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Parameter Estimation for ODEs and DDEs is an important topic in numerical analysis.
In this paper, we present a novel approach to address this inverse problem. Cross-entropy
algorithms are general algorithm which can be applied to solve global optimization prob-
lems. The main steps of cross-entropy methods are first to generate a set of trial samples
from a certain distribution, then to update the distribution based on these generated
sample trials. To overcome the prohibitive computation of standard cross-entropy al-
gorithms, we develop a modification combining local search techniques. The modified
cross-entropy algorithm can speed the convergence rate and improve the accuracy simul-
taneously.

Two different coding schemes (continuous coding and discrete coding) are also in-
troduced. Continuous coding uses a truncated multivariate Gaussian to generate trial
samples, while discrete coding reduces the search space to a finite (but dense) subset
of the feasible parameter values and uses a Bernoulli distribution to generate the trial
samples (which are fixed point approximation of the actual parameters) . Extensive
numerical and real experiments are conducted to illustrate the power and advantages
of the proposed methods. Compared to other existing state-of-the-art approaches on
some benchmark problems for parameter estimation, our methods have three main ad-
vantages: 1) They are robust to noise in the data to be fitted; 2) They are not sensitive
to the number of observation points (in contrast to most existing approaches) ; 3) The
modified versions exhibit faster convergence than the original versions, thus they are
more efficient, without sacrificing accuracy.
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Chapter 1

Introduction

1.1 Motivation

Ordinary differential equations (ODEs) are widely used in modeling dynamic processes
in many areas including physics, chemistry and biology. Numerical investigations often
involve simulating with various parameter values and estimating the sensitivity of solu-
tions to small changes in parameters. Scientists are now able to use more complex ODE
models to study real life problems due to the increasing development and availability of
computers with significant processing power.

A key task in systems biology is to learn about biological systems using mathematical
models and this task is hampered by the fact that parameters of the models, such as rate
constants, are not known or easily available. The same situation arises in chemical
engineering, which is also in need of efficient methods for parameter estimation when
trying to fit parameter-dependent models to noisy industry measurements.

The challenging problems related to parameter estimation in ODEs are numerous.
One of the most important issues is the unpredictable and inevitable existence of noise
in measurements. Some parameters are very sensitive to noise which can make their
estimation difficult and sometimes even impossible. Another difficulty results from the
nonlinearity of the most relevant ODE models, which complicates the adoption of most
optimization techniques. All methods for parameter estimation involve an interplay be-
tween numerical trajectory simulation of ODEs and a global optimization technique. The
simulation of an ODE for a particular choice of the parameters is usually done by a reli-
able ODE solver (whose accuracy is assumed) and the optimization technique employed
assumes that the error associated with a particular simulation is small compared to the
other sources of error that arise during the optimization.

The optimization techniques used can be classified as a mainly global or a primarily
local procedure. Typical examples of methods based on global optimization are adaptive
stochastic methods [1, 35], genetic programming methods [31], and evolutionary meth-
ods [30]. A detailed comparison of these global optimization methods is given in [23].
The main disadvantage of a stochastic optimization method is its prohibitive computa-
tional cost. On the other hand, methods based on local optimization such as Newton
methods [8], or sequential quadratic programming [37] can be more efficient than global
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2 Chapter 1. Introduction

optimization methods. At the same time, however, they suffer from two main obstacles:
one is a possible discontinuity of derivatives of the associated functions that arise and
another is that they converge to local optima.

There is a trade-off between computational efficiency and robustness when estimating
parameters in ODEs. Good methods for parameter estimation should exhibit the follow-
ing properties: 1) The computational cost needed for reliably estimating parameters
should not be too large. This property makes the methods practical and easily adopted
in real applications; 2) The methods must be stable and robust to noisy measurements.
This is needed in real applications due to the fact that most measurements are inevitably
susceptible to unpredictable noise.

Another class of differential equations that arise when modeling real systems are,
delay differential equations (DDEs) . Parameter estimation for systems of DDEs is more
challenging due to frequent discontinuities in the solution caused by the delay terms.
Investigations related to parameter estimation for DDEs are rare. Baker and Paul [2]
have argued that there is a need for a systematic method for these problems. Zivaripiran
[38] develops a systematic collection of tools related to DDE simulations, sensitivity
analysis and parameter estimation. However, the tools for parameter estimation that he
developed cannot deal with a large number of parameters.

The goal of this paper is to develop a unified framework for parameter estimation
for both ODEs and DDEs. We pursue both effectiveness and efficiency. Robustness
with respect to noise and the ability to cope with large number of parameters are also
objectives of the approaches we investigate.

1.2 Mathematical Setting for Parameter Estimation

of ODEs

Suppose that a dynamical system is represented by a state variable y(t) ∈ R
d for t ∈

[t0, tf ], which is the unique and differentiable solution of an initial value problem,

y′ = g(t,y(t),p), (1.1)

y(t0) = y0. (1.2)

The right-hand side of (1.1) depends on a constant vector of parameters p ∈ Rnp. Note
that here we do not assume that g is continuously differentiable with respect to p. Then
the complete set of parameters Θ of the model is defined by the vector ΘT = (pT ,yT

0 )
having dimension s = np + d.

Let Ȳi, i = 1, . . . , n, denote a set of observed data vectors, with components Ȳij,
j = 1, . . . , d, i.e., Ȳ is a n× d matrix, where n represents the total amount of data. Let
Yij denotes the “true” solution of component j of the state at time ti of the solution of
(1.1) with exact parameters Θ̃. We assume the data Ȳij satisfy the following observation
equation

Ȳij = Yij + σjǫij (1.3)

where σj > 0 measures the variance of the noise associated with the j-the component
and is related to the scale of the expected magnitude of the jth component, |yj(t)| . The
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ǫijs are independent and standard Gaussian distributed random variables. Observation
points ti are ordered such that t0 ≤ t1 < . . . < tn−1 < tn. On the basis of knowing
only the measurements Ȳij, the task is to estimate the initial state y0 and parameters p.
The principle of maximum-likelihood yields an appropriate cost function which should
be minimized with respect to the parameters Θ to yield an approximation, Θ̄ to the true
value Θ̃. We define the cost function or objective function by

L(Θ) =
1

n

n∑

i=1

d∑

j=1

(Yij(Θ)− Ȳij)
2

2σ2
j

, (1.4)

and we seek a Θ̄ that satisfies:

Θ̄ = argmin
Θ
L(Θ) (1.5)

Note that Θ̄ need not be unique. A direct minimization of L with respect toΘ leads to the
so-called initial value approach (see, for example, [25]) . Instead of direct minimization,
we will adopt an equivalent optimization formulation to (1.5) as follows: Let φ : R+ → R

be a strictly decreasing function and S(Θ) = φ(L(Θ)). Then an equivalent optimization
problem (1.5) is,

max
Θ

S(Θ) = φ(L(Θ)) = φ(
1

n

n∑

i=1

d∑

j=1

(Yij(Θ)− Ȳij)
2

2σ2
j

) (1.6)

Clearly from (1.4) , L(Θ) ≥ 0 and since φ(x) is strictly decreasing, L(Θ̄) is a minimum
if and only if S(Θ̄) is a maximum. In this paper, we will focus on formulation (1.6) with
φ(x) = exp(−x) and we will call the function S(Θ) the performance function.

1.3 A Review of Related Work

As we have shown, the parameter estimation problem can be interpreted as an optimiza-
tion problem. Most methods for these optimization problems use a initial value approach
which is summarized in Fig. (1.1) .

1. Choose an initial guess for the parameters, Θ̂.
2. Solve model (1.1) using an effective IVP solver with Θ = Θ̂ and evaluate the objective
function L(Θ̂) or the performance function S(Θ̂).
3. Check stopping conditions, if satisfied, stop
4. Otherwise choose a better value for Θ̂ and return to step (2) .

Figure 1.1: Summary of the initial value approach

The key steps in the initial value approach is how to solve the model equations (1.1)
in step 2 and how to improve the approximation Θ̂ in step 4. Simulation of (1.1) is
done by a reliable numerical method, such as a Runge-Kutta method, to approximate
the solution given a trial set of parameter values.
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There is an extensive literature on numerical methods for solving constrained opti-
mization problems such as (1.6) (see Biegler and Grossman [3] for an excellent review)
. The particular optimization methods used will determine the stopping criteria (step 3)
and the updating rules for step 4. The optimization methods we consider can be catego-
rized into two classes. The first class is composed of local optimization (LO) methods.
This class of optimization methods usually require the evaluation of derivatives of the
objective function. The assumption that the function g in (1.1) is continuously differ-
entiable almost everywhere with respect to Θ is required. The gradient of the objective
function (1.4) is computed using

∂L(Θ)

∂Θ
=

1

n

n∑

i=1

d∑

j=1

(Yij − Ȳij)

σ2
j

(
∂Yij(Θ)

∂Θ
) (1.7)

The partial derivatives, appearing in the right side of (1.7) ,
∂Yij(Θ)

∂Θ
can be approximated

by solving the sensitivity IVPs: ( ∂y
∂p
) is an d×np matrix which is the solution of the IVP,

d

dt
(
∂y

∂p
) =

∂g

∂p
+

∂g

∂y

∂y

∂p
, (1.8)

∂y

∂p
|t=0 = 0; (1.9)

and ∂y
∂y0

is a d× d matrix which is the solution to the IVP,

d

dt
(
∂y

∂y0

) =
∂g

∂y

∂y

∂y0

, (1.10)

∂y

∂y0

|t=0 = I. (1.11)

Note that the gradient ∂S(Θ)
∂Θ

, required for the optimization formulation (1.6) , can easily
be computed (when φ(x) = exp(−x)) by:

∂S(Θ)

∂Θ
= −φ(L)∂L(Θ)

∂Θ
. (1.12)

Edsberg et. al [8] developed a toolbox, called diffpar, which uses a Gauss-Newton
type algorithm for directly minimizing the objective function (1.4) . Despite its simplicity,
the Gauss-Newton method has slow convergence for a large residual initial guess, and, to
obtain convergence it is essential to have a good initial guess. A trust region Levenberg-
Marquardt method to minimize the objective function (1.5) is used in [39, 6] where
finite differences are used to approximate the required derivatives. This method suffers
from the high cost of calculation of the derivatives and the fact that the method must be
started from many initial guesses in order to achieve convergence and avoid local minima.
The sequential quadratic programming (SQP) method is a modification of the Gauss-
Newton method [5, 37] which has also been used for solving this minimization problem
(1.5) and can take advantage of the least-squares structure of the objective function.



1.3. A Review of Related Work 5

A few methods have attempted to solve parameter estimation and compute a numer-
ical solution to (1.1) simultaneously. Tjoa et.al. [33] combine a numerical solution of
the collocation equations with an optimization over parameters to obtain a single con-
strained optimization problem. Similar idea can be found in [4] where a multiple shooting

method was proposed that partitions the fitting interval [t0, tn] into many subintervals,
each having its own initial values. The parameters are held constant for all subintervals.
Horbelt et.al [15] showed the effectiveness of a multiple shooting method by applying it
to identify physical properties of a CO2 laser.

The other class of optimization methods is composed of global optimization (GO)
methods. Global optimization methods can be roughly classified as deterministic [17, 14]
or stochastic [1, 35]. One weakness of stochastic GO methods is the lack of strong
theoretical guarantees of convergence to the global optima, since stochastic techniques
for global optimization ultimately rely on probabilistic arguments. Deterministic GO
methods are, on the other hand, generally able to achieve a level of assurance that the
global optimum will be located. However, one should note that no algorithm can solve
general GO problems with certainty in finite time [23]. In general, the computational
effort most GO methods need to achieve convergence increases very rapidly with the
problem size, in our case quantified by s, the dimension of Θ. In this paper, we will
focus on the use of a stochastic GO optimization method applied to formulation (1.6) .

1. Choose a mechanism parameterized by v which can be used to generate candidate
values Θ ∈ R

s, and prescribe a value v0.
2. Generate N different trial parameters Θi, i = 1, . . . , N from the chosen mechanism
parameterized by v. For i = 1, . . . , N , solve model (1.1) with Θi using an effective IVP
solver and evaluate the objective function L(Θi) or the performance function S(Θi).
3. Check stopping conditions, if satisfied, stop
4. Otherwise choose a better value for v based on the observations L(Θi) or S(Θi) and
return to step (2) .

Figure 1.2: Overview of the initial value approach for stochastic GO optimization

For stochastic GO methods, often a modified version of the initial value approach
(Fig. (1.1) ) is used (see Fig. (1.2) ) . To better illustrate this modified version, we
will introduce some basic notation and results from probability theory which are needed
for the motivation and description of a stochastic GO method. First, a multivariate
Gaussian distribution can be used to describe a particular distribution of vectors in R

s.
The corresponding probability density is

f(X,v = {µ, σ}) =
s∏

i

1√
2πσi

exp(−(Xi − µi)
2

2σ2
i

) (1.13)

where v is the set of 2s parameters used to specify the probability density and µ is the
mean vector in which µi represents the mean of the i-th component of X. Similarly, σ
is the standard deviation vector where σi represents the standard deviation of the i-th
component of X. Here we assume all the components of data X are independent. We
use this multivariate density distribution to generate a set of trial parameters required
for Step 2 of Fig. (1.2) .
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This multivariate Gaussian distribution is the most common example of the “mech-
anism” for Step 1 of Fig. (1.2) . The stochastic GO method we will consider, on each
iteration, identifies a subset of the trials that are thought to be close to being optimal
(called the “elites”) , and then obtains an estimate of the mean and standard deviation
vectors of the elites to be used to generate the trials on the next iteration. The hope is
that the means of each component of the elite trials at each iteration will converge to the
optimal parameter Θ̄ of the optimization problem (1.6) .

Here we review some related examples of stochastic GO methods and the key strate-
gies they adopt for step 4 of Fig. (1.2) . 1) The early stochastic GO methods were
adaptive stochastic methods, originally developed for engineering in the 1960s [22]. 2)
Clustering methods [34] are based on the concept of multistart methods, that is, lo-
cal methods started from different initial points. Because clustering methods aim to
identify the vicinity of local optima, they can be more efficient and robust than standard
multistart methods by avoiding repeated determination of the same local solutions. How-
ever, they often fail when there are a large number of parameters. 3) Another popular
class of stochastic methods are evolutionary computation (EC) methods, also known as
biologically inspired methods. These methods generate better and better solutions by
iteratively simulating biological evolution. Classic examples are Genetic Programming
(GP) [13], Evolutionary Programming (EP) [12] and Evolution Strategy (ES) [30]. 4)
Other meta-heuristics stochastic GO methods have been also proposed like Taboo Search,
Ant Colony Optimization, and particle swarm methods.

A Cross-Entropy method is a newly developed stochastic GO method. The Cross-
Entropy method was motivated by an adaptive algorithm for estimating probabilities
of rare events in complex stochastic networks and it involves variance minimization.
It was realized that a simple modification of this approach could be applied to solve
difficult combinatorial optimization as well. This paper is an attempt (the first that we
are aware of) that to investigate the use of a Cross-Entropy approach in the framework
of parameter estimation in ODEs and DDEs. We modify the general approach to be
efficient and effective for this class of problems. The approach can be broken down into
two key strategies: 1. Generate a random set of trial parameters according to a specified
distribution. 2. From the values of the performance function associated with each trial
parameter, update the probability distribution used to generate the random trials based
on the principle of “importance sampling”.

Until now we have focused on presenting a review of parameter estimation techniques
for systems of ODEs (1.1) . We will now present a brief review of parameter estimation
techniques for DDEs. The main difficulty, (see Baker and Paul [2]) , in extending an
initial value approach to this class of problems, is that discontinuities arising from the
initial point y0 may propagate into the objective function through the solution values
that contain delay terms. It is not surprising that the assumption of the smoothness of
the objective function may not hold in this case.

There have been some investigations (see [16], [19]) which address this difficulty
by introducing splines to define the initial values and delay parameters. By carefully
matching the nodes of the splines to the locations of the discontinuities, they are able
to improve the effectiveness of this approach. Recently, Zivaripiran [38] developed a set
of tools for investigating DDEs including simulation, sensitivity analysis and parameter
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estimation. To avoid the potential non-smoothness difficulty, the points of discontinuity
are automatically located. This is accomplished using a continuous extension of y(t,Θ)
and its partial derivatives for evaluations of the objective function. However, this remedy
procedure is only applicable in the event of a few parameters. When dealing with a large
number of parameters, this procedure fails due to prohibitive computation burden of
estimating the derivative information at all the potential discontinuities.

One advantage of cross-entropy methods is that they do not require any derivative
information, so they can handle potential discontinuities that may arise in ODEs and
DDEs. Based on the importance sampling strategy, cross-entropy methods update the
parameterized probabilistic distribution function at each step by using only a subset
of those generated approximations, the “elites”, whose associated performance function
values are near the best value observed so far.

In order to overcome the slow convergence rate and large computational cost, we
modify an existing cross-entropy method by using a local evolution procedure. This
process records the best samples so far and penalizes the “bad” samples based on the
best one. The focus on the best samples can increase the convergence rate, while the
evolution of bad ones is helpful to explore the whole parameter space and avoid the
optimums already identified. In this way, the cross-entropy approach can be applied
when there are a large number of parameters. A comparison with other cross-entropy
strategies is presented in Chapter 4, from which we can see our modification can achieve
both better accuracy and better efficiency.

We develop two versions of our algorithm. The first (the continuous version) assumes
each component of Θ ∈ R

s is in the range [−M,M ]. The second version (the discrete
version) assumes each Θ ∈ R

s is approximated by its closest fixed point value. Since
there are only a finite number of fixed point values in the range of [−M,M ], our discrete
version will generally require less time to convergence. We will refer to the continuous
version as the continuous coding scheme and the discrete version as the discrete coding
scheme.

1.4 An Outline of the Thesis

In Chapter 2, we first give an overview of the basic idea of a cross-entropy method, then
we provide a brief introduction to the concept of importance sampling and the Kullback-
Leibler Distance, which play an important role in defining our cross-entropy methods.
Then we give a detailed description on how cross-entropy can be used for parameter
estimation. We review how cross-entropy is used in a combinatorial optimization setting,
then modify the standard cross-entropy approach to gain robustness and improvement in
efficiency when applied to our problems. The key idea is the local evolution procedure,
which can make use of the best sample so far to speed the convergence, and which also
takes advantage of “bad” samples to attempt to avoid local optimums. In the last section
of chapter 2, we discuss in detail the two coding schemes: continuous cross-entropy and
discrete cross-entropy. In Chapter 3, we provide details on the implementation of the
proposed methods. In Chapter 4, we present numerical results on real-world problems
involving both ODEs and DDEs, and compare our methods with other existing methods
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with respect to both efficiency and accuracy. Also, we present a short discussion of the
effect of sampling size N and choices of objective function. In Chapter 5, we summarize
the thesis and discuss future work.



Chapter 2

The Cross-Entropy Algorithm

2.1 Kullback-Leibler Distance

Let f and h be two probability distribution functions associated with a vector x, and
h(x) is zero only when f(x) is zero. The Kullback-Leibler cross-entropy (CE) distance
between f and h is defined as

DKL(f, h) = Ef ln
f(x)

h(x)

=

∫
f(x) ln f(x)µ(dx)−

∫
f(x) lnh(x)µ(dx), (2.1)

where Ef means the expectation under the probability density f . Note that DKL(f, h)
is not a strict “distance” since DKL(f, h) 6= DKL(h, f). Nonetheless, it is often useful to
think of DKL(f, h) as a distance because

DKL(f, h) ≥ 0, (2.2)

and DKL(f, h) = 0 if and only if f(x) = h(x).

2.2 The Cross-Entropy for Parameter Estimation

In this section, we discuss how to apply a cross-entropy method for parameter estimation
problems. We assume that −M ≤ Θi ≤ M, i = 1, . . . , s. We search for an optimal Θ
in this hypercubic (denoted as ℑ) in R

s for a known value M > 0. That is, we wish to
find the maximum of S over ℑ, and the corresponding states at which this maximum is
attained. Let us denote the maximum by γ∗. Thus,

S(Θ̄) = γ∗ = max
X∈ℑ

S(X). (2.3)

The goal is to estimate {Θ̄, γ∗}. As mentioned before, a set of candidate Θ (denoted as
Xi, i = 1, . . . , N) is usually generated from a specific distribution, f(X,v). So instead
of directly searching for {Θ̄, γ∗}, we aim at estimating {v∗, γ∗}, where v∗ is associated

9
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with an “optimal” distribution that is centered at the optimal parameter Θ̄. An itera-
tive algorithm is proposed to solve this estimation problem. The idea is to construct a
sequence of vt and a sequence of levels γt and iterate in both γt and vt. We initialize by
choosing a not very small ρ ∈ (0, 1), say ρ = 0.01 and by defining v0 = u, for example,
we can initialize the mean of the multivariate Gaussian as µ = {0, .., 0} and the stan-
dard deviation σ = {1, .., 1}. Next, we let γ1 be such that, under the original density
f(X;u), the probability PuI{S(X)≥γ1} is at least ρ. We then update v1 based on the N

trial parameters Xi generated by f(X;v0), and repeat the last two steps iteratively with
the goal of estimating the pair {v∗, γ∗}. In other words, each iteration of the algorithm
consists of two main phases. In the first phase, γt is updated, in the second vt is updated.
Specifically, starting with v0 = u we obtain the subsequent γt and vt as follows:

1. Adaptive Updating of γt. For a fixed vt−1, we first generate N random sample
parameters Xi, i = 1, . . . , N according to the density function f(X, vt−1), then with these
trial parameters, we calculate the associated performance function S(Xi), i = 1, . . . , N
using a reliable IVP solver. These N values are then sorted in an increasing order
S(Xj1) ≤ S(Xj2) ≤ . . . ≤ S(XjN ), where j1, j2, . . . , jN is a permutation of 1, 2, . . . , N .
We call Xj⌈(1−ρ)N⌉

, . . . ,XjN the “elites”, and the remaining N −⌈(1− ρ)N⌉ samples “bad
samples”. Let γt be a (1− ρ)-quantile of S(X) under vt−1:

γt = S(Xj⌈(1−ρ)N⌉
). (2.4)

That is, γt satisfies

Pvt−1(S(X) ≥ γt) ≥ ρ, (2.5)

Pvt−1(S(X) ≤ γt) ≤ 1− ρ (2.6)

where X follows the probability distribution f(·;vt−1) (we denote it as X ∼ f(·;vt−1)) .

2. Adaptive Updating of vt. For fixed γt and vt−1, the updating of vt is a key
step. The important assumption here is that the “elite” samples are close to Θ̄. So the
following truncated normal distribution can be seen as a trustful one that can generate
samples near Θ̄:

f ∗
t−1 = I{S(X)≥γt}f(X,vt−1). (2.7)

The hope is if f(X,vt) is close to this truncated distribution f ∗
t−1, we can get a set

of better trial samples which are closer to Θ̄. It is well known that, KL distance (cross-
entropy) is a good measure of distance between distributions, hence, we try to solve the
following minimization problem:

vt = argmin
v
DKL(f

∗
t−1, f(X,v)) (2.8)

Using (2.1) and (2.7) , we can obtain an equivalent optimization problem to (2.8) :

vt = argmax
v

∫
I{S(X)≥γt}f(X,vt−1) ln f(X,v)dx

= argmax
v

Ef(X,vt−1)I{S(X)≥γt} ln f(X,v) (2.9)
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We may estimate Ef(X,vt−1)I{S(X)≥γt} ln f(X,v) by

Ē(v) =
1

N

N∑

i=1

I{S(Xi)≥γt} ln f(Xi;v)dx (2.10)

where X ∼ f(·;vt−1). In typical applications, the function Ē(v) in (2.10) is convex and
differentiable with respect to v [29]. Thus, vt may be readily obtained by solving the
system of equations

1

N

N∑

i=1

I{S(Xi)≥γ}∇ ln f(Xi;v)dx = 0, (2.11)

where the gradient is with respect to v. The advantage of this approach is that the
solution of (2.11) can often be calculated analytically, especially when the distributions
of the random variables belong to a natural exponential family (NEF) [28].

Instead of updating the parameter vector vt−1 to vt directly via (2.11) , we use a
smoothed updating procedure as has been suggested in [29]:

vt = αwt + (1− α)vt−1 (2.12)

where wt is the vector derived via (2.11) . This smooth updating rule can prevent the
algorithm from being trapped at local optimums. We found empirically that a value of
α such that 0.6 ≤ α ≤ 0.9 gives the best results.

As to the stopping rule, we have two similar methods to decide when to terminate
the iterations. First, we keep record of γt and stop when γt ∼= γt−1

∼= . . . ∼= γt−k for
a certain number k. Note that γt ∼= γt−1 means |γt − γt−1| ≤ tol, where tol is a small
positive number. The second way is to stop the iterations when vt

∼= vt−1
∼= . . . ∼= vt−k.

In this investigation, we choose the first criterion, and set k = 5, tol = 10−6.
We summarize the CE algorithm in Fig. (2.1) .

1. Define v0 = u. Set t = 1, and pick ρ and α.
2. Generate a sample X1, . . . ,XN from the density f(·;vt−1) and compute the sample
(1− ρ)-quantile γt of the performance according to (2.4) .
3. Calculate vt using the same samples X1, . . . ,XN by solving the system of equations
(2.11) and using the smoothing update rule in (2.12) .
4. If, for some t ≥ 5, γt ∼= γt−1

∼= . . . ∼= γt−5, then stop; otherwise, set t = t + 1 and
return to step 2.

Figure 2.1: Overview of the CE Algorithm for GO Optimization

2.3 Modifications of the Cross-Entropy Algorithm

As with most heuristic global optimization methods, CE suffers from a large computa-
tional cost associated with each iteration. Generally speaking, to make CE useful, the
sample size N usually lies in the interval 100 ≤ N ≤ 1000. This means that to solve the
parameter estimation problem for an ODE, we have to run the ODE solver at least TN
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times, where T is the number of the iterations before convergence. For large systems
which have a large number of unknown parameters, the time needed to use CE meth-
ods is prohibitive. Looking into the core idea of CE methods, we find that only partial
information in the N samples is used. The key step of CE methods is to update the
parameter vector vt via solving the following system:

1

N

N∑

i=1

I{S(Xi)≥γ}∇ ln f(Xi;v)dx = 0, (2.13)

We can see that only those “elites” samples which satisfy {S(Xi) ≥ γ} are used. The
remaining samples (which are not good enough) are ignored. One straightforward idea to
speed up the CE method is to make use of the ignored samples. We proposed a method
to speed up convergence, called local evolution. The core idea behind our “speed-up”
heuristic is to evolve the “bad” (abandoned) samples to good ones. Every iteration, we
record the best-so-far sample, denoted Xbest. For any “bad” sample Xbad, we shift it
toward Xbest using the updated value:

Xbad ← (δ ∗Xbad + (1− δ) ∗Xbest). (2.14)

where δ ∈ [0, 1] is a weight for the “bad” samples. In this paper, we fix δ = 0.2. After
performing the procedure of local evolution, we can update the vt by solving the new
system

1

N

N∑

i=1

(I{S(Xi)≥γ} + ζ ∗ I{S(Xi)<γ})▽ ln f(Xi;v)dx = 0, (2.15)

where ζ is also a weight parameter. In this paper, we fix ζ = 0.5.

The advantage of the use of local evolution is two-fold: 1) to aid convergence and
reduce the sample size because we employ the information contained in both abandoned
samples and “best-so-far” sample; 2) to avoid local optima since local evolution expands
the exploration of the solution space and encourages the search to move to regions that
contain additional local or global optima. An overview of the resulting modified Cross-
Entropy method is presented in Fig. (2.2) .

1. Define v0 = u. Set t = 1 and pick ρ and α.
2. Generate a sample X1, . . . ,XN from the density f(·;vt−1) and compute the sample
(1− ρ)-quantile γt of the performance according to (2.4) .
3. For those samples satisfying {S(Xi) ≤ γt}, perform local evolution using (2.14) .
4. Calculate vt using the trial samples X1, . . . ,XN and solving the system of equations
in (2.15) .
5. If for some t ≥ 5, γt ∼= γt−1

∼= . . . ,∼= γt−5, then stop; otherwise, set t = t + 1 and
return to step 2.

Figure 2.2: Overview of the Modified Cross-Entropy (MCE) Algorithm
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2.4 Continuous Cross-Entropy Method

In this section, we discuss how to associate a continuous probability density to express
the pdfs for each of the parameters. As pointed out above, to apply the CE method
to such a problem, we have to specify the sampling distribution and the updating rules
for its parameters. The choice of the sampling distribution is quite arbitrary. In this
paper, we use the truncated Gaussian with independent components, as was done in
[7, 20]. The s-dimensional normal distribution with independent components, mean
vector µ = (µ1, . . . , µs) and variance vector σ2 = (σ2

1 , . . . , σ
2
s) is denoted by N (µ, σ2).

Using this parameterized distribution, it can be shown that the updating rule that
corresponds to (2.11) is:

µ̃t =

∑N
i=1 I{S(Xi)≥γ}Xi∑N
i=1 I{S(Xi)≥γ}

σ̃2
t =

∑N
i=1 I{S(Xi)≥γ}(Xi − µ̃t)

2

∑N
i=1 I{S(Xi)≥γ}

(2.16)

We use the smooth updating rule (2.12) to “smooth” the mean:

µt = αµ̃t + (1− α)µt−1. (2.17)

To prevent the smoothed algorithm for the variance vectors from being trapped in
local optima, Rubinstein and Kroese [28] proposed the use of dynamic smoothing where,
at each iteration, the variance is updated using a smoothing parameter βt by

βt = β0 − β0(1−
1

t
)c,

σ2
t = βtσ̃

2
t + (1− βt)σ

2
t−1, (2.18)

where β0 and c are fixed numbers. In our experiments, we set β = 0.95 and c = 1.
There are many possible stopping criteria; we use the stopping rule to stop when the
best value over 5 iterations does not change significantly. We summarize the continuous
cross-entropy (CCE) method in Fig. (2.3)

For the modified version, the main difference lies in the calculation of {µ̃t, σ̃2
t}: First,

we perform the local evolution procedure on those samples that satisfy {S(Xi ≤ γ)}, and
the updating rule is:

µ̃t =

∑N
i=1(ζI{S(Xi)≤γ} + I{S(Xi)≥γ})Xi∑N
i=1(ζI{S(Xi)≤γ} + I{S(Xi)≥γ})

σ̃2
t =

∑N
i=1(ζI{S(Xi)≤γ} + I{S(Xi)≥γ})(Xi − µt)

2

∑N
i=1(ζI{S(Xi)≤γ} + I{S(Xi)≥γ})

(2.19)

We summarize the modified continuous cross-entropy (MCCE) algorithm in Fig. (2.4)
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1. Initialize {µ0, σ
2
0}, β0 = 0. Set t = 1 and pick ρ and α.

2. Generate a sample X1, . . . ,XN from the density N (µt−1, σ
2
t−1)

3. Solve N ODE systems with the N generated samples, and calculate the objective
functions in (1.6) .
4. Compute the sample (1− ρ)-quantile γt of the performance according to (2.4) .

5. Obtain {µ̃t, σ̃2
t} using (2.16) , then update βt as in (2.18) .

6. Update µt as in (2.17) and σ2
t as in (2.18).

7. If for some t ≥ 5, γt ∼= γt−1
∼= . . . ,∼= γt−5, then stop; otherwise, set t = t + 1 and

return to step 2.

Figure 2.3: Overview of the algorithm of Continuous Cross-Entropy (CCS)

1. Initialize {µ0, σ
2
0}. Set t = 1 and pick ρ and α.

2. Generate a sample X1, . . . ,XN from the density N (µt−1, σ
2
t−1)

3. Solve N ODE systems with the N generated samples, and calculate the objective
functions in (1.6) .
4. Compute the sample (1− ρ)-quantile γt of the performance according to (2.4) , and
perform evolution on those samples {Xi|S(Xi) ≤ γt}.
5. Obtain {µ̃t, σ̃2

t} using (2.19) , and update βt using (2.18) .
6. Update µt as in (2.17) and σ2

t as in (2.18).
7. If for some t ≥ 5, γt ∼= γt−1

∼= . . . ,∼= γt−5, then stop; otherwise, set t = t + 1 and
return to step 2.

Figure 2.4: Overview of the algorithm of Modified Continuous Cross-Entropy (MCCE)
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2.5 Discrete Cross-Entropy Method

One drawback with the continuous cross-entropy method is the high computation cost
due to the high dimensional search space. To reduce the search space of continuous
cross-entropy methods, we try to search for the optimal parameters over a finite subset
of ℑ. As above, we assume all the parameters needed to be estimated are bounded
in a hypercubic ℑ in which |Θ|∞ ≤ M . For any Θ ∈ ℑ, we can approximate each
component Θj, j = 1, . . . , s of Θ by its finite fixed point approximation. Specifically, we
can approximate Θj , j = 1, . . . , s by

Θ̂j = b
j
0b

j
1b

j
2 . . . b

j
K • bjK+1b

j
K+2 . . . b

j
K+L (2.20)

where b
j
i , i = 0, 1, . . . , K + L is either 0 or 1. b

j
0 represents the sign of Θj, and both K

and L are fixed integers. For our implementation, we set K = ⌈log2M⌉, and L = 6.
With this representation system, we have a bounded relative error:

|Θ̂j −Θj |
|Θj|

≤ 2−(1−L) (2.21)

With this finite fixed point system, we can approximate any s-dimension Θ ∈ R
s

with a binary vector Θ̂ whose dimension is s× (K + L+ 1):

Θ̂ = [Θ̂T
1 , Θ̂

T
2 , . . . , Θ̂

T
s ]

T (2.22)

where Θ̂i is a finite fixed point binary approximation of i-th parameter value Θi, i =
1, . . . , s.We call the variant of cross-entropy method using this finite number floating
representation system a discrete cross-entropy (DCE) method. On each iteration of our
DCE method, we need to generate N trial values, Θ̂, in this fixed point floating system.
We denote these trial samples X1, . . . ,XN , where each sampleXi, i = 1, . . . , N is a binary
s(K + L + 1)-dimensional vector. For each binary s(K + L + 1)-dimensional vector X,
we denote the l-th component of the vector X as X(l). Since X is a binary vector, we can
set its density pdf to be a Bernoulli distribution parameterized by p ∈ R

s(K+L+1) (Ber
(p) ), that is,

f(X;p) = Π
s(K+L+1)
l=1 p

X(l)

l (1− pl)
1−X(l) (2.23)

and since each X(l) can only be 0 or 1,

∂

∂pl
ln f(X;p) =

X(l)

pl
− 1−X(l)

1− pl
=

X(l) − pl

(1− pl)pl
. (2.24)

Substituting (2.24) into (2.11) , we have

∂

∂pl

N∑

i=1

I{S(Xi)≥γ} ln f(Xi;p) =
1

(1− pl)pl

N∑

i=1

I{S(Xi)≥γ}(Xi(l) − pl) = 0, (2.25)

where Xi(l) represents the l-th component of the vector Xi. Thus, we have

pl =

∑N
i=1 I{S(Xi)≥γ}Xi(l)∑N

i=1 I{S(Xi)≥γ}

(2.26)
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for l = 1, . . . , s(K + L+ 1).
We can now present our discrete Cross-Entropy (DCE) algorithm (Fig. (2.5) ) and

corresponding Modified Discrete Cross-Entropy (MDCE) algorithm (Fig. (2.6) ) for
parameter estimation of ODEs.

1. Initialize v0 = [1
2
, 1
2
, . . .]. Set t = 1.

2. Generate N trial samples X1, . . . ,XN from the density Ber(vt−1)
3. Obtain N possible parameters {Θ̂i}Ni=1 by decoding the samples X1, . . . ,XN into
decimal values.
4. Calculate the objective functions (1.6) with the decoded N parameters {Θ̂i}Ni=1, and
compute the sample (1− ρ)-quantile γt of the performance according to (2.4) .
5. Update vt by (2.12) and (2.26) .
6. If, for some t ≥ 5, γt ∼= γt−1

∼= . . . ,∼= γt−5, then stop; otherwise, set t = t + 1 and
return to step 2.

Figure 2.5: Overview of the algorithm of Discrete Cross-Entropy (DCE)

1. Initialize v0 = [1
2
, 1
2
, . . .]. Set t = 1.

2. Generate N trial samples X1, . . . ,XN from the density Ber(vt−1)
3. Obtain N possible parameters {Θ̂i}Ni=1 by decoding the samples X1, . . . ,XN into
decimal values.
4. Calculate the objective functions (1.6) with the decoded N parameters {Θ̂i}Ni=1, and
compute the sample (1− ρ)-quantile γt of the performance according to (2.4) .
5. For those satisfying {S(Xi) ≤ γt}, perform local evolution using (2.14) .
6. Update vt by (2.12) and (2.26) .
7. If, for some t ≥ 5, γt ∼= γt−1

∼= . . . ,∼= γt−5, then stop; otherwise, set t = t + 1 and
return to step 2.

Figure 2.6: Overview of the algorithm of Modified Discrete Cross-Entropy (MDCE)



Chapter 3

Implementation Details

In this section, we discuss some implementation details of the proposed methods.
In many applications, we often encounter stiff ODEs. We use different solvers for

stiff and non-stiff ODEs. For non-stiff ODEs, we apply a 4th order Runge-Kutta method
with a variable time step for efficient computation (implemented in Matlab as ode45 )
; For stiff ODEs, we use an implicit method (implemented in Matlab as ode15s) . For
DDE parameter fitting, we used the second order method (dde23 in Matlab) . We set
the precision of the ODE and DDE solvers to be 10−6. One challenge in parameter
estimation problems is the possibility that, the IVPs may be stiff only for some of the
trial parameter values. This means we have to design an adaptive mechanism to change
the solver according to the parameters. We address this difficulty by setting non-stiff
solver as the default and monitoring the computation time of every updating iteration.
If the computation cost is too high, we switch to the stiff solver.

As discussed earlier, the proposed methods are insensitive to the parameter settings.
We adopt a fixed setting of parameters in all experiments. For the DCE method, the
parameters are N = 200, ρ = 0.05, α = 0.8; for the MDCE method, the parameters
are: N = 30, ρ = 0.4, α = 0.8; for the CCE method, the parameters are N = 200, ρ =
0.05, α = 0.8, β = 0.95, q = 0.925; for the MCCE method, the parameters are N =
30, ρ = 0.4, α = 0.8, β = 0.95, q = 0.925. We will observe that, for the modified version
of CE, we typically use about 85% less samples than for CE methods to obtain the same
accuracy.

17



Chapter 4

Numerical Experiments

In this section, we report numerical results on four test problems. The first one is a
classic problem often cited in the literature on parameter estimation [8, 32, 36]. The
second and third ones are application problems. The fourth problem is a DDE problem.

To better evaluate the quality of the proposed method on parameter estimation prob-
lem, we use two measures of performance: 1) J = 1

n

∑n
i=1

∑d
j=1(Ȳij − Yij(Θ))2. This

quantity measures the consistency between all the observation points and the estimated
ones. 2) CPU T : Time required to converge, which reflects the convergence rate and the
time complexity of the iterations.

4.1 Barnes’ problem

First, we compare our modified cross-entropy methods to the standard cross-entropy
methods on a classic test problem [8, 32, 36]. The problem consists of 2 ODE’s with 3
parameters in the definition of g(·):

y′1 = k1y1 − k2y1y2, y1(0) = a

y′2 = k2y1y2 − k3y2, y2(0) = b. (4.1)

This is a small non-stiff problem but is interesting since there are several local minima of
the objective function [8]. Some existing methods for parameter estimation, e.g. Gauss-
Newton algorithm in [8], Sequential Quadratic Programming in [37] suffer from an
extreme sensitivity to the initial guess, that is, most starting values for the parameters
will lead to local minimum for those methods.

Our methods, however, are insensitive to the initial guess of parameters. For DCE
and MDCE, we set the initial probability distribution to be 0.5 for all components of
Θ; for CCE and MCCE, we set the initial guess of the distribution (v0 = {µ0, σ0}) to
be 10 for every values in µ0, and 1 for every value in σ0. First, we generate 100 data
points on the interval [0, 10] with no noise. We conduct 3 different experiments: 1)
Fix initial values a, b first, estimate parameters Θ = (k1, k2, k3); 2) Fix the parameters
(k1, k2, k3) and estimate the initial values (a, b); 3) Keep Θ = (k1, k2, k3, a, b) unknown.
We independently run each experiment 100 times and report the mean value and variance
for each parameter value of convergence and the associated values of J and CPU T .

18
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Table 4.1: Results for Barnes’ Problem with (k1, k2, k3) unknown and no noise is added.
Methods θ = {k1, k2, k3} (θTrue = {1, 1, 1}) J CPU T

DCE {0.924± 0.033, 1.116± 0.040, 1.105± 0.031} 0.028± 0.008 16.79± 0.12
MDCE {1.004± 0.013, 1.001± 0.018, 0.998± 0.011} 0.008± 0.001 5.94± 0.05
CCE {1.097± 0.033, 1.045± 0.023, 0.905± 0.028} 0.013± 0.005 50.79± 0.52
MCCE {1.031± 0.011, 1.005± 0.009, 1.000± 0.008} 0.006± 0.001 30.00± 0.45

Table 4.2: Results for Barnes’ Problem with initial values (a, b) unknown and no noise is
added.

Methods {a, b} ({a, b}True = {1, 0.3}) J CPU T

DCE {0.950± 0.037, 0.326± 0.045} 0.025± 0.008 12.48± 0.11
MDCE {1.001± 0.018, 0.305± 0.011} 0.010± 0.001 3.87± 0.04
CCE {1.058± 0.024, 0.312± 0.020} 0.013± 0.004 45.46± 0.47
MCCE {1.001± 0.014, 0.304± 0.009} 0.005± 0.001 27.15± 0.35

Table 4.3: Results on Barnes’ Problem with all the parameters (k1, k2, k3, a, b) unknown.
Methods Θ = {k1, k2, k3, a, b} (ΘTrue = {1, 1, 1, 1, 0.3}) J CPU T

DCE {1.124 ± 0.051, 1.094± 0.048, 0.943± 0.061, 0.904± 0.047, 0.351 ± 0.085} 0.059 ± 0.012 34.48 ± 0.41

MDCE {1.012 ± 0.024, 1.021± 0.023, 0.992± 0.040, 0.989± 0.031, 0.319 ± 0.043} 0.019 ± 0.009 10.14 ± 0.28

CCE {1.117 ± 0.038, 1.087± 0.031, 0.956± 0.049, 0.954± 0.034, 0.334 ± 0.070} 0.027 ± 0.010 186.04± 0.95

MCCE {1.009± 0.018, 1.012 ± 0.014, 0.994 ± 0.029, 0.994 ± 0.027, 0.3081 ± 0.031} 0.012 ± 0.003 32.08 ± 0.57

The results (see Table. (4.1) ,Table. (4.2) ,Table. (4.3) ) show that the proposed
methods can estimate the parameters. Specifically, we can see that the modified ver-
sion can obtain both high accuracy and efficiency. Also, the continuous version is more
accurate but slower to converge than discrete version.

4.2 FitzHugh-Nagumo Problem

Our second problem is a real example arising in modeling the behavior of spike potentials
in the giant axon of squid neurons. The FitzHugh-Nagumo equations were developed by
FitzHugh [26] and Nagumo et al. [24], as a simplification of a description of the behavior
of spike potentials in the giant axon of squid neurons.

V ′ = c(V − V 3

3
+R),

R′ = −1
c
(V − a+ bR). (4.2)

The system describes the reciprocal dependencies of the voltage V across an axon mem-
brane and a recovery variable R representing outward currents. Although not intended
to provide a close fit to neural spike potential data, solutions to the FitzHugh-Nagumo
ODEs do exhibit qualitative features that are common to elements of biological neural
networks [27].

We set the initial known conditions as (V (0), R(0)) = (−1, 1). The parameters are
θ = {a, b, c}, to which we assign the values (0.25, 0.5, 3.5) respectively to define the
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reference solutions. As discussed in [11], the existence of many local optimum makes
the search for optimal parameters difficult. Algorithms such as simulated annealing,
have been proposed to overcome this problem, although these are very computationally
demanding. If we fix the value of c and vary the values of a and b, we can show the
corresponding value of sum of squares of error (SSE =

∑n
i (Yij(a, b, c = 3.5) − Yij(a =

0.25, b = 0.5, c = 3.5))) in Fig. ( 4.1) . As we can see from Fig. ( 4.1) , the features of
the surface of SSE include “ripples” due to changes in the shape and period of the limit
cycle and breaks due to bifurcation, or sharp changes in behavior.
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Figure 4.1: Response surface for solutions of the FitzHugh-Nagumo equations as param-
eters a and b are varied. c = 3.5 and initial conditions (V (0), R(0)) = (−1, 1) are held
constant.

Various scales of noise are added to the experiments. Measurements are generated by
adding random noise N(0, σ2) with standard deviations σ of 1.0,0.1,0.01. We generate
200 equally distributed observations in the time range [0, 20]. We also provide some
comparisons with other existing state-of-the-art methods for parameter estimation: 1)
diffpar (differential equations with unknown parameters) [8], which uses a Gauss-Newton
method to search for the optimal solution; 2) A multilevel Coordinate Search (MCS )
algorithm by Huyer and Neumaier [18] which is an intermediate approach between a
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Table 4.4: Values of J at convergence for FitzHugh-Nagumo Problem with different scales
of noise, (200 observation points) .

Methods σ = 1 σ = 0.1 σ = 0.01

MDCE 0.0820 0.0194 0.0022
MCCE 0.0814 0.0172 0.0016
diffpar 0.6521 0.3175 0.1010
MCS 0.4708 0.1291 0.0316
uES 0.3140 0.0932 0.0227

Table 4.5: CPU T required for methods on FitzHugh-Nagumo Problem with different
scales of noise, (200 observation points) .

Methods σ = 1 σ = 0.1 σ = 0.01

MDCE 4.52 4.02 3.85
MCCE 24.6 20.9 19.4
diffpar 28.6 26.7 25.9
MCS 186 180 178
uES 317 305 294

Table 4.6: Values of J on FitzHugh-Nagumo Problem with different scales of noise, (50
observation points) .

Methods σ = 1 σ = 0.1 σ = 0.01

MDCE 0.1529 0.0302 0.0029
MCCE 0.1417 0.0293 0.0020
diffpar 0.8520 0.594 0.3815
MCS 0.7687 0.4914 0.1586
uES 0.6170 0.3682 0.1763

purely heuristic method and one that allows an assessment of the quality of the minimum
obtained. It has an initial global phase after which a local procedure, based on an SQP
algorithm, is used; 3) The unconstrained Evolution Strategy (uES ) which is a (µ, λ)-ES
evolutionary optimization algorithm developed by Schwefel [30].

We report the results in Table. ( 4.4) and Table ( 4.5) , in which, accuracy and
efficiency are demonstrated, respectively. In this test, only one run was made fore each
problem.

We can see that both MDCE and MCCE are effective and efficient. Also, the compar-
isons shows that diffpar requires less time, but is less accurate than the heuristic methods
MCS and uES. However, our modified methods can achieve both accuracy and efficiency.

As is well-known, optimization methods may perform poorly when too few samples
are provided. We generate less dense samples (50 observations) , and also add noise. Fig.
( 4.2) shows the results of fitted trajectories with different scales of noise using MDCE
(It is almost the same using MCCE so we omit it) . We can see that our methods can
capture the underlying structure of the true trajectories, even when the observations are
sparse and noisy. Table. ( 4.6) shows that the other methods perform considerably worse
when there are only a few sample observations. However, our methods can still obtain
reliable results in this case.
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4.3 Calcium Ions Simulation Problem

Calcium ions are an important second messager substance in eucaryotic cells. It is known
that, calcium ions plays a significant role in the cellular information processing system. It
has been observed that the concentration of the cytoplasmatic calcium ions may exhibit
oscillations. This has been modeled in [21] for a specific set of parameters and reported
complex or chaotic behaviour. The main stages of the calcium signalling pathway are
activation of the phospolipase C (PLC) enzyme by the activated Gα unit of a G-Protein
linked receptor.

For the following simulation study we used the most complex mathematical model
presented in [21, 25]. This model consists of four state variables representing the con-
centrations of: 1) the active Gα unit, G∗

α; 2) the active PLC, PLC∗; 3) the free calcium
in the cytoplasm, Cacyt and 4) the calcium in the endoplasmatic reticulum, Caer. The
dynamics of the model is then given by the following system of differential equations:

d

dt
G∗

α = k1 + k2G
∗
α − k3PLC∗ G∗

α

G∗
α +Km1

− k4Cacyt
G∗

α

G∗
α +Km2

d

dt
PLC∗ = k5G

∗
α − k6

PLC∗

PLC∗ +Km3

d

dt
Cacyt = k7PLC∗Cacyt

Caer

Caer +Km4
+ k8PLC∗ + k9G

∗
α − k10

Cacyt

Cacyt +Km5
− k11

Cacyt

Cacyt +Km6

d

dt
Caer = −k7PLC∗Cacyt

Caer

Caer +Km4
+ k11

Cacyt

Cacyt +Km6
(4.3)

where the 17 parameters are chosen in the following manner: k1 = 0.09, k2 = 2, k3 =
1.27, k4 = 3.73, k5 = 1.27, k6 = 32.24, k7 = 2, k8 = 0.05, k9 = 13.58, k10 = 153, k11 =
4.85, Km1 = 0.19, Km2 = 0.73, Km3 = 29.09, Km4 = 2.67, Km5 = 0.16, Km6 = 0.05.
For this specific parametrization, the solution of (4.3) can exhibit a limit cycle. As initial
values we use G∗

α(0) = 0.12, PLC∗(0) = 0.31, Cacyt(0) = 0.0058 and Caer(0) = 4.3 to be
fixed. We choose interval [0, 20] with the sampling interval set to △t = 0.1. This leads to
200 observation points. As in [25], we chose some of the parameters to be estimated. We
keep k6, k10, Km3 fixed since their values are quite large compared to the others which
makes them difficult to estimate. We estimate the remaining 14 unknown parameters.

We give results when there is no noise (see Fig. (4.3) ) . It is clear that, even with
so many parameters unknown, our methods can still capture the underlying structure of
the complex system. Also, we add different scales of noise. Similar to the section ( 4.2)
, we set the variance of the noise σ = {1, 0.1, 0.01}. In Table ( 4.7) we also provide a
comparison with the other three methods. We observe that our methods perform better
even when the number of parameters is large. Other methods can easily break down when
dealing with complex system due to the fact that they either need good approximation of
derivative which is sometimes impossible in complex system, or they require a prohibitive
amount of CPU time.
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Table 4.7: Values of J on Calcium Ions Problem with different scales of noise, (14 pa-
rameter values and 200 observation points) .

Methods σ = 1 σ = 0.1 σ = 0.01

MDCE 0.1002 0.0497 0.0304
MCCE 0.0957 0.0413 0.0215
diffpar 1.0740 0.4130 0.2885
MCS 0.5678 0.2674 0.1359
uES 0.8752 0.5681 0.2478

Table 4.8: Comparison on the evaluation metric J in the Kermack-McKendrick model
Methods σ = 1 σ = 0.1 σ = 0.01

MDCE 0.1829 0.1202 0.0825
MCCE 0.1495 0.1026 0.0547

SQPDSA 0.2864 0.2340 0.1457

4.4 Kermack-McKendrick Problem

In this section, we apply our methods to a delay differential equation (DDE) . Since our
methods require no information about the partial derivatives of the differential equa-
tions, we only need to apply an existing reliable DDE solver. We use the solver dde23.
In the literature of parameter estimation in differential equations, there is little to ad-
dress the problem for DDEs. Here we give a comparison with a recently developed
method of parameter estimation of DDEs [38]. The method is deterministic and uses se-
quential quadratic programming complied with delayed sensitivity analysis of the DDEs
(SQPDSA).

We test our methods on a classic Kermack-McKendrick model of an infectious disease
with periodic outbreak [10, 9]. The problem is

y′1 = −y1(x)y2(x− τ) + y2(x− ρ),

y′2 = y1(x)y2(x− τ)− y2(x),

y′3 = y2(x)− y2(x− ρ), (4.4)

with constant history function

y′1 = a,

y′2 = b,

y′3 = c (4.5)

for t ≤ 0. We set the delay terms τ ∗ = 1 and ρ∗ = 10, for t in [0, 55] and the history
function a = 5, b = 0.1, c = 1 for t ≤ 0 to specify the exact reference solution. The
unknown parameters are Θ = {τ, ρ, a, b, c}.

The exact solution of this problem is unknown. Fig. (4.4.a) shows the approximate
solutions which is periodic. Fig. (4.4.b) shows the fitted curve output by the proposed
methods with no noise added. Also, we add different scales of noise and give a comparison
with SQPDSA [38] (see Table (4.8) ).



24 Chapter 4. Numerical Experiments

4.5 Discussions

In this section, we discuss the effect of the parameter tuning in the proposed methods,
as well as the choice of objective function in (1.5) .

4.5.1 The effect of N

In this section, we investigate the effect of the number of trial samples N , which has a
significant effect on the efficiency of the methods. We conduct an experiment with the
Barne’s problem. We keep other parameter fixed, and only vary the number of samples
N . Then Θ = (k1, k2, k3, a, b) is estimated. We compare the four methods in Fig. (4.5) .
We can see that, as N increases, the accuracy of parameter estimation is improved. This
is expected for the initial cross-entropy methods (DCE,CCE) . However, our modified
versions can obtain high accuracy, even when N is small. This property, on the other
hand, can reduce the computational cost needed to achieve a desired accuracy.

4.5.2 The effect of ρ

We also test the effect of ρ (the parameter used to define the “elites”) on both accuracy
and efficiency. An similar experiment is conducted: we keep N = 40 fixed for MDCE
and MCCE, N = 100 for DCE and CCE; and we vary ρ from 0.1 to 0.9. The results
presented in Fig. (4.6) demonstrate the sensitivity of ρ. It is not surprising that DCE
and CCE produce a better accuracy as ρ increases. This is because DCE and CCE rely
on the “elite” samples to update the parameters. For MDCE and MCCE, the situation
is different, as ρ increases, the accuracy improves for a while and after a certain point,
the accuracy does not improve. This is easy to understand. When ρ is very small and
increases, the local evolution procedure will put more weight on the “best” samples, and
the “bad” samples will enlarge the search space. All of these will increase the accuracy.
But MDCE and MCCE degenerate to DCE and CCE, respectively, when ρ is large
enough. In addition, we also test the effect of ρ on the CPU time. We can see that ρ can
boost the convergence rate of DCE and CCE. However, when ρ is large for MDCE and
MCCE, the convergence rate is slow due to the fact that we have to explore more “bad”
samples in order to achieve good accuracy.

4.5.3 The effect of choices of objective function

Most methods choose the objective function in (1.5) as the square difference of the obser-
vations and fitted data. The main reason is that this objective function is differentiable
and easy to analyze. Since we don’t need any derivative information, the square form is
not necessary for the proposed methods. Now we exploit the effect of different choices
for the cost function in (1.4) or (1.6) . The generic p-norm is defined as

‖x− y‖p = (
∑

i

(xi − yi)
p)1/p (4.6)
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Table 4.9: The effect of choices of distance functions on Barnes’ Problem.
p 0.1 0.2 0.5 1 2 5

MDCE 0.0110 0.0154 0.0185 0.0185 0.0196 0.0235
MCCE 0.0057 0.0083 0.0102 0.0105 0.0121 0.0157

Table 4.10: Results on Barnes’ Problem in the case of partial observation with all the
parameters (k1, k2, k3, a, b) unknown.The true parameters are {1, 1, 1, 1, 0.3}

Observed Variable MDCE MCCE

y1 {0.868, 1.550, 1.498, 1.00, 0.258} {1.126, 1.148, 1.579, 1.00, 0.287}

y2 {0.875, 0.754, 0.056, 1.00, 0.244} {1.056, 1.873, 0.226, 1.00, 0.276}

and the corresponding objective function should be:

Lp(Θ) =
1

n

n∑

i=1

(

d∑

j=1

(Yij(Θ)− Ȳij)
p)1/p, (4.7)

We pick different p to see the effect of distance function. We can see that when p is
small, we can achieve better accuracy. This is not difficult to understand that small p
can enlarge the difference of small yi numerically.

4.5.4 The case of partial observation

We also investigate our methods when only partial observation is available. Parameter
estimation in the case of partial observation is a challenging problem and few researchers
have addressed this problem. Discussion on the identifiability of the parameters in the
case of partial observation is beyond the scope of this paper. Here we report the per-
formance on the Barnes’ problem, which is known to be well-posed. Table (4.10) shows
the estimated values of the complete parameters. With limited observations of a single
variable, the proposed methods can predict a good set of parameters. And our methods
are very accurate in estimating the initial values.
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Figure 4.2: The fitted curves of solutions of FitzHugh-Nagumo equations using MDCE
with different scales of noise and 50 observation points. The upper half shows the exact
solution and “fitted” approximation to V (t) and the lower half shows the exact solution
and “fitted” approximation to R(t)
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Figure 4.3: Response of Calcium Ions Simulation. (a) shows the true curve of all variables.
(b) shows the fitted curve using MDCE. (c) shows the fitted curve using MCCE.
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Figure 4.4: Response of y1, y2, y3 in Kermack-McKendrick model for t ∈ [0, 55] with no
noise added. The red curve represents the underlying solution of Kermack-Mckendrick
models. 55 observations points were used.
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Figure 4.5: The effect of the values of N on J for Barnes’ Problem with no noise added.
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Figure 4.6: (a) The effect of ρ on J for Barnes’ Problem with no noise added. (b) The
effect of ρ on CPU T for Barnes’ Problem with no noise added.



Chapter 5

Conclusion

In this paper, we present a novel method for parameter estimation problem of ODEs and
DDEs. We apply the cross-entropy algorithms in the context of differential equations
for the first time, to our best knowledge. To overcome the prohibitive computation of
cross-entropy algorithms, we provide a modification combining a local search technique.
The modified cross-entropy algorithm can speed up the convergence rate and improve
the accuracy simultaneously. We also design two different coding schemes:1) Discrete
coding, which is easy to implement, and also fast to converge; 2) Continuous coding,
which is more robust and accurate, though it suffers from relatively slow convergence
rate. Extensive numerical experiments on real-world problems illustrate the effectiveness
of the proposed methods. Our methods are comparative to most existing state-of-the-art
approaches on some benchmark problems for parameter estimation. The experiments
show three main advantages of the proposed methods: 1) They are robust to noise of
observation points; 2) They are not sensitive to the number of observation points, while
most existing approaches are; 3) The proposed methods can be generalized to large
number of parameters. We also briefly discuss the effectiveness of the proposed methods
when partial observations are available. Future work will focus on the extension of the
use of cross-entropy methods to stochastic differential equations with parameters.
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