In this paper, we describe an algorithm for fitting an analytic and bandlimited closed or
open curve to interpolate an arbitrary collection of points in R?. The main idea is to smooth
the parametrization of the curve by iteratively filtering the Fourier or Chebyshev coefficients
of both the derivative of the arc length function and the tangential angle of the curve, and
applying smooth perturbations, after each filtering step, until the curve is represented by a
reasonably small number of coefficients. The algorithm produces a curve passing through
the set of points to an accuracy of machine precision, after a limited number of iterations.
It costs O(N log V) operations at each iteration, provided that the number of discretization
nodes is N. The resulting curves are smooth and visually appealing, and do not exhibit any
ringing artifacts. The bandwidths of the constructed curves are much smaller than those of
curves constructed by previous methods. We demonstrate the performance of our algorithm
with several numerical experiments.

A Continuation Method for Fitting a Bandlimited Curve
to Points in the Plane

Mohan Zhao!® and Kirill Serkh?®
University of Toronto NA Technical Report
v2, May 23, 2023

¢ This author’s work was supported in part by the NSERC Discovery Grants RGPIN-
2020-06022 and DGECR-2020-00356.

T Dept. of Computer Science, University of Toronto, Toronto, ON M5S 2E4
Corresponding author. Email: mohan.zhao@mail.utoronto.ca

! Dept. of Math. and Computer Science, University of Toronto, Toronto, ON M5S 2E4
Email: kserkh@math.toronto.edu

Keywords: parametrization, bandlimited functions, C°° functions, approrimation theory,
filtering, Bézier splines, smooth interpolation

Contents

1__Introduction| 2
2__Preliminaries| 4
2.1 Geometric propertiesof acurvel 4
2.2 Cubic Bézier Interpolation|. 5
[2.2.1 Solving for control points for an open curve| 6

[2.2.2 Solving for control points for a closed curvel 7

[2.3 Chebyshev Polynomial Interpolation| 7
[2.3.1 Spectral Differentiation and Integration| 8

[2.4 The Discrete Fourier Transform (DFT)[. 9
[2.4.1 Spectral Differentiation and Integration| 10

2.5 Gaussian filter] 11

[3 The Algorithm| 12
[3.1 Inmitial Approximation| 12
13.2 Representations of the Curve] L. 13
[3.2.1 Representation of an Open Curve|. 13

13.2.2 Representation of a Closed Curve|. 13

3.3 Filtering the Curve| 14
[3.3.1 Filtering the Open Curve] 14

13.3.2 Filtering the Closed Curve]. 15

3.4 Closing the Curve] 15
13.5 Repositioning the Curve| 16
3.6 Adding Perturbations to the Curve|, 17
[3.7 'The Termination Criterion of the Algorithm|. 18
[3.8 Summary and Cost of the Algorithm| 19
4__Numerical Results| 20
4.1 Open Curve Examples| o 21
4.2 Closed Curve Examples| 23
b__Conclusion| 30

1 Introduction

The construction of smooth curves passing through data points has uses in many areas
of applied science, including boundary integral equation methods, computer graphics
and geometric modeling. While much of the time, C* continuity is sufficient, there are
certain applications for which C'°° continuity is essential. One such example is the high
accuracy solution of partial differential equations on general geometries. In CAD/CAM
systems, C'°° smooth curves can be used as primitives to construct arbitrary smooth
objects. Solving partial differential equations on these smooth objects prevents the loss
of accuracy due to imperfect smoothness of C*¥ shapes.

Countless methods have been proposed for fitting a spline or a C* curve to a given
set of data points. Most interpolation techniques use piecewise polynomials and impose
constraints to ensure global C* smoothness of the curve (see, for example, [1], [2], [3], [4]).
In CAD/CAM systems, non-uniform rational B-splines (NURBS) are commonly used to
construct a curve which approximates a set of control points, by defining the curve as
a linear combination of the control points multiplied by C* and compactly supported
B-spline basis functions. The contribution of each control point to the overall curve is
determined by the corresponding weight, and the B-spline basis functions are normalized
to ensure that the approximating curve remains affine invariant [6]. A generalization of
NURBS, called partition of unity parametrics (PUPs) was first introduced by Runions
and Samavati ([5]). The PUP curves are constructed by replacing the weighted B-spline
basis functions with arbitrary normalized weight functions (WFs), so that the resulting
curves still exhibit the desired properties, including compact support and C* smoothness.
In [5], the authors specifically discuss uniform B-spline WFs, to illustrate that each
WF can be adjusted independently to fine-tune various shape parameters of the curve.
Additionally, they observe that it is possible to choose the WFs to generate a PUP curve
that interpolates the control points without solving a system of equations.

Another method proposed by Zhang and Ma ([7]) employs products of the sinc
function and Gaussian functions as basis functions for constructing C'**° interpolating
curves that pass through all the given data points exactly. The resulting curves are almost
affine invariant and almost compactly supported, and their shapes can be adjusted locally
by directly adding or moving control points. Subsequently, Runions and Samavati ([8])
designed CINPACT-splines, by employing C'*° and compactly supported bump functions
as the WF's in a PUP curve, optionally multiplied by the normalized sinc function. When
the WF's are chosen to be products of bump functions and the normalized sinc function,
the resulting C'*° curve interpolates the control points exactly, and when the WF's are
bump functions, the resulting C°° curve approximates a uniform B-spline with the given
control points. In addition to the properties inherited from PUP curves, CINPACT-splines
possess C'*° smoothness and the ability to specify tangents at control points. To increase
the accuracy of the approximation to uniform B-splines, Akram, Alim and Samavati ([9])
further proposed CINAPACT-splines, by successively convolving a CINPACT-spline with
B-splines of order one, ensuring any finite order of approximation to uniform B-splines,
as well as to other compactly supported kernels with maximal order and minimal support
([10]), while preserving C*° smoothness and compact support. Zhu ([I1]) proposed curves
that share similarities with CINPACT-splines in terms of affine invariance, compact
support, and C* smoothness. In [I1], a class of non-negative blending functions is
constructed by designing basis functions which combine bump functions with the sinc
function. The resulting interpolating curves are defined by three local shape parameters,
with one of the parameters determining whether the curve approximates or interpolates
the given control points.

One notable distinction of the approach of Zhang and Ma ([7]) from the other methods
we have discussed is that, since Gaussian functions are utilized in the basis functions,
the interpolating curves produced by [7] are not only C'*° smooth, but also are analytic.
This paper mainly compares our method with [7], as the interpolating curves in [7] have
a smaller bandwidth, compared to methods based on C'* compactly supported bump
functions. The approach in [7] (as well as [5], [8], [9], [I1]) necessitates a more specially

chosen distribution of data points to achieve a visually smooth curve, as it only guarantees
smoothness in the curve parameter, which does not necessarily correspond to smoothness
of the curve in R%2. However, our method directly smooths the tangential angle of the
curve and the first derivative of the arc length function, yielding a significantly smoother
curve which is also more visually appealing.

Among all the methods for constructing a C°° interpolating curve, the algorithm
described by Beylkin and Rokhlin ([I2]) bears the closest resemblance to our method,
generating a bandlimited closed curve through a set of data points. The bandlimited
curve is constructed by filtering the Fourier coefficients of the tangential angle of the curve,
parametrized by arc length. However, the number of coefficients required to represent the
curve can be large, which appears to be a major drawback of the algorithm in practical
applications.

In this paper, we describe an algorithm for fitting a bandlimited closed or open curve
to pass through a collection of points. The main idea is to iteratively filter the tangential
angle and the first derivative of the arc length function of the curve, and apply small
corrections after each filtering step, until the desired bandwidth of the curve is reached,
to the required precision. Our algorithm produces an analytic and affine invariant curve
with far fewer coefficients, and the curve is visually appealing and free of ringing artifacts.

The structure of this paper is as follows. Section [2| describes the mathematical pre-
liminaries. Section [3| describes the algorithm to construct the bandlimited approximation
to a closed curve, and to an open curve. Finally, Section [4] presents several numerical
examples to show the performance of our algorithm, as well as some comparisons between
our algorithm and the methods proposed in [7] and [12].

2 Preliminaries
In this section, we describe the mathematical and numerical preliminaries.

2.1 Geometric properties of a curve

Let 7v: [a,b] — R? be a smooth curve parametrized by the curve parameter ¢, such that

V() = (z(t),y(t), t€la,b], (1)

where z(t) and y(t) are the x and y coordinates.
Assuming v € C1([a, b]), we define the tangent vector T'(t),

T(t) = ('(t),9y'(1), telab], (2)

and the arc length s(t), which is the length of the curve from the point (z(a), y(a)) to
the point (2(t), y(t)),

t
s(t) = / IT(E)ldr, t € [a,b). 3)
It is obvious that

SO =ITMl, te€lad] (4)

Thus, we have

S(b) = ¢(a) (5)

when the curve is closed. The tangential angle 6(t) of the curve at the point (z(t), y(t))
measures the angle between the tangent vector T'(¢) at that point and the x-axis, defined
by the formula

0(t) = atan2(y'(t),2'(t)), t € [a,], (6)
where atan2: R? — (—m,7] is the arctangent at the point (z(t),y(t)). As a result,
0(t) € (—m,w]. Since the function atan2 has a branch cut at § = —, it is possible for

0(t) to have w jump discontinuities of size 27, where w € Z is the winding number.
The curve (z(t), y(t)) can be constructed from 6(t) and s'(t) by the formulas

x(t) = / §'(1) cos O(7) dr + x(a), t € la,b], (7)

y(t) = / s' (1) sinO(7) dr + y(a), t € [a,b], (8)

and (z(a),y(a)) = y(a). If the curve is closed, we require x(a) = z(b) and y(a) = y(b),
which means that

b
/ s'(t)cosO(T)dr =0 9)

and
b
/ s'(7)sinf(r)dr = 0. (10)

2.2 Cubic Bézier Interpolation

A Bézier curve is a function B: [0,1] — R? defined by a set of control points Py, ...,
P,, € R2. The Bézier curve is designed to go through the first and and the last control
point Py and P,,, and the shape of the curve is determined by the intermediate control

points P1, ..., P,,_1. A mth order Bézier curve is a polynomial of degree m, defined by
™ Im .
— m—iip.
B(t)_izg<i>(1 O THPy,
= (1—t)"Py + <T> (1—t)""Py +--- + (m B 1) (1=t Py + P,

where t € [0, 1].
A continuous Bézier spline connecting all the given points Cq, ..., C, can be
constructed by combining n cubic Bézier curves

Bl(t) = (1 - t)?’Pio + 3(1 — t)QtPil + 3(1 — t)t2Pi2 + t3Pi3, 1=1,...,n,

where t € [0, 1] and B;(¢) is the ith Bézier curve, with controls points

Pip = Ci-1, (11)
Pi3s =G, (12)
for i = 1, ..., n. We define the spline S: [0,n] — R? from the cubic Bézier curves B;
by letting S(t) = B;(t —i+ 1) for t € [i — 1,i], for i =1, ..., n. It is easy to see that

S € C°(]0,n]), however, in general, S ¢ C*(]0,n]). It is possible to ensure S € C2([0,n])
by imposing additional conditions on the intermediate control points, which we derive as
follows. Note that the following derivation is similar to the one presented in [16]. First,
we observe that the first and second derivatives of a cubic Bézier curve are

B.(t) = —3(1 — t)*Py + 3(3t> — 4t + 1)Py; + 3t(2 — 3t)Pyo + 3t>P;3,
B/ (t) = 6(1 —)Py + 6(3t — 2)P;; + 6(1 — 3t)Pyo + 6tP;3,
for i =1, ..., n. In order for S € C%([0,n]), we require that
L1 (1) = B(0), i=1,...,n, (13)
’ (1) =B(0), i=1,...,n. (14)

Then, implies that
P(i*l)Z = 201‘_1 — Pil; 1= 1, ceeyn. (15)

Likewise, it is possible to show that implies that

P(ifl)l + 2P21 = PZ'Q + 2P(i71)27 1= 1, ey (16)
Substituting into ,We get
P(i—l)l + 4P7,1 + P(i+1)1 - 201 —|— 401‘71, Z - 1, e ,n. (]_7)

2.2.1 Solving for control points for an open curve

When the curve is open, we have must hold for i =2, ..., n — 1, and we need two
boundary conditions in order to solve a linear system of n equations for the values of
P11, ..., Py1. Assume that users specify the slope at two end points of the curve, cef
and cright, we have

B/ (0) = Cets, (18)
and

Biz(l) = Cright- (19)
It is possible to show that implies that

3C
P = %&-Ffo (20)

and implies that

3C, — Ti
P, — o Cright (21)
3
Substituting (15 and (21)) into (L6]),we get
Cos
P(n—l)l +4P,; =4C,,_1 + C,, — r1§ht. (22)

With , and , we build a system of n equations to calculate Pqq, ..., Py
and use , and the values of Py, ..., Py to calculate Pyo, ..., Ppo. This system
of equations is tridiagonal, and so can be solved in O(n) operations.

2.2.2 Solving for control points for a closed curve

When the curve is closed, we require n + 1 cubic Bézier curves instead of n cubic Bézier
curves to connect the points Cy, ..., C,, where the (n 4+ 1)th curve connects the points
C,, and Cy. We have that the conditions must hold for ¢ = 2, ..., n, and we need
the following two boundary conditions,

B1(0) =B, (1), (23)
B1(0) = By, (1), (24)
to solve a linear system of (n + 1) equations for the values of P11, ..., P y1)1-

It is possible to show that implies that
P+ P(n+1)2 =2Cy (25)

and implies that

—2P11 + P12 = P11 — 2P0 (26)
Substituting and into , we get

P11 +Pp1 + 4P (1) = 2Co + 4C,,. (27)
Substituting and into , we get

—2P11 — P21 + 2Py + TP 1)1 = —2C; +8C,,. (28)

Similarly, with , and , we build a system of (n+ 1) equations to calculate

P11, ..., P(ry1)1 and use , and the values of P11, ..., P(,;1); to calculate P2,

-y P(ny1)2- This system of equations is cyclic tridiagonal, and thus we can solve it in
O(n) operations.

2.3 Chebyshev Polynomial Interpolation

A smooth function f(x) on the interval [—1, 1] can be approximated by a (n — 1)th order
Chebyshev expansion with the formula

i
L

F@) = fiTu(@), (29)
0

i

where Ty (z) is the Chebyshev polynomial of the first kind of degree k, defined by
Tk (x) = cos(k arccos x), x € [-1,1]. (30)

It is known that the Chebyshev coefficients {ﬁc} decay like O(nikJr%) when f €
C*([~1,1]), when the coefficients f;, are chosen to satisfy the n collocation equations

f(:(}z) = ka(xi), 1= 0, ey — 1, (31)

for the practical Chebyshev nodes {z;},

:L“i:—cos(nzjl), i=0,...,n—1. (32)
Alternatively, one can compute fk for k =0,...,n — 1 using the Discrete Chebyshev
Transform,
N 1 1 n—2
fo=——= (G (o) + flan-)) + D _ (i) To(ws), (33)
i=1
and
N 9 1 n—2
fe=—— (g(f(m’o)(—l)k + flan1)) +) f@i)Tk(:), (34)
i=1
for k=1, ..., n—1. Once the coefficients {ﬁ} are computed, we can use the expansion

ZZ;(I) fka(x) to evaluate f(x) everywhere on the interval [—1,1].

2.3.1 Spectral Differentiation and Integration

Assuming that k > 1 is an integer, the formula

o1 = -)

can be used to spectrally differentiate the Chebyshev expansion of f(x), as follows.
Suppose that

n—1
flx)~ > fiTk(z) (36)
k=0
and that
n—1
f(z) ~ ﬁka(a:) (37)
k=0

The coefficients J/‘Z can be computed from ﬁg by iterating from £k =n —1,n — 2, ..

M

2 and, at each iteration, assigning]?,;_1 the value Qkﬁ, and assigning fk_Q the value

~

s fi o+ fre2

Similarly, the formula

2/t Tk(ﬂf) de — Tk+1(t) o Tk—l(t) (_1)k+1 (_1)k_1 (38)

1 k41 k—1 1 k-1

can be used to spectrally integrate the Chebyshev expansion of f(x). Suppose that

-1 k=0
Since
t n-l
/ F(2)dz ~ k/ Ty (z) da
-1 k=0 71
S AL a0 D@ 0y
- Folk+1 E—1 k+1 k—1
+ folt +1), (40)

one can compute the coefficients fk from fk by firstly assigning fl the value fl + fo, then

iterating from k = n—1, ..., 1, and at each iteration, assigning ﬁ+1 the value j/”;cﬂ—l—%,
ﬂ 1 k+1 (71)]@—1

assigning fy_1 the value f_1— 30.—7y» and assigning Jo the value fo— fi((2(k+1) — 5T).

Finally, fk takes the value ﬁg, fork=mn,...,0.

2.4 The Discrete Fourier Transform (DFT)

A periodic and smooth function f(x) on the interval [0,1] can be approximated by
a n-term Fourier series using the Discrete Fourier Transform. The Discrete Fourier

Transform defines a transform from a sequence of n complex numbers fo, ..., fn—1 to
another sequence of n complex numbers fy, ..., fn_1, by
n—1 .
fe=>_fiew M, k=0,...n-1, (41)
§=0

The sequence {fi} consists of the Fourier coefficients of {f}.
The Inverse Discrete Fourier Transform (IDFT) is given by

1t 2mip ; .
S <42>
k=0

Another representation of the DFT which is usually used in applications is given by a
shift in the index k, and a change in the placement of the scaling by %,

Y (43)

1 2mi n n
£ = — e ;‘:’ij k:—— e —
fk njE_Of]e) 27 72

Thus, the corresponding IDFT is

21
Z Frenki =0, ,n—1 (44)
k_,,

Suppose that f: [0,1] — C is a smooth and periodic function, and that f; = f(t;) for
j=0,...,n—1, where {t;} are the equispaced points on [0, 1]. Observing that

Zf e 27”]6‘_]

/ f —27rzkr dIE (45)

for k = —%, ..., § — 1, we obtain the approximation to f(z) by a truncated Fourier
series
21
fla)ym= Y ™, weo,1]. (46)
k=—1n

2

It is known that the Fourier coefficients {f;,} decay like O(nikJr%) when f € C*(S1),
where S! = [0, 1] is the circle.
2.4.1 Spectral Differentiation and Integration

The spectral differentiation of the truncated Fourier series approximation to f(z) on [0, 1]
is as follows. Suppose that f(x) is given by and that

nq

/ ~ 1 71 _2mikx
flaym— 37 fre?™. (47)
=3
Since
L
f(x Z Fre2mike omik, (48)
k_,,

n

the coefficients fé can be computed from fk by assigning f,’g the value ﬁ 2mik for k = —3,

n

o, 21

2
Similarly, the spectral integration of the truncated Fourier series approximation to

f(z) is as follows. Suppose that

n__
2 ~

/f % Z f 27rzkt (49)

2

10

Since

: 1
- 27mkt
/ fla)de ~ Z ik Z 271'21{: b, (50)

Ly

it is easy to see that, for fo x)dzx to be periodic, it must be the case that f() = 0. Then,
we have

d ~ 27rikt 1
/ fla)de ~ Z 27m/~c Z 2mik’ (51)

We can compute the Fourier coefficients f i from fk by a581gn1ng f . the value 2 5 for

k=-%,..., 5 —1,k#0 and assigning fo the value — Ekﬂ) ek

2.5 Gaussian filter

A low-pass filter is commonly used in signal processing to construct a bandlimited function.
In this paper, we use the Gaussian filter, which is a popular low-pass filter whose impulse
response is a Gaussian function,

2,2

g(x) = ae ™, (52)
where a determines the bandwidth of g(x).
The Gaussian filter gg, ..., gn—1 is defined to be the IDFT of the sequence
K2 n n
G =e TaZ k=—,...,=—1 53
gk € ’ 9’ D)) ()

and coincides with the discrete values of g(x) at the equispaced nodes z; = %, ji=0,...,
n — 1.
To filter the Fourier coefficients fg, ..., fr—1 in , we take the product

~ ~ n n
hi = g k=——,..., = —1. 54
k gkfka 27) 2 ()
It is easily to obtain hg, ..., hy—1 by the IDFT,
1 J
k=0

This can be considered to be a smoothing of f(x) by a convolution of f(x) with the
Gaussian function g(x).

Filtering the Chebyshev coeflicients fo, ceey J?n71 defined in is very similar to
filtering the Fourier coefficients, which we describe as follows. Substituting z = cos(f),
where x € [—1, 1], into , we have

= i cos(kO), (56)

11

where 0 € [—m,7]. Letting f_k = fA‘k, k=1,...,n—1, we have

n—1
f(cos(0)) ~ % Z Fre® + %ﬁ), 0 € [—m, 7). (57)

k=—n+1

Hence, by defining ¢ by the formula 8 = 27¢,

f(cos(2me)) Z Fre?mike 4 f07 ¢ €[-

k—fn+1

3] (58)

D=

Since (58)) can be viewed as a Fourier Transform in ¢ with the Fourier coefficients { fk}
we follow the equation (54 . to filter { fk} and apply the IDFT to obtain the filtered
values of {f;}. Therefore, f(z) is smoothed by a convolution with the Gaussian function
g(¢) in the ¢-domain, where x = cos(27¢).

Alternatively, there are other low-pass filters that can be used, such as the Butterworth
filter (see, for example, Chapter 14 of [I3]) which resembles the Gaussian filter but is
flatter in the passband. The brick-wall filter also preserves signals with lower frequencies
and excludes signals with higher frequencies. However, after applying the brick-wall
filter, the resulting functions tend to oscillate at the cutoff frequency (this phenomenon
is known as ringing).

3 The Algorithm

In this section, we give an overview of our algorithm for fitting a C'* curve to pass
through a collection of points Cp, ..., C,. We begin with a C? cubic Bézier spline
connecting the points Cy, ..., C,. Given that the curve is at least C2, we interpolate
the tangential angle 6(¢) and the first derivative of the arc length vector §'(t), which are
both C!, using Chebyshev expansions when the curve is open, or using truncated Fourier
series when the curve is closed. We then iteratively filter the coefficients of 6(¢t) and s'(t)
by applying a Gaussian filter, whose bandwidth decreases with each iteration. If the
curve is closed before filtering, we impose constraints on 6(¢) and s'(¢) to ensure that the
curve remains closed. We then reconstruct the curve with the filtered values of 6(¢) and
§'(t) at discretization nodes.

While filtering leads to small discrepancies between the reconstructed curve and the
points Cy, ..., C,, it also improves the bandwidth of the curve. To fix the discrepancies
after each filtering step, we rotate and rescale the curve to minimize the total distance
between the curve and the points, and add small, smooth perturbations, which do
not negatively affect the smoothness of the curve. We stop filtering when the desired
bandwidths of the Chebyshev or Fourier approximations to 6(t) and s'(¢) are achieved.
This algorithm gives us a C'™ smooth curve that can be represented by a reasonably
small number of coefficients.

3.1 Initial Approximation

To initialize our algorithm, we require a C? curve, the reasons for which are described in

Section 3.3

12

Given a set of data points C, ..., C, € R?, we fit a cubic Bézier spline by solving for
the intermediate control points {P;1} and {P;2} described in Section for an open
curve, or in Section for a closed curve. We define the Bézier spline S: [0, L] — R?
connecting all the points Cy, ..., C, by

S(t)=B;(t—i+1), te0,n] and i=1,...,n, (59)
if the curve is open, or
S(t)=B(t—i+1), tel0,n+1] and i=1,...,n+1, (60)

if the curve is closed.

3.2 Representations of the Curve

In this section, we denote the curve by

V(1) = (x(1),y(1)), (61)

where ~: [0, L] — R? is at least C2.

3.2.1 Representation of an Open Curve

When the curve is open, we discretize z(t) and y(t) at N > n practical Chebyshev nodes
{t;} on the interval [0, L] (see formula (32))) to obtain {z;} and {y;}, where x; = z(¢;)
and y; = y(t;). We use (N — 1)th order Chebyshev expansions to approximate x(t)
and y(t), constructing the coefficients from {x;} and {y;} using the Discrete Chebyshev
Transform, and then spectrally differentiate x(¢) and y(¢) to derive the Chebyshev
expansions approximating z’(t) and y/(¢). By and @, we can compute the values of
s'(t) and 6(t) sampled at nodes {t;}, and then construct the corresponding Chebyshev
expansions, again using the Discrete Chebyshev Transform. However, performing the
Chebyshev Transform on 0(t) requires 6(t) to be continuous, and as discussed in Section
0(t) can have jump discontinuities of size 2. These can be fixed by adding or
subtracting multiples of 27 to 6(t) wherever a discontinuity is detected.

3.2.2 Representation of a Closed Curve

When the curve is closed, we discretize (t) and y(t) at N > n equispaced nodes {t;} on
the interval [0, L], where

tj:%L, j=0,...,N—1, (62)
to obtain {z;} and {y;} by z; = z(t;) and y; = y(¢;). We then approximate z(t) and
y(t) by an N-term Fourier series, separately, and spectrally differentiate x(t) and y(t) to
approximate z'(t) and y/(t). Following the same procedures in Section we ensure
that 6(¢) is continuous, and approximate s'(t) by a truncated Fourier series. Recall that,
in order to approximate functions by their Fourier series, the functions must be both
smooth and periodic. The sequence {6;}, which are the discrete values of 6(t) at {¢;}, is
not periodic after shifting by multiples of 27 to remove the discontinuities. Defining ¢ by

c=0(n+1)—0(0), (63)

13

we have that
~ c
Hj = ej - th? tj € [O7L]7 (64)
transforms {6} into a periodic sequence {gj} on the interval [0, L], which can be approx-
imated by a truncated Fourier series. To recover the true values of {;} after filtering,
we can add ft; to 6;. In an abuse of notation, we denote {6;} by {6;} wherever the

meaning is clear.

3.3 Filtering the Curve

In this section, we describe the process of iteratively filtering 0(¢t) and s'(¢) using a
Gaussian filter. Given «(t) € C%, we have 0(t) € C! and s'(t) € C!. It is known that the
decay rate of the Chebyshev coefficients or the Fourier coefficients of a C! function is
O(N _%), where N is the order of the expansion. By iteratively decreasing the bandwidth
of the Gaussian filter, we construct a sequence of bandlimited representations of 6(t)
and s'(t). The decay rate of the Fourier coefficients or the Chebyshev coefficients in the
expansions of §(t) and s'(t) increases with each iteration. This filtering process smooths
both the curve itself and the parameterization of the curve.

3.3.1 Filtering the Open Curve

Let {t;} denote the practical Chebyshev nodes translated to the interval [0, L] (see formula
(32)). Using the Chebyshev expansions of 6(t) and s'(¢) computed in Section we
discretize 6(t) and s'(t) at the points {t;} to obtain the sequences {¢;} and {s}}, where

0; = 0(t;) and s’ = s'(t;). We filter the Chebyshev coefficients {0} of 6(t), and {5/}

of §'(t) using the Gaussian filter in (53)), and obtain the filtered coefficients {gl(gf)} and
=)

{S/k }7

N
o) — e, k=0, N-1, (65)
and
—~ 2/'\
s’éf) :e_ﬁ%:;’k, k=0,...,N—1. (66)

Applying the IDFT to {8} and {1, we obtain

o0 =3 00 m), el (67)
where ¢; = 2¢; — 1, t; € [0, L], and
49 =3 30n,) (63)

We can then use the values of {Qj(f)} and {s;(f)} to recover {ng)} and {yj(.f)} using
and ().

14

3.3.2 Filtering the Closed Curve

Assume that {0;} and {s}} are the values of 0(t) and s'(t) discretized at the equispaced
nodes {t;} in (62)), where 6; = 6(t;) and s = s'(t;). We apply the DFT to derive the
Fourier coefficients {6} of 6(t) and {;’ i} of §'(t). Using the Gaussian filter, we filter the
Fourier coefficients {6} and {s';} to obtain the filtered Fourier coeffcients {é\l(cf)} and

~(f)
{S/k }7

IIVEIN N N
é\l(cf)ze 71—220]{”]{:—i,...7i_1, (69)
2 2
and
~ 2 N N
oD _ g po R (70)

We recover the filtered sequences {G(f)} and {s;-(f)} by applying the IDFT to the filtered

Fourier coefficients {/Kf } and {s}, (f) ,

N_1
o) i:@ﬂ&WW+L% j=0,...,N—-1, (71)
h=—%
and
81
S0 = X:ng%%q j=0,...,N—1. (72)
k=—%

Similarly, the curve can be reconstructed from {9 s)} and {s; ")} using equations (7]

and .

3.4 Closing the Curve

Applying a filter to 6(t) and §'(¢) for a closed curve, in general, makes the curve become
open. To close the curve, we require that

/OL s'(t) cosO(t) dt = 0, (73)

and

ALymgnmnﬁzo. (74)

The process of orthogonalizing s'(t) to cos#(t) and sin f(¢) using the trapezoidal rule is
as follows. Supposing that we have the values {s’}, {cos0;} and {sin@;} of s'(t), cos 6(t)
and sin 6(t) sampled at the points {t;} defined in (62)). We ensure that {5} is orthogonal
to cos0; by setting {s}} to the values

QNZ scos@

j=0,... N—1. 75
]{,Z] 0 COSQOj (75)

— COS

15

We let {\;} be the vector defined by the formula
+ Z;V:_Ol sin 6 cos 6
% ij;Ol cos?0;

Finally, we orthogonalize {s}} to {);} by setting {s’} to the values

Aj =sinf; — cosb; j=0,....,N—1. (76)

ZNI/
N
)\—NZN T2

The sequence {s}} is now orthogonal to both {cosf;} and {sin®;}. Thus, the conditions
and are satisfied to within the accuracy of the trapezoidal rule.

j=0,....,N -1 (77)

3.5 Repositioning the Curve

In general, the curve will not pass through the original data points after filtering. Moreover,
filtering 6(t) and s'(t) changes the tangential vector T'(t), which results in changes in
the orientation and position of the curve. In this section, we describe how to rotate the
reconstructed curve so that the sum of squares of the distances between the curve and
the original data points is minimized.

Given the original data points {C;}, where C; = (Cy;, Cyy),7 =0,...,n, we find to,

, tn € [0, L] such that, if (Z;, 7;) = (z(t;), y(t;)), then (Z;,7;) is the closest point on
the curve to (Cyy, Cyy) for i =0, ..., n. We determine to, ..., 1, only once, described in
Remark Suppose that {¢;} are the values of the angle between {(z;, ¥;)} and (Z,),
and that {r;} are the distances between {(Z;,¥;)} and (&, %), where (Z, %) is the center of
all the closest points {(Z;,y;)}. We shift the center of all the closest points {(Z;,¥;)} by
(Az, Ay), and rotate the curve by an angle of 1 around the center. Observed that the
sum of squares of the distances between the closest points and the original data points is
given by

F, Ax, Ay) = > (& + Az + r;cos (¢ +) — Cia) >+
=0
(7 + Ay + risin (¢ +) — Cyy)?, (78)

where (z,y) is the average of {(Z;,y;)}. We use Newton’s method to obtain the values of
¥, Az and Ay which minimize f(v, Az, Ay).

Remark 3.1. One might also think to rescale the curve by multiplying {r;} by a constant
¢, since filtering s'(t) changes the length of the curve. However, rescaling the curve distorts
the structure of the closest points (Z;,y;) on the curve. Large perturbations, as described
in Section [3.6] are sometimes needed as a result, and therefore the smoothness of the
curve after adding perturbations can be reduced.

Notice that each point on the curve is, in some sense, equivalent. The procedure of
repositioning ensures that the resulting curve is affine invariant.

16

3.6 Adding Perturbations to the Curve

Since the curve does not pass through the original data points {C;} after filtering 6(t)
and s'(t), we introduce a set of Gaussian functions, {g;(¢)}, which we use as smooth
perturbations that can be added to the curve to ensure that the curve passes through
the points {C;}. We define g¢;(¢) by

_7\2
gty =) iz, n, (79)

for t € [0, L], where t; is the curve parameter of the closest point (Z;, 7;) = (z(t;), y(t;))
to C;, and o; determines the bandwidth of the perturbation. When the curve is closed,
gi(t) is modified to be a periodic function with period L, given by the formula

> t—1; 2
gilt)= > i () ., i=0,...,n. (80)

k=—00

It is obvious that g;(t) = gi(t + L). We construct {(z;,y;)} from {(z;,y;)} by adding
gi(t) at the discretized points {¢;},

n
Zj=aj+) cuwgilty), j=0,...,N—1, (81)
=0
and
n
gi=yi+ Y cygilty), j=0,...,N-1, (82)
=0

where {c;;} and {c;,} are the coefficients of perturbations in = and y, separately, which
are reasonably small since the curve is filtered slightly at each iteration. Let {@j,ﬁj)}

denote the points on the perturbed curve corresponding to to, ..., t,. We require

z; = Cyz, 1=0,...,n, (83)
and

;i=Cy, i=0,...,n, (84)

and solve two linear systems of n + 1 equations to compute the values of {¢;;} and
{ciy}. We observe that, since the perturbations g;(t) are Gaussians, they are each, to
finite precision, compactly supported. Thus, the linear system that we solve is effectively
banded, and the number of bands is determined by min; ;. An O(n + 1) solver can be
used to speed up the computations.

Remark 3.2. We only calculate {t;} once, at the first iteration before filtering, and use
the same set of {f;} at each iteration. Although it seems more natural to recalculate
{E} at each iteration, so that the discrepancies are fixed by smaller perturbations, the
resulting perturbations are always orthogonal to the curve. The effect of the changes in
the length of the curve due to filtering can not be eliminated by adding such perturbations,
with the effect that the length of the curve grows if the points {¢;} are calculated at each
iteration. By using the same set of closest points for all iterations, the perturbations can
be oblique, which results in nice control over the total length of the curve during the
filtering process.

17

3.7 The Termination Criterion of the Algorithm

Since the bandwidths of the coefficients of 6(t) and s'(¢) are reduced at each iteration, and
adding small, smooth perturbations has a negligible effect on the bandwidth of the curve,
one can expect to achieve the desired bandwidth of the representations of 6(t) and s'(t)
by iteratively filtering the coefficients. However, we note that there is a minimum number
of coefficients that are necessary to represent a curve, as determined by the sample data
points. When fewer than this number of coefficients are used, the curve reconstructed by
these overfiltered coefficients may deviate drastically from the sample data points. The
resulting large perturbations required to fix the discrepancies can harm the smoothness
of the curve. The purpose of this section is to set up a termination criterion, so that
the algorithm will terminate if the coefficients of 6(¢) and s'(t), beyond a user-specified
number of terms, are filtered to zero, to the requested accuracy.

We denote the desired accuracy of the approximation by €, which is often set to be
machine precision, and the number of coefficients representing the curve that are larger
than € by neoefs- Due to the potentially large condition number of spectral differentiation,
some accuracy is lost when computing the coefficients of 2/(t) and y/(t), and thus 6(¢) and
§'(t), at each iteration. Thus, we measure thresholds for the coefficients of 0(t) and s'(¢),
below which they are considered to be zero, and denote them by Jg and dy. We consider
first the open curve case. Since the co?dition number of the Chebyshev differentiation
matrix is bounded by approximately N2, where IV is the number of coefficients, the error
induced by differentiating x(¢) and y(t) is approximately

3
N 1202201y + 190 2200, (85)

~ N \/Z 2wy + 3y, (86)
J J

where {w;} denotes the Chebyshev weights on [0,L]. Considering the way 6(t) is
calculated, the error in (¢) is proportional to the error in z/(t) and y'(t), divided by the
norm of the tangential vector (z/(¢),y'(t)). Thus, we set

. 1
8y = eN'3 \/Hx(t)Hiz[o,q + Y@ 720,17 - H 2/ ()2 +y/(1)? H
L°[0,L]
N3 \/ZJ x?wj +2 yJQ'wj

)
: [02, 12,,,.
min IB]- U}j + yj U)]

where z, y! are the discretized values of 2/(t), y/(¢). Similarly, the error in () is
proportional to the error in 2/(¢) and y'(¢). Thus, we set

(87)

3
b = eN 3\ Jle(0) 22101 + 19(8) 320,15

~ N \/Zx;wj 3 gy (88)
J J

The thresholds dy and d4 for the closed curve case are almost identical, except that
the condition number of spectral differentiation matrix is approximately IV, where N

18

is the number of coefficients, from which it follows that N 3 is replaced by N, and the
weights w; are replaced by %

Suppose that we have the desired accuracy of the approximation, €, the threshold, dg,
and the number of coefficients larger than €, ncoefs. We consider first the coefficients of

0(t). Our goal is to determine the number of coefficients, nig) ofs» that we expect to be larger

than dp, when there are only nceefs terms larger than [|0|| e. In order to approximate

)

o s> we assume that the coefficients {01} decay exponentially, like ||0] e 9k, from the

n

maximum value H@HOO to Hé”ooe This implies that C = %. Thus,

50
— Deoefs
e log (1/¢) Tooefs — 607 (89)
S0,
5 log (1/d5)
Mepefs = Meoets o0 (1) (90)
We compute nig’efs in exactly the same way. At each iteration, if only ni") ofs and nig’efs

numbers of terms are larger than dy and d,, respectively, then the algorithm terminates.
Eventually, neoefs coefficients are returned to the user to represent the curve, up to the
precision €.

. dg 65’ . . .
Remark 3.3. Since the values of oy, 6y, n.J . and n . are fairly consistent in each

iteration, we only calculate these values once, at the first iteration.
3.8 Summary and Cost of the Algorithm

The algorithm can be summarized as follows:

1. Given n + 1 points Cy, ..., C,, fit a C? Bézier spline to connect the points.

2. Discretize the curve at N > n+1 Chebyshev nodes if the curve is open, or N > n+1
equispaced nodes if the curve is closed, and compute {6;} and {s;}

Repeat the steps 3, ..., 9 until a C"*° smooth curve can be represented by the requested
number of coefficients, ncpefs:

3. Obtain the Chebyshev coefficients or the Fourier coefficients of {6;} and {s’}.
4. Determine the number of coefficients of {0;} and {s’} larger than dy and dy. If there

Oy
coefs’

o

o ofs respectively, then return the first ngqes coefficients

are fewer than n and n

of z(t) and y(t).

5. Apply the filter to the coefficients of {0;} and {s}} to compute the filtered values
of {#;} and {s’}.

6. In the case of a closed curve, modify {s;} to satisfy the constraints (73] and ((74)
in order to close the curve after filtering.

7. Reconstruct the curve from {¢;} and {s}} by equations and ().

19

8. Rotate the curve to minimize the sum of squares of the distances between the curve
and the points Cy, ..., C,.

9. Add smooth Gaussian perturbations to make the curve pass through the points Cy,
.., Cp.

Solving for the control points of the Bézier spline in Step 1 costs O(n + 1) operations,
and discretizing the spline at N points in Step 2 costs O(IN) operations. Step 3 involves
spectral differentiation and the Discrete Chebyshev Transform in the open curve case,
or the DFT in the closed curve case, where the Discrete Chebyshev Transform can be
replaced by the Fast Chebyshev Transform and the DFT can be replaced by the FFT.
The cost of step 3 is thus reduced to O(N log N). Checking the termination condition in
Step 4 costs approximately O(NN) operations. Applying the filter and reconstructing {6;}
and {s;} in Step 5 has the same cost as applying the inverse Fast Chebyshev Transform or
the IFF'T, which costs O(N log V) operations. If the curve is closed, we must modify {s’}
so that the curve remains closed. The cost of closing the curve by looping through {s;}
in Step 6 is O(NN). Step 7 involves spectral integration, and the inverse Fast Chebyshev
Transform in the open curve case, or the IFFT in the closed curve case, which has the
same O(N log N) cost as Step 3. The cost of using Newton’s method to rotate the curve in
Step 8 is O(n+1), and the cost of solving for the coefficients of the smooth perturbations
added to the curve in Step 9 is O(n + 1). The total cost is thus O(V log N) per iteration.

4 Numerical Results

In this section, we demonstrate the performance of our algorithm with several numerical
examples, and present both the analytic curves produced by the algorithm and filtered
coefficients of the functions (¢) and s'(t) representing the curves, where 6(¢) is the
tangential angle and s'(t) is the first derivative of the arc length. We implemented our
algorithm in Fortran 77, and compiled it using the Gfortran Compiler, version 9.4.0,
with -O3 flag. All experiments were conducted on a laptop with 16 GB of RAM and an
Intel 11th Gen Core i7-1185G7 CPU. Furthermore, we use FFTW library (see [14]) for
the implementations of the FFT and the Fast Cosine Transform. The latter is used to
implement the Fast Chebyshev Transform.
The following variables appear in this section:

— N: the number of discretization nodes.

— n: the number of sample data points.

— MNiters: the maximum number of iterations.

— MNstop: the number of iterations needed for the algorithm to terminate.

— hfer: the proportion of the coefficients that are filtered to zero at each iteration.

— e: the desired accuracy of the approximation to the curve. As € is dependent on the
size of the curve, for consistency, we scale the sample data points, so that either
the width or height of the collection of data points, whichever is closer to 1, is 1.

20

— Neoefs: the requested number of the coefficients representing the curve to precision
€.

— MNpands: the bandwidth of the matrix describing the effect of the Gaussian perturba-
tions centered at each sample point.

— g, Yo the derivative of the initial curve specified at the left end point, in the
x coordinate and y coordinate separately. This variable only exists in the open
curve case. Notice that the filtering process can potentially alter the value of this
variable.

- :L‘;ight, y]’right: the derivative of the initial curve specified at the right end point, in

the x coordinate and y coordinate separately. This variable only exists in the open
curve case. Notice that the filtering process can potentially alter the value of this
variable.

— Fgamp: the maximum /3 norm of the distance between the curve, defined by ncoefs
Chebyshev or Fourier coefficients, and the sample data points.

While there is no strict rule on how to choose these variables, we assume that the users
pick a reasonable combination of inputs, so that the algorithm terminates before reaching
the maximum number of iterations, njters-

4.1 Open Curve Examples

We sample some points from a spiral with the polar representation (r(t) cos ¢(t), r(t) sin p(t)),
where

r(t) = ¢(t), (91)

with ¢t € [1,2], and construct the initial Bézier spline passing through the data points, as
shown in Figure (a). The sample data points are scaled so that their width is 1. We
set N = 1000, n = 50, z].4 = 0.05, ;. = 0.05, x;ight = 0.05, y;ight = 0.05, Njters = 60
Rgiter = 55, € = 10710, nggers = 500, npanas = 8. After ngop = 16 iterations, the algorithm
terminates and returns a curve represented by only 500 Chebyshev coefficients. We
display the Chebyshev coefficients that are necessary to represent both the initial and
final curve in Figure [3| We can see that the shape of the final curve in Figure (b) is
smoother, especially at the center of the spiral. Moreover, the resulting curve curve
passes through the sample data points with an error of Egamp = 0.11548 - 10713, The
magnitudes of the Chebyshev coefficients of s'(t) and 6(t) before and after filtering are
displayed in Figure
Another example depicted in Figure (a) is obtained by sampling from the curve

v(t) = {5t,3cos (10tm)3}, te€0,1]. (92)
The sample data points are scaled so that their height is 1. We run the algorithm
by choosing n = 70, N = 4500, zj,; = 0.25, yi.q = 0.25, 2} = 0.25, yji, = 0.25,

Niters = 10, Aflter = %, € =10710, neoers = 3620, Npangs = 6. The curve before smoothing

21

is observed to bend unnaturally when zooming in on some details, for example, those
shown in Figure [5(a). Thus, a reasonably large number of Chebyshev coefficients are
required to represent s'(t) and 6(t), as shown in Figure[6] By looking at Figure [4b) and
Figure (b), the curve appears more like a manually drawn smooth curve after ngop = 60
iterations. The coefficients returned by the algorithm represent a curve passing through
the sample data points to within an error of Egump = 0.16875 - 10713, We display the
magnitudes of the Chebyshev coefficients of both the initial and final curve in Figure

Figure (a) shows a roughly sketched shape resembling a snake. We scale the sample
data points so that their height is 1, and run the algorithm by choosing N = 4000,
n =44, xlg = 0.05, ylg = —0.02, &l = —0.06, Yl = 0.02, Niters = 80, hfitter = 55,
€ = 1071, nggers = 1780, npands = 6. The algorithm terminates at the Netop = T1st
iteration, and the resulting curve passes through the sample data points to within an
error of Fgmp = 0.35056 - 1074, We present the magnitudes of the coefficients of s'(t)
and 6(t) before and after filtering in Figure |§|7 and the magnitudes of the coefficients of
x(t) and y(t) of both the initial and final curve in Figure

We illustrate some damping oscillations, as displayed in Figure (a). The sample
data points are scaled so that their width is 1. The initial curve has some sharp corners,
and is distorted unnaturally. We set N = 4500, n = 40, zj, = 0.20, y/, = —0.20,
iy = —0.20, Ylippe = 040, Niters = 70, hsitter = 755 € = 10716, Negers = 1830, Mbands = 8.
After ngop = 69 iterations, the algorithm terminates and returns a curve passing through
the sample data points to within an error of Egamp = 0.22649 - 10713, The resulting curve
in Figure (b) resembles a curve drawn by hand, with a completely smooth shape that
naturally bends to pass through all the sample data points to exhibit those damping
oscillations. We present the magnitudes of the coefficients of s'(t) and 0(t) before and
after filtering in Figure and the magnitudes of the coefficients of z(¢) and y(t) of
both the initial and final curve in Figure We apply the algorithm in [7] to the same
data points, by setting a = 0.2, which produces the smoothest shape of the curve, as
displayed in Figure (a). Although the curve in Figure [14{a) requires fewer coefficients
to represent z(t) and y(t) compared to the curve in Figure[11|(b), it requires a much larger
number of coefficients for s'(t) and 6(t), as shown in [L4(b). This results in a curve with
a high level of curvature. With our algorithm, any high curvature areas are effectively
smoothed, yielding a visually smoother curve and requiring much fewer coefficients to
represent s'(t) and 6(t).

The runtimes per iteration for the open curve case are displayed in Table [} Since
we use the library [14] for the implementation of the FFT, and the speed of the FFT
routines in the library depends in a complicated way on the input size, we observed that
the runtimes in Table [I] are not strictly proportional to the number of discretization
points, N.

Case N =1025 N = 2049 N = 4097 N = 8193
Figure|l| 0.14308 - 10792 0.20470- 10792 0.29810- 10792 0.51040 - 10792

Table 1: Average runtime per iteration, for an open curve, calculated by determining
the total runtime for 100 iterations and dividing by the number of iterations.

22

(a) The curve before (b) The curve after smooth-
smoothing ing

Figure 1: The result of algorithm applied to (91]). The red dots mark the sample points.

: :
1 1 A
100 i 100 i — \f’\
| ‘ | — 0
10-2< i 10'3< i
1 1
1 1
10 ‘ 1064 |
1
1
1
106 ! 109 i
1 1
104 i 1012
1 1
1)
1010 10715
~T 1
0 200 400 600 800 1000 0 200 400 600 800 1000
(a) Before filtering (b) After filtering

Figure 2: Chebyshev coefficients of s'(¢) and 6(t) corresponding to Figure |1, The value of
d¢ is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 355th coefficients of s'(¢) decays to d¢, indicated by a vertical solid line.
The 380th coefficients of 6(¢) decays to dg, indicated by a vertical dashed line.

1
i @l | 101 13
10 i — il — il
i 1075 {
1074 i
| 109
107 | i
10-13<
10-10 4 i 10-17
|
0 200 400 600 800 1000 0 200 400 600 800 1000

(a) Chebyshev coefficients of the initial curve (b) Chebyshev coefficients of the final curve

Figure 3: Chebyshev coefficients of (¢) and y(t) corresponding to Figure |l The value of
Neoefs 18 indicated by a vertical dashed line.

4.2 Closed Curve Examples
The first closed curve example is obtained by sampling from the polar representation
(r(t) cos p(t), r(t) sinp(t)), where

23

(a) The curve before (b) The curve after
smoothing smoothing

Figure 4: The result of algorithm applied to (92)). The red dots mark the sample points.

(a) Before (b) After
smoothing smoothing

Figure 5: A detail of Figure

101 :
100 | 15|

107! ! 5
1078 i 61

103 | i
106 | !

107 | !
1094 "[" [

10-7< 10-12<

9 | |
10 1015 |
0 1000 2000 3000 4000 0 1000 2000 3000 4000
(a) Before filtering (b) After filtering

Figure 6: Chebyshev coefficients of s'(t) and () corresponding to Figure 4. The value of
dg is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 2472nd coefficients of s'(t) decay to dy, indicated by a vertical solid
line. The 2148th coefficients of 6(t) decays to Jy, indicated by a vertical dashed line.

24

102 102

10 10]

1010 | 10-10

10-14 J 10-14 4

1018] 10-18 |
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a) Chebyshev coefficients of the initial curve (b) Chebyshev coefficients of the final curve

Figure 7: Chebyshev coefficients of z(¢) and y(t) corresponding to Figure 4, The value of
Neoefs 1S indicated by a vertical dashed line.

(a) The curve be- (b) The curve af-
fore smoothing ter smoothing

Figure 8: A hand-drawn depiction of a snake shape. The red dots mark the sample
points.

100 104 i — 19
1
1 ~
102 1071 i — o)
1
1
1
10-1 4 10'6 1 i
1
1
106 4 1079 A i
10 4 10124
1
10-10 | 10715 i
e - i
0 1000 2000 3000 4000 0 1000 2000 3000 4000
(a) Before filtering (b) After filtering

Figure 9: Chebyshev coefficients of s'(t) and 6(t) corresponding to Figure [8. The value of
d¢ is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 1214th coefficients of s'(t) decays to dy, indicated by a vertical solid
line. The 1171st coefficients of 6(t) decays to dy, indicated by a vertical dashed line.

25

:
| 2] | 1074 ||
- 1 -~ ~
102 ! — gl — gl
i 10- 4
109] i
| 1074
1
1
1084 i 1013
107114 i 1017 {
!
i
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a) Chebyshev coefficients of the initial curve (b) Chebyshev coefficients of the final curve

Figure 10: Chebyshev coefficients of x(¢) and y(t) corresponding to Figure [8 The value
of neoefs 1s indicated by a vertical dashed line.

(a) The curve before smoothing (b) The curve after smoothing

Figure 11: A shape of oscillations that exhibit damping. The red dots mark the sample
points.

101]

101]
10! { 1024
103 { 1054
105 1 10-8 {
10'7 1 i 10—11 4
1
10'9 T é‘ 10—14 J
: T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
(a) Before filtering (b) After filtering

Figure 12: Chebyshev coefficients of s'(t) and 6(t) corresponding to Figure The value
of d4 is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 1222nd coefficients of s'(t) decays to 4, indicated by a vertical solid
line. The 1088th coefficients of A(t) decays to dp, indicated by a vertical dashed line.

26

1024 i
i — |2
1 1021 ~
10 i — gl
1
i 1064
1084 i
1
i 10-104
1
101 4 ;
10-14 4
-14 |
10 1 10184
i
H
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a) Chebyshev coefficients of the initial curve (b) Chebyshev coefficients of the final curve

Figure 13: Chebyshev coefficients of x(t) and y(t) corresponding to Figure The value
of negefs 1s indicated by a vertical dashed line.

10

1044

10»7 4

10-10

1013

0 2000 4000 6000 8000
(a) The interpolating curve. The (b) Chebyshev coefficients of s'(t) and 6(t)
red dots mark the sample points. corresponding to Figure [14)(a).

Figure 14: The result of algorithm in [7] applied to the same data points in Figure

27

o(t) = 2mt,
r(t) = (1+ écos (186(1)) sin (45(2)), (93)

with t € [0,1], and « is a tuning parameter. The sample data points are scaled so that
both their width and height are 1. We sample the curve with a = 2, N = 8000
and n = 100 to obtain the initial curve in Figure [I5[a). Applying the algorithm with
Niters = 70, Rglter = %, € =10710 neoers = 5200, Npands = 12, we obtained the filtered
coefficients of 0(t) and §'(t), as displayed in Figure We find that, after ngop = 67
iterations, 5200 coefficients of x(¢) and y(t) are necessary to represent the smooth curve
displayed in Figure (b), to within an error of Egump = 0.22453 - 1014, The magnitudes
of the coefficients of both the initial and final curve are displayed in Figure [T7}

Remark 4.1. Note that, since the DFT, X n,..., X~ _,, of a real sequence, zo, ...,
2 2
TN_1, satisfies the relation:

Xp=X 5, k=— — 1, (94)

geeey

e N N
2 2

we only show the magnitudes of the coefficients, for £k =0, ..., % —1.

Another example is shown in Figure by sampling the curve with a = §,
N = 2000 and n = 60. The sample data points are scaled so that both their width and
height are 1. It is obvious that the curve has fewer wobbles than the previous curve.
In this case, we set niters = 60, hgilter = %, € = 10710, negets = 1560, npands = 8. The
algorithm terminates after ngiop, = 34 iterations, and the error between the final curve
and the sample data points is Fsamp = 0.11008 - 10—, The magnitudes of the coefficients
of §'(t) and 6(t) before and after filtering are displayed in Figure |19 and the magnitudes
of the coeflicients of both the initial and final curve are displayed in Figure While the
shapes of the curves appear similarly before and after filtering, the coefficients change
dramatically.

The example shown in Figure[2I] has the shape of a cat, corresponding to n = 50 sample
points. We scale the sample data points so that their height is 1, and discretize the curve
with N = 4000, and set niers = 100, hfiger = 75, € = 10715, nggers = 1360, npanas = 4.
After ngiop = 98 iterations, 1360 coefficients are sufficient to represent the curve, and the
error between the final curve and the sample data points is Fgamp = 0.64403 - 10~14. The
magnitudes of the coefficients of s'(t) and 0(t) before and after filtering are displayed in
Figure and the magnitudes of the coefficients of both the initial and final curve are
displayed in Figure We observe that the sharp edges on the curve in Figure (a)
becomes more rounded, and the resulting curve more closely resembles the shape of a
cat. Meanwhile, Figure 24[(a) is the result of the algorithm in [7] applied to the same
data points, with a = 0.4. The number of coefficients that are necessary to represent s'(t)
and 6(t) are displayed in Figure 24|b). As we can observe from Figure 24a), the curve
contains sharp corners, and its visual smoothness is similar to the initial curve displayed
in Figure (a), prior to applying our algorithm. In contrast, our algorithm eliminates
high curvature areas, resulting in a much smoother appearance.

28

Inspired by Figure 4.5 and Figure 4.3 in [12], we apply our algorithm to the same
sample data points to show that our algorithm produces a smoother curve and represents
the curve with fewer coefficients. We start with the example in Figure 4.5. The sample
data points are scaled so that their width is 1. With the parameters N = 1600, n = 13,
Niters = 80, Aglter = 3—15, € =10716 noers = 840, and npangs = 4, our algorithm produces
a curve represented by only 840 coefficients, while the algorithm of [I2] produces a
curve represented by 2 - 25,000 = 50,000 coefficients. The algorithm terminates at the
Netop = O8th iteration, and the resulting curve passes through the sample data points
within an error of Egaymp = 0.15713 - 10713, Notice that the corners in Figure 4.5 are
eliminated and the final curve in Figure b) looks much smoother. We display the
magnitudes of the coefficients of s'(t) and 0(t) before and after filtering in Figure [27, and
the magnitudes of the coefficients of both the initial and final curve in Figure [28

Since the initial curve is constructed by using smooth splines to connect the sample
data points, and our algorithm filters the curve further during the filtering process,
this causes the shape of the curve to deviate from that of Figure 4.5 in [12]. In order
to preserve the shape of the curve in Figure 4.5, we increase the number of sample
data points. The sample data points are scaled so that their width is 1. Applying the
algorithm to the curve displayed in Figure (a), with N = 4000, n = 59, njters = S0,
htter = 75, € = 10716, nggers = 1700, Npands = 4, we obtain Egmp = 0.83564 - 10713 at
the ngtop = 72nd iteration. The magnitudes of the coefficients of s'(t) and 6(t) before and
after filtering are displayed in Figure 30} and the magnitudes of the coefficients of both
the initial and final curve are displayed in in Figure It is noteworthy that the shape
of the curve has been preserved, while achieving a smoother curve than in [I2]. Moreover,
the number of coefficients required to represent the curve increases only moderately when
compared to those shown in Figure

For Figure 4.3 in [12], we scale the sample data points so that their height is 1, and
apply the algorithm to the reproduced curve in Figure (a), with N = 2000, n = 41,
Niters = 10, Rfilter = ﬁ, € =10710 noers = 680, Npangs = 4. Although the difference can
not be distinguished visually, after ngo, = 55 iterations, 680 coefficients are necessary to
represent the curve, to within an error of Fgum, = 0.15102 - 10713, The magnitudes of
the coefficients of s'(t) and 6(t) are displayed in in Figure and the magnitudes of the
coefficients of both the initial and final curve are displayed in in Figure Notice that
the algorithm of [12] requires approximately 2 - 7000 = 14, 000 coefficients to fit a curve
passing through the same sample data points.

The runtimes per iteration for the first two closed curve cases are displayed in Table
We observe that, as in the open curve case, the runtimes are not strictly proportional
to N.

Case N =1024 N = 2048 N = 4096 N = 8192
Figurew 0.44050 - 1079 0.72667 - 107%% 0.13412-107°2 0.26530 - 10722

Figure 0.36162-107% 0.61837-107% 0.11924-107°% 0.24492 - 1072

Table 2: Average runtime per iteration, for the first two closed curves, calculated by
determining the total runtime for 250 iterations and dividing by the number of iterations.

29

(a) The curve before (b) The curve after smooth-
smoothing ing

Figure 15: The result of algorithm applied to with a = 2. The red dots mark the
sample points.

100 4

107
104 10-4
-7 |
105] 10

. 10—10 4

10712 | I
10-13 4
10-16 4 10-16]

0 1000 2000 3000 4000 0 1000 2000 3000 4000
(a) Before filtering (b) After filtering

Figure 16: Fourier coefficients of s'(t) and 6(t) corresponding to Figure The value of
d¢ is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 1901st coefficients of s'(t) decays to dy, indicated by a vertical solid
line. The 1785th coefficients of 0(t) decays to dy, indicated by a vertical dashed line.

5 Conclusion

Our algorithm produces a bandlimited curve passing through a set of points, up to
machine precision. It first constructs a C? Bézier spline passing through the points,
and then recursively applies a Gaussian filter to both the derivative of the arc length
function and the tangential angle of the curve, to control the bandwidth of the coefficients,
followed by smooth corrections. The resulting curve can be represented by a small number
of coefficients, and resembles a smooth curve drawn naturally by hand, free of ringing
artifacts. The algorithm costs O(NN log N) operations at each iteration, and the cost can
be further reduced by calling the FFT in the FFTW library [I4], in which the speed of
the FFT routines is optimized for inputs of certain sizes.

One possible extension of this paper is to design an algorithm for curves and surfaces
in R3. The main methodology is still applicable, if we parametrize a curve in R? by
a function (t): I — R3, where I C R, in terms of the same parameter ¢ as in this
paper, and a surface in R? by a function v(s,t): I; x I — R, where I1, I C R, in terms

30

1 -1 ~
102 0 — i
— 9l
10 1071
10710 | 1091
10_14 | 10—13 4
10—18 | 10-17 4
1
H
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a) Fourier coefficients of the initial curve (b) Fourier coefficients of the final curve

Figure 17: Fourier coefficients of x(t) and y(t) corresponding to Figure The value of
Neoefs 18 indicated by a vertical dashed line.

(a) The curve before (b) The curve after smooth-
smoothing ing

Figure 18: The result of algorithm applied to with a = 8. The red dots mark the
sample points.

of both s and t. We can apply the Chebyshev or the Fourier approximation in each
parameter, depending on whether the curve or surface is periodic in that parameter, filter
the coefficients and add smooth perturbations in a similar way. Another application is to
implement the algorithm of this paper as a geometric primitive in CAD/CAM systems.
Since primitives are generally defined as level sets of polynomials (see Chapter 2 of [15]),
the techniques in this paper could be used for the constructions of more general C*°
shapes in CAD/CAM systems.

31

10 4 10-
1044 104
107 107
10-10 4 10-10 J
10-13 4 10-13 1
10716 i 10-16 4
0 200 400 600 800 1000 0 200 400 600 800 1000
(a) Before filtering (b) After filtering

Figure 19: Fourier coefficients of s'(t) and 6(t) corresponding to Figure The value of
dg is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 588th coefficients of s'(t) decays to 0y, indicated by a vertical solid line.
The 588th coefficients of 0(t) decays to dg, indicated by a vertical dashed line.

102 | 1014 13|
— 4l
10°6 4 1071 |
1010 4 104
10-14 i 10'13 1
10—18 | 10-17 4
0 200 400 600 800 1000 0 200 400 600 800 1000

(a) Fourier coefficients of the initial curve (b) Fourier coefficients of the final curve

Figure 20: Fourier coefficients of x(t) and y(t) corresponding to Figure The value of
Neoefs 15 indicated by a vertical dashed line.

(a) The curve before smoothing (b) The curve after smoothing

Figure 21: A hand-drawn depiction of a cat shape. The red dots mark the sample points.

32

i 0] i
| 0 | — W
1024 : -3 : —
. 10 | ! 10
i i
1 . 1
107 | : 101
1 1
. 1071 !
1084 i _________ 1
E 10-12
1
1
101 fr===mmmm s :r """""""""""""""""" 10-15 4 i
i i
H :
0 500 1000 1500 2000 0 500 1000 1500 2000
(a) Before filtering (b) After filtering

Figure 22: Fourier coefficients of s'(t) and 6(¢) corresponding to Figure The value of
d¢ is indicated by a horizontal solid line and the value of Jy is indicated by a horizontal
dashed line. The 525th coefficients of s'(t) decays to d, indicated by a vertical solid line.
The 492nd coefficients of 0(t) decays to dy, indicated by a vertical dashed line.

:
y | ||) |2
1024 I - 1024 N
i 7] 19l
10 | ! 107 |
1
108 | | 1084
T m
o] | AMMAMAMAARAA | 1011 |
1
1
10-14< i 10—14<
1
1
10717 A i 10°17 4
|
0 500 1000 1500 2000 0 500 1000 1500 2000

(a) Fourier coefficients of the initial curve (b) Fourier coefficients of the final curve

Figure 23: Fourier coefficients of x(t) and y(t) corresponding to Figure The value of
Ncoefs 15 indicated by a vertical dashed line.

1017
0 1000 2000 3000 4000 5000
(a) The interpolating curve. The (b) Fourier coefficients of s'(t) and 6(t) cor-
red dots mark the sample points. responding to Figure a).

Figure 24: The result of algorithm in [7] applied to the same data points in Figure

33

o

) The curve before smoothing) The curve after smoothing

Figure 25: The result of algorithm applied to Figure 4.5 in [I2]. The red dots mark the
sample points.

LT

Figure 26: Figure 4.5 in [12]

101 E

-1 |
10 1024

10741 107+

1078
107

10-11

1010 4
10-14 4

%‘

0 200 400 600 800 0 200 400 600 800
(a) Before filtering (b) After filtering

Figure 27: Fourier coefficients of s'(t) and 6(t) corresponding to Figure The value of
dg is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 303rd coefficients of s'(t) decays to the dy, indicated by a vertical solid
line. The 283rd coefficients of 0(t) decays to the dy, indicated by a vertical dashed line.

34

:
100 | |2 | 1004 ||
i — il — il
103 i 104
|
:
10764 : 108
!
1
109] i 1012
1012 10-16
!
0 200 400 600 800 0 200 400 600 800

(a) Fourier coefficients of the initial curve (b) Fourier coefficients of the final curve

Figure 28: Fourier coefficients of x(t) and y(t) corresponding to Figure The value of
Neoefs 1S indicated by a vertical dashed line.

Nl wlll

) The curve before smoothing) The curve after smoothing

Figure 29: The result of algorithm applied to Figure 4.5 in [12], with more sample data
points. Due to the large quantity and non-uniform distribution of the sample data points,
we choose not to display them in the plot.

109 ! .
10 4 ! — |
1 ~
10 i — 10l
10-3 4 :
1
106 |
105 i
10 ‘
1074 WK s s 200 | [TR -
10-12 J T : W\‘
109 W\}\
i] 10154 1
10—11 4 i i
1
0 500 1000 1500 2000 0 500 1000 1500 2000
(a) Before filtering (b) After filtering

Figure 30: Fourier coefficients of s'(t) and 6(¢) corresponding to Figure The value of
d¢ is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 545th coefficients of s'(t) decays to the dy, indicated by a vertical solid
line. The 494th coefficients of 6(t) decays to the dp, indicated by a vertical dashed line.

35

10" i R R
| |2] 101 |Z]
102 | — gl — |9l
1
! 1071
1
1079 i
i 10
10 !
1 10-13 4
-11 |
10 i 10—17 4
|
H
0 500 1000 1500 2000 0 500 1000 1500 2000

(a) Fourier coefficients of the initial curve (b) Fourier coefficients of the final curve

Figure 31: Fourier coefficients of x(t) and y(t) corresponding to Figure The value of
Neoefs 1S indicated by a vertical dashed line.

(a) The curve be- (b) The curve after
fore smoothing smoothing

Figure 32: The result of algorithm applied to Figure 4.3 in [12]. The red dots mark the
sample points.

I g
I }
+ i
+ +
+ +
4 +
+ oy T
4 +
1 +
X by
b .

: /

+]

_‘{.

/
N #
¥ +
% #

Figure 33: Figure 4.3 in [12]

36

100 | R
101 | — ¥
1031 — 19|
10-;L
1076<
10|
10_7< 1079<
107 10124 \
10-11 7| 1015 4 :W
0 200 400 600 800 1000 0 200 400 600 800 1000

(a) Before filtering (b) After filtering

Figure 34: Fourier coefficients of s'(¢) and 6(t) corresponding to Figure The value of
dg is indicated by a horizontal solid line and the value of dy is indicated by a horizontal
dashed line. The 237th coefficients of s'(¢) decays to d¢, indicated by a vertical solid line.
The 225th coefficients of 0(t) decays to dy, indicated by a vertical dashed line.

100 4 1094 |z

— lal
1044 1044
10'8 4 1078 d
10124 10-12
10-16 4 10-16 4

H
0 200 400 600 800 1000 0 200 400 600 800 1000

(a) Fourier coefficients of the initial curve (b) Fourier coefficients of the final curve

Figure 35: Fourier coefficients of x(t) and y(t) corresponding to Figure The value of
Neoefs 1S indicated by a vertical dashed line.

37

References

1]

2]

Akima, H. “A new method of interpolation and smooth curve fitting based on local
procedures.” J. Assoc. Comput. Mach. 17.4 (1970): 589-602.

Bjorkenstam, U., and S. Westberg. “General cubic curve fitting algorithm using
stiffness coefficients.” Computer-Aided Design. 19.2 (1987): 58-64.

Bica, M.A. “Optimizing at the end-points the Akima’s interpolation method of
smooth curve fitting.” Computer Aided Geometric Design. 31.5 (2014): 245-257.

Knott, G.D. Interpolating Cubic Spilnes. Birkhduser Boston, 2000.

Runions, A., and F.F. Samavati. “Partition of Unity parametrics: A framework for
meta-modeling.” The Visual Comput. 27 (2011): 495-505.

Piegl, L., and W. Tiller. The NURBS Book. Springer-Berlin, 1995.

Zhang, R., and W. Ma. “An Efficient Scheme for Curve and Surface Construction
based on a Set of Interpolatory Basis Functions.” ACM T. Graphic. 30.2 (2011):
1-11.

Runions, A., and F.F. Samavati. “CINPACT-splines: A class of C*° Curves with
Compact Support.” Curves and Surfaces 2014: Curves and Surfaces. 2015: 384-398.

Akram, B., U.R. Alim, and F.F. Samavati. “CINAPACT-Splines: A Family of In-
finitely Smooth, Accurate and Compactly Supported Splines.” ISVC 2015: Advances
in Visual Computing. 2015: 819-829.

Blu, T., P. Thévenaz, and M. Unser. “MOMS: Maximal-order interpolation of
minimal support.” IEEE. T. Image Process. 10.7 (2001): 1069-1080.

Zhu, Y. “A class of blending functions with C'°° smoothness.” Numer. Algorithms
88 (2021): 555-582.

Beylkin, D., and V. Rokhlin. “Fitting a bandlimited curve to points in a plane.”
SIAM J. Sci. Comput. 36.3 (2014): 1048-1070.

Thompson, M.T. Intuitive Analog Circuit Design. 2nd ed. Newnes, 2014.

Frigo, M., and S.G. Johnson. “The Design and Implementation of FFTW3.” Proc.
IEEE. 93.2 (2005).

Hoffmann, C.M. Geometric and Solid Modeling. 2002. See https://www.cs.purdue!
edu/homes/cmh/distribution/books/geo.htmll

Joost, M. “Cubic Bézier Splines.” Notes. 2011. See https://www.michael-joost.
de/bezierfit.pdf.

38

https://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html
https://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html
https://www.michael-joost.de/bezierfit.pdf
https://www.michael-joost.de/bezierfit.pdf

	Introduction
	Preliminaries
	Geometric properties of a curve
	Cubic Bézier Interpolation
	Solving for control points for an open curve
	Solving for control points for a closed curve

	Chebyshev Polynomial Interpolation
	Spectral Differentiation and Integration

	The Discrete Fourier Transform (DFT)
	Spectral Differentiation and Integration

	Gaussian filter

	The Algorithm
	Initial Approximation
	Representations of the Curve
	Representation of an Open Curve
	Representation of a Closed Curve

	Filtering the Curve
	Filtering the Open Curve
	Filtering the Closed Curve

	Closing the Curve
	Repositioning the Curve
	Adding Perturbations to the Curve
	The Termination Criterion of the Algorithm
	Summary and Cost of the Algorithm

	Numerical Results
	Open Curve Examples
	Closed Curve Examples

	Conclusion

