 tridi-

agonal matrices of the form A1A2A3, where the matrix Ai, i = 1, . . . , 3, is the part of

A that corresponds to the FD discretization of the spatial derivative in the ith spatial
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direction. Then, instead of solving Av = b, we solve

A1A2A3v = b + c,

where the vector c is a correction term arising from the approximate factorization of the

matrix A. The solution process can be efficiently realized via a sequence of tridiagonal

solutions as 




A1v1 = b + c,

A2v2 = v1,

A3v = v2.

The idea behind the ADI-AF technique presented above can be easily generalized to

higher-dimensional applications.

A GPU-based parallelization of the ADI-AF scheme described above can be viewed

as a natural extension of the parallelization of the ADI timestepping method discussed

earlier for PRDC swaps. More specifically, the computation of the vector b + c resem-

bles the explicit Euler predictor step, while the solutions of the tridiagonal systems is

essentially the same as the three implicit corrector steps, each of which involves solving a

block-diagonal system with tridiagonal blocks along a spatial dimension. A timestep size

selector, efficiently implemented on the GPU, is used to further increase the performance

of the methods.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 first presents an intro-

duction to dynamics of PRDC swaps and popular exotic features, and then introduces

a particular three-factor pricing model with the FX volatility skew obtained via a local

volatility function and the associated PDE. Chapter 3 develops PDE-based pricing algo-

rithms for PRDC swaps with exotic features. Efficient implementation on a multi-GPU



CHAPTER 1. INTRODUCTION 12

platform/GPU cluster of these pricing algorithms are presented in Chapter 4. In partic-

ular, a GPU-based parallelization of the ADI timestepping scheme is discussed in great

detail in this chapter. Numerical results for pricing PRDC swaps together with relevant

discussions and analyses are given in Chapter 5. Chapter 6 discusses the pricing of Eu-

ropean and American options written on three assets under the Black-Scholes-Merton

framework, with strong emphasis on American options. Numerical results for multi-asset

options are presented in Chapter 7. Chapter 8 summarizes the main contributions of

the thesis and outlines possible directions for further research. Commonly used abbrevi-

ations and notations are presented in Appendix A. A glossary of relevant terms is given

in Appendix B. Appendix C derives relevant FD approximations and matrix formulas

used in this thesis. Supplementary numerical results for PRDC swaps obtained with

preconditioned iterative methods and relevant discussions are presented in Appendix D.

Miscellaneous derivations are given in Appendix E. A diagram of the main components

of the thesis and the dependence between chapters is give in Figure 1.3.1.
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Figure 1.3.1: Important components and dependence between chapters of the thesis.



Chapter 2

Introduction to PRDC Swaps

The purpose of this chapter is twofold. In Section 2.1, we review several fundamental

definitions and concepts of interest rate theory, and introduce relevant interest rate in-

struments, namely interest rate swaps and Bermudan swaptions. The aim of this part is

to provide the background needed for the description of PRDC swaps in the next section,

as well as the discussions of the pricing algorithms for PRDC swaps, and the analysis of

their prices presented in later chapters. In Section 2.2 of this chapter, we first discuss the

dynamics of PRDC swaps and popular exotic features, and then present the FX skew

model of [58], an overview of the model calibration, and a derivation of the associated

pricing PDE.

2.1 Preliminaries

Since the theory on interest rate modeling is vast and a very large range of interest rate

instruments are actively traded, only fundamental concepts and derivatives relevant to

this thesis are presented. We refer interested readers to [4, 8] for detailed discussions on

these subjects.

14
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2.1.1 Definitions and Notation

The Bank Account and the Short Rate

We denote by B(t) the value of a bank account at time t ≥ 0. We assume that B(0) = 1

and that the bank account evolves according to the differential equation

dB(t) = r(t)B(t)dt, (2.1)

where r(t) is a positive function of time. As a result, we have

B(t) = e
∫ t

0 r(s)ds.

In the above formulas, r(t) is the instantaneous interest rate at which the value of a

bank account accrues. This rate is referred to as the instantaneous spot rate, or more

commonly as the short rate.

Zero-Coupon Bonds

A T -maturity zero-coupon bond is a contract that guarantees its holder the payment of

one unit of currency at time T , with no intermediate payments. The contract value at

time t ∈ [0, T ] is denoted by P (t, T ). Clearly, P (t, T ) < 1, for all t < T , and P (T, T ) =

1 for all T . It is also clear that P (t, T ) is the time t value of one unit of currency to be

paid at time T , the maturity of the contract.

Year Fraction

We denote by ν(t, T ) the chosen time measure between t and T ≥ t, which is usually

referred to as the year fraction between the dates t and T . The particular choice that is

made to measure the time between two dates is referred to as the day-count convention.

Examples of day-count conventions are:

• Actual/365: With this convention, a year is 365 days long and the year fraction

between two dates is the actual number of days between them divided by 365.
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• Actual/360: In this case, a year is assumed to be 360 days long.

Simply-Compounded Spot Interest Rate

The simply compounded spot interest rate prevailing at time t ≥ 0 for the maturity

T ≥ t, denoted by L(t, T ), is the constant rate at which an investment has to be made

to produce an amount of one unit of currency at maturity, starting from P (t, T ) units of

currency at time t, when accruing occurs proportionally to the investment time. That is,

L(t, T ) =
1 − P (t, T )

ν(t, T )P (t, T )
. (2.2)

It can be shown that the short rate and the simply-compounded spot interest rate are

related via [8]

r(t) = lim
T →t+

L(t, T ). (2.3)

Unless otherwise stated, in this thesis, we assume that the simply-compounded spot

interest rates L(t, T ) are the London Interbank Offered Rates (LIBOR) quoted in the

interbank market.

Tenor Structure

Most interest rate derivatives involve multiple fund flows taking place on a set of fixed

dates, usually equidistantly spaced, often referred to as a tenor structure,

T0 = 0 < T1 < · · · < Tβ < Tβ+1, (2.4)

with να = ν(Tα−1, Tα) = Tα − Tα−1, α = 1, 2, . . . , β + 1. Here, each of Tα, α =

0, 1, . . . , β + 1, is referred to as a date of the tenor structure; να represents the year

fraction between Tα−1 and Tα, using a certain day counting convention, such as the Ac-

tual/365 one. Each of the time intervals [Tα−1, Tα], α = 1, 2, . . . , β + 1, is called a period

of the tenor structure.
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To simplify the notation, we denote by L(Tα) the LIBOR rate L(Tα−1, Tα) for the

α-th period, α = 1, . . . , β + 1. Similarly, we use P (Tα) as a short-hand notation for

P (Tα−1, Tα), α = 1, . . . , β + 1. For use later in the thesis, define

Tα+ = Tα + δ where δ → 0+, Tα− = Tα − δ where δ → 0+,

i.e. Tα+ and Tα− are instants of time just after and before, respectively, the date Tα.

In the context of multi-currency markets, we consider an economy with two currencies,

“domestic” and “foreign”. Unless otherwise stated, in the thesis, the sub-scripts d and f

are used to indicate domestic and foreign, respectively. For instance, Pi(t, T ), i = d, f , are

the prices at time t in their respective currencies, of the domestic and foreign zero-coupon

bonds, respectively, with maturity T .

Spot FX Rate

We denote by s(t), t ≥ 0, the spot FX rate, the number of units of domestic currency

per one unit of foreign currency prevailing at time t. Essentially, the spot FX rate at

time t is the rate at which values in the foreign currency are converted into the domestic

currency at time t.

When the spot FX rate decreases, we say the domestic currency strengthens against

the foreign currency. Conversely, when the spot FX rate increases, we say the domestic

currency weakens against the foreign currency.

Forward FX Rate

We denote by F (t, T ) the forward FX rate prevailing at time t ≥ 0 for maturity T ≥ t.

This is the number of units of domestic currency per one unit of foreign currency as quoted

at time t for exchange at time T . Following no-arbitrage arguments, it is straight-forward

to obtain the following formula for the forward FX rate [4, 63]:

F (t, T ) =
Pf(t, T )
Pd(t, T )

s(t). (2.5)
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2.1.2 Interest Rate Derivatives

In this subsection, we describe the dynamics of two relevant, also very popular, interest

rate derivatives, namely interest rate swaps and Bermudan swaptions, in the context

of single-currency markets. The discussion in this subsection provides the background

details needed to understand the dynamics and the pricing of PRDC swaps described

later. Other popular interest rate instruments, such as caps and floors, are not relevant

to the research developed in this thesis, and hence omitted.

Interest Rate Swaps

A swap is a generic term for an OTC derivative in which two parties agree to exchange

one stream of fund flows for another stream of fund flows according to a pre-arranged

formula. These streams are often referred to as the legs of the swap. A “vanilla” fixed-

for-floating interest rate swap, usually referred to as a fixed-for-floating swap, is a swap

in which one leg is a stream of fixed rate payments, i.e. the fixed leg, whereas, the other

one is based on a floating rate, i.e. the floating leg, most often LIBOR. These two legs

are denominated in the same currency, have the same notional, and expire on the same

date. In the description which follows, the fixed and floating legs occur on the same set of

dates with the same year fractions. Although the generalization to a different set of dates

and day-count conventions for the two legs is straightforward, we present the simplified

version of the two legs to avoid cumbersome notation irrelevant to PRDC swaps.

There are two parties involved in a fixed-for-floating swap, namely the payer of the

fixed leg, who is also the receiver of the floating leg, and the receiver of fixed leg, who is

also the payer of the floating leg. Given the tenor structure (2.4), in a fixed-for-floating

swap, at each date Tα, α = 1, . . . , β + 1 of the tenor structure, the payer of the fixed

leg pays out the amount ναKN corresponding to a pre-agreed fixed interest rate K, on

a notional value N and with a year fraction να between Tα−1 and Tα, in return for the
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floating rate payment ναL(Tα)N, corresponding to the LIBOR rate L(Tα) on the notional

value N for the period [Tα−1, Tα], as observed at time Tα−1, and defined by

L(Tα) =
1 − P (Tα)
ναP (Tα)

, (2.6)

which follows from (2.2). Note that L(Tα) is set at time Tα−1, but the actual floating

leg payment for the period [Tα−1, Tα] does not occur until time Tα, i.e. “in arrears”. A

diagram of fund flows in a fixed-for-floating interest rate swap is presented in Figure 2.1.1.

T0 T1 T2 b b b Tβ Tβ+1
ν1 ν2 νβ+1

Inflows

Outflow

ν1L(T1)N ν2L(T2)N νβL(Tβ)N νβ+1L(Tβ+1)N

ν1KN ν2KN νβKN νβ+1KN

Figure 2.1.1: Fund flows in a generic fixed-for-floating interest rate swap. Inflows and

outflows are with respect to the point-of-view of the fixed leg payer.

The pricing of fixed-for-floating swaps is relatively simple. In fact, the price of a fixed-

for-floating swap at time t can be obtained using only the term structure of interest

rates observed on that date, and is not affected by the dynamics of the interest rates.

In general, the price at time T0 of a fixed-for-floating swap is reflected via an exchange

of a fixed rate coupon between the the two parties of the swap at time T0 that is not

included in the description above. (See Remark 2.2.2 on page 23 for a related discussion

in the context of PRDC swaps.) There is a unique value of the fixed interest rate K that

makes the fixed-for-floating swap have value zero to both parties, i.e. no fund exchange

at time T0. This value of the the interest rate is referred to as the forward swap rate.

More details can be found in the literature, e.g. [4, 8, 52]. In practice, fixed-for-floating

swaps are often used by speculators to make bets on the future direction of interest rates,

or by hedgers to transform fixed rate obligations into floating ones, or vice versa.
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European and Bermudan Swaptions

A European swaption gives the holder of the option a right, but not an obligation, to

enter an interest rate swap, referred to as the underlying swap, at a pre-determined future

time called the swaption maturity. A payer swaption is an option to pay the fixed leg

(and receive the floating leg) of a fixed-for-floating swap. On the other hand, a receiver

swaption is an option to receive the fixed leg (and pay the floating leg) of a fixed-for-

floating swap. Usually, the swaption maturity coincides with the first date T0 of the tenor

structure of the underlying swap.

A Bermudan swaption is an extension of a European swaption, which gives its holder

an option to enter the underlying swap on any of several pre-specified dates, i.e. the set

of exercise dates, provided that this right has not already been exercised at a previous

time, instead of just one pre-determined date as in a European swaption. Note that in

practice, the set of exercise dates of a Bermudan swaption may have no overlap at all

with the set of dates of the underlying swap’s tenor structure. However, for the sake

of simplicity, we omit some generality of a Bermudan swaption, while focusing on the

features relevant to this thesis.

More specifically, given an interest rate swap with the tenor structure (2.4), the holder

of a standard Bermudan swaption has the right, but not an obligation, to exercise it on

any of the dates {Tα}β
α=1. Once exercised on the date Tα, the option disappears, and

the holder enters the part of the underlying swap remaining after the exercise date Tα,

i.e. the holder is exposed to all fund flows of the underlying swap scheduled on or after

Tα+1. The period up to T1 is known as the lock-out or no-call period. In practice, a

Bermudan swaption with T1 = 1 year and Tβ+1 = 10 years is usually referred to as a “10

no-call 1” Bermudan swaption. An illustration of a Bermudan swaption is presented in

Figure 2.1.2.
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Inflows

Outflow

T0 T1 b b b Tα Tα+1 Tα+2 b b b Tβ+1

να+1L(Tα+1)N
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fund flows exposure

no-call

period

Figure 2.1.2: An example of a Bermudan payer swaption exercised at time Tα and asso-

ciated fund flows exposure from the perspective of the holder of the option.

In the above, we have kept the description of Bermudan swaptions general enough so that

it can be applied in the context of multi-currency markets, in which case the underlying

swaps are multi-currency swaps, such as PRDC swaps, instead of single-currency fixed-

for-floating swaps. Bermudan swaptions are, by far, one of the most actively traded

exotic interest rate derivatives [4]. Demand for Bermudan swaptions comes from different

segments of the interest rate markets. For example, Bermudan swaptions frequently arise

as embedded options in interest rate swaps with Bermudan cancelable features, i.e. swaps

that can be canceled by one party on a schedule of dates of the swaps’ tenor structures.

In this case, the other party of the swap can be viewed as selling to the first party a

Bermudan-style option to cancel the underlying swaps in order to obtain a better rate of

return in the form of a higher initial coupon during the no-call period. We shall discuss

this point in more detail in Section 3.4 in the context of Bermudan cancelable PRDC

swaps.

2.2 PRDC Swaps

In this section, we describe in detail the coupon structure, popular exotic variations, as

well as the economics of PRDC swaps. Finally, we present a pricing model, an overview
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of the calibration of the model, and derive the associated pricing PDE for PRDC swaps.

2.2.1 Introduction

Description of PRDC Swaps

A “vanilla” PRDC swap [64] is similar to a “vanilla” single-currency fixed-for-floating

interest rate swap, in which both parties, namely the issuer and the investor, agree that

the issuer pays the investor a stream of so-called PRDC coupon amounts, and in return,

receives the investor’s domestic LIBOR payments. Usually, the issuer of a PRDC swap

is a bank. In analogy with a “vanilla” single-currency swap described in the previous

section, the stream of PRDC coupons, referred to as the PRDC coupon leg, plays the

role of the fixed leg, while the stream of the investor’s domestic LIBOR payments plays

the role of the floating leg. However, in a PRDC swap, the PRDC coupon amounts

are linked to the spot FX rate prevailing when the PRDC coupon rate is set. Both the

PRDC coupon and the floating rates are applied on the same domestic currency notional,

denoted by Nd . Due to the dependence of the PRDC coupon amounts on the spot FX

rates, PRDC swaps belong to the class of FX interest rate hybrid derivatives, referred to

as hybrids. Another important distinguishing feature of PRDC swaps is that a swap’s

maturity is usually very long, often 30 years or more, while the maturity of a regular

interest rate swap is usually much shorter, typically less than 5 years. Unless otherwise

stated, we investigate PRDC swaps from the perspective of the issuer of the PRDC

coupons. From this perspective, the investor’s domestic LIBOR payments represent the

stream of fund inflows, and hence, are usually referred to as the funding leg . We use this

term throughout the thesis. Below, we first briefly discuss the funding leg, then describe

the structure of the PRDC coupon rates in detail.

Given the tenor structure (2.4), for a “vanilla” PRDC swap, at each time {Tα}β
α=1,

there is an exchange of a PRDC coupon amount for a domestic LIBOR floating-rate



CHAPTER 2. INTRODUCTION TO PRDC SWAPS 23

payment. Similar to the floating leg in a “vanilla” single-currency fixed-for-floating in-

terest rate swap, the funding leg pays the amount ναLd(Tα)Nd at time Tα for the period

[Tα−1, Tα]. Here, Ld(Tα) denotes the domestic LIBOR rate for the period [Tα−1, Tα], as

observed at time Tα−1, and is defined by

Ld(Tα) =
1 − Pd(Tα)
ναPd(Tα)

, (2.7)

which follows from (2.2).

The PRDC coupon rate Cα, α = 1, 2, . . . , β, of the coupon amount ναCαNd issued at

time Tα for the period [Tα, Tα+1], α = 1, 2, . . . , β, has the structure

Cα = min
(

max
(

cf
s(Tα)

fα
− cd, bf

)
, bc

)
, (2.8)

where cd and cf are domestic and foreign coupon rates; bf and bc are the floor and cap of

the payoff. The scaling factor fα ≡ f(Tα) is usually set to the forward FX rate F (0, Tα)

defined by (2.5). All parameters cd, cf , bf and bc in (2.8) can vary from coupon to coupon,

i.e. they may depend on {Tα}β
α=1. However, to simplify the notation, we do not indicate

the time-dependence of these parameters.

Remark 2.2.1. Note that in the above setting, the last period [Tβ , Tβ+1] of the swap’s

tenor structure is redundant, since there is no exchange of fund flows on Tβ+1. However,

to be consistent with [58], we follow the same presentation.

A diagram of fund flows in a “vanilla” PRDC swap is presented in Figure 2.2.1.

Remark 2.2.2. Usually, there is a settlement in the form of an initial fixed-rate coupon

between the issuer and the investor at time T0 that is not included in the description

above. This signed coupon is typically the value at time T0 of the swap to the issuer, i.e.

the value at time T0 of all net fund flows in the swap, with a positive value of the fixed
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T0 T1 T2 b b b Tβ Tβ+1
ν1 ν2

Inflows

Outflows

ν1Ld(T1)Nd ν2Ld(T2)Nd νβLd(Tβ)Nd

ν1C1Nd ν2C2Nd νβCβNd

Figure 2.2.1: Fund flows in a “vanilla” PRDC swap. Inflows and outflows are with respect

to the point-of-view of the PRDC coupon issuer, usually a bank.

rate coupon indicating a fund outflow for the issuer or a fund inflow for the investor, i.e.

the issuer pays the investor. Conversely, a negative value of this coupon indicates a fund

inflow for the issuer.

In the so-called standard structure, which is based on the most commonly used pa-

rameter settings, bf = 0 and bc = ∞, by letting hα =
cf

fα
and eα =

fαcd

cf
, the PRDC

coupon rate Cα can be viewed as a call option on FX rates, since, in this case, Cα reduces

to

Cα = hα max(s(Tα) − eα, 0). (2.9)

As a result, the PRDC coupon leg in a “vanilla” PRDC swap can be viewed as a portfolio

of long-dated options on the spot FX rate, i.e. long-dated FX options.

In (2.9), the option notional hα determines the overall level of the coupon payment,

while the strike eα determines the likelihood of the positiveness of the coupon. It is

important to emphasize that, if the strike eα is low compared to s(Tα), the PRDC coupon

has a relatively high chance of paying a positive amount. However, in this case, the option

notional hα is typically chosen to be low also, and hence, the overall level of the PRDC

coupon amount paid at time Tα is small. This is a low-leverage situation, from the

perspective of the investor. On the other hand, if both eα and hα are high, then we have

a high-leverage situation. Typically, the levels of leverage could be modified by changing

the sizes of cd and cf . We discuss in detail the impact of leverage levels on the prices of
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PRDC swaps in Subsection 5.3.2.

Exotic Variations

It is important to emphasize that PRDC swaps usually have additional exotic features.

Currently, the three most popular exotic features are Bermudan cancelable, knockout

and FX-TARN. All three features allow, under different conditions, the pre-mature ter-

mination of the underlying swap after a no-call period, usually [T0, T1−].

Bermudan Cancelable PRDC Swaps

In a Bermudan cancelable PRDC swap, the issuer of the PRDC coupons has the right

to cancel the PRDC swap at any of the dates {Tα}β
α=1 of the swap’s tenor structure after

the exchange of fund flows scheduled on that date.

Knockout PRDC Swaps

An example of a knockout provision is an up-and-out FX-linked barrier: the associated

PRDC swap pre-maturely terminates on the first date Tα, α = 1, 2, . . . , β, of the tenor

structure on which the spot FX rate s(Tα) exceeds a specified level. Different variations of

the knockout feature may allow the termination of the PRDC swap to occur either before

or after the occurrence of any exchange of fund flows scheduled on that date. However,

knockout provisions usually stipulate that the knockout PRDC swap terminates after

the exchange of fund flows scheduled on that date. Although the upper barrier can be

time-dependent, i.e. a moving barrier, for simplicity, in this thesis, we consider a constant

upper barrier only.

FX-TARN PRDC Swaps

In a FX-TARN PRDC swap, the PRDC coupon amount, ναCαNd, is recorded. The

PRDC swap is terminated on the first date {Tα}β
α=1 when the accumulated PRDC coupon

amount, including the coupon amount scheduled on that date, reaches a pre-determined

target cap. A typical range of the target cap is from 10% to 50% of the notional Nd,
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depending on the leverage levels.

Economics of PRDC Swaps

The rise of PRDC swaps as well as the continuing interest in these structured products

are closely related to the search for yield enhancements by domestic currency investors

when the interest rate for the domestic currency is low relative to the interest rate for

the foreign currency. In this case, a yield enhancement opportunity in a PRDC swap

for the domestic currency investor arises from the speculation that the forward FX rate

F (0, t) between the domestic and foreign currencies could be substantially lower than the

respective spot FX rate s(t), as the maturity t of the forward FX rate increases. More

specifically, if the interest rate for the domestic currency (e.g. Japanese Yen (JPY)) is

low relative to the interest rate for the foreign currency (e.g. United States Dollar (USD)

or Australian Dollar (AUD)), the forward FX rate curve F (0, t), t > 0, decreases steeply

as t increases, as reflected by formula (2.5), predicting a significant strengthening of the

domestic currency. However, historical data suggests that the future spot FX rate will

remain near its current level. This is reflected in the coupon rate formula (2.8): the

investor receives a positive coupon at time Tα if s(Tα) is sufficiently large compared to

fα ≡ F (0, Tα). Thus, we can view the investor as betting that the domestic currency is

not going to strengthen as much as predicted by the forward FX rate curve.

The exotic features, such as those described earlier, provide protection, from the

perspective of the issuer, against excessive movements in the spot FX rate via a possibility

of early termination of the swap. However, from the perspective of the investor, these

exotic features can be viewed as an additional yield-enhancing mechanism which provides

a higher rate of return in the form of a higher fixed rate coupon paid by the issuer to

the investor during the no-call period, usually at time T0. More specifically, in a PRDC

swap with an exotic feature, the issuer can be viewed as “buying” from the investor
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certain right to protect themselves against unfavorable movements in the spot FX rate.

For instance, as explained later in Section 3.4, in a Bermudan cancelable PRDC swap,

the issuer essentially buys from the investor a Bermudan option to cancel the underlying

PRDC swap. As a result, a positive value (to the issuer) from such a position is generated

and contributes to a higher positive initial fixed rate coupon at time T0, i.e. a higher fund

inflow for the investor at time T0. This initial fixed rate coupon paid by the issuer to

the investor is usually much higher than the rate of return that the investor can obtain

anywhere else. In addition, the investor benefits even more from an exotic feature if

the swap terminates quickly. For example, if the underlying PRDC swap is terminated

at time T1, the investor essentially pays a low domestic LIBOR payment ν1Ld(T1)Nd

and receives a very high initial fixed rate coupon on top of the PRDC coupon amount

ν1C1Nd. Thus, exotic features are very attractive to investors. We discuss this further

in Subsection 5.3.2.

In the following subsections, we first present a pricing model and an overview of the

model’s calibration, and then derive the associated pricing PDE for PRDC swaps.

2.2.2 The Model

As cross-currency interest rate derivatives in general, and FX interest rate hybrids in

particular, are exposed to moves in both the spot FX rate and the interest rate in both

currencies, multi-factor pricing models having at least three factors must be used. The

current standard practice for modeling FX interest rate hybrids is to use two one-factor

Gaussian models for the two term structures and either a one-factor log-normal model

(e.g., [38, 64]) or a one-factor skew model employing a local volatility function [58] for the

spot FX rate. However, long-dated FX options, such as those embedded in PRDC swaps,

exhibit a significant skew, which cannot be well captured by the log-normal distribution

[24, 32, 58]. In addition, FX interest rate hybrids with exotic features, such as those
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described earlier, are particularly sensitive to the FX volatility skew, due to the specific

choice of strikes of the PRDC coupon rates, as well as the exotic features associated with

the swaps (see, for example, [24, 58]). As a result, the assumption of log-normality of

spot FX rates is questionable in the modeling of such derivatives. One way to rectify

this deficiency is to incorporate FX volatility smiles into the model via a local volatility

function, as first suggested in [58]. By using a local volatility model, this approach avoids

introducing more stochastic factors into the model. Hence, it keeps the number of factors

to the minimum, while providing better modeling for the skewness of the spot FX rate.

Below, we present a multi-currency model with the FX volatility skew characterized by a

local volatility function for the spot FX rate as proposed in [58]. We discuss the impact

of the FX skew on the price of a PRDC swap with exotic features in Subsection 5.3.2.

We denote by ri(t), i = d, f, the domestic and foreign short rates, respectively. Under

the domestic risk-neutral measure, i.e. the measure with the domestic bank account as

the numeraire1, the dynamics of s(t), rd(t), rf(t) are described by

ds(t)
s(t)

= (rd(t) − rf(t))dt + γ(t, s(t))dWs(t), (2.10a)

drd(t) = (θd(t) − κd(t)rd(t))dt + σd(t)dWd(t), (2.10b)

drf(t) = (θf (t) − κf(t)rf(t) − ρfs(t)σf (t)γ(t, s(t)))dt + σf(t)dWf (t), (2.10c)

where Wd(t), Wf (t), and Ws(t) are correlated Brownian motions with

dWd(t)dWs(t) = ρdsdt, dWf(t)dWs(t) = ρfsdt, dWd(t)dWf(t) = ρdf dt.

The short rates follow the mean-reverting Hull-White model [31] with deterministic mean

reversion rates and volatility functions, respectively denoted by κi(t) and σi(t), for i =

d, f , while θi(t), i = d, f , also deterministic, capture the current term structures. The

“quanto” drift adjustment, −ρfs(t)σf (t)γ(t, s(t)), for drf(t) comes from changing the

1Intuitively, a numeraire is a positive non-dividend-paying reference asset, with respect to which all
other asset prices are normalized. For a detailed discussion of measures and numeraires, see [63].
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measure from the foreign risk-neutral measure to the domestic risk-neutral one. The

local volatility function γ(t, s(t)) for the spot FX rate has the functional form [58]

γ(t, s(t)) = ξ(t)
( s(t)

Ls(t)

)ς(t)−1
, (2.11)

where ξ(t) is the relative volatility function, ς(t) is the time-dependent constant elasticity

of variance (CEV) parameter and Ls(t) is a time-dependent scaling constant which is

usually set to the forward FX rate F (0, t), for convenience in calibration [58].

2.2.3 Calibration Overview

Before any model can be used, calibration of the model’s parameters to specific market

data is required. More specifically, the calibration of a model can be viewed as an

estimation of the model’s parameters using relevant market data. The calibration of the

model (2.10) can be viewed as consisting of two separate tasks: (i) the calibration of

the domestic and foreign short rate models (2.10b) and (2.10c), respectively, and (ii) the

calibration of the local volatility function γ(t, (s(t)) in (2.10a). Note that the domestic

and foreign short rate models are calibrated separately, and for convenience in calibration,

usually under the respective risk-neutral measures. The correlation parameters ρds, ρfs

and ρdf are typically chosen based on historical estimations. Since calibration of models

is not the focus of this thesis, we only briefly discuss below the calibration of (i) and (ii).

Regarding the calibration of the domestic and foreign short rates, the parameters

defining the volatility structures of interest rates in both currencies, i.e. the functions

σi(t), κi(t), i = d, f , can be bootstrapped from European swaption market values for the

respective currency2, while θi(t), i = d, f , are determined by the current term struc-

tures of bond prices in the respective currency. More specifically, due to the analytical

tractability of the one-factor Hull-White model, the Hull-White model’s prices in the

2Since we are pricing swaps, it is natural to choose European swaptions for the calibration of the
interest rate models.
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respective currency for European swaptions are explicitly computable in terms of κi(t)

and σi(t), i = d, f [8]. The calibration for the one-factor Hull-White model for the

domestic/foreign short rates to the respective European swaption market values can be

posed as an optimization problem, in which we select values for the parameters κi(t) and

σi(t) that best match the model’s prices to the market prices in a least-squares sense.

Popular algorithms, such as Gauss-Newton and Levenberg-Marquardt, can be used for

such a least-squares optimization problem. Detailed discussions of these optimization

techniques can be found in the literature, e.g. in [56]. Note that, in practice, we should

only use the market prices of the most liquid swaptions, i.e. swaptions which are the most

actively traded, since these prices are more reliable and carry more information about

the current market situation than those of less liquid swaptions. Once σi(t) and κi(t) are

obtained, θi(t) can be computed by using σi(t), κi(t) and the current term structures of

bond prices in the respective currency (see Formula 3.34 in [8]).

While the methods to calibrate interest short rate models are well-known from single-

currency interest rate modeling, the calibration of the local volatility function γ(t, (s(t))

is very challenging. Essentially, the local volatility function γ(t, s(t)) should be calibrated

to FX options with different maturities and strikes traded on the market. One way to

reduce the volume of data used in the calibration is to pick particular strikes and/or

maturities of FX options relevant to the products we are pricing. Unfortunately, due to

the long maturities of PRDC swaps and typical choice of strikes, FX options across a

wide range of maturities and strikes must be used, a fact that makes the calibration of

a local volatility in the context of PRDC swaps very cumbersome and time-consuming.

In [58], an efficient calibration approach for the local volatility function γ(t, s(t)) based

on the forward FX rate is proposed. This approach is built upon on the following two

observations. First, under the domestic T -forward measure, i.e. the measure with Pd(·, T )
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as the numeraire [8], the forward FX rate F (·, T ) is a martingale3. Hence, the dynamics

of the forward FX rate F (·, T ), which can be obtained by applying Itô’s formula [63] to

(2.5), admit a much simpler representation under the domestic T -forward measure than

do the dynamics of the spot FX rate under the domestic risk-neutral measure (expressed

by (2.10a)). Essentially, F (t, T ) follows a one-dimensional stochastic differential equation

with no drift term, and with the diffusion coefficient given in terms of γ(t, (s(t)). Second,

a European call option on the spot FX rate with maturity T , i.e. an option on s(T ),

essentially a function of three spatial variables – the spot FX rate, the domestic and

foreign interest rates, can be expressed as a European option on only the forward FX

rate F (T, T ) under the domestic T -forward measure. This is a significant reduction in

the complexity of the problem. Combined with the skew-averaging techniques, which

essentially involve replacing time-dependent parameters with “effective” time-constant

ones, this approach enables a fast calibration of the local volatility function γ(t, (s(t)).

A more complete description of these calibration techniques can be found in [58].

2.2.4 The Associated PDE

We now give a PDE that the price of any security whose payoff is a function of s(t), rd(t)

and rf(t) must satisfy.

Theorem 2.2.1. Let u ≡ u(s, rd, rf , t) denote the domestic value function of a security

with a terminal payoff measurable with respect to the σ-algebra at maturity time Tend and

without intermediate payments. Furthermore, assume that u ∈ C2,1 on R+ × R × R ×

[Tstart, Tend), i.e. u is at least twice differentiable with respect to the space variables and

differentiable with respect to the time variable. Then on R+ × R × R × [Tstart, Tend), u

3A martingale is a zero-drift stochastic process. An introduction to martingales in the context of
applications in finance can be found in [63]. More mathematically rigorous discussions of (continuous-
time) martingales can be found in [41].
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satisfies the PDE

∂u
∂t

+Lsu ≡
∂u
∂t

+
1
2

γ2(t, s(t))s2 ∂2u
∂s2 +

1
2

σ2
d(t)

∂2u
∂r2

d
+

1
2

σ2
f (t)

∂2u
∂r2

f
+ ρdsσd(t)γ(t, s(t))s

∂2u
∂s∂rd

+ ρfsσf (t)γ(t, s(t))s
∂2u

∂s∂rf
+ ρdf σd(t)σf(t)

∂2u
∂rd∂rf

+ (rd − rf )s
∂u
∂s

+
(

θd(t) − κd(t)rd

) ∂u
∂rd

+
(

θf (t) − κf(t)rf − ρfsσf (t)γ(t, s(t))
) ∂u

∂rf
− rdu = 0.

(2.12)

Proof. Under the domestic risk-neutral measure, i.e the measure with Bd(t), the domes-

tic money account, as the numeraire, the normalized price process of any security is a

martingale. Since it is an Itô process, it must have zero drift. Calculating the drift term

of the normalized pricing process
u(s, rd, rf , t)

Bd(t)
using Itô’s formula [63] and setting it to

zero gives us the PDE (2.12).

Note that the aforementioned Tstart and Tend typically are the two consecutive dates

Tα−1 and Tα, respectively, of the swap’s tenor structure. Since we solve the PDE backward

in time, the change of variable τ = Tend − t is used. Under this change of variable, the

PDE (2.12) becomes
∂u
∂τ

= Lsu (2.13)

and is solved forward in τ . The pricing of cross-currency interest rate derivatives is

defined in an unbounded domain

{(s, rd, rf , τ)|s ≥ 0, −∞ < rd < ∞, −∞ < rf < ∞, τ ∈ [0, T ]}, (2.14)

where T = Tend−Tstart. To solve the PDE (2.13) numerically by finite difference methods,

we must truncate the unbounded domain into a finite-sized computational one

{(s, rd, rf , τ) ∈ [0, s∞] × [0, rd,∞] × [0, rf,∞] × [0, T ]} ≡ Ωs × [0, T ], (2.15)

where s∞, rd,∞ and rf,∞ are sufficiently large [71].
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Since payoffs and fund flows are deal-specific, we defer specifying the terminal con-

ditions until Chapter 3. The difficulty with choosing boundary conditions is that, for an

arbitrary payoff, they are not known. A detailed analysis on the boundary conditions

is not a focus of this thesis, and is a topic of future research. For this project, we im-

pose Dirichlet-type “stopped process” boundary conditions where we stop the processes

s(t), rf(t), rd(t) when any of the three hits the boundary of the finite-sized computational

domain. Thus, the value on the boundary is simply the discounted payoff for the current

values of the state variables [14].

Remark 2.2.3. It is known [4, 8] that, for Gaussian interest rate models, such as the

one-factor Hull-White model, the instantaneous short rate is not guaranteed to be non-

negative. More specifically, in the Hull-White model, there is a positive probability that

the instantaneous short rate can be negative, which is clearly a drawback of this model.

However, this probability is almost negligible in practice (see Subsection 3.3.1 of [8]).

So, to obtain a bounded computational domain, we have set the lower boundaries of

the computational domain to be zero in the rd- and rf -directions (see (2.15)). This is

similar to how we truncate the computational domain at the upper boundaries, excluding

unlikely events.

We conclude this chapter by noting that the Cox-Ingersoll-Ross (CIR) model [11, 12],

which guarantees positive instantaneous short rates, can be used for the domestic and

foreign short rates in the pricing model (2.10). The numerical methods developed in this

thesis are also expected to work well in this case. It would be interesting to compare the

effects of various choices for the interest short rate models on the prices of PRDC swaps.

We plan to investigate this issue further in the future.



Chapter 3

Pricing PRDC Swaps

3.1 Introduction

For a structured interest rate derivative with multiple fund flows, such as a “vanilla”

PRDC swap, its value at time T0 is the sum of time T0 values of individual fund flows

scheduled at each time Tα, α = 0, 1, . . . , β, of the swap’s tenor structure. When pric-

ing such a derivative using a PDE approach, a general pricing principle is to progress

backward in time from the time of the last fund flow (Tβ in the case of a PRDC swap,

for example) to the initial time T0 of the tenor structure. In this approach, a model-

dependent PDE, such as the PDE (2.12), is solved backward in time over each period

[T(α−1)+ , Tα−] of the tenor structure, i.e. from time Tend = Tα− to time Tstart = T(α−1)+ ,

with an appropriate terminal condition at time Tα− . These terminal conditions usually

include certain conditions to take into account possible fund flows at each time Tα. A

general pricing framework for cross-currency swaps and swaptions can be found in [14].

In pricing a PRDC swap with exotic features, a similar pricing framework could be

used. However, pricing such a PRDC swap is significantly more complex than pricing a

“vanilla” PRDC swap, since, at each of the times {Tα}β
α=1, in addition to multiple fund

flows of the PRDC coupons and the funding payments, a possibility of early termination

34
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of the underlying swap must be included. In addition, due to the very different natures

of these exotic features, as well as their levels of suitability to a PDE-based pricing

approach, different frameworks may need to be developed and special treatments may

need to be employed for the pricing of such derivatives via a PDE approach.

The outline of this chapter is as follows. In Section 3.2, we present the discretization

of the pricing PDE (2.13). We then discuss in detail PDE-based pricing algorithms for

“vanilla” PRDC swaps in Section 3.3, and for PRDC swaps with exotic features, namely

Bermudan cancelable, knockout and FX-TARN, in Sections 3.4, 3.5 and 3.6. Although

in practice, combinations of these exotic features are available, we only present pricing

algorithms for PRDC swaps with a single exotic feature. These algorithms can be used

as the building blocks for developing pricing algorithms for PRDC swaps with combined

exotic features.

3.2 Discretization

For the rest of the thesis, we adopt the following notation. Let the number of subintervals

be n + 1, p + 1, q + 1 and l in the s-, rd-, rf - and τ -directions, respectively. The uniform

grid mesh widths in the respective directions are denoted by ∆s =
s∞

n + 1
, ∆rd =

rd,∞

p + 1
,

∆rf =
rf,∞

q + 1
and ∆τ =

T
l

. Let the gridpoint values of a FD approximation to the

solution u be denoted by

um
i,j,k ≈ u(si, rdj, rfk, τm) = u(i∆s, j∆rd, k∆rf , m∆τ),

where i = 0, . . . , n + 1, j = 0, . . . , p + 1, k = 0, . . . , q + 1, m = 0, 1, . . . , l.

3.2.1 Space Discretization: Finite Difference Schemes

For the discretization of the space variables in the differential operator Ls, we employ

second-order central differences in the interior of the rectangular domain Ωs. Second-
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order FD approximations to the first and second partial derivatives of the space variables

in (2.13) are obtained by two- and three-point standard central schemes, respectively,

while the cross derivatives are approximated by a second-order four-point FD stencil. For

example, at the reference point (si, rdj, rfk, τm), the first and second partial derivatives

with respect to the spot FX rate (i.e.
∂u
∂s

and
∂2u
∂s2 ) are approximated by

∂u
∂s

∣∣∣
m

i,j,k
≈

um
i+1,j,k − um

i−1,j,k

2∆s
,

∂2u
∂s2

∣∣∣
m

i,j,k
≈

um
i+1,j,k − 2um

i,j,k + um
i−1,j,k

(∆s)2 ,

(3.1a)

(3.1b)

while the cross derivative ∂2u
∂s∂rd

is approximated by

∂2u
∂s∂rd

∣∣∣
m

i,j,k
≈

um
i+1,j+1,k + um

i−1,j−1,k − um
i−1,j+1,k − um

i+1,j−1,k

4∆s∆rd
, (3.2)

which can be viewed as obtained by successively applying the FD scheme (3.1a) for the

first derivatives in the s- and rd-directions. Similar approximations can be obtained for

the remaining spatial derivatives. It is important to note that, through Taylor expan-

sions, it can be verified that each of the formulas (3.1) and (3.2) has a second-order

truncation error, provided that the function u is sufficiently smooth. The derivations

of these formulas can be found in Appendix C.1. An illustration of the computational

stencil at the reference point (si, rdj , rfk, ·) is presented in Figure 3.2.1
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rd

s
rf

bc

b
(i−1,j−1,k)

bc

b
(i,j−1,k−1)

b
(i,j−1,k)
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bc

b
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Figure 3.2.1: The spatial computational stencil at the reference gridpoint (si, rdj , rfk, ·).

3.2.2 Time Discretization: ADI schemes

Several techniques, such as CN or ADI timestepping methods, can be used for the time

discretization of the PDE (2.13). Let um denote the vector of values of the unknown price

at time τm on the mesh Ωs that approximates the exact solution um = u(s, rd, rf , τm).

We denote by Am the matrix of size npq × npq arising from the FD discretization of

the differential operator Ls at τm. The standard explicit formula for Am is presented in

Appendix C.2. The CN method defines an approximation um to the true solution um,

m = 1, 2, . . . , l + 1, by solving the linear system1

(I −
1
2

∆τAm)um = (I +
1
2

∆τAm−1)um−1 +
1
2

∆τ(gm + gm−1), (3.3)

1For a detailed description of the CN timestepping method, see relevant discussions in Subsection 6.3.3
in the context of multi-asset American options written on three assets.
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where I denotes the identity matrix of the same size as Am. The vectors gm−1 and gm are

obtained from the boundary conditions. Applying direct methods, such as LU factoriza-

tion, to solve this linear system can be computationally very expensive for several reasons:

(i) the matrix I− 1
2∆τAm possesses a bandwidth proportional to min{np, nq, pq}, depend-

ing on the ordering of the gridpoints, (ii) sparse solvers suffer considerable fill-in when

solving systems derived from PDEs of the form (2.13), and (iii) this matrix needs to be

factored at each timestep because of its dependence on the timestep index m arising from

time-dependent coefficients in the PDE (2.13). To avoid the high computational cost of

direct methods, iterative methods, such as the Generalized Minimal Residual method

(GMRES) or the Conjugate Gradient method, can be combined with a preconditioning

technique, such as the Fast Fourier Transform (FFT) or an Incomplete LU factorization

[25, 62], to solve (3.3). The reader is referred to Appendix D for a detailed discussion

of this approach. An alternative approach is to apply an AF technique, in which the

matrix I − 1
2∆τAm is approximately factored into a product of three tridiagonal matri-

ces. Hence, the computational cost is directly proportional to the number of gridpoints.

We investigate this approach in the context of pricing multi-asset American options in

Chapter 6 .

For the time discretization of the PDE (2.13), we employ the ADI timestepping

technique. For this purpose, we decompose the matrix Am into four submatrices:

Am = Am
0 + Am

1 + Am
2 + Am

3 .

The matrix Am
0 is the part of A that comes from the FD discretization of the cross

derivative terms in (2.13), while the matrices Am
1 , Am

2 and Am
3 are the three parts of Am

that correspond to the spatial derivatives in the s-, rd-, and rf -directions, respectively.

The term rdu in Lsu is distributed evenly over Am
1 , Am

2 and Am
3 . The standard explicit

formula for Am
i , i = 0, 1, 2, 3, is presented in Appendix C.2.

We consider the splitting scheme based on the Hundsdorfer and Verwer (HV) approach
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[33, 36, 34], referred to henceforth as the HV scheme. Starting from um−1, the HV scheme

generates an approximation um to the exact solution um, m = 1, . . . , l, by2






v0 = um−1 + ∆τ(Am−1um−1 + gm−1),

(I − θ∆τAm
i )vi = vi−1 − θ∆τAm−1

i um−1 + θ∆τ(gm
i − gm−1

i ), i = 1, 2, 3,

ṽ0 = v0 +
1
2

∆τ(Amv3 − Am−1um−1) +
1
2

∆τ(gm − gm−1),

(I − θ∆τAm
i )ṽi = ṽi−1 − θ∆τAm

i v3, i = 1, 2, 3,

um = ṽ3.

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(3.4e)

In (3.4), the vector gm is given by gm =
∑3

i=0 g
m
i , where gm

i are obtained from the bound-

ary conditions corresponding to the respective spatial derivative terms. An illustration

of the tridiagonal solves in Steps (3.4b) and (3.4d) is given in Figure 3.2.2.
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Figure 3.2.2: Tridiagonal solves along each spatial dimension in Steps (3.4b) and (3.4d):

(a) along s when i = 1, (b) along rd when i = 2, and (c) along along rf when i = 3.

The parameter θ in (3.4) is directly related to the stability and accuracy of the ADI

scheme. As mentioned in [33], a recommended range for θ is 1
2 ≤ θ ≤ 1, where θ = 1

2 is

the most accurate, but θ = 1 gives more damping of the error terms arising from non-

smooth initial conditions (i.e. the payoff function). In the experiments, for most cases,

2This is the scheme (1.4) in [36] with µ = 1
2 .
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we observe that θ = 1
2 works fine, except in the case of knockout PRDC swaps, where

the payoff functions are discontinuous at each date of the tenor structure. In such a case,

to take advantage of the damping property of the HV scheme when θ = 1, we apply the

HV scheme with θ = 1 for the first few (usually two) initial timesteps and then switch to

θ = 1
2 for the remaining timesteps, depending on the payoff functions. We refer to this

timestepping technique as HV smoothing. We discuss the discontinuities in the payoffs

of knockout PRDC swaps and the application of the HV smoothing technique in more

detail in Section 3.5. We emphasize that choosing the parameter θ = 1 gives a “partially”

fully implicit timestepping method only, not a fully implicit one. Hence, HV smoothing

is not the same as Rannacher smoothing [60], which initially uses a few (usually two

or three) steps of fully implicit timestepping before switching to another timestepping

method, such as CN. Note that the HV scheme has been proved to be unconditionally

stable for arbitrary spatial dimension [36].

The HV splitting scheme treats the cross derivative part (Am
0 ) in a fully-explicit way,

while the Am
i parts, i = 1, 2, 3, are treated implicitly. The first two lines of (3.4) can be

viewed as an explicit Euler predictor step followed by three implicit, but unidirectional,

corrector steps aiming to stabilize the predictor step. Several well-known ADI meth-

ods, such as the Douglas and Rachford method [15], are special instances of these two

steps. The purpose of the additional stages that compute ṽi, i = 0, . . . , 3, is to restore

second-order convergence for the general case with cross-derivatives, while retaining the

unconditional stability of the scheme. The FD discretization for the spatial variables

described in (3.1) implies that, if the grid points are ordered appropriately, the matri-

ces Am
1 , Am

2 and Am
3 are block-diagonal with tridiagonal blocks. (There is a different

ordering for each of Am
1 , Am

2 and Am
3 . See Appendix C.1.) As a result, the number of

floating-point operations per time step is directly proportional to npq, which yields a big

reduction in computational cost compared to the application of a direct method, such as
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the LU factorization, to solve the problem arising from a FD time discretization, such as

CN.

We conclude this section by noting that, from the point of view of designing a parallel

algorithm, the block diagonal structure of the matrices Am
i , i = 1, 2, 3, gives rise to a

natural, efficient parallelization for the solutions of the linear systems in Steps (3.4b)

and (3.4d). However, it is less obvious how Steps (3.4a) and (3.4c) can be efficiently

parallelized. We address this point in more detail in Chapter 4.

3.3 Vanilla PRDC Swaps

In this section, we consider the pricing of “vanilla” PRDC swaps. Let uc
α(t) and uf

α(t)

be the values at time t of all PRDC coupons and funding payments, respectively, of a

“vanilla” PRDC swap scheduled on or after Tα+1. We are interested in the quantity

uf
0(T0) − uc

0(T0) as the value of the vanilla PRDC swap to the issuer, taking into account

the fact that the PRDC coupons being paid by the issuer and the LIBOR payments being

received by the issuer.

The funding leg can be priced via the “fixed notional” method, and not by solving

the PDE, i.e. by equating each domestic LIBOR inflow ναLd(Tα)Nd at time {Tα}β
α=1 to

receiving and paying the amount Nd at times Tα−1 and Tα, respectively. A description of

this method is presented in Appendix E.1. Following this approach, the quantity uf
0(T0)

can be computed by

uf
0(T0) = (1 − Pd(T0, Tβ))Nd. (3.5)

On the other hand, the PRDC coupon leg of a “vanilla” PRDC swap can be viewed as

a portfolio of simple FX options with different maturities, i.e. with maturities {Tα}β
α=1,

and hence, the quantity uc
0(T0) can be obtained by progressing backward in time from

time Tβ to time T0, as specified in Algorithm 3.3.1.
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Algorithm 3.3.1 Algorithm for computing the coupon part of “vanilla” PRDC swaps.
1: set uc

β(Tβ+) = 0;

2: for α = β, . . . , 1 do

3: set uc
α−1(Tα−)=uc

α(Tα+) + ναCαNd; (3.6)

4: solve the PDE (2.12) backward in time with the terminal condition (3.6) from Tα−

to T(α−1)+ using the ADI scheme (3.4) for each time τm, m = 1, . . . , l, to obtain

uc
α−1(T(α−1)+).

5: end for

6: set uc
0(T0) = uc

0(T0+);

3.4 Bermudan Cancelable PRDC Swaps

As described in Section 2.2, in a Bermudan cancelable PRDC swap with the tenor struc-

ture (2.4), the issuer has an option to cancel the underlying swap at any of the dates

{Tα}β
α=1 after the exchange of fund flows scheduled on that date. Below, we first dis-

cuss a key observation in pricing Bermudan cancelable PRDC swaps, and then present a

PDE-based pricing algorithm for these derivatives.

3.4.1 Key Observation

The crucial observation in valuing Bermudan cancelable PRDC swaps is that terminating

a swap at time Tα is the same as (i) continuing the underlying swap which, in our case,

is a “vanilla” PRDC swap, and (ii) entering into the offsetting (opposite) swap at time

Tα, i.e. a “vanilla” swap with the reversed fund flows at each of the remaining dates

{Tα+1, . . . Tβ} of the tenor structure. An illustration of this observation is presented

in Figure 3.4.1. It is obvious from Figure 3.4.1 that the total effect of continuing the

underlying swap at time Tα and entering the opposite swap at time Tα is a zero net fund

flow at each of the dates {Tα+1, . . . Tβ}. This is exactly the same as canceling the swap
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at time Tα.

T0 T1 b b b Tα Tα+1 b b b Tβ Tβ+1

ν1Ld(T1)Nd

ν1C1Nd

ναLd(Tα)Nd

ναCαNd canceled

no-call

period

No further fund flows

(a)

Equivalent to

T0 T1 b b b Tα Tα+1 b b b Tβ Tβ+1

ν1Ld(T1)Nd

ν1C1Nd

ναLd(Tα)Nd

ναCαNd

να+1Ld(Tα+1)Nd

να+1Cα+1Nd

νβLd(Tβ)Nd

νβCβNd

continue the underlying swap

And

(b)

Tα Tα+1 b b b Tβ Tβ+1

να+1Ld(Tα+1)Nd

να+1Cα+1Nd

νβLd(Tβ)Nd

νβCβNd

enter the opposite swap
(c)

Figure 3.4.1: Key observation in pricing Bermudan cancelable PRDC swaps: canceling

the swap at time Tα (a) is equivalent to continuing the swap (b) and entering the opposite

swap at time Tα (c).



CHAPTER 3. PRICING PRDC SWAPS 44

3.4.2 A PDE Pricing Algorithm

Following the above observation, the pricing of a Bermudan cancelable swap can be

divided into the pricing of the underlying swap and the pricing of an option that gives

its holder, i.e. the PRDC coupon issuer, the right, but not an obligation, to cancel the

underlying swap, i.e. an option to enter the offsetting swap, at any of the dates {Tα}β
α=1.

This option is essentially a Bermudan swaption, as described on page 20, Subsection 2.1.2.

By the above argument, from the perspective of the issuer, we can regard a Bermudan

cancelable PRDC swap as a “vanilla” PRDC swap that has the same tenor structure,

referred to as the underlying PRDC swap, plus a long position in a Bermudan swaption,

the underlying of which is a “vanilla” swap with the same tenor structure, but involves

PRDC coupons being received and domestic floating payments being paid. We refer to

this Bermudan swaption as the offsetting Bermudan swaption and its underlying swap as

the offsetting swap. As a result, the pricing of a Bermudan cancelable PRDC swap can

be divided into two subproblems: (i) the pricing of the underlying PRDC swap and (ii)

the pricing of the associated offsetting Bermudan swaption described above. Subproblem

(i) can be solved via Algorithm 3.3.1 described on page 42, Section 3.3. Below, we discuss

the pricing of the associated offsetting Bermudan swaption.

Denote by ue
α(t) the value at time t of all fund flows in the offsetting swap scheduled

on or after Tα+1. The quantity ue
α(t) can be computed by

ue
α(t) = −(uf

α(t) − uc
α(t)), (3.7)

which in turn can be obtained via the pricing of the underlying PRDC swap. Let uh
α(t)

be the value at time t of the offsetting Bermudan swaption that has only the dates

{Tα+1, . . . , Tβ−1} as exercise opportunities, i.e. the option is still alive at time Tα. In

particular, the quantity uh
0(T0) is the value of the offsetting Bermudan swaption we are

interested in at time T0. If the option has not been exercised up to and including time

Tα, then the value uh
α−1(Tα+) is equal to uh

α(Tα+) (the “hold value”). On the other hand,
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if the option is exercised at time Tα, then the value uh
α−1(Tα+) is ue

α(Tα+) (the “exercise

value”). Assume optimal exercise at each of {Tα}β−1
α=1. That is, the PRDC coupon issuer

will exercise the offsetting Bermudan swaption at Tα if and only if the value ue
α(Tα)

exceeds the value uh
α(Tα). As a result, the condition for whether or not to exercise the

offsetting Bermudan swaption at Tα is enforced by

uh
α−1(Tα+) = max(uh

α(Tα), ue
α(Tα)).

The quantity uh
α−1(Tα+) is the payoff for the offsetting Bermudan swaption at each of

{Tα}β−1
α=1. A backward pricing algorithm for the associated offsetting Bermudan swaption

is described in Algorithm 3.4.1. The value of the offsetting Bermudan swaption is uh
0(T0),

and the value of the Bermudan cancelable PRDC swap is uh
0(T0) + (uf

0(T0) − uc
0(T0)).

Algorithm 3.4.1 Algorithm for computing the offsetting Bermudan swaption.
1: set uh

β(T(β)+)=0 and ue
β(T(β)+)=0;

2: for α = β, . . . , 1 do

3: set uh
α−1(Tα−) = max(uh

α(Tα+), ue
α(Tα+)); (3.8)

4: solve the PDE (2.12) backward in time with the terminal condition (3.8) from Tα−

to T(α−1)+ using the ADI scheme (3.4) for each time τm, m = 1, . . . , l, to obtain

uh
α−1(T(α−1)+);

5: compute ue
α−1(T(α−1)+) by (3.7), where uc

α−1(T(α−1)+ ) is computed from Line 4 of

Algorithm 3.3.1, and uf
α−1(T(α−1)+) is computed by the “fixed notional” method.

6: end for

7: set uh
0(T0) = uh

0(T0+);

We conclude this section by noting that, from the point of view of designing a parallel

algorithm, by dividing the pricing of Bermudan cancelable PRDC swaps into two inde-

pendent pricing subproblems during each period of the tenor structure, we can run the

two pricing processes, each for a subproblem, in parallel with communications only at
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{Tα}β−1
α=1. In Chapter 4, we describe in more detail how this approach is very well-suited

for the parallel pricing of Bermudan cancelable PRDC swaps on a multi-GPU platform.

3.5 Knockout PRDC Swaps

As described in Section 2.2, in a knockout PRDC swap with the tenor structure (2.4), at

each of the dates {Tα}β
α=1, a barrier condition, which stipulates that, after the exchange

of fund flows scheduled on that date, the swap terminates if the spot FX rate s(Tα) is

greater than the upper barrier, hereinafter denoted by Bu, must be enforced.

Let uk
α(t) be the value at time t of a knockout PRDC swap that has {Tα+1, . . . , Tβ} as

knockout opportunities, i.e. the swap is still alive at time Tα. In particular, the quantity

uk
0(T0) is the value of the knockout PRDC swap that we are interested in at time T0.

If the PRDC swap has not been knocked out up to and including time Tα, the value

uk
α−1(Tα+) is equal to uα(Tα+). On the other hand, if s(Tα) > Bu, i.e. the swap knocks

out at time Tα, the quantity uk
α−1(Tα+) is zero. That is, the condition for a possibility of

early termination of a knockout PRDC swap at each of the times {Tα}β
α=1 is enforced by

uk
α−1(Tα+) =






0 if s(Tα) > Bu,

uk
α(Tα+) otherwise.

The quantity uk
α−1(Tα+) is part of the terminal condition for the solution of the PDE

over the next period [T(α−1)+ , Tα− ], as described below.

We now consider the backward pricing algorithm for knockout PRDC swaps from

time Tα− to T(α−1)+ . One may attempt to start the backward algorithm at time Tα− with

the payoff

ūk
α−1(Tα−) ≡ uk

α−1(Tα+) + ναLd(Tα)Nd − ναCαNd,

where ναLd(Tα)Nd and ναCαNd are the funding payment and PRDC coupon amount

scheduled at time Tα, respectively. Unfortunately, this is a path-dependent payoff, since
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the LIBOR rate Ld(Tα) is determined at time Tα−1, but the LIBOR payment takes place

at time Tα. To overcome this difficulty, over each period of the swap’s tenor structure,

we consider the pricing of the funding leg and the PRDC coupon leg separately. More

specifically, the value at time Tα−1 of the funding payment scheduled at time Tα can be

obtained via the “fixed notional” method. Following this approach, the value at time

T(α−1)+ of the funding payment scheduled on Tα is simply given by

(1 − Pd(Tα))Nd. (3.9)

On the other hand, the value at time T(α−1)+ of the PRDC coupon ναNdCα is computed

by solving the PDE (2.12). To this end, let ¯̄uα−1(T(α−1)+ ) be the value obtained by solving

the PDE (2.12) backward in time from time Tα− to time T(α−1)+ with terminal condition

ūk
α−1(Tα−) ≡ uk

α−1(Tα+) − ναCαNd.

The value of the knockout PRDC swap at time T(α−1)+ is then given by

uα−1(T(α−1)+ ) ≡ ¯̄uα−1(T(α−1)+) + (1 − Pd(Tα))Nd.

A backward pricing algorithm for knockout PRDC swaps is presented in Algorithm 3.5.1.

Remark 3.5.1. It is important to note that, due to (3.10), the payoff (3.11) resembles

that of a digital option. It is well-known that discontinuities in a digital-type payoff

function can result in a reduction of the observed order of convergence of a numerical

scheme [59]. In the context of option pricing, to restore the expected order of convergence,

a remedy is to have the strike price positioned midway between the gridpoints [59, 66],

a technique referred to as the grid shifting technique. We adopt this technique in our

numerical method: the grids are chosen so that the fixed upper barrier Bu lies midway

between the gridpoints in the spot FX rate, i.e. the s-direction. It is not necessary

to have Bu as a midpoint of the grid in the rd- and/or rf -directions, since the digital



CHAPTER 3. PRICING PRDC SWAPS 48

Algorithm 3.5.1 Algorithm for computing knockout PRDC swaps.
1: set uk

β(Tβ+) = 0;

2: for α = β, . . . , 1 do

3: set

uk
α−1(T(α)+) =






0 if s(Tα) > Bu,

uk
α(T(α)+) otherwise;

(3.10)

4: set

ūk
α−1(Tα−) = uk

α−1(Tα+) − ναNdCα; (3.11)

5: solve the PDE (2.12) with the terminal condition (3.11) backward in time from

Tα− to T(α−1)+ using the ADI scheme (3.4) for each time τm, m = 1, . . . , l, to obtain

¯̄uk
α−1(T(α−1)+);

6: set uk
α−1(T(α−1)+) = ¯̄uk

α−1(T(α−1)+ ) + (1 − Pd(Tα))Nd;

7: end for

8: set uk
0(T0) = uk

0(T0+);

condition of the payoff function (3.10) depends only on the spot FX rate s(t). Although

other techniques for smoothing the discontinuities in the initial data, such as averaging

and projection methods [59], can be used, we adopted the grid shifting technique for

our experiments due to its simplicity and effectiveness. In addition, it is worth pointing

out that, with the discontinuities in the payoff functions being introduced at each of the

times {Tα}β
α=1, in our experiments, we apply the HV smoothing technique for each of

the dates {Tα}β
α=1 of the tenor structure when knockouts are possible. This is similar to

the techniques discussed in [6] in the context of discrete barrier options. Our numerical

results presented in Chapter 5 show that this technique provides good damping and works

well for PRDC swaps with a knockout provision.
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3.6 FX-TARN PRDC Swaps

In a PRDC swap with a FX-TARN feature, the sum of all PRDC coupon amounts

ναCαNd paid to date is recorded, and the swap is terminated pre-maturely on the first

date of the tenor structure when the accumulated PRDC coupon amount, including

the coupon amount scheduled on that date, has reached the pre-determined target cap,

hereinafter denoted by Ac. A diagram illustrating the dynamics of FX-TARN PRDC

swaps is presented in Figure 3.6.1.

T0 T1 T2 b b b Tα b b b Tβ Tβ+1

no-call

period

ν1Ld(T1)Nd

ν1C1Nd

{
stop if
∑1

i=1 νiCiNd ≥ Ac

1∑

i=1

νiCiNd < Ac

continue

ν2Ld(T2)Nd

ν2C2Nd

{
stop if
∑2

i=1 νiCiNd ≥ Ac

2∑

i=1

νiCiNd < Ac

continue

α−1∑

i=1

νiCiNd < Ac

continue

ναLd(Tα)Nd

ναCαNd

{
stop if
∑α

i=1 νiCiNd ≥ Ac

continue

Figure 3.6.1: Fund flows and possibilities of pre-mature termination in a FX-TARN

PRDC swap.

The fluctuations in the spot FX rate lead to uncertainty in how much the PRDC coupon

amounts will be on each date of the tenor structure, and, in turn, uncertainty in whether

and when the PRDC swap will be pre-maturely terminated. The uncertainty of the early

termination date is governed by a path-dependent variable, the running accumulated

PRDC coupon sum. Due to the path-dependence of the TARN feature, Monte-Carlo

simulation is currently the only method used for the valuation of cross-currency/FX

interest rate hybrids with this feature.
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We observe a similarity between the TARN feature of a PRDC swap and the knock-

out feature of an Asian barrier option which is governed by the average asset value [75].

Following [75], our PDE pricing approach for FX-TARN PRDC swaps is based on an

auxiliary path dependent state variable, hereinafter denoted by a(t), 0 ≤ a(t) < Ac,

which represents the accumulated PRDC coupon amount. This variable stays constant

between dates of the swap’s tenor structure and is updated on each date of the tenor

structure to reflect the PRDC coupon amount known on that date. It can be used to

determine the pre-mature termination of the underlying swap on that date.

Due to the fact that the early termination date of a FX-TARN PRDC swap is governed

by the path-dependent variable a(t), the main challenge in pricing a FX-TARN PRDC

swap using a PDE approach is to handle efficiently the path-dependency of the problem.

It is worth emphasizing that MC simulation is well-suited for path-dependent financial

problems, such as those arising in Asian option pricing, since MC simulation computes

the paths forward in time. On the other hand, the PDE approach is a natural choice for

pricing financial derivatives with early exercise features, such as American-style options,

since these features are most easily handled if the solution is computed backward in time

from the maturity date to the start date. For example, we have seen in Section (3.4) that

a PDE approach can naturally handle the pricing of a Bermudan swaption which is an

American-style derivative with multiple, albeit discrete, exercise opportunities. Below,

we first introduce further notation, then discuss the updating rules at dates of the swaps’

tenor structure, and a key observation in pricing FX-TARN PRDC swaps. Finally, we

present a PDE pricing algorithm for these products based on the auxiliary variable a(t).

The value of a FX-TARN PRDC swap depends on four stochastic state variables,

namely s(t), rd(t), rf(t) and the path dependent variable a(t). We denote by u ≡

u(s, rd, rf , t; a) the domestic value function of a FX-TARN PRDC swap. For presentation
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purposes, we further adopt the following notation

aα+ ≡a(Tα+); aα− ≡a(Tα−); uα+ ≡u(s, rd, rf , Tα+ ; aα+); uα− ≡u(s, rd, rf , Tα− ; aα−).

Since a is constant between dates of the tenor structure, we have a(α−1)+ = aα− .

3.6.1 Updating Rules

It is important to note that, since a(t) changes only on the dates {Tα}β
α=1, the pricing

PDE does not depend on a(t). More specifically, apart from dates {Tα}β
α=1, for any fixed

value of a, the function u satisfies the model-dependent PDE (2.12). On each of the dates

{Tα}β
α=1, assuming that aα− < Ac, i.e. the swap is still alive at time Tα− , the quantity a

changes according to the updating rule

aα+ = aα− + min(Ac − aα− , ναCαNd) ≡ a(α−1)+ + min(Ac − aα− , ναCαNd), (3.12)

taking into account the fact that aα− = a(α−1)+ . The quantity min(Ac − aα− , ναCαNd) in

(3.12) is the actual PRDC coupon amount paid at Tα, taking into account the target cap

Ac for the total coupon amount. When aα+ = Ac, the swap terminates. By no-arbitrage

arguments, across each date {Tα}β
α=1, u must satisfy the updating rule

uα+ = uα− + ναLd(Tα)Nd − min(Ac − aα− , ναCαNd). (3.13)

A diagram illustrating the updating rules (3.12) and (3.13) is presented in Figure 3.6.2.

3.6.2 Key Observation

In the context of pricing interest rate swaps via a PDE approach in general, the purpose

of the backward procedure from the last date of exchange of fund flows (e.g. Tβ in our

case) to the date T(α−1)+ , α = β, . . . 1, is essentially to compute the value at time T(α−1)+
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T0 b b b Tα b b b Tβ Tβ+1

Tα− Tα+

aα− < Ac

ναLd(Tα)Nd

ναCαNd

aα+ = aα− + min(Ac − aα− , ναCαNd)
uα− uα+ = uα− + ναLd(Tα)Nd

− min(Ac − aα−, ναCαNd)

Figure 3.6.2: Updating rules in a FX-TARN PRDC swap.

of all the fund flows scheduled on or after Tα in the swaps’ tenor structure. In the

context of FX-TARN PRDC swaps, if the swaps are pre-maturely terminated by the

time T(α−1)+ , there are no further fund flows scheduled on or after Tα, and hence, this

value is zero. That is, over each period [T(α−1)+ , Tα− ] of the swaps’ tenor structure, the

backward procedure which computes the solution backward in time from Tα− to T(α−1)+

needs to be concerned only with swaps that are still alive at time T(α−1)+ , i.e. swaps that

have 0 ≤ a(α−1)+ < Ac. Since we progress backward in time and the variable a(t) is path-

dependent, we do not know the exact value of a(α−1)+ . However, since 0 ≤ a(α−1)+ < Ac,

we can discretize the variable a as we do for other variables. This key observation leads

to the following general PDE pricing framework for a FX-TARN PRDC swap:

(i) Across each date of {Tα}1
α=β, for each discretized value of the variable a, apply the

updating rules (3.12-3.13) on the swap values to

(a) take into account the fund flows scheduled on that date;

(b) reflect changes in the accumulated PRDC coupon amount, and the possibility

of early termination;

(c) obtain terminal conditions for the solution of the PDE from time Tα− to T(α−1)+

(see Step (ii) below);
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(ii) Over each period [T(α−1)+ , Tα−], α = β, . . . , 1, of the swap’s tenor structure, for

each discretized value of the variable a, solve the model PDE (2.12) backward in

time from Tα− to T(α−1)+ , with the corresponding terminal condition obtained in

Step (i).

Below, we describe in detail a PDE-based pricing algorithm for FX-TARN PRDC swaps.

3.6.3 A PDE Pricing Algorithm

We further adopt the following notation. Let the interval [0, Ac], for a given number of

subintervals w + 1, be partitioned by

0 = a0 < a1 < . . . < aw < aw+1 = Ac. (3.14)

Note that, for all periods of the swap’s tenor structure, we have the fixed set of gridpoints

(3.14) in the a-direction. Let uα(t; a) represent the value at time t of a FX-TARN PRDC

swap that has (i) {Tα+1, . . . , Tβ} as pre-mature termination opportunities, i.e. the swap

is still alive at time Tα, and (ii) the total accumulated PRDC coupon amount, including

the coupon amount scheduled on Tα, is equal to a < Ac. In particular, the quantity

u0(T0; 0) is the value of the FX-TARN PRDC swap we are interested in at time T0.

If a FX-TARN PRDC swap has not been pre-maturely terminated by time Tα, i.e.

aα+ < Ac, the value uα−1(Tα+ ; a(α−1)+) is given by

uα−1(Tα+ ; a(α−1)+) = uα(Tα+ ; aα+) ≡ uα(Tα+ ; a(α−1)+ + min(Ac − a(α−1)+ , ναCαNd)),

according to the updating rule (3.12). On the other hand, if the swap is terminated at

time Tα, we then have uα−1(Tα+ ; a(α−1)+) is equal to zero. That is, the condition for a

possibility early termination of a FX-TARN PRDC swap at each of the times {Tα}β
α=1 is

enforced by

uα−1(Tα+ ; a(α−1)+) =






0 if aα+ ≥ Ac,

uα(Tα+ ; aα+) otherwise,
(3.15)
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where aα+ = a(α−1)+ + min(Ac − a(α−1)+ , ναCαNd).

One may attempt to start the backward algorithm at time Tα− with the payoff

uα−1(Tα+ ; a(α−1)+) + ναLd(Tα)Nd − ναCαNd.

However, there are several issues with this payoff. First of all, this is a path-dependent

payoff, similar to those arising in pricing knockout PRDC swaps (see Section 3.5). To

overcome this difficulty, over each period of the tenor structure, we can consider the

valuations of the funding payment and the PRDC coupon parts separately, as we do

when pricing knockout PRDC swaps. The second issue arises from the fact that the

set of gridpoints in the a-direction is fixed, i.e. a(α−1)+ is typically a gridpoint of (3.14)

excluding Ac, and hence, the quantity aα+ = a(α−1)+ + min(Ac − a(α−1)+ , ναCαNd) in

(3.15) may not be a gridpoint in the a-direction, i.e. not a gridpoint of (3.14). As a

result, the value

uα(Tα+ ; aα+) ≡ uα(Tα+ ; a(α−1)+ + min(Ac − a(α−1)+ , ναCαNd))

of (3.15) may not be immediately available. Below, we illustrate how to enforce (3.15)

using only the fixed set of gridpoints (3.14) and discuss the backward procedure for

FX-TARN PRDC swaps from time Tα− to T(α−1)+ .

Assume that uα(Tα+ ; ay), y = 0, . . . , w, are computed at the previous period of the

tenor structure, i.e. these are available at Tα+ . For each ay, y = 0, . . . , w, we first find

the corresponding quantity āy specified by

āy = ay + min(Ac − ay, ναCαNd).

Note that the quantity āy depends on Tα, but, to simplify the notation, we do not indicate

its time dependence. We then find uα−1(Tα+ ; āy) by using uα(Tα+ ; ay), y = 0, . . . , w + 1.

More specifically, if āy ≥ Ac, i.e. the swap is terminated pre-maturely at time Tα, and

hence, uα−1(Tα+ ; āy) is zero. On the other hand, if āy < Ac, the swap is not pre-maturely
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terminated at time Tα. In this case, āy may fall between the computational grid points

in the a-direction, i.e. aȳ ≤ āy ≤ aȳ+1, for some ȳ in {0, . . . , w}. To approximate

uα−1(Tα+ ; āy), we apply linear interpolation [75]

uα−1(Tα+ ; āy) =
āy − aȳ

aȳ+1 − aȳ
uα(Tα+ ; aȳ+1) +

aȳ+1 − āy

aȳ+1 − aȳ
uα(Tα+ ; aȳ). (3.16)

Note that, in the special case that ȳ = w, we set uα(Tα+ ; aȳ+1) ≡ uα(Tα+ ; Ac) = 0. The

above procedure essentially enforces (3.15), within the accuracy of linear interpolation.

Regarding the backward procedure, we first take into account the PRDC coupon

payment by computing

ûα−1(Tα−; ay) = uα−1(Tα+ ; āy) − min(Ac − ay, ναCαNd),

which becomes the terminal condition for the PDE (2.12). We then solve this PDE

backward in time from Tα− to T(α−1)+ using the the ADI scheme (3.4) for each time

τm, m = 1, . . . , l, to obtain ˆ̂uα−1(T(α−1)+ ; ay). Finally, we incorporate the funding leg

payment by computing

uα−1(T(α−1)+ ; ay) = ˆ̂uα−1(T(α−1)+ ; ay) + (1 − Pd(Tα))Nd.

A backward pricing algorithm for FX-TARN PRDC swaps is presented in Algorithm 3.6.1.

We conclude this section by noting that, from the point of view of designing a parallel

algorithm, by dividing the pricing of FX-TARN PRDC swaps into multiple independent

pricing subproblems during each period of the tenor structure, we can run these pricing

processes, each for a subproblem, in parallel with communication only at {Tα}β−1
α=1 in order

to carry out the interpolation (3.16) (also see Remark 3.6.1 on page 55). In Chapter 4,

we describe in more detail how this approach is very well-suited for the parallel pricing

of FX-TARN PRDC swaps on a cluster of GPUs.

Remark 3.6.1. Since ay ≤ āy, for the interpolation scheme (3.16), the process associated

with ay would possibly need, besides its own data uα(Tα+ ; ay), some data from some
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pricing processes associated with ay+1 . . . aw, i.e. uα(Tα+ ; ay+1), . . . uα(Tα+ ; aw), but not

the other way around. For example, the process associated with a0 would potentially

need data from all other processes (a total of w processes), while the process associated

with aw do not require any data from any other process. Figure 3.6.3 gives a pictorial

illustration of this observation.

bcawbcaw−1bcaw−2b b bbca2bca1bca0

bcawbcaw−1bcaw−2b b bbca2bca1bca0

processes

possible processes
involved in

communications

Figure 3.6.3: Possible required communications for interpolations between pricing pro-

cesses.
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Algorithm 3.6.1 Backward algorithm for computing FX-TARN PRDC swaps.
1: set uβ(Tβ+ ; ay) = 0, y = 0, . . . , w;

2: for α = β, . . . , 1 do

3: for each ay, y = 0, . . . , w, do

4: set

āy = ay + min(Ac − ay, ναCαNd); (3.17)

5: set

uα−1(Tα+ ; āy) =






0 if āy ≥ Ac

āy − aȳ

aȳ+1 − aȳ
uα(Tα+ ; aȳ+1)

+
aȳ+1 − āy

aȳ+1 − aȳ
uα(Tα+ ; aȳ) if aȳ ≤ āy ≤ aȳ+1,

ȳ ∈ {0, . . . , w}.
(3.18)

6: set

ûα−1(Tα− ; ay) = uα−1(Tα+ ; āy) − min(Ac − ay, ναCαNd), (3.19)

7: solve the PDE (2.12) with the terminal condition (3.19) from Tα− to T(α−1)+ using

the ADI scheme (3.4) for each time τm, m = 1, . . . , l, to obtain ˆ̂uα−1(T(α−1)+ ; ay);

8: set

uα−1(T(α−1)+ ; ay) = ˆ̂uα−1(T(α−1)+ ; ay) + (1 − Pd(Tα))Nd; (3.20)

9: end for

10: end for

11: set u0(T0; 0) = u0(T0+ ; 0);



Chapter 4

Efficient Implementation on GPUs

The focus of this chapter is on the detailed description of an efficient implementation

on GPUs of the pricing algorithms presented in the previous chapter. This chapter is

organized as follows. In Section 4.1, we first summarize some key properties of the GPU

device architecture and the CUDA Application Programming Interface (API) necessary

to understand our implementation on GPUs of the pricing algorithms. We then provide

details about the GPU cluster that we used for the experiments. In Section 4.2, we

present general frameworks of our pricing algorithms for PRDC swaps on multi-GPU

platforms/clusters of GPUs. A GPU-based implementation of the ADI timestepping

scheme (3.4) is presented in Section 4.3. An implementation of the GPU-based interpo-

lation technique used for FX-TARN PRDC swaps is discussed in Section 4.4. Section 4.5

provides details about other related implementations. Although the focus of the imple-

mentation of the numerical methods for pricing FX-TARN PRDC swaps is on clusters of

GPUs, in Section 4.6, we briefly present an implementation for pricing FX-TARN PRDC

swaps on a single GPU.

58
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4.1 Background

4.1.1 GPU Device Architecture

Although the focus in this subsection is on NVIDIA products, offerings from other GPU

manufacturers, such as ATI, are similar. This section is intended as a short overview of the

basic concepts only. More detailed descriptions of the architecture and the programming

model can be found, for example, in [45, 57].

Device

Device Memory

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared Memory

Texture Cache

Constant Cache

Processor 1

Register

Processor M

Register I/U

Host

Figure 4.1.1: Architectural visualization of a

GPU device and memory [57].

The modern GPU can be viewed as

a set of independent streaming multi-

processors (SMs) [57]. One such SM

contains, amongst other things, several

scalar processors which can execute in-

teger and single- and double-precision

floating-point arithmetic, several registers,

a multi-threaded instruction unit (I/U),

and shared memory. The latest GPUs,

such as those based on the “Fermi” archi-

tecture, also have L1/L2 caches. A graph-

ical illustration of the layout of a GPU is

given in Figure 4.1.1. The shared memory

can be accessed by all scalar processors of a multiprocessor, while the registers have

processor scope. The device (or global) memory can be accessed by all processors on

the chip. Furthermore, constant cache, a small part of the device memory dedicated to

storing constants, is also available. Note that the constant cache is read-only and has

faster access than the shared memory.

Typically, the CPU (the host) runs the program skeleton and offloads the more com-
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putationally demanding code sections to the GPUs (the device). Functions that run

on the device are called kernel functions or simply kernels . When a C program using

CUDA extensions and running on the CPU invokes a kernel, many copies of this ker-

nel, which are referred to as threads , are distributed to the available multiprocessors,

where they are executed. Since all threads of a parallel phase execute the same code,

the programming model of CUDA is an instance of the widely used Single Instruction

Multiple Data (SIMD) parallel programming style. Within the CUDA framework, op-

erations are performed by threads that are grouped into threadblocks , which are in turn

arranged on a grid . A grid of threadblocks could be one- or two-dimensional, with up to

65,535 blocks in each dimension. The total size of a threadblock is limited to 512 threads,

with the flexibility of distributing these elements into one-, two-, or three-dimensional

arrays, depending on the problem being solved. The CUDA framework assigns unique

coordinates, referred to as threadId and blockId to each thread and each threadblock,

respectively, which are accessible in standard C language via built-in variables. From

the programmer’s point-of-view, the main functionality of blockIds and threadIds is to

provide threads with a means to distinguish among themselves when executing the same

kernels. This makes it possible for each thread to identify its share of work in a SIMD

application. An example of grids of threadblocks and associated threadIDs and blockIDs

is given in Figure 4.1.2. In this example, the first kernel (Kernel 1) generates a 2 ×3 grid

of threadblocks, and each of the threadblocks consists of 15 threads arranged on a 3 × 5

array. In practice, each CUDA grid typically comprises thousands to millions of GPU

threads per kernel invocation.

Threads in a threadblock are executed by processors within a single SM. One or more

threadblocks may be assigned to the same SM at a time, depending on the available

resources and the size of each threadblock. All threads in a threadblock can read from and

write to any shared memory location assigned to that threadblock. Consequently, threads
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Figure 4.1.2: An example of grids of threadblocks and associated threadIds and blockIds.

within the same threadblock are able to communicate with each other very efficiently via

the shared memory. Furthermore, all threads in a threadblock are able to synchronize

their executions. On the other hand, threads belonging to different threadblocks are not

able to communicate efficiently with each other, nor to synchronize their executions, even

when the two threadblocks are assigned to the same SM.

Within the CUDA framework, threadblocks can execute in any order relative to each

other, which allows transparent scalability in the parallelism of CUDA kernels. Regarding

the execution timing of threads within each threadblock, the correctness of executing

a kernel should be independent of whether certain threads execute in synchrony with

each other. However, due to various hardware considerations, the current generation

of CUDA devices actually does bundle multiple threads for execution in groups of 32

threads, referred to as warps . A group of 16 threads is a half-warp. Threads of one warp

are handled on the same multiprocessor. If the threads of a given warp diverge by a

data-induced conditional branch, each branch of the warp will be executed serially and
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the processing time of the given warp will be the sum of the processing times for all the

branches. This must be avoided whenever possible. We return to this point in the next

section, where we discuss memory coalescing.

4.1.2 Details of the GPU Cluster

All of the experiments in this thesis, including those for multi-asset options presented in

Chapter 7, were carried out on the Shared Hierarchical Academic Research Computing

Network (SHARCNET) GPU cluster “Angel”. We used the cluster for both the CPU

and GPU code development and testing. The cluster has the following specifications:

• The cluster has 22 (server) nodes, each of which consists of two quad-core Intel

“Harpertown” host systems with Intel Xeon E5430 CPUs running at 2.66GHz,

with a total of 8GB of memory shared between the two quad-core Xeon processors.

All the nodes are interconnected via 4x DDR Infiniband (16 Gigabytes/s).

• The GPU portion of the cluster is composed of 11 NVIDIA S1070 GPU servers,

each of which contains two pairs of Tesla 10-series (T10) GPUs. Each pair of the

T10 GPUs is attached to a node via a PCI Express 2.0x16 link. As such, there is

a T10 GPU per quad-core Xeon processor, or a total of two T10 GPUs per node.

• Each NVIDIA Tesla T10 GPU consists of 4GB of global memory, 30 independent

SMs, each containing 8 processors running at 1.44GHz, a total of 16384 registers,

and 16 KB of shared memory per SM.

It is important to note that, in practice, the number of nodes available for the experiments

varies from time to time, and for most of the time, only about 20 nodes (or 40 GPUs

T10) are available.
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4.2 GPU-based Parallel Pricing Framework

In this section, we outline the pricing frameworks for PRDC swaps on a multi-GPU

platform/cluster of GPUs. The focus of this section is on Bermudan cancelable and FX-

TARN PRDC swaps, since, over each period of the swaps’ tenor structure, the pricing

problem of these derivatives can be partitioned into several independent pricing subprob-

lems, each of which can be solved efficiently on a GPU (see Sections 3.4 and 3.6). On the

other hand, the pricing problem of knock-out PRDC swaps can be solved efficiently on

a single GPU, and its pricing over each time period can be viewed as similar to that of

an independent subproblem of FX-TARN PRDC swaps (see Remark 4.2.2 on page 69).

A typical application on a multi-GPU platform or a cluster of GPUs usually involves

(i) running multiple processes on separate GPUs in parallel, and (ii) communication

between different processes/GPUs. Regarding (i), in a typical GPU code, there usually

are two levels of parallelism. The first one is between the host (the CPU) and the GPU(s)

that conforms to the Master-Slave model, in which the CPU and the GPU(s) play the

roles of the master and the slave(s), respectively. The second level of parallelism is within

a GPU itself; it conforms to the Peer model. At this level, each thread, playing the role

of a peer, executes the same program, possibly with different data. Regarding (ii), it

is important to note that, currently, there is no mechanism for one GPU to directly

communicate with another GPU without explicitly sending the data through the host,

if they are attached to the same host (Scenario 1). Moreover, if the two GPUs are on

different network nodes, the data have to be sent over the network as well (Scenario 2). As

a result, certain message-passing libraries and tools for data exchange and communication

between different processes need to be employed. The pricing frameworks for Bermudan

cancelable and FX-TARN PRDC swaps presented in the following sections illustrate in

detail the two aforementioned scenarios.
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4.2.1 Bermudan Cancelable PRDC Swaps

In pricing Bermudan cancelable PRDC swaps, for each period [T(α−1)+ , Tα−], we need to

solve the PDE (2.12) backward in time from Tα− to T(α−1)+ with payoffs (3.6) and (3.8) to

obtain uc
α−1(T(α−1)+) and uh

α−1(T(α−1)+), respectively (Lines 4 and 5 of Algorithm 3.4.1).

These two pricing processes are entirely independent within each time period of the tenor

structure, and require communication only at the end of the time period. Thus, for each

time period, it is natural to assign the two pricing processes to separate GPUs. Note

that, since there are two GPUs attached to a node of the cluster, our pricing approach

for Bermudan cancelable PRDC swaps requires communication between GPUs attached

to the same host.

More specifically, for each time period, the GPU-based pricing of a Bermudan cance-

lable PRDC swap consists of four phases. During the first phase, the host assigns the two

pricing processes to separate GPUs, using the Master-Slave model. During the second

phase, on the first GPU (GPU 0), the PRDC coupons are included via (3.6), while on

the second GPU (GPU 1), the early exercise condition (3.8) is enforced. Note that this

phase uses the Peer model as the parallelization paradigm, and its implementation is de-

scribed in Sections 4.5. During the third phase, the PDE (2.12) is solved simultaneously

in each GPU from Tα− to T(α−1)+ with terminal condition (3.6) or (3.8), respectively,

using the Peer model for each timestep. The parallelism in each GPU for this phase

is based on an efficient parallelization of the computation of each timestep of the ADI

timestepping technique (3.4a)–(3.4d). A detailed description of the parallel algorithm

of this phase is presented in Section 4.3. During the last phase, which concludes the

GPU-based parallel procedure via the Master-Slave model, the host (the CPU) collects

the pricing results for the past period [T(α−1)+ , Tα−] and performs data exchange for next

period [T(α−2)+ , T(α−1)− ]. Figure 4.2.1 provides an illustration of our pricing approach.
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Figure 4.2.1: Four phases of the pricing of PRDC swaps with Bermudan cancelable

features over each time period [T(α−1)+ , Tα− ] of the tenor structure and the associated

parallelization paradigm for each phase.

In our pricing approach, over each period of the swap’s tenor structure, two pieces

of a single-GPU code run on two GPUs, each of which is essentially for the solution

of a PDE and some related works. It is desirable to start both processes at the same

time and run them simultaneously. In the CUDA framework, this can be achieved by

implementing threads in the host program and dispatching them to different GPUs using

the cudaSetDevice(· · · ) function.

4.2.2 FX-TARN PRDC Swaps

The key point in Algorithm 3.6.1 is that, over each time period [T(α−1)+ , Tα−] of the tenor

structure, we have multiple, entirely independent, pricing subproblems to solve, each of

which corresponds to the discrete value ay, y = 0, . . . , w. Each of these independent sub-
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problems involves essentially (i) performing interpolation using some of the uα(Tα+ ; ay),

y = 0, . . . , w, assuming the relevant data are available, to obtain uα−1(Tα+ ; āy), where

āy is defined by (3.17); (ii) updating the terminal condition (3.19) using uα−1(Tα+ ; āy)

obtained from (i), (iii) solving the PDE (2.12) backward in time from Tα− to T(α−1)+

with this terminal condition, and (iv) incorporating the funding payment via (3.20) (see

Lines 4–8 in Algorithm 3.6.1). All of these steps can be efficiently implemented on a

GPU.

From the above observations, within each time period of the tenor structure, it is

natural to assign these w + 1 pricing processes to separate GPUs. In a practical applica-

tion, w + 1 is typically much larger than two, the number of GPUs attached to a node

of the cluster. As a result, to solve these w + 1 subproblems simultaneously, GPUs on

different nodes of the cluster must be employed. However, communication between these

pricing processes is required at each date of the tenor structure, due to the interpolation

(3.18). In this case, certain message-passing libraries and tools for communication be-

tween different network nodes need to be employed. In this thesis, we utilize the Message

Passing Interface (MPI) [22, 23], a widely used message passing library standard. The

combination of MPI, which is for communication between the processes, and CUDA,

which is for the GPU-based parallel computation within each process, gives rise to a hy-

brid MPI-CUDA implementation of the backward pricing Algorithm 3.6.1 for FX-TARN

PRDC swaps.

We now discuss the pricing framework for FX-TARN PRDC swaps over each time

period [T(α−1)+ , Tα−] of the tenor structure. In the following presentation, we assume

that the total number of available nodes of the cluster is at least w + 1. Under the MPI

framework, assume that a group of w + 1 parallel pricing processes has been created,

with the y-th process being associated with the discrete value ay, y = 0, . . . , w. Here,

the quantities y, y = 0, . . . , w, are referred to as ranks of the processes in the group. To
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proceed from Tα to Tα−1, assume that uα(Tα+ ; ay), y = 0, . . . , w, are computed at the

previous period of the tenor structure. From a parallelization perspective, the hybrid

MPI-CUDA implementation of Algorithm 3.6.1 consists of two stages, described in detail

below.

The first stage, referred to as Stage I, involves communication between processes of

the group via MPI at time Tα+ . More specifically, the purpose of this stage is for each

process to collect data, i.e. some of the uα(Tα+ ; ay), y = 0, . . . , w, from other processes

for interpolation occurring in the second stage. Note that these data are assumed to be

in the respective host memory. The data exchange between processes could be imple-

mented via either a two-sided data transfer approach using MPI send and receive op-

erations, such as MPI Send(· · · ), MPI Recv(· · · ) (blocking operations), MPI Isend(· · · )

and MPI Irecv(· · · ) (non-blocking operations),1 or a single-sided data transfer approach

using MPI Put(· · ·) and MPI Get(· · ·).2 At the end of the first stage, each process of the

group has in its host memory the data it needs to perform interpolation.

Remark 4.2.1. Note that, in Stage I, we do not carry out an all-to-all data exchange

between processes, but rather, only the necessary communication between processes. This

is due to the fact that a process may need some data from a higher-rank process, but not

the other way around (see Remark 3.6.1 on page 55 and Figure 3.6.3). As a result, in

our implementation, there is a “marking” phase for Stage I in which each process of the

group determines the ranks of the other (higher-rank) processes whose data it needs for

interpolation. This “marking” phase happens at Tα+ , and is carried out by each process

on the associated GPU using its own data uα(Tα+ ; ay), y = 0, . . . , w, before copying the

data to the process’ host memory. A detailed description of this procedure is presented

1A non-blocking send or receive function returns immediately, regardless of whether the send or
receive has finished. On the other hand, blocking send and receive functions do not return until the
operations have been completed.

2In a two-sided data transfer, one processor executes an MPI Send(· · ·)/MPI Isend(· · ·) and a dif-

ferent processor executes an MPI Recv(· · ·)/MPI Irecv(· · ·). On the other hand, in a singled-sided data
transfer, one processor has to call only one of the single-sided data transfer routines.
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in Subsection 4.4.1.

In the second stage, referred to as Stage II, all the pricing processes run in parallel

on separate GPUs, each of which is for an independent pricing subproblem. Note that

each node involved in the pricing is associated with two processes, taking into account

the fact there are two GPUs per node. The second stage of the pricing framework can

be viewed as consisting of the following seven phases.

1. During the first phase, the host of each node assigns the two associated pricing

processes to separate GPUs using the Master-Slave model.

2. During the second phase, the interpolation scheme (3.18) is applied. This phase

corresponds to Line 5 of Algorithm 3.6.1. Details of the implementation of the

second phase are given in Section 4.4.

3. During the third phase, the PRDC coupons are included via (3.19). This phase

corresponds to Line 6 of Algorithm 3.6.1. Details of the implementation of the

third phase are given in Section 4.5. Note that the second and third phases use the

Peer model as the parallelization paradigm.

4. During the fourth phase, the PDE (2.12) is solved from Tα− to T(α−1)+ with the

terminal condition obtained from the third phase using the Peer model. This phase

corresponds to Line 7 of Algorithm 3.6.1. The parallelism in a GPU for this phase

is based on an efficient parallelization of the computation of each timestep of the

ADI timestepping technique (3.4a)–(3.4d). A detailed description of the parallel

algorithm of this phase is presented in Section 4.3.

5. During the fifth phase, the funding payments are included via (3.20) using the Peer

model. This phase corresponds to Line 8 of Algorithm 3.6.1. The implementation

of this phase is similar to that of the third phase and is described in Section 4.5.
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6. The “marking” for the data exchange between processes in the next time period

occurs in the sixth phase, details of which are given in Subsection 4.4.1 (also see

Remark 4.2.1 on page 67).

7. During the last phase, which concludes the GPU-based parallel procedure via the

Master-Slave model, the host of each node collects the pricing results of the two

associated pricing processes for the past period [T(α−1)+ , Tα− ], and prepares for the

data exchange between processes of the group for the next period [T(α−2)+ , T(α−1)− ].

Figure 4.2.2 provides an illustration of our approach. To keep the figure clear, we only

show the phases of the ith process in the group.

Remark 4.2.2. Over each time period of the swap’s tenor structure, the pricing of a

knockout PRDC swap on a GPU can be viewed as similar to the pricing of a pricing

subproblem described above. More specifically, the computation of Lines 3–6 of Algo-

rithm 3.5.1 for pricing knockout PRDC swaps are essentially similar to the three steps

on Lines 5–8 (the third, fourth and fifth phases), respectively, of Algorithm 3.6.1 for a

subproblem in pricing FX-TARN PRDC swaps.



CHAPTER 4. EFFICIENT IMPLEMENTATION ON GPUS 70

on host

uα(Tα+ ; a0)

process 0

on host

uα(Tα+ ; ai)

process i

on host

uα(Tα+ ; aw)

process w

Data exchange between processes using MPI

on host on host on host

to GPU 0 to GPU i to GPU w

Apply interpola-
tion via (3.20) on
GPU i to obtain
uα−1(Tα+ ; āi)
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Figure 4.2.2: The pricing framework of FX-TARN PRDC swaps over each time period

[T(α−1)+ , Tα−] of the tenor structure.
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4.3 ADI Timestepping Schemes

We now discuss a GPU-based parallel algorithm for the solution of the PDE (2.13). We

emphasize that we do not aim to parallelize across time, but rather we focus on the

parallelism within one timestep, via a parallelization of the HV scheme ((3.4a)-(3.4e)).

As mentioned earlier, the HV scheme can be divided into two phases. The first phase

consists of a forward Euler step (predictor step (3.4a)), followed by three implicit, but

unidirectional, corrector steps (3.4b), the purpose of which is to stabilize the predictor

step. The second phase (i.e. (3.4c) and (3.4d)) restores second-order convergence of the

discretization method, since the PDE (2.13) contains cross derivatives. Step (3.4e) is triv-

ial. With respect to the CUDA implementation, the two phases are essentially the same;

they can both be decomposed into matrix-vector multiplications and independent tridi-

agonal system solves. Hence, for brevity, we focus on describing a GPU parallelization

of the first phase, only briefly mentioning the second phase of parallelization.

For presentation purposes, let

wi = ∆τAm−1
i um−1 + ∆τ(gm−1

i − gm
i ), i = 0, 1, 2, 3,

Âm
i = I − θ∆τAm

i , v̂i = vi−1 − θwi, i = 1, 2, 3,

and notice that

v0 = um−1 +
3∑

i=0

wi + ∆τgm.

It is worth noting that the vectors wi,vi, i = 0, 1, 2, 3, and v̂i, i = 1, 2, 3, depend on τ ,

but, to simplify the notation, we do not indicate the superscript for the timestep index.

The first phase of the HV scheme consists of the following steps:

(i) Step a.1: Compute the matrices Am
i , i = 1, 2, 3, and Âm

i , i = 1, 2, 3, and the vectors

wi, i = 0, 1, 2, 3, and v0.
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(ii) Step a.2: Set v̂1 = v0 − θw1 and solve Âm
1 v1 = v̂1;

(iii) Step a.3: Set v̂2 = v1 − θw2 and solve Âm
2 v2 = v̂2;

(iv) Step a.4: Set v̂3 = v2 − θw3 and solve Âm
3 v3 = v̂3;

Each of the Steps a.2, a.3, and a.4, when considered individually, is inherently paral-

lelizable, due to the block diagonal structure of each of the matrices Âm
i , i = 1, 2, 3.

However, as discussed later in Remark 4.3.2, heavy communication (associated with

copying from/to the global memory) is required between these steps. On the other hand,

Step a.1 is not as straightforward to parallelize, but requires much less communication

between the computation of the vectors wi, i = 0, 1, 2, 3. See Remark 4.3.2 for a dis-

cussion. Below, we discuss in more detail how to implement these steps on a GPU with

particular focus on Step a.1, since Steps a.2, a.3, and a.4 are relatively straightforward.

4.3.1 First Phase - Step a.1

In this subsection, we first describe the partitioning of the computational grid into a grid

of blocks, then we discuss the assignment of gridpoints to threads of threadblocks. We

next illustrate how the matrices Am
i , i = 0, 1, 2, 3, and Âm

i , i = 1, 2, 3, are assembled.

Then we present an efficient GPU-based computation algorithm for the vectors wi, i =

0, 1, 2, 3, and v0.

Partitioning of the Computational Grid and Assignment of Gridpoints to

Threads

Recall that we have a discretization grid of n × p × q points. We can view a set of q

consecutive gridpoints in the rf -direction as a “stack” of q gridpoints. Clearly, there are

np such stacks in the discretization grid. The general idea for distributing the data and

computation of Step a.1 is to assign the work associated with each stack of q gridpoints
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(and the respective rows of matrices Am−1
i , i = 0, 1, 2, 3, Âm−1

i , i = 1, 2, 3, and compo-

nents of vectors um−1, wi, i = 0, 1, 2, 3, and v0) to a different thread. Thus, there is

an one-to-one correspondence between the set of stacks and the set of threads. More-

over, just as CUDA threads are grouped into threadblocks, we also group gridpoints into

blocks. We partition the computational grid of size n×p×q into three-dimensional (3-D)

blocks of size nb × pb × q, each of which can be viewed as consisting of q two-dimensional

(2-D) blocks, referred to as tiles , of size nb × pb. For Step a.1, we let the kernel generate

a ceil
(

n
nb

)
× ceil

(
p
pb

)
grid of threadblocks, where ceil denotes the ceiling function.

Each of the threadblocks, in turn, consists of a total of nbpp threads arranged in 2-D

arrays, each of size nb × pb. All gridpoints of a nb × pb × q 3-D block are assigned to one

threadblock only, with one thread for each stack of q gridpoints, i.e. there is an one-to-one

correspondence between the set of 3-D blocks of gridpoints and the set of threadblocks

(see also Figure 4.3.1). Note that, since each 3-D block has a total of q nb × pb tiles and

each threadblock is of size nb × pb, the approach that we use here suggests a q-iteration

loop in the kernel. During each iteration of this loop, each thread of a threadblock car-

ries out all the computations/work associated with one gridpoint, and each threadblock

processes one nb × pb tile.

Figure 4.3.1 illustrates an application of the aforementioned partitioning approach

on an example computational grid of size n × p × q ≡ 8 × 8 × 10, with nb = 4 and

pb = 2. In this example, the computational domain is partitioned into 3-D blocks of size

nb × pb × q ≡ 4 × 2 × 10, each of which can be viewed as consisting of ten 4 × 2 tiles,

or as 8(= 4 × 2) stacks of 10 gridpoints. The kernel generates a grid of threadblocks

of size ceil
(

n
nb

)
× ceil

(
p
pb

)
≡ 8

4 × 8
2 ≡ 2 × 4, with each 2-D threadblock having size

4 × 2. Each 3-D block of gridpoints is assigned to a threadblock which carries out all the

computations/work associated with all gridpoints of the ten 4 × 2 tiles, in a 10-iteration

loop in the kernel, proceeding tile-by-tile.
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Figure 4.3.1: An illustration of the partitioning approach considered for the first phase,

Step a.1.

Construction of the Matrices Am
i , i = 1, 2, 3, and Âm

i , i = 1, 2, 3

Note that each of the matrices Am
i , i = 0, 1, 2, 3, and Âm

i , i = 1, 2, 3, has a total of npq

rows, with each row corresponding to a gridpoint of the computational domain. Our

approach is to assign each of the threads to assemble q rows of each of the matrices (a

total of three entries per row of each matrix, since all matrices are tridiagonal). More

specifically, during each iteration of the q-iteration loop in the kernel, each group of nbpb

rows corresponding to a tile is assembled in parallel by a nb × pb threadblock, with one

thread for each row. That is, a total of np consecutive rows are constructed in parallel

by the threadblocks during each iteration. In this way, the first np rows are processed in

parallel during the first iteration, then the second np rows (from the (np + 1)st row to

the 2np-th row) are processed in a similar way during the second iteration, and so on.
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Computation of the Vectors wi, i = 0, 1, 2, 3, and v0

Recall that the vectors wi, i = 0, 1, 2, 3, are given by

wi = ∆τAm−1
i um−1 + ∆τ(gm−1

i − gm
i ),

and the vector v0 by v0 = um−1 +
∑3

i=0 wi. Note that the data of the previous timestep

(old data), i.e. the vector um−1, and model constant parameters, if any, are available in

the global memory and constant cache, respectively. We emphasize that the data copying

from the host memory to the device memory occurs on the first timestep only, for the

initial condition data, u0, and the model constants. Data for the subsequent timesteps

and the ADI timestepping scheme (3.4) are stored on the device memory. The initial

host-to-device copying can be achieved via CUDA functions cudaMemcpy2D(· · · ) for data

and cudaMemcpyToSymbol(· · · ) for constants.

Before describing how the computation of the vectors wi, i = 0, 1, 2, 3, is carried out,

we need to draw the reader’s attention to certain facts.

(a) The FD discretization scheme used in this paper, as described by (3.1)–(3.2), gives

rise to a 19-point stencil (see Figure 3.2.1). This implies that, from the point-of-view of

a thread, the product of a row of Am−1
i by um−1 involves 19 components of um−1, three

of which are assigned to the thread, and 16 others are assigned to neighbouring threads.

(b) A threadblock carrying the computation of a stack of q tiles (the stack being in the

rf direction) needs the values of neighbouring gridpoints from adjacent tiles in the s and

rd directions, referred to as halo values.

(c) Threads within the same threadblock can communicate with each other effectively

via the shared memory, while threads in different threadblocks cannot.

(d) Accessing the global memory is costly, and, therefore, the number of accesses to the

global memory should be kept to a minimum. Also, global memory access coalescing is

desirable whenever possible, as it minimizes the cost of global memory access. Memory

coalescing is discussed in more detail below.
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Figure 4.3.2: An example of nb × pb = 8 × 8 tiles with halos.

(e) To calculate the values corresponding to gridpoints of the kth tile (i.e. the tile on the

kth s-rd plane), the data of the two adjacent tiles in the rf direction (i.e. the (k − 1)st

and the (k + 1)st tiles) are needed as well. Since 16KB of shared memory available per

multiprocessor are not sufficient to store many data tiles, each threadblock works with

three data tiles of size nb × pb at a time and proceeds in the rf -direction.

Taking into account the above considerations, we adopt an effective data loading

strategy, so that each thread of a threadblock has the necessary data to compute the

associated components of wi, the number of global memory accesses is small, and partial

memory coalescing is achieved. More specifically, during the kth iteration of the q-

iteration loop in the kernel, assuming the data corresponding to the kth and (k − 1)st

tiles and associated halos are in the shared memory from the previous iteration, each

threadblock

1. loads from the global memory into its shared memory the old data (from vector

um−1) corresponding to the (k + 1)st tile, and the associated halos (in the s- and

rd-directions), if any,
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2. computes and stores new values (components of the vectors wi, i = 0, 1, 2, 3 and

v0) for the kth tile using data of the (k − 1)st, kth and (k + 1)st tiles, and of the

associated halos, if any,

3. copies the newly computed data of the kth tile (components of the vectors wi,

i = 1, 2, 3 and v0) from the shared memory to the global memory, and frees the

shared memory locations taken by the data of the (k − 1)st tile, and associated

halos, if any, so that they can be used in the next iteration.

From the point-of-view of a thread, during each iteration of the q-iteration loop, each

thread of a threadblock loads the data associated with one gridpoint, plus either one

halo, if the gridpoint is at an edge of a tile, or two halos, if the gridpoint is at a corner

of a tile.

In Figure 4.3.2, an example illustrating the aforementioned data loading approach

with tiles having size nb ×pb ≡ 8×8 (marked in rs×) with halos (marked in rs ) is presented.

Note that, from the viewpoint of the central tile, the halos are not part of the tile, but

come from adjacent tiles: the North, South, East, West halos are from neighboring tiles

in those respective directions. As can be seen from Figure 4.3.2, during each iteration of

the q-iteration loop in the kernel, only threads whose gridpoints are close to a boundary

of a tile need to load into the shared memory the halo values along that boundary in

addition to their own gridpoints’ old data. Threads corresponding to interior gridpoints

of a tile need to read in only their gridpoints’ old data. Thus, old data corresponding

to interior gridpoints of a tile (i.e. the majority of the gridpoints) are loaded once only.

The old data corresponding to a point along the North, South, East, or West boundaries

of a tile are loaded twice, once by the thread associated with the point, and once more

by the thread of the neighbouring threadblock as a halo value. The data at the tiles’

corners are loaded four times. This loading strategy keeps the repetition of data loading,

and, therefore, the number of global memory accesses to a minimum. Furthermore, this
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loading approach is partially coalesced, as is discussed in more detail towards the end of

this section.

Once in the shared memory of a threadblock, the data corresponding to a gridpoint is

accessed (at most) 19 times: three times by the thread to which the gridpoint is assigned,

and 16 times by the 8 neighbouring threads in the same threadblock. We emphasize that

these repeated shared memory accesses are cheap.

Remark 4.3.1. It is important to note that, in our implementation, barrier synchro-

nization among threads in the same threadblock, which can be achieved by using the

function syncthreads(), is used in both the loading and computing phases of each

iteration of the q-iteration loop in the kernel. The purpose of barrier synchronization is

to ensure that all threads in the same threadblock have completed a phase (e.g. loading

the data) before any of them move to the next phase (e.g. accessing the data). This is

essential because one thread may need the data loaded or computed by a neighboring

thread in the same threadblock.

Memory Coalescing

To optimize performance, we must ensure coalesced data loads from the global memory.

It is important to recall that threads in a warp should execute the same instruction at any

given time, in order to avoid potential serial execution of threads. Furthermore, in CUDA,

the shared memory consists of 16 memory banks. To achieve maximum memory perfor-

mance, memory accesses at any one time are handled by half-warps (16 threads), each

thread accessing a different bank. When the threads of a half-warp execute global loads,

the loads are consolidated if they meet certain constraints necessary for the hardware to

perform coalesced data loads. These constraints include (i) the threads in the half-warp

must access consecutive global memory locations; and (ii) the number of threads matters

only along the first dimension of the threadblock. We refer interested readers to [57] for
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a more complete discussion of all the requirements. Regarding the GPU computation

step for vectors wi, i = 0, 1, 2, 3, to ensure the data transfer coalescing, it is necessary to

have the tile size in the s-direction, i.e. nb, be a multiple of 16, since each half-warp is

of size 16 and that gridpoints at this step are ordered in the s-direction first. Assuming

that nb is a multiple of 16, and taking into account the data loading strategy for um−1

that we adopted, the interior of the data tiles can be read from global memory into

the shared memory in a coalesced way. The halos along the s-direction (i.e. North and

South halos in Figure 4.3.2) can also be loaded in a coalesced fashion. However, halos

along the rd-direction (East and West halos) cannot be accessed via a coalesced pattern,

since they do not belong to consecutive memory locations. As a result, the data loading

approach for Step a.1 is not fully coalesced, although it is highly effective. We believe it

is impossible to attain full memory coalescing for the data-loading part of this phase.

4.3.2 First Phase - Steps a.2, a.3, a.4

Recall that, in Steps a.2, a.3 and a.4, we need to solve Âm
i vi = v̂i, i = 1, 2, 3, where

v̂i = vi−1 − θwi, i = 1, 2, 3.

After Step a.1, the matrices Âm
i , i = 1, 2, 3, and the vectors wi, i = 1, 2, 3 and v0

are stored in the device memory. Similarly, the data after Steps a.2, a.3, a.4 (i.e. vi,

i = 1, 2, 3) are held in the device memory, and as a result, the elements of the right-

side vectors v̂i, i = 1, 2, 3, can be easily computed in parallel. The parallel solution of

the tridiagonal systems Âm
i vi = v̂i, i = 1, 2, 3, can be achieved via a data partitioning

different from the one described for Step a.1. The data partitioning for Steps a.2, a.3

and a.4 is motivated by the block structure of the tridiagonal matrices Âm
i . For example,

Âm
1 has pq diagonal blocks, and each block is tridiagonal of size n × n, while Âm

2 has nq

diagonal blocks, and each block is tridiagonal of size p×p. Our approach for the solution

of Âm
i vi = v̂i, i = 1, 2, 3, is based on the parallelism arising from independent tridiagonal
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solutions, rather than the parallelism within each one. To this end, each independent

tridiagonal system is assigned to a different thread. Moreover, when we solve in one

direction, the data are partitioned with respect to the other two. For example, the

solution of Âm
1 v1 = v̂1 (Step a.2) is computed by first partitioning Âm

1 and v̂1 into pq

independent n×n tridiagonal systems, and then assigning each tridiagonal system to one

of pq threads. Similarly, the solution of Âm
2 v2 = v̂2 (Step a.3) is done via re-partitioning

Âm
2 and v̂2 into nq independent p × p tridiagonal systems, and then assigning each

tridiagonal system to one of nq threads. Between Steps a.2 and a.3, the data of vector

v1 are written back to the global memory, since, in Step a.3, a different partitioning of

v1 is needed to compute the right-side vector v̂2 before Âm
2 v2 = v̂2 is solved.

Block(0, 0)
. . . . . .

. . . . . .

...
...

...
...

...

...

Block(m̃, 0)
. . . . . .

. . . . . .

...
...

...
...

...

Block(0, ñ)
. . . . . .

. . . . . .

...
...

...
...

...

...

Block(m̃, ñ)
. . . . . .

. . . . . .

...
...

...
...

...

. . .

. . .

thread

tridiagonal system

Figure 4.3.3: Thread assignment for the parallel

solution of independent tridiagonal systems. Each

thread handles one tridiagonal system.

To have one thread handle the

solution of each tridiagonal system,

we need to use sufficiently many

threadblocks. Because the number

of threads in a threadblock is lim-

ited to 512, and because we do not

wish to have limitations on the grid

sizes, we use many threadblocks for

the solution of the independent tridi-

agonal systems. More specifically, at

Steps a.2, a.3 and a.4, we have pq,

nq and np total threads, respectively. In our implementation, each of the 2-D thread-

blocks has the identical size rt × ct, where the values of rt and ct are determined by

numerical experiments to maximize the performance. The size of the grid of thread-

blocks is determined accordingly. For example, for the parallel solution of Âm
1 v1 = v̂1,

a 2-D grid of threadblocks of size ceil( p
rt

) × ceil( q
ct

) is invoked. An example of this
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approach is illustrated in Figure 4.3.3, where the 2-D grid of threadblocks is of size

ceil( p
rt ) × ceil( q

ct ) ≡ (m̃ + 1) × (ñ + 1).

Memory Coalescing

Regarding the memory coalescing for Steps a.2, a.3 and a.4, note that, in the current

implementation, the data between Steps a.1, a.2, a.3 and a.4 are ordered in the s-, then

rd-, then rf -directions. As a result, the data partitionings for the tridiagonal solves in the

rd- and rf -directions, i.e. for solving Âm
i vi = v̂i, i = 2, 3, allow full memory coalescence,

while the data partitioning for solving Âm
1 v1 = v̂1 does not.

More specifically, to illustrate the memory coalescing at Step a.2, a.3 and a.4, we

consider a toy example of the computational grid of size 3×3×3 presented in Figure 4.3.4.

Note that all the points are number in the s-, then rd-, then rf -directions. In solving

Âm
1 v1 = v̂1, threads in a warp do not access data in consecutive memory locations. For

example, the data points with indices 0, 1 and 2, and the data points with indices 3, 4 and

5 are assigned to two consecutive threads of a warp. However, data points with indices

0 and 3 are not in consecutive memory locations, and neither are the data points with

indices 1 and 4, and 2 and 5. On the other hand, in solving Âm
i vi = v̂i, i = 2, 3, threads

in a warp do access data in consecutive locations. For example, in solving Âm
2 v2 = v̂2,

the data points with indices 0, 3 and 6, and the data points with indices 1, 4 and 7

are respectively in consecutive memory locations, and are assigned to two consecutive

threads of a warp.
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Figure 4.3.4: Tridiagonal solves along each spatial dimension in Steps (3.4b) and (3.4d):

(a) along s, i.e. Âm
1 v1 = v̂1 (no memory coalescing), (b) along rd, i.e. Âm

2 v2 = v̂2

(memory coalescing), and (c) along rf , i.e. Âm
3 v3 = v̂3 (memory coalescing).

Note that it is possible to obtain full memory coalescence for the tridiagonal solves in all

directions. See Remark 4.3.3 for details.

Remark 4.3.2. It is important to emphasize that, while the corrector steps, i.e. Steps

a.2, a.3 and a.4, are inherently parallelizable, they require heavy communication (associ-

ated with copying to/from the global memory) between steps. More specifically, at the

end of each corrector step, all data must be copied from the shared memory to the global

memory. The data are then copied back to the shared memory during the next corrector

step. On the other hand, between explicit steps, only halos need to be copied to/from the

global memory. In other words, if the numerical method consisted of only explicit steps,

only local communication would be needed between the steps, but, since the ADI method

involves implicit (corrector) steps with solves along alternating directions, global commu-

nication is required. As a result, for the explicit steps, the communication cost is much

less than the computational cost, whereas, for the corrector steps, the communication

cost is of the same order as the computational cost.
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4.3.3 Summary of the First Phase

In this subsection, we summarize the data loading and computation of the first phase of

the ADI scheme (3.4), when stepping from time τm−1 to τm.

We assume that, initially, the vector um−1 is in the global memory and any needed

constants (model parameters) are in the constant cache.

Step a.1:

A grid of ceil(n/nb) × ceil(p/pb) threadblocks is invoked, each of which consists of

an nb × pb array of threads. Each threadblock does a q-iteration loop, processing an

nb ×pb tile at each iteration, and thus each thread does a q-iteration loop, processing one

gridpoint at each iteration.

During one iteration of the q-iteration loop, each threadblock

1. loads from the global memory to its shared memory the components of um−1 cor-

responding to a tile, and the associated halo values;

2. computes the rows of Am
i , Âm

i , i = 1, 2, 3 and components of wi, i = 0, 1, 2, 3, and

v0 corresponding to the tile;

3. copies the newly computed rows of Am
i , Âm

i , i = 1, 2, 3 and components of wi,

i = 1, 2, 3, and v0 from its shared memory to the global memory.

Step a.2:

A grid of ceil(p/rt) × ceil(q/ct) threadblocks is invoked, each of which consists of an

rt × ct array of threads. Each threadblock is assigned a subgrid of n × rt × ct points, and

thus each thread is assigned n points along the s-direction.

Each threadblock

1. loads from the global memory to its shared memory its rows of Âm
1 and its compo-

nents of v0 and w1;
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2. computes its components of v̂1;

3. solves rtct tridiagonal n × n systems (its part of Âm
1 v1 = v̂1), with each thread

solving one system;

4. copies its newly computed components of v1 from its shared memory to the global

memory.

Step a.3:

A grid of ceil(n/rt) × ceil(q/ct) threadblocks is invoked, each of which consists of an

rt × ct array of threads. Each threadblock is assigned a subgrid of rt × p × ct points, and

thus each thread is assigned p points along the rd-direction.

Each threadblock

1. loads from the global memory to its shared memory its rows of Âm
2 and its compo-

nents of v1 and w2;

2. computes its components of v̂2;

3. solves rtct tridiagonal p × p systems (its part of Âm
2 v2 = v̂2), with each thread

solving one system;

4. copies its newly computed components of v2 from its shared memory to the global

memory.

Step a.4:

A grid of ceil(n/rt) × ceil(p/ct) threadblocks is invoked, each of which consists of an

rt × ct array of threads. Each threadblock is assigned a subgrid of rt × ct × q points, and

thus each thread is assigned q points along the rf -direction.

Each threadblock

1. loads from the global memory to its shared memory its rows of Âm
3 and its compo-

nents of v2 and w3;
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2. computes its components of v̂3;

3. solves rtct tridiagonal q × q systems (its part of Âm
3 v3 = v̂3), with each thread

solving one system;

4. copies its newly computed components of v3 from its shared memory to the global

memory.

At the end of the first phase, the vector v3 is available in the global memory, and will

be used in the second phase.

4.3.4 Second Phase

Several components required in the second phase of the HV scheme are available as results

of the computations in the first phase, and hence are not recomputed. For example, the

term Am−1um−1, required in (3.4c), is needed to compute v0 in Step a.1 of the first phase.

The computation of Amv3 in (3.4c) can be achieved in the same way as the computation

of Am−1um−1 in Step a.1. The solutions of the tridiagonal systems in (3.4d) can be

implemented in essentially the same way as in Steps a.2, a.3, a.4, described above. Note

that all the tridiagonal matrices I− θ∆τAm
i , i = 1, 23, are already computed in Step a.1

of the first phase.

4.3.5 Possible Improvements

Remark 4.3.3. It is possible to achieve memory coalescence for the tridiagonal solves

in all three directions, if we renumber the gridpoints between Steps a.1, a.2, a.3 and a.4

appropriately. More specifically, if the data between Steps a.1 and a.2 are ordered in

the rf -direction first instead of the s-direction as in the current implementation, memory

coalescence is fully achieved for Step a.2, i.e. for the tridiagonal solve in the s-direction.

Full memory coalescence for Steps a.3 and a.4 can be obtained by ordering the data
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between Steps a.2, a.3 and a.4 in the s-direction first as in the current implementation.

That is, full memory coalescence for Steps a.2, a.3 and a.4 can be achieved via the

following two different orderings of the data: (i) in the rf -direction first for Step a.2 and

(ii) in the s-direction first for Steps a.3 and a.4. However, such a renumbering will involve

some overhead. In the future, we plan to investigate the trade-off between this overhead

and achieving memory coalescence in two of the three directions only. The numerical

experiments indicate that the current implementation is effective. Furthermore, between

Step a.4, and Step a.1 of the next phase or timestep, the copying of all the data to/from

the global memory can be avoided by combining the computation of Step a.4 and the

following Step a.1 into one kernel. More specifically, the global communication used in

the current implementation at the end of Step a.4 and in the beginning of Step a.1 can

be substituted by local communication (copying of halos).

Remark 4.3.4. Another approach that can be employed for the solution of the tridiag-

onal systems arising in Steps a.2, a,3 and a.4 is to use a parallel cyclic reduction method

[30]. In certain implementations [65], these techniques have been shown to be more ef-

ficient and scalable than the technique adopted in this paper. However, a GPU-based

implementation of these techniques is much more involved than the approach presented

above.

Remark 4.3.5. Another possible approach that could be used for Steps a.2, a.3 and

a.4 is based on partitioning the computational domain into 3-D subcubes of gridpoints,

assigning one subcube to each thread, then employing a Schur complement domain de-

composition method. To solve Âm
i vi = v̂i, i = 1, 2, 3, each thread first solves a block of

equations corresponding to its subcube of points in the xi direction, i = 1, 2, 3, i.e. a sub-

domain problem. Each thread then corrects the solution of the subdomain problem by

taking into account the equations on the interfaces between its subcube and neighbouring

subcubes, i.e. equations corresponding to points on the boundaries of the subcube. (All
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the subdomain problems are solved simultaneously in parallel, with each thread solv-

ing one problem.) In this approach, the communication cost (associated with copying

from/to the global memory) is much less than the computational cost, assuming that the

dimensions of the subcubes are chosen so that there are significantly more interior points

within a subcube than interface points, whereas the communication cost of our approach

is of the same order as the computational cost. Consequently, this alternative approach

is expected to be more efficient and scalable than our approach. However, the implemen-

tation of this alternative approach on GPUs is far more complicated. In particular, how

to handle memory coalescing is not obvious. Furthermore, to avoid any re-arrangement

of data between Steps a.1 and a.2, the parallel implementation of Step a.1 needs to be

adjusted to take into account the assignment of data according to subcubes. We plan to

investigate this alternative approach in the future.

4.4 Implementation of Interpolation for FX-TARN

PRDC swaps on a GPU cluster

The purpose of this section is to discuss issues related to the implementation on a GPU

cluster of the interpolation scheme (3.18). Two important issues need to be addressed.

The first issue is how each pricing process can acquire all the data it needs for interpo-

lation. The second issue is the GPU-based parallel implementation of the interpolation,

assuming all data required by the process are available. Regarding the first issue, the two

main questions are: (i) how each process determines the ranks of those processes in the

group whose data it needs (this is the “marking” phase for Stage I of the computations,

see Remark 4.2.1 on page 67); and (ii) how the communication between processes can be

implemented to guarantee correct data exchange (this is Stage I of the computations).

We address questions (i) and (ii) of the first issue in Subsection 4.4.1. The implementa-
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tion on the GPU of the interpolation scheme (3.18), i.e. the second issue, is discussed in

Subsection 4.4.2.

As an illustrative example, we describe the procedures only for process i in the group,

where 0 ≤ i ≤ w. We denote by uy,α+ the vector of data corresponding to ay, y =

0, . . . , w, i.e. the vector of data of the process y, available at time Tα+ as results of the

computations during the last time period [Tα+ , T(α+1)− ].

4.4.1 The “Marking” Phase and Communication via MPI

The “Marking” Phase

Recall that the “marking” phase for the current time period [T(α−1)+ , Tα−] occurs at the

end of the previous time period, i.e. at Tα+ . During this phase, process i uses its own

vector of data ui,α+ to determine the ranks of those processes in the group whose data

it needs, before writing the data to the host memory, i.e. when ui,α+ is still in the global

memory of the associated host.

We partition the computational grid of size n × p × q into 2-D blocks of size nb × pb.

We let the kernel generate a ceil
(

n
nb

)
× ceil

(
pq
pb

)
grid of threadblocks. All gridpoints

of a nb × pb 2-D block are assigned to one threadblock only, with one thread for each

gridpoint. Figure 4.4.1 illustrates our partitioning approach.
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Figure 4.4.1: A partitioning approach of the computational grid into 2-D blocks.

For “marking” purposes, assume that we have an array of size w+1 in the global mem-

ory, referred to as the array RECV F ROM . The īth entry of the array RECV F ROM

corresponds to the discrete value aī, ī = 0, . . . , w, i.e. it corresponds to the process with

rank ī of the group. All the entries of the array are pre-set to a certain value. This array

is copied from the host memory to the device memory before the kernel of the ‘marking”

phase is launched. Each thread of a threadblock of the kernel launched in this phase

computes the quantity āi associated with it via (3.17). If the quantity āi satisfies

aī ≤ āi ≤ aī+1

for some ī ∈ {i, . . . , w}, the thread then respectively changes the pre-set values of the ī
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and (̄i + 1)st entries in the array RECV F ROM . This procedure essentially marks the

ranks of the two processes whose data are required by the process i. Note that no data

loadings from the global memory are required for this procedure.

The approach adopted here suggests a (w + 1 − i)-iteration loop in the kernel, during

each iteration, each threadblock works with a pair of aī and aī+1. After the kernel has

ended, the array RECV F ROM is copied back to the host memory for investigating.

Although it may happen that multiple threads try to write to the same memory location

of an entry of the array at the same time, it is guaranteed that one of the writes will occur.

Although we do not know which one, it does not matter for the purpose of determining the

ranks of those processes whose some data process y needs. Consequently, this approach

suffices and works well.3

Inter-process Communication via MPI

At the end of the “marking” phase, process i has in its host memory the vector ui,α+ and

the array RECV F ROM . In order to guarantee that all processes have the data ready

in the host memory for communication before the inter-process communication occurs,

barrier synchronization among processes of the group is enforced via MPI Barrier(· · · )

before we start Stage I of the computations.

In Stage I, process i can obtain the vector of data from a “marked” process using the

“marked” entries of the array RECV F ROM . A simple approach is to loop through all

the “marked” entries of the array RECV F ROM and use the single-sided MPI data trans-

fer function MPI Get(· · · ) to fetch the data from the corresponding processes. While be-

ing convenient, the downside of this approach is that not all MPI implementations provide

good support for one-sided communication functions, such as MPI Get(· · · ). In addition,

the performance of one-sided communication functions could vary significantly between

3The approach that we use here is very similar to the approach used to check the stopping criterion
in pricing multi-asset American options discussed in Subsection 6.4.2.
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different underlying computer systems. As a result, we also investigate an alternative to

this approach, in which we use conventional MPI functions, such as MPI Send(· · · ) and

MPI Recv(· · · ) for data exchange. We discuss below the alternative approach in detail.

At the beginning of Stage I, each process knows the ranks of all processes from which

it receives data (stored in RECV F ROM), but not the ranks of those processes which

need its data. In order to use the functions MPI Send(· · · ) and MPI Recv(· · · ), which

are more efficient than MPI Get(· · · ), each process needs to also know the ranks of those

processes which need its data. To handle this issue, we have an array of size w + 1 in

the host memory, referred to as the array SEND T O. At the beginning of Stage I, we

perform the following steps:

1. use MPI Gather(· · · ) to gather the arrays RECV F ROM in the root process (pro-

cess 0); these collected arrays can be viewed as a (w + 1) × (w + 1) matrix, with the

ī-th row corresponding to the array RECV F ROM of the process ī, ī = 0, . . . , w;

2. transpose this matrix on process 0;

3. use MPI Scatter(· · · ) to send each row of the transposed matrix to the array

SEND T O of the corresponding process.

Each process now can easily perform data exchange using MPI Send(· · · ) and MPI Recv(· · · )

by looping through all the “marked” entries of the arrays RECV F ROM and SEND T O.4

4.4.2 Interpolation

At the end of Stage I, process i has in its host memory all the vectors of data it needs to

carry out the interpolation scheme (3.18). These vectors are then copied from the process’

4Note that, instead of the current approach, sophisticated parallel matrix transposition techniques
using certain MPI functions, such as MPI Alltoall(· · · ), could be considered. However, since the matrix
to be transposed is of size (w + 1) × (w + 1), where w is relatively small (about 40 in our experiments),
we did not consider sophisticated techniques for the matrix transposition in these steps, as we believe
the timing results would not be improved noticeably.
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host memory to the global memory during the first phase of Stage II (see Figure 4.2.2).

By the data exchange procedure described in Stage I, the vectors are stored in a buffer

in an increasing order with respect to their associated ranks (or discrete values of a).

For presentation purposes, we assume that a total of k − 1, k ≥ 1, vectors of data were

fetched by process i from other processes during Stage I. We denote the sorted list of k

vectors, including the vector ui,α+ , by

{ui1,α+, . . . ,uik,α+},

where ij , j = 1, . . . , k, are in {i, . . . , w}, with i1 = i, and i1 < i2 < · · · < ik.

For a GPU-based implementation of the interpolation procedure, we adopt the same

partitioning approach and assignment of gridpoints to threads as in the “marking” phase

described in the previous subsection (see Figure 4.4.1). The interpolation can be achieved

by a k-iteration loop in the kernel. Each thread in a threadblock first computes the

quantity āi associated with it using (3.17). During the jth iteration of the k-iteration

loop in the kernel, each threadblock

1. first checks if aij ≤ āi ≤ aij+1 ,

2. if yes, it performs interpolation using the corresponding values in uij ,α+ and uij+1,α+ .

Note that the partitioning approach and assignment of gridpoints to threads that we

adopt here allow for coalesced loading of data in Step 2 above, i.e. the loading of entries

of the vectors uij ,α+ and uij+1,α+ (see the discussion on memory coalescing towards the

end of Subsection 4.3.1).

4.5 Other GPU-based Implementations

Other related GPU-based implementations include (i) enforcing the early exercise con-

dition (3.8) in pricing the associated Bermudan swaption (see Figure 4.2.1), (ii) incor-
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porating the PRDC coupons in pricing “vanilla” and FX-TARN PRDC swaps (see Fig-

ures 4.2.1 and 4.2.2), and (iii) incorporating the funding payment in pricing FX-TARN

PRDC swaps (see Figure 4.2.2). The implementation in these cases is straightforward,

since each thread of a threadblock can work independently from the others, i.e. no com-

munication between threads is required. We use the same partitioning approach and

assignment of gridpoints to threads employed in the previous section. As mentioned

earlier, this approach allows for coalesced loadings of data from the global memory.

4.6 Single-GPU Implementation for FX-TARN PRDC

Swaps

Although the primary focus of this section is on the development of a numerical methods

for pricing Fx-TARn PRDC swaps that can be implemented effectively on clusters of

GPUs, for comparison purposes, we also develop single-GPU based numerical methods

for these derivatives. Over each time period [T(α−1)+ , Tα−] of the swap’s tenor structure,

the computation can be divided into two phases: (i) the interpolation phase using data

available from the previous time period, i.e. the vectors uy,α+ corresponding to ay, y =

0, . . . , w, and (ii) the PDE solution phase.

The interpolation for the time period [T(α−1)+ , Tα− ] on the GPU is carried out in the

following steps. First, we copy all w + 1 vectors to the device memory. For each of

the vectors, we adopt the partitioning approach illustrated in Figure 4.4.1. To perform

interpolation, we adopt a (w + 1)-iteration loop, during the yth iteration of which, y =

0, . . . , w, a kernel is launched for the interpolation of the vector uy,α+ . This approach

suggests a (w + 1 − y)-iteration loop in each of the kernels launched; during the īth

iteration, ī = y, . . . , w, each thread of a threadblock works with the corresponding pairs

of values in the vectors uī,α+ and uī+1,α+ .
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In the second phase, a total of w + 1 PDEs are processed sequentially using data

obtained from the interpolation phase, with each of the PDEs being solved using the

GPU-based numerical methods discussed in earlier sections for a pricing subproblem of

a FX-TARN PRDC swap.



Chapter 5

Numerical Results for PRDC Swaps

In this chapter, we first present selected numerical results to demonstrate the effectiveness

of the GPU-based parallel pricing methods applied to PRDC swaps. We then discuss

pricing results and modeling issues of PRDC swaps.

This chapter is organized as follows. In Section 5.1, we briefly describe common statis-

tics collected from the experiments and present the computation and model parameters.

The performance results illustrating the efficiency of the GPU-based parallel numerical

methods are presented in Section 5.2. In Section 5.3, we discuss the pricing results and

study the effects of the FX volatility skew on the prices of PRDC swaps.

5.1 Statistics Collected, Model and Computation Pa-

rameters

5.1.1 Statistics Collected

For all the experiments on GPUs, we used the CUDA 3.2 driver and toolkit version Jan-

uary 2011. The CPU code developed for experiments in the thesis is non-multithreaded,

and only one CPU core was employed for the experiments with the CPU code.

95
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The timing statistics collected for the experiments include the following quantities.

The CPU and GPU computation times, respectively denoted by “CPU time” and “GPU

time”, measure the total computation times in seconds (s.), i.e. the entire end-to-end

computation. If only CUDA is involved, these quantities are obtained using the CUDA

timing functions cutStartTimer(· · · ) and cutStopTimer(· · · ). In pricing FX-TARN

PRDC swaps on the GPU cluster, the total computation time “GPU time”, also reported

in seconds (s.), is obtained using the MPI timing function MPI Wtime(· · · ). In this

case, the GPU times also include the total times required for both the data exchange

between processes and interpolation. In any case, the GPU computation times include

the overhead for memory transfers from the CPU to the device memory. The quantity

“speedup” is defined as the ratio of the CPU time over the corresponding GPU time.

We report the quantity “value” which is the value of the financial instruments. In

pricing PRDC swaps, this quantity is expressed as a percentage of the notional Nd. We

also compute the quantity “logη ratio” which provides an estimate of the convergence

rate of the algorithm by measuring the true errors, referred to as “error”, if analytical or

very accurate numerical solutions are known, or by measuring the differences in prices

on successively finer grids, referred to as “change”, when an accurate reference solution

is not available. More specifically, when an accurate reference solution is not available,

this quantity is defined by

logη ratio = logη

(uapprox(∆x) − uapprox(∆x
η )

uapprox(∆x
η ) − uapprox(∆x

η2 )

)
, (5.1)

where uapprox(∆x) is the approximate solution computed with discretization stepsize ∆x.

Otherwise, the formula

logη ratio = logη

(uexact − uapprox(∆x)
uexact − uapprox(∆x

η )

)

can be used, where uexact is the accurate reference solution. For second-order methods,

such as those considered in this thesis, the quantity logη-ratio is expected to be about 2.
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5.1.2 Model and Computation Parameters

As parameters to the model, we consider the same interest rates, correlation parameters,

and the local volatility function as given in [58]. The domestic (JPY) and foreign (USD)

interest rate curves are given by Pd(0, T ) = exp(−0.02 × T ) and Pf(0, T ) = exp(−0.05 ×

T ). The volatility parameters for the short rates and correlations are given by σd(t) =

0.7%, κd(t) = 0.0%, σf (t) = 1.2%, κf(t) = 5.0%, ρdf = 25%, ρds = −15%, ρfs = −15%.

The initial spot FX rate is set to s(0) = 105.00. The parameters ξ(t) and ς(t) for the

local volatility function are assumed to be piecewise constant and given in Table 5.1.1.

period (years)

(0, 0.5] (0.5, 1] (1, 3] (3, 5] (5, 7] (7, 10] (10, 15] (15, 20] (20, 25] (25, 30]

ξ(t) 9.03% 8.87% 8.42% 8.99% 10.18% 13.30% 18.18% 16.73% 13.51% 13.51%

ς(t) -200% -172% -115% -65% -50% -24% 10% 38% 38% 38%

Table 5.1.1: The parameters ξ(t) and ς(t) for the local volatility function (2.11). (Table C

in [58].)

Note that the forward FX rate F (0, t) defined by (2.5) and θi(t), i = d, f , in (2.10),

and the domestic LIBOR rate (2.7) are fully determined by the above information [4, 8].

We consider the tenor structure (2.4) that has the following properties: (i) να = 1 (year),

α = 1, . . . , β + 1 and (ii) β = 29 (years).

Features of the PRDC swap are:

- Pay annual PRDC coupons and receive annual domestic LIBOR payments.

- Standard structure, i.e. bf = 0, bc = +∞. The scaling factor {fα}β
α=1 is set to the

forward FX rate F (0, Tα).

- The domestic and foreign coupons are chosen to provide three different levels of leverage:

low (cd = 2.25%, cf = 4.50%), medium (cd = 4.36%, cf = 6.25%), high (cd = 8.1%, cf =

9.00%).
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- All three exotic features, namely Bermudan cancelable, knockout and FX-TARN, are

considered, details each of which are given below.

• The Bermudan cancelable feature allows the issuer to cancel the swap on any of

the dates Tα, α = 1, . . . β.

• The knockout feature is an up-and-out FX-linked barrier and the fixed barrier is

set to Bu = 110.25, 120.75 and 131.25 for the low-, medium- and high-leverage

levels, respectively. The knockout swap pre-maturely terminates on the first date

Tα, α = 1, . . . β, on which s(Tα) ≥ Bu.

• In the FX-TARN swaps, the values of the total coupon amount cap Ac is set

to Ac = 50%, 20%, and 10% of the notional for the low-, medium-, and high-

leverage levels, respectively. The FX-TARN swap is terminated on the first date Tα,

α = 1, . . . β, when the accumulated PRDC coupon amount, including the coupon

amount scheduled on that date, reaches the target cap Ac.

The truncated computational domain Ωs is defined by setting s∞ = 3s(0) = 315,

rd,∞ = 3rd(0) = 0.06, and rf,∞ = 3rf(0) = 0.15. The grid sizes and the number of

timesteps reported in the tables in this chapter are for each time period of the Table 5.1.1.

All computations for PRDC swaps are carried out in single-precision.

With the above choice of the truncated computational domain and for all grid sizes

considered, there is a gridpoint at the spot value in each spatial dimension, i.e. at s(0),

rd(0) and rf(0). Also, for all grid sizes considered for the knockout PRDC swaps, the fixed

FX-linked barrier Bu is one of the midpoints of the grid in the spot FX rate direction.

That is, we use the grid shifting strategy. This is desirable for the accuracy of the

numerical methods (see Remark 3.5.1 on page 47).
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5.2 Performance Results

In this section, we focus on the timing results to illustrate the effectiveness of our GPU-

based numerical methods applied to pricing PRDC swaps. A detailed analysis of the

pricing results is provided in the next section.

In Subsection 5.2.1, we focus on the GPU versus CPU performance comparison for

Bermudan cancelable and knockout PRDC swaps. For FX - TARN PRDC swaps, due to

the high computational requirements of the pricing algorithm, which make sequentially

CPU-based computation practically infeasible, we do not develop CPU-based numerical

methods in this case. Instead, we focus on numerical methods on a GPU cluster and on

a single GPU, as discussed in Section 4.6, for comparison purposes. The details of the

GPU versus GPU cluster performance comparison in pricing FX-TARN PRDC swaps

are presented in Subsection 5.2.2.

5.2.1 GPU versus CPU Performance Comparison

underlying PRDC swap cancelable PRDC swap

l n p q value CPU GPU speed value CPU GPU speed

(τ) (s) (rd) (rf) (%) time (s.) time(s.) up (%) time (s.) time (s.) up

4 72 24 24 -11.098 5.3 1.7 3.1 11.313 10.7 1.7 6.2

8 144 48 48 -11.106 90.7 5.5 16.5 11.285 182.8 5.5 33.2

16 288 96 96 -11.107 1583.8 53.5 29.9 11.278 3168.3 53.5 58.9

Table 5.2.1: Computed prices and timing results for the underlying PRDC swap and

Bermudan cancelable PRDC swap for the low-leverage case.
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l n p q value CPU GPU speed

(t) (s) (rd) (rf) (%) time (s.) time (s.) up

2 30 12 12 0.825 0.4 0.4 1.0

6 90 36 36 1.304 27.9 2.1 13.1

18 270 108 108 1.349 2215.5 67.5 32.2

Table 5.2.2: Computed prices and timing results for the knockout PRDC swap for the

low-leverage case using the grid shifting technique.

Tables 5.2.1 and 5.2.2 present some selected numerical and timing results for Bermu-

dan cancelable and knockout PRDC swaps, respectively, for the low-leverage case under

the FX skew model considered in this thesis. The timing results for the medium- and

high-leverage cases are approximately the same, and hence omitted. The CPU and GPU

computation times measure the total computation times in seconds (s.) required to solve

the PDE over 29 periods of the tenor structure (also see Remark 2.2.1 on page 23).

For Bermudan cancelable PRDC swaps, the CPU times for pricing a Bermudan can-

celable PRDC swap include the times needed for computing the underlying PRDC swap

which is a “vanilla” PRDC swap. The CPU times in this case are the sum of timing

results over all periods obtained by first running a CPU-based solver for the price of

the underlying swap, and then another CPU-based solver for the price of the offsetting

Bermudan swaption. The GPU-based pricing of a Bermudan cancelable PRDC swap was

computed on two NVIDIA Tesla T10 GPUs simultaneously, one of which was used for

pricing the underlying PRDC swap. The GPU times for pricing Bermudan cancelable

swaps are taken to be the larger of the two GPU times needed for computing the under-

lying swap and the associated offsetting Bermudan swaption. Note that we started both

GPU-based PDE solvers for the underlying PRDC swap and for the offsetting Bermudan

swaption at the same time, and, as we expected, they finished just as quickly as running
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a single GPU-based solver. As is evident from Table 5.2.1, when pricing the underlying,

the GPU is significantly faster than the CPU for every size considered of the discretized

problem; the asymptotic speedup is about 30 for the largest grid we considered. When

pricing Bermudan cancelable PRDC swaps, we obtained speedups that are approximately

double those obtained when pricing the underlying alone, with an asymptotic speedup

about 60 for the largest grid we considered, as expected, since we used two GPU cards

for the two independent pricing processes.

For the knockout PRDC swaps, the timing results behave more or less similar to those

obtained when pricing the underlying on a single GPU, with the asymptotic speedup

being about 32 for the largest grid we considered.

5.2.2 GPU Cluster versus Single-GPU Performance Compari-

son

In this subsection, we discuss the single-GPU versus GPU cluster performance compari-

son in pricing FX-TARN PRDC swaps. Additional statistics collected in this subsection

include the following. The quantities “GPU time” and “GPU-MPI time” respectively de-

note the total computation times, in second (s.), on a single GPU and on the GPU cluster

with specifications as in Subsection 4.1.2 using MPI. Note that, as discussed towards the

end of Subsection 4.4.1, when pricing FX-TARN PRDC swaps on a GPU cluster, we con-

sider two different schemes for the data exchange between processes: (i) the conventional

functions MPI Send(· · · )/MPI Recv(· · · ) and (ii) the one-sided communication function

MPI Get(· · · ). The resulting two implementations on a cluster are respectively referred

to as ”GPU-MPI-I” and “GPU-MPI-II”.

The quantity “GPU-MPI speed up” is defined as the ratio of the “GPU time” over

the respective “GPU-MPI time”. The quantity “GPU-MPI efficiency” is defined as

GPU-MPI efficiency =
1

w + 1
GPU time

GPU-MPI time
,
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which represents the standard (fixed) efficiency of the parallel algorithm using w + 1

GPUs of the cluster.

Table 5.2.3 presents some selected numerical and timing results for FX-TARN PRDC

swaps for the low-leverage case with the target cap Ac = 50%. The timing results for the

medium- and high-leverage cases are approximately the same, and hence omitted. Note

that the times in the brackets are the total times required for data exchange between pro-

cesses using respective MPI functions. It is evident that both GPU-MPI implementations

on the cluster are significantly more efficient than the single-GPU implementation, with

the asymptotic speedups being about 31 and 28 for the GPU-MPI-I and GPU-MPI-II

implementations, respectively, when using 40 GPUs (20 nodes) of the cluster. (Note that

a total of (w + 1) GPUs are used).

Comparing the GPU-MPI-I and the GPU-MPI-II implementations, it is obvious that

the GPU-MPI-I implementation is more efficient than the GPU-MPI-II implementation.

In particular, for the largest grid considered, the GPU-MPI-II implementation requires

about 22% more time for the data exchange than does the GPU-MPI-I implementation

(Table 5.2.3, 23.1 (s.) versus 16.3 (s.)).

l n p q w value GPU GPU-MPI-I GPU-MPI-II

time time speed- effi- time speed- effi-

(τ) (s) (rd) (rf ) (a) (%) (s.) (s.) up ciency (s.) up ciency

4 72 24 24 39 -4.521 50.5 2.3 (0.5) 21.9 55% 2.4 (0.5) 21.0 53%

8 144 48 48 39 -4.440 227.5 8.4 (2.2) 27.1 68% 9.9 (3.2) 22.9 59%

16 288 96 96 39 -4.414 2339.3 72.8 (16.3) 32.3 81% 80.1 (23.1) 29.9 72%

Table 5.2.3: Computed prices and timing results for the FX-TARN PRDC swaps for the

low-leverage case. The target cap is Ac = 50%. The times in the brackets are those

required for data exchange between processes using different MPI functions.
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It is important to emphasize that, for both GPU-MPI implementations, the GPU-MPI

efficiency increases with finer grid sizes (Table 5.2.3, from 55% to 81% for GPU-MPI-I,

and from 53% to 72% for GPU-MPI-II). This is to be expected, since a fixed number

of GPUs, i.e. 40 GPUs, is used for all the experiments, whereas the problem size is

increasing, allowing the GPUs to be used more efficiently.

5.3 Analysis of Pricing Results and Effects of FX

Volatility Skew

5.3.1 Analysis of Pricing Results

In this subsection, we discuss the computed prices for “vanilla”, Bermudan cancelable,

knockout and FX-TARN PRDC swaps. Recall that in Remark 2.2.2 on page 23, we

mentioned that there is a settlement in the form of an initial fixed-rate coupon exchanged

between the issuer and the investor at time T0. This signed coupon is typically the value

at time T0 of the swap to the issuer. (Note that we price the deal from the perspective of

the issuer.) More specifically, a negative value for the swap is the price that the investor

has to pay to the coupon issuer to enter into a PRDC swap (a fund inflow for the issuer

and a fund outflow for the investor). A positive value of the PRDC swap is the level of

the initial fixed coupon that the issuer is willing to pay to the investor (a fund inflow for

the investor and a fund outflow for the issuer).

Bermudan Cancelable PRDC swaps

In Table 5.3.1, we present pricing results for the underlying and Bermudan cancelable

swaps. The numerical results indicate second-order convergence is achieved for the ADI

scheme, as expected. With respect to the prices of the underlying PRDC swap, for the

low-, medium- and high-leverage cases under the FX skew model, the investor should
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leverage l n p q underlying Bermudan cancelable

level (τ) (s) (rd) (rf) value change log2 value change log2

(%) ratio (%) ratio

2 36 12 12 -11.070 11.415

low 4 72 24 24 -11.098 2.8e-4 11.313 1.3e-3

8 144 48 48 -11.106 8.3e-5 1.8 11.285 2.8e-4 1.9

16 288 96 96 -11.107 1.3e-5 2.5 11.278 6.8e-5 2.1

2 36 12 12 -12.800 13.928

medium 4 72 24 24 -12.715 8.6e-4 13.907 2.1e-04

8 144 48 48 -12.693 2.2e-4 2.0 13.903 4.6e-05 2.2

16 288 96 96 -12.686 6.6e-5 1.8 13.902 9.8e-06 2.2

2 36 12 12 -11.363 19.546

high 4 72 24 24 -11.153 2.1e-3 19.617 7.1e-4

8 144 48 48 -11.102 5.2e-4 2.0 19.635 1.8e-4 2.0

16 288 96 96 -11.087 1.5e-4 1.9 19.639 4.9e-5 1.9

Table 5.3.1: Values of the underlying PRDC swap and Bermudan cancelable PRDC swap

for various leverage levels with FX skew model.

pay a net coupon of about 11.107%, 12.686% and 11.087%, respectively, of the notional

to the issuer. Regarding the prices of the Bermudan cancelable PRDC swap, for the

low-, medium- and high-leverage cases under the FX skew model, the issuer should pay

a net coupon of about 11.278%, 13.902% and 19.639%, respectively, of the notional, to

the investor. Of course, in these cases, the issuer would prefer to pay less and keep

the difference as profit. Among the three leverage cases, the high-leverage case is more

attractive to the investor, due to the high initial coupon paid by the issuer. (See the

discussion on the economics of PRDC swaps with exotic features on page 26.)
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Knockout PRDC swaps

In Table 5.3.2, we present pricing results for the knockout PRDC swap for various leverage

levels. Note that, tripling the number of gridpoints (η = 3) of a coarser grid having the

fixed FX-linked barrier Bu as a midpoint ensures that the resulting finer grid has the

same property. We expect the quantity log3 ratio to be about 2 for a second-order

discretization method as the grids are refined in this fashion. The numerical results

indicate second-order convergence is achieved for the HV scheme, as expected.

leverage l n p q value change log3

level (τ) (s) (rd) (rf) (%) ratio

2 30 12 12 0.825

low 6 90 36 36 1.304 4.8e-03

18 270 108 108 1.349 4.5e-04 2.1

2 30 12 12 1.390

medium 6 90 36 36 2.012 6.2e-03

18 270 108 108 2.093 8.0e-04 1.9

2 30 12 12 4.972

high 6 90 36 36 5.429 4.6e-03

18 270 108 108 5.495 6.6e-04 1.8

Table 5.3.2: Computed prices and convergence results for the knockout PRDC swap for

various leverage levels under the FX skew model. The grid shifting technique is used.

To show the effect of the grid shifting technique on the convergence and accuracy

of the numerical methods, we carried out experiments with different grids which do not

have Bu as a midpoint, but rather as a gridpoint, in the spot FX rate direction. In these

experiments, the coarser grids having the fixed FX-linked barrier Bu as a gridpoint are

refined by doubling the number of gridpoints (η = 2).
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The numerical results for these experiments are presented in Table 5.3.3. It is evident

that, while the HV scheme has the expected quadratic convergence for smooth problems,

only linear convergence is observed here, i.e. the observed log2 ratio is about 1 instead

of 2. In addition, it is also evident that in this case the accuracy of the computed

solutions deteriorates significantly as compared to that obtained with the grid shifting

technique. This emphasizes the importance of handling appropriately the discontinuities

in the terminal conditions on each date of the tenor structure of the knockout PRDC

swaps, as discussed in Remark 3.5.1.

leverage l n p q value change log2

level (τ) (s) (rd) (rf) (%) ratio

4 60 24 24 0.935

low 8 120 48 48 0.892 4.2e-04

16 240 96 96 0.871 2.0e-04 1.1

4 60 24 24 1.995

medium 8 120 48 48 1.930 6.5e-04

16 240 96 96 1.898 3.2e-04 1.1

4 60 24 24 5.121

high 8 120 48 48 5.082 3.9e-04

16 240 96 96 5.067 1.8e-04 1.0

Table 5.3.3: Computed prices and convergence results for the knockout PRDC swap for

various leverage levels with the FX skew model without the grid shifting technique.

With respect to the computed prices, for the low-, medium- and high-leverage cases

under the FX skew model, the issuer of a knockout PRDC swap should pay a net coupon

of about 1.349%, 2.093% and 5.495% of the notional to the investor. Of course, the issuer

would prefer to pay less and keep the difference as profit. Among the three leverage cases,
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similar to the results of the Bermudan cancelable PRDC swap discussed earlier, the high-

leverage case is more attractive to the investor, due to the high initial coupon paid by

the issuer.

FX-TARN PRDC swaps

leverage Ac l n p q w value change log2

level (τ) (s) (rd) (rf) (a) (%) ratio

2 36 12 12 39 -4.787

low 50% 4 72 24 24 39 -4.521 2.7e-03

8 144 48 48 39 -4.440 8.2e-04 1.7

16 288 96 96 39 -4.414 2.5e-04 1.7

2 36 12 12 39 3.348

medium 20% 4 72 24 24 39 3.628 2.8e-03

8 144 48 48 39 3.710 8.2e-04 1.8

16 288 96 96 39 3.736 2.5e-04 1.7

2 36 12 12 39 18.067

high 10% 4 72 24 24 39 18.458 3.9e-03

8 144 48 48 39 18.567 1.1e-03 1.9

16 288 96 96 39 18.599 3.2e-04 1.8

Table 5.3.4: Values of the FX-TARN PRDC swap for various leverage levels under the

FX skew model. The total coupon amount cap Ac is set to Ac = 50%, 20%, and 10%

of the notional for the low-, medium-, and high-leverage levels, respectively.

In Table 5.3.4, we present pricing results for the FX-TARN PRDC swaps for various

levels of leverage and values of the target cap Ac. In all cases, the numerical results

exhibit second-order convergence, as expected from the ADI timestepping methods and
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the interpolation scheme. With respect to the prices of the FX-TARN PRDC swap,

for the low-leverage level, the investor should pay a net coupon of about 4.414% of the

notional to the issuer. (Note the negative values in this case.) However, for the medium-

and high-leverage cases, the issuer should pay the investor a net coupon of about 3.735%

and 18.599%, respectively, of the notional to the investor. Obviously, the high-leverage

case is much more attractive to the investor, than all other leverage levels, due to the

high initial coupon paid by the issuer. On the other hand, the low-leverage case with

Ac = 50% is certainly not attractive to the investor, because the investor ends up paying

the initial coupon.

In Table 5.3.5, we presents the prices of the FX-TARN PRDC swap for various values

of the target caps Ac obtained using the finest mesh in Table 5.3.4.

leverage Ac

level 10% 20% 50% 80%

low 5.319 1.199 -4.414 -6.907

medium 8.702 3.735 -3.189 -6.412

high 18.599 14.821 8.931 5.899

Table 5.3.5: Values of the FX-TARN PRDC swap for various target cap levels Ac and

various leverage levels for the FX skew model using the finest mesh in Table 5.3.4.

In Table 5.3.5, we observe that the price of the FX-TARN PRDC swap is a decreasing

function of the target cap Ac. More specifically, a smaller value of the target cap Ac results

in a larger (more positive) price of the FX-TARN PRDC swap, indicating that the issuer

pays the investor the initial coupon (e.g. see the low-leverage case with Ac = {10%, 20%}).

On the other hand, if the target cap Ac is large enough, the price could become negative,

i.e. the investor pays the issuer the initial coupon (e.g. see the low-leverage case with

Ac = {50%, 80%}). This behavior of the prices of the FX-TARN PRDC swaps are
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expected, since, the smaller the target cap is, the higher the leverage of the swap is (from

the perspective of the investor). With a larger value of the target cap Ac, the underlying

PRDC swap is expected to be terminated later than with a smaller value of Ac. As a

result, in this case, the FX-TARN PRDC swap tends to behave like a “vanilla” PRDC

swap, which explains why the price of the FX-TARN PRDC swap is a decreasing function

of the target cap Ac.

Another observation is that, for a fixed value of the target cap Ac, the the price of the

FX-TARN PRDC swap is an increasing function of the leverage level. This observation

is consistent with the results for PRDC swaps with Bermudan cancelable and knockout

features presented earlier.

5.3.2 Effects of the FX Volatility Skew

To investigate the effects of the FX skew on PRDC swaps, we compare prices of the

PRDC swap under the FX skew model with those obtained using the log-normal model, as

suggested in [58]. In the log-normal model, the local volatility function is a deterministic

function of the time variable t only, and not of the spot FX rate s. To this end, we

used the parametrization as in (2.11) but independent of s(t) for the log-normal local

volatility function, and calibrated it to the same at-the-money FX option data that were

used for the calibration of the FX skew model (Table A of [58]). The numerical results

for the log-normal and the FX skew models using the finest mesh in Tables 5.3.1, 5.3.2

and 5.3.4 are presented in Table 5.3.6.

Before we discuss the effects of the FX volatility skew, we need to draw the reader’s

attention to important details presented in Remark 5.3.1 below.

Remark 5.3.1. Recall that the issuer pays PRDC coupons, the rates of which can be

viewed as call options on the spot FX rate, as indicated by the coupon rate formula (2.9).

It is important to emphasize that due to the interest rate differential between JPY and
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USD, the forward FX curve is strongly downward sloping. As a result, the forward FX

rate F (0, Tα), defined by formula (2.5), is considerably smaller than the spot FX rate

s(Tα). For the low-, medium-, and high-leverage cases, the strike eα =
fαcd

cf
is set to

50%, 70% and 90% of fα ≡ F (0, Tα), respectively, hence is significantly less than s(Tα).

As a result, the PRDC coupon rates defined by (2.9) can be viewed as low-strike FX call

options. Thus, the coupon issuer in a PRDC swap essentially shorts a collection of FX

call options with low strikes. This observation is very important for understanding the

effects of the FX volatility skew on the prices of PRDC swaps discussed below.

Underlying PRDC Swaps

First, let us study the effect of the FX skew on the underlying swaps. As shown in

Table 5.3.6, all the underlying swaps have roughly the same value under the log-normal

model across leverage levels, and the prices of the underlying swap under the FX skew

model are more negative than the prices under the log-normal model, i.e. under a FX

skew model, the investor has to pay more to the issuer to enter a “vanilla” PRDC swap.

These results are expected, since, in a skew model, the implied volatility increases for

low-strike options, resulting in higher prices for the options. This pushes down the value

of the underlying swap for the issuer, due to the short position (also see Remark 5.3.1).

It is interesting, however, to note that the effect of the FX skew is not uniform across

the leverage levels. The effect seems most pronounced for the medium-leverage PRDC

swaps (a difference of -3.048 as opposed to -2.094 and -1.254 for low- and high-leverage

swaps, respectively). An explanation for this observation is that the total effect of the FX

skew on the prices of a “vanilla” PRDC swap is a combination of the change in implied

volatility and the sensitivities (the vega) of the options to that change. Due to the skew,

the lower the strikes are, the higher the implied volatility changes are. Thus, among the

three leverage levels, the volatilities change the most for the low-leverage swaps, since
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leverage FX skew log-normal FX skew - log-normal

level
cd

cf
(%) (%) (%)

underlying

low 50% -11.107 -9.012 -2.094

medium 70% -12.686 -9.638 -3.048

high 90% -11.087 -9.833 -1.254

Bermudan cancelable

low 50% 11.278 13.308 -2.030

medium 70% 13.902 16.899 -2.998

high 90% 19.639 22.938 -3.299

knockout

low 50% 1.349 3.836 -2.487

medium 70% 2.093 7.038 -4.945

high 90% 5.495 12.308 -6.813

FX-TARN

low 50% -4.414 -2.733 -1.681

medium 70% 3.735 6.443 -2.708

high 90% 18.599 22.101 -3.502

Table 5.3.6: Computed prices for the underlying PRDC swap and Bermudan cancelable,

knockout, and FX-TARN PRDC swaps for various leverage levels with the FX skew

model (“FX skew”) and the log-normal model (“log-normal”) using the finest mesh in

Tables 5.3.1, 5.3.2 and 5.3.4. For the knockout PRDC swap, the grid shifting technique

is used.

the strikes of the coupon rates are the lowest in this case. However, the vega of an option

is an increasing function of the strike [32]. Thus, the vega for low-leverage options is
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the smallest, since the strikes for coupon rates are the lowest. As a result, the combined

effect is limited. The situation is reversed for high-leverage swaps, while the combined

effect is the most pronounced for medium-leverage swaps.

Bermudan Cancelable

We now investigate the effect of the FX skew on the Bermudan cancelable swap. The

difference between the FX skew model prices and the log-normal model prices is uniformly

decreasing across the leverage levels (-2.030%, -2.998%, -3.299%). These differences are

quite significant and they indicate that, under the FX skew model, the initial net coupons

paid (by the issuer) to the investor are smaller than those paid under the log-normal

model. These changes in values of the swap can be viewed as profits booked by the

issuer.
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Figure 5.3.1: Values of the Bermudan cancelable PRDC swap, in percentage of Nd, as a

function of the spot FX rate at time Tα = 5 with high-leverage coupons.

To better understand the effects of the FX skew on the value of the Bermudan can-

celable PRDC swap, we investigate the value of the Bermudan cancelable swap at an

intermediate date of the tenor structure as a function of the spot FX rate on that date.
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In Figure 5.3.1, a sample plot of such a function for the high-leverage case immediately

after the exchange of fund flows scheduled at time Tα = 5, i.e. at time T5+ , is given.

Note that the forward FX rate F (0, Tα) is about 90.3 on that date, as computed by the

formula (2.5).

As shown in Figure 5.3.1, in the region where the spot FX rate s is less than the

forward FX rate (s < 90.3), it is evident that the value function is positive and concave-

down, i.e. it has negative gamma. This agrees with the interpretations that (i) the swap

is not canceled due to low spot FX rates, and that (ii) the issuer has a short position

in low-strike FX call options (see Remark 5.3.1).1 However, if the spot FX rate is high

enough, it would be optimal for the issuer to cancel, an observation that is reflected by

the fact that the value function now becomes concave-up, i.e. it has positive gamma, due

to the long position in high-strike FX call options (options to cancel). As a result, the

profile of a Bermudan cancelable PRDC swap is similar to a bear spread created by call

options: going short several low-strike call options and going long the same number of

higher-strike options with the same maturity (see Figure 5.3.2), which is known to be very

sensitive to the volatility skew. More specifically, since the FX volatility skew increases

the volatility of the low-strike options, the value of a Bermudan cancelable PRDC swap

in the concave-down part is pushed down for the issuer, due to the short position in

low-strike FX call options. That is, the concave-down part is valued lower for the issuer

under the FX skew model than under a log-normal model. On the other hand, due to

lower volatility of the FX volatility skew for the high-strike options (options to cancel),

the concave-up part is also valued lower for the issuer under the FX skew model than in

a log-normal model, taking into account the fact that the issuer has a long position in

this part.

Next, we investigate the effects of the different leverage levels on the values of Bermu-

1The gamma of a short position is always negative, while that of a long position is always positive.



CHAPTER 5. NUMERICAL RESULTS FOR PRDC SWAPS 114

Profit

ST

|

E1

|

E2

Figure 5.3.2: Example of a bear spread created using call options.

dan cancelable swaps. First, as evident from Table 5.3.6, under both the FX skew model

and the log-normal model, the values of PRDC swaps increase with leverage levels: from

11.278% to 19.639% under the skew model and from 13.308% to 22.938% under the

log-normal model. This behavior is expected, due to a positive correlation between the

leverage level and the volatility level. In addition, due to the strong sensitivity of the

prices of Bermudan cancelable PRDC swaps to the implied volatility, the differences be-

tween FX skew and log-normal prices also increase significantly in absolute terms with

leverage levels. This is reflected through the changes in values by the amounts −2.030%,

−2.998%, and −3.299% for low-, medium-, and high-leverage levels, respectively.

Knockout and FX-TARN PRDC Swaps

We now investigate the effect of the FX skew on the knockout and FX-TARN PRDC

swaps. We first look at the knockout PRDC swap. In Figure 5.3.3, we plot values of

the knockout PRDC swap immediately after the exchange of fund flows scheduled at

time Tα = 3, i.e. at time T3+ , as a function of the spot FX rate of that date. The

forward FX rate F (0, Tα) is about 95.6 on that date. When the spot FX rate is smaller
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Figure 5.3.3: Values of the knockout PRDC swap, in percentage of Nd, as a function of

the spot FX rate at time Tα = 3 with high-leverage coupons. The barrier Bu is 131.25.

than the forward FX rate (s < 95.6), we observe that the value function is positive

and concave down, which is consistent with the observations in the case of Bermudan

cancelable swaps. However, in the region where the spot FX rate becomes larger than the

forward FX rate and tends to the barrier, as evident from Figure 5.3.3, the value function

becomes negative and the profile of the value function changes from being concave-down

to being concave-up. The reason that the value function becomes negative in this region is

high PRDC coupon rates/amounts which are fund outflows from the issuer’s perspective.

With respect to the change of concavity, the fact that the PRDC swap is knocked out

when s(Tα) ≥ Bu can be interpreted as the issuer having a long position in high-strike

FX call options. As a result, the profile of the value function changes from concave-down

to concave-up to reflect a change from a short position in low-strike FX call options to a

long position in high-strike FX call options.

With respect to the FX-TARN PRDC swap, in Figure 5.3.4, we plot values of the

FX-TARN PRDC swap immediately after the exchange of fund flows scheduled at time

Tα = 3, i.e. at time T3+ , as a function of the spot FX rate of that. We consider two
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cases in which the accumulated PRDC coupon amount immediately before the exchange

of fund flows, i.e. at T3− , are

aα− ≡ a3− = {2.5%, 5.0%}.

The profile of the value function in these two cases are quite similar to that of the value

function of the knockout PRDC swap. More specifically, when aα− = 2.5%, the computed

knockout barrier is 164.0625, whereas, when aα− = 5.0%, the computed knockout barrier

is 137.8125. These values for the barrier are obtained using l = 8, n = 144, p = q = 48.

These observations are expected, since a FX-TARN PRDC swap can be viewed as a

knockout PRDC swap, the early termination of which depends on the total accumulated

PRDC coupon amount. In addition, it appears that the value function knockout barrier

at time Tα is a decreasing function of aα− (e.g. compare 164.0625 with aα− = 2.5% to

137.8125 with aα− = 5.0%). This observation is consistent with the fact that the target

cap Ac is fixed, and hence, the larger the value of aα− is, the smaller the value of the

knockout barrier is.
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(a) aα− ≡ a3− = 2.5%
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(b) aα− ≡ a3− = 5.0%

Figure 5.3.4: Values of the FX-TARN PRDC swap, in percentage of Nd, as a function of

the spot FX rate at time Tα = 3 with high-leverage coupons.
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For both knockout and FX-TARN PRDC swaps, due to the change of concavity from

being concave-up to being concave-down in the value function as the spot FX rate in-

creases, similar to the Bermudan cancelable swap, the impact of the FX volatility skew

on the prices of these derivatives is quite substantial. As evident from Table 5.3.6, for

the knockout PRDC swap, the differences between the FX skew model prices and the

log-normal model prices are -2.487%, -4.945%, -6.813% for the low-, medium- and high-

leverage swaps, respectively. For the FX-TARN PRDC swap, the respective differences

are -1.681%, -2.708% and -3.502%. These differences are quite significant and can be

viewed as profits to the issuer, if the market-observed FX skew is accurately approxi-

mated.



Chapter 6

Multi-asset Options

Options in general, and multi-asset options in particular, are an important and popular

class of financial derivatives. These are the building blocks for many financial contracts,

the purposes of which range from speculation to hedging. The abundance of these options

support the claim that their efficient pricing is important not only to financial institu-

tions, but also to speculators and investors. The purpose of this chapter is to discuss effi-

cient pricing of multi-asset European and American options in the Black-Scholes-Merton

framework via a PDE approach. Strong emphasis in this chapter is placed on American

options, due to the challenges arising from the early exercise features embedded in these

options. Note that this chapter is dedicated to options in the context of single-currency

markets, not multi-currency ones as in the case of PRDC swaps.

The remainder of this chapter is organized as follows. Section 6.1 introduces a

three-factor log-normal model and the corresponding 3-D Black-Scholes-Merton PDE.

We present numerical methods for pricing multi-asset European options in Section 6.2.

The pricing of multi-asset American options is discussed in Section 6.3. Section 6.4

presents a GPU-based parallel implementation of the numerical methods. Although we

primarily focus on a three-factor model, many of the ideas and results in this chapter

can be naturally extended to higher-dimensional applications with constraints.

118



CHAPTER 6. MULTI-ASSET OPTIONS 119

6.1 The Model and the Black-Scholes-Merton PDE

Let si(t), i = 1, . . . , 3, denote the price of the ith underlying asset. Under the risk neu-

tral measure, the underlying asset prices are assumed to follow the log-normal diffusion

processes
dsi(t)
si(t)

= (r − di)dt + σidWi(t), i = 1, 2, 3, (6.1)

where Wi(t), i = 1, 2, 3, are correlated Brownian motions with dWi(t)dWj(t) = ρijdt.

Here, r is the constant riskless interest rate; di ≥ 0 is the constant asset dividend yield;

σi is the constant volatility of the stochastic process for si; ρij are the correlation factors

between dWi and dWj satisfying |ρij| ≤ 1 for i, j = 1, 2, 3, and ρii = 1 for i = 1, 2, 3. For

simplicity, let s = (s1, s2, s3). The corresponding 3-D Black-Scholes-Merton PDE, which

governs the value z ≡ z(s, t) of an option, such as that of a European option, written on

the three assets is given by

∂z
∂t

+ Lbz ≡
∂z
∂t

+
1
2

3∑

i,j=1

ρijσiσjsisj
∂2z

∂si∂sj
+ r

3∑

i=1

si
∂z
∂si

− rz = 0, (6.2)

on 0 ≤ si < ∞, i = 1, . . . , 3, and t ∈ [0, T̄ ), where T̄ is the maturity time of the option. A

derivation of the multi-dimensional Black-Scholes-Merton PDE for an arbitrary number

of underlying assets can be found in [43, 73].

Since we solve the PDE (6.2) backward in time from T̄ to the current time, t, the

change of variable τ = T̄ − t is used. Under this change of variable, the PDE (6.2)

becomes
∂z
∂τ

= Lbz, (6.3)

and is solved forward in τ . To solve the PDE (6.3) numerically by finite difference

methods, we must truncate the unbounded domain to finite-sized computational one

(s1, s2, s3, τ) ∈ [0, s1,∞] × [0, s2,∞] × [0, s3,∞] × [0, T̄ ] ≡ Ωb × [0, T̄ ],

for appropriately chosen si,∞, i = 1, 2, 3 [71]. We denote by ∂Ωb the boundary of the

computational domain Ωb.
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For discretization purposes discussed later in the chapter, let the number of subinter-

vals be n̄ + 1, p̄ + 1 and q̄ + 1 in the s1-, s2- and s3-directions, respectively. The uniform

grid mesh widths in the respective direction are denoted by ∆s1 =
s1,∞

n̄ + 1
, ∆s2 =

s2,∞

p̄ + 1
,

and ∆s3 =
s3,∞

q̄ + 1
. Let the time interval [0, T̄ ], for a given number of timesteps l̄, be

partitioned via

0 = τ0 < τ1 < · · · < τl̄ = T̄ , (6.4)

with

∆τm = τm − τm−1, m = 1, 2, . . . , l̄; cm =
∆τm

∆τm−1
, m = 2, . . . , l̄. (6.5)

Note that the number of timesteps l̄ is fully determined by a timestep size selector (see

(6.16)). Unless otherwise stated, assume that the mesh points are ordered in the s1-, s2-,

then s3- directions. For use later in the thesis, for basket options, we denote by wi > 0,

i = 1, 2, 3, the weight of the ith asset in the basket.

6.2 Multi-asset European Options

A European “vanilla” call/put option written on a single asset is a contract that gives

the holder the right, but not an obligation, to buy/sell an underlying asset for a predeter-

mined exercise price E, referred to as the strike price, at maturity time T̄ . A multi-asset

call/put European option contract gives the holder the right, but not an obligation, to

buy/sell at time T̄ a specified basket of more than one underlying asset for a fixed ex-

ercise price E. Such options belong to the so-called class of exotic options. Since the

price of a European option written on three assets satisfy the 3-D Black-Scholes-Merton

PDE (6.3), it can be obtained by solving this PDE with appropriate initial and boundary

conditions.

The remainder of this section is organized as follows. In Subsection 6.2.1, as examples,

we introduce European rainbow options and European basket options written on three
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assets, and their payoff functions. An appropriate choice for the boundary conditions

for these options is presented in Subsection 6.2.2. The pricing of multi-asset European

options is discussed in Subsection 6.2.3.

For use in this section, we denote by z = z(s, τ) the value of a European option

written on three assets, and by z∗(s) ≡ z(s, 0) the initial condition (payoff function) for

the option.

6.2.1 Rainbow and Basket Options

Rainbow Options

Rainbow options can take various forms, but their common characteristic is that their

payoff function depends on the underlying assets sorted by their values at maturity. As an

example, we consider a European call-on-minimum rainbow option, the initial condition

(payoff function) of which is

z∗(s) = max(min(s1, s2, s3) − E, 0). (6.6)

Closed-form solutions of rainbow call/put options on the maximum or minimum on sev-

eral assets are provided in [40]. Thus, we can use rainbow options as a benchmark solution

to test the accuracy of our numerical methods.

Basket Options

The payoff function of a European basket call/put option is typically based on the

weighted sum of d assets si, i = 1, . . . , d, in the basket. For d = 3, the initial condi-

tion (payoff function) of a call option is

z∗(s) = max
( 3∑

i=1

wisi − E, 0
)

. (6.7)
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6.2.2 Linear Boundary Conditions

It can be shown that, for all the European options considered in the thesis, z(s, τ)

is approximately linear in si at the boundaries si = 0 and si = si,∞ for i = 1, 2, 3.

Consequently,
∂2z
∂s2

i

∣∣∣
si=0

=
∂2z
∂s2

i

∣∣∣
si=si,∞

= 0 (6.8)

for i = 1, 2, 3. Note that, it can be verified easily from the Black-Scholes-Merton formula

that “vanilla” European put and call options written on one asset approximately satisfy

(6.8).

We can use (6.8) to derive the so-called linear boundary conditions, a commonly used

boundary condition type in computational finance (see, for example, [17, 44, 66, 71]). To

derive one such linear boundary condition, suppose that s1 = 0 or s1 = s1,∞, but that

s2 ∈ (0, s2,∞) and s3 ∈ (0, s3,∞). Then, using (6.8), the PDE (6.3) reduces to

∂z
∂τ

=
3∑

i=2

(σi)2(si)2 ∂2z
∂s2

i
+

1
2

3∑

i,j=1
i 6=j

ρijσiσjsisj
∂2z

∂si∂sj
+

3∑

i=1

(r − di)si
∂z
∂si

− rz (6.9)

on the open faces of ∂Ωb for which s1 = 0 or s1 = s1,∞, but s2 ∈ (0, s2,∞) and s3 ∈

(0, s3,∞). A similar linear boundary condition holds on the other open faces of ∂Ωb.

Similarly, using (6.8), the PDE (6.3) reduces to

∂z
∂τ

= (σ3)2(s3)2 ∂2z
∂s2

3
+

1
2

3∑

i,j=1
i 6=j

ρijσiσjsisj
∂2z

∂si∂sj
+

3∑

i=1

(r − di)si
∂z
∂si

− rz (6.10)

on the open edges of ∂Ωb for which

1. either s1 = 0 or s1 = s1,∞,

2. either s2 = 0 or s2 = s2,∞, and

3. s3 ∈ (0, s3,∞).
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A similar linear boundary condition holds on the other open edges of ∂Ωb.

Finally, using (6.8), the PDE (6.3) reduces to

∂z
∂τ

=
1
2

3∑

i,j=1
i 6=j

ρijσiσjsisj
∂2z

∂si∂sj
+

3∑

i=1

(r − di)si
∂z
∂si

− rz (6.11)

at the corners of ∂Ωb at which

1. either s1 = 0 or s1 = s1,∞,

2. either s2 = 0 or s2 = s2,∞, and

3. either s3 = 0 or s3 = s3,∞.

Remark 6.2.1. A possible alternative approach to applying the linear boundary condi-

tions on the lower boundaries of Ωb, i.e. on ∂Ωb where si = 0, i = 1, 2, 3, is to substitute

si = 0 directly into the 3-D Black-Scholes-Merton PDE (6.3). This is referred to as natu-

ral boundary condition [44]. In this approach, each of the coefficients of spatial derivative

terms, including the cross-derivative terms, with respect to si, i = 1, 2, 3, in (6.3) vanishes

at si = 0. As a result, on each of the three open faces of the lower boundaries of Ωb, only

a 2-D Black-Scholes-Merton PDE with respect to the other two spatial variables remains,

whereas, on each of the three open edges defined by si = 0 and sj = 0, i 6= j, of the

lower boundaries of Ωb, the boundary condition is simply a 1-D Black-Scholes-Merton

PDE with respect to the remaining spatial variable.

6.2.3 Discretization

Let the gridpoint values of a FD approximation to the solution z be denoted by

zm
i,j,k ≈ z(s1i, s2j, s3k, τm) = z(i∆s1, j∆s2, k∆s3, τm),

where i = 0, . . . , n̄ + 1, j = 0, . . . , p̄ + 1, k = 0, . . . , q̄ + 1, m = 0, . . . , l̄.
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For the discretization of the space variables in the differential operator Lb in the

interior of the rectangular domain Ωb, we employ the standard second-order central dif-

ferences on uniform grids, similar to the schemes (3.1) and (3.2). For brevity, we do

not repeat these FD schemes here. (See Appendix C.1 for a derivation of these FD

schemes). In addition, due to the linear boundary conditions, we also need to discretize

certain PDEs, such as (6.9), (6.10) and (6.11), on the boundary ∂Ωb of the computational

domain Ωb. In this case, in order to avoid introducing gridpoints outside Ωb, we use one-

sided FD approximations to derivatives discussed below. For an alternative discretization

approach on the boundary, see Remark 6.2.2 on page 125.

One-sided FD Formulas

We use the one-sided forward and backward FD approximations

∂z
∂s1

∣∣∣
s1=0

≡
∂z
∂s1

∣∣∣
m

0,j,k
≈

zm
1,j,k − zm

0,j,k

∆s1
, or (6.12a)

∂z
∂s1

∣∣∣
s1=s1,∞

≡
∂z
∂s1

∣∣∣
m

n̄+1,j,k
≈

zm
n̄+1,j,k − zm

n̄,j,k

∆s1
(6.12b)

at points on the boundary ∂Ωb for which s1 = 0 or s1 = s1,∞, respectively. The cross

derivatives
∂2z

∂s1∂sj
, j = 2, 3, in (6.9) can be discretized by successively applying the

one-sided FD for the first derivative in the s1-direction (scheme (6.12)) and the standard

central FD scheme for the first derivative in the other direction (scheme (3.1a)). For

instance, applying this discretization technique to
∂2z

∂s1∂s2
at s1 = 0 and s1 = s1,∞ gives

rise to the FD formulas

∂2z
∂s1∂s2

∣∣∣
s1=0

≡
∂2z

∂s1∂s2

∣∣∣
m

0,j,k
≈

zm
1,j+1,k + zm

0,j−1,k − zm
0,j+1,k − zm

1,j−1,k

2∆s1∆s2
, (6.13a)

∂2z
∂s1∂s2

∣∣∣
s1=s1,∞

≡
∂2z

∂s1∂s2

∣∣∣
m

n̄+1,j,k
≈

zm
n̄+1,j+1,k + zm

n̄,j−1,k − zm
n̄,j+1,k − zm

n̄+1,j−1,k

2∆s1∆s2
, (6.13b)

respectively. All other derivatives in (6.9) can be evaluated using the central FD schemes

(3.1a), (3.1b) and (3.2).
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We introduce one more one-sided FD scheme for cross derivatives such as
∂2z

∂s1∂s2
in

(6.10) or (6.11) at boundary points for which

1. s1 = 0 or s1 = s1,∞, and

2. s2 = 0 or s2 = s2,∞.

To this end, we apply the one-sided FD scheme (6.12) in both the s1- and s2-directions.

For example, at s1 = 0 and s2 = 0, we use

∂2z
∂s1∂s2

∣∣∣
s1=0,s2=0

≡
∂2z

∂s1∂s2

∣∣∣
m

0,0,k
≈

zm
1,1,k + zm

0,0,k − zm
0,1,k − zm

1,0,k

∆s1∆s2
. (6.14)

Other central FD schemes are replaced by one-sided FD schemes similar to those

described above whenever using a central FD scheme in one of (6.9), (6.10) or (6.11)

would require the use of a gridpoint outside Ωb.

A derivation of (6.12), (6.13) and (6.14) is presented in Appendix C.1. As verified

through Taylor expansions, each of (6.12), (6.13) and (6.14) is first-order, provided that

the function z is sufficiently continuously differentiable. It is worth noting that, although

(6.12), (6.13) and (6.14) are first-order approximations to the first and the cross deriva-

tives, when the computational domain is properly truncated, the far-field effects of the

boundaries on the spot price of the derivatives is insignificant. Furthermore, with z being

almost linear at the boundary, the truncation error of the one-sided FD approximations

to the derivatives is negligible. Thus, we still observe second-order convergence for the

spot price of the derivatives in practice. Detailed numerical results are presented in

Section 7.1.

The FD discretization of the spatial differential operator Lb of (6.3) on the spatial

grid Ωb is performed by replacing each spatial derivative appearing in the operator Lb by

its corresponding FD scheme (as in (3.1), (3.2) and (6.12)–(6.14)).

Remark 6.2.2. A possible alternative approach to using the one-sided forward and back-

ward FD approximations (6.12) is to introduce layers of “ghost” gridpoints outside the
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computational domain Ωb, and use the standard central FD schemes described above to

discretize the PDE (6.3) and the boundary conditions (6.8) at gridpoints on the bound-

aries. Then, the “ghost” gridpoints can be eliminated using the equations arising from

(6.3) and (6.8), assuming that these equations are linearly independent.

Time Discretization: ADI schemes

For use in this subsection, we denote by I the (n̄ + 2)(p̄ + 2)(q̄ + 2)×(n̄ + 2)(p̄ + 2)(q̄ +

2) identity matrix, and by B the matrix of the same size as I arising from the FD

discretization of the differential operator Lb on the spatial grid Ωb using FD schemes

(3.1), (3.2) and (6.12)–(6.14), as described in the previous section. Note that, since the

coefficients of the differential operator Lb are constant, the discretization matrix B is

not time-dependent. Let zm denote the vector of values at time τm on the mesh Ωb that

approximates the exact solution zm = z(s, τm) of a multi-asset European option written

on three assets. Furthermore, denote by z∗ the vector of the payoff values on Ωb. Note

that each of the vectors zm and z∗ is of size (n̄ + 2)(p̄ + 2)(q̄ + 2). Similar to the ADI

splitting techniques presented earlier in Subsection 3.2.2, we decompose the matrix B

into four submatrices:

B = B0 + B1 + B2 + B3.

The matrices B1, B2 and B3 are the parts of B that correspond to the spatial derivatives

in the s1-, s2- and s3-directions, respectively, while the matrix B0 is the part of B that

comes from the FD discretization of the cross derivative terms in the operator Lb. The

term rz in Lb is distributed evenly over B1, B2 and B3. Starting from an approximation

zm−1 to the exact solution zm−1, the Hundsdorfer and Verwer scheme [34] generates an
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approximation zm to the exact solution zm, m = 1, 2, . . . , l̄, by






v0 = vm−1 + ∆τmBzm−1,

(I − θ∆τmBi)vi = vi−1 − θ∆τmBiz
m−1, i = 1, 2, 3,

ṽ0 = v0 +
1
2

∆τm(Bv3 − Bzm−1),

(I − θ∆τmBi)ṽi = ṽi−1 − θ∆τmBiv3, i = 1, 2, 3,

zm = ṽ3.

(6.15a)

(6.15b)

(6.15c)

(6.15d)

(6.15e)

Note that all the matrices Bi, i = 1, 2, 3, are block-diagonal with tridiagonal blocks.

Timestep Size Selector

We use a simple, but effective, timestep size selector presented in [18] that was shown to

work well in the context of pricing options (e.g. see [9] and [18]). The idea underlying this

scheme is to predict a suitable timestep size for the next timestep, using only information

from the current and previous timesteps. We extend this timestep size selector for use

with multi-asset options, including American options presented in the next section.

According to the formula in [18], given the current stepsize ∆τm, m ≥ 1, the new

stepsize ∆τm+1 is given by





∆τm+1 =

(

min1≤ι≤npq

[
dnorm

|zmι −zm−1
ι |

max(N,|zmι |,|zm−1
ι |)

])

∆τm,

∆τm+1 = min
{

∆τm+1, T̄ − τm
}

.

(6.16)

Here, dnorm is a user-defined target relative change, and the scalar N is chosen so that

the method does not take an excessively large stepsize where the value of the option is

small. Normally, for option values in dollars, N = 1 is used. In the experiments, we use

the parameters ∆τ1 = 10−3 (the initial timestep size) and dnorm = 0.4 on the coarsest

grids. The value of dnorm is reduced by a factor of two at each grid refinement, while

∆τ1 is reduced by a factor of four.
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A pricing algorithm for multi-asset European options is described in Algorithm 6.2.1.

Algorithm 6.2.1 Algorithm for pricing multi-asset European options.
1: initialize ∆τ1;

2: set z0 = z∗;

3: for m = 1, . . . , l̄ do

4: compute zm using ADI scheme (6.15);

5: if m < l̄ then

6: compute ∆τm+1 using (6.16);

7: end if

8: end for

6.3 Multi-asset American Options

6.3.1 Introduction

In contrast to European options, American options can be exercised at any time up

to and including the maturity of the option. More specifically, a multi-asset American

call/put option contract gives the holder the right, but not an obligation, to buy/sell a

specified basket of more than one underlying asset for a fixed exercise price E at any

time up to and including the maturity time T̄ . An American option, thus, offers more

opportunity for the option holder to make a profit than its European counterpart.

The problem of pricing multi-asset American options is not only mathematically

challenging but also very computationally intensive. The computational challenges come

from the high-dimensionality of the problem, while the mathematical challenges arise

from the early exercise feature of the option, which leads to an additional constraint that

the value of an American option at any time τ ≤ T̄ must be greater than or equal to
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its payoff [66]. This constraint requires special treatment, a fact that makes an explicit

closed form solution for an American option intractable for most cases. Consequently,

numerical methods must be used.

This section discusses efficient PDE-based numerical methods for pricing multi-asset

American options in the Black-Scholes-Merton framework. Using a PDE approach, the

American option pricing problem can be formulated as a time-dependent LCP with the

inequalities involving the Black-Scholes-Merton PDE and some additional constraints

[69]. We adopt the penalty method of [18] to solve the LCP. In this approach, a penalty

term is added to the discretized equations to enforce the early exercise constraint. The

solution of the resulting discrete nonlinear equations at each timestep can be computed

via a penalty iteration. An advantage of the penalty method of [18] is that it is readily

extendible to handle multi-factor problems. In a high-dimensional application, such as

American options written on three assets, the solution of the linear system arising at

each penalty iteration presents a computational challenge. (See a relevant discussion on

page 38 towards the beginning of Subsection 3.2.2 regarding the solution of the linear

system arising from pricing PRDC swaps with CN timestepping method.) To handle this

computational requirement, we develop an ADI-AF algorithm, based on an extension of

the ADI splitting technique presented earlier, to efficiently solve these linear algebraic

systems. Although variations of American options give rise to various payoff functions,

we restrict our attention to American put options on the arithmetic average of three

assets.

The remainder of this section is organized as follows. In Subsection 6.3.2, we present

a PDE formulation of the pricing problem for a multi-asset American put option. The

discretization methods are discussed in Subsection 6.3.3. A penalty iteration for the

discretized American option and associated ADI-AF schemes are discussed in Subsec-

tion 6.3.4. Finally, in Subsection 6.3.5, we present a benchmark case which allows us to
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obtain an accurate reference solution when pricing certain multi-asset American options.

6.3.2 Formulation

The early exercise constraint in an American option leads to the following time-dependent

LCP for the value v(s, τ) of an American put option [66, 69]





∂v
∂τ

− Lbv = 0

v − v∗ ≥ 0





or






∂v
∂τ

− Lbv > 0

v − v∗ = 0





,

s ∈ (Ωb \ ∂Ωb), τ ∈ (0, T̄ ],

(6.17)

subject to the initial (payoff) condition

v∗(s) ≡ v(s, 0) = max
(

E −
3∑

i=1

wisi, 0
)

on Ωb × {0}, (6.18)

and the boundary conditions [42]

v(s, τ) = v∗(s) on ∂Ωb × (0, T̄ ]. (6.19)

The optimal free boundary surface at each time τ , 0 ≤ τ < T̄ , can then be determined

a posteriori by finding where v − v∗ changes from being positive to being zero (within a

certain tolerance). See Remark 6.3.5.

Following [18], we use a penalty parameter ζ ′, ζ ′ → ∞, and consider the non-linear

PDE for the penalty formulation of the price v(s, τ) of an American put option written

on three underlying assets

∂v
∂τ

− Lbv = ζ ′ max(v∗ − v, 0), s ∈ (Ωb \ ∂Ωb), τ ∈ (0, T̄ ], (6.20)

subject to the initial and boundary conditions (6.18) and (6.19), respectively. The penalty

parameter ζ ′ effectively ensures that the solution satisfies v−v∗ ≥ −ǫ for some ǫ satisfying

0 < ǫ ≪ 1. Essentially, in the region where v ≥ v∗, the PDE (6.20) resembles the 3-D
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Black-Scholes-Merton equation. On the other hand, when −ǫ ≤ v − v∗ < 0, the 3-D

Black-Scholes-Merton inequality
∂v
∂τ

− Lbv > 0 is satisfied and v ≈ v∗.

Note that there are other approaches for choosing proper boundary conditions, such

as those presented in [55]. These approaches typically involve solving the Black-Scholes-

Merton PDEs with a smaller number of spatial dimensions that the option values ap-

proximately satisfy on the boundary of the computational domain. More specifically, in

these approaches, for d underlying assets, a series of k-dimensional Black-Scholes-Merton

PDEs, where k = {d − 1, d − 2, . . . , 1}, are solved in order to determine approximate

values of the option on the boundaries. For example, in our case with d = 3, a total

of (i) six 2-D Black-Scholes-Merton PDEs defined on the six open faces of ∂Ωb, and (ii)

twelve 1-D Black-Scholes-Merton PDEs defined on the twelve open edges of ∂Ωb must

be solved. However, by approximating the values of the option on the boundary by the

payoff function, our choice for the approximate boundary conditions is much simpler, and

has been shown to work well for the pricing problem for multi-asset American options.

See the discussion and numerical results presented in Section 7.2.

6.3.3 Discretization

Space Discretization

Let the gridpoint values of a FD approximation to the solution v be denoted by

vm
i,j,k ≈ v(s1i, s2j, s3k, τm) = v(i∆s1, j∆s2, k∆s3, τm),

where i = 0, . . . , n̄ + 1, j = 0, . . . , p̄ + 1, k = 0, . . . , q̄ + 1, m = 0, . . . , l̄. Since the

boundary condition (6.19) is of the Dirichlet-type, similar to the case of PRDC swaps,

the FD discretization of the differential operator Lb in the interior of the rectangular

domain Ωb is performed by replacing each spatial derivative appearing in the operator Lb

with its corresponding central FD scheme (as in (3.1) and (3.2)). We denote by Lbvm
i,j,k
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the FD discretization of Lb at (s1i, s2j, s3k, τm).

Time Discretization

We consider two second-order accurate time discretization schemes, namely the CN

method and the two-level backward difference formula (BDF2), as well as the first-order

accurate fully-implicit method, used primarily for smoothing.

Both the CN and the fully-implicit methods belong to the standard θ-timestepping

discretization scheme, in which the time derivative is approximated by a first-order back-

ward difference, while the discretized differential operator is treated as a θ-weighted

average between the fully-implicit and the fully-explicit steps. More specifically, when

proceeding from time τm−1 to time τm, applying the standard θ-timestepping discretiza-

tion scheme to (6.20) gives

(I − θ∆τmLb)vm
i,j,k = (I + (1 − θ)∆τmLb)vm−1

i,j,k + Pvm
i,j,k, (6.21)

where 0 ≤ θ ≤ 1. Here, I and P denote the identity and penalty operators, respectively,

where P is defined by

Pvm
i,j,k = ζ max(v∗

i,j,k − vm
i,j,k, 0),

with ζ being the penalty factor related to the desired tolerance. Essentially, we have

the relation ζ ′ ∼ ζ/∆τm. The boundary conditions (6.19) are incorporated by setting

vm
i,j,k = v∗

i,j,k, if i = {0, n̄ + 1}, or j = {0, p̄ + 1}, or k = {0, q̄ + 1}, with v∗
i,j,k being the

payoff value at the reference point (s1i, s2j, s3k, ·).

In (6.21), the values θ = 1/2 and θ = 1 give rise to the standard CN and the fully-

implicit methods, respectively. It is known that, although the CN method is second-order

accurate and unconditionally stable, i.e. no restriction on the timestep size is required

for stability, this method is prone to producing spurious oscillations [69]. On the other

hand, the fully-implicit method is first-order accurate, but is strongly stable (e.g. [59]). To

maintain the accuracy of CN as well as smoothness of the solution, we use the Rannacher
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smoothing technique [60], which applies the fully-implicit method for the first few (usually

two) timesteps followed by the CN method on the remaining timesteps.

For the BDF2 scheme, the time derivative in (6.20) is approximated by the second-

order difference formula1

∂v
∂τ

=
1

∆τm

(1 + 2cm

1 + cm
vm − (1 + cm)vm−1 +

c2
m

1 + cm
vm−2

)
,

where cm is the timestep size ratio defined in (6.5), while the discretized differential

operator Lb is treated fully-implicitly. This gives rise to the scheme

(
I −

1 + cm

1 + 2cm
∆τmLb

)
vm

i,j,k =
(1 + cm)2

1 + 2cm
vm−1

i,j,k −
c2

m

1 + 2cm
vm−2

i,j,k + Pvm
i,j,k, (6.22)

where the operators I and P are previously defined. The boundary conditions (6.19) are

incorporated into (6.22) in the same fashion as in the θ-timestepping method.

It is important to note that in the case of the BDF2 method (6.22), the numerical

solution for the first timestep, i.e. timestep m = 1, must be obtained using another

method. The most natural choice for this is the fully-implicit method, which we use

in our experiments. It is worth emphasizing that, since the BDF2 method is L-stable,

a stronger property than the unconditional stability of the CN method [26], the BDF2

method has more favorable damping properties than the CN method does. Having good

damping properties is particularly important in computing accurate hedging parameters,

such as delta and gamma.

It is also important to emphasize that, for both the CN and BDF2 schemes, we

also adopt another smoothing technique suggested in [59]. That is, the grids in the

experiments are chosen so that there is a gridpoint at the strike E (the initial kink point)

along each space dimension.

1For a uniform partition of the time interval with ∆τm = ∆τ =
T̄
l̄

and cm = 1, we have the

well-known BDF2 formula
∂v
∂τ

=
3vm − 4vm−1 + vm−2

2∆τ
.
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We adapt the penalty iteration algorithm in [18] to solve the set of discrete nonlin-

ear penalized equations (6.21) and (6.22). In the next section, we present the penalty

iteration algorithm and associated ADI-AF schemes.

6.3.4 Penalty Iteration and an Associated ADI-AF Technique

Let vm denote the vector of values at time τm on the interior gridpoints of Ωb that

approximates the exact value vm = v(s, τm) of an American put option written on three

assets. Furthermore, denote by v∗ the vector of the payoff values on the interior gridpoints

of Ωb. Note that both vectors vm and v∗ are of size n̄p̄q̄. Let κ, κ ≥ 0, be the index of

the penalty iteration. Let vm,(κ) be the κth estimate of vm, and denote by ∆vm,(κ) =

vm,(κ+1) − vm,(κ) the correction to the κth iterate of the penalty iteration at time τm.

At each penalty iteration, the θ-timestepping scheme (6.21) and the BDF2 scheme

(6.22) must solve an n̄p̄q̄ × n̄p̄q̄ algebraic system of the form [18]

(I + θ∆τmM + Pm,(κ))vm,(κ+1) = (I − (1 − θ)∆τmM)vm−1 + Pm,(κ)v∗ + ∆τmf , (6.23)

and

(
I +

1 + cm

1 + 2cm
∆τmM + Pm,(κ)

)
vm,(κ+1) =

(1 + cm)2

1 + 2cm
vm−1 −

c2
m

1 + 2cm
vm−2 + Pm,(κ)v∗

+
1 + cm

1 + 2cm
∆τmf , (6.24)

respectively. Here, I denotes the identity matrix; −M is the matrix FD approximation

to the differential operator Lb; Pm,(κ) is the diagonal penalty matrix and f is a vector

containing values arising from the boundary conditions. The explicit formula for M is

given in Appendix C.2. The penalty matrix Pm,(κ) is defined by

(
Pm,(κ))

ij ≡






ζ if v
m,(κ)
i < v∗

i and i = j,

0 otherwise.
(6.25)
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In general, if we want to solve (6.20) with a relative precision tol, we should have ζ ≃
1

tol
[9]. For future reference, we decompose the matrix M into four submatrices M = M0 +

M1 + M2 + M3. The matrices M1, M2 and M3 are the parts of M that correspond to

the spatial derivatives in the s1-, s2- and s3-directions, respectively, while the matrix M0

is the part of M that comes from the FD discretization of the cross derivative terms in

the operator Lb. The term rv in Lb is distributed evenly over M1, M2 and M3. For

simplicity, let Dm,(κ) = I + Pm,(κ).

We adapt the ADI-AF approach discussed in [72] to solve (6.23) and (6.24). For

brevity, we present only the derivation of the ADI-AF scheme for (6.23). It is straight-

forward to apply a similar technique to (6.24). We first write an ADI-AF scheme for

(6.23) in the form

(
Dm,(κ)+θ∆τmM1

)(
Dm,(κ))−1(

Dm,(κ)+θ∆τmM2
)(
Dm,(κ))−1(

Dm,(κ)+θ∆τmM3
)
vm,(κ+1) =

(I − (1 − θ)∆τmM)vm−1 + Pm,(κ)v∗ + ∆τmf +
(
Dm,(κ))−2(θ∆τm)3M1M2M3v

m,(κ)

+
(
Dm,(κ))−1(θ∆τm)2(

M1M2 + M1M3 + M2M3
)
vm,(κ) − θ∆τmM0v

m,(κ). (6.26)

We then subtract

(
Dm,(κ)+θ∆τmM1

)(
Dm,(κ))−1(

Dm,(κ)+θ∆τmM2
)(
Dm,(κ))−1(

Dm,(κ)+θ∆τmM3
)
vm,(κ)

from both sides of (6.26). The resulting ADI-AF scheme, referred to as ADI-AF-CN, for

the correction ∆vm,(κ) is given by

(
Dm,(κ)+θ∆τmM1

)(
Dm,(κ))−1(

Dm,(κ)+θ∆τmM2
)(
Dm,(κ))−1(

Dm,(κ)+θ∆τmM3
)
∆vm,(κ) =

− (I + θ∆τmM)vm,(κ) + (I − (1 − θ)∆τmM)vm−1 + Pm,(κ)(v∗ − vm,(κ)) + ∆τmf ,

(6.27)
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which can be rewritten equivalently as






(
Dm,(κ) + ∆̃τ mM1

)(
∆vm,(κ))(1) = bm,(κ),

(
Dm,(κ) + ∆̃τ mM2

)(
∆vm,(κ))(2) = Dm,(κ)(∆vm,(κ))(1),

(
Dm,(κ) + ∆̃τ mM3

)(
∆vm,(κ))(3) = Dm,(κ)(∆vm,(κ))(2),

∆vm,(κ) =
(
∆vm,(κ))(3),

(6.28a)

(6.28b)

(6.28c)

(6.28d)

with ∆̃τ m = θ∆τm, and bm,(κ) being the right-hand-side of (6.27).

Similarly, the ADI-AF scheme for the correction ∆vm,(κ) for (6.24), referred to as

ADI-AF-BDF2, is given by relations (6.28a)–(6.28d), with ∆̃τ m =
( 1 + cm

1 + 2cm

)
∆τm and

the vector b̃m,(κ) associated with the right-hand-side of (6.28a) defined as

b̃m,(κ) = −(I+∆̃τmM)vm,(κ)+
(1 + cm)2

1 + 2cm
vm−1−

c2
m

1 + 2cm
vm−2+Pm,(κ)(v∗−vm,(κ))+∆̃τ mf .

Thus, both the ADI-AF-CN and ADI-AF-BDF2 schemes require the solution of the linear

systems in (6.28a)–(6.28c). The corresponding ADI-AF FD penalty algorithm based on

the ADI-AF-CN or the ADI-AF-BDF2 scheme is presented in Algorithm 6.3.1. A pricing

algorithm for multi-asset American put options is described in Algorithm 6.3.2.

Algorithm 6.3.2 Algorithm for pricing multi-asset American options.
1: initialize ∆τ1;

2: set v0 = v∗;

3: for m = 1, . . . , l̄ do

4: compute vm using Algorithm 6.3.1;

5: if m < l̄ then

6: compute ∆τm+1 using (6.16);

7: end if

8: end for

Remark 6.3.1. For both the ADI-AF-CN and ADI-AF-BDF2 schemes, we use as the

initial guess vm,(0) for the penalty iteration the linear two-level extrapolation of the
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Algorithm 6.3.1 ADI-AF FD penalty iteration for American options
1: initialize vm,(0);

2: construct Pm,(0) using (6.25);

3: for κ = 0, . . . , until convergence do

4: carry out (6.28) to obtain ∆vm,(κ);

set vm,(κ+1) = vm,(κ) + ∆vm,(κ);

5: construct Pm,(κ+1) using (6.25);

6: if
[

max
1≤i≤n̄p̄q̄

{ |vm,(κ+1)
i − v

m,(κ)
i |

max(1, |vm,(κ+1)
i |)

}
< tol

]
or

[
Pm,(κ) = Pm,(κ+1)

]
then

7: break;

8: end if

9: end for

10: vm+1 = vm,(κ+1);

numerical solution from the two previous timesteps, i.e. vm,(0) = (1+ cm)vm−1 − cmvm−2,

except on the first timestep, where v1,(0) = v0 ≡ v∗. In addition to conceptually fitting

the ADI-AF-BDF2 scheme, this initial guess also (i) gives rise to more efficient ADI-AF-

CN schemes than those using vm,(0) = vm−1, and (ii) enables consistent and fair efficiency

comparisons between the two ADI-AF schemes. Detailed numerical results are presented

in Tables 7.2.1–7.2.2, with a discussion in Section 7.2.

Remark 6.3.2. Due to the similarities between the aforementioned ADI-AF schemes and

an ADI method, such as the Douglas and Rachford scheme [36], the fact that the cross

derivatives are treated solely explicitly in these ADI-AF schemes might lead one to expect

that second-order convergence of the numerical methods would be lost. This is a typical

problem for ADI methods (e.g. see [36]). However, as our numerical results indicate, the

ADI-AF schemes presented in this thesis exhibit second-order convergence. This does not

contradict the aforementioned problem for ADI methods, since these ADI methods are

used in a non-iterative context, whereas, in our case, the ADI-AF schemes are applied
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iteratively. While the first iterate vm,(1) could be a first-order accurate approximate

solution, it seems that, with further penalty iterations, vm,(κ) converges to a second-

order accurate approximate solution at each timestep.

A heuristic explanation for this observation is as follows. The total error in the

iterative solution at each penalty iteration can be viewed as arising from two sources: (1)

the iteration error, which includes the first-order approximate factorization error arising

from the AF schemes, and (2) the second-order truncation error. In the first iteration,

the dominant source of error is the iteration error, but this error is reduced with further

penalty iterations. If enough penalty iterations are performed, the major source of error

is the truncation error, rather than the iteration error. Hence, we are able to observe the

second-order accuracy of the numerical solution at each timestep. Detailed results are

given in Tables 7.2.1–7.2.2, with a discussion in Section 7.2.

Remark 6.3.3. A possible extension of the ADI-AF schemes presented in this thesis is

to modify them so that they maintain second-order accuracy for vm,(κ) at each penalty

iteration. To this end, after carrying out the steps in (6.28), a special correction to the

cross-derivative terms, similar to those suggested in [13] in the context of ADI timestep-

ping methods, could be added to the right-side vector of (6.28a), followed by solving

an additional tridiagonal linear system along each spatial dimension, similar to (6.28a)–

(6.28c). However, the computational cost per penalty iteration of an ADI-AF scheme

based on this approach is approximately double that of the ADI-AF schemes considered

in this thesis.

Following [13], we carried out experiments with correction terms of the form∆̃τmM0∆vm,(κ)

with ∆̃τ m set accordingly for ADI-AF-CN and ADI-AF-BDF2. Although the resulting

ADI-AF methods did reduce the total number of iterations required for convergence com-

pared to the ADI-AF schemes presented in this thesis, the reduction was less than 50%.

As a result, it seems that a straightforward extension of the ADI-AF-CN/BDF2 schemes
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based on this correction term is not cost effective. Possibly, a more productive correction

term specifically designed for ADI-AF schemes could be developed.

Remark 6.3.4. For the FD discretization for the spatial variables described in (3.1),

if the gridpoints are ordered appropriately, all the linear systems in (6.28) are block-

diagonal with tridiagonal blocks. As a result, the number of floating-point operations

per penalty iteration is directly proportional to n̄p̄q̄, which yields a significant reduction in

computational cost compared to the application of a direct method. Moreover, the block

diagonal structure of these matrices gives rise to a simple, yet efficient, parallelization

for the solution of the linear systems in (6.28), as discussed in Section 6.4.

Remark 6.3.5. The approximate location of the early exercise surface at each time τm+1,

m = 0, . . . , l̄, can be extracted from the vector vm+1 by finding where vm+1 − v∗ changes

from being positive to being zero (within the tolerance tol). It would be interesting to

study the shape and properties, such as convexity, of the early exercise surface, as well

as its evolution with time. We plan to investigate this issue further in the future.

Remark 6.3.6. We now determine the complexity of the ADI-AF penalty algorithm.

We assume that all the matrices stored are in sparse format, and that variable timestep

sizes are used. The cost for determining these timestep sizes is about 3 n̄p̄q̄ flops2 per

timestep, which results in an approximate total of 3(l̄ − 1)n̄p̄q̄ flops for all timesteps.

Each of the penalty iterations requires

(i) about 43 n̄p̄q̄ flops for the matrix-vector multiplications −(I + θ∆τmM)vm,(κ) and

Pm,(κ)(v∗ −vm,(κ)), and the addition involving the vector f , assuming that the PDE

coefficients are available (see Step (x) below);3

2A flop is one addition, or one subtraction, or one multiplication, or one division of two floating-point
numbers.

3Since the matrix M has about 19 nonzero entries per row, the matrix-vector product Mvm,(κ)

requires about 38 n̄p̄q̄ flops.
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(ii) about 2 n̄p̄q̄ flops for updating the two right-side vectors of (6.28b)–(6.28c).

(iii) about 15 n̄p̄q̄ flops for updating the three tridiagonal matrices in (6.28a)–(6.28c),

assuming M1,M2, and M3 are available (see Step (xi) below);

(iv) about 12 n̄p̄q̄ flops for the solutions of the three tridiagonal systems in (6.28a)–

(6.28c);4

(v) about n̄p̄q̄ flops for updating the vector vm,(κ+1);

(vi) about n̄p̄q̄ flops for checking the stopping criterion.

In addition to the above costs, at each timestep, the ADI-AF-CN and ADI-AF-BDF2

schemes require

(vii) about 3 n̄p̄q̄ flops for the initial guess;

(viii) about 40 n̄p̄q̄ flops for the matrix-vector multiplication involving vm−1 (ADI-AF-

CN) and about 3 n̄p̄q̄ for the vector-vector addition of vm−1 and vm−2 (ADI-AF-

BDF2).

Moreover, we also need to include

(ix) about 16(n̄p̄+n̄q̄+p̄q̄) flops for computing values arising from the boundary condi-

tions, assuming that the coefficients of the PDE are available (see Step (x));

(x) about 57 n̄p̄q̄ flops for computing the coefficients of the PDE; and

(xi) 21 n̄p̄q̄ flops for assembling the three tridiagonal matrices M1,M2, and M3, assum-

ing that the coefficients of the PDE are available (see Step (x)).

Since the values arising from the boundary conditions are not time-dependent and are

relatively cheap to store, in our implementation, we compute the values in Step (ix)

4About 4 n̄p̄q̄ flops are needed for the solution of each of these tridiagonal systems.
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only once at the first penalty iteration of the first timestep, and store them for use in

subsequent penalty iterations. On the other hand, while the values computed in Steps

(x)–(xi) could be stored for use at each subsequent timestep and/or penalty iteration,

in our implementation, we recompute these values at each penalty iteration. This extra

computation is often cheaper than the memory bandwidth to retrieve pre-computed

values, not to mention a significant reduction in the memory footprint.

Let κ̄ denote the total number of penalty iterations over all timesteps required by

the penalty method. Thus, the approximate total number of flops required by our im-

plementation of the ADI-AF-CN and ADI-AF-BDF2 penalty algorithms are

152 n̄p̄q̄κ̄ + 43 n̄p̄q̄l̄ + 16(n̄p̄ + n̄q̄ + p̄q̄)

and

152 n̄p̄q̄κ̄ + 6 n̄p̄q̄l̄ + 16(n̄p̄ + n̄q̄ + p̄q̄),

respectively.

Remark 6.3.7. The total number of flops required for the timestep size selector (6.16)

is about 3 n̄p̄q̄ per timestep, which results in an approximate total of 3(l̄ − 1)n̄p̄q̄ flops

for all timesteps.

6.3.5 Benchmark Case: Geometric Average American Options

Although most basket options are written on arithmetic averages, using geometric av-

erages instead allows us to compute an accurate benchmark solution using a dimension

reduction approach. Below, we discuss geometric average American put options and an

associated dimension reduction approach.

We first consider the geometric average process g(t) defined by

g(t) =
( 3∏

i=1

si(t)
) 1

3 , t ≥ 0. (6.29)
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It can be shown that the dynamics of g(t) are given by

dg(t)
g(t)

= (r − dg)dt + σgdBg(t), (6.30)

where

σg =
( 1

32

3∑

i,j=1

ρijσiσj

) 1
2 , (6.31)

and

dg =
1
3

3∑

i=1

(
di +

1
2

(σi)2)
−

1
2

(σg)2. (6.32)

Here, Bg(t) is a standard Brownian motion defined by

Bg(t) =
1

3σg

3∑

i=1

σiWi(t). (6.33)

The derivation of the dynamics of the geometric average process g(t), i.e. relations (6.30)–

(6.33), is presented in Appendix E.2. We then consider a geometric average American

put option written on three assets with the payoff function

v∗(s) = max(E − g(t), 0), (6.34)

where the dynamics of g(t) are given by (6.30)–(6.33). This option is essentially equivalent

to an American put option written on one asset with starting value g(0) =
( 3∏

i=1

si(0)
) 1

3 ,

strike E, volatility σg defined by (6.31), and risk-neutral drift rg = r − dg, where dg

is defined by (6.32). Since an American option written on one asset can be solved

very efficiently and accurately using a wide range of numerical methods, such as the

adaptive and high-order pricing methods developed in [9], we can obtain a very accurate

benchmark solution for a geometric average American put option written on three assets

by solving the equivalent pricing problem for an American put option on one asset. A

detailed discussion and numerical results are presented in Subsection 7.2.1.
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6.4 GPU Implementation

The parallelization of the ADI timestepping scheme (6.15) for a multi-asset European

option is essentially the same as the one discussed in Chapter 4, and hence is not repeated

here. The focus of this section is a parallelization of the timestep size selector (6.16) and

a GPU-based parallel algorithm for each penalty iteration of the Algorithm 6.3.1. As an

example, we focus on describing the parallel implementation of the ADI-AF-CN scheme

and the stopping criterion (Line 6) of the penalty algorithm. The implementation the

ADI-AF-BDF2 scheme is essentially the same, and hence omitted.

6.4.1 Timestep Size Selector

The key to an efficient implementation of the timestep size selector (6.16) on a GPU is

quickly finding the minimum element of a large array of real numbers. To this end, we

adapt the parallel reduction technique discussed in [27, 28]. In this approach, there are

two levels of reduction involved in the process: the local and the global reductions. The

local reduction refers to the reduction within each threadblock, the purpose of which

is to find the minimum value within a threadblock. On the other hand, the global

reduction aims at processing the intermediate results from all of the threadblocks. Both

levels of reduction are built-upon on tree-based parallel techniques. We explain these

two phases in detail below. Although, in this section, we focus on describing parallel

reduction techniques in the context of finding the minimum element of a large array, it is

straightforward to extent the techniques to other reduction operations, such as computing

the sum of an array.

Local Reduction

Assume that we have a 1-D array of st elements in the global memory, referred to as

the array B, and this array is assigned to a 1-D threadblock of the same size. In this
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10 1 8 -1 0 3 -12 20 -4 9 1 11 16 24 -3 -8

shared array of values in the shared memory

0 1 2 3 4 5 6 7ThreadId Iteration 1

-4 1 1 -1 0 3 -12 -8 -4 9 1 11 16 24 -3 -8

Iteration 20 1 2 3ThreadId

-4 1 -12 -8 0 3 -12 -8 4 9 1 11 16 24 -3 -8

Iteration 3

-12 -8 -12 -8 0 3 -12 -8 -4 9 1 11 16 24 -3 -8

0 1ThreadId

-12 -8 -12 -8 0 3 -12 -8 -4 9 1 11 16 24 -3 -8

Iteration 40ThreadId

written to device memory

Figure 6.4.1: An example of a tree-based algorithm for finding the minimum element of

a 1D array. The second half of the array are compared pairwise with the first half of the

array by the set of leading threads of the threadblock.

phase of reduction, the minimum value of the array B is obtained using a tree-based

parallel technique. More specifically, each of the
st

2
threads is assigned a pair of numbers,

compares them, and writes the result (the smaller of the pair) to its location in the original

array. After this step, we have
st

2
partial minimum values stored at specific locations in

the original array. We repeat the procedure, via a loop in the kernel, until we obtain

the minimum value of the array B. This minimum value is then written to a location

specifically assigned to the threadblock in the global memory.
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Several considerations need to be taken into account when designing an efficient GPU

algorithm for this tree-based approach. First, the result produced by a thread during

the current iteration will be accessed by another thread in the next iteration when pairs

of numbers are compared. As a result, the array B should really be cached. Since the

GPU which we used for our numerical experiments does not have a cache, we manually

cache the entries of the array B in the shared memory by using a shared array in the

kernel; this array is used in each iteration. It is also important to emphasize that for the

loading phase from the global memory to the shared array, barrier synchronization

among threads in the same threadblock must be enforced, and this can be achieved by

using the function syncthreads(). Second, not all threads in a threadblock are busy

during each iteration. More specifically,
st

2
threads are busy in the first iteration, while

only
st

4
threads are busy in the second, and so on. For efficiency, it is desirable to ensure

that each warp is either fully active or fully inactive, as much as possible. Therefore,

in our implementation, during each iteration, the elements of the second half of the

(sub-)array being processed are compared pairwise with those of the first half of the

(sub-)array by the set of leading threads of the threadblock. A pictorial presentation of

the aforementioned tree-based algorithm is given in Figure 6.4.1.

Global Reduction

Since threads from different threadblocks cannot communicate effectively with each other,

a mechanism is needed to process the partial results, i.e. intermediate minimum values,

produced by different threadblocks. In the local reduction approach described above,

after a kernel has executed, the minimum value of each threadblock is written to a

different entry in a global array of partial results. The purpose of the global reduction is

to use the kernel launch as a global synchronization point to process partial results; this

is inexpensive because a kernel launch has negligible overhead.
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More specifically, assume that initially we have a large array, called G, of size Ns, in

the global memory, and we want to find the minimum value of G. The general idea is

to partition the initial array G into ceil(Ns/st) sub-arrays of size st, each of which is

assigned to a 1-D threadblock of the same size. Note that each of these sub-arrays plays

the role of the array B in the local reduction level described earlier. During the first

kernel launch, i.e. the first level of global reduction, each threadblock first carries out the

reduction operation via the tree-based approach described in the previous subsection,

to find the minimum of the corresponding sub-array, then writes the intermediate result

to its exclusively assigned location in an array in the global memory. This array of

intermediate minimum elements is then processed in the same manner by passing it

on to a kernel again, i.e. the second level of global reduction, but now the number of

threadblocks is divided by st. This process is repeated until the array of partial minimums

can be handled by a kernel launch with only one threadblock of size st, i.e. the last level

of global reduction, after which the minimum element of the array G is found.

Figure 6.4.2 illustrates an example of this global reduction approach applied to an array

of Ns = n̄p̄q̄ elements. In the first level of global reduction, i.e. Level 1, n̄p̄q̄ elements

are partitioned into ceil
( n̄p̄q̄

st

)
1-D sub-arrays of data, each of which has size st, and is

assigned to a 1-D threadblock of the same size. After Level 1, we have an array of size

ceil
( n̄p̄q̄

st

)
containing the intermediate results in the global memory to work with in

the second level of global reduction. In general, in the kth level of global reduction, we

have an array of size ceil
( n̄p̄q̄

(st)k−1

)
containing intermediate results to work with, and

this array is partitioned into ceil
( n̄p̄q̄

(st)k

)
sub-arrays, each of which is of size st, and is

processed by a 1-D threadblock of the same size.

Note that, although the number of threadblocks decreases after each level of global

reduction, the number of threads in a threadblock remains the same at each level of

reduction. As a result, the kernel code for all levels of global reduction is virtually the
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)

blocks

Last level one block

Figure 6.4.2: Global reduction levels and associated numbers of elements and thread-

blocks.

same, except that in the first kernel call, each thread of a threadblock needs to load, via

a coalesced pattern, its components of the vectors zm and zm−1 (or vm and vm−1 in the

case of American options) and computes the respective quantity
|zm

ι − zm−1
ι |

max(N, |zm
ι |, |zm−1

ι |)
,

before performing local reduction to find the minimum element of the threadblock.

Although several advanced optimization techniques, such as unrolling the last warp,

loop unrolling, and processing multiple elements per thread, can be used to improve the

performance of the GPU-based timestep size selector, we decided not to implement any

of these more sophisticated techniques, since the current implementation of the timestep

size selector is sufficiently fast and its computation times occupy a very small fraction,

about 1%, of the total computation times (see, for example, Table 7.2.2). Therefore,

there would be little benefit to reducing the runtime of the timestep size selector further.
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6.4.2 ADI-AF schemes

For presentation purposes, let

wm−1 = (1 − θ)∆τmMvm−1,

w(κ) = θ∆τmMvm,(κ),

M̂
m,(κ)
i = Dm,(κ) + θ∆τmMi, i = 1, 2, 3,

∆̂v
(κ),i

= Dm,(κ)(∆vm,(κ))(i−1), i = 2, 3,

and notice that

bm,(κ) = vm−1 − vm,(κ) − (wm−1 + w(κ)) + Pm,(κ)(v∗ − vm,(κ)) + ∆τmf .

Here, to simplify the notation, we have dropped the superscript, m, for the timestep

index from the vectors w(κ) and ∆̂v
(κ),i

, i = 2, 3. The computation of the ADI-AF-CN

scheme (6.28) and the checking of the stopping criterion of Algorithm 6.3.1 consist of the

following steps:

(i) Step a.1: Compute the matrices Dm,(κ), Mi and M̂
m,(κ)
i , i = 1, 2, 3, and the vectors

wm−1, w(κ) and bm,(κ);

(ii) Step a.2: Solve M̂
m,(κ)
1

(
∆vm,(κ)

)(1) = bm,(κ);

(iii) Step a.3: Compute ∆̂v
(κ),2

and solve M̂
m,(κ)
2

(
∆vm,(κ)

)(2) = ∆̂v
(κ),2

;

(iv) Step a.4: Compute ∆̂v
(κ),3

and solve M̂
m,(κ)
3

(
∆vm,(κ)

)(3) = ∆̂v
(κ),3

;

(v) Step a.5: Check the stopping criterion.

We observe similarities between the computation of the ADI-AF schemes and that of

the ADI timestepping method (3.4) (and also of (6.15)). More specifically, the compu-

tation of the vector wm−1 in Step a.1 resembles the explicit Euler predictor step, while

Steps a.2–a.4 are essentially the same as the three implicit corrector steps in (3.4), each
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of which involves solving a block-diagonal system with tridiagonal blocks along a spatial

dimension. As a result, the GPU-based parallelization of the ADI-AF scheme considered

in this section can be viewed as a natural extension of the parallelization of the ADI

timestepping method presented in Section 4.3 For brevity, we only outline the main steps

of the parallel algorithm for the ADI-AF-CN scheme. A detailed discussion of each of

the parallelization steps can be found in Section 4.3.

Step a.1

We assume that, initially, the vectors vm−1, vm,(κ) and v∗ are in the global memory, and

any needed constants (model parameters) are in the constant cache. Note that the data

copying from the host memory to the device memory occurs on the first timestep only,

for the initial condition (payoff) data and the model constants. Data for the subsequent

timesteps and steps of the ADI-AF schemes are stored in the global memory.

We apply the same partitioning approach as discussed in Subsection 4.3.1. That is,

we partition the n̄ × p̄ × q̄ computational grid into 3-D blocks of size nb × pb × q, i.e. a

total of q̄ nb ×pb tiles. All gridpoints of a nb ×pb × q̄ 3-D block are assigned to one nb ×pb

threadblock only, with one thread for each “stack” of q gridpoints in the s3 direction.

This partitioning approach and data assignment result in a q̄-iteration loop in the kernel

(also see Figure 4.3.1).

The computation required in Step a.1 includes construction of matrices, addition of

matrices, multiplication of vectors and matrices by scalars, as well as matrix-vector multi-

plication. With the approach of data partitioning and assignment to threads/threadblocks

described above, all the above computations, except possibly the matrix-vector multipli-

cation, can be executed in parallel in a natural way, without the need for communication

between threads in different threadblocks. However, due to the FD schemes (3.1) and

(3.2), the computation of matrix-vector multiplications embedded in wm−1 and w(κ) re-
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quires communication between threads in different threadblocks. More specifically, at

each instance of the q-iteration loop, a threadblock carrying the computation of a tile

needs the halo values of neighbouring gridpoints from adjacent tiles in the s1 and s2

directions. These adjacent tiles belong to different threadblocks. In our approach, this

type of communication is realized via copies to/from the global memory, which, although

they are slow, they involve small amounts of data transfer compared to the amount of

computation. Furthermore, because 16KB of shared memory available per multiproces-

sor are not sufficient to store many data tiles, we adopt a three-plane strategy, in which,

to process a tile of a 3-D block, each threadblock works with three data tiles of size

nb × pb and their halo values during each iteration of the loop. As we proceed in the

s3-direction, at each iteration, the next tile data are loaded, the current tile data are

being computed and the previous tile data are then being discarded. For issues regarding

memory coalescing at this step, the reader is referred to the discussion on page 78 in

Subsection 4.3.1.

Remark 6.4.1. It is worth emphasizing that the vector wm−1 is computed only in the

first penalty iteration of the mth timestep. This vector is then loaded in a coalesced

fashion from the global to the shared memory for use in subsequent penalty iterations of

that timestep.

Steps a.2, a.3, a.4

Similar to the parallelization approach presented in Subsection 4.3.2 for the computation

of the three implicit corrector steps of the ADI timestepping methods, the data partition-

ing for each of Steps a.2, a.3 and a.4 is different from that for Step a.1 and is motivated by

the block structure of the tridiagonal matrices M̂m,(κ)
i , i = 1, 2, 3, respectively. For exam-

ple, M̂m,(κ)
1 has p̄q̄ diagonal blocks, each block being n̄ × n̄ tridiagonal, thus the solution

of M̂m,(κ)
1

(
∆vm,(κ)

)(1) = bm,(κ) (Step a.2) is computed by first partitioning M̂
m,(κ)
1 and
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bm,(κ) into p̄q̄ independent n̄× n̄ tridiagonal systems, and then assigning each tridiagonal

system to one of the p̄q̄ threads generated, i.e. each thread is assigned n̄ gridpoints along

the s1-direction.

In our implementation, each of the 2-D threadblocks used in Steps a.2, a.3 and a.4

has the identical size rt × ct, where the values of rt and ct are determined by numerical

experiments to maximize the performance. The size of the grid of threadblocks is de-

termined accordingly. For issues regarding memory coalescing at this step, the reader is

referred to the discussion on page 81 in Subsection 4.3.2.

Step a.5

In the current implementation, checking the stopping criterion is done during the kernel

generated in Step a.4. More specifically, each threadblock of the kernel launched in Step

a.4, after computing its component of the vector ∆̂v
(κ),3

corresponding to the reference

point (s1i, s2j , s3k, ·), computes the quantity

|vm,(κ+1)
i,j,k − vm,(κ)

i,j,k |

max(1, |vm,(κ+1)
i,j,k |)

(6.35)

and the corresponding row of the penalty matrix Pm,(κ+1) (one entry). (Note that the

loading of components of the vectors vm,(κ) and v∗ used for computing Pm,(κ+1) is fully

coalesced.) If the quantity (6.35) is greater than or equal to the tolerance tol or if two

corresponding rows of the matrices Pm,(κ) (obtained from the matrix Dm,(κ)) and Pm,(κ+1)

are different, the thread then respectively changes the pre-set values of two different flag

variables stored in a global memory location. Note that the two pre-set flag variables

are copied from the host memory to the device memory before the kernel of Step a.4 is

launched. After the kernel has ended, the values of the two flag variables are copied back

to the host memory to be checked. (These host-device copies are cheap.) The stopping

criterion is satisfied if the two pre-set values were not altered during the kernel. Although

it may happen that multiple threads try to write to the same memory location of a flag
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variable at the same time, it is guaranteed that one of the writes will occur. Although

we do not know which one, this does not matter for the purpose of checking the stopping

criterion. Consequently, this approach suffices and works well.



Chapter 7

Numerical Results for Multi-asset

Options

In this chapter, we present selected numerical results to demonstrate the effectiveness

of the GPU-based parallel methods applied to the pricing of multi-asset options. In

addition to the statistics mentioned in Subsection 5.1.1, additional statistics collected in

this chapter include:

• “value”: the spot value of the option;

• “iter. #”: the total number of penalty iterations over all timesteps required by the

penalty method when pricing American options;

• “work”: the approximate total flops required by a ADI-AF method, and is com-

puted as described in Remark 6.3.6 (page 139) and Remark 6.3.7 (page 141).

Note that, if the timestep size selector (6.16) is used, the “CPU time” and “GPU time”

also include the total computation times for all timesteps required by the procedure.

When reported, the total CPU and GPU times, expressed in milliseconds (ms.), required

by the timestep size selector (6.16) for all timesteps, respectively denoted by “CPU

(6.16)” and “GPU (6.16)”.

153
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We truncate the unbounded domain into a finite-sized computational one

{(s1, s2, s3, τ) ∈ [0, s1,∞] × [0, s2,∞] × [0, s3,∞] × [0, T̄ ]} ≡ Ωb × [0, T̄ ],

where s1,∞ = s2,∞ = s3,∞ = 3E. The spot prices are chosen to be s1(0) = s2(0) = s3(0) =

E. For basket options, we consider the weights of the assets to be w1 = w2 = w3 =
1
3

, so

that we have
3∑

i=1

wisi(0) =
1
3

3∑

i=1

si(0) = E. Note that, with this choice of the truncated

computational domain and for all grid sizes considered, there is gridpoint at E (the initial

kink point) in each asset price grid.

All the GPU experiments for multi-asset option pricing were conducted on a NVIDIA

Tesla T10 GPU of a server node. (See the description of the GPU cluster in Subsec-

tion 4.1.2.) Similar to pricing PRDC swaps, for both the GPU-based ADI timestepping

methods (for European options) and the GPU-based ADI-AF-CN/BDF2 methods (for

American options), the size of each tile used in Step a.1 is chosen to be nb × pb ≡ 32 × 4,

and the size of each threadblock used in the parallel solution of the independent tridiag-

onal systems in Steps a.2, a.3 and a.4 is rt × ct ≡ 32 × 4. The size for each threadblock

used in the parallelization of the timestep size selector (6.16) is st = 128.

7.1 Multi-asset European Options

We consider the ADI methods with variable timestep sizes automatically chosen by the

timestep size selector (6.16) (variable-timestep-size ADI). We use the set of parameters

for three assets taken from [44]: E = 100, r = 0.04, T̄ = 1, d1 = d2 = d3 = 0, σ1 =

0.3, σ2 = 0.35, σ3 = 0.4, ρ12 = ρ13 = ρ23 = 0.5. The spot prices are chosen to be

s1(0) = s2(0) = s3(0) = E. The analytic solution for the European call-on-minimum

rainbow option with this set of parameter is computed to be 4.4450, using formulas in

[40]. The reference solution for the basket option is 13.2449 obtained using an accurate

numerical FFT-based pricing technique [44]. We refer to these two values as accurate
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reference solutions for the rainbow and basket options, respectively.

Tables 7.1.1 presents selected numerical results for multi-asset European options writ-

ten on three assets obtained with variable timestep size ADI methods using double-

precision. The total number of timesteps, l̄, for the variable-timestep-size methods is

automatically determined by the timestep size selector (6.16). The computed prices for

the rainbow and basket options on the CPU and GPU are identical and exhibit second-

order convergence for the HV scheme, as expected. Regarding the timing results, the

GPU is significantly faster than the CPU for any size of the discretized problem and has

a speedup ratio of about 18 for the largest grid we considered.

n̄ p̄ q̄ l̄ value error log2 CPU GPU speed

(s1) (s2) (s3) (τ) ratio time (s.) time (s.) up

Rainbow option

45 45 45 22 4.4162 2.9e-02 1.2 0.3 5.9

90 90 90 44 4.4404 4.6e-03 2.6 17.8 1.4 12.8

180 180 180 88 4.4445 5.4e-04 2.5 311.9 17.8 17.6

Basket option

45 45 45 24 13.2375 7.4e-03 1.3 0.3 5.1

90 90 90 45 13.2438 1.1e-03 2.5 18.1 1.5 12.8

180 180 180 87 13.2446 3.0e-04 1.9 311.7 17.8 17.6

Table 7.1.1: Spot values and performance results for pricing an at-the-money European

call-on-minimum rainbow option and a basket call option, each written on three assets.

Variable-timestep-size ADI methods are used.
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Figure 7.1.1: Efficiency comparison of the sequential CPU-based and parallel GPU-based

methods with double-precision applied to the European rainbow and European basket

option pricing problems.

In Figure 7.1.1, we plot errors versus computation times required by each method. It

is evident that GPU-based parallel methods are significantly more efficient than standard

sequential CPU-based methods in pricing these multi-asset options.

To see the effects of the single- and double-precisions on the performance on the

GPU, in Table 7.1.2, we present selected numerical results of the GPU-based variable-

timestep-size ADI methods applied to pricing European call-on-minimum rainbow option

written on three assets. It is obvious that the numerical results obtained in the two

cases are almost the same, except that, for the largest grid size we considered, the option

price obtained with single-precision is less accurate than with double-precision. However,

single-precision gives better timing results.

It is evident from Tables 7.1.1 and Figure 7.1.1 that the numerical methods are more

efficient when applied to pricing a basket option than when applied to a rainbow option.

For the same grid sizes, the errors for the basket option are about 2 to 4 times smaller

than the errors for the rainbow option. To investigate this further, we look at the payoff
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Double-precision Single-precision

n̄ p̄ q̄ l̄ value error GPU l̄ value error GPU

(s1) (s2) (s3) (τ) time (s.) (τ) time (s.)

45 45 45 22 4.4162 2.9e-02 0.2 22 4.4162 2.9e-02 0.2

90 90 90 44 4.4404 4.6e-03 1.4 44 4.4404 4.6e-03 1.0

180 180 180 88 4.4445 5.4e-04 17.8 88 4.4442 7.4e-04 13.5

Table 7.1.2: Spot values and timing results for pricing an at-the-money European call-on-

minimum rainbow option written on three assets. Variable-timestep-size ADI methods

are used.

functions of the two options. To simplify the analysis, we first consider a two-stock

counterpart of (6.6) and (6.7), i.e. the European call-on-minimum rainbow option and

the European basket option written on two assets with the payoff functions specified by

u(s1, s2, T ) = max(min(s1, s2) − E, 0) and u(s1, s2, T ) = max
( 2∑

i=1

wisi − E, 0
)

,

respectively. For the basket option on two stocks, the “kink region” for the payoff, i.e.

the region where the first derivative of the payoff with respect to the space variables is

not continuous, is just the line segment that connects the two points (
E
w1

, 0) and (0,
E
w2

)

in the s1–s2 plane. However, for the call-on-minimum rainbow option on two stocks, the

kink region consists of two half lines, starting from the point (E, E) and running parallel

to the stock value axes. Plots of the kink regions of the two payoff functions are given in

Figure 7.1.2.

Similarly, for three assets, the kink region for the payoff of the basket option is a plane

segment determined by (
E
w1

, 0, 0), (0, E
w2

, 0), and (0, 0,
E
w3

). However, the kink region for

the payoff of the call-on-minimum rainbow option consists of three half planes, starting



CHAPTER 7. NUMERICAL RESULTS FOR MULTI-ASSET OPTIONS 158

-

6

0 s1

s2

@
@
@
@
@
@
@
@
@
@

E
w1

E
w2

2∑

i=1

wisi > E

2∑

i=1

wisi < E

-

6

s1

s2

0

E

E

s1 > E
s2 > E

s1 > E
s2 < E

s1 < E
s2 > E

s1 < E
s2 < E

Figure 7.1.2: The kink region for the payoff function of a basket option (left) and of a

call-on-minimum rainbow option (right).

from the point with coordinates (s1, s2, s3) = (E, E, E) and running parallel to the three

faces of the rectangular spatial domain. Thus, in a sense, the topology of the payoff

function of a European rainbow option is more complex and “harder” to handle than

that of a European basket option. This may explain the observed loss of efficiency of the

numerical methods applied to pricing a rainbow option.

7.2 Multi-asset American Options

Several methods are considered, namely, the ADI-AF-CN and ADI-AF-BDF2 methods

with uniform timestep sizes (uniform-timestep-size ADI-AF-CN and uniform-timestep-

size ADI-AF-BDF2, respectively), and the ADI-AF-CN and ADI-AF-BDF2 methods

with variable timestep sizes automatically chosen by (6.16) (variable-timestep-size ADI-

AF-CN and variable-timestep-size ADI-AF-BDF2, respectively).

We use the set of parameters for three assets taken from [42]: E = 100, r = 0.03, T̄ =

0.25, σ1 = σ2 = σ3 = 0.2, d1 = d2 = d3 = 0, ρ12 = ρ13 = ρ23 = 0.5. The penalty factor

ζ = 107 is used. Note that all computations for multi-asset American options are carried

out in double precision.
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n̄ p̄ q̄ l̄ value error log2 iter work l̄ value error log2 iter. work

(s1) (s2) (s3) (τ) ratio # (flops) (τ) ratio # (flops)

uniform-timestep-size ADI-AF-CN variable-timestep-size ADI-AF-CN

45 45 45 20 2.9569 4.8e-2 53 8.1×108 10 2.9619 4.3e-2 54 7.8×108

90 90 90 40 2.9931 1.1e-2 2.0 125 1.5×1010 18 2.9948 1.0e-2 2.1 112 1.3×1010

180 180 180 80 3.0015 2.9e-3 2.0 330 3.1×1011 34 3.0022 2.3e-3 2.1 280 2.6×1011

uniform-timestep-size ADI-AF-BDF2 variable-timestep-size ADI-AF-BDF2

45 45 45 20 2.9571 4.7e-2 63 8.8×108 10 2.9748 2.9e-2 53 7.4×108

90 90 90 40 2.9931 1.1e-2 2.0 134 1.5×1010 18 2.9990 5.5e-3 2.4 118 1.3×1010

180 180 180 80 3.0016 2.8e-3 2.0 304 2.7×1011 34 3.0034 1.1e-3 2.3 292 2.6×1011

Table 7.2.1: Observed errors for an at-the-money American put option on the geometric

average of three assets and respective orders of convergence for various methods. The

benchmark value is 3.00448.

7.2.1 Geometric Averages

With the set of parameters used, we have g(0) = 100, σg = 0.1633, and rg = 0.03−0.0067.

The benchmark solution is 3.00448 obtained using an accurate, adaptive, high-order

pricing method developed in [9] for pricing American put options written on one asset.

Table 7.2.1 presents selected numerical results for the at-the-money American put

option on the geometric average of three assets described above obtained with various

methods. The total number of timesteps, l̄, for the variable-timestep-size methods is au-

tomatically determined by the timestep size selector (6.16). The computed option prices

enjoy second-order convergence, in all cases, a favorable behavior due to the iterative

application of the ADI-AF schemes; see also Remark 6.3.2 on page 137. We next compile

an efficiency comparison between various methods for solving the American put option on

the geometric average of three assets. In Figure 7.2.1, we plot errors (“error”) versus the
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Figure 7.2.1: Efficiency comparison of various methods applied to the geometric average

American put option pricing problem.

approximate total number of flops required by each of the methods (“work”). It is evident

that the variable-timestep-size methods significantly outperform the uniform-timestep-

size methods, with the variable-timestep-size ADI-AF-BDF2 being the most efficient,

followed by the variable-timestep-size ADI-AF-CN. Between the uniform-timestep-size

ADI-AF-CN and ADI-AF-BDF2 methods, the ADI-AF-BDF2 is only marginally more

efficient. It seems that the benefit of the timestep size selector (6.16) is more pronounced

with the ADI-AF-BDF2 scheme than with the ADI-AF-CN scheme.

Interestingly, we can also see from Table 7.2.1 that the average number of iterations

per timestep required by a variable-timestep-size ADI-AF method is significantly larger

than that required by its uniform-timestep-size counterpart. A possible explanation for

this observation is as follows. For variable-timestep-size ADI-AF methods, although a

few initial timestep sizes are usually quite small (due to small initial timestep size ∆τ1),

subsequent timestep sizes increase rapidly. However, a larger timestep size also gives

rise to a larger error in the initial guess for the solution vm of (6.21) or (6.22) as well

as a larger error in an AF scheme (see (6.26)). Consequently, more penalty iterations

may be required for the convergence of the penalty iteration at that timestep (also see
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n̄ p̄ q̄ l̄ value change ratio iter. CPU GPU speed CPU GPU speed

(s1) (s2) (s3) (τ) # time time up (6.16) (6.16) up

(s.) (s.) (ms.) (ms.)

variable-timestep-size ADI-AF-CN

45 45 45 11 2.8924 22 0.5 0.3 1.8 6.2 1.6 3.9

90 90 90 20 2.9309 3.9e-2 54 12.7 1.0 12.8 115.7 14.3 8.0

180 180 180 37 2.9408 9.9e-3 3.9 181 289.5 17.1 16.9 1677.2 171.5 9.6

variable-timestep-size ADI-AF-BDF2

45 45 45 11 2.9059 26 0.7 0.3 2.3 6.1 1.6 3.9

90 90 90 20 2.9348 2.9e-2 66 15.3 1.2 11.9 115.2 14.3 8.0

180 180 180 37 2.9419 7.1e-3 4.1 217 336.3 19.8 17.1 1678.2 172.3 9.6

Table 7.2.2: Observed spot prices and performance results for an at-the-money American

put option on the arithmetic average of three assets obtained using variable-timestep-size

ADI-AF-CN and ADI-AF-BDF2 methods. The reference price is 2.94454 [42].

Remark 6.3.2 on page 137).

7.2.2 Arithmetic Averages

Table 7.2.2 presents selected numerical results for the American put option on the arith-

metic average of three assets, described above, obtained using the two most efficient meth-

ods, namely the variable-timestep-size ADI-AF-CN and ADI-AF-BDF2 methods. In the

last three columns of this table, we also present the total CPU and GPU times, expressed

in milliseconds (ms.), required by the timestep size selector (6.16) for all timesteps, re-

spectively denoted by “CPU (6.16)” and “GPU (6.16)”, and the respective speedups.

Note that these times are included in the total CPU and GPU times (“CPU time” and

“GPU time”). Other than the computation times and the speedups, our experiments on
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the CPU and on the GPU give similar results.

Table 7.2.2 shows a second-order rate of convergence for the computed “value”. More-

over, these values are consistent with the reference price 2.94454 quoted in [42]. Ta-

ble 7.2.2 also shows that the GPU implementation of each method is significantly faster

than the corresponding CPU implementation for any size of the discretized problem. In

particular, for the largest grid considered, we observe a speedup ratio of about 17 for the

total computation times, while the GPU-based timestep size selector is about 10 times

faster than its CPU-based counterpart.

Estimated overall rates of computation, reported in units of Giga-Floating Point

Operations per second (GFLOP/s), for the two GPU-based variable-timestep-size ADI-

AF methods and for the timestep size selector (6.16) are presented in Table 7.2.3.

n̄ p̄ q̄ l̄ ADI-AF-CN ADI-AF-BDF2 (6.16)

(s1) (s2) (s3) (τ) (GFLOP/s) (GFLOP/s.) (GFLOP/s.)

45 45 45 11 1.16 1.23 1.70

90 90 90 20 6.65 6.21 3.04

180 180 180 37 9.10 8.93 3.71

Table 7.2.3: Estimated performance results in GFLOP/s for the GPU-based variable-

timestep-size ADI-AF methods and the timestep size selector (6.16).

Note that these performance results may actually be underestimated, since the flops

used to compute these performance results do not include those that are duplicated on

different threads during the computations. An investigation of this topic, however, is

beyond the scope of this thesis; we plan to address it in the future.



Chapter 8

Summary and Future Work

8.1 Summary of Research

The thesis develops highly-efficient PDE-based modeling frameworks for multi-factor

financial derivatives, with strong emphasis on three-factor models. Two important classes

of financial derivatives, namely long-dated cross-currency/FX interest rate hybrids and

multi-asset options, are investigated. The thesis focuses in particular on (i) PRDC swaps

with popular exotic features, namely Bermudan cancelability, knockout and FX-TARN,

under log-normal/FX skew models, and (ii) multi-asset American options under the

Black-Scholes-Merton framework. The following summarizes the major features of the

frameworks developed in this thesis and relevant research findings.

8.1.1 Cross-currency/FX Interest Rate Hybrid Derivatives

The frameworks developed for cross-currency/FX interest rate hybrids in general, and

PRDC swaps in particular, can efficiently handle the early exercise features of Bermu-

dan cancelability, as well as knockout provisions and strong path-dependency of the

FX-TARN feature. In particular, when pricing these derivatives with Bermudan can-
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celable and FX-TARN features via a PDE approach, substantial extra computational

requirements arise.

The general pricing approach developed in this thesis for cross-currency/FX interest

rate hybrids with these exotic features is based on partitioning the pricing problem into

multiple independent pricing subproblems over each time period of the swap’s tenor

structure, each of which requires a solution of the model-dependent PDE. The modeling

of PRDC swaps using one-factor Gaussian models for the domestic and foreign interest

short rates, and a one-factor skew model for the spot FX rate, such as the one considered

in this thesis, results in a time-dependent parabolic PDE in three space dimensions

with all cross derivatives, due to the correlation between stochastic processes in the

pricing model. Each of these subproblems can be solved efficiently on a GPU via an

efficient parallelization of the ADI timestepping technique that is employed for the time

discretization of the model PDE.

More specifically, over each period of the swap’s tenor structure, the pricing of a

Bermudan cancelable PRDC swap can be divided into two independent pricing subprob-

lems, with communication at the end of the period. On a multiple-GPU platform, we

can efficiently utilize two GPUs to linearly scale the speedup when pricing the underly-

ing PRDC swap, with a speedup of about 59 for the largest grid size considered when

comparing the parallel GPU to the optimized sequential CPU computing times using

single-precision. In the case of FX-TARN PRDC swaps, from the pricing logic point-of-

view, due to the path-dependency of the exotic feature, forward pricing algorithms, such

as Monte Carlo simulations, are the natural choice for the pricing of these derivatives.

By introducing an auxiliary state variable to keep track of the total accumulated PRDC

coupon to date, which stays constant between dates of the tenor structure and is updated

on each date of the tenor structure by a PRDC coupon amount known on that date, we

develop a PDE-based pricing algorithm for FX-TARN PRDC swaps which computes
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backward in time. This requires us to solve a set of independent model PDEs for each

of the discretized values of the auxiliary state variable over each period of the swap’s

tenor structures, with communication at the end of the period. To attain even higher

efficiency by solving each of the independent PDEs on a separate GPU, we extend the

pricing procedure to work on a cluster of GPUs. Using a total of 40 GPUs of the cluster,

we obtain a speedup of about 32 for the largest grid size considered when comparing the

implementation of the pricing procedure on the cluster to a single-GPU implementation

using single-precision.

An important modeling aspect of long-dated FX interest rate hybrids in general, and

of PRDC swaps in particular, is the strong sensitivity of the computed price of these

derivatives to the skew of the FX volatility smiles. Our numerical results show that

the FX skew model, which assumes that the local volatility function depends not only

on time, but also on the spot FX rate, gives rise to significantly lower values for the

PRDC swap with exotic features than the plain log-normal model. These differences,

which are more pronounced for the high-leverage levels than for the low- and medium-

leverage levels, are seen as profit from the point-of-view of the issuer (bank). In general,

PRDC swaps are very sensitive to the skew of the volatility smile, which highlights the

importance of having a proper FX skew model for pricing and risk managing PRDC

swaps.

8.1.2 Multi-asset Options

The focus of the thesis in this area is on European and American options written on three

assets under the Black-Scholes-Merton framework. The price of a multi-asset European

option satisfies the multi-dimensional Black-Scholes-Merton PDE, the solution of which is

itself a computational challenge, due to the high-dimensionality of the PDE. In this case,

one can apply the GPU-based parallel ADI timestepping techniques to solve this PDE ef-
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ficiently. However, pricing a multi-asset American options is much more challenging, due

to the mathematical complexity associated with the early exercise features, in addition

to the substantial computational requirements arising from the high-dimensionality.

Using a PDE approach, the American option pricing problem can be formulated as a

LCP with the inequalities involving the Black-Scholes-Merton PDE and some additional

constraints. The algorithm developed incorporates the penalty approach for handling

the LCP and parallel ADI-AF methods on GPUs for the solution of the linear algebraic

system arising at each penalty iteration. More specifically, in this penalty approach,

a penalty term is added to the discretized equations to enforce the early exercise con-

straint. The solution of the resulting discrete nonlinear equations at each timestep can

be computed via a penalty iteration, the computation of which is intensive, due to the

high-dimensionality of the problem. We develop the ADI-AF techniques, which can be

viewed as being based on the splitting techniques of the ADI timestepping methods, but

at the matrix level, for efficiently solving the linear system at each penalty iteration.

More specifically, in our approach, the matrix associated with the linear system at each

penalty iteration is approximately factored into a product of three tridiagonal matrices.

Hence, the computational cost is directly proportional to the number of gridpoints. We

then develop an efficient GPU-based parallelization of the ADI-AF techniques based on

the parallelization of the ADI timestepping method. A GPU-based timestep-size-selector

is employed to further increase the performance of the pricing methods. Numerical re-

sults indicate that the proposed algorithm is very effective for pricing such derivatives,

with an observed speedup of about 18 when comparing the parallel GPU to the optimized

sequential CPU computing times using double-precision.



CHAPTER 8. SUMMARY AND FUTURE WORK 167

8.2 Future Work

Several possible extensions of the research work presented in this thesis are mentioned

below.

8.2.1 Numerical Methods

From a numerical methods perspective, support for non-uniform grids with more points

concentrated in the regions of interest, such as around the strike of the options, or in

areas where the problem is difficult, such as around the barriers of the knockout PRDC

swap, could be added to the current implementation to further increase the accuracy

and efficiency of the methods. To achieve even a higher efficiency, one can consider

incorporating adaptive techniques, such as those developed in [9], which dynamically

adjust the location of the gridpoints to control the error in the approximate solution.

However, for such adaptive methods, the stability of the ADI timestepping and ADI-AF

methods on a non-uniform mesh needs to be studied.

In the context of ADI-AF methods, it would be desirable to have a theoretical analysis

of the second-order convergence of the ADI-AF techniques observed in the experiments.

In addition, it would be interesting to investigate the damping properties of the two

ADI-AF timestepping methods and their effects on the Greeks delta and gamma of the

options. It would also be interesting to investigate other possible extensions of the ADI-

AF schemes, such as those discussed in Remark 6.3.3, as well as to study the early

exercise surface and its evolution with time as mentioned in Remark 6.3.5. Moreover,

it would be desirable to develop efficient ADI-AF schemes for multi-dimensional PDEs

with time-dependent coefficients. These PDEs arise very frequently in financial appli-

cations, where the local volatility functions and/or time-dependent correlations between

stochastic processes in the model are present.

From a parallelization perspective, it would be desirable to investigate other possible
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extensions of the GPU-based ADI timestepping methods, such as those discussed in

Remarks 4.3.3, 4.3.4 and 4.3.5 in Subsection 4.3.5. Extending the current implementation

of the ADI timestepping or ADI-AF schemes to a multi-GPU platform should increase the

performance of the GPU algorithm presented here. It would be interesting to investigate

the effects of the inter-GPU communication on the total speedup in a context of multi-

GPUs. Certainly, one may combine the high-order and adaptive methods with a multi-

GPU implementation for an even more efficient pricing framework.

We conclude this subsection by noting that in many practical financial applications,

the pricing models may have significantly more than three stochastic factors. Examples

include cross-currency models with multi-factor Gaussian interest rate short models and

stochastic volatility (see a relevant discussion in the following section), or basket or index

options on dozens of stocks. As a result, standard PDE-based pricing approaches, such

as those based on the ADI methods presented in this thesis, may become infeasible, due

to the curse of dimensionality associated with high-dimensional PDEs. In such cases,

advanced computational techniques for high-dimensional PDEs, such as sparse grids or

high-dimensional approximations [61], could be employed.

8.2.2 Modeling of Multi-factor Derivatives

Other Types of Financial Derivatives and Exotic Features

The highly efficient parallel pricing frameworks presented in this thesis, albeit concen-

trated on long-dated FX interest rate hybrids, can, after straightforward modifications,

be used for many other similar long-dated financial derivative hybrids, notably equities

and commodities.

The proposed efficient pricing methods for cross-currency interest rate derivatives can

be extended to price cross-currency interest rate derivatives with combined exotic fea-

tures, such as knockout Bermudan cancelable swaps/PRDC swaps, or knockout Bermu-
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dan swaptions. Recently, new exotic features, such as “snowball”, have become in-

creasingly popular. More specifically, snowball is a generic term for an entire family of

structured products which have direct path-dependence on the coupon amounts, i.e. each

coupon amount is dependent on the coupon amount immediately preceding it. Cross-

currency interest rate derivatives with such a path-dependent exotic feature can also be

efficiently handled by the PDE-based pricing framework developed in this thesis for the

FX-TARN features. However, most of the interest rate derivatives with snowball features

are also Bermudan cancelable. As a result, a combination of the pricing frameworks de-

veloped in this thesis for PRDC swaps with Bermudan cancelable and FX-TARN features

could be used to price such derivatives.

Enriched Pricing Models

Below, we first discuss deficiencies of pricing models adopted in this thesis, then outline

possible enrichments to these models, and discuss how the numerical methods developed

in this thesis can be adapted for use in such cases.

Long-dated FX Interest Rate Hybrids

As shown earlier, the price of an FX interest rate hybrid in general, and of a PRDC swap

with an exotic feature in particular, is very sensitive to the FX volatility skew. As a

result, it is desirable to have a mechanism that could accurately approximate the observed

FX volatility skew so that these derivatives can be more precisely priced. Regarding this

aspect, a local volatility function for the spot FX rate, such as the one used in the standard

model considered in this thesis, while providing better modeling for the skewness of the

FX rate than a log-normal one, cannot accurately approximate the market-observed FX

volatility smiles.

One approach to address the aforementioned deficiency is to model the variance of the

spot FX rate using a stochastic process, such as the Heston model [29], so that the market-
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observed FX volatility smiles are more precisely captured. This enrichment to the current

model leads to a time-dependent PDE in four state variables – the spot FX rate, domestic

and foreign interest short rates, and volatility. In such an application, a GPU-based

pricing method, compared to a similar CPU-based pricing method, is expected to deliver

even larger speedups and better performance than we observed in this thesis. Another

possible approach is to retain the current three-factor model, and instead of having a local

volatility function, use a regime switching model for the stochastic volatility of the spot

FX rate. Although regime switching models are quite common in option pricing (see,

for example, [37, 53]), an extension of such models to cross-currency swaps, especially

long-dated FX interest rate hybrids, such as PRDC swaps, has not yet been developed

in the open literature. In this case, although the number of stochastic factors remains

the same as in this paper, this approach leads to a coupled system of three-dimensional

PDEs, with each PDE corresponding to a state of the regime. As a result, the GPU-based

parallel ADI scheme presented in this paper needs to be extended to handle systems of

PDEs.

In addition to the strong sensitivity to the skew of the FX volatility smiles, another

challenge in modeling long-dated FX interest rate hybrids is their very long maturities.

Regarding this aspect, another deficiency of the standard model is that one-factor interest

rate models cannot provide realistic evolutions of the term structures over a significantly

long period of time [8]. To address this deficiency, multi-factor Gaussian interest rate

models, such as two- or three-factor Hull-White models, can be used.

In general, as an enriched model for long-dated FX interest rate hybrids may have

significantly more than three stochastic factors,1 direct application of the PDE-based

pricing approach developed in this thesis is limited by the curse of dimensionality asso-

ciated with high-dimensional PDEs. While a MC pricing approach is the popular choice

1A cross-currency model with multi-factor Gaussian interest rate short models and stochastic volatil-
ity has at least six stochastic factors.
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for such an enriched model, the main challenge is to find an effective variance reduction

technique. In this case, hybrid pricing methods combining the MC and PDE approaches

could be developed. More specifically, a highly accurate numerical solution obtained

from the standard model, such as the three-factor model considered in this thesis, via a

PDE approach could be used as a control variate to accelerate the convergence of nu-

merical solutions obtained from an enriched model using MC simulations. This phase of

the hybrid pricing approach could be built upon the highly efficient PDE-based pricing

methods for long-dated FX interest rate hybrids in the standard model developed in this

thesis.

We conclude this discussion by noting that, from the perspective of the issuer (a

bank), it would be of great interest to investigate and compare the enriched and standard

models and their associated assumptions on the volatility and the interest rates. More

specifically, for accurate and efficient pricing and hedging purposes of FX interest rate

hybrids, it would be desirable (i) to quantify the exposure of long-dated FX interest rate

hybrids to the FX volatility skew and to the evolution of the interest rates over a long

period of time, and (ii) to study and compare the improvements among the enriched and

standard models in these aspects, as well as the associated increases in the computational

costs.

Multi-asset Options

Although the Black-Scholes-Merton model is commonly used to model asset prices in a

large array of derivative markets, mostly due to its mathematical tractability, the constant

volatility of the model cannot account for the volatility smile which is observed in market

prices for derivatives. In this regard, multi-asset European and American option pricing

with the Heston model for stochastic volatility could be considered. Alternatively, regime

switching models [37, 53] for the stochastic volatility could also be considered. The GPU-

based parallel ADI timestepping or ADI-AF schemes presented in this thesis could, after
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modifications, be used for the pricing of multi-asset options written on two or three assets

in these models.

Other enrichments to the standard Black-Scholes-Merton framework could involve a

deterministic model (log-normal or local volatility) for the volatility combined with a

jump model for the stocks [3, 68]. A more general model would have stochastic volatility

combined with a jump model either in the stock prices or in both stock prices and

volatility [16]. The price of a European option in such an enriched model is governed by

a Partial Integro-Differential Equation (PIDE), while American options lead to a LCP

with the same differential operator. In pricing multi-asset options under these enriched

models, in addition to high-dimensionality of the differential operator, the treatment of

the integral terms arising from the jumps in the models gives rise to substantial extra

computational requirements, since their discretization leads to full matrices. In these

cases, the GPU-based PDE pricing frameworks developed for multi-asset options in this

thesis can be extended for use in combination with certain GPU-based techniques for

efficient treatment of the integral terms.



Appendix A

Abbreviations and Notation

A.1 Abbreviations

• ADI: Alternating Direction Implicit;

p.2

• AF: Approximate Factorization; . . p.9

• AUD: Australian Dollar; . . . . . . . . p.26

• BDF2: Two-level Backward Difference

Formula; . . . . . . . . . . . . . . . . . . . . . . . p.132

• CN: Crank-Nicolson; . . . . . . . . . . . . p.10

• CUDA: Compute Unified Device Ar-

chitecture; . . . . . . . . . . . . . . . . . . . . . . . . p.7

• FD: Finite Difference . . . . . . . . . . . . . p.2

• FFT: Fast Fourier Transform; . . . p.38

• FST: Fast Sine Transform; . . . . .p.197

• FX: Foreign Exchange; . . . . . . . . . . . p.4

• GFLOP: Giga-Floating Point Opera-

tions; . . . . . . . . . . . . . . . . . . . . . . . . . . .p.162

• GMRES: Generalized Minimal Resid-

ual Method; . . . . . . . . . . . . . . . . . . . . . p.38

• GPU: Graphics Processing Unit; . p.3

• JPY: Japanese Yen; . . . . . . . . . . . . .p.26

• LCP: Linear Complementarity Prob-

lem; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.9

• LIBOR: London Interbank Offered

Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.16

• MC: Monte-Carlo; . . . . . . . . . . . . . . . .p.2

• OTC: Over-the-Counter; . . . . . . . . . p.1
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• PDE: Partial Differential Equation; p.2

• PRDC: Power Reverse Dual Currency;

p.4

• SIMD: Single Instruction Multiple

Data; . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.60

• TARN: Target-Redemption; . . . . . .p.6

• USD: United States Dollar; . . . . . p.26

A.2 Statistics Collected

• “CPU time”: the total CPU computa-

tional times in seconds (s.); . . . . . .p.96

• “GPU time”: the total CPU computa-

tional times in seconds (s.); . . . . . .p.96

• “CPU (6.16)”: the total CPU com-

putational times in milliseconds (ms.)

required by the timestep size selector

(6.16) for all timesteps; . . . . . . . . .p.153

• “GPU (6.16)”: the total GPU com-

putational times in milliseconds (ms.)

required by the timestep size selector

(6.16) for all timesteps; . . . . . . . . .p.153

• “speedup”: the ratio of the CPU time

over the corresponding GPU time; p.96

• “value”: (PRDC swaps) the spot value

of the swap, expressed as a percentage

of the domestic notional Nd; . . . . . p.96

• “value”: (multi-asset options) the com-

puted spot value of the option; . p.153

• “error”: difference between the numeri-

cal solution and analytical or very accu-

rate numerical solution; . . . . . . . . . .p.96

• “change”: the difference in values be-

tween a coarser grid to a finer one; p.96

• “logη ratio”: an estimate of the conver-

gence rate; . . . . . . . . . . . . . . . . . . . . . . .p.96

A.3 GPU Parameters

• nb: the size along the first dimension

for each of the 2-D threadblocks used

in Step a.1 (set to 32); . . . . . . . . . . .p.73

• pb: the size along the second dimension

for each of the 2-D threadblocks used in

Step a.1 (set to 4); . . . . . . . . . . . . . . .p.73

• rt: the size along the first dimension

for each of the 2-D threadblocks used in

Steps a.2, a.3 and a.4 (set to 32); p.80
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• ct: the size along the second dimension

for each of the 2-D threadblocks used in

Steps a.2, a.3 and a.4 (set to 4); . p.80

• st: the size for each 1-D thread-

block used in the parallelization of the

timestep size selector (6.16) (set to 128);

p.143

A.4 PRDC Swap Pric-

ing Notation

• t: the forward time variable;

• B(t): the value of a bank account at

time t > 0; . . . . . . . . . . . . . . . . . . . . . . p.15

• r(t): the instantaneous spot interest

rate, or short rate, at time t; . . . . .p.15

• P (t, T ): the price at time t ≥ 0 of a

zero-coupon with maturity T ≥ t; p.15

• L(t, T ): the simply compounded spot

interest rate prevailing at time t ≥ 0

for the maturity T ≥ t, referred to as

LIBOR; . . . . . . . . . . . . . . . . . . . . . . . . . p.16

• ν(t, T ): the year fraction between t and

T ≥ t; . . . . . . . . . . . . . . . . . . . . . . . . . . . p.15

• s(t): the spot foreign exchange rate pre-

vailing at time t; . . . . . . . . . . . . . . . . .p.17

• F (t, T ): the instantaneous forward rate

at time t for the maturity T ; . . . . .p.17

• {T0 < T1 < · · · < Tβ < Tβ+1}: the

swap’s tenor structure; . . . . . . . . . . .p.16

• να, α = 1, . . . , β + 1: the year fraction

between Tα−1 and Tα; . . . . . . . . . . . .p.16

• [Tα−1, Tα], α = 1, . . . , β + 1: a period of

the tenor structure; . . . . . . . . . . . . . .p.16

• Tα+ (Tα−), α = 1, . . . , β + 1: the instant

of time just after (before) the date Tα;

p.17

• Cα, α = 1, . . . , β: the PRDC coupon

rate at time Tα; . . . . . . . . . . . . . . . . . .p.23

• fα, α = 1, . . . , β: the scaling factor of

the PRDC coupon rate at time Tα; p.23

• d: (subscript “d”) associated with “ do-

mestic” . . . . . . . . . . . . . . . . . . . . . . . . . .p.17

• f : (subscript “f”) associated with “ for-

eign” . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.17
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• Bd(t): the value in domestic currency

of the domestic bank account at time

t > 0; . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.32

• Wd(t): the Brownian motion for the do-

mestic short rate process; . . . . . . . .p.28

• Wf(t): the Brownian motion for the for-

eign short rate process; . . . . . . . . . . p.28

• Ws(t): the Brownian motion for the FX

spot rate process; . . . . . . . . . . . . . . . .p.28

• ρij, i, j = {d, f, s}: the correlation fac-

tor between dWi and dWj; . . . . . . .p.28

• Nd: the PRDC swap’s notional in the

domestic currency; . . . . . . . . . . . . . . .p.22

• Pd(Tα−1, Tα): the price at time Tα−1 in

domestic currency of the domestic zero

coupon bond with maturity Tα; . .p.17

• Pd(Tα): a notation for Pd(Tα−1, Tα);

p.17

• Ld(Tα−1, Tα): the domestic LIBOR rate

prevailing at time Tα−1 for the maturity

Tα; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.23

• Ld(Tα): a notation for Ld(Tα−1, Tα);

p.23

• ci, i = d, f : the domestic (d) and foreign

(f) coupon rates; . . . . . . . . . . . . . . . . p.23

• bi, i = f, c: the floor (f) and cap (c) of

the PRDC coupon rate; . . . . . . . . . .p.23

• ri(t), i = d, f : the instantaneous domes-

tic (d) or foreign (f) spot interest rates

prevailing at time t; . . . . . . . . . . . . . p.28

• κi, i = d, f : the domestic (d) or foreign

(f) mean reversion rates of the respec-

tive short rates; . . . . . . . . . . . . . . . . . .p.28

• σi, i = d, f : the domestic (d) or foreign

(f) volatility functions of the respective

short rates; . . . . . . . . . . . . . . . . . . . . . . p.28

• γ(t, s(t)): the local volatility function

for the spot FX rate; . . . . . . . . . . . . p.29

• u: the value of a multi-currency interest

rate derivative (u ≡ u(s, rd, rf , t)); p.31

• uc
α(t): the value at time t of all PRDC

coupon amounts scheduled on or after

Tα+1; . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.41

• uf
α(t): the value at time t of all funding

payments in a PRDC swap scheduled on

or after Tα+1; . . . . . . . . . . . . . . . . . . . .p.41
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• ue
α(t): the value at time t of all fund

flows in the offsetting swap scheduled on

or after Tα+1 (ue
α(t) = −(uf

α(t)−uc
α(t)));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.44

• uh
α(t): the value at time t of the offset-

ting Bermudan swaption that has only

the dates {Tα+1, . . . , Tβ} as exercise op-

portunities; . . . . . . . . . . . . . . . . . . . . . .p.44

• uk
α(t): the value at time t of the a knock-

out PRDC swap that has only the dates

{Tα+1, . . . , Tβ} as knockout opportuni-

ties; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.46

• Ac: the target cap of the accumulated

PRDC coupon amount; . . . . . . . . . .p.49

• a(t): the accumulated PRDC coupon

amount at time t; . . . . . . . . . . . . . . . .p.50

• aα+(aα−): a notation for a(Tα+)

(a(Tα−)); . . . . . . . . . . . . . . . . . . . . . . . . p.51

• uα(t; a): the value at time t of a FX-

TARN PRDC swap that has

(i) {Tα+1, . . . , Tβ} as pre-mature termi-

nation opportunities, and

(ii) the total accumulated PRDC

coupon amount, including the coupon

amount scheduled on Tα, equal to a;

p.53

• s∞: the truncated upper boundary in

the s-direction; . . . . . . . . . . . . . . . . . . p.32

• rd,∞: the truncated upper boundary in

the rd-direction; . . . . . . . . . . . . . . . . . p.32

• rf,∞: the truncated upper boundary in

the rf -direction; . . . . . . . . . . . . . . . . . p.32

• Ωs: finite-sized truncated computa-

tional domain for PRDC swaps; . .p.32

• τ : time to maturity; . . . . . . . . . . . . . p.32

• l: the number of timesteps for each time

period; . . . . . . . . . . . . . . . . . . . . . . . . . . p.35

• n + 1: the number of subintervals in the

s-direction; . . . . . . . . . . . . . . . . . . . . . . p.35

• ∆s: the uniform grid mesh width in the

s-direction (∆s =
s∞

n + 1
); . . . . . . . .p.35

• p + 1: the number of subintervals in the

rd-direction; . . . . . . . . . . . . . . . . . . . . . p.35

• ∆rd: the uniform grid mesh width in the

rd-direction (∆rd =
rd,∞

p + 1
); . . . . . . p.35

• q + 1: number of subintervals in the rf -

direction; . . . . . . . . . . . . . . . . . . . . . . . .p.35
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• ∆rf : uniform grid mesh width in the

rf -direction (∆rf =
rf,∞

q + 1
); . . . . . . p.35

A.5 Option Pricing No-

tation

• t: the forward time variable;

• si, i = 1, 2, 3: the ith asset price; p.119

• s: (s1, s2, s3); . . . . . . . . . . . . . . . . . . .p.119

• T̄ : the maturity time of the option;

p.119

• E: the exercise price (strike) of the op-

tion; . . . . . . . . . . . . . . . . . . . . . . . . . . . p.120

• r: the constant risk-free interest rate;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.119

• di, i = 1, 2, 3: the constant asset divi-

dend yield of the ith asset (di ≥ 0);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.119

• Wi, i = 1, 2, 3: the Brownian motion of

the ith asset process; . . . . . . . . . . . p.119

• ρij, i, j = 1, 2, 3: the correlation factors

between dWi and dWj (|ρij| ≤ 1); p.119

• wi, i = 1, 2, 3: the weight of the ith asset

in the basket (wi > 0); . . . . . . . . . p.120

• z: the value of a European option writ-

ten on three assets (z ≡ z(s, t)) ; p.121

• z∗(s): the payoff function of a European

option written on three assets; . .p.121

• v: the value of an American option writ-

ten on three assets v ≡ v(s, t); . .p.130

• v∗(s): the payoff function of an Amer-

ican option written on three assets;

p.121

• si,∞, i = 1, 2, 3: the truncated upper

boundary of the ith asset; . . . . . . p.119

• Ωb: finite-sized truncated computa-

tional domain for option pricing; p.119

• ∂Ωb: the boundary of ∂Ωb; . . . . . p.119

• τ : time to maturity (τ = T̄ − t); p.119

• l̄: number of subintervals in the time di-

rection; . . . . . . . . . . . . . . . . . . . . . . . . .p.120

• ∆τm: the mth timestep size, not nec-

essarily uniform (∆τm = τm − τm−1);

p.120
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• n̄ + 1: the number of subintervals in the

s1-direction; . . . . . . . . . . . . . . . . . . . .p.120

• p̄ + 1: the number of subintervals in the

s2-direction; . . . . . . . . . . . . . . . . . . . .p.120

• q̄ + 1: the number of subintervals in the

s3-direction; . . . . . . . . . . . . . . . . . . . .p.120

• ∆si, i = 1, 2, 3: the uniform grid mesh

width in the si-direction; . . . . . . . p.120

• ζ ′: the penalty parameter (ζ ′ → ∞);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.130

• ζ : the penalty factor (ζ ∼ ζ ′∆τm);

p.132

• κ: the index of the penalty iteration;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.134

• vm: the vector of approximate values to

v(s, τm); . . . . . . . . . . . . . . . . . . . . . . . .p.134

• v∗: the vector of payoff values; . p.134

• Pm,(κ): the penalty matrix at the κth

penalty iteration of timestep τm; p.134
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Appendix B

Glossary of Terms

B.1 Relevant Finance

Terms

• American Option: an option that can

be exercised only once any time during

its life; . . . . . . . . . . . . . . . . . . . . . . . . . p.128

• Bermudan Swaption: an option to

enter into a swap, and can be exercised

only once on a specified set of dates;

p.20

• Bermudan Cancelable PRDC

Swap: a PRDC swap that can be can-

celed by the issuer of the PRDC coupons

on a pre-specified set of dates; . . . p.25

• Calibration: methods of implying a

model’s parameters from the market

prices of actively traded options; .p.29

• Cross-currency Interest Rate

Derivatives: financial contracts whose

values are contingent on the evolution

of the two interest rates, namely the

domestic and foreign interest rates, and

the spot FX rate that links the two cur-

rencies; . . . . . . . . . . . . . . . . . . . . . . . . . . . p.4

• Delta: the rate of change in the price

of a financial derivative with respect to

changes in the price of the underlying

asset;

• Derivatives: Financial contracts

whose price depends on, or is derived
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from, the evolution of the underlying

assets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.1

• European Option: an option that can

be exercised only at its maturity; p.120

• European Swaption: an option to en-

ter into a swap, and can be exercised

only at its maturity; . . . . . . . . . . . . . p.20

• Fixed-for-Floating Swap: an agree-

ment to exchange a stream of fixed rate

of interest on a certain notional princi-

pal for a stream of floating rate of inter-

est on the same notional principal, also

known as fixed-for-floating interest rate

swap; . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.18

• Fixed-Rate Coupon: the initial fund

settlement between the two parties of a

swap;

• Fixed-Rate Coupon (PRDC swap):

the initial fund settlement in a PRDC

swap between the issuer and the investor

at time T0, with a positive value indicat-

ing a fund inflow for the investor, i.e. the

issuer pays the investor, and a negative

value indicating otherwise; . . . . . . .p.23

• Forward Foreign Exchange (FX)

Rate: the rate at which the foreign cur-

rency can be exchanged for the domestic

currency on a future date; . . . . . . . p.17

• Funding Payment: the investor’s do-

mestic LIBOR payment in a PRDC

swap; . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.22

• FX-TARN PRDC Swap: a PRDC

swap that pre-maturely terminates on

the first date of the swap’s tenor struc-

ture on which the accumulated PRDC

coupon amount, including the coupon

amount scheduled on that date, reaches

a pre-determined target cap; . . . . .p.25

• Gamma: the rate of change in the delta

of a financial derivative with respect to

changes in the price of the underlying

asset; . . . . . . . . . . . . . . . . . . . . . . . . . . .p.113

• Geometric Average: the nth root of

the product of n numbers; . . . . . .p.141

• Implied Volatility: volatility implied

from an option price using the Black-

Scholes or a similar model; . . . . . p.110

• Investor: the party paying the stream
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of domestic floating rate (LIBOR) pay-

ments in a PRDC swap; . . . . . . . . . p.22

• Issuer: the party paying the stream

of PRDC coupon amounts in a PRDC

swap; . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.22

• Knockout PRDC Swap: a PRDC

swap that pre-maturely terminates on

the first date of the swap’s tenor struc-

ture on which the spot FX rate exceeds

a specified level; . . . . . . . . . . . . . . . . . p.25

• Local Volatility Model: model that

treats the volatility as a deterministic

function of the current underlying asset

level and of time;

• Local Volatility Function: a deter-

ministic function of the current under-

lying asset level and of time for model-

ing volatility; also see “Local Volatility

Model”; . . . . . . . . . . . . . . . . . . . . . . . . . . .p.5

• Log-normal: a variable has a log-

normal distribution when the logarithm

of the variable has a normal distribu-

tion; . . . . . . . . . . . . . . . . . . . . . . . . . . . p.119

• Long Position: a position involves the

purchase of an asset; . . . . . . . . . . . . .p.44

• Martingale: a zero-drift stochastic

process; . . . . . . . . . . . . . . . . . . . . . . . . . .p.31

• Mean Reversion: the tendency of a

market variable, such as an interest rate,

to revert back to a certain long-run av-

erage level; . . . . . . . . . . . . . . . . . . . . . . p.28

• Numeraire: defines the units in which

security prices are measured; . . . . .p.28

• Offsetting/Opposite Swap: a swap

with reversed fund flows of a “vanilla”

PRDC swap; . . . . . . . . . . . . . . . . . . . . p.42

• PRDC Coupon: coupon linked to

the spot FX rate prevailing when the

coupon rate is set via a certain formula;

p.22

• PRDC Swap: an agreement to ex-

change a stream of PRDC coupon

amounts for a stream of domestic float-

ing rate (domestic LIBOR) payments;

p.22

• Short Position: a position that in-

volves selling an asset; . . . . . . . . . .p.113
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• Spot Foreign-Exchange Rate: the

number of units of domestic currency

per one unit of foreign currency prevail-

ing at a certain time; . . . . . . . . . . . . p.17

• Swap: an agreement to exchange fund

flows in the future according to a pre-

arranged formula; . . . . . . . . . . . . . . . .p.18

• Swaption: an option to enter into a

swap, such as a fixed-for-floating inter-

est rate swap; . . . . . . . . . . . . . . . . . . . .p.20

• Tenor Structure: a set of fixed dates

on which fund flows of a swap are ex-

changed; . . . . . . . . . . . . . . . . . . . . . . . . .p.16

• Term Structure: relationship between

interest rates and their maturities; p.19

• Term Structure of Interest Rate:

see “Term Structure”;

• Vega: the rate of change in the price

of a financial derivative with respect to

changes in the volatility; . . . . . . . .p.110

• Volatility: a measure of the uncer-

tainty of the return realized on an asset;

p.4

• Volatility Skew: a term used to de-

scribe non-symmetrical volatility smile;

p.4

• Volatility Smile: the variation of im-

plied volatility with strike price;

• Zero-Coupon Bond: a bond that pro-

vides no coupons; . . . . . . . . . . . . . . . .p.15

B.2 Relevant GPU

Terms

• Barrier Synchronization: a mecha-

nism to ensure that no thread or warp

is allowed to proceed beyond a certain

point until the rest have reached it; at-

tained via syncthreads(); . . . . .p.78

• BlockId: an unique coordinate as-

signed to a threadblock during a kernel

launch; . . . . . . . . . . . . . . . . . . . . . . . . . . p.60

• Constant Cache: a small part of the

device memory dedicated to storing con-

stants; . . . . . . . . . . . . . . . . . . . . . . . . . . .p.59

• Device: the GPU; . . . . . . . . . . . . . . p.60
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• Device Memory: largest, yet slowest,

off GPU-chip memory; accessible by all

threads; . . . . . . . . . . . . . . . . . . . . . . . . . p.59

• Global Memory: see device memory;

• Grid: an arrangement of the thread-

blocks generated by a kernel invocation

into a 1-D or 2-D array; . . . . . . . . . p.60

• Halo: the value of a neighbouring grid-

point in an adjacent tile; . . . . . . . . .p.75

• Half-warp: a group of 16 threads; p.61

• Host: the CPU; . . . . . . . . . . . . . . . . .p.59

• Kernel: a function that runs on the de-

vice; . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.60

• Memory Coalescing: coalesced data

copies from the global memory to the

device memory; . . . . . . . . . . . . . . . . . .p.62

• Shared Memory: the main memory

on a GPU multiprocessor; accessible to

all threads in a threadblock; . . . . . p.59

• Thread: a copy of the kernel . . . .p.60

• Threadblock: a grouping of all the

GPU threads generated by a kernel invo-

cation into 1-, 2-, or 3-D arrays; threads

within the same threadblock can com-

municate and cooperate efficiently; p.60

• ThreadId: an unique coordinate

assigned to a thread during a kernel

launch; . . . . . . . . . . . . . . . . . . . . . . . . . . p.60

• Tile: a group of data points assigned to

a threadblock; . . . . . . . . . . . . . . . . . . . p.73

• Warp: a group of 32 threads; . . . p.61
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Appendix C

Finite Difference and Matrices

Formulas

In this appendix, we derive the FD schemes and present explicit formulas for the matrices

used in Chapters 3 and 6. For convenience in presentation, we work with a model PDE

of the form
∂u
∂τ

= Lu ≡
3∑

i,j=1
i≤j

cij
∂2u

∂xi∂xj
+

3∑

i=1

ci
∂u
∂xi

+ c0u, (C.1)

which has the general form of the pricing PDEs used in Chapters 3 and 6. Here, cij , i, j =

1, . . . , 3, i ≤ j ci, i = 0, . . . , 3, are given functions of x1, x2, x3 and/or τ .

We assume that the truncated computational domain is Ω = [Lx1 , Ux1 ] × [Lx2 , Ux2] ×

[Lx3 , Ux3] ⊂ R3 is a finite rectangular spatial domain. Let the number of subintervals be

n + 1, p + 1, q + 1 and l in the x1-, x2-, x3- and τ -directions, respectively. The uniform

grid mesh widths in the respective spatial directions are denoted by ∆x1 =
Ux1 − Lx1

n + 1
,

∆x2 =
Ux2 − Lx2

p + 1
and ∆x3 =

Ux3 − Lx3

q + 1
. Let the gridpoint values of a FD approximation

to the solution u are denoted by

um
i,j,k ≈ u(x1i, x2j , x3k, τm),

where i = 0, . . . , n + 1, j = 0, . . . , p + 1, k = 0, . . . , q + 1, m = 0, . . . , l.
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C.1 Finite Difference Formulas

In Subsection C.1.1, we derive the two- and three-point standard central FD schemes

for the first and second partial derivatives of the space variables, i.e. schemes (3.1a)

and (3.1b), respectively, as well as a second-order four-point FD stencil for the cross

derivatives, i.e. scheme (3.2). In the case of Dirichlet boundary conditions, such as those

arising in the pricing PRDC swaps and multi-asset American options, only these FD

schemes are employed. In the case of multi-asset European options, certain one-sided

FD schemes, i.e. schemes (6.12), (6.13) and (6.14), are used on the boundary points.

These are derived in Subsection C.1.2. We assume that the function u is sufficiently

continuously differentiable.

C.1.1 Central FD Formulas

To derive the two- and three-point central FD schemes (3.1a) and (3.1b), we consider

the following Taylor expansions about the reference point (x1i, x2j , x3k, τm):

um
i+1,j,k ≈ um

i,j,k + ∆x1
∂u
∂x1

∣∣∣
m

i,j,k
+

1
2!

(∆x1)2 ∂2u
∂(x1)2

∣∣∣
m

i,j,k
+

1
3!

(∆x1)3 ∂3u
∂(x1)3

∣∣∣
m

i,j,k

+
1
4!

(∆x1)4 ∂4u
∂(x1)4

∣∣∣
m

i,j,k
+ O((∆x1)5), (C.2a)

um
i−1,j,k ≈ um

i,j,k − ∆x1
∂u
∂x1

∣∣∣
m

i,j,k
+

1
2!

(∆x1)2 ∂2u
∂(x1)2

∣∣∣
m

i,j,k
−

1
3!

(∆x1)3 ∂3u
∂(x1)3

∣∣∣
m

i,j,k

+
1
4!

(∆x1)4 ∂4u
∂(x1)4

∣∣∣
m

i,j,k
+ O((∆x1)5). (C.2b)

We first subtract (C.2b) from (C.2a), and, by rearranging the terms of the resulting

expression, we then obtain (3.1a)

∂u
∂x1

∣∣∣
m

i,j,k
≈

um
i+1,j,k − um

i−1,j,k

2∆x1
+ O((∆x1)2).
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We first add (C.2a) and (C.2b), and then, by rearranging the terms of the resulting

expression, we then obtain (3.1b)

∂2u
∂(x1)2

∣∣∣
m

i,j,k
≈

um
i+1,j,k − 2um

i,j,k + um
i−1,j,k

(∆x1)2 + O((∆x1)2).

To derive the second-order four-point FD scheme for the cross derivatives (3.2), we con-

sider the following Taylor expansions about the reference point (x1i, x2j , x3k, τm):

um
i+1,j+1,k ≈ um

i,j,k + ∆x1
∂u
∂x1

∣∣∣
m

i,j,k
+ ∆x2

∂u
∂x2

∣∣∣
m

i,j,k

+
1
2!

(
(∆x1)2 ∂2u

∂x2
1

∣∣∣
m

i,j,k
+ 2∆x1∆x2

∂2u
∂x1∂x2

∣∣∣
m

i,j,k
+ (∆x2)2 ∂2u

∂x2
2

∣∣∣
m

i,j,k

)

+
1
3!

(
(∆x1)3 ∂3u

∂x3
1

∣∣∣
m

i,j,k
+ 3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

i,j,k
+ 3∆x1(∆x2)2 ∂3u

∂x1∂x2
2

∣∣∣
m

i,j,k

+ (∆x2)3 ∂3u
∂x3

2

∣∣∣
m

i,j,k

)

+
1
4!

(
(∆x1)4 ∂4u

∂x4
1

∣∣∣
m

i,j,k
+ 4(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

i,j,k
+ 6(∆x1)2(∆x2)2 ∂4u

∂x2
1∂x2

2

∣∣∣
m

i,j,k

+ 4∆x1(∆x2)3 ∂4u
∂x1∂x3

2

∣∣∣
m

i,j,k
+ (∆x2)4 ∂4u

∂x4
2

∣∣∣
m

i,j,k

)

+ O
(

(∆x1)5, (∆x2)5, (∆x1)(∆x2)4, (∆x1)2(∆x2)3, (∆x1)3(∆x2)2, (∆x1)4(∆x2)
)

,
(C.3a)

um
i−1,j−1,k ≈ um

i,j,k − ∆x1
∂u
∂x1

∣∣∣
m

i,j,k
− ∆x2

∂u
∂x2

∣∣∣
m

i,j,k

+
1
2!

(
(∆x1)2 ∂2u

∂x2
1

∣∣∣
m

i,j,k
+ 2∆x1∆x2

∂2u
∂x1∂x2

∣∣∣
m

i,j,k
+ (∆x2)2 ∂2u

∂x2
2

∣∣∣
m

i,j,k

)

−
1
3!

(
(∆x1)3 ∂3u

∂x3
1

∣∣∣
m

i,j,k
+ 3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

i,j,k
+ 3∆x1(∆x2)2 ∂3u

∂x1∂x2
2

∣∣∣
m

i,j,k

+ (∆x2)3 ∂3u
∂x3

2

∣∣∣
m

i,j,k

)

+
1
4!

(
(∆x1)4 ∂4u

∂x4
1

∣∣∣
m

i,j,k
+ 4(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

i,j,k
+ 6(∆x1)2(∆x2)2 ∂4u

∂x2
1∂x2

2

∣∣∣
m

i,j,k

+ 4∆x1(∆x2)3 ∂4u
∂x1∂x3

2

∣∣∣
m

i,j,k
+ (∆x2)4 ∂4u

∂x4
2

∣∣∣
m

i,j,k

)

+ O
(

(∆x1)5, (∆x2)5, (∆x1)(∆x2)4, (∆x1)2(∆x2)3, (∆x1)3(∆x2)2, (∆x1)4(∆x2)
)

,
(C.3b)
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um
i−1,j+1,k ≈ um

i,j,k − ∆x1
∂u
∂x1

∣∣∣
m

i,j,k
+ ∆x2

∂u
∂x2

∣∣∣
m

i,j,k

+
1
2!

(
(∆x1)2 ∂2u

∂x2
1

∣∣∣
m

i,j,k
− 2∆x1∆x2

∂2u
∂x1∂x2

+ (∆x2)2 ∂2u
∂x2

2

∣∣∣
m

i,j,k

)

+
1
3!

(
− (∆x1)3 ∂3u

∂x3
1

∣∣∣
m

i,j,k
+ 3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

i,j,k
− 3∆x1(∆x2)2 ∂3u

∂x1∂x2
2

∣∣∣
m

i,j,k

+ (∆x2)3 ∂3u
∂x3

2

∣∣∣
m

i,j,k

)

+
1
4!

(
(∆x1)4 ∂4u

∂x4
1

∣∣∣
m

i,j,k
− 4(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

i,j,k
+ 6(∆x1)2(∆x2)2 ∂4u

∂x2
1∂x2

2

∣∣∣
m

i,j,k

− 4∆x1(∆x2)3 ∂4u
∂x1∂x3

2

∣∣∣
m

i,j,k
+ (∆x2)4 ∂4u

∂x4
2

∣∣∣
m

i,j,k

)

+ O
(

(∆x1)5, (∆x2)5, (∆x1)(∆x2)4, (∆x1)2(∆x2)3, (∆x1)3(∆x2)2, (∆x1)4(∆x2)
)

,
(C.3c)

um
i+1,j−1,k ≈ um

i,j,k + ∆x1
∂u
∂x1

∣∣∣
m

i,j,k
− ∆x2

∂u
∂x2

∣∣∣
m

i,j,k

+
1
2!

(
(∆x1)2 ∂2u

∂x2
1

∣∣∣
m

i,j,k
− 2∆x1∆x2

∂2u
∂x1∂x2

∣∣∣
m

i,j,k
+ (∆x2)2 ∂2u

∂x2
2

∣∣∣
m

i,j,k

)

+
1
3!

(
(∆x1)3 ∂3u

∂x3
1

∣∣∣
m

i,j,k
− 3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

i,j,k
+ 3∆x1(∆x2)2 ∂3u

∂x1∂x2
2

∣∣∣
m

i,j,k

− (∆x2)3 ∂3u
∂x3

2

∣∣∣
m

i,j,k

)

+
1
4!

(
(∆x1)4 ∂4u

∂x4
1

∣∣∣
m

i,j,k
− 4(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

i,j,k
+ 6(∆x1)2(∆x2)2 ∂4u

∂x2
1∂x2

2

∣∣∣
m

i,j,k

− 4∆x1(∆x2)3 ∂4u
∂x1∂x3

2

∣∣∣
m

i,j,k
+ (∆x2)4 ∂4u

∂x4
2

∣∣∣
m

i,j,k

)

+ O
(

(∆x1)5, (∆x2)5, (∆x1)(∆x2)4, (∆x1)2(∆x2)3, (∆x1)3(∆x2)2, (∆x1)4(∆x2)
)

.
(C.3d)

By first adding (C.3b) to (C.3a), and then subtracting (C.3c) and (C.3d) from the re-

sulting sum, we get

um
i+1,j+1,k + um

i−1,j−1,k − um
i−1,j+1,k − um

i+1,j−1,k ≈ 4∆x1∆x2
∂2u

∂x1∂x2

∣∣∣
m

i,j,k

+
1
4!

(
16(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

i,j,k
+ 16∆x1(∆x2)3 ∂4u

∂x1∂x3
2

∣∣∣
m

i,j,k

)

+ higher-order terms.
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By rearranging the terms of the above expression, we obtain (3.2)

∂2u
∂x1∂x2

∣∣∣
m

i,j,k
≈

um
i+1,j+1,k + um

i−1,j−1,k − um
i−1,j+1,k − um

i+1,j−1,k

4∆x1∆x2
+ O((∆x1)2, (∆x2)2).

Note that, as verified above, each of the central FD formulas has a second-order truncation

error.

C.1.2 One-sided FD Formulas

To derive the one-sided FD schemes (6.12a) and (6.13a), we consider the Taylor expansion

about the reference point (x10, x2j , x3k, τm) at the boundary for which x1 = Lx1:

um
1,j,k ≈ um

0,j,k + ∆x1
∂u
∂x1

∣∣∣
m

0,j,k
+ O((∆x1)2). (C.4)

By rearranging the terms of (C.4), we obtain (6.12a)

∂u
∂x1

∣∣∣
m

0,j,k
=

um
1,j,k − um

0,j,k

∆x1
+ O(∆x1).

Similarly, to derive the one-sided backward FD scheme (6.12b), we consider the Taylor

expansion about the reference point (x1n+1, x2j, x3k, τm) at the boundary for which x1=Ux1 :

um
n,j,k ≈ um

n+1,j,k − ∆x1
∂u
∂x1

∣∣∣
m

n+1,j,k
+ O((∆x1)2). (C.5)

By rearranging the terms of (C.5), we obtain (6.12b)

∂u
∂x1

∣∣∣
m

n+1,j,k
=

um
n+1,j,k − um

n,j,k

∆x1
+ O(∆x1).

To derive the one-sided FD formula (6.13a), we consider the following Taylor expan-

sions about the reference point (x10, x2j , x3k, τm) at the boundary for which x1 = Lx1 :

um
0,j+1,k ≈ um

0,j,k + ∆x2
∂u
∂x2

∣∣∣
m

0,j,k
+

1
2!

(∆x2)2 ∂2u
∂(x2)2

∣∣∣
m

0,j,k
+

1
3!

(∆x2)3 ∂3u
∂(x2)3

∣∣∣
m

0,j,k

+
1
4!

(∆x2)4 ∂4u
∂(x2)4

∣∣∣
m

0,j,k
+ O((∆x2)5), (C.6a)
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um
0,j−1,k ≈ um

0,j,k − ∆x2
∂u
∂x2

∣∣∣
m

0,j,k
+

1
2!

(∆x2)2 ∂2u
∂(x2)2

∣∣∣
m

0,j,k
−

1
3!

(∆x2)3 ∂3u
∂(x2)3

∣∣∣
m

0,j,k

+
1
4!

(∆x2)4 ∂4u
∂(x2)4

∣∣∣
m

0,j,k
+ O((∆x2)5), (C.6b)

um
1,j+1,k ≈ um

0,j,k + ∆x1
∂u
∂x1

∣∣∣
m

0,j,k
+ ∆x2

∂u
∂x2

∣∣∣
m

0,j,k

+
1
2!

(
(∆x1)2 ∂2u

∂x2
1

∣∣∣
m

0,j,k
+ 2∆x1∆x2

∂2u
∂x1∂x2

∣∣∣
m

0,j,k
+ (∆x2)2 ∂2u

∂x2
2

∣∣∣
m

0,j,k

)

+
1
3!

(
(∆x1)3 ∂3u

∂x3
1

∣∣∣
m

0,j,k
+ 3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

0,j,k
+ 3∆x1(∆x2)2 ∂3u

∂x1∂x2
2

∣∣∣
m

0,j,k

+ (∆x2)3 ∂3u
∂x3

2

∣∣∣
m

0,j,k

)

+
1
4!

(
(∆x1)4 ∂4u

∂x4
1

∣∣∣
m

0,j,k
+ 4(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

0,j,k
+ 6(∆x1)2(∆x2)2 ∂4u

∂x2
1∂x2

2

∣∣∣
m

0,j,k

+ 4∆x1(∆x2)3 ∂4u
∂x1∂x3

2

∣∣∣
m

0,j,k
+ (∆x2)4 ∂4u

∂x4
2

∣∣∣
m

0,j,k

)

+ O
(

(∆x1)5, (∆x2)5, (∆x1)(∆x2)4, (∆x1)2(∆x2)3, (∆x1)3(∆x2)2, (∆x1)4∆x2

)
,

(C.6c)

um
1,j−1,k ≈ um

0,j,k + ∆x1
∂u
∂x1

∣∣∣
m

0,j,k
− ∆x2

∂u
∂x2

∣∣∣
m

0,j,k

+
1
2!

(
(∆x1)2 ∂2u

∂x2
1

∣∣∣
m

0,j,k
− 2∆x1∆x2

∂2u
∂x1∂x2

∣∣∣
m

0,j,k
+ (∆x2)2 ∂2u

∂x2
2

∣∣∣
m

0,j,k

)

+
1
3!

(
(∆x1)3 ∂3u

∂x3
1

∣∣∣
m

0,j,k
− 3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

0,j,k
+ 3∆x1(∆x2)2 ∂3u

∂x1∂x2
2

∣∣∣
m

0,j,k

− (∆x2)3 ∂3u
∂x3

2

∣∣∣
m

0,j,k

)

+
1
4!

(
(∆x1)4 ∂4u

∂x4
1

∣∣∣
m

0,j,k
− 4(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

0,j,k
+ 6(∆x1)2(∆x2)2 ∂4u

∂x2
1∂x2

2

∣∣∣
m

0,j,k

− 4∆x1(∆x2)3 ∂4u
∂x1∂x3

2

∣∣∣
m

0,j,k
+ (∆x2)4 ∂4u

∂x4
2

∣∣∣
m

0,j,k

)

+ O
(

(∆x1)5, (∆x2)5, (∆x1)(∆x2)4, (∆x1)2(∆x2)3, (∆x1)3(∆x2)2, (∆x1)4∆x2

)
.

(C.6d)

By first adding (C.6c) and (C.6b), then subtracting (C.6a) and (C.6d) from the resulting
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sum, we get

um
1,j+1,k+um

0,j−1,k−um
0,j+1,k−um

1,j−1,k ≈ 2∆x1∆x2
∂2u

∂x1∂x2

∣∣∣
m

0,j,k
+

1
3!

(
6(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

0,j,k

)

+
1
4!

(
8(∆x1)3∆x2

∂4u
∂x3

1∂x2

∣∣∣
m

0,j,k
+ 8∆x1(∆x2)3 ∂4u

∂x1∂x3
2

∣∣∣
m

0,j,k

)
+ higher-order terms. (C.7)

Rearranging (C.7) gives (6.13a)

∂2u
∂x1∂x2

∣∣∣
m

0,j,k
≈

um
1,j+1,k + um

0,j−1,k − um
0,j+1,k − um

1,j−1,k

2∆x1∆x2
+ O

(
∆x1, (∆x2)2

)
.

The derivation of (6.13b) can be obtained in a similar fashion.

To derive the one-sided FD formula (6.14), we consider the following Taylor expan-

sions

um
0,1,k ≈ um

0,0,k+∆x2
∂u
∂x2

∣∣∣
m

0,0,k
+

1
2!

(∆x2)2 ∂2u
∂(x2)2

∣∣∣
m

0,0,k
+

1
3!

(∆x2)3 ∂3u
∂(x2)3

∣∣∣
m

0,0,k
+O((∆x2)4),

(C.8a)

um
1,0,k ≈ um

0,0,k+∆x1
∂u
∂x1

∣∣∣
m

0,0,k
+

1
2!

(∆x1)2 ∂2u
∂(x1)2

∣∣∣
m

0,0,k
+

1
3!

(∆x1)3 ∂3u
∂(x1)3

∣∣∣
m

0,0,k
+O((∆x1)4),

(C.8b)

um
1,1,k ≈ um

0,0,k + ∆x1
∂u
∂x1

∣∣∣
m

0,0,k
+ ∆x2

∂u
∂x2

∣∣∣
m

0,0,k

+
1
2!

(
(∆x1)2 ∂2u

∂x2
1

∣∣∣
m

0,0,k
+ 2∆x1∆x2

∂2u
∂x1∂x2

∣∣∣
m

0,0,k
+ (∆x2)2 ∂2u

∂x2
2

∣∣∣
m

0,0,k

)

+
1
3!

(
(∆x1)3 ∂3u

∂x3
1

∣∣∣
m

0,0,k
+ 3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

0,0,k
+ 3∆x1(∆x2)2 ∂3u

∂x1∂x2
2

∣∣∣
m

0,0,k

+ (∆x2)3 ∂3u
∂x3

2

∣∣∣
m

0,0,k

)

+ O
(

(∆x1)4, (∆x2)4, (∆x1)(∆x2)3, (∆x1)2(∆x2)2, (∆x1)3∆x2

)
.

(C.8c)

Subtracting (C.8a) and (C.8b) from (C.8c) gives

u1,1,k − um
0,1,k − um

1,0,k ≈ −um
0,0,k + ∆x1∆x2

∂2u
∂x1∂x2

∣∣∣
m

0,0,k
+

1
3!

(
3(∆x1)2∆x2

∂3u
∂x2

1∂x2

∣∣∣
m

0,0,k

+ 3∆x1(∆x2)2 ∂3u
∂x1∂x2

2

∣∣∣
m

0,0,k

)
+ higher-order terms. (C.9)
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Rearranging (C.9) gives (6.14)

∂2u
∂x1∂x2

∣∣∣
m

0,0,k
≈

u1,1,k + um
0,0,k − um

0,1,k − um
1,0,k

∆x1∆x2
+ O

(
∆x1, ∆x2

)
.

Note that, as verified above, each of the one-sided FD formulas has a first-order truncation

error.

C.2 Matrix Formulas

In this section, we present explicit formulas for the matrix Am arising from the FD

discretization of the differential operator L, for the matrix Am
0 , which is the part of Am

that comes from the FD discretizations of the cross derivative terms, and for the matrices

Am
1 , Am

2 and Am
3 , which are the parts of Am that correspond to the spatial derivatives in

the x1-, x2- and x3-directions, respectively. For simplicity, we present explicit formulas

for these matrices only for the case of Dirichlet boundary conditions. Those arising in the

case of linear boundary conditions can be obtained via a straightforward modification of

the formulas presented in this section.

For presentation purposes, we further adopt the following notation. We denote by Iz

the identity matrix of size z × z, by Qz and Tz the tridiagonal matrix representations of

the classic first- and second-order FD operators on z points, z = {n, p, q}, respectively.

Explicit formulas for the matrices Qz and Tz are

Qz =






0 1 0 . . . 0

−1 0 1 . . . 0
. . . . . . . . . . . . . . .
. . . −1 0 1 . . .
. . . . . . . . . . . . . . .

0 . . . −1 0 1

0 . . . 0 −1 0






z×z

, Tz =






−2 1 0 . . . 0

1 −2 1 . . . 0
. . . . . . . . . . . . . . .
. . . 1 −2 1 . . .
. . . . . . . . . . . . . . .

0 . . . 1 −2 1

0 . . . 0 1 −2






z×z

,
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Note the changes in first and last rows of these matrices, due to Dirichlet boundary

conditions.

Unless otherwise stated, assume that the gridpoints are ordered in the x1-, x2- ,

then x3- directions. We denote by Cm
0 the coefficient matrix for the u term, by Cm

i ,

i = 1, . . . , 3, the coefficient matrices for the terms
∂u
∂xi

, by Cm
ij , i, j = 1, . . . , 3, i ≤ j, the

coefficient matrices for the terms
∂2u

∂xi∂xj
in (C.1). These coefficient matrices are diagonal

matrices of size npq × npq, and have the values of the respective coefficient function at

interior gridpoints on the diagonal. Using tensor product notation [47], the matrix Am
i ,

i = 0, . . . , 3 can be written in a compact form as follows

Am
0 =

Cm
12

4∆x1∆x2
(Iq ⊗Qp⊗Qn) +

Cm
13

4∆x1∆x3
(Qq ⊗Ip⊗Qn) +

Cm
23

4∆x2∆x3
(Qq ⊗Qp⊗In),

(C.10a)

Am
1 =

Cm
1

2∆x1
(Iq ⊗ Ip ⊗ Qn) +

Cm
11

(∆x1)2 (Iq ⊗ Ip ⊗ Tn) +
Cm

0

3
(C.10b)

Am
2 =

Cm
2

2∆x2
(Iq ⊗ Qp ⊗ In) +

Cm
22

(∆x2)2 (Iq ⊗ Tp ⊗ In) +
Cm

0

3
(C.10c)

Am
3 =

Cm
3

2∆x3
(Qq ⊗ Ip ⊗ In) +

Cm
33

(∆x3)2 (Tq ⊗ Ip ⊗ In) +
Cm

0

3
(C.10d)

and Am is simply given by

Am = Am
0 + Am

1 + Am
2 + Am

3 .

It is important to point out that, with the current ordering, i.e. the gridpoints are

ordered in the x1-, x2- , then x3- directions, the matrix Am
1 in (C.10b) is block-diagonal

with tridiagonal blocks, due to the fact that both the matrices (Iq ⊗Ip⊗Qn) and (Iq ⊗Ip⊗

Tn) are block-diagonal with tridiagonal blocks. However, the matrices Am
2 and Am

3 , given

by (C.10c) and (C.10d), respectively, are not. In order for each of these two matrices

to have a block-diagonal structure, the gridpoints must be ordered in the direction of

respective spatial variable. For example, if the gridpoints are ordered in the x2-, x1- ,

then x3- directions, then the matrix Am
2 is block-diagonal with tridiagonal blocks, while,
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if the gridpoints are ordered in the x3-, x1- , then x2- directions, then the matrix Am
3 is

block-diagonal with tridiagonal blocks.
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Appendix D

Pricing PRDC Swaps with

Preconditioned Iterative Methods

This appendix presents an application of iterative methods combined with precondi-

tioning techniques for the solution of the resulting block banded linear system at each

timestep arising from the CN timestepping scheme in the context of PRDC swaps, i.e.

linear system (3.3). Our approach is to use the preconditioned GMRES method with the

preconditioner solved by FFT techniques.

The remainder of this appendix is organized as follows. In Section D.1, we discuss

our choice for the preconditioner and the associated FFT techniques In Section D.2,

we present selected numerical results to demonstrate the accuracy and efficiency of the

numerical methods applied to pricing Bermudan cancelable PRDC swaps.
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D.1 GMRES with a Preconditioner Solved by FFT

Techniques

For the reader’s convenience, we repeat (3.3) below

(I −
1
2

∆τAm)um = (I +
1
2

∆τAm−1)um−1 +
1
2

∆τ(gm + gm−1).

To avoid the high computational cost of direct methods, we choose to apply an iterative

method to solve (3.3), namely GMRES. We choose GMRES because the matrix I −
1
2

∆τAm is neither symmetric nor positive (semi-) definite in general. Thus, commonly

used iterative schemes, such as the Conjugate Gradient method, designed primarily for

symmetric positive-definite systems, are not likely to converge. A detailed description of

the GMRES method, and the “restarted” version of the method, can be found in [25].

In our implementation, at each timestep except the first, the initial guess for GMRES

is constructed by linear extrapolation of the numerical solution from the two previous

timesteps. It is important to mention that, due to the use of this initial guess and the

use of a preconditioner which is described below, only a few iterations (usually 3 or 4)

are required for the GMRES method to converge, hence no restarting is needed.

We use as preconditioner for I− 1
2∆τAm the matrix P arising from the discretization

of

∂u
∂τ

=
∂2u
∂s2 +

∂2u
∂r2

d
+

∂2u
∂r2

f
+ u

using the CN timestepping method. This choice of preconditioner is motivated by the

work in [10]. In the rest of this section, we describe an efficient algorithm for solving

linear systems of the form Pv = b. Following Appendix C.2, using tensor products, we

can write the matrix P as

P = I−
1
2

∆τ
( 1

(∆s)2 (Iq⊗Ip⊗Tn)+
1

(∆rd)2 (Iq⊗Tp⊗In)+
1

(∆rf)2 (Tq⊗Ip⊗In)+I
)

. (D.1)
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Here, we adopt the same notation for the matrices Iz and Tz, z = {n, p, q}, as in Ap-

pendix C.2. It is known [47] that, if we let Vn be the matrix of normalized eigenvectors

of Tn and Fn be the Discrete Sine Transform (DST) matrix of order n, then we have

V−1
n = Fn. Similarly, we have V−1

p = Fp and V−1
q = Fq. A useful observation is that P

can be block-diagonalized via

B = (V−1
q ⊗ V−1

p ⊗ In)P(Vq ⊗ Vp ⊗ In)

= I −
1
2

∆τ
( 1

(∆s)2 (Iq ⊗ Ip ⊗ Tn) +
1

(∆rd)2 (Iq ⊗ Λp ⊗ In) +
1

(∆rf )2 (Λq ⊗ Ip ⊗ In) + I
)

,

(D.2)

where Λp = V−1
p TpVp is a diagonal matrix with the eigenvalues of Tp on its diagonal, and

Λq is defined similarly. The matrix B has pq blocks, each of size n×n. These observations

give rise to the following fast solver for the preconditioner using FFT techniques, more

specifically, using Fast Sine Transforms (FSTs). (Note that the main computational

requirement of an FST is that of an FFT.) Consider the linear system Pv = b. Note

that b ∈ Rnpq and for the sake of presentation, denote by bq×pn the q × pn matrix with

entries being the components of b laid out in q rows and pn columns, column by column.

Taking (D.2) into account, the solution v to the system Pv = b can be written as

v = P−1b = (Vq ⊗Vp ⊗In)B−1(V−1
q ⊗V−1

p ⊗In)b = (F−1
q ⊗F−1

p ⊗In)B−1(Fq ⊗Fp ⊗In)b.

(D.3)

The FST algorithm for performing the computation in (D.3) consists of the following

steps:

1. Perform the FST on each of the pn columns of (bpn×q)T to obtain (b(1))q×pn =

Fq(bpn×q)T .

2. Perform the FST on each of the qn columns of ((b(1))qn×p)T to obtain (b(2))p×qn =

Fp(b(1)
qn×p)T , or, equivalently b(2) = (Fq ⊗ Fp ⊗ In)b.

3. Solve the block-diagonal system Bb(3) = b(2).

4. Perform the inverse FST on each of the pn columns of ((b(3))pn×q)T to obtain
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(b(4))q×pn = F−1
q ((b(3))pn×q)T .

5. Perform the inverse FST on each of the qn columns of (b(4)
qn×p)T to obtain vp×qn =

F−1
p (b(4)

qn×p)T , or equivalently v = (F−1
q ⊗ F−1

p ⊗ In)B−1(Fq ⊗ Fp ⊗ In)b.

The above five steps form an FFT technique for solving the linear system Pv = b.

Clearly, the five steps involve O(npq log(npq)) flops, which is an almost optimal compu-

tational complexity for solving an npq × npq linear system.
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D.2 Numerical Results

underlying swap cancelable swap performance

leverage l n p q ADI – GMRES ADI GMRES

(τ) (s) (rd) (rf) value change ratio value change ratio time time avg.

(%) (s) (s) iter.

4 12 6 6 -11.41 11.39 0.79 0.87 3.5

low 8 24 12 12 -11.16 2.5e-3 11.30 8.6e-4 8.71 7.92 3.5

16 48 24 24 -11.11 5.0e-4 5.0 11.28 1.7e-4 5.0 165.78 164.38 3.6

32 96 48 48 -11.10 1.0e-4 5.0 11.28 4.1e-5 4.1 3172.98 3195.75 3.6

4 12 6 6 -13.87 13.42

medium 8 24 12 12 -12.94 9.3e-3 13.76 3.3e-3

16 48 24 24 -12.75 1.9e-3 4.7 13.85 9.5e-4 3.5

32 96 48 48 -12.70 5.0e-4 3.9 13.88 2.6e-4 3.6

4 12 6 6 -13.39 18.50

high 8 24 12 12 -11.54 1.8e-2 19.31 8.1e-3

16 48 24 24 -11.19 3.5e-3 5.2 19.56 2.5e-3 3.2

32 96 48 48 -11.12 8.0e-4 4.3 19.62 5.4e-4 4.6

Table D.2.1: Values of the underlying PRDC swap and cancelable PRDC swap with FX

skew for various leverage levels; “change” is the difference in the solution from the coarser

grid; “ratio” is the ratio of the changes on successive grids; “avg. iter.” is the average

number of iterations.

The code for the experiments carried out in this section is written in MATLAB, and

double precision is used. Selected numerical results are presented in Table D.2.1.

In terms of accuracy, both the ADI and the preconditioned GMRES methods give

identical prices to four digits of accuracy for the underlying PRDC swap and the can-
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celable PRDC swap. (Hence, we do not present prices obtained by the two methods

separately to save space in the table.) As expected from the discretization methods,

second-order accuracy is obtained.

Since for different leverage levels, the computation times of the methods considered are

virtually the same, we report only the selected computation statistics for the low leverage

case in the last three columns of Table D.2.1 obtained from pricing the underlying PRDC

swap. We note that, asymptotically, for each doubling of the number of timesteps and

gridpoints in all directions, both the ADI and GMRES computation times increase by a

factor of about 19, which is close to the optimal factor of 16. It is also evident that the

ADI method and the GMRES method are almost equivalently efficient, with the ADI

method being asymptotically a little bit more efficient. It is worth noting that the average

number of iterations required by the GMRES method per timestep is quite small, and

more importantly, is independent of the size of discretized problem. These results show

the combined effect of using an effective preconditioner and a good initial guess based on

linear extrapolation.
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Appendix E

Miscellaneous Derivations

E.1 Fixed Notional Method

In this section, we discuss the underlying idea of the fixed notional method. Although we

present the method in the context of PRDC swaps, the idea can be employed to price the

floating leg in other types of interest rate swaps. First, we consider a LIBOR payment,

for example ναLd(Tα)Nd scheduled at time Tα for the period [Tα−1, Tα]. This LIBOR

inflow is equivalent to (i) receiving the fixed notional Nd at time Tα−1, and (ii) paying

the fixed notional Nd at time Tα. More specifically, because the domestic LIBOR rate

Ld(Tα) is known at time Tα−1, the issuer, who receives the domestic LIBOR payments,

could:

1. at time Tα−1, upon receiving the amount Nd from the investor, invest this mount

at rate Ld(Tα)

2. at time Tα, receive the interest amount ναLd(Tα)Nd and the principal Nd;

3. return the principal Nd to the investor.

The above three steps gives a net fund inflow of size ναLd(Tα)Nd at time Tα, which is

exactly the same as the LIBOR inflow scheduled at this time.
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Alternatively, the above idea could be interpreted as follows. Since the domestic

LIBOR rate Ld(Tα) is known at time Tα−1, the value at time Tα−1 of the LIBOR payment

ναLd(Tα)Nd is simply

ναLd(Tα)NdPd(Tα),

which, by replacing Ld(Tα) with (2.7), becomes

(1 − Pd(Tα))Nd = Nd − NdPd(Tα). (E.1)

The amount −NdPd(Tα) is the value at time Tα−1 of the fund outflow of size Nd at time

Tα. As a result, (E.1) essentially represents a fund inflow and a fund outflow, both of

size Nd, at time Tα−1 and Tα, respectively.

We now extend this idea to multiple periods. Consider the domestic LIBOR fund

inflows scheduled on dates {Tα+1, . . . Tβ}, as expressed in Figure E.1.1 (a). We are con-

cerned with the value at time Tα of these fund inflows. We apply the fixed notional

method described earlier to each of these LIBOR fund inflows, which is illustrated by

Figure E.1.1 (b).
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T0 T1 b b b Tα Tα+1 Tα+2 b b b Tβ−1 Tβ Tβ+1

να+1Ld(Tα+1)Nd να+2Ld(Tα+2)Nd νβ−1Ld(Tβ−1)Nd νβLd(Tβ)Nd

(a)

Fixed Notional

T0 T1 b b b Tα Tα+1 Tα+2 b b b Tβ−1 Tβ Tβ+1

Nd Nd

Nd

Nd

Nd

Nd

Nd Nd

(b)

Figure E.1.1: An illustration of the fixed notional method

As obvious from Figure E.1.1 (b), this methods gives rise to (i) a zero fund flow at each

of {Tα+1, . . . Tβ−1}, (ii) a fund inflow of size Nd at time Tα, and (iii) a fund outflow of

size Nd at time Tβ. As a result, the value at time Tα of all the domestic LIBOR fund

inflows scheduled on dates {Tα+1, . . . Tβ} is simply given by

Nd − NdPd(Tα, Tβ) = (1 − Pd(Tα, Tβ))Nd. (E.2)

E.2 A Derivation for the Dynamics of Geometric Av-

erage Processes

In this section, we derive the dynamics (6.30)–(6.33), for the geometric average process

g(t) defined by (6.29). Note that, since each of the si(t), i = 1, 2, 3, follows a standard
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geometric Brownian motion, we have [63]

si(t) = si(0)e
(

(r−di− 1
2 (σi)2)t+σiWt(t)

)
, i = 1, 2, 3. (E.3)

It follows from the definition of g(t) in (6.29) and (E.3) that

g(t) =
( 3∏

i=1

si(t)
) 1

3

=
( 3∏

i=1

si(0)
) 1

3 e
{

1
3

(∑3
i=1((r−di− 1

2 (σi)2)t+σiWi(t))
)}

= g(0)e
{

1
3

(∑3
i=1(r−di− 1

2 (σi)2)t
)

+B̂g(t)
}

,

(E.4)

where

g(0) =
( 3∏

i=1

si(0)
) 1

3 ,

B̂g(t) =
1
3

3∑

i=1

σiWi(t).

We now consider the quantity dB̂g(t)dB̂g(t), referred to as the quadratic variation of B̂g

up to time t. We have

dB̂g(t)dB̂g(t) = d
(1

3

3∑

i=1

σiWi(t)
)

d
(1

3

3∑

i=1

σiWi(t)
)

=
1
32

( 3∑

i=1

σidWi(t)
)( 3∑

i=1

σidWi(t)
)

=
1
32

( 3∑

i,j=1

ρijσiσj

)
dt.

(E.5)

Let

σg =
( 1

32

3∑

i,j=1

ρijσiσj

) 1
2 , (E.6)

and consider

Bg(t) =
B̂g(t)

σg
=

1
3σg

3∑

i=1

σiWi(t).

By (E.5) and the definition of Bg(t), we conclude that dBg(t)dBg(t) = dt. Furthermore,

Bg(t) is a (1-D) continuous martingale, with Bg(0) = 0. Hence, by Lévy’s Theorem (see
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Theorem 4.6.4 in [63]), Bg(t) is a standard Brownian motion. Thus, by this result and

(E.4), we can rewrite g(t) in terms of Bg(t) as

g(t) = g(0)e
{

1
3

(∑3
i=1(r−di− 1

2 (σi)2)t
)

+σgBg(t)
}

,

which can be further re-arranged into

g(t) = g(0)e
{(

r−
(

1
3
∑3

i=1(di+ 1
2 σ2

i )− 1
2 σ2

g

)
− 1

2 σ2
g

)
t+σgBg(t)

}

= g(0)e
{(

r−dg− 1
2 σ2

g

)
t+σgBg(t)

}
,

(E.7)

where

dg =
1
3

3∑

i=1

(
di +

1
2

σ2
i
)

−
1
2

σ2
g . (E.8)

It is obvious from (E.7) that g(t) follows a standard geometric Brownian motion with

the dynamics specified by

dg(t)
g(t)

= (r − dg)dt + σgdBg(t),

where the volatility σg and the “effective” dividend yield dg are respectively defined by

(E.6) and (E.6).

Note that the approach presented above can be generalized to find the dynamics of

the geometric average process defined on an arbitrary number of geometric Brownian

motions. An alternative approach to derive the dynamics for g(t) is to apply the multi-

dimensional Itô’s formula to (6.29). However, in this case, the computation is much more

involved than the one presented above.
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