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Abstract

As part of the new regulatory framework of Solvency II, introduced by the Eu-
ropean Union, insurance companies are required to monitor their solvency by
computing a key risk metric called the Solvency Capital Requirement (SCR).
The official description of the SCR is not rigorous and has lead researchers
to develop their own mathematical frameworks for calculation of the SCR.
These frameworks are complex and are difficult to implement. Recently,
Bauer et al. suggested a nested Monte Carlo (MC) simulation framework
to calculate the SCR. But the proposed MC framework is computationally
expensive even for a simple insurance product. In this paper, we propose
incorporating a neural network approach into the nested simulation frame-
work to significantly reduce the computational complexity in the calculation.
We study the performance of our neural network approach in estimating the
SCR for a large portfolio of an important class of insurance products called
Variable Annuities (VAs). Our experiments show that the proposed neural
network approach is both efficient and accurate.

Keywords: Variable annuity, Spatial interpolation, Neural network,
Portfolio valuation, Solvency Capital Requirement (SCR)

1. Introduction

The Solvency II Directive is the new insurance regulatory framework
within the European Union. Solvency II enhances consumer protection by
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requiring insurers to monitor the risks facing their organization. An integral
part of Solvency II is the Solvency Capital Requirement (SCR) that reduces
the risk of insurers’ insolvency. SCR is the amount of reserves that an insur-
ance company must hold to cover any losses within a one year period with a
confidence level of 99.5%.

The calculation standards are described in the documents of the Commit-
tee of European Insurnace and Occupational Pensions Supervisors (CEIOP)
(e.g., (CEIOP, 2011)). The regulation allows insurance companies to use
either the standard formula or to develop an internal model based on a
market-consistent valuation of assets and liabilities. Because of the impre-
cise language of the aforementioned standards, many insurance companies are
struggling to implement the underlying model and to develop efficient tech-
niques to do the necessary calculations. In (Christiansen and Niemeyer, 2014;
Bauer et al., 2012), rigorous mathematical definitions of SCR are provided.
Moreover, (Bauer et al., 2012) describes an implementation of a simplified,
but approximately equivalent, notion of SCR using nested Monte Carlo (MC)
simulations.

The results of the numerical experiments in (Bauer et al., 2012) to find
the SCR for a simple insurance product show that the proposed nested MC
simulations are too expensive, even for their simplified notion of SCR. Hence,
insurance companies cannot directly use the proposed MC approach to find
the SCR for their large portfolios of insurance products. In this paper, we
propose a neural network approach to be used within the nested MC simu-
lation framework to ameliorate the computational complexity of MC simu-
lations which allows us to efficiently compute the SCR for large portfolios of
insurance products. We provide insights into the efficiency of the proposed
extension of the MC simulation framework by studying its performance in
computing the SCR for a large portfolio of Variable Annuities (VAs), a well-
known and important class of insurance products.

A VA is a tax-deferred retirement vehicle that allows a policyholder to
invest in financial markets by making payment(s) into a predefined set of sub-
accounts set up by an insurance company. The investment of the policyholder
should be payed back as a lump-sum payment or a series of contractually
agreed upon payments over a period of time in the future. VA products
provide embedded guarantees that protect the investment of a policyholder
in a bear market and/or from mortality risk (TGA, 2013). For a detailed
description of VA products and the different types of guarantees offered in
these products, see our earlier paper (Hejazi et al., 2015) and the references
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therein.
Because of the innovative structure of embedded guarantees in VA prod-

ucts, insurance companies have been successful in selling large volumes of
these products (IRI, 2011). As a result, VA products are a large portion of
the investment market around the globe and big insurance companies have
accumulated large portfolios of these products. The embedded guarantees of
VA products expose insurers to a substantial amount of market risk, mortal-
ity risk, and behavioral risk. Hence, big insurance companies have developed
risk management programs to hedge their exposures, especially after the
market crash of 2008.

The rest of this paper is organized as follows. In Section 2, we describe the
mathematical definition of SCR as well as its simplified, almost equivalent,
version described in (Bauer et al., 2012). In Section 3, we describe a modifi-
cation of the nested simulation approach of (Bauer et al., 2012) that we use
to approximate the SCR. Furthermore, we define a simple asset and liability
structure that allows us to remove the assets from the required calculation
of the SCR for the portfolio. In Section 4, we describe the neural network
framework that we use to estimate the one-year probability distribution of
liability for the input portfolio of VA products. In Section 5, we compare
the efficiency and accuracy of our method to that of a simple nested MC
simulation approach. In Section 6, we conclude the paper.

2. Solvency Capital Requirement

A rigorous treatment of SCR1 requires the definition of Available Capital
(AC) which is a metric that determines the solvency of a life insurer at
each point in time. The AC is the difference between the Market Value of
Assets (MVA) and Market Value of Liabilities (MVL):

ACt = MVAt −MVLt (1)

where the subscript t denotes the time, in years, at which each variable is
calculated.

Assuming the definition (1) of AC, the SCR, under Solvency II, is defined
as the smallest amount of AC that a company must currently hold to insure

1The material in this section is based largely on the discussion in (Bauer et al., 2012).
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a non-negative AC in one year with a probability of 99.5%. In other words,
the SCR is the smallest amount x that satisfies the following inequality.

P (AC1 ≥ 0|AC0 = x) ≥ 99.5% (2)

In practice, it is hard to find the SCR using definition (2). Hence, Bauer
et al. use a simpler, approximately equivalent notion of the SCR which is
based on the one-year loss, ∆, evaluated at time zero:

∆ = AC0 −
AC1

1 + r
(3)

where r is the one-year risk-free rate. The SCR is then redefined as the
one-year Value-at-Risk (VaR):

SCR = argminx{P (∆ > x) ≤ 0.5%} (4)

This is the definition of the SCR that we use in the rest of this paper.

3. Nested Simulation Approach

Given the formulation of equation (4), we can calculate the SCR by first
computing the empirical probability distribution of ∆ and then computing
the 99.5%-quantile of the calculated probability distribution. We can imple-
ment this scheme by the nested simulation approach of (Bauer et al., 2012).
In this section, we first outline the nested simulation approach of (Bauer
et al., 2012) and then describe our modification of it to make it more com-
putationally efficient.

In the nested simulation approach of (Bauer et al., 2012), summarized
in Figure 1, we first generate N (p) sample paths P(i), 1 ≤ i ≤ N (p), that
determine the one-year evolution of financial markets. Note that we are only
interested in the partial state of the financial markets. In particular, we are
only interested in the state of the financial instruments that help us evaluate
the asset values and the liability values of our portfolio. Hence, we can
generate a sample state of the financial market by drawing one sample from
the stochastic processes that describe the value of those financial instruments
of interest.

In the nested simulation approach of (Bauer et al., 2012), for each sample

path P(i), we use a MC simulation to determine the value AC
(i)
1 , the available

capital one year hence. We also calculate AC0 via another MC simulation
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Generate N (p) sample paths P(i), 1 ≤ i ≤ N (p)

Evaluate AC
(i)
1 , 1 ≤ i ≤ N (p), for sample paths Evaluate AC0

Evaluate ∆(i), 1 ≤ i ≤ N (p), for sample paths

Sort ∆(i) in ascending order

Output the bN × 0.995 + 0.5c element as the approximation for SCR

Figure 1: Diagram of the nested simulation approach proposed by (Bauer et al., 2012).

and use that to determine the value of ∆(i), 1 ≤ i ≤ N (p), for each sample
path P(i), 1 ≤ i ≤ N (p), via equation (3). The values ∆(i), 1 ≤ i ≤ N (p), can
be used to determine the empirical distribution of ∆. In order to estimate
the 99.5%-quantile for ∆ as required by the definition of the SCR in equation
(4), we can sort the calculated ∆(i), 1 ≤ i ≤ N (p), values in ascending order
and choose the bN × 0.995 + 0.5c element amongst the sorted values as the
approximation for SCR.

The nested MC simulation approach of Figure 1 is computationally ex-
pensive even for simple insurance contracts (Bauer et al., 2012). The compu-
tational complexity of the approach is caused by two factors: 1) The value of
N (p) can be very large (Bauer et al., 2012). 2) The suggested MC valuation

of AC
(i)
1 for each path P(i) and AC0, even for a single contract, is expensive

and hence does not scale well to large portfolios of insurance products. In
this paper, we focus on the latter problem and provide an approach to sig-
nificantly reduce the cost of computing each AC

(i)
1 , 1 ≤ i ≤ N (p), and AC0.

We also briefly discuss a proposal to address the former. However, we leave
a detailed development and analysis of the proposal as future work.
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To begin, we briefly outline our proposal for reducing N (p) to address the
first problem. In the nested simulation approach suggested by (Bauer et al.,
2012), to have a good estimation of the empirical probability distribution
of ∆, the number of sample paths, N (p), must be large, since the ∆(i) val-
ues, 1 ≤ i ≤ N (p), are used to approximate the probability distribution of
∆. Consequently, many ∆(i) values are needed to provide a sufficiently ac-
curate approximation. Because a significant number of these values should,
intuitively, be very close to each other, we suggest using a data interpola-
tion scheme to reduce the cost associated with the number of sample paths,
N (p). To do the interpolation, we first select/generate a small number, N

(p)
s ,

of paths P(i)
s , 1 ≤ i ≤ N

(p)
s , and evaluate ∆(i) for each path P

(i)
s . Then,

we use the calculated values ∆
(i)
s , 1 ≤ i ≤ N

(p)
s , of the representative paths

P(i)
s , 1 ≤ i ≤ N

(p)
s , to interpolate each ∆(i), 1 ≤ i ≤ N (p), associated with

each path P(i), 1 ≤ i ≤ N (p). The choice of the interpolation scheme that
should be used depends on the distribution of the generated N (p) paths in
the space. The variables that define this space are dependent on the sources
of randomness in the financial instruments that we use to value our portfolio.
In this paper, we use a simple linear interpolation scheme, described in more
detail in Section 5, to reduce the running time of our numerical experiments.
We postpone a more thorough development and analysis of the interpolation
method to a future paper.

Now we turn to the main focus of this paper, a more efficient way to
compute AC

(i)
1 for each path P(i)

s , 1 ≤ i ≤ N
(p)
s and AC0. A key element in

computing the ∆ value via equation (3) is the calculation of AC values. From
(1), we see that the calculation of AC requires a market consistent valuation
of assets and liabilities. Insurance companies can follow a mark-to-market
approach to value their assets in a straightforward way. However, the inno-
vative and complex structure of insurance products does not allow for such
a straightforward calculation of liabilities. In practice, insurance companies
often have to calculate the liabilities of insurance products by direct valua-
tion of the cash flows associated with them (direct method (Girard, 2002)).
Hence, the difficulty in calculation of SCR is primarily associated with the
difficulty in the calculation of liabilities.

As we discuss in detail in (Hejazi et al., 2015), a MC simulation ap-
proach, as suggested in (Bauer et al., 2012), to compute the liability of large
portfolios of insurance products is very expensive. Furthermore, traditional
portfolio valuation techniques, such as the replication portfolio approach

6



(Dembo and Rosen, 1999; Oechslin et al., 2007; Daul and Vidal, 2009) and the
Least Squares Monte Carlo (LSMC) method (Cathcart and Morrison, 2009;
Longstaff and Schwartz, 2001; Carriere, 1996), are not effective in reducing
the computational cost. The computational complexity of these methods for
sophisticated insurance products, such as VAs, is comparable to, or more
than, the computational complexity of MC schemes. Reducing the amount
of computation in these methods often requires significant reduction in their
accuracy.

Recently, a spatial interpolation scheme (Hejazi et al., 2015; Gan, 2013;
Gan and Lin, 2015) has been proposed to reduce the required computation of
the MC scheme by reducing the number of contracts that must be processed
by the MC method. In the spatial interpolation framework, we first select
a sample of contracts in the space in which the insurance products of the
input portfolio are defined. The value of interest for each sample contract
is evaluated using MC simulation. The outputs of the MC simulations are
then used to estimate the value of interest for other contracts in the input
portfolio by a spatial interpolation scheme. In (Hejazi and Jackson, 2016), we
describe how a neural network approach to the spatial interpolation can not
only solve the problem associated with finding a good distance metric for the
portfolio but also provide a better balance between efficiency, accuracy, and
granularity of estimation. The numerical experiments of (Hejazi and Jackson,
2016) provided insights into the performance of our proposed neural network
approach in estimation of Greeks for a portfolio of VAs. We show in this
paper how a similar neural network approach can be used within the nested
MC simulation framework to find the liabilities and subsequently the SCR
for an input portfolio of VA products in an efficient and accurate manner.

Of course, other spatial interpolation schemes could be used within the
framework described in the last paragraph. However, in this paper we focus
only on the neural network approach to show the potential of using a spatial
interpolation scheme within the nested MC simulation framework. Exploring
the potential of other spatial interpolation schemes within this context may
be the subject of future research. Although we are using a neural network
similar to the one proposed in (Hejazi and Jackson, 2016), our experiments
demonstrate that a naive usage of the neural network framework to esti-
mate the liability values can provide no better computational efficiency than
parallel implementation of MC simulations. As we discuss in (Hejazi and
Jackson, 2016), the time it takes to train the neural network accounts for a
major part of the running time of the proposed neural network framework.
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Therefore, if we have to train the network from scratch for each realization of
the financial markets (P(i), 1 ≤ i ≤ N (p)) to compute ∆(i), 1 ≤ i ≤ N (p), the
proposed neural network loses its computational superiority compared to a
parallel implementation of the MC simulations. To address this problem, in
Section 5, we discuss a methodology to use the parameters for a neural net-
work trained to compute the MVL

(i)
1 associated with P(i)

s as a good first guess

for the parameters for another neural network to compute MVL
(j)
1 associated

with P(j)
s , for i 6= j. The proposed methodology is based on the idea that,

for two neural networks that are trained under two market conditions that
are only slightly different, the optimal choices of neural network parameters
are likely very close to each other.

In summary, we suggest to use the extended nested simulation approach
of Figure 2 instead of the more standard nested simulation approach of Figure
1 to approximate the value of SCR via equation (4).

In this paper, as mentioned earlier, our focus is on reducing the compu-
tational cost of the MC simulations used to calculate the liability of large
portfolios of VAs. Hence, to focus on the problem of calculating the liabilities
and to make the analysis more tractable, we assume that the company has
taken a passive approach (i.e., no hedging is involved) and the only asset
of the company is a pool of shareholders’ money M0 that is invested in a
money market account and hence accrues risk-free interest. We understand
that this is a very simple, and probably unrealistic, asset structure model;
however, using a more complex asset structure only makes the computation
of asset values more time consuming and diverts our attention from the key
issue we are focusing on in this paper which is how to improve the efficiency
of the computation of the liability values. Moreover, note that we can use
the proposed framework to calculate the portfolio liability value of the in-
put portfolio independently of the evaluation of asset values. That is, a
more complex model for asset valuation can be inserted into our proposed
framework without changing our scheme for improving the efficiency of the
computation of liability values.
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Generate N (p) sample paths P(i), 1 ≤ i ≤ N (p)

Sample/Generate N
(p)
s sample paths P(i)

s , 1 ≤ i ≤ N
(p)
s

Compute MVA
(i)
1 , 1 ≤ i ≤ N

(p)
s ,

of the input portfolio for each P(i)
s

using a mark-to-market approach

Compute MVL
(i)
1 , 1 ≤ i ≤ N

(p)
s ,

of the input portfolio for each P(i)
s

via the neural network approach

Compute AC
(i)
1 = MVA

(i)
1 −MVL

(i)
1 , 1 ≤ i ≤ N

(p)
s

Compute MVA0 of the input portfolio
using a mark-to-market approach

Compute MVL0 of the input portfolio
via the neural network approach

Compute AC0 = MVA0 −MVL0

Compute ∆
(i)
s = AC

(i)
1 − AC0, 1 ≤ i ≤ N

(p)
s

Interpolate ∆(i), 1 ≤ i ≤ N (p), for P(i) using the ∆
(i)
s , 1 ≤ i ≤ N

(p)
s , values

Sort the ∆(i), 1 ≤ i ≤ N (p), values in ascending order

Select the bN × 0.995 + 0.5c element as the approximation for SCR

Figure 2: Diagram of the proposed nested simulation approach.
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The assets are adjusted yearly as required. The proposed simple structure
of assets allows us to eliminate the assets in the definition of ∆ in (3) as
follows.

∆ = AC0 −
AC1

1 + r

= (M0 −MVL0)− (
(M0(1 + r)−MVL1)

1 + r
)

= −MVL0 +
MVL1

1 + r
(5)

Hence, in our simplified problem, calculating the SCR reduces to the problem
of calculating the current liability and the distribution of the liability in one-
year’s time.

4. Neural Network Framework

In this section, we provide a brief review of our proposed neural network
framework. For a detailed treatment of this approach, in particular the reason
behind our choice of network and training method, see our paper (Hejazi and
Jackson, 2016).

4.1. The Neural Network

Our proposed estimation scheme is an extended version of the Nadaraya-
Watson kernel regression model (Nadaraya, 1964; Watson, 1964). Assuming
y(z1), · · · , y(zn) are the observed values at known locations z1, · · · , zn, our
model estimates y at a location z where y(z) is not known by

ŷ(z) =
n∑

i=1

Ghi
(z − zi)× y(zi)∑n
j=1Ghj

(z − zj)
(6)

where G is a nonlinear differentiable function and the subscript, hi, denotes
the range of influence of each y(zi) on the estimated value. The variable
hi is a location dependent vector that determines the range of influence of
each pointwise estimator in each direction of feature space of the input data.
In our application of interest in this paper, y(·) is the MC estimation of
liability. The variables zi, 1 ≤ i ≤ n, are n vectors in Rm representing the
attributes of a sample set of n representative VA contracts in the space of
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the input portfolio. The representative VA contracts are selected using a
sampling scheme to effectively fill the space in which the input portfolio is
defined. The size of the portfolio of representative VA contracts should be
much smaller than the input portfolio for the neural network scheme to be
efficient. As we discuss in (Hejazi and Jackson, 2016) and in more detail
in (Hejazi, 2016), the choice of the representative contracts can affect the
performance, in particular the accuracy, of the neural network framework.
Hence, it is important to use an appropriate sampling method. We postpone
a discussion of the choice of an effective sampling method to a future paper.

We choose to implement our model (6) using a feed-forward neural net-
work (Bishop, 2006; Fister et al., 2016) that allows us to fine-tune our model
to find the optimum choices of the hi values that minimize our estimation
error.

As shown in Figure 3, our feed-forward neural network is a collection of
interconnected processing units, called neurons, which are organized in three
layers. The first and the last layers are, respectively, called the input layer
and the output layer. The intermediate layer is called the hidden layer.

The neurons in the first layer provide the network with the feature vector
(input values). Each neuron in the input layer represents a value in the set
{F c, F−, F+}. Each f in F c has the form

f =
{0 if xc = xci

1 if xc 6= xci
(7)

where xc represents the category of categorical attribute c for input VA pol-
icy z, and xci represents the category of categorical attribute c for repre-
sentative VA policy zi in the sample. Each f in F− has the form f =
[t(xni

)− t(xn)]+/Rt, and each f in F+ has the form f = [t(xn)− t(xni
)]+/Rt.

In both of these formulas, xn is the vector containing the numeric attributes
of input VA policy z, xni

is the vector containing the numeric attributes
of representative VA policy zi in the sample, t(·) is a transformation (lin-
ear/nonlinear), determined by the expert user, that assumes a value in an
interval of length Rt and [·]+ = max(·, 0). The Rt’s are used to scale the
f ’s so that each f ∈ [0, 1]. It is well-known that scaling the variables in this
way helps to increase the rate of convergence of the optimization method
described in Section 4.2 used to train the neural network. In essence, our
choice of input values allows different bandwidths (hi values in (6)) to be
used for different attributes of VA policies and in different directions around
a representative VA contract in the sample.
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Figure 3: Diagram of the proposed neural network. Each circle represents a neuron. Each
rectangle represent the set of neurons that contains input features corresponding to a
representative contract.

Since we are interested in calibrating the G functions of equation (6), the
number of neurons in the output and hidden layer are equal to the number
of representative contracts in the sample. The inputs of neuron i in the
hidden layer are those values of f in the input layer that are related to the
representative VA policy i. In other words, the input values of neuron i in the
hidden layer determine the per attribute difference of the input VA contract z
with the representative VA contract zi using the features f ∈ {F c, F−, F+}.
Assuming x1, · · · , xn are the inputs of neuron j at the hidden level, first a
linear combination of input variables is constructed

aj =
n∑

i=1

wijxi + bj (8)

where parameters wij are referred to as weights and parameter bj is called the
bias. The quantity aj is known as the activation of neuron j. The activation
aj is then transformed using an exponential function to form the output of
neuron j.
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The output of neuron i in the output layer is the normalized version of the
output for neuron i in the hidden layer. Hence the outputs of the network,
i.e., oi, i ∈ {1, · · · , n}, represent a softmax of activations in the hidden layer.
These outputs can be used to estimate the value of the liability for input
VA z as ŷ(z) =

∑n
i=1 oi × y(zi), in which y(zi) is the value of the liability

for representative VA policy zi. In summary, our proposed neural network
allows us to rewrite equation (6) as

ŷ(z) =
n∑

i=1

exp(wi
T fi(z) + bi)× y(zi)∑n

j=1 exp(wj
T fj(z) + bj)

(9)

where vector fi represents the features in the input layer that are related to
the representative VA policy zi, and vector wi contains the weights associated
with each feature in fi at neuron i of the hidden layer.

4.2. Network Training Methodology

In order to calibrate (train) the network and find the optimal values of
weights and bias parameters, we select a small set of VA policies, which we
call the training portfolio, as the training data for the network. The objective
of the calibration process is to find a set of weights and bias parameters that
minimizes the Mean Squared Error (MSE) in estimation of liability values of
the training portfolio. In other words, our objective function is

E(w,b) =
1

2n

n∑
k=1

||ŷ(zk,w,b)− y(zk)||2 (10)

We use an iterative gradient descent scheme (Boyd and Vandenberghe,
2004) to train the network. However, to speed up the training process, we
do mini-batch training (Murphy, 2012) with Nestrov’s Accelerated Gradient
(NAG) method (Nesterov, 1983). In mini-batch training, in each iteration,
we select a small number of training VA policies at random and compute the
gradient of the following error function for this batch.

E(w(t),b(t)) =
1

2|B(t)|
∑

k∈B(t)

||ŷ(zk,w
(t),b(t))− y(zk)||2 (11)

where B(t) is the set of indices for the selected VA policies and superscript
t denotes the iteration number. Instead of updating the weights and biases
by the gradient of (11), in the NAG method, we use a velocity vector that
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increases in value in the direction of persistent reduction in the objective
error function across iterations. We use a particular implementation of the
NAG method described in (Sutskever et al., 2013). In this implementation
of NAG, weights and biases are updated according to the rules

vt+1 = µtvt − ε∇E([w(t),b(t)] + µtvt)

[w(t+1),b(t+1)] = [w(t),b(t)] + vt+1 (12)

where vt is the velocity vector, µt ∈ [0, 1] is known as the momentum coef-
ficient and ε is the learning rate. The momentum coefficient is an adaptive
parameter defined by

µt = min(1− 2−1−log2(b
t
50
c+1), µmax) (13)

where µmax ∈ [0, 1] is a user defined constant.
Because of the amount of investments and the structure of guarantees

in VA products, the liability values can become large. Big liability values
can result in big gradient values which produce big jumps in the updates of
(12). Therefore, to avoid numerical instability, only in the training stage, we
normalize the values of y(zi) in (11), by dividing each y(·) value by the range
of guarantee values in the input portfolio.

If we allow the network to train for a long enough time, it will start to
converge towards a local optimum. Depending on our choice of the represen-
tative contracts and the training data, further training of the network after
a certain number of iterations might result in overfitting or might not result
in significant change in the value of weights and biases, and the associated
error. To avoid these pitfalls, we use a set of randomly selected VA policies
from the input portfolio as our validation portfolio (Murphy, 2012) and stop
the training using a two step verification process. First, we observe if the
MSE of the training data drops dramatically or if there is an initial decrease
in the MSE of the validation portfolio to a local minimum followed by an
increase in the MSE of the validation portfolio. Once any of these events,
called stopping events, happens, we train the network for a few more iter-
ations until the mean of the network’s liability estimates for the validation
portfolio is within a δ relative distance of the mean of the MC estimated lia-
bility of the validation portfolio via MC simulations or a maximum number
of training iterations is reached. The relative distance between the network
estimated liablity LNN and the MC estimated liability LMC is calculated as
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Figure 4: MSE of the validation set and the trend in the MSE as a function of the iteration
number for a run of the training algorithm. The trend is found using a moving average
with a window size of 10 and then polynomial fitting with a polynomial of degree 6.

dist =

∣∣∣∣LNN − LMC

LMC

∣∣∣∣ (14)

As shown in the graph of Figure 4, the actual graph of the MSE for the
validation portfolio or the training portfolio as a function of iteration number
might be volatile. However, a general trend exists in the data. To make the
trend clearer, we use a simple moving average with a window of W̄ to smooth
the data and polynomial fitting of the smoothed data. We detect stopping
events using a window of length W on the polynomial approximation of the
MSE values. A stopping event occurs if the MSE of the validation set has
increased in the past W − 1 recorded values after attaining a minimum.
We evaluate the MSE values of the validation set every I th iteration of the
training, to avoid slowing down the training process. I, W and W̄ are user
defined parameters and are application dependent.
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Attribute Value
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {20, 21, . . . , 60}
Account Value [1e4, 5e5]
Guarantee Value [0.5e4, 6e5]
Widthrawal Rate {0.04, 0.05, 0.06, 0.07, 0.08}
Maturity {10, 11, . . . , 25}

Table 1: GMDB and GMWB attributes and their respective ranges of values.

The neural network outlined above is discussed in more detail in (Hejazi
and Jackson, 2016), where we also discuss how to choose the free parameters
described above.

5. Numerical Experiments

In this section, we demonstrate the effectiveness of the proposed neural
network framework in calculating portfolio liability values in the proposed
nested simulation approach of Section 3. To do so, we estimate the SCR for a
synthetic portfolio of 100, 000 VA contracts assuming the financial structure
of assets as described in Section 3 that allows us to use equation (5).

Each contract in the portfolio is assigned attribute values uniformly at
random from the space defined in Table 1. The guarantee values (death
benefit and withdrawal benefit) of GMWB riders are chosen to be equal2,
but they are different than the account value. The account values of the
contracts follow a simple log-normal distribution model (Hull, 2006) with a
risk free rate of return of µ = 3%, and volatility of σ = 20%.

We acknowledge that this model of account value is very simple; we use
it here to make our computations more tractable. A more complex model in-
creases the number of MC simulations that is required to find liability values
and affects the distribution of one-year-time’s liability values. A more com-
plex model of account values may also necessitate the use of more complicated
valuation techniques for which the computational complexity is much more
than simple MC simulations. However, regardless of the changes imposed by

2This is typical of the beginning of the withdrawal phase.
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using a more complex model to describe the dynamics of the account value,
the proposed nested simulation framework incorporating a neural network
approach, described in Sections 3 and 4, can be used to calculate the SCR.
Therefore, to focus on our neural network approach in this paper, we have
chosen to use a simple account value model to avoid distracting the reader
with a lengthy description of a more complex account value model.

A change in the probability distribution of one-year-time’s liability values
changes the probability distribution of ∆(i), 1 ≤ i ≤ N (p), values. A change
in the probability distribution of ∆(i), 1 ≤ i ≤ N (p), values can increase
the number of sample P(i)

s , 1 ≤ i ≤ N
(p)
s , paths and affect the choice of the

interpolation scheme that should be used to calculate the ∆(i), 1 ≤ i ≤ N (p),
values. As mentioned earlier, in this paper, our focus is not on the choice
of the interpolation scheme and/or the size N

(p)
s of the sample paths that

should be used here. We leave a more thorough study of these questions to
future work. We can still repeat the experiments of this section and arrive
at the same conclusions even if we directly compute the ∆(i), 1 ≤ i ≤ N (p),
values for the original N (p) paths P(i), 1 ≤ i ≤ N (p); however, the running
times will be much bigger.

We can increase the number of MC simulations or use more complex
techniques to value liability values. Both of these approaches only slightly
increase the running time of our proposed neural network approach to cal-
culate liability values and hence only slightly increase the running time of
our proposed nested simulation approach of Section 3. However the afore-
mentioned approaches significantly increase the running time of the nested
simulation approach of (Bauer et al., 2012). The nested simulation approach
of (Bauer et al., 2012) evaluates the liability values for each VA in the input
portfolio; however, our proposed neural network framework only evaluates
the liability values for the selected number of sample VA contracts of the
representative portfolio, training portfolio, and the validation portfolio and
then does a spatial interpolation to find the liability values for the VAs in
the input portfolio. Increasing the time to calculate the per VA liability
value linearly increases the running time in the nested simulation approach
of (Bauer et al., 2012). The size of the representative portfolio, the training
portfolio and the validation portfolio combined in practice is much smaller
than the size of the input portfolio. Therefore, increasing the time to calcu-
late per VA liability only affects the total running time of the neural network
to the extend that the calculation of liability values for the representative
portfolio, the training portfolio, and the validation portfolio can affect the
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training time which in most of our experiments is not significant. Most of
the computing time for the neural network approach is consumed in training
the network.

We use the framework of (Gan and Lin, 2015) to value each VA contract.
Similar to (Hejazi et al., 2015), we use 10, 000 MC simulations to value each
contract. In our experiments, we use the mortality rates of the 1996 IAM
mortality tables provided by the Society of Actuaries.

We implement our experiments in Java and run them on a machine with
dual quad-core Intel X5355 CPUs. For each valuation of the input portfolio
using the MC simulations, we divide the input portfolio into 10 sub-portfolios,
each with an equal number of contracts, and run each sub-portfolio on one
thread, i.e., a total of 10 threads, to value these 10 sub-portfolios in parallel.
We use a similar parallel processing approach to value the representative
contracts, the training portfolio and the validation portfolio. Although we
use the parallel processing capability of our machine for MC simulations, we
do not use parallel processing to implement our code for our proposed neural
network scheme: our neural network code is implemented to run sequentially
on one core. However, there is significant potential for parallelism in our
neural network approach, which should enable it to run much faster. We
plan to investigate this in a future paper.

5.1. Network Setup

Although a sagacious sampling scheme can significantly improve the per-
formance of the network (see (Hejazi, 2016)), for the sake of simplicity, we use
a simple uniform sampling method similar to that used in (Hejazi and Jack-
son, 2016). We postpone the discussion on the choice of a better sampling
method to future work. We construct a portfolio of all combinations of at-
tribute values defined in Table 2. In each experiment, we randomly select 300
VA contracts from the aforementioned portfolio as the set of representative
contracts.

As discussed in Section 4, in addition to the set of representative con-
tracts, we need to introduce two more portfolios, the training portfolio and
the validation portfolio, to train our neural network. For each experiment,
we randomly select 250 VA contracts from the input portfolio as our vali-
dation portfolio. The training portfolio, in each experiment, consists of 200
contracts that are selected uniformly at random from the set of VA contracts
of all combinations of attributes that are presented in Table 3. In order to
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Experiment 1
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {20, 30, 40, 50, 60}
Account Value {1e4, 1e5, 2e5, 3e5, 4e5, 5e5}
Guarantee Value {0.5e4, 1e5, 2e5, 3e5, 4e5, 5e5, 6e5}
Withdrawal Rate {0.04, 0.08}
Maturity {10, 15, 20, 25}

Table 2: Attribute values from which representative contracts are generated for experi-
ments.

Experiment 1
Guarantee Type {GMDB, GMDB + GMWB}
Gender {Male, Female}
Age {23, 27, 33, 37, 43, 47, 53, 57}
Account Value {0.2e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5}
Guarantee Value {0.5e5, 1.5e5, 2.5e5, 3.5e5, 4.5e5, 5.5e5}
Withdrawal Rate {0.05, 0.06, 0.07}
Maturity {12, 13, 17, 18, 22, 23}

Table 3: Attribute values from which training contracts are generated for experiments.

avoid unnecessary overfitting of the data, the attributes of Table 3 are chosen
to be different than the corresponding values in Table 2.

We train the network using a learning rate of 20, a batch size of 20 and
we set µmax to 0.99. Moreover, we fix the seed of the pseudo-random number
generator that we use to select mini batches to be zero. For a given set of the
representative contracts, the training portfolio, and the validation portfolio,
fixing the seed allows us to reproduce the trained network. We set the initial
values of the weight and bias parameters to zero.

We estimate the liability of the training portfolio and the validation port-
folio every 50 iterations and record the corresponding MSE values. We
smooth the recorded MSE values using a moving average with a window
size of 10. Moreover, we fit a polynomial of degree 6 to the smoothed MSE
values and use a window size of length 4 to find the trend in the MSE graphs.
In the final stage of the training, we use a δ of 0.005 as our threshold for
maximum relative distance in estimation of the liabilities for the validation
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portfolio.
We use the rider type and the gender of the policyholder as the categorical

features in F c. The numeric features in F+ are defined as follows.

f(z, zi) =
[t(x)− t(xi)]+

Rt

(15)

In our experiments, t can assume the values maturity, age, AV, GD, GW and
withdrawal rate, Rt is the range of values that t can assume, x and xi are
vectors denoting the numeric attributes of the input VA contract z and the
representative contract zi, respectively.

We define the features of F− in a similar fashion by swapping x and xi
on the right side of equation (15).

5.2. Performance

The experiments of this section are designed to allow us to compare the
efficiency and the accuracy of the proposed neural network approach to the
nested simulations with the nested MC simulation approach of (Bauer et al.,
2012). In each experiment, we use N (p) = 40, 000 realizations of the market
to estimate the empirical probability distribution of ∆. As we describe in
Section 3, the particular simple structure of assets that we use allows use
to use equation (5) to evaluate ∆. By design, the liability value of the VA
products that we use in our experiments is dependent on their account values.
As mentioned earlier, the account values follow a log-normal distribution
model. Hence, we can describe the state of the financial market by the
one-year’s time output of the stochastic process of the model. Assuming
a price of A0 as the current account value of a VA, each realization of the
market corresponds to a coefficient C1, from the above-mentioned log-normal
distribution, that allows us to determine the account value in one year’s time
as A1 = C1 × A0.

To come up with sample paths P(i)
s , we determine a range (interval) based

on the maximum value and the minimum value of the generated 40, 000
C

(i)
1 , 1 ≤ i ≤ 40, 000, coefficients that describe the state of the financial

markets in one-year’s time and divide that range into 99 equal length sub-
intervals. We use the resulting 100 end points, C

(i)
s1 , 1 ≤ i ≤ 100, as the

sample paths P(i)
s , 1 ≤ i ≤ 100.

If one graphs the resulting ∆
(i)
s , 1 ≤ i ≤ 100, values as a function of

the C
(i)
s1 , 1 ≤ i ≤ 100, values that describe the evolution of the financial
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markets, the resulting curve is very smooth and the 100 points are very close
to each other in the space. Because of this, we chose to interpolate the
value of ∆(i), 1 ≤ i ≤ 40, 000 for the aforementioned 40, 000 realizations of
the financial markets (C

(i)
1 , 1 ≤ i ≤ 40, 000,) by a simple piecewise-linear

interpolation of the ∆
(i)
s , 1 ≤ i ≤ 100, values. As we discuss later, the choice

of a piecewise-linear interpolator might not be optimal. As noted earlier in
Section 3, we use it here as a first simple choice for an interpolation. We
plan to study the choice of possibly more effective interpolations later.

To estimate the liability values for each of the sample paths P(i)
s via

the proposed neural network framework, we first generate the representative
portfolio, the training portfolio, and the validation portfolio. We then train
the network using the liability of values at time 0 (current liability) of VAs
in these portfolios. We use the trained network to estimate the liability of
the input portfolio at time 0.

As we mention in Section 3, if we train the network before estimating each
liability, the running time of the proposed neural network approach, because
of the significant time it takes to train the network, is no better than a parallel
implementation of MC simulation. To address this issue, we use the above-
mentioned trained network for the liability values at time 0 to estimate the
one year liability of the input portfolio for each end point, C

(i)
s1 , 1 ≤ i ≤ 100.

However, before each estimation, we perform the last stage of the training
method to fine-tune the network. More specifically, we train the network for
a maximum of 200 iterations until the network estimated portfolio liability
for the validation portfolio is within δ = 0.01 relative distance of the MC
estimated portfolio liability of the validation portfolio. If the fine-tuning
of the network is unable to estimate the liability of the validation portfolio
within the defined δ relative distance, we define a new network using the set
of representative contracts, the training portfolio and the validation portfolio
and train the new network– i.e., we do the complete training. We then use the
new trained network in the subsequent liability estimation– i.e., we use the
new trained network to do the fine-tuning and portfolio liability estimation
for subsequent C

(i)
s1 values.

The idea behind the above-mentioned proposal to reduce the training
time is that if two market conditions are very similar, the liability values
of the VAs in the input portfolio under both market conditions should also
be very close and hence the optimal network parameters (weight parameters
and bias parameters) for both markets are likely very close to each other as
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well. If the optimal network parameters are indeed very close, the fine-tuning
stage allows us to reach the optimal network parameters for the new market
conditions without going through our computationally expensive training
stage that searches for the local minimum in the whole space. If the fine-
tuning stage fails, then we can conclude that the local minimum has changed
significantly and hence a re-training in the whole space is required.

To effectively exploit the closeness of market conditions to reduce the
training time, we sort the C

(i)
s1 , 1 ≤ i ≤ 100, values and evaluate the portfolio

liability values in order. Otherwise, we might have a scenario in which consec-
utive values of C

(i)
s1 represent market conditions that are not relatively close.

Under such a scenario, the fine-tuning stages will most likely fail, requiring
us to do a complete training of the neural network for each C

(i)
s1 , 1 ≤ i ≤ 100.

The above-mentioned proposal is not as straightforward for more complex
models in which the dynamics of financial markets is described with more
than one variable. The choice of an effective strategy to exploit the closeness
of market conditions to reduce the training time for more complex models
of financial markets requires further investigation and we leave it as future
work.

We compare the performance of the interpolation schemes using 6 differ-
ent realizations, Si, 1 ≤ i ≤ 6, of the representative contracts, the training
portfolio, and the validation portfolio. Table 4 lists the accuracy of our pro-
posed scheme in estimating MVL0, the 99.5%-quantile of MVL1 (MVL

(99.5)
1 ),

which corresponds to the 99.5%-quantile of the ∆, and the SCR value for
each scenario. Accuracy is recorded as the relative error

Err =
XNN −XMC

|XMC |
(16)

where XMC is the value of interest (liability or the SCR) in the input portfolio
computed by MC simulations and XNN is the estimation of the corresponding
value of interest computed by the proposed neural network method.

The results of Table 4 provide strong evidence that our neural network
method is very accurate in its estimation of MVL0 and MVL

(99.5)
1 . The es-

timated liability values also result in very accurate estimation of the SCR,
except for scenarios S4 and S5. Even for scenarios S4 and S5, the estimated
SCR values are well within the desired accuracy range required by insurance
companies in practice. Our numerical experiments in (Hejazi and Jackson,
2016) show that our proposed neural network framework has low sensitivity
to the particular realization of the representative contracts, and the train-
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Value Of Interest
Relative Error (%)

S1 S2 S3 S4 S5 S6
SCR −0.85 0.69 −0.81 −3.58 3.02 1.52
MVL0 0.22 0.52 0.96 −0.36 −0.27 0.70

MVL
(99.5)
1 0.43 0.11 0.91 0.97 −1.20 −0.05

Table 4: Relative error in the estimation of the current liability value, one year liability
value, and the SCR for the input portfolio.

ing/validation portfolio once the size of these portfolios are fixed. The results
of Table 4 further corroborate our finding in (Hejazi and Jackson, 2016) as
the realization of the representative contracts, and the training/validation
portfolio is different in each scenario.

The accuracy of the proposed method can be further examined by consid-
ering Figure 5 in which the estimated liability values, for the 100 end points
of the intervals, by the proposed neural network method are compared with
their respective MC estimations. The graphs of Figures 5b and 5c show
that the liability estimated values by the proposed neural network method
are very close to those of the MC method, which demonstrates the projec-
tion capabilities of the neural network framework. As we discuss earlier, the
smoothness of the MC liability curve, as shown in Figure 5, motivated us
to use piecewise linear interpolation to estimate the value of the liability for
points inside the sub-intervals. However, the estimation of this curve using
the proposed neural network framework does not result in as smooth a curve
as we had hoped. Therefore, we might be able to increase the accuracy of
the proposed framework by using a non-linear curve fitting technique. No-
tice that, because of the particular simple asset structure that we use in this
paper the difference between the liability values in one year’s time and the
corresponding ∆ values is a constant.

As we mention in Section 3 and earlier in this section, in this paper, we
do not address the issue of the choice of the interpolation scheme to estimate
the ∆ values of the P(i), 1 ≤ i ≤ 40, 000, paths. Because of that and to have
a fair pointwise comparison between the proposed neural network technique
and the MC technique, we avoid using different interpolation schemes to
estimate liabilities for the P(i), 1 ≤ i ≤ 40, 000, paths.

Table 5 presents the statistics on the running time of the proposed neural
network approach for the nested simulation framework (denoted as NN in this
table and elsewhere in the paper) and the nested MC simulation framework.
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(a) Estimated one-year liability values computed by the neural network framework
and the MC method.

(b) Histogram of the difference in es-
timation of the liability via the neural
network approach and the MC simula-
tions at each end point of sub-intervals.

(c) Histogram of the relative difference
(16) in estimation of liability via the neu-
ral network approach and the MC simu-
lations at each end point of sub-intervals.

Figure 5: Comparing estimation of one-year liability values of the input portfolio computed
by the proposed neural network framework and the MC method.
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Method
Running Time
Mean STD

MC 49334 0
NN 8370 2465

Table 5: simulation time of each method to estimate the SCR. All times are in seconds.

The results suggest a speed-up of 4 − 8 times, depending on the scenario,
and an average speed-up of 6 times. Considering that the implementation
of the neural network was sequential and we compared the running time of
the neural network with the implementation of MC simulations that uses
parallel processing on 4 cores, we observe that even a simple implementation
of the neural network can be highly efficient. As noted earlier, there is
significant potential for parallelism in our neural network approach as well.
Exploiting this parallelism should further improve the running time of the
neural network. We plan to investigate this in a future paper. In addition,
notice that we used a moderate number of MC simulation scenarios compared
to the suggested values in (Bauer et al., 2012). As we mention earlier, an
increase in the number of MC scenarios will not increase the running time of
our neural network significantly, because we only need MC simulations for the
representative contracts and for the validation/training portfolio; however,
it increases the running time of the MC simulations significantly.

6. Concluding Remarks

The new regulatory framework of Solvency II has been introduced by
the European Union to reduce the risk facing insurance/re-insurance com-
panies. An important part of the new regulations is the calculation of the
SCR. Because of the imprecise language used to describe the standards,
many insurance companies are struggling to understand and implement the
framework.

In recent years, mathematical frameworks for calculation of the SCR have
been proposed to address the former issue (Christiansen and Niemeyer, 2014;
Bauer et al., 2012). Furthermore, (Bauer et al., 2012) has suggested a nested
MC simulation approach to calculate the SCR to address the latter issue.
The suggested MC approach is computationally expensive, even for one sim-
ple insurance contract. The computational complexity of the framework
stems from two factors: 1) the large number of outer simulation scenarios,
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representing different market conditions, required to estimate the probability
distribution of the ∆ and 2) the need to perform a computationally demand-
ing MC simulation for each outer simulation scenario to calculate the value
of the liability for the insurance policy under that scenario.

In this paper, we focus on the latter issue for a large portfolio of insurance
products and propose a spatial interpolation approach to be used within
the nested MC simulation framework for the liability calculation that uses a
neural network engine to interpolate the liability values of insurance products
based on the known liability values of a small representative set of these
products. We study the performance of the proposed approach in finding
the SCR value for a portfolio of VA products. The results of our numerical
experiments in Section 5 corroborate the superior accuracy and efficiency
of the sequential implementation of our proposed neural network approach
compared with an implementation of the standard nested MC simulation
approach that uses parallel processing to do the MC simulations.

Although our method requires us to train our neural network using three
small (< 1% of the input portfolio) portfolios that are selected uniformly
at random, given an appropriate size for each of the small portfolios, the
performance of the method has low sensitivity to the particular realization
of these portfolios.

Despite the superior performance of the proposed approach that uses a
simple uniform sampling method to select the small portfolios required to
train the network, we believe our neural network approach can be further
improved by incorporating a more sophisticated sampling method that takes
into account the distribution of the input portfolio. We intend to address
this issue in our future research.

The neural network that we used in our experiments was implemented
sequentially. Given the structure of parameters/variables that define the
behavior of the neural network, we can easily develop a parallel implemen-
tation of the neural network. A parallel implementation can significantly
reduce the training time of the neural network and thereby the running time
of the neural network framework. We plan to address this issue in our future
work.

Although, in this paper, we do not study in depth the problem of having
a large number of outer simulation scenarios, we proposed a possible solu-
tion via data interpolation to alleviate this problem. In our experiments, to
reduce the simulation times and because of the smoothness of the curve that
describes the ∆ values, as a first simple choice, we suggest using piecewise-
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linear interpolation to approximate the ∆ values. However, our experimental
results suggest that using a better interpolation method can increase the ac-
curacy of our proposed neural network approach for nested simulations. We
intend to study the choice of the interpolation scheme in our future research.

In this introductory paper on our neural network approach, we chose
to focus on a simple model of financial markets to make our analysis more
tractable. However, as we discuss in Sections 3 and 5, the approach can
be extended to incorporate more complex models of financial markets. To
achieve the best outcome with our neural network approach, we need to study
an effective strategy to exploit the closeness of the sample points representing
various states of the financial markets to reduce the training time of the
neural network. We intend to study this in our future work.

In this paper, we chose to study the performance of our neural network
approach on estimation of liabilities; however, the application of our proposed
approach is much more general than that. In particular, one can change the
type of the insurance product and the approach used to value individual
insurance products and incorporate them within our framework to estimate
the value of a large portfolio of the aforementioned insurance products.
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