
A Fast Shadowing Algorithm for High Dimensional ODE Systems

Wayne Hayes
wayne@ics.uci.edu

Computer Science Department, University of California, Irvine
Irvine, CA, 92697-3425, USA.

Kenneth R. Jackson
krj@cs.toronto.edu

Computer Science Department, University of Toronto
Toronto, Ontario, Canada M5S 3G4.

Abstract

Numerical solutions to chaotic dynamical systems are suspect because the chaotic nature of the
problem implies that numerical errors are magnified exponentially with time. To bolster confidence in
the reliability of such solutions, we turn to the study of shadowing. An exact trajectory of a chaotic
dynamical system lying near an approximate trajectory is called a shadow. Finding shadows of numerical
trajectories of systems of ordinary differential equations is very compute intensive, and until recently it
has been infeasible to study shadows of higher-dimensional systems. This paper introduces several
optimizations to previous algorithms. The optimizations collectively acheive an average speedup of
almost 2 orders of magnitude with no detectable loss in effectiveness. The algorithm is tested on systems
with up to 180 dimensions. Its application to large gravitational N -body integrations has already led to
a deeper understanding of the reliability of galaxy simulations.

1 Introduction

1.1 Background

Computer simulation is a popular tool in the modern physical scientist’s study of complex dynamical systems.
These systems often display sensitive dependence on initial conditions: small changes in initial conditions
produce solutions that exponentially diverge from each other. Since a numerical solution introduces small
perturbations like roundoff and truncation error, it will generally diverge exponentially away from the exact
solution having the same initial conditions. The Lyapunov exponent λ of a system defines how quickly nearby
trajectories diverge: a small distance d0 between two nearby solutions increases with time t approximately
as d0e

λt. Thus even a single numerical error of size d0 is magnified exponentially with the passage of time.

These physical systems are usually modelled by a system of ordinary differential equations (ODEs). Al-
though there exist other methods of global error analysis for ODEs (eg., Corless (1994)), they always involve
demonstrating that the numerical solution exactly solves a problem whose defining equation is slightly per-
turbed from the one we tried to solve. Shadowing is unique in that it demands that the equation governing
the ODE remains fixed. Instead, we allow perturbations only to the initial conditions, in an effort to find a
nearby solution which exactly solves the desired ODE while remaining close to the computed solution. The
measures of error are the distance between the numerical trajectory and the shadow, and the duration of
time over which the two remain close to each other. Although the more traditional backward error approach
is useful in some contexts, it is not clear that changing the governing equation is always the best way to
measure error, especially if the governing equation satisfies special conditions that, if violated, could produce
qualitatively different solutions. For example, a Hamiltonian system may not remain Hamiltonian if small,
arbitrary, time-varying perturbations are allowed in its governing equation. An extended discussion of the

1

motivation for shadowing can be found elsewhere (Hayes 1995; Hayes 2001; Hayes and Jackson 2003; Hayes
and Jackson 2004).

The primary difficulty with using shadowing as a measure of error of an ODE integration is that it is
extremely expensive, requiring expensive, highly accurate integrations of the system, its Jacobian, and its
variational equation, as well as the inversion of large matrices. For example, the first study of shadows of
the gravitational N -body problem occured in the early 1990s (Quinlan and Tremaine 1992). At that time,
state-of-the-art galaxy simulations contained up to 105 particles. Due to the expense of shadowing, Quinlan
and Tremaine (1992) were able only to attempt shadowing of a very simplified system of just one particle
moving in a fixed potential created by 99 particles whose positions were fixed in space. Furthermore, the
algorithm described by Quinlan and Tremaine (1992) scales as O(M 3), where M is the number of particles
which move (M = 1 in their shadowing simulations). Thus, shadowing can not be used as a practical tool
in the study of numerical errors without significant algorithmic improvements.

In this paper we introduce several improvements to the algorithm of Quinlan and Tremaine (1992), called
refinement, resulting in an average speedup of about two orders of magnitude. This optimized algorithm has
been tested on a smooth, almost hyperbolic Hamiltonian system with 180 dimensions whose physical size
was scaled to be of order unity. Starting with a numerical trajectory with local error of about 10−4, shadows
were successfully found to last about 50 Lyapunov times. Considering that a numerical error of size 10−4

is magnified to be comparable to unity after about 9 Lyapunov times (since e9 ≈ 104), this demonstrates
that the algorithm is capable of finding long, high-dimensional shadows. The algorithm has also been
successfully applied to gravitational N -body systems with over 200 phase-space dimensions, leading to a
deeper understanding of the reliability of galaxy and cosmological simulations (Hayes 2003b; Hayes 2003a).

1.2 Definitions and previous work

We start with some definitions. The terms orbit, trajectory, and solution are used interchangeably. For
numerical discussions, we assume a machine precision of approximately 16 decimal digits, and a well-scaled
problem where all macroscopic quantities of interest are of order unity. Throughout this paper, | · | denotes
Euclidian norm, and ‖·‖ denotes the max norm, although we do not expect the choice of norm to qualitatively
change our results.

Definition. An exact trajectory {xi}
b
i=a of ϕ satisfies xi+1 = ϕ(xi) for a ≤ i < b.

We are interested in the case that a and b are finite integers. For a chaotic map, ϕ may be a simple equation,
such as the logistic equation ϕ(x) = 1− 2x2, which always maps the interval [−1, 1] onto itself. For an ODE
system like the N -body problem, ϕ(x) represents the exact solution passing through x, one timestep after
x.

Definition. {pi}
b
i=a is a δ-pseudo-trajectory, also called a noisy orbit, for ϕ if ‖pi+1−ϕ(pi)‖ < δ for a ≤ i < b,

where δ is the noise amplitude.

For a map, δ is often the machine epsilon; for an ODE system that has position pi at time ti, it is the error
per step, also called the local error of the numerical integration.

Definition. For a ≤ i < b, the 1-step error made between step i and step i + 1 of the pseudo-trajectory
{pi}

b
i=a is the vector difference ei+1 = pi+1 − ϕ(pi).

Thus, an exact trajectory is one whose 1-step errors are identically zero, and a δ-pseudo-trajectory is one
whose 1-step errors satisfy ‖ei‖ < δ for a < i ≤ b.

Definition of shadowing. An exact trajectory {xi}
b
i=a ε-shadows {pi}

b
i=a if ‖xi − pi‖ < ε for a ≤ i ≤ b.

Definition. The pseudo-trajectory {pi}
b
i=a has a glitch at point i = G0 < b if for some relevant ε there exists

2

an exact trajectory that ε-shadows {pi}
G0

i=a, but no exact trajectory that ε-shadows {pi}
G
i=a, for G > G0.

Definition. A shadow step is an interval, that can be larger than the internal timestep of a numerical
integrator, across which a 1-step error is computed.

Definition. Refinement is a process, similar to Newton’s Method, that iteratively takes a noisy orbit and
tries to produce a nearby orbit with less noise, i.e., one with smaller 1-step errors. A refinement iteration is
successful if before the iteration the trajectory has noise δ0, after the iteration it has noise δ1, and

δ1 < µδ0 for some reasonable µ ∈ (0, 1). (1)

Otherwise the refinement iteration is unsuccessful.

Shadowing was first discussed in relation to hyperbolic systems by Anosov (1967) and Bowen (1975). In
a 2-dimensional hyperbolic system, there are two special directions called the unstable (or expanding) and
the stable (or contracting) directions, which may vary with time and generally are not orthogonal. Small
perturbations along the stable direction decay exponentially in forward time, while small perturbations in
the unstable direction grow exponentially in forward time. The two directions reverse rôles in backward
time. In addition, the angle between the stable and unstable directions is uniformly bounded away from 0.
In such a system, Anosov and Bowen proved that, for sufficiently small noise amplitude, shadows exist for
arbitrarily long times.

For non-hyperbolic systems, it seems that we must be satisfied with finite-length shadows. The first studies
of shadows for non-hyperbolic systems appear to be by Beyn (1987) and Hammel, Yorke, and Grebogi (1987).
In the 1990s, there was a flurry of activity in the study of numerical methods for finding shadows (Chow and
Palmer 1991; Chow and Palmer 1992; Chow and Van Vleck 1993; Chow and Van Vleck 1994; Sanz-Serna and
Larsson 1993; Sauer and Yorke 1991; Dawson, Grebogi, Sauer, and Yorke 1994; Van Vleck 1995; Quinlan and
Tremaine 1992; Hayes 1995). In this paper, we concern ourselves with the refinement procedure of Quinlan
and Tremaine (1992), which is an extension of the two dimensional procedure of Grebogi, Hammel, Yorke,
and Sauer (1990) to arbitrary-dimensional Hamiltonian systems. These two papers will be referred to as QT
and GHYS, respectively.

2 The refinement procedure of GHYS and QT

2.1 Outline

The refinement procedure of GHYS and QT is similar to Newton’s method for finding a zero of a function.
Here we provide a heuristic explanation. Let P = {pi}

S
i=0 be a trajectory with S steps that has noise

δ > ηεmach, where εmach is the machine precision, and η is some constant significantly greater than 1 that
allows room for improvement towards the machine precision. Let ei+1 = pi+1 − ϕ(pi) be the 1-step error
at step i + 1, where ‖ei+1‖ < δ for all i. The set of all 1-step errors is represented by E = {ei}

S
i=1, and

is estimated by a numerical integration technique that has higher accuracy than that used to compute P.
This describes a function, which we call g, which takes as input the entire orbit P and whose output is the
set of 1-step errors E, i.e., g(P) = E. Since the 1-step errors are assumed to be small, ‖E‖ is small. That
is, P is close to a zero of g, if one exists. A zero of the function would represent an orbit in which the 1-step
errors are identically zero, i.e., an exact orbit. This is an ideal situation in which to run Newton’s method.
Refinement adds a few technical complications that disallow us from directly using Newton’s method, but
the ideas are clearly similar, as we shall see below. Just as with Newton’s method, refinement is iterative,
in that we repeately compute and apply a correction, which (ideally) gives an orbit with less noise with
each Newton iteration. In practice, we continue iteration until the 1-step errors are close to the machine
precision, which we call convergence to a numerical shadow. The existence of a numerical shadow supports

3

the existence of an exact shadow of comparable duration (Quinlan and Tremaine 1992; Sauer and Yorke
1991), although rigorously proving the existence of an exact shadow (Sauer and Yorke 1991; Coomes, Koçak,
and Palmer 1994; Hayes and Jackson 2003) is even more expensive than refinement. We do not pursue
rigorous proofs here.

2.2 The GHYS refinement algorithm

Assume we have a noisy orbit P = {pi}
S
i=0, and it has a shadow {xi}

S
i=0. Then

xi+1 = ϕ(xi) and pi+1 = ϕ̃(pi),

where ϕ̃ is an approximation to ϕ with a typical accuracy or noise of δ. Here, δ should be the accuracy
typically used by practitioners of the problem being studied. Now suppose we compute the 1-step errors

ei+1 = pi+1 − ϕ(pi),

although numerically we use ϕ̂, a better approximation to ϕ than ϕ̃. Then ĉi ≡ xi−pi represents a correction
term that perturbs point pi towards the shadow. So,

ĉi+1 ≡ xi+1 − pi+1 = ϕ(xi) − ϕ(pi) − ei+1 =
∂ϕ(pi)

∂pi

ĉi − ei+1 + O(|ĉi|
2) (2)

In the spirit of Newton’s method, we ignore the O(|ĉi|
2) in (2), and so one refinement iteration defines the

corrections along the entire orbit:
ci+1 = Lici − ei+1, (3)

where Li ≡ ∂ϕ(pi)
∂pi

is the linearized perturbation map. For a discrete map, Li is just the Jacobian of the
map at step i. For a system of ODEs, Li is the Jacobian of the integral of the ODE from step i to step
i + 1.1 It is the computation of the linear maps Li, called resolvents for an ODE system, that takes most
of the CPU time during a refinement. If we let D be the dimension of the problem, then the resolvent
has O(D2) elements in it, and it takes O(D3) time to compute, assuming each element takes time O(D) to
compute, as is the case in the N -body problem (Hayes 1995). Presumably, if one is interested in studying
simpler high-dimensional systems, a chaotic map would be a better choice than an ODE system, because no
variational equation integration is needed.

For simplicity of explanation, we assume D = 2 for the remainder of this subsection, deferring discussion of
the higher dimensional case to the next subsection. If the problem were not chaotic, the correction terms
ci could be computed directly from (3). But since Li will amplify any errors in ci not lying in the stable
direction, computing the ci’s by iterating (3) forward will amplify errors and typically produce nothing but
noise. Therefore, we split the error and correction terms into components in the stable (si) and unstable
(ui) directions at each timestep:

ei = eui
ui + esi

si, ci = cui
ui + csi

si. (5)

1 In other words, let
ṗ = h(t,p) (4)

be the first-order ODE. Note that pi+1 = ϕ(pi) is the solution of (4) using pi as the initial condition and integrating h to time
i + 1. Then J = ∂h

∂p
is the Jacobian of h(t, p). The Jacobian measures how ṗ changes if p is changed by a small amount. The

resolvent R(ti+1 , ti) is the integral of J(t) along the path p(t), and describes how a small perturbation δp from pi at time ti
gets mapped to a perturbation from pi+1 at time ti+1. That is, R(ti+1 , ti) is the solution of the variational equation

∂R

∂t
= J(t)R(t, ti), R(ti , ti) = I,

where I is the identity matrix. The reason the arguments to R seem reversed is for notational convenience: they satisfy the
identity R(t2 , t0) = R(t2 , t1)R(t1 , t0), and so a perturbation δp at time t0 gets mapped to a perturbation at time t2 by the
matrix-matrix and matrix-vector multiplication R2δp = R1R0δp (Hairer, Nørsett, and Wanner 1993). Finally, the linear map
in the GHYS refinement procedure is Li = R(ti+1, ti).

4

Since it is not known a priori which direction is unstable at each timestep, the unstable vector u0 at time
t0 is initialized to an arbitrary unit vector. The linearized map is then iterated forward with

ūi+1 = Liui, ui+1 = ūi+1/|ūi+1|. (6)

Since Li magnifies any component that lies in the unstable direction, and assuming we are not so unlucky to
choose a u0 that lies too close to the stable direction, then after a few Lyapunov times ui will point roughly
in the unstable direction at ti. Similarly, the stable unit direction vectors si are computed by initializing sS

to an arbitrary unit vector and iterating backward,

s̄i = L−1
i si+1, si = s̄i/|s̄i|. (7)

Substituting (5) into (3) yields

cui+1
ui+1 + csi+1

si+1 = Li(cui
ui + csi

si) − (eui+1
ui+1 + esi+1

si+1). (8)

While Li magnifies errors in the unstable direction, it damps them in the stable direction. Likewise, L−1
i

damps errors in the unstable direction and magnifies errors in the stable direction. Thus the cu terms should
be computed backward, and the cs terms forward. Taking components of (8) in the unstable direction at
step i + 1, we iterate backward on

cui
= (cui+1

+ eui+1
)/|ūi+1|, (9)

and taking components in the stable direction, we iterate forward on

csi+1
= |Lisi|csi

− esi+1
. (10)

The initial choices for cs0
and cuS

are arbitrary as long as they are small — smaller than the maximum
shadowing distance — because (10) damps initial conditions and (9) damps final conditions. GHYS and QT
choose them both as 0, as do we for simplicity. This choice is probably as good as any, but it can be seen here
that if one shadow exists, there are infinitely many of them.2 Another way of looking at these initial choices
for cs0

and cuS
is that they “pinch” the growing components at the end point, and the backward-growing

components at the initial point, to be small. That is, boundary conditions are being forced on the problem so
that the exponential divergence is forcibly masked, if possible, making the solution of (3) numerically stable.

Note that, counter-intuitively, these boundary conditions demand that the initial condition for the shadow
and noisy orbits differ along the unstable direction. In fact, this must occur if the change in initial conditions
is to have any effect. That is, when looking for a shadow, if perturbations were only allowed in the stable
direction, those perturbations would die out, leading the perturbed exact orbit to follow the original exact
orbit that passes through the initial conditions — the one that is already known to diverge exponentially
from the noisy orbit.

2.3 QT’s generalization to arbitrary Hamiltonian systems

If the configuration space is D dimensional, then there are 2D dimensions in the phase space. It can be shown
that in a Hamiltonian system, the number B of stable and unstable directions is equal, although B < D

2For any system, even a chaotic one, given any exact orbit of fixed length, a small enough perturbation in the initial
condition in any direction produces a small change in the final condition, although for chaotic systems this perturbation must
be exponentially small in the length of the orbit. (If the perturbation is restricted to the stable subspace, then obviously a
similar solution will be obtained.) Thus given any exact orbit that ε-shadows a noisy orbit, there exist infinitely many exact
orbits nearby that also shadow it. However, it may be that all the exact orbits are packed into a space unresolved by the
machine precision.

5

is possible.3 At time ti, let {uj
i}

D
j=1 represent D unstable unit vectors, and let {sj

i}
D
j=1 represent D stable

unit vectors. For any particular timestep, it will be convenient if the unstable vectors are orthonormal to
each other, and the stable vectors are orthonormal to each other. However, the stable and unstable vectors
together will not in general form an orthogonal system.

The vectors are evolved as in the two dimensional case, except using Gram-Schmidt orthonormalization to
produce two sets of D-orthonormal vectors at each timestep. Arbitrary orthonormal bases are chosen, uj

0 at

time t0, and sj
S at time tS , and then evolved according to

ūj
i+1 = Liu

j
i , s̄j

i = L−1
i sj

i+1.

At each step i, two Gram-Schmidt orthonormalizations are done: one on {ūj
i+1}

D
j=1 to produce {uj

i+1}
D
j=1,

and another on {s̄j
i}

D
j=1 to produce {sj

i}
D
j=1. After a few Lyapunov times, u1

i lies close to the most unstable

direction at step i, u2
i lies close to the second most unstable direction, etc. Likewise, s1

i lies close to the
most stable direction at time i, s2

i lies close to the second most stable direction, etc.

The multidimensional generalization of (5) is the obvious

ei =

D
∑

j=1

(eu
j

i

uj
i + es

j

i

sj
i), ci =

D
∑

j=1

(cu
j

i

uj
i + cs

j

i

sj
i). (11)

To convert the 1-step error at step i from phase-space co-ordinates e′

i = {ek
i }

2D
k=1 to the stable and unstable

basis ei =
{

{eu
j

i

}D
j=1, {es

j

i

}D
j=1

}

, one constructs the matrix Vi whose columns are the unstable and stable

unit vectors, Vi = (u1
i u

2
i · · ·u

D
i s1

i s
2
i · · · s

D
i), and solves the system Viei = e′i.

From (3) and (11) the equation for the correction co-efficients in the unstable subspace at step i + 1 is

D
∑

j=1

(c
u

j

i+1

+ e
u

j

i+1

)uj
i+1 =

D
∑

j=1

c
u

j

i

Liu
j
i

which are projected out along uk
i+1 producing

cuk
i+1

+ euk
i+1

=
D
∑

j=k

c
u

j

i

Ukj
i

where the scalar Ukj
i = uk

i+1 ·Liu
j
i = uk

i+1 ·ū
j
i+1, and the Gram-Schmidt process ensures Ukj

i = 0 if j < k. As
stated previously, the the boundary condition requires the unstable component of the corrections to be small
at timestep S, and their stable components to be small at timestep 0. For simplicity we take {cu

j

S

= 0}D
j=1

as did QT, and the co-efficients are computed backward using

cuk
i

=
1

Ukk
i

cuk
i+1

+ euk
i+1

−

D
∑

j=k+1

cu
j

i

Ukj
i

 .

3It is not hard to show that the Jacobian of the N-body problem has the form

J =

(

0 I

Ja 0

)

,

where Ja = ∂a
∂r

is symmetrical, and has real but not necessarily positive eigenvalues. If µ is an eigenvalue of Ja, then ±√
µ are

eigenvalues of J . If µ is positive, this gives one expanding and one contracting direction; if µ is negative, it gives directions that
neither expand nor contract, but “rotate” in some sense.

6

We first solve for {cuD
i
}S

i=0, which does not require knowledge of the other cu co-efficients, then solve for

{cuD−1

i

}S
i=0, etc.

Again from (3) and (11), the equation for the correction co-efficients in the stable subspace at timestep i is

D
∑

j=1

(cs
j

i+1

+ es
j

i+1

)L−1
i sj

i+1 =

D
∑

j=1

cs
j

i

sj
i

which are projected out along sk
i producing

csk
i

=
D
∑

j=k

(c
s

j

i+1

+ e
s

j

i+1

)Skj
i

where Skj
i = sk

i · L−1
i sj

i+1 = sk
i · s̄j

i , and the Gram-Schmidt process ensures Skj
i = 0 if j < k. The boundary

condition at step 0 is {cs
j

0

= 0}D
j=1, and the co-efficients are computed forward using

csk
i+1

=
1

Skk
i

csk
i
−

D
∑

j=k+1

(cs
j

i+1

+ es
j

i+1

)Skj
i

− esk
i+1

.

As with the unstable corrections, we first compute {csD
i
}S

i=0 which does not require knowledge of the other

cs co-efficients, then we compute {csD−1

i

}, etc.

Applying the above computed corrections to the noisy orbit, producing a nearby orbit with (ideally) less
noise, concludes one refinement iteration.

3 Optimizations to the GHYS/QT refinement algorithm

3.1 Brief overview of the optimizations

This paper introduces 8 major optimizations to the GHYS/QT refinement procedure. Each provides a
constant speedup of roughly between 1.5 and 8, with a cumulative average speedup of about a factor of 100.
We briefly introduce all 8 optimizations here. The first three are trivial and are not discussed further, while
the remaining 5 are discussed in more detail in the following subsections. Most of the effort is focussed on
reducing both the number of resolvents to recompute, and the time spent recomputing each. This necessitates
handling the ensuing complications of when a resolvent must be recomputed, and when it would be worthless
to do so. Furthermore, each of the optimizations is independent of all the others. It is conceivable that some
optimizations may significantly decrease the reliability of refinement for some systems, although this was not
observed for the systems we tested.

Each optimization (exept the first) has a name, and a single-letter identification for later discussion. We use
the acronym RUS to mean the set of all Resolvents, Unstable, and Stable vectors for the entire trajectory.
The RUS at a particular timestep i is referred to as RUSi.

Definition. If program A has a speedup of α over program B, then the execution time of A is a fraction 1/α
of B’s time; in other words A runs α times faster than B.

The 3M Oversight. QT re-computed a new resolvent for each stable and unstable vector, i.e., at each
timestep they computed 6M resolvents. However, a resolvent R(t1, t0) is a matrix operator that applies

7

to all small perturbations of the orbit from time t0 to t1. Thus only 2 resolvents per timestep need to be
computed: one for evolving perturbations forward in time, and another to evolve them backward. Thus QT
would have been required to perform O(M 4) work for M moving particles. Since most of the time is spent
computing the resolvents, fixing this oversight provides an immediate speedup of a factor of about 3M . The
effect of fixing this oversight is not included in the speedup values of Table I below, but it partly explains
why QT thought that shadowing is wholly impractical for large N systems.

Compute Backward Resolvent by Inverting Forward Resolvent (I). The above optimization can
be extended further by noting that the resolvent matrix Li that maps perturbations from time ti to ti+1 is
precisely the inverse matrix of the resolvent that maps small perturbations from ti+1 to ti. Thus, rather than
doing an integration from ti+1 backward to ti to compute L−1

i , Li can be inverted using matrix operations,
or the system Lix = b can be solved, whenever necessary, using standard elimination schemes. This gives a
speedup of about 2.

Fixed Tolerance Resolvent (F). For smooth problems like the N -body problem, it appears that when
a resolvent is recomputed at all, it does not need to be computed very accurately, even in late refinements
where the 1-step errors approach the machine precision. This is analogous to computing only an approximate
Jacobian when applying Newton’s Method. In these N -body experiments, when this optimization was used,
resolvents were always computed to a fixed tolerance of 10−6. It seems that it is the movement of the orbit
during refinement that dictates recomputation of a resolvent, not the numerical error in its construction,
just as it is the movement of the estimated zero that dictates recomputation of the Jacobian in Newton’s
Method.

Cheaper “Accurate” Integrator (C). When computing the resolvent and 1-step errors during early
refinements, it is not necessary to compute them to extremely high accuracy. Since the initial 1-step errors
may have magnitudes of, say, 10−4, the resolvents and 1-step errors need only be computed to a tolerance of,
say, 10−7, i.e., 3 extra digits. QT always computed the 1-step errors and resolvents to a tolerance of 10−13.
Of course, if the Fixed Tolerance Resolvent optimization is used, this only effects the 1-step error tolerances.

Constant Resolvent, Unstable, and Stable Directions (R). If a shadow exists, then by definition
it cannot be too far away from the original noisy orbit. It is reasonable to assume that sometimes the
resolvents, unstable and stable directions (abbreviated RUS) will change little as the orbit is perturbed
towards the shadow. Thus, it may not be necessary to recompute the RUS for every refinement iteration.
This is probably the biggest savings, because in combination with the cheaper accurate integrator, it means
that the RUS often needs only to be computed once to a lax tolerance. This is analogous to a Newton’s
method that does not recompute the Jacobian at every iteration.

Re-use RUS From a Previous Successful Shadow (P). To find the longest possible shadow of a
noisy orbit, we attempt to shadow for longer and longer times until shadowing fails. Assume shadowing for
S shadow steps produces a shadow A. When attempting to shadow S + k timesteps for some integer k,
assume a successful shadow B will be found. Since A and the first S steps of B both shadow the same noisy
orbit, they must be close to one another. By the same argument as the previous paragraph, the RUS that
was computed for A can probably be re-used for the first S steps of B. Thus only k new RUSi’s need to be
computed.

Recompute Specific RUSi’s (i). If it can be shown that a particular RUSi, or a small set of them, is
causing Constant RUS refinements to fail, then perhaps it is sufficient only to recompute the “bad” RUSi’s,

8

rather than all of them along the entire orbit. It is not trivial to decide which ones need recomputing,
though.

Large shadow steps (L). QT used every internal timestep of their integrator’s noisy orbit as a shadow
step, but this is not necessary. It is reasonable to skip timesteps in the original orbit to build larger shadow
steps. This means that fewer resolvents and stable/unstable directions need to be computed and stored.
This optimization alone produced speedups of more than an order of magnitude in some cases.

3.2 Constant resolvent, unstable and stable directions

For a smooth, continuous, well-behaved function, the Jacobian is also smooth and continuous. Most Hamil-
tonian systems (that we have seen) are at least piecewise well-behaved in this sense. The N -body problem,
in particular, is of this class, assuming no 0-distance collisions occur, or if the forces are artificially bounded
through “softening”. This implies that the resolvent along a particular path will not change much if the path
is perturbed slightly. Since the unstable and stable unit vectors are computed solely from the resolvents,
they will also change only slightly when the path is perturbed. Thus, the RUS computed on one refinement
iteration may be re-usable on some subsequent iterations. Computing the new 1-step errors is then the only
significant work to be performed on each refinement iteration after the first.

We have observed that computing the RUS to a tolerance of between 10−6 and 10−9 usually suffices to refine
the orbit down to 1-step errors near 10−15. If refinement fails using Constant RUS, then perhaps there is a
spot in the orbit where some RUSi’s change quickly with small perturbations in the orbit. In that case, the
RUS can be re-computed for a refinement or two, after which Constant RUS may be tried again. However,
when Constant RUS fails it often suggests that there is a glitch somewhere in the portion of the orbit which
is currently being tested for a shadow.

3.2.1 Switching between Constant and Recomputed RUS

The algorithm used to switch between Constant RUS and Recomputed RUS uses a running-average “mem-
ory” scheme to keep track of the progress of the norm of the maximum 1-step error over the previous few
refinements. Originally, we used a simple algorithm (like QT’s) that would signal failure when a certain
number K of successive refinements had failed, for µ = 0.9 (see (1)) and K = 3. However, refinement would
sometimes get into a loop in which there would be a few successful refinements, followed by one or more
that would “undo” the improvements of the previous ones. For example, the largest 1-step error may cycle
as (approximately) {8, 4, 2, 1, 8, 4, 2, 1, 8, . . .} × 10−13. Cases were seen in which the number of refinements
in these loops was 3, 4, and even up to 8. Clearly a simple “die when K successive failures are seen” is not
general enough to catch this kind of loop.

The arithmetic running average

Aj+1 = αAj + (1 − α)ν, α ∈ (0, 1) (12)

is useful here, where ν is the newest element added to the set, and α is the memory constant. The higher the
memory constant, the longer the memory — i.e., the less the effect of each new element. A rule of thumb is
that A is roughly an average of the most recent 2/(1−α) elements. However, (12) is not suited for measuring
errors such as those in refinement that can change by many orders of magnitude, and is especially unsuited
when smaller means better. For example, a string of errors of 10−4 followed by an error of 10−7 would
average to about 10−4, whereas a change from 10−4 to 10−7 is an indication that refinement is succeeding. A
geometric equivalent of (12) is more appropriate, to allow values differing by orders of magnitude to average

9

meaningfully. We define the geometric running average G as

Gj+1 = n+1

√

(Gj)nν (13)

where ν is the new element, and n
n+1 is analogous to α in (12), so higher N implies longer memory. Both

(12) and (13) require initialization to some reasonable starting value A0 and G0, respectively. N should not
be too large; we found 2 or 3 worked best.

Finally, we want to measure the improvement that is being made by successive refinements, rather than
the absolute error, because it is the change in 1-step errors that indicates whether current refinements are
succeeding, not their absolute size. Note that the 1-step errors may stop decreasing for two reasons: (a)
1-step errors have reached the machine precision, or (b) refinement is failing to find a shadow. Using the
improvement rather than the absolute value allows us to use the same algorithm to halt refinement in either
case. We use the geometric running average improvement to measure the progress of refinement, where the
improvement I is

I =

∣

∣

∣

∣

the maximum 1-step error of this refinement

maximum 1-step error of previous refinement

∣

∣

∣

∣

.

If I is close to or greater than 1, then the current refinement did not improve on the previous one; if I < µ
(µ from (1)) then the current refinement is successful.

Here is how we use the improvement I to control whether the RUS is recomputed at each refinement iteration.
We have two refinement methods. In order of decreasing cost, they are Recomputed RUS, and Constant
RUS. The general idea is: if refinement is working well with an expensive method, then switch to a cheaper
one; if a cheaper one seems to be failing, switch to a more expensive one; if the most expensive one is failing,
then give up refinement entirely. Here is the heuristic we have built over many months of trial and error.
Let µR be the success value (from (1)) when the RUS is being recomputed, and µC the success value when
using Constant RUS. We used µR = 0.1, µC = 0.5, because we expect a Constant RUS iteration not to be
as successful as one that recomputes the RUS, but they are much cheaper so we can afford a lower expected
improvement per Constant RUS refinement.

• When using recomputed RUS, it is safe to switch to Constant RUS when the geometric running average
improvement becomes < µR. At this time the current orbit and all its statistics must be saved in case
Constant RUS refinement fails.

• When using Constant RUS, it is necessary to switch back to recomputed RUS when the geometric
running average improvement stays > µC for 3 successive refinements. We then discard all progress
made by Constant RUS and revert to the previous orbit that used recomputed RUS. We believe it is
advantageous to discard all progress made by Constant RUS, even if significant progress was made, for
the following reasons:

– A refinement that computes the RUS is far more expensive than one that does not, so discarding
all progress made by Constant RUS refinements usually makes little difference, percentage-wise,
in the final run-time.

– Future Constant RUS refinements, that will be performed after the RUS is recomputed, will
converge faster than the current ones that just failed, because the RUS will be more accurate.

– Recomputing the RUS with small 1-step errors would mean, using the simple “3 extra digits of
accuracy” heuristic, recomputing it at a much higher accuracy than is necessary. (Unless the
Fixed Tolerance Resolvent optimization is used.)

• Finally, after having switched back to recomputed RUS, it is time to admit failure if the geometric
running average improvement stays > µR for 3 successive refinements; and it is safe to switch again to
Constant RUS when the geometric running average improvement becomes less than µR.

10

We found that there are usually no half-measures when using recomputed RUS — refinement either succeeds
geometrically or fails miserably. Finally, there may be a place for other noise-reduction procedures in the
universe of expensive and cheap refinement algorithms.

3.2.2 Re-use RUS from a previous successful shadow

This idea is based on the same observation as Constant RUS, and is only useful if Constant RUS is employed.
It takes advantage of the RUS for an orbit B being near to the RUS for a nearby orbit A. So, when trying
to find a shadow for a segment B which is an extension to segment A, the RUS of A can be re-used on the
segment of B that overlaps A.

One interesting question is which of A’s RUS’s to use, if A’s RUS was ever recomputed. An argument in
favour of using the first is that the noisy orbit is exactly the same, since B is just an extension of A. However,
if A had to recompute the RUS, then probably so will B if A’s first RUS is used. Recall that the RUS needed
for the early refinements need not be as accurate as the ones used later. Furthermore, we assume that the
segment of B’s shadow that overlaps A’s shadow will be closer to A’s shadow than the first few iterations of
B is to the first few iterations of A. Thus, if we use the last RUS that A used, we are less likely to recompute
the RUS for B. If B is a subset of A rather than an extension, then obviously no new RUSi’s need to be
computed.

3.2.3 Recompute specific RUSi’s

When Constant RUS refinements fail, it may be because some of the RUSi’s are invalid due to the current
trajectory drifting too far from the trajectory for which the RUSi was computed. If the set of RUSi’s that
are invalid is small, then it would be advantageous to recompute only those RUSi’s that are causing the
failure.

A difficulty arises, however, when trying to pinpoint which RUSi’s are causing the problem. Note that
refinement using the GHYS/QT algorithm is a global method: the correction cj is a function of the resolvents
and 1-step errors of all the timesteps, not just Lj and ej . Thus, it is not trivial to decide which RUSi’s are
causing a particular cj to be invalid.

What we would like is some measure Mi of how bad a RUSi is. Then we can insert RUSi’s into a priority
queue based on Mi, and extract the RUSi’s that are worse than some criteria, and recompute them. Some
obvious measures for Mi are:

• the 1-step error at step i.

• the distance pi has moved since the last time its RUSi was computed.

• the norm ‖Li‖, which is a measure of how sensitive that area of the orbit is to small changes.

Once the Mi’s are ordered by some measure, a criterion is needed to decide where to put the dividing line
between those RUSi’s that need recomputing and those that don’t. Some obvious criteria are:

• recompute all RUSi’s for which Mi > M ′ for some constant M ′.

• recompute some constant number of the RUSi’s.

• recompute some constant fraction of the RUSi’s.

• recompute all whose Mi > w(M̄) for some function w of the geometric mean measure M̄ .

11

None of these measures taken alone with any of the above criteria taken alone seem sufficient, since there were
cases in which recomputing the entire RUS resulted in a successful refinement, but a single-measure-single-
criterion method for recomputing particular RUSi’s resulted in a long sequence of unsuccessful refinements.

After much trial and error, a measure was found which gives a speedup no better than a factor of 2, which
is much less than we expected. Let us focus on a particular timstep i. Let k be the current refinement
iteration, and k′ be the refinement at which the RUSi was last computed. Let Lk′

i be the resolvent for step

i computed during refinement k′. Let pk′

i be the orbit point at step i from refinement k′, and let pk
i be the

orbit point at step i for the current refinement k. When trying to decide if we need to compute Lk
i , the

measure we devised is
Mi = ‖Lk′

i (pk′

i − pk
i)‖.

The intent is to combine the effects of the norm of Li, and how much the orbit has moved at that point since
Li was last computed. Lk

i is recomputed if it satisfies any of the following criteria:

• always recompute the worst K RUSi’s, for some integer K;

• always recompute the worst F RUSi’s, for some fraction F of all of them;

• always recompute RUSi if Mi > M ′ for some constant M ′.

• for each RUSi satisfying one of the above, also recompute RUSi−1, since Li starts at pi, while Li−1

ends at pi.

We used K = 1, F = 1
8 , and M ′ = 10−3.

Unfortunately, this set of measures and criteria eventually recomputes most of the RUSi’s except in the final
few refinements of a failing search. In other words, this set of criteria gives the best speedups only during
shadow searches that will eventually fail to find a shadow. This is a useful speedup, because a large fraction
of the time spent trying to find the longest shadow is spent in the failing search for a shadow longer than
the longest eventually found. However, it would be better if some criteria could be found that also aids in
searches that are eventually successful. It seems plausible that some such measure and criterion should exist.
Since the benefits are potentially enormous for orbits with many timesteps, more study seems appropriate.
There is also the possibility that no significantly better measure exists.

3.3 Large Shadow Steps

A numerical solution of an ODE is represented by an ordered, discrete sequence of points. Assume we
construct a continuous solution p(t) from these points, for example by using a suitably smooth and accurate
interpolant. Then we could extend the definition of ε-shadowing to continuous systems as follows: if x(t) is
an exact solution then x(t) ε-shadows p(t) on t0 ≤ t ≤ t1 if ∀t ∈ [t0, t1], ‖x(t) − p(t)‖ < ε.

Now, it should be clear that we can choose any representative sequence of points along p(t) to use in
the refinement algorithm; we need not choose the points from which p(t) was originally constructed. In
particular, we can choose a subset of the original set of points, as long as enough points are chosen to be
“representative” of p(t). The steps that are finally chosen are called shadow steps.

There are at least two reasons to desire as few shadow steps as possible. First, if Constant RUS is being
used, then the RUS needs to be stored. Each RUSi requires a matrix (the resolvent), and two sets of basis
vectors.4 Second, if the “accurate” integrator has a large startup cost, then we wish to minimize the number

4For example, with M = 25 moving particles, a RUS of length S = 128 requires about 100 megabytes of memory, and this
space scales as O(SM2). ((25 particles × 6 dimensions per particle)2× 8 bytes per double precision number × 4 (2 resolvents,
2 sets of basis vectors each covering half the space) × 128 steps).

12

of startups. For example, the Adams’s method we used takes extremely small internal timesteps at the
beginning of each shadow step.

For the N -body simulations reported in this paper, a set of “standardized” units (Heggie and Mathieu 1986)
was used such that the scale of the system in all macroscopic units of interest was of order 1 — i.e., the
system had a diameter of order 1, the crossing time and total energy were of order 1, and the N particles
each had mass 1/N . In such a system, the timesteps of QT’s integrator averaged about 0.01, and they used
each timestep as a shadow step. We found empirically that, in this system, using shadow steps about ten
times longer, of size 0.1, works well. Smaller shadow steps use more time and memory but could not find
shadows any better; shadow steps of 0.2 were slightly less reliable, and steps of size 0.5 were unreliable.
A significant area of further work would be to dynamically determine in an algorithmic fashion what size
shadow step is appropriate in the general case.

It might be reasonable to assume that as refinement proceeds to decrease the 1-step errors, it would be
advantageous to construct larger-and-larger shadow steps. However, we found that this does not give much
of a speedup, because (1) if refinement is working well, then Constant RUS will be invoked, in which case there
is no need to recompute the RUS at all; (2) conversely, if refinement is failing, then there is no justification
to increase the size of shadow steps — in fact, it may be advantageous to decrease them. Note that, if
refinement is succeeding, it may be advantageous to use larger-and-larger shadow steps in the computation
of the 1-step errors, even though the RUS is not being recomputed. We did not do this.

Finally, implementing dynamic shadow step sizes may help in another area. As described above, we currently
discard all progress made by Constant RUS when it begins to fail, reverting to the orbit and RUS of the most
recent refinement that computed the RUS. However, if Constant RUS works for several refinements, but then
starts to fail, perhaps it would be advantageous to use the orbit of the most recent successful refinement to
build new shadow steps using the above dynamic algorithm, regardless of whether the most recent successful
refinement computed the RUS or not.

3.4 Cheaper accurate integrator

When computing the 1-step errors of a noisy orbit, an integrator must be used that has smaller 1-step errors
than the integrator used to compute the noisy orbit. The question is, how much more accurate does it
need to be? During early refinements when the 1-step errors are large, the errors in the correction factors
may be dominated by the first-order approximation of the resolvents, so the 1-step errors do not need to be
computed to machine precision. In practice, we found that it is sufficient to estimate the 1-step errors of the
noisy trajectory to an accuracy of 10−3 times that of the size of the maximum 1-step error of the previous
refinement; computing them any more accurately does not speed refinement, although computing them only
10−2 times more accurately sometimes results in more iterations of the refinement procedure.5 In addition,
a factor of only 10−2 is not enough because some integrators have sufficiently gross control of their errors
that requesting only 2 extra digits will sometimes result in the integrator returning exactly the same result.
This is because it did too much work in the less accurate case, so that the solution it computed had at least
2 more accurate digits than were requested. This is less likely to happen with a difference of 10−3. Note it is
necessary to loosen this criterion when the 1-step errors are within 10−3 of the machine precision, in order
not to request more accuracy than the machine precision allows.

The only methods we have tried as our accurate integrator are Adams methods. It may be wise to try
others. In particular, if the shadow steps are small, it may pay to use a less sophisticated routine, such as
a high-order explicit Runge-Kutta method. If the shadow steps are large, an Adams or a Bulirsch-Stoer
method is probably apt, because even though they both have high startup cost, they can eventually move
quickly along the solution if they are not restarted too often. It may also be interesting to attempt using

5More iterations, but each iteration takes less time. There is clearly a trade-off here that is probably problem dependent.

13

extended precision integration to test the accuracy of the standard (double precision) routines.

Finally, an important factor in problems, like the N -body problem, that have a large variance of scales all
occuring at once (i.e., some pairs of stars are several orders of magnitude closer to each other than other
pairs) is a concept called individual time steps. The modern hand-coded N -body integrator gives each star
a personalized integration timestep; stars that have high accelerations are integrated with smaller timesteps
than those with lower accelerations. Perhaps it would be fruitful to attempt shadowing with an integration
routine that uses individual timesteps for each star, because currently the timestep of the entire system is
restricted to the smallest required timestep.

4 Numerical results of the optimizations

To quantify the speedups of the optimizations, 32 noisy orbits were chosen randomly from a simplified
gravitational N -body system described in detail elsewhere (Quinlan and Tremaine 1992; Hayes 2003b; Hayes
2003a). Each was shadowed using several different combinations of the optimizations. In each case, the
system consisted of 99 fixed particles and one moving particle (i.e., N = 100, M = 1), identical to the
shadowing experiments of QT. Forces were not softened. The 32 orbits were chosen by generating random 3-
dimensional positions for all particles from the uniform distribution on (0, 1); a 3-dimensional random initial
velocity for the moving particle was also chosen uniformly on (0, 1).6 The standardized units of Heggie and
Mathieu (Heggie and Mathieu 1986) were used, in which each particle has mass 1/N . The pseudo-random
number generator was the popular Unix 48-bit drand48(), with seeds 1 through 32.

Once the initial conditions were set, each noisy orbit was generated by integrating for 1.28 standard time
units (about 1 crossing time) using LSODE (Hindmarsh 1980) with pure relative error control of 10−6.
This figure agreed well with the magnitude of the initial 1-step errors computed during the first refinement.
Although one crossing time sounds short, it is long enough that 5 of the orbits contained trouble spots.7

The number of unoptimized QT refinements required to find a shadow that has no trouble spots seems
independent of the length of the orbit — each refinement takes much longer, but the convergence is still
geometric per refinement. Thus, the results below should be independent of the length of the orbit. This is
what has been observed with the longer orbits we have shadowed, although we do not document them here.

For short shadow steps, a constant shadow step size of 0.01 was used, which approximates the average sized
shadow step in QT. This results in 128 shadow steps. For large shadow steps, 16 shadow steps of size 0.08
were used. As in a usual shadowing attempt, longer and longer segments are shadowed in an attempt to find
the longest shadow. Here, each successive segment had twice as many shadow steps as the previous one, up
to 16 and 128, for long and short shadow steps, respectively. No attempt was made to isolate glitches more
accurately than this factor of two.

The highest tolerance requested of the accurate integrator was 10−15. A successful numerical shadow was
defined to be one whose 1-step errors were all less than 2 × 10−14. This number was chosen simply because
it was the smallest number that geometrically converging refinement sequences could consistently achieve;
10−14 was too small, because many refinement sequences would proceed geometrically until their maximum
1-step error was about 1.5 × 10−14, and then they would “bounce around” for many refinements until,
apparently by chance, the maximum 1-step error would fall below 10−14. The maximum allowed shadow
distance was 0.1, although none over 0.0066 were observed with successful shadows.

6Astronomers will note that this does not correspond to any realistic astronomical system; however, it seems unlikely that
the precise particle distribution will effect shadowing results. This is supported by the close correspondence of our results with
those of QT, even though they used a more realistic “Plummer” distribution.

7If the orbit has a trouble spot, then Constant Resolvent and Re-use RUS from previous successful shadow will have little
effect, because the RUS will be re-computed in an attempt to find a shadow. The other optimizations — Cheaper Accurate

Integrator, Large Shadow Steps, Fixed Tolerace Resolvent, and Backwards Resolvent by Inverting Forward Resolvent — still
offer significant performance improvement.

14

Table I displays the speedups of the various optimizations. All ratios are speedup factors with respect to the
time column. There are several interesting observations to make about this table. First, note that the run
times of the original QT algorithm (after correction of the 3M oversight) are comparable to the run times of
our unoptimized version (differing on average by a factor of 1.07), as would be expected. Now looking at each
optimization acting alone, we see that using Large Shadow Steps (column L) 8 times longer gives an average
speedup of about 5.5. Large shadow steps are trivial to implement, so we would recommend that, even if no
other optimizations are adopted, large shadow steps be used in any new shadowing implementation. Third,
inverting the forward resolvent to produce the inverse resolvent (column I) produces the expected average
speedup of 2.0. Fourth, the cheap accurate integrator (column C) gives an average speedup of 2.36. This is
about what is expected, because both the QT and C algorithms on average require just over 3 refinements
to converge, and all C refinements are cheaper than a QT refinement except the last one, which is about
equal in expense. Finally, using Constant RUS gives a speedup of almost 3. Again this is about what is
expected because QT requires about 3 refinements to converge while R has one RUS computation followed
by several cheap Constant RUS refinements. The P , F and i optimizations were not tested alone.

Next we look at combinations of optimizations. First, it is interesting to note that combining the cheap
accurate integrator C with Constant RUS R results in an average speedup that is greater than the product
of the two individual speedups (2.36 × 2.68 = 6.32 < 7.55). This is because, when using CR, only one RUS
is computed, and it is computed cheaply. Using R alone requires computing the one RUS to high accuracy;
using C alone requires computing at least one RUS (the final one) to high accuracy. Second, re-using the
RUS of a previous successful shadow (P) makes sense only when R is also used. It gives an average speedup
of 43% over CR. The next three columns show other combinations. An interesting point to note is that,
except for CR, the combinations give a speedup less than the product of appropriate previous columns.
Perhaps this is at least partially owing to an affect similar to Ahmdal’s Law: there still exist parts of the
algorithm that have not been sped up, and as the remainder of the program that is being optimized speeds
up, these unoptimized sections take a greater proportion of the time.

Finally, it can be seen that the optimizations in the last two columns, F and i, contribute little to the
average. This is because most of the systems in this table were shadowable. In fact, F slightly slows down
refinement in one case. However, orbits 5, 6, 13, 19, and 29 obtained speedups significantly less than the
average in the KRI column, but gain was made in the final two columns of up to a factor of 5. These were
precisely the orbits that were most difficult to shadow (as the time column shows), and in fact some of them
were not shadowable for their entire lengths. For these orbits, significant time was spent in the failed search
to find a shadow lasting 1.28 time units. This indicates that the F and i optimizations are most effective in
speeding up failing searches.

5 Discussion and conclusions

QT argue that if the refinement algorithm fails, there is good reason to believe that no shadow exists. This
seems reasonable for several reasons. First, from the more rigourous study of simpler systems, glitches are
known to exist and are not just a failure of any particular refinement algorithm. Secondly, QT’s results are
consistent with a conjecture by GHYS on the frequency of glitches. Finally, Sauer and Yorke (1991) find
that 1-step errors close to the machine precision are often enough to rigorously imply the existence of an
exact shadow (assuming sufficient hyperbolicity).

However, in a non-negligible number of cases, a shadow is not found for shadow steps 0..S, but a shadow is
found for the superset 0..2S. In other words, the algorithm failed to find a shadow of length S even though
one exists. This also occurs when all optimizations are disabled, so it is not merely that the optimizations
reduce reliability. Thus, in the search for the longest shadow, if our algorithm finds a shadow of length S
but none of length 2S, we also try 4S before giving up. This is expensive, but necessary to lessen the chance
of failing to find a shadow that exists.

15

Table I — Speedups of the optimizations

seed time(s) QT L I C R CR CPR CLR KR KRI KRIF KRIFi

1 1442 1.06 4.54 2.01 1.96 3.00 8.87 14.2 30.8 37.2 47.4 53.53 57.37
2 9379 0.70 6.08 1.82 3.09 3.48 11.2 15.7 52.3 68.3 75.7 79.83 79.67
3 7847 0.72 6.30 1.88 2.36 2.56 9.29 13.0 44.0 59.7 65.5 87.61 86.78
4 7011 0.86 11.1 1.98 2.74 2.84 7.88 12.3 40.5 55.8 74.3 79.19 78.52
5 12204 0.93 12.2 2.13 2.42 1.08 1.66 1.54 5.31 4.96 8.0 22.14 37.55
6 9443 1.14 7.24 2.01 3.18 3.98 10.8 13.5 5.36 56.8 29.8 80.13 137.64
7 6277 1.13 5.51 1.85 2.63 2.71 8.50 11.6 46.9 63.7 82.9 91.60 90.58
8 6582 1.13 4.79 2.04 1.91 2.79 7.09 10.6 33.8 45.4 56.9 72.76 67.95
9 7154 1.14 4.33 1.92 1.96 2.70 7.74 11.5 30.5 39.6 51.9 54.12 53.78

10 5832 1.13 4.32 1.87 1.54 2.72 6.46 10.7 29.1 45.5 57.2 63.89 63.59
11 6659 1.13 5.10 1.93 2.34 2.65 7.40 10.7 37.1 50.7 62.9 67.15 62.76
12 8623 0.86 5.00 2.44 2.57 3.37 9.64 13.7 44.8 52.4 75.4 79.77 79.19
13 14566 0.45 4.34 1.00 4.52 0.78 0.93 0.93 5.67 5.15 7.6 23.63 35.86
14 6976 0.74 4.54 2.00 2.17 2.85 7.23 11.1 32.9 45.2 49.4 58.08 57.66
15 5664 0.72 4.79 2.02 1.89 2.71 6.83 10.2 33.5 45.4 62.9 67.03 66.43
16 6634 1.15 4.89 1.97 1.82 2.64 7.35 10.6 33.8 44.8 58.7 62.65 62.08
17 6854 0.94 4.96 2.06 2.16 2.88 8.97 12.7 47.2 60.8 83.2 89.45 88.57
18 4932 0.62 2.88 1.74 1.69 2.17 5.38 7.84 25.7 34.1 45.7 49.70 49.27
19 8470 1.06 5.16 2.98 2.96 1.32 4.37 4.02 31.1 27.5 53.5 64.21 151.73
20 4566 1.12 5.59 1.91 2.04 2.78 6.21 9.50 33.7 48.6 64.3 62.95 66.32
21 7409 1.07 6.01 2.00 2.92 2.86 9.59 13.4 46.6 61.3 82.2 84.44 86.69
22 6988 1.22 4.89 2.17 2.00 3.03 7.34 11.4 36.1 44.0 57.2 61.00 60.52
23 7699 0.75 4.66 1.93 1.91 3.20 8.27 10.4 35.2 46.3 51.1 62.82 62.32
24 8851 1.18 2.53 1.79 2.78 2.89 10.2 15.4 52.9 71.1 93.1 95.29 100.39
25 7287 1.13 3.58 1.96 2.67 2.53 7.58 11.5 34.1 47.4 59.3 62.81 62.34
26 10736 0.85 7.74 2.84 2.79 4.33 12.4 16.9 58.2 76.5 81.1 63.96 63.50
27 7001 1.13 5.07 2.01 2.24 2.79 8.35 12.1 38.9 54.5 70.1 76.20 75.58
28 7324 1.13 4.49 2.06 1.93 2.72 8.01 11.2 33.2 49.3 55.0 58.98 55.21
29 13779 0.80 4.01 1.89 2.01 0.89 1.16 1.15 4.03 3.99 6.5 17.00 29.02
30 7932 1.14 10.9 2.01 2.17 2.81 8.82 13.0 43.3 67.5 86.7 91.38 90.70
31 6989 1.20 5.57 2.26 2.37 2.81 8.44 12.3 47.4 57.2 77.6 84.06 83.29
32 6720 1.08 4.80 1.89 1.90 2.78 7.61 11.5 34.0 50.5 65.5 70.33 69.67

avg 7682 1.07 5.56 2.01 2.36 2.68 7.55 10.8 34.6 47.5 59.3 66.8 72.3

LEGEND

time(s): time in seconds for unoptimized version.
QT: original code of Quinlan & Tremaine (Quinlan and Tremaine 1992)

L: Large shadow steps
I: backward resolvent by Inverting forward resolvent

C: Cheaper accurate integrator
R: Constant RUS
P: re-use RUS from Previous successful shadow (appears only in combinations)
K: CPL together.
F: Fixed Tolerance Resolvent.
i: Recompute specific RUSi’s.

16

The GHYS/QT refinement algorithm is trivially parallelizable, since the computation of each RUSi is com-
pletely independent of all the others; for the same reason, it also has excellent locality of reference in a serial
implementation, so virtual memory paging is minimized.

There may be further optimizations possible. For example, in the N -body problem, the phase-space dimen-
sions are split into sets of 6, one set for each particle in the system. Instead of computing the 6M × 6M
resolvent in O((6M)3) time, perhaps it may be possible to refine the trajectories of each particle separately,
requiring M resolvents each of dimension 6 × 6, and O(63M) time to compute.

Source code is available from the first author.

Acknowledgements

We thank Gerry Quinlan and Scott Tremaine for helpful discussions throughout this research, and for
providing their original source code. The University of Toronto undergradute Computing Disciplines Facility
generously provided workstation clusters on which we consumed several CPU years during this research. This
work was supported in part by the Natural Sciences and Engineering Research Council of Canada, and the
Information Technology Research Centre of Ontario.

References

Anosov, D. V. (1967). Geodesic Flows and Closed Riemannian Manifolds with Negative Curvature. Proc.
Steklov Inst. Math 90, 1.

Beyn, W.-J. (1987). On Invariant Closed Curves for One-Step Methods. Numer. Math. 51, 103–122.

Bowen, R. (1975). ω-Limit Sets for Axiom A Diffeomorphisms. Journal of Differential Equations 18, 333.

Chow, S.-N. and K. J. Palmer (1991). On the numerical computation of orbits of dynamical systems: the
one-dimensional case. Dynamics and Differential Equations 3, 361–380.

Chow, S.-N. and K. J. Palmer (1992). On the numerical computation of orbits of dynamical systems: the
higher dimensional case. Journal of Complexity 8, 398–423.

Chow, S. N. and E. S. Van Vleck (1993). Shadowing of Lattice Maps. In P. E. Kloeden and K. J. Palmer
(Eds.), Chaotic Numerics, pp. 97–113. American Mathematical Society.

Chow, S. N. and E. S. Van Vleck (1994). Shadowing of lattice maps. Contemporary Mathematics 172,
97–113.

Coomes, B. A., H. Koçak, and K. J. Palmer (1994). Shadowing orbits of ordinary differential equations.
Journal of Computational and Applied Mathematics 52, 35–43.

Corless, R. M. (1994). Error Backward. Contemporary Mathematics 172, 31–62.

Dawson, S., C. Grebogi, T. Sauer, and J. A. Yorke (3 Oct 1994). Obstructions to Shadowing When a
Lyapunov Exponent Fluctuates about Zero. Physical Review Letters 73 (14), 1927–1930.

Grebogi, C., S. M. Hammel, J. A. Yorke, and T. Sauer (1990). Shadowing of Physical Trajectories in
Chaotic Dynamics: Containment and Refinement. Physical Review Letters 65 (13), 1527–1530.

Hairer, E., S. P. Nørsett, and G. Wanner (1993). Solving Ordinary Differential Equations (2nd ed.).
Springer-Verlag. Two volumes.

Hammel, S. M., J. A. Yorke, and C. Grebogi (1987). Do Numerical Orbits of Chaotic Dynamical Processes
Represent True Orbits? Journal of Complexity 3, 136–145.

Hayes, W. (1995). Efficient shadowing of high dimensional chaotic systems with the large astrophysical
n-body problem as an example. Master’s thesis, Dept. of Computer Science, University of Toronto.

17

Hayes, W. (2003a). Shadowing-based reliability decay in softened n-body simulations. Astrophical Journal
Letters 587, L59–L62.

Hayes, W. (2003b, 7 February). Shadowing high-dimensional Hamiltonian systems: the gravitational n-
body problem. Physical Review Letters 90 (5).

Hayes, W. and K. Jackson (2004). A survey of shadowing methods for numerical solutions of ordinary
differential equations. Applied Numerical Mathematics . Accepted for publication.

Hayes, W. B. (2001). Rigorous shadowing of numerical solutions of ordinary differential equations by
containment. Ph. D. thesis, Department of Computer Science, University of Toronto. Available on the
web as http://www.cs.toronto.edu/NA/reports.html#hayes-01-phd.

Hayes, W. B. and K. R. Jackson (2003). Rigorous shadowing of numerical solutions of ordinary differential
equations by containment. SIAM J. Numer. Anal. 41:5, 1948–1973.

Heggie, D. C. and R. D. Mathieu (1986). Standardized Units and Time Scales. pp. 233–235. Springer-
Verlag.

Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differential equation solvers.
ACM-SIGNUM Newsletter 15 (4), 10–11.

Quinlan, G. D. and S. Tremaine (1992). On the reliability of gravitational N -body integrations. Monthly
Notices of the Royal Astronomical Society 259, 505–518.

Sanz-Serna, J. M. and S. Larsson (1993). Shadows, Chaos, and Saddles. Appld. Numer. Math. 13, 181–190.

Sauer, T. and J. A. Yorke (1991). Rigorous Verification of Trajectories for the Computer Simulation of
Dynamical Systems. Nonlinearity 4, 961–979.

Van Vleck, E. S. (1995). Numerical Shadowing Near Hyperbolic Trajectories. SIAM Journal on Scientific
Computing 16 (5), 1172–1189.

18

